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Abstract

Several optimal detection frameworks for wideband/multichannel spectrum sens-

ing in cognitive radio networks are proposed. All frameworks search for multiple

secondary transmission opportunities over a number of narrowband channels, en-

hancing the secondary network performance while respecting the primary network

integrity and keeping the interference limited. Considering a periodic sensing scheme

with either uniform or non-uniform channel sensing durations, the detection prob-

lems are formulated as joint optimization of the sensing duration(s) and individual

detector parameters to maximize the aggregate achievable secondary throughput ca-

pacity given some bounds/limits on the overall interference imposed on the primary

network. It is demonstrated that all the formulated optimization problems can be

solved using “convex” optimization if certain practical constraints are applied. Sim-

ulation results attest that the proposed frameworks achieve superior performance

compared to contemporary frameworks. To realize efficient implementation, an it-

erative low-complexity algorithm which solves one of the optimization problems

with much lower complexity compared to other numerical methods is presented. It

is established that the iteration-complexity and the complexity-per-iteration of the

proposed algorithm increases linearly with the number of optimization variables (i.e.

the number of narrowband channels).
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Chapter 1

Introduction

The ability to access and utilize the electromagnetic radio spectrum as a communica-

tion medium gave birth to wireless communications technology which has attracted

a great deal of telecommunication researchers during the recent years. In order to

avoid interference between different wireless applications, and to facilitate its uti-

lization management, the wireless radio spectrum has been divided into multiple

portions. Each portion has been assigned to a specific license holder (primary user)

on a long-term basis. Over time, due to the ever-growing need for wireless commu-

nications and lack of remaining unlicensed frequency resources, this fixed spectrum

assignment policy has led to the spectrum scarcity problem.

1.1 Cognitive Radio

The so-called spectrum scarcity problem is mainly due to significant over-allocation

and under-utilization of the wireless spectrum rather than due to physical shortage

of the spectrum. Recent measurements, performed by the U.S. Federal Communica-

tions Commission (FCC) [1], have witnessed that depending on time and geograph-

ical location, most of the licensed frequency bands are being exploited sporadically

(i.e. not efficiently) and are available for other possible applications. Therefore, in

order to realize efficient spectrum utilization, the static spectrum access must be

replaced by dynamic spectrum access (DSA) [2].

The key technology behind the dynamic spectrum access is cognitive radio (CR),

which has recently been proposed to revolutionize the wireless communication sys-
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tems [3]. The aim of CR is to enhance the overall spectrum utilization efficiency

by allowing the unlicensed (secondary) users to opportunistically access the vacant

frequency bands (i.e. spectrum holes) without compromising the primary network’s

integrity and imposing unwanted and harmful interference on it [4]. It presents an

intelligent and highly reliable wireless communication system with the ability of

exploiting the spectrum in an optimal manner by interacting with its surrounding,

learning from the environment and adjusting its parameters to improve the overall

communication quality-of-service [5]. It has been recognized as an excellent can-

didate for the next generation wireless networks and has already been adopted in

emerging wireless access standards such as IEEE 802.22- Wireless Regional Area

Networks (WRANs) [6].

A CR network is designed to be aware of its surroundings and is allowed to access

only the unused portion of the spectrum. In order for CR systems to fulfill this task,

different crucial functionalities must be accomplished, which are as follows:

1- Spectrum Sensing carries out the essential task of monitoring the primary

user activities and sensing the radio spectrum in order to reliably locate suitable

opportunities for transmission.

2- Spectrum Management is employed to manage the process of selecting the

best available channel among all vacant spectrum which meets the secondary user

communication requirements and quality of service requirements, and maximizes

the spectrum efficiency.

3- Spectrum Mobility serves the task of vacating the spectrum when the legacy

(primary) user re-appears and decides to re-utilize the spectrum. It also has to

switch to a better channel when the current channel becomes unavailable or doesn’t

meet the user specifications. It is designed to maintain seamless secondary commu-

nications during the transition to the better channel.

4-Spectrum Sharing is to control fair distribution of the available frequency bands

to a potentially large number of secondary users and to coordinate their access.
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1.2 Spectrum Sensing

Spectrum sensing, as a crucial functionality in CR networks, accomplishes the key

task of locating vacant bandwidth portions (i.e. opportunities for CR transmission),

without harmfully interfering with the primary network communication [5]. The

challenge for a reliable sensing method is when the primary received signal is very

weak or deeply faded/shadowed (i.e. low signal-to-noise ratio (SNR) regimes) [7].

Several spectrum sensing techniques have been proposed so far which can be

categorized into three general groups, energy detection [8], coherent detection [9]

and cyclostationary feature detection [10]. The energy detection strategy simply

computes the energy of the received signal as a decision statistic and compares it to

a threshold. This technique is known to be optimal when the only information avail-

able about the primary received signal is the noise power density and the received

primary signal samples are independent and identically distributed [11]. In the case

of correlated samples, an eigenvalue-based method which exploits the ratio of the

maximum and minimum eigenvalues of the covariance matrix can be used [12].

