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Abstract

L

The aim of this thesis is to review the. uses "of thin

shells in General Relativity.

‘

A thin shell formalism ii/fﬁye%oZif)and applied 'to a
number of*ﬁﬁysical modelsfH$Fese models /illuminate importahE

o 7 .
features of such diverse = processes as gravitational

collapse, 'SUpernévas, inflatid@ary .cosmology, growth qf
voids,in the universe, andlffaﬁe—dragging effects induced by
massive rotating bodiés.;%hé final section of thé thésig is
devodéa‘:oﬁthé‘Casimir reffect  and’~i§s ,poséible‘:role in

preventing the formation of singularities.
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CHAPTER 1 , B

Thin Shells/In General Relativity

1.1 Introducton

Einstein's General Theory of Relativit; {GR) surely
ranks _as one of the'great intellectual achievements of tois
century. From a practical‘ poiot ;of;\viey, it has had
negliglble impact on qthe llfe _of modern man, in marked

contrast to the other contemporaneous revolutlon in phy51cs

the quantum theory. The reason. foF/thxs 11es in the extreme

weakness of the grav1tatlonal 1nteract10n, as compareo to

the o}her forces of nature; General Relativis;ic‘effects are

typically very small corrections to classical Newtonian‘

calculations. Exceptions to this tendency .occur in the

-fzelds of" cosmology, where the matter sources are Buge; angd

-

grav1tat1onal collapse, wHere matter has been compressed to

dlmen51ons comparable to its Schwarzschzld radlus. In spite

of these con51deratlons, it is also accurate to claim that

"Relativityfhas had a very significant '~ influence .on'_modern>

man's conceptlon of the universe and hls place init.

The difficulties associated. wlth expe:1mentel

verification of GR have played a dominant role in the
history of the subject. There are three classic tests of GR,

yhlch'involve the following phenomena: fo ‘,‘ B o

;l. The dependence of the_ raté of (clocks,.on the locel

t . a

grav1tatlonal potentlal (as manifested, for example,  in

8
W
»



"the gravitational redshift).

2.- The deflection of light around a massive body (such as

/
the sun). ¢ ' : “

3. The advance of the perihelion of a Keplerian orbit.

of ‘tgese "effects, it was the latter fﬁg (the‘ famous

measufement of light deflecton by thegsun wa's berfofmed in,
1919) which supplied the first vindications of GR. In Fhel
1920'5, it became apparent ihat‘fﬁevtheory nicely ;Ecounted

for the newly discovered expansion of .the unzverse, although
thls was realized in retrospect. Tge cred1b111ty‘ of the

theory was thus flrmly‘established.

Gz In the’ s0llowing decades, work Nonu relativity was
'Ehébretiééliy"orienﬁéd ' Many importaﬁt key 'résults were
establlshed but as experlmental verlflcatlon vas iackihg,
these were con51dered to ' be speculatlve.. Tbg subjec;‘
experienced a rebirth in the‘1960's”due largely té improved

experimentél'~ techpiqueé in bbservational‘ astronomy;7~0f

partlcular 1mportance were the dlscovery of the microwave
background by Penzzas and Wilson, which clearly indicated’
'that relativistic cosmological ‘modéls were of more than.
jacademic interest, and the discovery of supermassive objects
and ‘highly céndenéeé neutron stars. The iattei }had"been
preaicted -by7 Oppenheimer in ‘the late 1930’5 Excellent'

hlstoracal rev1ews can be found in Hawklng and Israel (1979)

and Chandrasekar (1980) Surveys of the most recent trends.
{

"in the subject (thh theoret;cal and‘vexperlmeotal) ‘can be

 found - in - Rees (19,80) 4I..srael- (1983, *1985), and Vessot

e,



(1984) .

In GR the coupling of geometry ané matter is e}pressedfh
through a set of 10 highly noo;iineir ‘diffegential.
’equati%nsu As a consequenoe, reiativistic models . qf
realistic physitel, situétiohs- typically defy analytipali
solution. On the other hand, exact solutionsﬂ of Einstein's
. eguatidns are "alweys of interest'as they are often able to:
éhed:'iig ~on 1mportant qualitative features  of the
1nev1t2bly more complex physical 51tuat10ns. Infioitesimafly
'th1n shells, the_subject of this thesis,  prove themselveé
emenable to ‘anély£§;§l treatments and have been studied
quite e*tensively in GRf » ' |

A brief syoopsis of the main body of the text follows

The remainder of. this chapter beglns w1th a short
discussion oo the mathematical essentlals of the Theory of
Generel Relativ1ty. A formalism is subsequentlyJQeyeloped to
describe surface ‘layers as @ﬂree dimensidpal imbeddings in
the surroundinghspacetime; Restricting ourselves to ;hellS@
of matter, we derlve some 1mportant junctlon relat1ons ‘which
the grav1tat10nal fleld must obey at. éSgT boundary 1ayer.
These junctxon cond1t1ons' are 'then&appl1ed-to de:ive'the E
| dynam1ca1 equatlons of mgylon for a shell of matter in _the‘
_' spec1al case when 'the shel} and surround1ng spacet1mes
’exhxblt spherlcal symmetry B |

In Chap;er 2 Ve con51der several specific: shell models,

‘most of wh1ch exhlblt spher1ca1 ,symmetry . The purpose of =

th1s_ dlscusslon- is twofold. First, yeechjpflthese_models'
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X

illustrates one or more features of physical interest.

4

# . .
Second, the chapter serves as a review of previous work on
‘ .
shell§,tf‘cover1ng such- diverse tqpics as gravitational
A collapse and gravxtatxonal bounce, supernovas, inflationary

cosmologyﬂﬂ:gsowth of voids in the universe, and Machian

effects. * \ b
. . ‘
,The"finél chabter deals with the Casimir-effect. After
IS . 1
a brief discu551on about the phenomenon, the collapse of a

spherical cOnductlng shell is considered with reference to

the possible effects the Casimir force might bavg vin this
4

process. . _ S
A few words about notation are in'order hereg For the

most part, we'shall follow the coventions of-Misnerf Thorne,

e o

and Wheeler (1974), Héreaftef denoted by the abbreviation

'"MTW'. A few particulars should be mentioned: , .

10 Greek 'indiéés run 6ver four values, while Latin indices =~
run over three values.'( 3

2. The semicolon symbol '’ representgﬁ the - 4-dimensional -
covarién; " derivative, the vertical stroke "|' the
3—diﬁénsi6nal covariant derivétive, and the comm; v

LI ’ l

the partial dgri&ativeQ:As in MTW, the symbél 'V' is an
altérnate way éf!qxpfeSéing covariant derivatives:
3h; The Minkowski'mgtric ib‘syhﬁoiized ~by "n., 7 .the hqre
‘genefél metric is symbollzed by g* . As in MTW, the
metric S1gnatuae used?throughout the the51s is (-+++),
4. The na;gral cS%stants G, ¢, andlﬁ are all taken to be
_ IR :

;'unity,_ except in the flrst sectlon of Chapter 3, where

¢




; In GR the events of spacetime form a 4-dimensional

. (
the quantum Casimir effect is discussed.

-

1.2 A Brief Outline of General Relativity

Before turning to the specific topic of thin shells, we
review some of the esséntial features ‘of GR. A thorough
discussion of the relations outlined in this section may be
found in Weinberg (1972) and Papapetrou'(1974).
pseudo-Riemannian space. In such a space, . there exisis an
invariant measure of length ds for the displacement between
neighbou:inévpoin;s (events) x~ and X +dX :

’

) - . 2 . ,oQ g
; ds gaedx dx

° ! - B
' ’ - ' (1.1)

& -
where g_ transforms as a covarlant tensor of second rank

4

“under coordina\i transformations, and is non-singular for

regular coordinates:

det(gae) fAO

(1.2)

The contravariant metric tensor is then defined by

e

-~

(1.3)

Through use"qf the metric tensors g.s and g’ﬁ one may

associate with >any covariant/contravariant - object a
g > ! , ‘

. 1 .
corresponding contravariart/covariant object:

i



Au = gaBA L
2 (1.4) 0.
R

B =g B ,

e of (1.5)

.

From a physical point of view, GR is founded on the
Principle of Equivalence: at every spacetime point we can

find an observer for whom spacetime is locally Minkowskian.

‘To this physical notion, there is a corresponding geometric

statement: for every point on the manifold, there exists a

set of coordinates, called Riemannian coordinates, such that

dS2 p = .n dxadxs - _dT?

(1.6)

‘where -7 is the proper time. Suppose that {x7} 1is an

arbitrary set of coordinates related to the Riemannian

coordinates {x*} by the transformation

a ‘ .
3x Y

(1.7)

‘'Then EqQn. (1.6) can be put into the mare general form (1.1),

where
’ Bxa axg ‘
g = n_z ( J(—=%) o
aB p af 3xu 5 x -
< . (1.8)

°

In the absence of non- grav1tatlonal forces, the motlon

of a part1cle in t\e .observer's frame obeys the equ&tlo%

~/ ‘



d? | (1.9)
'where A is én affine parameter, which maybe taken to be the
proper time 7 if the particle has mass and the coordinate x°
if it is massless. When Egn. (1.9) is transformed to‘ the

coordinates {x"} the resulting eguation of motion is

v

(1.10)
where I',ris the affine connection:

a ax” 3 x” r
. By ax® axeax"
(v.11)
The parameter A is determined up to a linear transformation.
In geometric language equations of the form (1.10) are known
as geodesics.
The connection can be shown to be related to the

functions g, ' . .
1 a A t.

Fey =28 (Bax v " By,s gBY,X?
¥o(1.12)

~ The connection coefficients sy can be used to construct

‘a cdvariant derivative, whose components transform as a

second-rank tensor:

H

‘.fm,

.
. . . o ) ;
/ * : <



™

a a Ao
A =
; B A,B * A rxe
?\)
) A = A - A’

a; B a,B AT akR

The Riemann curvature tensor

["s by

Due to its various symmetry properties, Rjgys has

independent components. In addition

there exist the Bianchi Identities:

objects:

1. Ric
A
Rae = Rane,
2. Curvature ScaIar;
A _ _
L : A
- . R =
. | R} .

] .
3. Einstein Tensor:

to ~9hese

the

(1.15)

only 20

symmetries

(1.16)

followinb.

2

(1.17)

(1.18)



jla-< (1.]9)
. : :
The dynamical relation between . the geometry of
spééefime and the'energy/mafter distribution is embodied in

the field equations

aB aB .
’ E ©(1.20)

where Tﬁ,is the- stress-energy tensor. From the metric,

il

therefore, ™ one can in principle calculat® the behaviour of

[

~N

matter. The metric, 1in turn, 1is determined = by the‘;

energy/matter ‘distribution through Egn. (1.20). , #

!

The(contracted Bianchi Identities follow 'fromJlEqns.

" (1.16) and (1.19): ' .

. o y (1.2,

These identities are seen to aquire physical significance

through the field equations (1.20):

‘:('1.22)

+ BEgn. (1.22) will belrecognized:as the law of conservation of

énergy/momentum. v ’ _ ;

\

s
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1.3 8xpersur£a€25‘1n Spacetiﬁe

“When attemptlng to model real physical systems it 1is

often the case- thaL one must deal w1th discontinuities in

. v:“‘r“

the sbﬁrcevi,. A well-known example occurs in the vstudy of
stars, where the internal and extefnal metrics mus t@be
matched at the surfaceiof the star. This is in -general ' a
non-trivial problem, Jgs the Acoupling 6f the geome%ry and
souréé requires certainAjunctionfconditions to hold at the
boundary separating the two‘regions of spacetime. |

The pieneering work in this probiem was 1initiated - by
Lanczosl (1922), and - impertant contribution'’s vere
supseguently "made Dby Darmois(1927), O'Brien and Synge

(1?52), ‘2nd _Lichnerowiez (1955). More recently the
treatments above have been compared\ {Bonnor and Vickers,
71981) and extehded (Raju, 1981). ®ther"euthors have
| investigafed junctlon condltlons in alternate theories of
g;av;ty, notably 'the Einstein- Cartan theory (Skinfer end
Webb, 1977) apd the Brans-Dickef\%heory, (SufferP,v 1982).
Below we follow the elegant approa;ﬁ to Foundary layers puﬁ
forward,by Israel (1966). | |

We comsider a disédn;inuity' in the‘source mw'which
defines a 3-dimensional hypersurface Z. The hypersurface
divides. spacetime irnto two regions}v‘ and\V_ (seeﬂflgure
H.l). The discussion below does hot lend itself to the

treatmentv- of null h/persurfaces, and so .z is assumed to be

S

non null everywhere (for a d1scussxon of j nctlon condltzons

for null.surfaces-see Choquet-Bruhat,‘1968).
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A

Our aim is to write Eqn. (1,20) in a form more

ﬁy,

ap?ropriateﬂfpr déalinQAgith hypersurfaces. To do this, we
considér the imbedding of Z in the surro&ndiné spacetime and
sepératé its intriﬂgis_and extfjnsic properpies.

The regions V., and V. are described by‘the 4—cqordinate
sfstems {x=}. and {x*}. with associated basis {e.}. and
{e.}., while ’Qn“ i the 3—qéordinates,{x‘}t suffice. At any
point on L we may define a unit normal véctor n  which is
}-

and n may be expressed in tedms of the basis {e.}., and vice

orthogonal to the basis vectors {e ,}.. On I, the basis {e

versa:
x‘ - ea \//
~1 (1) —az ‘
(1.23)
A n = nae %
~ —at )
*(1,24)
o ‘
D4 o - ei e+ ol
—at, (2)r —1a e(m):vIl
' : . (1.25)
, For the remainder of tgg‘chapter we will for the most

parf drop tﬂe use of the symbols +/-, as the" relations below |
are valid on either side of L. |

| Fpnsider'é°Vedtor field a which is tangent to Z. (For
exahp%@, if Z represéﬁfs thé hisfory of a shell of matter,
the 43vefocity.g is ‘such a . vector field.) The covariant

: . . : ¥
o derivdtive of A along basis e; isq A &
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= A .e. +Ai(v.e‘.)
- )2 (1.26)

We introduce the extrinsic curvature tensor K,; which

 describes how the vector n changes as it is propagated along

I - Vs

<
8=

1]

1

=
DI S 0%
(4

(1.27)

(As n'V, n = 1/i V., (n-n) = 0, V,'n is expressible in. térms

e

of the basis {g.}g.) It is easy to show that K, is

symmetric:

ij i%mj

Here gm, is the 3-metric on I, defined “as in Egqn. (1.1).

Using Egn. (1.28) we write the normal and  tangential
components of V;e,, thus defining the 3-connection R

¥

; @
(v.e )" = K.. . ‘ v
) Jv”l 1) ' v (1.29)
.,
(v.e )™= Clpm : . (1.30) .



,~W€é can now write the Gauss-Weingarten Equation

-

K..n -
‘ v . -————Jl— + (3)Fm e
i (n +n), ij =m
(1.31)
wvhere the n'n term 1is Jincluded to ensure the correct

normalization.

. The covariant derivative (1.26) becomes

(1.32)
where A‘p are the components of the intrinsic covariant

derivative: ' : o

. . : (1.33)
The Riemann curvéture tensor can also be split into

intrinsic and ‘extrinsic &mrts. In a coordinate basis we have
- . L '

<

Al

R , | SURSEEE
Fika €x® %50 - V(e ) ‘ MR
U » (1.3&#‘?“f
e S o ] ‘ .fi?.hw . ‘
Substitution of Egn. (1.31) into Egn (1.34) yields . &
o . <
R.. . = (K..,, - ) e ‘
ki B (kijlk Kk_‘]ll) (n - n) i
PN - ' -1 h ‘g h (3) h
+ *(n- Ko K, .
(n+n) (KkJKl RIJK )+ ,Rjki c, -

(1.35)

‘ e . S . : '
wvhere the intrinsic curvature tensor *R ;,; 1s .constructed .

v
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from the 3-connection as in Egn. (1.15). Projecting Egn.

(L,35) pormally M tangentially to the hypersurface Z

immediately yields the eguations of Gauss and Codazzi:

(1.36) ;

h  _
Rjki‘
(1.37)

that the external amd intrinsic

Egqn. (1.37) demonstrates
R
curvatures agree only when the extrinsic curvature vanishes.
, . ,
For thé sake of simplicity we use the Gaussian normal
. N Fa
coordinatés in the neighbourhood of Z (wWald, 1984). Taking
the zeroth components of the field to be the normal ones, we
make use of the following identities: '
’ —_—
¢" = -(R1Z L RiZ LR3l ¥y
n 12 z5 .31 ‘
. (1.38)
_ n2 U
Gl — R 12 R 13 (1.39)
LN
n _ . nl n? .
G, = R a0 R 93 : ~ ’ : (1.40)
L ‘ | ) . °
n nl . n2 o, ” :
G, = R + R4 . ‘
S 31 % 32 . (1641)

.SUbstituﬁion of Egns. (1.36) . and (1.37) into the above

identities yields:



S

where

Moo L)y (Tr(K)]° - Tr(x¥)) (1.42)
n 2 2(E-r_1)
" = (Tr(K), - K emy!
y - e )Ii K1|j)(—rl n) (1.43)
o 11(x)=ﬂxi y .
. o (1.44)
2 J B 5
RIS (1.45)

Calculation of the remaining

involved »(

coordinates they are

¢l - ()¢

G+ (n: g)TI[CK?- c?Trﬁx))

G”. is more

components of o

see MTW, 1973, Cﬁ:21). In Gaussian normal

- Tr(;)xj . ? 1(T (K)) . % 837 (k%))

(1.46)

1 4 The Junct1on Conditions For ThIHAShEIIS

We now derive the junctxon

satisfied
A

' matter.

condltions whlch must: be

on I if it represents the h1story of a shell of:

Since. this type of hyper5urface 1s‘t1mel1ke, (n:n) >

-

,"‘\
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0; we will assume this scalar produgt to be normalized to
| unity, and subsequéntly drop the term whenever it occurs.

As L is of infinitésimal thickness, T«g exhibits a
sipgu}arity here. In ‘this case weé define the surface
stress-ener tensor S, by

SZ = lim [ji ngﬁ

€0

’ (1.47)

where n is the [proper distance normal to I, and the limits

of integration occur on opposite sides of Z. With the aid of

Einstein's equations>(1.20) we can write -

+E£
lim (fAE G; dn) = snsg
e+0 - .

(1.48)
Now the intrinsic geometry on I is defined by the

3-metric

ds? = (3)gijdxidxj »
' (1.49)
In order for the geometry to be well-defined ; gij must
possess  no singularigies ‘or 'delté .quncﬁioné.. fhe
gBFéoﬁnection is rélateé to.’é,, through‘aﬂiequation of the:
form (1.12). The curvature scalari’R,'calculéted'f:om 5F‘j.;
thQs Has no delta functions. | | | |
Furthermore, K;; = -(1/2{9.,,nv will have)‘no. delté

functions either.w'These cthiderafions allow. evaluation of

- Eqn. (1.48), making usé'of Eqns; (1;42),'(1f43), aanfﬁ,qs);f
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Hence

[ G"dn = 0 = 8aS"
K n n
‘ ﬁﬁ , (1.50)
Q"\,
f Gldn = 0 = 8ns”
1 1 “(1.51)
i i i i .
Gldn = 2 - &%y = : :
JiGjan = vy - o5y = gmsy o (1.52)
L
where ?
w; = (K] = K;‘ e
g (1.53)
| .
i
Y=Y , :
. | (1.54)

(SUbséquently the square brackeks will be usgd to denote the
jump in the value of some object across Z.)_Eqné B1.52) is
.knowﬁ as the Lanczos equation.. |
Two imporﬁant relations -result from consillering the
& ,

jump>in the field eqguations:

I3

-{G?]-= 8“[T?] @
| (1.55)
(6] = 8n[T:]‘ ,
S (1.56)

b

Using.Eqns.(1.42),(1.43),(1.52);‘énd'(1.53), we can rewrite

these equations as



7 (y 9—6‘{)' = -8%{T.] 3
: '.:,, Y BN ‘ . (1.57)
- O DR a
%‘ | LhoE o) s - (1.58)
wﬁgre the symbol A& denotes the average value (1/2 .+ AL)

ofc;? object ‘across Z Making use of the Lanczos equation,

3

Eqm.‘( .57) becomes

' NS R |
e SIJI. w [T = 0 3 p
J i . . <
o e (1.59)
Egn. (1.59) ks a gonservation law having as its ahglog Egn.

i ' . “@ ., T - ' R
.(1.22). The right hand term, expresses the fact that

. . oo : . _ .
4-momentum may be transferred to I fr%m th905urround1ng

"spacetime, and wbuid not be present if I was not imbedded in
'_ . . v, .. e.

'a hlgher dlmen51onal space

~
~

In the followlng section we apply the formalism

»

déveioped abové to the case of a spherically symmetric shell

v

»

of matter.

-

a
s

“_‘%“ :,_': . . i ‘ - ) ) ' ) ‘ v, . ', .
1.5 The Spher1ca11y Symmetrxc Imbedd14g .lgﬁf

e °

We now construct a dynamzcal description of the
. ,

hypersurface £ in the caseé when it represents the history of

\

a spﬁerical shell. ' Our aim is to express the results .in

—— e ————————— v

'An Qlternate treatment 6f the spherical shell problem has
been given by Siegel (1981), who uses the

- Arnowitt-Deser-Misner canonlcal formulatlon.‘Recently, the

shell problem has been generalized to the case of a shell
_with f1n1te thlckness (Hoye et. al., 1985). ;

%
-
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:terms of guantities whiéﬁ’ are 'measurable by an observer
co-moving with the shell. With this objective in mind, we
first consider this‘observer and momentarily neglect the
exact‘\hature‘ of the imbedding of I in the surrounding

- spacetsime.
. 4 . . .
"1f spherical symmetry is assumed, then the intrinsic

'

geometry of Z is described by

&

. -
ds% = -dt2 + R(1)2(d6? + sin?ed¢?)
{(1.60)

F3 A
where R(7) is an arpitrary function which %ég co-moving

v o
observer can determine by geodesic deviation experiments or

by measuring areas of spheres. For fixed values of the

proper time 7 the observer actually measures the area

- -

. A = 47R° ) »

-

(1.61)
If the shell is a perfect fluid, the surface stress-energy

tensor takes on the form

\

- ’
.