If some knowledge of other features of the primary signal such as the modula-

tion scheme, pilot information, synchronization symbols, etc. are available at the

cognitive radio receiver, a coherent detector or cyclostationary feature detector may

be exploited in order to have more robust sensing [13]. On the one hand, coher-

ent detection, also known as matched filter detection, can enhance the detection

performance when the primary transmitted signal is deterministic and known to

the secondary network [14]. On the other hand, since most of the primary signals

are modeled as sinusoidal carriers, some periodicity pattern can be extracted from

the received signals [15]. Thus, cyclostationary feature detection, which uses the

inherent built-in-periodicity of the received signal, can be exploited for more accu-

rate detection. However, due to its low computational (and hence implementation)

complexities and its fast detection ability, energy detection is widely deployed as the

underlying detection scheme and is exploited as the building block in this thesis, as

well. Meanwhile, various cooperation methods between multiple secondary nodes

has been developed to enhance the detection agility (see [16] and the references

therein). A survey on spectrum sensing algorithms can be found in [17], [18].
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1.3 Motivations

In most of the previous works, the studies on spectrum sensing are limited to sensing

single narrowband channels. There are rather limited prior works, when it comes to

wideband spectrum sensing. However, due to its cruciality and importance in CR

networks, the number of works in this area is dramatically increasing.

Sensing multiple narrowband channels (or a wideband spectrum) represents an

important, yet challenging topic in CR systems. In fact, it is recognized as one of the

main requirements of an effective and practical CR system. Having a wideband (i.e.

multichannel) sensing capability at the secondary RF front-end results in identifying

multiple transmission opportunities which enables the CR coordinator to choose the

“best available channel” [4]. It also enables improved sensing decision and improved

design of other essential functionalities such as spectrum mobility and spectrum

management [4].

1.4 Related Works and Challenges

An early approach was to have a tunable narrowband bandpass filter to sense a

number of channels, one at a time [19]. There also have been some works on sensing

multiple channels simultaneously. In [20], [21], the authors have used a wavelet

approach to estimate the power spectral density (PSD) of the received primary

signal and decompose it into a number of non-overlapping subbands. Likewise, the

authors in [22], proposed an invariant generalized likelihood ratio (GLR) detector

under the assumption that a minimum number of subbands are vacant and the noise

and primary signal variances are unknown to monitor.

There are also some studies on the application of compressive sensing in wide-

band sensing [23]–[27]. In [28], the authors have considered an orthogonal frequency

division multiplexing (OFDM) based CR system and have proposed a two-stage

wideband detector under the assumption that the primary user appears at a seg-

ment of continuous subcarriers. The authors in [29] have proposed a maximum

likelihood (ML) reconstruction of the spectrum when the spectral shape of the pri-

mary transmission is assumed to be known a priori to the CR users. Other recent
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works on wideband spectrum sensing can be found in [30]–[32]. However, none of

these studies have considered sensing multiple channels jointly, which is essential

for implementing a maximally effective secondary network. Consequently, through

a different approach, a novel “multiband joint detection” (MJD) framework for wide-

band sensing was proposed in [33] where the decisions are jointly made over multiple

frequency bands.

More specifically, in the MJD framework [33], a set of individual secondary detec-

tors are optimized so as to enhance the cognitive radio performance while protecting

the primary network from harmful interference. Although the MJD framework rep-

resents a remarkable advancement in wideband sensing, some basic potentials of the

system model have not been exploited. For instance, it is indeed crucial to sense

the channel periodically since the spectrum must be vacated when a primary user

reappears [34]–[38], a feature missing from the MJD framework. In addition, due

to the wireless channel fluctuations and fading effects, it is essential to dynamically

balance the quality and speed of sensing through an adaptive selection of the sens-

ing time, which is assumed to be fixed in MJD. Moreover, considering a unified

framework in which the sensing time and individual detector parameters are jointly

optimized is mandatory for designing a maximally effective cognitive radio network.

1.5 Contributions

The major contributions of this work are threefold. First, we present an optimal

framework for wideband spectrum sensing with uniform channel sensing durations

which is referred to as multiband sensing-time-adaptive joint detection (MSJD).

Adding periodic sensing to the system model used in [33] and considering the afore-

mentioned design concerns, we maximize the achievable opportunistic throughput of

the secondary user while keeping the interference with the primary network bounded

to a reasonably low level. More specifically, we formulate our problem as a joint

optimization of the sensing slot duration and individual channel parameters, where

the objective function is the throughput capacity of the secondary user and the con-

straint is the aggregate (weighted) interference to the primary users. Furthermore,

we show that our problem, which is generally non-convex, can be solved as a convex
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optimization problem if certain practical constraints are imposed.

In addition, we propose an efficient algorithm which quickly and effectively com-

putes the optimal sensing parameters within the aforementioned MSJD framework.

In particular, taking advantage of Lagrangian duality properties presented in [39], we

transform the original optimization problem into a class of equivalent subproblems

and solve them accordingly. It is also demonstrated that the computational (hence

implementation) complexity of the proposed algorithm is much lower than that of

other commonly used numerical approaches such as the interior-point methods. In

particular, we demonstrate that the iteration-complexity and the complexity-per-

iteration of the proposed algorithm increases linearly as the number of primary

individual channels increases. This level of complexity is very interesting from a

practical/implementation viewpoint since it is remarkably time- and cost-effective.