1]

S.. = (0+P)u.u.
( “) vy * Pgij

(1.62)

2
where P is the surface pressure and o the surface energy

density of the. shell. The proper mass of the‘sﬁe11<is ther
. 1] .

given by
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M = 4noR?

a,
. \ . (1.63)

When the connection for the metric (1.60) is calculated from

(3).1i _ 1 im _
Mk T 28 Cin ok Bm,j ” Ek,m)
' (1.64)
the non-vanishing coefficients are
r’ = _RR Fe = -sin 6 cos ©
B¢ ¢s
r' = _RR sin2e r® = cot 8
¢ 8¢
¢ _ R
r..=r_ =% {
e Ry (1.65)
\/ .
where the dot means differentiation with respect to the
\ - :

proper time.

An important relation results from substituting the
éxpliéit form of S,, viz (1.62) into Egn. (1.59) .and
projecting the result onto fhe 4-velocity u. Hence, with the
aid of Eqn. (1.65), we find

' ’ ) ' ' Ki
Moo PA = A[TY] = AT ] :
(1.66)
Eqnf4(1.66) relates the mass enefgy of the shell to the work"
done by the surface pressufe and the net energy flux into

the shell from the surrownding spacetime.

%o
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A

J It is evident from Eqn. (1.66) that 1in order to
describe the ;dynamics of the shell we must consider the
imbedding of Z. The information of interest resides in the

normal components of the 4-acceleration a, (=n-a), evaluated

on either side of L. Adding and subtracting these, and

making use of Egn. (1.32), we have

3 - WWR
*) (1.67)

[a ] = wtuly
o (1.68)
Through the Lanczos Egn. (1.52) we obtain vy.; in terms

of S,,. Eqns. (1.67) and. (1.68) then become, with the aid of

Egns. (1.62) and (1.58),

e

-1
" o YT T PR (1.69)

- [;n]-c 4n (o0 + 2P)
(1.70)

" In order to proc%ed further;,thevfunctions an:»must be
kevaluatedilhs we shall see below, a.good deal of headway can
be made without spécifying the exacf nature,of_the_geoﬁetry
in the regions V., . We_éssume only that these regions can bé
described by _épme ‘sphericaliy symm'tric- metric of the
Qeneral form.>‘ | ?- . |

!
¥
{
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2v r,t) 2x (r,t)
- 2 s e © O dr? + r2(de? + sinZed¢?)

vod
"i\\ (1.71)

[E RN

It should be stressed that although the symbol "t' is used

\

in both metricsa the coordinate so labelled in the two

regions V, are dﬁstinct.

\ .
The nonvanishing connection for the metric (1.71),

/

calculated frqﬂ Egn. (1.12), is

t - { t t -2v*§k
F = r = A
tt R / tr v,r rrr X,ﬁ- CT
n// ‘
-
T 2vy-22 T
T = e r--= 2 T =
tt o T tr , T Trr A,r
T -2A T L2 =2
r = - = .
66 re T¢¢ r sin fe
8 ¢ 1 8 ; r® - cot o
ro =r1% =2 I, = -sin & cos @ g = ©
o T¢ T %9 . (1.72)

The Einstein tensor, calculated via Egns. (1.15)-(1.19), or

by using the more elegant method of differential forms (MTW,

Ch.14, 1973: Israel,'197ba) is given by

ct . e-zx(l_'_ Zx,r) o1 .
t v r2 r r2 . ) (1.73)
. 2y 7 ]
C - 1 T 1
Gr=e2>"(_—+_—’—)_— . .
T . T2 T 22 (1.74)
2 ' A
.22 ? . .
G; = _ r:t e'z\) N B ( 1.75) |
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2x T
T t - -2
cf = =L
e t - 1 € (1.76)
6 = G¢ = - _zv(l - A +22. ) + e_z)\( - A + 2 ’V,r ’r)
8 ¢ ,tt ,tt , Vorr VY, e, r Vo T T
(1.77)

Interpreting r as the radial coordinate in the normal
fashion, and reali?ing that the three metrics (1.60) and
(1.71) must agree when 'r équals the radius of the shell, we
can identify the function R as the radius of the shell. Thé

4-velocity of the shell may then be written in the form

{

(1.78)

The orthonormality conditions u-n=0, uw-u=-1, and n-n=1,

together with metric (1.71) allow us to'compleXely épecify

the components u., n n, and X in terms of R and the

!

metric functions g,:

2v, ZAi.
u°+ = ('e X , € R)O)G) .
i S (1.79)
\)+)\ \)‘A v .
= -e R,e X,O,O) . ~
Max = (€ , | (1.80)
nat - (e_V+Aﬁ,ev-AX,O,0)
(1.81)
. v, o,
X, =e fee )7
o . , . - (1.82)
The normal 4-accelerations can be written e
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-u n LT
Lin )ug(ur +u T, )
n a ) u, T ,B AB y

(1.83)
where the identity u-a=0 has been used. Using the results
(1.78)-(1.82), and the connection (1.72), Egn. (1.83)

eventually reduces to

C .

D e -2) . -2 .
an = Fi CR+\),re -+2R)\)\’t+R ()\,r+v,r))li -
(1.84)
where the functions F. are defined as
-2X
v-2 _ LRI
F, = (e” "X), = (e +R ).
“(1.85)

gn. (1.84) can be put in a more convenient form upon

‘evaluation of the quantity GY (=Ghu.r’):

-

w
ca =4 (F, ¢ 4mRT) | .
R
7 7 . (1.8€6) .
Egns. (1.69) and (1.70) then become )
e
ff; g : 4 ' o
F= -anRtY - (0+P) " ([T"]+PKIR .- -
o n ~ oon - (1.87)°
[I.:] = >4‘rr (c+ 2P P'{“-‘R ™) - . o
' : (i ?) Rl “]) ’ L ... (1.88)

Using -Egn. (1.66), the right hand side of Egn. (1.88)

ARE can be put into the form of a perfect differential, whose .
.o ' . . E 4 . '

~integral is

I

.
?\ ' ’ T4



“s

vn".ly

© from which Eqn: (1.89) follows immediately.
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(1.89)

where a is.a constant of integration which can be shown to

be zero. * From the definitions of F. (1.85) and Eqgn. (1.89)

wi/;}ﬁ'write
/

(1.92)
The relations (1.8%9) and (1.92) are the equationsv of

motion for the shell. In Chapter 2, we will apply them to

T \

several spherically symmetric imbeddings.
e

2Subs_equeht to the.calculatibn of.Eqnﬂ (1.89), the author
became aware of some important works by Lake (1979, 1985),
‘'who has pointed out that Egn. (1.89) follows

~ .straightforwardly from ‘considering 7,,." From Eqns. (1.52) and
(1.62) it can be showr that _ . I
Yoo = M o
S _ S ‘ : (1.90)
- while explicit calcul;ﬁiop Of 740 Yields

(_1.§1)



 Figufé 1.1 A,hypefsurface imbedded in a higher dimensional
space. . ' g ' :



CHAPTER 11 ~

A Survey Of Thid Shells

~

2.1 The Collapse Of A Spherical Dust Shell

Let us first consider a shell fof which there is no
.‘_d

fluid pressure (P = 0 in Egn. (1.62})) and upon which only

self-gravitational forces act. The absence of any sources

other than the shell itself allows us to use a flat interior

metric and a Schwarzschild exterior metric:

/

2v 2x
e_ze —l

'2v+ -22 T 2m
\ » ' (2.2)
where fhe “constant m represents the total gravitational
energy ofvthe system.
~The stress enefgy tensor . T,,, calculated from Egns.
(1.73) - (1.77) vanishes in V, and thus the proper mass of"
the shell (by Eqn. (1.66)) remains constant. Eqns. (1.89}

and‘61.92) become

2 L S,
(1 i—%ﬁ+ R‘)!'i -+ Rz)g = - g

_(2.3)
»2h+ <2 % .2 % 2m o
p- Qo RDTe (RO T g

(2.4)
~ That 'tggle equations express conservation of energy can be

seen by taking the differencé.beiyeen Egns. (2.4) and (2.3)

-
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and arranging terms in the following manner:

2
M(lﬂiz)”-%ﬂn g

(2.5)

The term V-M’/ZR will be recognized as the gravitational
potential energy of the system. The term on the Jleft
represents the .inertial mass of the moving shell, and when
expanded for small values of R becomes the sum of vthe
(proper) mass ehergy and kinetic energy of the shell.

Egn. (2;5) can be solved for-R ang integrated to-obtain
the explicit relation betwden R and 7, but we may discern

the important qualitative features of the collapse without
L} .

performing the integration. Rewriting Egn. (2.5) as

!5_1 m-M M

(1+%) M ' 2R

0N

, | (2.6)
we Ssee that motion can only océur in regions where the right
hand side of (2.6) is positive., If m > M, the shell 1is not
gravitationally bound. . If m < M, then the motion of the
shell is restricted to the region

~—

B

M

e ——-——— 2
- Rismiomy

(2.7)

Di;ferehtiating (2.6) we find

: 2R2 . | » ~(2.8)
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The observer sitting on the shell never experiences

deceleration. A shell starting from rest at a finite radius

|1s doomed to coilapse down to R = 0.

N

13

Perhapsﬁthe most interesting feature of the collapse

arises from the nature of the Schwarzschild metric:

., 2 L

ds® = -(1 -Z—m)dt? N + rodi”
. T .

(1 -—r—) . )

- (2.9)

The coordinq}é system of the external observer exhibits a
patbology at r = 2m. The metric becomes sihgular here, and
thus cannot be analytically extended through- this radius,
known as the Schwarzschild horizon. It @asvvlong been
reélized.‘that _this s;ngularity represents éuLéor choice of

coordinates rather than a singularity of the 'spacetime at r

2m. This is rreadily seen'by calculatfng the cﬁfvature
(1.15), which remains well behaved here, In contrast, the
point r = 0 represents a true singﬁlarity in the sense that
the spacetime curvature becomes unbounded here. CKrigkal
(1960) found a coordinate transformation whiqh,remers the
pathology at r = 2m and creates a'@et}ic'which is analytic
for ?r > 0. The Kruskal coordinates (u,v) are related to
(r,t) by | ‘ !
! .
uv =" (r/2m -1)eXp(r/2m)
) | | (2.10)
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u/v = exp(t/2m)
(2.11)
The Schdarzschild horizon, while not agssingularity in
spacetime, névertheless has important physical pioperties;
. e

Let us consider the time coordinates r and t.. We let the

shell, initially at rest, fall from some radius Ro which

lies outside the horizon. From Egn., (2.5) we find -

o o 9B _ . -RdR
T = = 15
R a(M?2/4a2 + mR/a? - R?) . (2.12)
where ’
aZ = 1 - m?/M-

(2.13)

The integral of Egn. (2.12) is

~

PR

‘ 2, . 2 : : .- -
1(R) = é (M3 /237 + mR/a? - R%)® & me/aa? - P sin 1&?(2O‘R—m)]
: ' - 2a” R

(2.14)
It can be seen by setting R = 0 in  Egn. (2.14), that aﬁ
observer sitting on the shell sees it collapse through R =

- 2m‘ahd down to R = 0 in a finite proper time. In order to
determine the motion of the shell as seen by an external

‘

-

observer we must integrate
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dr, X (R /- MR/“)dR )
s dR = ,, ;ﬁ
R (R - "’m)[M /4u 4mR/’1 -~ R7]

(2.15)

After a somewhat tedious integration, we arrive at the

. expression .

©R) = B a(R) + el5-sin '(§ (202R-m)]

2me ([2“ +bu+ (aarbrbusu?)) R - 2’“") v

+ £n
. . _a%" u[Za+ bR, - 2m)]
) 7 g
| (2.16)
where - » | » -
SR - Zn | |
! " - : (2.17)
1 7_..2 ,
S S o
o (2.18)
2 ) .
M . X
a=_2_m2(2_1>%) . : » »,
- 4q 20 (2 19)
bty \ ,{
- 2a ‘ R (2.20)

It is the logarithmic‘term which endows the external
_ time coordlnate w1th nts unusual features. As R

term dlverges and t *m' In marked contrast to the co mov1ng

‘_2m thzs.;,
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&

¢

ES . . N
" observer, the extfernal observer never sees the shell

collapse past the horizon. As the shell approaches the

Q%orlzon it slows down, tenddnb to this radius asymptotically

as t.+=. Figure 2.7 shows a plot of 7(R) and t.(R) for the
case when Ry = 6M. :
' Suppose the;observer on the shell has agreed to emit

light pulses to be received by an external observer

‘ Stationed at ro. The angular coordinates of the two

observers are assumed to agree, so that the light pulses

travel.radially,oufwards. The path along which the outgoing

taken by the ligﬁ%'pulses to reach ro from the shell:

This expression also diverges as R + 2m.

-

light  travels to the observer at r, are radial null

geodesics:

»

PR

d : = Q = 21 A z - 2m, - z
. S = = -(1- —)dt + (1 - =) ‘dI”
: . (2.21%)

It is elementary to integrate Egn (2.27) to find the time

ror— 2m
; tr - te = vI'O - R(te). + 2m £&n (m K
. g A C i ' QZ &gb
' ‘ léa

'This result implies that the horizon constitutes an

. ' Lo o L
1nsurmountable barrier: for an--observer in the external

region, Slnce the speed of lzght represents an .upper bound”

for th%ﬁfate at wh1ch 1nformatlon can travel, any phy51cs in

-
the 1nteflor of the event horizon is forever ;ﬁacees ible to

—

-—

him, The observer on the shell 1n contrast passes through
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the horizon in accordance with (2.14) and is crushed by the

.tidélwforces as he approaches R = 0.

It is of interest to know whether it is possible to
arregt such a collapse when there are repulsive forces at
work  in addition to gravitation.. The suhjéct of the
following section, the charged éhell,‘ provides an
opportunity to investigate such matters.

.

2.2 The Gravitational Collapse Of A Charged Shell

We now consider the motion of an electrostatically
charged shell falling in the external field of a massive
cﬁargé' distribution. This problem was considered in some
detail by Ruchar (1968) and Chése (1970). If the central’
distribution inﬁerior td the shell has mass m. and charge
e., and thg shell has mass m and Charge e, then the exterior
(+) and interior (-) gravitational and electromagnetic

fields are described by the Reissner/Nordstrom metric:

i ) o
: 2m e 2m e -1
2 -
ds, = -(1- ri+—§)dt2+'(1- ri*—i) dr
T T ' ,
. (2.23)
- s 12 (Rz + sin26d¢2)
where ‘ _
m, = m o+ m .
(2.24)
€, ETE - (2.25)
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The stress-energy tensor associated with such a field
1s

- e"
b

' : ¢
T = T = _T = _T =
t T 6 ¢ 8nr

(2.26)
which represents the usual Maxwellian stresses for a radial
electrostatic field. It is easily seen that W;u_ng vanishes,

so that Egn. (1.66) reduces to

h'i = :‘PA
(2.27)

We may immediately write down the equations of motion

(1.89) and (1.92): , o
77
2m+ ei 2 X 2m e: 2k M

(1-——+—+R)* - (1-—=+—+R") .T _

R® ' R

' (2.28)

| m, el L 2n e? 2(m, -m ) (ef-e?)
(1- R t—>*R)T+ (- ’+_‘+§2)}5= - -

n . R 2 (M MR

-

P ' - (2.29)

From Egns. (2.28) and (2.29), we find

1+ = A + B/R + C/R? ' (2.30)
P .
‘ 2 |
A = (m+_.m-) (2.31)
- 2

M
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B=m_ +m - (m -m )(»ef-ez)/M2
- B (2.32)

aM 4 2 (2.33)
Turning our attention to the metric (2.23) for a
moment, we see that it exhibits singularities provided that

m? > e?, at the radial coordinates

Y

r, =m+ (m —ez);5 A
- | : (2&_@)

{

r, =m - (m2-ez)% w &
' ‘ C o (2.35)

Many of the comments made in~\{gf;rence to %
schwarzschild Vhorizon-apply,here as well. The singulérit%?%
at r, and r, are coordinate singularities - curvature
calculations show that the; spacetime 'cﬁ:vature remains
finite at tﬁese values of r. AS in the case of the
Schwarzgchild metéiq, an analytiE extension of the metric
can be constructed, and this wgs done by Graves and Brill

(1960) for the case m: > e * and Carter (1966a) for the‘césé

. \\
m? = e?, .

Graves aﬁa Brili\sought a.céordinatéﬁtransformation in
which light cones becamsfliﬁes witﬁ slope ? 1,_as théy are
]traditionally.representéé,ih Special Relativity. ln'this way
p0551ble trajector1es o% ’objeété are eaéily visdélized
Follow1ng de 1la Cruz ani Israel (1967) and Carter (1966a)‘H.
we construct such coordlnaies below, ‘ |

\ \}

\

au o P
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1

”

 wWe begin by seeking a set of coordinates wu(r,t) and
v(r,t) such that radial incoming and outgoing null geodesics

have u = constant and v = constant respectively. Setting ds’

= 0 in Egn. (2.23) we find

< g%-= + f(r)
‘ (2.36)

where

f(ry=1-2m,
T

o] ' (¢
N r
!

(2.37)

In the exterior region r > r,, choosing the '+' sign in Egn.
(2.36) would correspond to selecting the radial equation for
light rays, as T increases with increasing tl The alternate
’%orm‘of (2.36) gives us the equation for incoming 1light-
rays.‘We méy put the'metri; into the suggestive form

N

. -1 _ .
d52 = (-dt + f dI‘) (dt + f ldr) + r?'sz

(2.38)
In"u,v coordinates the metric'evidently has the form
ds’ = w(u,v,r)dudv + r?dg? |

A . (2.39)

A convenient choice of the function w is | |
‘ 2.4
7 4k~ f

w(qu!r) = : (2.40)

uv
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where k is a constant. Comparing (2.38) and (2.39) we find

2k

2k

du gt . £ lar
u
dv _ dt + f—ldr
‘V

These eqguations integrate to

{014

5

where

vanish. Inspection of Egn (2.43) reveals

~the

exp((-t + r)/2k)} rf/zk(r1 -T))
c(r-r.)
exp((;+ r)/Zk) 1

constants

of 1integration

* (r- r2)

have

(2.41)

(2.42)

) :
-r2/2k(rl—r2)

! (2.43)
been chosen to

that we can not

avoid both singularities with .a single transformation of

this type. We must therefore construct two

* coordinates

for k.

Letting

2

1
k. =
1 rl-r2
N
2—1‘.,-1'
1 2

-

)

sets of

(u,,v,), (uz,v;) by choosing appropriate values

(2.44)

(2.45)
.2 2
-r2/2r1

(2.46)
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Y2 1772 . ry/2r %‘
f - ({}Jt-n)|(xr-1) (r-t,)
2 2r2 : ! 2

(2.47)

v

The coordinates u,,v, provide a regular cqvering-for r > r,,
while u,,v, cover the region r < r,. the two ‘coérdinate
systems may be matched at some vaiue of r between'rj and.r2
to provide a complete analytic extension.

One further transformation of coordinates, defined by

-

u = tan % (v +¢)
(2.48)

1 . .

v = cot 5 (¥ -¢)
(2.49)

will ensure that light cones have slope + 1. The complege

manifold for e? < m? becomes in {,y coordinates a periodic

'

lattice as shownm in Figure 2.2,
Returning to. the motion of the_charged shell; let us
consider the radial velocity of an infalling shell as seen

"by an external observer., Rearranging (1.82) we have

2 2 e
-2V .
tdt*)z X+. e T+ . e-hv+
= W = T
dR K R2 -
’ ' - (2.50)
This expression diyergeé as R+r, - a -shell imploding to this

rédiUS would reguire an’iéfinife amount of time to reach it.
- In £a¢t;-.érguments: analogous to those 9Pf the previous
section dembnsifate that r, is an‘_evenf horizon _fori tﬁe
,Reisshé;/Nofdstrom ‘meﬁric. ‘This fact ?redlpdeé, us from

#5
' /
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identifying the regions 1, and i; on the éraveS-Brili
diagram és the same set of eyents. For example, we can
construct a £imelike curve from II1, to.l,, ip Contradictién‘
to the statement\that an external observer (located in the
region 1I,) -.can never receive information from within the
event‘ﬁorizon.

A new feature of the charged shell solution is the
poﬁsibility of gravitational bounce. For  purposes of
illustration, we consider a dust shell in which there is no
central charge or mass distribution. (m.=e_=0). |

th. (2.27) télls us that the functions A, B, and C
occurring in (2.30) are constants. This eguation can be put

—

into the form > ' ‘ >

v

,(1+§2)% =5t R
. (2.51)
where N
2 2]
c:u : . .
2M \
- ‘ (2.52)
Differentiation of (2.51) yields ‘
-ii;l%'(ufaz)!’ :
T s B
- - (2.53)

An fiﬁploding shell exberienéesi*deceleration 6nly if a<0,
i._e.iez > M’.jlq'ghis’éase the bounce'radius'can-ﬁé found by
-setting,ﬁ =0 in (2.51):

—~



_(ef-M

b 2m-M) (2.54)

If m > M then an observer on the shell experiences a bounce
-at R and subseqguent re-expansion of thg shell. A-rathef
bizzarelphenomenon seems to occur if R, < r,. We can easily
construct such a case by makiﬁg m sufficiently large (for
examble, ., by .imparting to the shell a large initial
velocity). According to the external observer the shell
approaches the event horizon, r,, but never re-expands. We
seem to be forced to conclude, vith de la Cruz and Israel
(1967), that . the - shell re-expands into another
asymptotically-flat space distinct from our own, as sketched
in Figure‘2.3.'

We méy also ri®te that the electrost;tic ﬁorcés can not
arrest the collapse of a dust shell down to the singularity
at r =-0 if the mass of the shell is sﬁfficiently large. In

1

particular, if a < 0 then deceleration never occurs, and“‘ép
imploding shell qollapsesnall the way down to zero radius. :
‘This is a simple illustration 'of the more generél~
results of Kuéhar (1968) and Chase (1970), which state.ﬁhat
_there is a “limiting mass to any béﬁaréed $he11 in
equilibrihm. The' analysis is' more ;complicét;d when the
eqﬁétioh of motion is of fhe.form.(2;30),‘particﬁ1arly when
a surface pressure P is'bresent, as M is no longer constaﬁt.

In this case one must study the set of momentarily static

equilibrium  states and the ' instabilities associated with
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them.

The works cited above have demonstrated  that
electrostatic forces are unablpkf& prevent the formation of
singularities. Faced with the - 1inevitability of
sinéularities, relativis%; have pyt forward the cosmic
censorship hypothesis. According to this conjecture, every
singularity is clothed by an event horizon which prevents it
from causally influencing an external observer. Various
authors have used charged shell models to establish -

4

important results connected with the iosmic censorship
hypothesis (Lake and Nelson, 1980; Proszynski, 1983). For‘
exémple, Boulware showed that a charged shell can form naked’
singularity only if thé energy density of the shell is

negative. Similar results were reached by Hiscock (1981) for

"a magnetically charged shell.