In the MSJD framework, the sensing time slot is assumed to be the same (i.e.

uniform) for all the frequency bands, owing to the nature of the wideband primary

signal. In the third study, we assume that adopting different sensing durations for

individual narrowband channels is viable. Consequently, considering a sequential

periodic sensing scheme, we propose two optimal multichannel spectrum sensing

frameworks. Specifically, we assume that multiple primary narrowband channels

are sensed sequentially using a periodic sensing approach. We also assume that the

amount of time used for sensing different channels can be chosen non-uniformly.

That is, the channels-under-sense can assume different sensing time durations. This

feature is shown to greatly improve the sensing performance. Given this, we pro-

pose to maximize the opportunistic secondary network throughput capacity, while

limiting the interference imposed on the primary users. Particularly, we formulate

the multichannel sensing problem as a joint optimization of the overall sensing time

slot, the sensing subslots (dedicated for sensing individual channels) and individual

detector parameters. While the objective function is the secondary throughput, the

constraint function(s) is/are the overall interference on the primary network.

The first framework, referred to as “sequential multichannel joint detection”

(SMJD) considers the aggregate interference on the primary network as the con-

straint function. Specifically, within the SMJD framework some relative priority

coefficients, which characterize the relative costs incurred if the primary commu-
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nications in the corresponding channels are interfered with, are assigned to every

individual channel. That is, the overall probability of interference is aggregated

(weighted) into a single functional form. In the second framework, known as “de-

coupled sequential multichannel joint detection” (D-SMJD), we assume that such

cost/priority coefficients used in the aggregate interference function are difficult

to define for some specific applications, resulting in a tractable mathematical de-

scription of the aggregate interference being unattainable. Therefore, within the

D-SMJD, we assume that the probability of interference on each channel is limited

independently, making the individual channels partially decoupled. Both formu-

lated optimization problems, which are shown to be non-convex, are transformed

into convex optimization problems under certain practical conditions. The trans-

formation makes it tractable and efficient to find the global optimum solutions.

Generally speaking, all the proposed frameworks make efficient use of the spectrum

by establishing a suitable tradeoff between the secondary user access and primary

network protection through a joint adjustment of the sensing parameters.

1.6 Thesis Outline

This thesis is organized as follows. In Chapter 2, we first present some background

on signal detection for spectrum sensing which leads to the basic system model.

In Chapter 3, we introduce the multiband sensing-time-adaptive joint detection

(MSJD) framework for wideband sensing, which is followed by the presentation

of the efficient algorithm for implementation of the proposed MSJD framework.

The sequential multichannel joint detection (SMJD) framework which assumes non-

uniform channel sensing durations is given in Chapter 4. Finally, Chapter 5 con-

cludes this thesis while giving some suggestions and potential future research direc-

tions.
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Chapter 2

Background and System Model

In this chapter, we first explain some background on signal detection for spectrum

sensing and then present the general system model used in this study.

2.1 Background

2.1.1 Signal Detection for Spectrum Sensing

Spectrum sensing functionality allows the secondary user to detect the spectral holes

(i.e. spectrum vacancies) and to opportunistically access them without imposing

harmful interference to the primary network. To do so, binary hypothesis testing

is exploited to differentiate between the faded primary received signal corrupted by

the noise signal and the noise signal only. The mathematical representation of the

binary testing is as follows:

H0 : r(m) = w(m), m = 1, 2, . . . , M

H1 : r(m) = s(m) + w(m), m = 1, 2, . . . , M
(2.1)

where H0 denotes the absence of the primary signal, i.e. the baseband received

primary signal at the secondary user contains noise only which is often assumed

to be additive white Gaussian noise (AWGN), w(m) ∼ CN (0, σ2
w), and H1 repre-

sents the presence of the primary signal s(m) which has been corrupted by w(m).

In addition, M corresponds to the primary signal measurements (i.e. samples)
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used for sensing. In order to make a robust decision, all the received samples

r = [r(1), r(2), . . . , r(M)] must be combined into a single functional form known as

the decision statistic.

2.1.2 Energy Detection

Noncoherent energy detection (or radiometry) [14] is known to be one of the simplest

methods for binary hypothesis testing. It is also known to be optimal when the only

information available about the primary received signal is the noise power density

and the received primary signal samples are independent and identically distributed

(i.i.d.) [11]. The energy detector decision statistic is given by

T (r) =
1

M

M
∑

m=1

|r(m)|2
H1

R
H0

ε (2.2)

where T (r) is the decision statistic and ε denotes the decision threshold. Usually

T (r) has a chi-square distribution under both hypotheses [8]. However, in order

to facilitate the analysis, a central limit theorem [40] is used to approximate the

cumulative distribution function (CDF) of T (r) as as a normal distribution under

both hypotheses, i.e.,

T (r) ∼











N (µ0, σ0), under H0

N (µ1, σ1), under H1

(2.3)

where µi, {i = 0, 1} denotes the mean of T (r) underHi and σi, {i = 0, 1} represents

its variance. Considering the modulation of the primary signal as complex-valued

phase-shift-keying (PSK), one has

µ0 = σ2
w (2.4)

µ1 = (γ + 1)σ2
w (2.5)

and

σ0 = σ4
w/M (2.6)

σ1 = (2γ + 1)σ4
w/M (2.7)
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where

γ =
ps

σ2
w

(2.8)

is the received signal-to-noise ratio (SNR) and ps = ||s(m)||/M represents the

average primary signal power. The empirical average power, ps, is often replaced by

the statistical average power, E
[|s(m)|2], for a large number of samples, M , where