2.3 Radiating Shells

‘The Schwarzséhild metric givesl an excellent
appro#ihation far'the gravitatiéhal field of a épherical
~star when the energy density of the émitfed radiation can'be-
neglected. This approxima£ion breaks down when the bfadﬂated
energy'becomes comparable to the ﬁass of thé obﬁect. In;this
section we consider some aspects of the radiating shell
solution; | | |

" We will derive the radiating metric for the spherically
symmetric c;;e} as first disco§efed.by Vaidya (19515, 1951b,

1953)>(see ‘also . Raychauduri (1953), Israel (1958),. and
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!

Lindquié?} Schwartz and Misner (1965)). Qirst we show that
the stress-energy tensor 1in the ext#rior region can be

assumed to have the form

~(2.55)
‘

»where u 1s the radiation density and /ﬂ“ is a null vector
r

field. o

Consi@gr a Lorentz observer who measures a plane’

<7
il

o
Y

electromagnetic wave propagating throtigh free space. The

electromagnetic field tensor is given by

o .
a8 _ 1 _‘aB.f 1 aB o i
T° = i (F"F h-i4,n Fqu )
(2.56)
where the Faraday tengor F™ is defined by
0 +E +F +e_ |
X y Z
' -E 0 B - .,
FQS - X z B)
: —Ey --BZ 0 Bx
-E B -B 0 ) . "4)‘ .
SR A (2.57)

From «(2.57) we can construct the Eorehtz'invariant guantity

[y

FQ,BF'(;B = 2(82 - E?) o .
| (2.58)

_For a plane wave in free sﬂggé; the E and B fields are

érthogonal v'to " each .;thér‘ and to the directibn of

prépagation, In addition[xwe have E = B (see Jackson, ‘Ch.7,
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T

1962), so that Ffﬁw vanishes. We may take the direction of

propagation of the wave to be along the z-axis, soO that

i
0 +1 0 0
FQB—E -1 0 0 -1
o 0 0
e
l 1 o0 0

(2.59)
we can express F* in terms of a null vector ¢"and a

spacelike unit vector w’ orthogonal to 4 :

A IO (2.60)

where

£%= E(1,0,0,1)

(2.61)
W = (0,1,0,0) ‘
‘ ' 1 (2.62)

When Eqns. (2.58) and (2.60) are substitutéd into (2.56), T™”
reduces to the form of (2.55). We note that ﬁhis‘eqﬁa£ion is,
perfectly in accordance with ‘our notion of ‘photbns as’
particles - it represéntsvfhé’rst;ess—energyv.tepsof for a
stréam of dustlike rpartiﬁleS'with'lightljke 4~velocity.‘A

more detailed discussion of the matters outlined above can
N A h -

’

be found in Synge (1956).
With the assumed form of T (2.55) we caﬁ ‘now attempt

“to solve Einstein's equations for a metric of the form
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w
kS

(1.71). Imposing the normalization condition

.\}é 7 -1
S (2.63)
\\\ N ,

and the condition for outflowing radiation

el
Hﬁ,

ef/t >0 _ (2.64)
we find
T: = -y
\ ~ (2.65)
\ W .
1; = n ’_\\‘ AR
: (2.66)
. “\\\A | .
Tt = ‘uex—\) s \\ ‘f_v{.i;
T _ A N A2.67)
\ = ,
" \
T v-A N \
T, = -ve’ ~ \
| t \ (2.68)
We introduce-a function m(r,t) defined by .\3{
' ‘ \ v
; \ \
. ) : T I:’\ . «
nrt) = 4n [ palorier en @y
" | (t)

1%
Y

(2.69)
Here m, is the mass energy of the shell/star, and R(t) is ~
thex  5oundary ‘between the Shell/star Tand  the exterior .

~

'.spacetime ‘The functlon m(r, t) represgnts the total 'enéng“7
e |

of mass and rad1at10n 1ns1de a sphere of radius T at t1me t.
) . . . L]

We may wr1te



(2.70)

Einstein's equations (1;20), plus (1.73),f@§l65) and (2.70)

give

(2.71)
The integral of (2.71), taking 1into account tKe boundary

conditions implied by (2.69), is the familiar form (

&‘,

e—ZX - - 2m(r,t)
, T
(2.72)
/ » | .
From (1.20), (1.76) and (2.68) we have

v-r e

€ T m
L

‘ (2.73)
Equation (2;73)_xvis equivaleft to ther_sﬁatement that
~ m=constant onvany‘of‘the radial null vgeodésiCS défined by
ds® = 0. o | |
| The radlal Einstein equation, u51ng (1. 74) (é.?Z), qndb

(2.73), can be put in the form

rm——-—-*“r’ - m1'”)(1 . —-) = B
m;t‘~ _.I‘ . r L
' ' ‘ '(2;74);”
The, angular components‘ GZ, ¢(1 77) vanlsh 1dent1cally

- Vaidya (1951b) has po1nted out that the 1ntegra1 (2.74) -

L
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L4
4')
s
mo(1-28 = f(m) |
¢ (2.75)
where - f(m) is arbftrary. - Thus the Vaidya metric in
spherically symmetric form is
T st - (l-—-—)dt I . rae?
: f(m) o7 _
’ (2.76)

It is often convenient to write the metric in terms of the
retarded coordinate defined by g

.

’

du = d(en(f(m)) = f(lm) (m dtem dr)
| ' A (2.77)
sg that S ' ” o

- —
-~ -

ds? = -(1 -Az—r’ﬂ) du? - 2dudr + 72402

Loe

S | k L (2.78)
We note that as a i;nsequence of the definition (2.77)°

the . fupction m(u) is no longer depende
BRI . . ‘
r. The stress energy tensor, when calculated

4

on the coordinate

from th.
(2 78) takes on a pieasingiy simple form, with a single

non-van1shing component

. : 4nr? , ‘ ' "
i o (2.79)
¥ . » . 4 .

) T#ldan thus be written
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<m

/‘\

~ - N =3 ,ll

- /‘fas = (3,u) (3gu)
4nr

(2.80)

~which is of the form (2.55).

Now let us investigate the motion of a radiating shell,

which surrﬂtzis a central star. The inteilor and exterior

Mmetrics are Of the form (2.76). We may again write down thi/A

o

equations of motion (1.89) and (1.92) immediately:‘

2m 2m

e a2k - a2k M
(l R +R) = (I-T+R) _—R_
- (2.81)
"Zm . - 2m
(- BT e (- e k) < s
R M (2.82)
where N
mo=(no-m Y
s + - I'=nh
(2.83)

-

can be thought of was the shell's contribution to the

.gravitational energy of the systemf

'Eqn. (1.66) is most easily evaluated using the retarded

coordinate system. The analogs of Egns. (1.78)-(1.82) are

u® = (X,R,0,0) L (2.84)

ua =‘ (-‘(E-ZAX"‘&),—X:O,O)‘ (2.85)

N

N\

N\
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4 .
n® = (-X,e 2AX+ R, 0,0)
’ (2.86)
= _h)x)o)o) )
"o ™ (2.87)
x = du _ eZA[—ﬁo (e-2x* ﬁz)%]
T : (2.88)

so that Egn. (1.66) becomes a relation between the prbper

-

mass and the radiation flux through the shell:

. X . .-

(2.89)

4

We can calculate the redshift factor ég} an observer at
rest at spatial infinity. We conside;, as in Section 2.1, an
observer on the shell emitting pulseé of 1light to be
received by the external observer. If each pulse consists of

n wavelengths then we must have

(2.90)

¢ . ‘ - RS
where w, and w,. are the frequencies of the epitted and

received light pulses. The redshift is given by

€

L 4
‘e‘
= |
1}
'
><
+

’(2.‘91)

Noting that
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-~

o (Re (e DR
(2.92)

we find

€
N

1 ’ i
m,

v .
\ R+ (R +1-— )

e
— = =X
[

T

(2.93)
It 1s easy to shqw that specfral lines aré blueshifted for R
> m./R and redshifted foriﬁ < m./R. A coilépsing\shell (R <
0) always appears ‘;edshifted, and the- redshift becomes
infinite as, the shell approaches the Schwarzschild horizon.-
We can .calculate the luminosity ac'of the system as’

mggsured y the observer at infinity. If v is the 4-velocity

of the observer at rest on the surface r = r, and n is a
unit vect no;mal to this surface, then
- m, M-h-x_
I.= lim Arrb(TOEV n) ='Y: =-——;7——
To™™ C T A
(2.94)

For an infallimrg shell (§ < 0) we have

. 2m . ‘
"\\ — .n -
(1- R+ + R‘)% = -R

lim
R+2m o
, - {2.95)
so that by Eqn. (2.88) the luminosity,p(..vanishés"in_Athe
limit as R approaches the Schwarzschild radius.

We could . consider, as a crude approximation to 'a

planetafy nebula surrounding a star, a model in which



. : (2.96)

(2.97)
The shell radiates as much energy as it receives from the
interior region. From (2.80), (2.812,f'and (2.89) we may

write

\
. m s mo+m 2
R2=(—h4§) + *R + 2"1
, 4R ¥
(2.98)
: 2m ok
R+ (1 - R*+R2)
ek . 2m_ 5 %
R+ (1- +R) : ’
S (2.99)
e

Egns. (2.97)-(2.99) may be 1integrated nﬁméricaily using
physically reasonable initial conditions. Investigations of
thisAsort have .been carried out by Hamity and Gleiser
(1§78>,<Castagnino.and Umé;ei (1983), and Hamity and Spinosa
‘(1984). * It is of interest to cite a particulér numerical

calculation . A .set of physically' reasonable initial

conditions is

mX, = (5% 10?'- 10“)L® |
(2.100)

- — - ———— - —— - —

-2The numerical work of Rim and Lake(1985) , who 1nvestlgated
.the collapse of radlatlng 'shells, should also be mentioned.
“In this work two luminosity models are considered - one in
“which £ varies as the square of the radius of the shell, and
one in which it is independent of the radius. ,
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RO='200R0
: (2.101)
@]
m = 1M
-0 © N (2.102)
= 0.1M
m 5 (2.103)
R = 190 - 200km/sec _
0 ' (2.104)

Typically, velocity-time graphs exhibit rapid descent

(in about 10 years) in R from 200 to 20 km/sec, after which
time the wvelocity of‘the shell decreases very élowly. The

final velocity is reached after 2 x 10* years and .zanges

from 5-50 km/sec!/ The radius 6£\the shell at this time is

(0.2-1.0) pc (Hamity and Spinosa, 1984). Light curVé;' of

such models bear clear resemblance to those of novae and

supernovae.

It should be emphasized that the relativistic effects
in these models are typically véry'small. For example, in'

_most supernovae we observe

=5
10

e

oN

(2.105)
with the factor .Zm./R ktwb orders of magnitude - léss;‘
consequently suqh'invesfigatiéns do not conétitute'impdftanp
tests of GR.  : | | | |
| -The.Véidyaimetrié‘may'be adjﬁsted'to incbrpqréte ’othef

énergy sources. The metric for a charged radiatihg'Shell,



for example, is

R o2
ds< = _(1_M+S~— ydu? - 2dudr + r2do?
T r2

(2.106)
Frolov (1974) has inQestigated thé dynamics of such systems
in some~detail; ‘

We .next turn briefly to a metric which would be of
interest to cosmologists. Standard cosmological models
assume that the stars and more méssive objects caﬁ be
treated collectively as a perfect fluﬂd. In the vic;niiy of
a star, this approximation must break 'down and'a more
plausible metric would be that of a Schwarzschild or Vaidya
type imbeddéd in a cosmological background (Gautreau, 1984);
. If the radiati of the 6bject is significant, then we
should attgmpt fo imbed a Vaidya metric in a cosmologicai
background. '

There are three static metrics which satisfy the
condition of spherical symmetfy and in which Fhe stress-
energy tensof takes the form of a homogeneous and isotropic
fluid - these are the Einstein}} de-Sitter, and Miﬁkowskj
metrics '(Tolmaﬁ;"1934). Aﬁthidya/de;Sitter metric in.r,t
cobrdina;es has beén constructed by Mallett (1985). In:

retarded form (Vick, 1985) th; metric .is

cegt
- & S
b . [ ¢

as? = -(1- W) L 12yqu2 - 2gudr + r2a02
| (2.107)

where A- is the cosmological .constant, and the arbitrary



k-3
function m(u) represents the mass of the star at rétarded
time ys

(/ A straightforward calculation then gives

G =+ 81T
a

af g~ Agaﬁ

. (2.108)
where T has the form (2.80) required for photons.

In the~limit as m, or alternatively, A, goes to zero,

we recover the correct limiting solutions, i.e. the

-

de-Sitter or Vaidya solutions.

2.4 Shells In Cosmology

The preceding discussion forms an appropriate bridge to
the material of the present section. The de-Sitter type

universe was thought wuntil recently tdfﬁég a.’ topic of

. v ; 7
mathematical interest only, since -this golution Fg,tﬁe
. . . ) g ) L e '
Einstein equations.- does not admit the presence of matter  or

, . . \\_//'
radiation. In the new inflationary universe models de-Sitter

metriés featu:e’prbminently.

The‘ ihf;atioﬁ;ry séenarioA was introduced by.Guth,to
'solyé- some Of- the outstanding vprdblemﬁ in standard:
'cosmological ~ theory a(Quth, 1981). The _standard theory
provides a reliable framework for the évoluﬁioh of tﬂei
universe from about 0.01 ‘séconds~ after ~the Big' Bang
(Welinberg, 1972){ .The model :assumés an--_édiabaticaiiy
.e;pahdiﬁgl radiétioﬁ-dominated 6ﬁiversé 'aescfibedl by the

Roberison4wilker metric:
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»
2 -
ds? = _dt2 -+ R(1)? (9T 2+rd€2+r25in28d¢>2) .
1 - kr .
T (2.109)
where k = +1, 0, or -1 depending.on whether the universe 1is

closed, flat,, or open. If the univer§e is closed, then the
function. R(t) cén justly be called the ‘'radius of the
universe'.

The standard model has been very successfﬁfﬁwin
explgining'certain features of the universe - notably the
expanSién of the cosmos, the thermal background 3' radiation
discovered by Penzias and Wilsoﬁf’ and the relative
abundances of all the lighter elements in the universe.
Marriage of the stapdard theofy with Grand Unifiéd Theories
(GUT's) has also produced a possible mechanism to accouit
for the 'observed. matter-antimatter asymmetry (Wilczek,
1982). It was“firs; realized by Sakharoy-(1979) that if we
had baryon-number violating processes, the é;ryon asymﬁetry
could be established during the eérly >stagés '6f the
expansion of the ‘universe. | | .

éeveral puzzles ;nevertheless remain. 'First, the
universe is isotropic to a remarkable degree .(Uson'.ana
Wilkinson, 1984). This feature must be built into the
'initiélgqgnditions of the standard theﬁry; and is theréfqre‘
left ruhexplained. ”Second; the mass densigy éf the univerSe
is.remquably~fine7£unéd to the critical density, i.e., that
;densitf which.WOUId méke tﬁe universeuflét: fhe:third puizle

is known as the “horizon. problem. When \astronome;s point

-
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their instruments in different directions into space, ey

observe similar conditions in sectors of the universe fthat,

due to the finite speed of light and the expansion of- the

universe, could never have comhuniéaﬁed with each othef

during the history of the expansion. It 1s therefore unclear:
why these causally‘isolated regiong of space are in thermal

équl?brium(with each o;her (Guth, 1981).-Finally, the same
marriage which produced an explanation for baryon asymmetry
predicts an overproduction of magnetic monopoles, which have
not been observed (Pre;kill, 1979).

The key mechanism‘in the inflationary models involves a
phase tfansition predicted by GUT theories. This phase
cransition occurs at very high temperatures (@(10'‘GeV)) or
equivalently, et a very early time after ﬁhe appearance of -
the universe. Matheméticglly the process involves the
Spontaneous Symmetry Breaking (SSB) "of ‘a higher symmetry
group (eg;, Su(5)), into SU(3)xSU(2)xU(1) groups; physically
the phase .transition involves the separation of the strong
interaction’ from the electroweak _interaétion. From 'the
COSmologistfs point of vie&athe_important feature of this
‘phenomenon is that the trénsitgon time for the phase-.changé
is sufficiehtly loné t§ allow the wuniverse - to enter a
supercooled state. The sﬁpercooled}state“is‘a' false vacuum
~with positive vaéuum'_energy of the order of the‘phase
trénéition energy, énd éan be described by a de-Sitter
metric. The ﬁnflatfonary»eré 1asts less than 10“°.sec9hds'3“

after this time the standard model describes the universe
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adequately{ A more deta%lgd accdunt of the iechnicalities
involved in %§i§\process is given by Brandenberger (1985).
In the original inflationar} scenario, bubbles of the
true vacuum nucleated in a de-Sitter .background, grew and
coalesced, replacing the false vacuum by the true vacuum. A
simple model of such a bubble is provided by imbedding a

/ . N
shell in de-Sitter/Minkowski metrics. The -eguations of

.motion (1.89) and (1.92) arge

i

- f
2m A, e2 K 2k 0M ;
(1 -3 REARD? - (1R = - % ‘
(2.110)‘-1
. ; .
2m_.A ;' ’2!5 ‘2;5_21'“ AR
e - - g R-ROT AR 7= 57 35

(2.111)

From the equations above we derive

?

.
-2 % m AR M-
+RI)"=§%* W ' x>

(2.112)

1R?

M’ .2 %
= (55 - —)1+R)*
2M ZRZ

(2.113)

1f a bubble nucleates at- rest with a sufficiently large

radius it accelerates outwards and asymptotically approaches

the speed of light, 'as can be seen by calculating the Yimit

. R
im y= =
a2

1
Rovee R
(2.114)

Bubbles of this type Havefbeen investigated by Berezin et al

(1983). Bubble‘collisions.havevbeen ;onéidé:ed_by Hawking et
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+ al (1982) and Chao (1983), and the formation of black holes
and wormholes from nucleation processes havé been studied by
Sato et al (1981). Hiscock (1984) has considered the
nucleation and growth of a bubble of anti-de-Sitter space

€, ) .
into a Minkowskil vacuum,

The ,Origiﬂali inflationary theory was successful in
solving the outstanding problems of "the standard tﬁeory.
Essentially the solutiods lie , in the fact that the
observable part of ﬁhe cosmos is but a tiﬁy fraction of the
whole wuniverse. Since this observable region has expanded
from;a minuscule fraétion of the early. universe, Nin which
thermél eguilibrium could be achieved,. there 1s no
d@fficulty explaining the presént day | isotropy and
homogeneity., The monopole problem is solved by dispersél -
monopdies are scattered throughout a volume'many ordérs pf
magnitude larger than the "'standard’ universe. In addition,
the inflationary theofﬁ predicts that the -density . of the
universe is almost exactly equal to the critical density. An
added bonus was proQided in that the expansion phase‘crea;ed
the scale free density f;uctuations wvhich were required in
order to prbduce galaxies (Si}k, et al, 1983); : | s

Unforfuhately,' “the original inflationary théofy
Suffered-froﬁ;;unaway expansion - thgfae4sitter‘ space grew ‘:
so' qnickly that the nucleating bubbles“ﬁé:e unéble to -
convert the falselvécﬁum.to the téue vacuum - the “universe
Qaéﬁgéﬁable to exit from its infiationarfvs;a:e'(Guth and

¢

Weinberg, 1981)., In the new inflationary scenario this

Q.
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problem is overcome (Albrecht and Steinhardt, 1982; Linde,
1982; Linde, 1984) but there are difficulties in.producing
the type of inhomogeneities netessary to explain the
universe at its present state (Guth and Pi, 1982; Bardeen et
al, 1983). In the new scenario the bubble model is no longer
éppropriate; instead the obsefvaéle universe may be
surrounded by high gnergy ;domain walls. - Any number of~—""
domains may exist, each containing.its own causélly isolated
universe! Domain walls h e‘beea investigateg\by Zel'dovich
et al (1975), Isper and zjkivigb(1984) and Isper (1984) (see
also Horsky, (1966)). The walls exhibit the bizarre property
- due to tension - of gravitational repulsion. A space ship
near to such a wall must thrust - towards ~it in  order tb
maintain i1ts distance. _

Despite the remaining difficulties posed by
inf}ationary theories,  they remain ﬁo date the most
promising cosmological models. |

We conclude this section by mehtioﬁing some interesting

. S o
recent investigations into the growth of voids’ in the
uni§érse. The collapse of density_pérturbations in the:early
universe could have been the préé;sb whereby gaiaxies were
formed; In the fééncage; theoéy, clouds of ﬁatter‘éontr5§t
preferentially‘aloné one diréction{- ehdbwing 'the"universe
“with a ‘cgllu;;;>bgpe :sthcture-ih‘ﬁhichrlarge boids ére a
promﬁnent‘feéture (Si1k  etv.al, :1983);' These vbids ‘méy_ r
fsubséguenglyf g}owtﬁiﬁ' size. A ‘Simplé model of such an’

' expansion 'is a thin  shell  separating . two distinct
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Robertson—Walker type metrics. 'Lakel and Pim (1985) have
performed numerical investioations into the conditions under
which voids will and will not grow, extending eﬁrlier work .
on this subject (Maeda and Sato, 1983a, 1983b; Sato et al,
1984). It has been pointed out that non-uniform. expansion
rates due to the presence of *voids could have an effect on

the Hubble constdnt (Sato 1985)