E[·] denotes expectation. In the detection context, there are two key error functions

which determine the overall detection performance, probability of false alarm and

probability of missed detection. The probability of false alarm is defined as the

probability of deciding H1 when H0 is true, and is given mathematically by

Pf = Pr(T (r) > ε | H0) = Q

(

ε− µ0

σ0

)

(2.9)

and the probability of missed detection, which is the probability of deciding H0

when H1 is true, is given by

Pm = 1− Pr(T (r) > ε | H1) = 1−Q

(

ε− µ1

σ1

)

(2.10)

where

Q(x) =
1√
2π

∫ +∞

x
e−y2/2dy (2.11)

denotes the complementary distribution function of the standard Gaussian distri-

bution [41]. We point out that these two probabilities are both a function of the

decision threshold ε and the number of samples M . One would like to minimize both

the probability functions, however this is not feasible due to the inherent tradeoff

between them.

The threshold ε is a tradeoff factor between the probabilities of false alarm and

missed detection; a low threshold value will result in high false alarm probability

in favor of low missed detection probability and vice versa. Although increasing

the number of samples, M , would decrease both error functions, we indicate that

the choice of the number of samples M is also a tradeoff between the “quality” and

“speed” of sensing. By increasing the number of samples (the sensing time), the test

decision is more accurate but the available time for cognitive radio transmission is
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reduced, in consequence (refer to Section 2.2.2). These concerns mandate designing

an efficient sensing framework which wisely balances these parameters, specifically

when sensing is performed over a wideband channel. In order to make our argument

convincingly, Fig. 2.1 plots the probabilities of false alarm and missed detection

versus the decision threshold for two different numbers of samples.
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Fig. 2.1. Probabilities of false alarm and missed detection vs. detection threshold, for signal-to-
noise ratio, γ = 0.8 and noise power density, σ2

w = 1.

2.2 System Model

2.2.1 Wideband Channel

We consider a primary communication network operating over a wideband spec-

trum, which is decomposed into N non-overlapping narrowband frequency bands

(subchannels). Depending on time and geographical area, some of these subchan-

nels might not be utilized by the primary users and are available for the cognitive

radio transmission. Fig. 2.2 shows an illustrative example of such wideband chan-

nel. As shown in the figure, some of the subbands (labeled as "0") are not used

and can be opportunistically accessed by the secondary users. The crucial task of

11



spectrum sensing is to reliably detect these vacant frequency bands while respecting

the integrity of the primary network.

Fig. 2.2. An illustrative example of a wideband/multichannel scenario and the subchannel
occupancies.

For modeling the detection problem on each subchannel k, binary hypothesis

testing is used in which hypothesis H0,k represents the absence of the primary signal

and hypothesis H1,k represents the presence of the primary signal. For simplicity,

we assume that during the time that a cognitive radio performs sensing, other

peers remain passive such that the only signal in the whole bandwidth is the one

transmitted by the primary users. This can be assured by the higher-layer protocols.

In this study, instead of sensing each channel independently, we develop a sensing

scheme which jointly detects the opportunities for secondary transmission over the

entire target spectral bandwidth. That is, instead of sensing one channel at a time,

we consider a joint detection framework which detects channel vacancies over the

whole spectrum.

2.2.2 Periodic Sensing

Once a secondary user detects an opportunity for transmission, it may tune its

transmission parameters to access the channel. Yet, it should continue sensing

the spectrum every T seconds in order to vacate the channel if the primary user

reappears. This is due to the fact that sensing a channel and transmitting in the

same channel can not be done simultaneously. The sensing period T determines the

maximum time that the secondary user disregards the primary user activity and

may impose harmful interference on the legacy network. Therefore, the choice of T
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forces a delay on the primary transmission and hence a degradation of the quality

of service (QoS). On the other hand, a larger value of T increases the secondary

system’s opportunity to access the underutilized spectrum. The selection of T

should depend on the type of the primary service and should be set by the regulator.

Thus, we divide the primary services into two general regimes in terms of their

sensitivity to transmission delay; 1) Small-Period regimes in which the frequency

of primary users reappearance is high, forcing T to be chosen relatively small (e.g.

WiMAX networks), and 2) Large-Period regimes in which larger T may be tolerated

since the reappearance of the primary signals occurs on a longer time scale (e.g.

DVB-T applications).

Fig. 2.3 represents the frame structure considered for the periodic spectrum

sensing. Each frame consists of one sensing slot τ and one data transmission slot

T − τ . For a given sensing time τ , the number of samples used for sensing of one

subchannel is M = τfs where fs is the sensing sampling frequency in all subchannels.

Fig. 2.3. The frame structure of periodic spectrum sensing.

2.3 Summary

In this chapter, we first explained some background on signal detection for spectrum

sensing and then presented the general system model used in this study.
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Chapter 3

Wideband Spectrum Sensing

With Uniform Channel Sensing

Durations†

In this chapter, we first present the complementary system model and then review

the relevant features of the received primary signals and consider their detection in

each subchannel. This leads to the introduction of the proposed wideband spectrum

sensing framework. We also present a low-complexity and efficient algorithm for

implementing the proposed wideband spectrum sensing framework.

3.1 Primary Communication

Here, we consider a multicarrier modulation-based primary communication system

over the wideband spectrum. Multiuser orthogonal frequency division multiplexing

(OFDM) is a great candidate for such scenario since it has been recognized as an

excellent candidate for high data rate transmission over wideband channels and

makes the subband manipulation easy and clear.

†This chapter has been accepted for publication in part in IEEE Transactions on Signal Pro-
cessing [42], and has been presented in part in Proceedings of IEEE International Conference on
Communications (ICC’10) [43].
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3.1.1 Received Primary Signals

We consider a multipath fading channel in which h(l), l = 0, 1, . . . , L− 1 represents

the discrete time channel response between the primary transmitter and the sec-

ondary user where L denotes the number of resolvable paths. Considering s(n) as

the transmitted primary signal (with the cyclic prefix), the received signal at the

secondary receiver is given by

r(n) =
L−1
∑

l=0

h(l)s(n− l) + w(n) (3.1)

where w(n) is additive complex white Gaussian noise (AWGN) with zero mean and

variance σ2
w i.e., w(n) ∼ CN (0, σ2

w). In fading environments, since the multipath

delay spread is comparable to the transmitted signal duration, the wideband wireless

channel exhibits frequency selectivity [44] and its frequency response is represented

as

Hk =
1√
N

L−1
∑

n=0

h(n)e−j2πnk/N , k = 1, 2, . . . , N (3.2)

where N ≥ L. By taking advantage of the cyclic prefix in OFDM signals, the N -

point discrete Fourier transform (DFT) of the received signal can be decomposed

as

Rk =
1√
N

N−1
∑

n=0

r(n)e−j2πnk/N = HkSk + Wk, k = 1, 2, . . . , N (3.3)

where Sk is the primary transmitted signal at subchannel k and Wk is the N -point

DFT of the received noise, w(n). It can be shown that Wk ∼ CN (0, σ2
w). We

assume that the channel is slowly fading such that {Hk}Nk=1 are constant during the

detection interval. We assume the transmitted signal Sk, the channel response Hk,

and the noise Wk to be mutually independent.

Since cognitive radio is initially proposed to be exploited for a fixed wireless

network in the TV channels, it is reasonable to assume that the channel conditions

between the primary and the secondary users are slowly fading such that they can

be assumed to be fixed for the period of interest [6]. This assumption is also valid for

OFDM multicarrier systems [44]. In our sensing framework, the only information

that the secondary user needs to know is the noise power density σ2
w and the channel
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coefficients between the primary user and secondary user {Hk}. The noise variance

σ2
w can easily be obtained when measuring the power level of a channel which is

known to be idle. For example, TV channel 37 in the US is currently idle and

not being exploited [45]. The channel coefficients {Hk} can also be obtained a

priori when the primary transmitter is known for sure to be active. This a priori

information about the channel condition is attainable since most of the TV stations

and OFDM systems transmit pilot signals periodically for this specific purpose.

3.1.2 Signal Detection in Each Subchannel

After decomposing the received signal into N different waveforms, we are able to

independently perform the sensing task in each individual subband. Consequently,

we perform signal detection in each subchannel to be used for the joint detection

framework. Thus, sensing each subchannel k can formulated as a binary hypothesis

test as following,

H0,k : Rk = Wk, k = 1, 2, . . . , N

H1,k : Rk = HkSk + Wk, k = 1, 2, . . . , N.
(3.4)

where H0,k denotes the absence of the primary signal in k-th subchannel and H1,k

denotes its presence. As a common method for detecting unknown signals, en-

ergy detection for each subband is performed. The decision statistics of the k-th

subchannel can be written as

Tk =
1

M

M
∑

m=1

|Rk(m)|2, k = 1, 2, . . . , N (3.5)

where M , as defined before, is the number of received samples in each subband.

Note that the number of samples, M = τfs, is a common factor in all subchannels

due to the fact that the sensing time τ is dedicated for sensing the whole wideband

channel. The same number of samples for all subchannels owes to the nature of the

wideband primary signal considered here. Accordingly, the decision rule is given by

Tk

H1,k

R
H0,k

εk k = 1, 2, . . . , N (3.6)
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where εk is the decision threshold in subband k. We define the received signal-to-

noise ratio (SNR) of the k-th subchannel as

γk =
E
[|Sk|2

] |Hk|2
σ2

w

(3.7)

in which E[·] denotes expectation. For the sake of brevity, we assume that all

primary signals are complex-valued phase-shift-keying (PSK) signals. For a large

number of samples (e.g. M > 40), we shall use the central limit theorem (CLT)

[40] to approximate the cumulative distribution function (CDF) of Tk as a normal

distribution under both hypotheses, i.e.,

Tk(r) ∼











N (σ2
w, σ4

w/M), under H0,k

N (σ2
w(γk + 1), σ4

w(2γk + 1)/M), under H1,k.
(3.8)

Accordingly, the probability of false alarm P
(k)
f (εk, M) and the probability of de-

tection P
(k)
d (εk, M) for the k-th subchannel are given as

P
(k)
f (εk, τ) = Pr(Tk > εk | H0,k) = Q

((

εk

σ2
w

− 1

)

√

τfs

)

(3.9)

and

P
(k)
d (εk, τ) = Pr(Tk > εk | H1,k) = Q

(

(

εk

σ2
w

− γk − 1

)

√

τfs

2γk + 1

)

(3.10)

in which Q(·) denotes the complementary distribution function of the standard

Gaussian distribution, defined in [41].