2.5 Rotating Shells, Disks, And Cylindersi

Although the spherically symmetric solutions  to
Einstein's equations are instructive, the sources in real
physical sys*ems generally possess angular momentum. It is
therefore of great interest to investigate the effect of
rotation in.GR. As might be expected, this is a non-trivial.
undertaking. In contrast to the Newtonian ‘tneory; the
rotational energy and 1nert1al dragglng effects of the shell
must contribute - to th% spacetime metrlc. Compounding tg;\
problem 1is the;%act that a~rotating body will in general beo
deformed from°_ a spherlcak shape. One may gain some
51mpllfxcatzon in the problemlat the expense of' ohysical
reasonableness by consigering countet\}otat1ng bodles, i.e.
systems whlch con51st of two equal masses of non 1nteract1ng
mate:;al whlch are co radlal and possess equal and opp051te.4
~angular momentum. In th1s way the 1nert1al propertles of the
irotationr may 'be ‘ tud1ed w1thout cons;derat1on \of fthe~ .
- inertial dragglng effects on the external vspacetimei‘fwhiohn;;

may be taken to be static. Evans (1977) and Papapetrou and

s
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Hamoui (1974L f979) have used shell models in this way.
One of the primary uses of thin rotating °® shell models
has been the investigation of Machian effects in GR. There
is no clear consensus as to how Mach's Principle should be
formulated.. One accept§d «Machian effect, however, is that
ineptial'fra@es ought to .be in, part determined by the
relative rgtation of  surrounding | bodies. The first
invespigatiéns into this effect were done by Thirfing
(ﬁ918), -who used the linear weak field approximation to
Einstein's équations to show that a slowly rotatina shell
par%ial%y drags along the inertial frames within-it.
e An important milest%ne was the discovery by Kerr (1963)
of an axiélly symmetric v m  metric which seemed to
represent the exterior gr_avxiional field of a nearly

spherical body:

1 ‘ 7
ds? = (r2+ a’cos?e) fdrZ/(r? - 2mr + a?) +.de?]
2¢in "
. (1o +aﬁ+3'-;‘1§2—5—11‘—2—e ) sinZeds? .
< r°+a‘cos’6 -t
o o 2mr . :
. 4amr A sinzed¢dt - Q- —)dt " —
2 . ' r%+a’cos‘e

r2+azcos 6 _
' (2.115)
* e}

In the 1limit as the parameter a tends to zgjo, the

Schwarzschild metric is recovered. An analytic extension of

~the métric was . given by - Carter (1966b). Brill and Cohen

-

/

»_(1965)a genérglized Thirring's Tresults to a ' shell - of

arbitrarily large 'mass by approximating the'exﬁernéi"field

of the shell-as a first, order correction to a  static



5phericaliy symmetric solution, ‘freating the angular
velocity w as a small parameter. The metric agreed with the
Kerr solution to first order in a. Further generalizations
of this work were made by de la Cruz and Israel (1%58), who
extended the results above tol3rd order, Lindblom and Brill
(1974), who studied the collapse of a rotating shell, and
Orwig (1978), who extended the study to rapidly rotating
shells., “These studies vindicated the Kerr metric Ggs a
representation of the exterhal field of a spinning body and
confirmed the'effects predicted by Mach - a rotating shell
drags the interior flat spacetime around with it. If £he
radius of the shell is large this effect is not pronounced,
but as the shell approaches ifs Schwarzschild?radius the
vfraﬁe dragging becomes absolute - the ineftial frames in the
interior of the shell rotate at the same angular velocity as
the shell.

Machiaﬁ. efféct§ in non-asymptotigally flat spécetimes
were considered by Lewis (1980). Other studies involving
 spinning shells include investigations into tidal friction

¥
D

in black holes (Wilkins, 19f3) and the equﬁvaience principle

~

paradox (Hartle, 1973).

For the sake of completeness, two other types of shell

“configUrations should be mentioned. The first 1is the

rotatlng thin disk. A static 'solution for a disk 6f
r

counter-rotating dust particles has been given by Mb:gan and

‘An 1mportant related paper which dealS»wlth dust clouds was
authored by Kegeles (1978). “ | .
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Morgan {1965, 1970). Altﬁough admittedly unphysical, the
model prov.des an alternative configuration to the
spherically symmetric cases in which the effects of strong
gravigational fields can be investigated.v More interesting
from a physical standpoint is the numerical work of Bardeen
and Wagoner (1971), who did not restrict themselves to
counter - rotating disks.

The thin disk has also found a use 1in the study of the
Kerr metric (2.115). An interesting feature of the Kerr
geometry is the existence of an " eguatorial disk centered
along the axis of symmétry; the ringlike boundary of. the

een used to

disk comprises a siﬁgularity. Disks hav
provide é fictitious 'equivalent. source' fpr a Keyr geometry
in order to 1investigate its Aproperties (Isra¢l, 1970b;
' 14
Hamity, 1976)'¢

The second shell configuration is the igfinitely long
rotating cylinder; Such models are obviouSly anhysica;, but
can be used to verify effects (such as  frame dfagging)'
predicted‘ by more realistic models (seé Langer 1969, 1970;

Frehland, 1971; Voorhees, 1972; McCrea, 1976; Jordan and

McCrea, 1982).
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Flgure 2.1 The Schwarzschild and proper time coordinates
plotted as a functlon of the shell radws



Figure 2.2 The Graves-Brill l diagram for the
) Reissner-Nordstrom metric. : )
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%

_Figure 2.3 The world rline of a charged shell exhibiting
' gravitational bounce and subsequent re-expansion
into an asymptotically flat space. ‘
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CHAPTER 111

Gravitational Collapse Of A Shell Subject To The Casimir

Force

¢

3.1 The Casimir Effect

This phenomenon was predicted by Casiﬁir (1948) and
later experimentally verified by Sparnaay (1958) and Silfout
(1966). It arises from the subject of | guantum
electrodynamics , which predicts that thé gréund states of
the electromagnetic Afiélds can be ‘Thon-zero even after
renormalization, in contrast to the classical picture. As a
conseguence the renormalized .stress-enéhgy' tensor of the
vacuum <T*> can be nbn—vanishing. As én' the case of
classical fields, the presencé of boundagy conditions in a
vacuum can select preferred modes of ﬁﬁé fields .and . thus
alter the energy of the vacuum f;om“ its value for the
unbounded case. An interesting and readable account of the
role. of the wvacuum in modern physics ﬁas beén written by
Aitchi§on‘(198§)L

_As an ekaple, let us follow .the simple argﬁments of

DeWitk;(Hawking anB\israel, 1979) to predict the nature of

‘the Jasimir force acting on two parallel conducting plates.

4

We consider first'a sjngle‘infinite conducting plane located

at z = 0. The Lorentz boost for amobserver skimming over

~..” the plane with velocity‘ﬁ in .the x-direction is

. =

66
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Y -Y8 0 0
b -6 Y 0 0
A -
v 0 0 1 0
®
0 0 0 1

(3.1)
Symmetry considerations dehand that T*”be aiagongl-
<1995 ‘ 0

11
<Tuv>= <T" ">

(3.2)
and independent of tﬁe céordinatgsm f,x,y.. A perfect
conductor remainé so under a Lorentz boost paf;llel-;o its
surface, so that thg moving observer -should see the same
stresses as the one at rest with respect to the'cohductd?,

Applying the boost (3.1) to <T*> we find T°® = —T‘}.'
Evidently, then,fa boost in the y-dirgection Wugt yield T*° =
_TZZ' - ., . ‘ Sos '. - ) o \

Thé éleétromagnetié stress-energy tensor islgiven by
Egqn. (2.56), with the Faraday tensor 'F‘ﬂ_given by Egn,
(2.57). o K - |

. . ‘ PN
One can see from Egn. (2.56) that

TM =0

) |

N ' : : ‘ - e
" From this cpndition we conclude
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-1 0
u +1
Y
<T""> = f(2) .
0] -3
\ (3.4_)
Applying the conservation laws <Tw>25 = 0, we have
<TZE>8 = -3f'(z) = 0
(3.5)

" which 1implies that f is a constant. There exist no natural
units of 1length in- this configuration, and we cannot:
construct £, which must have units of energy, from the only
other available“constants, f and c. Therefore f = 0 énd no

Casimir force 1s experienced.
Suppose another plane/ié'how introduced at ze a. The

arguments leading to Egn. (3.5) are still valid, but now a

' .
4

natural unit of length’ exists - the separation distance
between the plates. The stresses in the half-spaces above

and below the plates have already been seen to vanish. From &

5

Egn.” (3.4) “the energy density per unit'aréétis E = -af(a),
while the force per unit area is P = 3f(a). If this force

displaces’ the plane by da we must have

L ]

dE & -daf(a), - ad(f(a)) = dW = 3f(a)da )
| (3,6)

- The intégrai'of Egn. (3.6) is 7

g . . : i
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k
I

a

f(a) =
(3.7)

where k is a <constant. This result has been verified

experimentally. A more explicit calculation of the effect

yields k = #*/720.

’

Jn order to better illustrate how the Casimir forces
arise, we return once more to  a spherically symmetric
cgnfiguration.‘ Encouraged (Py the attractive nature of the
forces on the parallel conducting pianeé , Casimir suggested
that the electron might be modelled semiclassically by a
spherical charged conducting shell in which electrostatic
‘riﬁglgion was balanced “?y an attractive ~Casimir
self-interaction. Unfortunately, Boyer £1968) subsequently
showed‘ that the force on a conducting shell was actually
repulsive.

wé can outline tﬁe important concepts in Boyer's

calculation by considering a single conducéing shell of

radius R. In the absence  of sources the classical
ele%tromagnetic fields obey | "(ﬂj
A _ 2
, - (vz"Jf jLE) E=20
Sl
' (3.8)
\ - 2 ’ *
(V"—-l—zi-z_ﬁ_g.:o »
' ¢ 3t :
. (3.9)
In the interior region the solutiongo EQn. (3.8) takes the
. > B S

form \ Lo .



du' - . ) N i 't
E= [ Z ) a; 3, (% r)\zm(e,c)el“

(3.10)

The boundary condition 'at r = R implies that there are

preferred modes of oscillation with freguencies

(3.11)
where the z,, are the =zeros of the spherical ﬁessel
functions j,.

Quantum mechanically, the electromagneéic fields are
described by a'set of independent harmonic oscillators with

energy eigenstates

o

gmns - (n-&%)ﬁw

-

(3.12)

where the wmy, are the classical frequenciés“in Egn. (3.11).

The lowest 'possible vacuum. energy in the interior is thus,

2
Y

S

N ; C o . . o
Yo ” §§'1§1 (een L=

s=] £s

(3.13)
This: sum ~'is. of “ course - infinife,: as would be ‘the
‘corfesponding e#p;gssion for the exterior region. From a
physical point of vieﬁ, however; wé are intefésted not in

’

these sums but in the energy difference between _the shell
: S . N
.configuration and the unperturbed vacuum. Boyer's ingenious

solution to this problem’;nVOIGed a configuration of. two
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concentric spheres of radius R,,R, (see Figure 3.1). Boyer
calculated the difference between the energy of the
configurations A'and B, and then letethe\radius R, » &=, It
was necessary to introduce ad hoe a cutofﬁ function which
suppre;sed high freqguency terms ih the energy sum in order.

to achieve a finite result.

Boyer found that

AE(R) = %

ol

(3.14)

7
where C = 0.09 ( A and ¢ have been put equal to unity). A
more sophisticated calculation was subseguently done by

'Milton,kDeRand, and Schwinger (}978). This calculation made

use of Green's fupction ;echniques, and, reguired no

assumption’regarding a cutoff function or the presence of an

outer shell. 1t 1is a credit to Boyer's physical intuition

that his result (3.14) was confirmed, with C = 0.09235.

-

33

3.2 The Casimir Force and. Gravitational Collapse

~~ A number of authors - have studied the influe

[SEZ
QI

~. - ' . v . .

quantum effects on’ the'-late stages of gravitational

dcollapse, and in particular the guestion of whether they can
suppress' 51ngulads%1es (Blrrell and Dav1es, 1982). An

interesting recent paper by Brevik and Kolbenstvedt (B & K).