In the context of sensing algorithms, one of the design criteria is to make the

probability of false alarm Pf
‡ as low as possible since it measures the percentage of

vacant channels which are misclassified as busy ones. On the other hand, in order

to limit the probability of interfering with primary users, it is desired to keep the

probability of missed detection Pm = 1− Pd low, with Pd given in (3.10).

The threshold εk is a tradeoff factor between the probabilities of false alarm and

missed detection; a low threshold value will result in high false alarm probability in

‡The subscript k is omitted when referring to a generic function.
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favor of low missed detection probability and vice versa. Alternatively, the choice

of the number of samples M is a tradeoff between the quality and speed of sens-

ing. By increasing the number of samples (the sensing time), the test decision is

more accurate but the available time for cognitive radio transmission is reduced, in

consequence.

3.2 Optimal Multiband Sensing-Time-Adaptive Joint

Detection Framework

In this section, we propose the multiband sensing-time-adaptive joint detection

(MSJD) framework, within which we find the detection thresholds {εk}Nk=1 and

the sensing time τ so as to optimize the performance of the secondary network

while protecting the primary network at its desired level. Fig. 3.1 illustrates the

MSJD framework.
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Fig. 3.1. The multiband sensing-time-adaptive joint detection framework for wideband spectrum
sensing.
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3.2.1 Problem Formulation

In a vector-based format, the probabilities of false alarm and detection are repre-

sented as

Pf (ε, τ) =
[

P
(1)
f (ε1, τ), . . . , P

(N)
f (εN , τ)

]T
(3.11)

and

Pd(ε, τ) =
[

P
(1)
d (ε1, τ), . . . , P

(N)
d (εN , τ)

]T
(3.12)

in which ε = [ε1, ε2, . . . , εN ]T denotes the threshold vector.

To formulate the problem, let rk denote the opportunistic throughput of the

secondary user at subchannel k when it operates in the absence of the primary

users and r = [r1, r2, . . . , rN ]§. Recall that 1 − P
(k)
f represents the percentage of

spectrum vacancies detected by the cognitive user and (T − τ)/T represents the

portion of the frame duration available for opportunistic transmission. Hence, we

define the available throughput as

R(ε, τ) =

(

T − τ

T

)

rT (1− Pf (ε, τ)
)

(3.13)

where 1 denotes the all-ones vector. Intuitively, one would like to maximize the

opportunistic secondary throughput, R(·).
For a given frame duration T and threshold vector ε, the larger the sensing time

τ , the shorter the available time for data transmission (T − τ) and on the contrary,

the larger the probability of opportunities detection (1 − Pf ). Hence, we observe

that there is an inherent trade-off in the sensing time in the available throughput.

On the other hand, for a given sensing time τ , maximizing R(ε, τ) results in a large

probability of missed detection Pm and large interference with primary users. As a

result, the interference to primary users must be constrained (bounded).

In the case of wideband spectrum sensing, the effect of interference on the pri-

mary network can be characterized by assigning some relative interference protection

priorities over the N subchannels. In particular, we define ck as the cost of inter-

fering with a primary user in the k-th subchannel and c = [c1, c2, . . . , cN ]. In other

§If the channel gains between secondary users and the transmitter power are known, r can
easily be estimated, exploiting the Shannon capacity formula [44].
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words, ck is interpreted as the relative priorities of the subchannels from the primary

network perspective. Consequently, the aggregate interference to primary network

is defined as

I(ε, τ) =
N
∑

k=1

ckP
(k)
m (εk, τ). (3.14)

A special cases where all subchannels are equally important from the primary users’

viewpoint, we may have ck = 1, for all k = 1, 2, . . . , N .

The objective of the proposed joint spectrum sensing framework is to jointly

optimize the threshold vector ε and the sensing time τ so as to maximize the avail-

able throughput of the secondary user while keeping the weighted interference with

primary users below a desired level. Mathematically, the optimization problem can

be stated as

max.
ε,τ

R(ε, τ) (P3.1)

s. t. I(ε, τ) ≤ ξ (C3.1)

Pm(ε, τ) � α (C3.2)

Pf (ε, τ) � β (C3.3)

τ ≤ τmax (C3.4)

where ξ denotes the maximum aggregate interference tolerated by the primary net-

work, α = [α1, α2, . . . , αN ] and β = [β1, β2, . . . , βN ] are the minimum requirements

of each subchannel and τmax represents the maximum allowable sensing time. More

specifically, αk shows the interference margin required in the k-th subchannel and

βk forces a minimum detection of frequency holes. In order to make the analysis

easier, we reformulate the problem as

min.
ε,τ

Rmiss(ε, τ) (P3.2)

where
Rmiss(ε, τ) = rT

[

Pf (ε, τ)

(

1− τ

T

)

+ 1
τ

T

]

(3.15)

is a non-negative value and can be interpreted as the opportunistic throughput loss

due to the inherent limitation of sensing. Note that the constraints are the same as

the ones in (P3.1).
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3.2.2 Minimum Value of Sensing Time τ

Before solving the optimization problem (P3.2), we explore a hidden lower bound

on the sensing time τ , denoted τmin. More specifically, we derive the minimum

sensing time τ required to meet the constraints (C3.1)-(C3.3). That is, the least

possible sensing time needed to satisfy the expectation of all individual subchannels

is derived in this section. This investigation is motivated by several factors. First,

we gain valuable insight into the range of values that an optimum value of τ can

assume. Second, we make use of τmin in Section 3.2.4 to solve the problem (P2) for

a special range of values of frame duration, T .

For further investigation, we need to extract the relation between the probabil-

ities of false alarm and missed detection. As a rule of thumb, in order to calculate

τmin, we fix the probability of false alarm vector at its maximum tolerable value β.

From equations (3.9), (3.10) and for a given probability of false alarm at subchannel

k, βk, the probability of missed detection P
(k)
m (τ) is shown to be

P (k)
m (τ) = Q

(

1√
2γk + 1

(

√

τfsγk −Q−1(βk)
)

)

. (3.16)

Consequently, the minimum sensing time τmin is calculated as

τmin = argmin τ (P3.3)

s. t.
∑N

k=1
ckP

(k)
m (τ) ≤ ξ

P (k)
m (τ) ≤ αk, k = 1, 2, . . . , N.

3.2.3 Convex Optimization

In general, it is difficult to find the global solution for problem (P3.2) since both

objective and constraint functions are nonconvex, thus a suboptimal solution is

indicated for many cases. However, we observe that this problem can be considered

in the convex optimization category under some practical conditions. Consequently,

we present the following results, to take advantage of the convexity of problem (P2).

Lemma 1. The function P
(k)
f (εk, τ) is convex in εk and τ if P

(k)
f (εk, τ) ≤ Q(1/

√
3).
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Proof. To prove this result, we compute the Hessian matrix as,

ck ×
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(3.17)

where ck =

√
fs√

τσ3
w

√
2π

exp

(

τfs

2

(

εk

σ2
w

− 1

)2
)

. The trace of the matrix is easily

shown to be positive. Its deteminant can be simplified as

Det(·) = c2
k ×

(

3

4

(

εk

σ2
w

− 1

)2

τfs −
1

4

)

(3.18)

which is a non-negative value if

(

εk

σ2
w

− 1

)

√

τfs ≥
1√
3
. (3.19)

As a consequence, the matrix is positive semi-definite, implying that P
(k)
f (εk, τ) is

convex under the stated condition.

Lemma 2. The function P
(k)
m (εk, τ) is convex in εk and τ if P

(k)
m (εk, τ) ≤ Q(1/

√
3).

Proof. Similar to the proof of Lemma 1, it can be shown that P
(k)
d (εk, τ) is concave,

hence P
(k)
m (εk, τ) = 1− P

(k)
d (εk, τ) is a convex function.

Lemma 3. The function

[

P
(k)
f (εk, τ)

(

1− τ

T

)

+
τ

T

]

is convex in εk and τ if

P
(k)
f (εk, τ) ≤ Q(1/

√
3) and τ/T ≤ 0.5.

Proof. To prove this result, we compute the Hessian matrix as,















(

1− τ

T

) ∂2P
(k)
f

∂ε2
k

(

1− τ

T

) ∂2P
(k)
f

∂εk∂τ
− 1

T

∂P
(k)
f

∂εk

(

1− τ

T

) ∂2P
(k)
f

∂εk∂τ
− 1

T

∂P
(k)
f

∂εk

(

1− τ

T

) ∂2P
(k)
f

∂τ2
− 2

T

∂P
(k)
f

∂τ















(3.20)

which is shown to be positive semi-definite for τ/T ≤ 0.5 and

(

εk

σ2
w

− 1

)

√

τfs ≥
1√
3

(3.21)
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implying that

[

P
(k)
f (εk, τ)

(

1− τ

T

)

+
τ

T

]

is convex under the stated conditions.

Recall that a nonnegative weighted sum of convex functions is a convex function

[39]. Hence, the objective and constraint functions of problem (P3.2) are convex if

the conditions

0 ≤ αk ≤ Q(1/
√

3), k = 1, 2, . . . , N (3.22a)

0 ≤ βk ≤ Q(1/
√

3), k = 1, 2, . . . , N (3.22b)

0 ≤ τmax ≤ 0.5 T (3.22c)

are satisfied. Given all these facts, we conclude that the problem (P3.2) is convex

if the conditions (3.22) are imposed. This implies that finding the global optimum

of (P3.2) is possible, using some efficient numerical search algorithms such as the

interior-point method [39]. The conditions given in (3.22) are of practical interest,

since a very efficient use of spectrum holes is forced while imposing a very small

interference on primary users and keeping the sensing overhead desirably low.

3.2.4 Large-Period Regimes

Consider the case where the frame duration T is large such that

τ

T
≪ 1. (3.23)

This case characterizes large-period regimes, as briefly described in Section 2.2.2.