(1984) discusses the -role of "the <Casimir force in this

respeet. * Simple energet1c consxderatxons appl1ed to Egn.
*A version of the rema1nder of this chapter has. been,"
submitted for pub11cat1on in Nuovo C1mento.
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' |
(3.14) imply‘thaflthere is an outward radial pressure act#ng
, ‘ |

on the sphere given by

o | (3.15)
_The repulsive nature of the Casimir force.and the fact
that it becomes unboundedf as R -+ 0 suggests that it may
prevent such a shell from collapsing all the way to a
singularity at zero radius. B-& K therefcre examined the
behavior of a collapsing spherical shell which is subject to
a Casimir force of the form (3.15).
< As discussed in Section 1 of Chapter 1I, the 'mean
:cceleration' 1/2(a. '+ a.) vanishes for_a shell subject to
gravitational forces only. To take the Casimir: fofce into’.

.account, B & K modify this law by adding ad hoc a repulsive

Casimir term into the radial eqﬁation of motion:

AN ‘ ‘ ' . ) : . N (3.16)

" where M is thé.pfoper mass of the sheil,and P, is given by
' EQh;' k3.15). The‘authérs assume that the exterior metric is
- Scﬁwé:zéchild and . the liﬁterior metrié‘ is flat, thusk/"v
.4néglecting entirely (aé they themselves explicitly

@ &

q;%p) all gragita;ibnal.effectS'of.the Casimir energy ..
gh : :

reco

-7 . v

‘The radial equation arrived at, by integration of Egn.

(3.16) is

[ . el ) \
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' \
ok C M 1
1 +R = - A —
SR e R CRTEY
(3.17)
1
b=35[1+(- 2M/Ro);5+C/MRo] o
(3.18)

where R is dR/d7 and Ro:is the initial radius of the shell,

<

which is assumed to collapse from rest. 1-b ,represenrs the
binding energy per unit mass - shells with . 1-b>0 are

»g&gvitationally bound in the sense that they cannot reach

Egn. (3.17) has highly paradoxical consequences. As the

infinite radius.

shell collapses, the Casimir force at first acts to retard
the collapse, as one would expect inruitiv%ly (effect of the
‘term C/2MR). But, as the shell centracts'égaerd the criticaI‘
radius R.. = C/2Mb, the last term of Eqn. (3 7) becomes
dominant, ' and the effect of the Ca51m1r force would be t%#
catastrophically accelerate the collapse& Eqn (3.1
were correct the shell would hit the cr1t1cal radlus(w1th an 
1nf1n;te speed and bounce. even ﬂthough ’ﬁ&?erea is " no

. geometricél'singularitﬁ at thié fédiﬁs, - : . '

These'results are d1ff1cu1t ftoq understand Inn ﬁhe

V remalnder of - thls chapter, Q w1ll be . argued t at they are a,“

consequence of the 1ncon51étent neglect of thd . grav1tat1ng$‘

- effects of 'the« Ca51m1r energy. This inconsist
g L

Ncy becomes
manifest .at raﬁ11( for »whzch -the ‘Casxm;rrvenerQY4 (3.14[_”
becomes comparable with the mass ‘of the rshellfVVi.e,1.9

: .:precisely‘at;the :critiéél -radius R In‘;the' discuSsion



74

fbliowing, we develop two models of the Casimir collapse
. ‘ ’ .
which are consistent with the fielf equations. In the first

‘model, the Casimir energy is assumed to be distributed 1in

the'exterlor spacetime. kn the second the Casimir energy is

-

placed in the interior region. ° /

3.3 Effect Of The Casimir Force On Collapse. Model 1.

The difficulty with wusing a Schwarzschlld/Mxnkowskl

. geometry in the CaSimir problem is ev@ﬁent . upon

" consideratidn of Egn. (1.69). As T vanishes for both .

exterlor and interior metrics the rlght hand side of Eqn

(1.69) vanlshes for a dust shelL ‘recall that the term P

~

occurring in the eguathn is the surface pressure and 1s

thus distinct. érom the Caslmlr pressure P occuirwng Ain Eqn '

.15)), so that there is no way ofacon51§tently 1ntroducrng

.

the §a51m1r term ;n the rlght hand sade of. Eagn. (3 6). In

4 a

the paper cited above th1s erroragsscompounded by a failure
S S

to d15t1ngu1sh between the proper mass of the sbell- M- and

fthe total grav1tat1onal .Jmass- energy m wh1ch occurSv;n the

< &

Schwarzschlld metrlc. The correct 1ntegral of (3 16) is‘.

P

c Sobr

| % +2%
(1-—— R5% 4 e

Ghere.SY 15 a COnstant of 1ntegrat1on

. ) o T 'y
In an attempt to. salg& . B & K slapproach one mlght
S v

Qlook for a solutzon to Einstein's equations which. satisfies

. ot o . .
D S S .
. A B . L - H

13
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(3.20)
and conseqﬁently, also equation (3.16). We first seek a
solution in which the interior spacetime 1is flat (e~
_e’K=1). I1f the ‘proper mass of the shell 1is to remain
COﬁgtant, then Egn. (1.66) and u-n=0 imply
Tt = 77

IS t T
&

(3.21)

(3.22)A\_

From Egn. (3.22) and the expressions for the Einstein tensor

whilg‘from}Eqns. (3.20), (3.21), and n°n=1 we get

t ot _ C
Gt =R 8A,Tt =R - —R—L:

it is easy to wverify that e™=e- -, We can now solve for

e~ from
. ‘
Y 2
t “fe ] 4.7 1 C >
@ G = e (-———- ')__:_.__
t rl r T’
(3.23)» .
The' integral of Egn. (3.23) is 'v‘ T : »‘ .
Lm0k /2m+,C1
R L
C{3.24)

Y

. where m is an arbitrary constant. Thus the  exterior smetric

is
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9
V)

I

A .

7 ( Zm C 7 2 - : -
ds< = )-(I‘T*TT)dt/ + (1 -Tm'*r%) Var? + r2(de? + sinude?)

(3.25)

The similafity between Egn. (3.25) and the well-known
Reissner/Nordstrom metric, which describes the éxterior
spacetime of & spherical distribution of charge e, 1is not
surprising. The electrostatic energy of a‘charged shell is
e*/2R, which is of the (gme form as the Casimir energy
(3.14). We might therefore expect rqualitatively similar
types of motion in both cases.

The imbedding metrics having been'established, we may
immediately write down the equations of motion (1.89) and

(1.92)2 ooy

vy 2w, Coenh - Xk -2m C
(1 R é7-+ RE)“+ (1+R)? = TR
(3.26)
LML C ek Y
( —-§—+E?+R ) (1+RHF = z )
S ' (3.27)
Solving for F_, we/ may write
20k oMM o
AN 1 = B R 80 \
(3.28)
where .
- ‘)" . t N
. ’
i_
a (MZMC) .
(3,29)
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Motion can oceur only in regions where the function
(9(R) is positive. We can identify three cases:

1. m>M, a>0: in thiéjcase all values of R are possible. We
can think of the shell as imploding from an infinite
radius and collaps1ng down to R=0.

2. m<M, a>0: the shell falls from rest at R = aM/(M-m) and
collapses to R=0.

3. m>M, a<0: the shell implodes from infinity te a finite
radius R = —aM/(m-M); implying a bounce there.

Differentiating Egn. (3.28) one finds

(3.30)
If a>0 then deceleration never occurs. From Egn. (3.29f'we‘

can identify an” upper limit M., = ¢

beyond which an
initially static shell mnst collapse down to zero\radius.
Takiné C = 0.09235 and inserting appropriate factors of A,
c, and G,‘one'ginés'Mg;E 6.6 ug! |

- In the model aboveyehe Casimi;eenergy is assumed to be
diatribnted‘ wholly in ehe exterior region; if the energy
density -1t tlS 1ntegrated (1n flat spacetime) from- R to o

the Casimir energy 'is recove;ed.

3 . - .
!

‘3.4 Model II: Interior Eneggy Solution

7

As: a,,ﬁurther example, let us place the Cas1m1r energy

in the 1nterlor reglon. The exterior, spacetlme is assumed to

" be Schwarzsch11d;(é”*='éa = 1-2m/r). 1f we choose
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while the equatioqé of -motion (1.89) and (1.92) becgpme
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2
2v_ -2 Cr

R 4
() (3.31)

where R(t) represents the radius of ‘the shell, then we find
the interior  energy density to be spatially u@dform but

non-static:

t -3C .

SR (3.32)

‘Egn. (3.32) also has the intuitively appealing property
mentioned - above, namely; that when the energy density is
integrated in flat spacetime over the interior of the shell
the correct Casimir energy is recovered.

« Explicit evaluation of Eqﬁ. (1.66) yields

Fd

. 2Ck S -
M =5 (A4 2e2)\.‘ Rz).
RF_

s (3.33)

. XY
* ' . . r
gl --——+ R‘ i (1 - C SRHE LN - .
‘ R ,
N R ‘ a' . ‘ .
: ¥ i f‘ ' v (3.34) .
» ! 4 . ' . LT I'4
, _Zﬂ 2% . C* :2% 2m  C:°
: (a-FeR)+ R CRITTWOm oo L
0 SR L o | (3.35)
. Eqn. (3.33). demonstrates {tﬁat; the proper mass is no-
N ‘ o : ) o o ' ‘
l9nger constant - as. the shell falls inward, energy ;

coggervatlon “demands | that the 1ncreaszng Ca51m1r energy is.

supp&zed,by.theidimin1sh1ng mass of the shell.: Thls is a

R . ) C e
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consistent counterpart of the model of B & K, who assumed
that the proper mass M remains constant and neglected energy
- conservation.

As R =~ C/2m, Egn. (3.34) implies that the proper mass
of the shell goes to zero.'(It,may appear from Eqn. (3.27)
that the same phenomenon occurs in model I in contradiction
to the assumption ‘that M is oonstant. Solving- for F,.,
however, one realiies that this function muet change sign as
it'pasees throuoh R = (M?*+C)/2m. In the present ‘model"the

shell remains always outside this radius M » 0.) Although we

2

may continue,the motion through Ry = C/2m there would seem,

7. : :

to- be no reason to adopt a model 1n Whlch M 15 allowed to

become'hegatlve. TrQuble occurs ‘even before this’ radlus, qu

Ve

Rz = C

'evaporation rate' M becomes. infinite here.

3.5 Conclusion

To summarize the preceding digcussion: ‘Einstein"s
¢ -

equations, when applied to the Surfate of a thin shell,
impose specific boundary conditions_ which relate the

1nterlor' and exterior metrics to the source represented by
»

4'th shell and to the forces actlng on 1t, and tst guarantee

»

a

from addlng ad hoc -a repulsibe”Casimir ,terﬁ~'to . the

’Schwarzschlld/Mznkowskx equatlons of mot1on. In the 51mp1est"
model con51stent w1th E1nste1n s equat1ons (model QI) the

“motion 'of_ the shgll is qualltatxvely s1mllar to that of an

-

lies out51de’ Ry: Eqn.vt(3.33) " says that the -

al conservat1on of energy.vThese~constra1nts;prevent us
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_electrostatically charged shell, and the Casimir force is

powerless to prevent the collapse of shells more, massive
¥ . '

than a microscopic limiting mass.

r
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 Figure 3.1 The configuration, used .by Boyer  in i 5
e calculation - of - the Casimir energy for a.
+ . ¢ _conducting’shell. ST ~ >
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