One may notice that defining the range of T which satisfies (3.23) is dependent on

different dynamic parameters, since τ is not a pre-determined value and would be

selected during the optimization process. However, it is intuitive that the typical

optimal values obtained for τ are not drastically larger than the minimum value

τmin obtained in Section 3.2.2. Simulation results given in Section 3.4 give this

indication. As a result, we define the large-period regimes as

τnorm

min =
τmin

T
< 0.01 (3.24)
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where τnorm
min is interpreted as the normalized minimum sensing time. Consequently,

the opportunistic throughput loss defined in (3.15) is approximated as

Rmiss(ε, τ) ⋍ rT
[

Pf (ε, τ) + 1
τ

T

]

. (3.25)

Given (3.25) as the new objective function, the original problem (P3.2) is trans-

formed into a convex optimization problem by a change of variables and a transfor-

mation of the objective and constraints. The proposition established in this section

is that the conditions under which convexity holds is shown to be much wider than

the conditions stated in (3.22). Let {ε′k}Nk=1 and τ ′ denote the new variables whose

relation with the original variables are,











τ ′ =
√

τfs

ε′k =
εk

σ2
w

√
τfs

(3.26)

for k = 1, 2, . . . , N . By substituting these new variables, the probability of false

alarm and detection for subchannel k can be represented respectively as

P
(k)
f (ε′k, τ

′) = Q
(

ε′k − τ ′) (3.27)

and

P
(k)
d (ε′k, τ

′) = Q

(

ε′k − (γk + 1)τ ′

√
2γk + 1

)

. (3.28)

Lemma 4. The function P
(k)
f (ε′k, τ

′)
(

respectively, P
(k)
m (ε′k, τ

′)
)

is convex in ε′k and

τ ′ if P
(k)
f (ε′k, τ

′) ≤ 0.5
(

respectively P
(k)
m (ε′k, τ

′) ≤ 0.5
)

.

Proof. To prove this lemma, we compute the Hessian matrix of P
(k)
f (ε′k, τ

′) as

∇2Q(ε′k − τ ′) =
exp

(−(ε′k − τ ′)2/2
)

√
2π

× (ε′k − τ ′)×









1

−1









×









1

−1









T

(3.29)

which is semi-definite matrix if (ε′k− τ ′) ≥ 0. This means that P
(k)
f (ε′k, τ

′) is convex

if P
(k)
f (ε′k, τ

′) ≤ 0.5. Following the same approach, it can be shown that P
(k)
m (ε′k, τ

′)

is also convex if P
(k)
m (ε′k, τ

′) ≤ 0.5.
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Accordingly, we conclude that the objective and constraint functions of the prob-

lem (P3.2) are convex given the conditions,

0 ≤ αk ≤ 0.5, k = 1, 2, . . . , N (3.30a)

0 ≤ βk ≤ 0.5, k = 1, 2, . . . , N. (3.30b)

These ranges of probabilities are particularly interesting from the practical view-

point since they cover a wider range compared to the conditions given in (3.22).

3.2.5 Multiband Joint Detection Framework

As explained before, we point out that the proposed MSJD framework offers a

substantial performance improvement when comparing to the previously proposed

multiband joint detection (MJD) framework for wideband spectrum sensing. Here,

we explain the MJD framework in more detail. We also distinguish the proposed

MSJD framework from the MJD framework and further explain its specific features

and properties.

In the MJD framework, the authors haven’t considered the periodic sensing

scheme and have assumed that the number of samples M (i.e. the sensing time τ) is

a constant value and has nothing to do with the optimization process. Accordingly,

they have defined the available opportunistic throughput as

R(ε) =
N
∑

k=1

rk

(

1− P
(k)
f (εk)

)

(3.31)

with P
(k)
f (εk) defined in (3.9). Note that R(ε) is a function of the threshold vector

ε only. Based on this definition, they have formulated the optimization problem as

max.
ε

R(ε) (P3.4)

s. t. I(ε) ≤ ξ

Pm(ε) � α

Pf (ε) � β.

25



with the same parameters defined in (P3.1). They have further shown that the

optimization problem (P3.4) is convex if the conditions given in (3.30) are satisfied.

Although it represents a remarkable advancement in wideband sensing, the MJD

framework can be considered as a simplified version of the proposed MSJD frame-

work in which some essential facts and potential system models have not been ex-

ploited. The following considerations are noticeable when comparing our framework

with the MJD framework:

1- It is indeed crucial to sense the channel periodically since the spectrum must

be vacated when a primary user reappears [34]–[38], a feature missing from the

MJD framework. In our framework, we modeled the priodic sensing in Section 2.2.2

which effectively takes the primary user integrity into account.

2- Due to the wireless channel fluctuations and fading effects, it is essential to

dynamically balance the quality and speed of sensing through an adaptive selection

of the sensing time, which is assumed to be fixed in MJD. In our framework, the

sensing time τ is considered to be an optimization variable and will wisely and

adaptively be chosen so as to compensate both the primary network and secondary

user preferences.

3- Considering a unified framework in which the sensing time τ and individual

detector parameters (i.e. the decision thresholds, {εk}Nk=1) are jointly optimized

is mandatory for designing a maximally effective cognitive radio network. This

consideration is also well-adopted in our framework.

The given considerations are consequently shown to dramatically improve the

overall sensing performance in Section 3.4.

3.3 Efficient Implementation of the Multiband Sensing-

Time-Adaptive Joint Detection Framework

In this section, some analytical results for solving the original problem (P3.1) are

presented. The results are further exploited for presentation of the proposed al-

gorithm which is a two-fold process. First, assuming that the sensing time τ is
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constant which classifies the multiband joint detection framework, we present an

efficient algorithm for calculating the optimal threshold vector ε. Then, taking ad-

vantage of the given algorithm, we propose another efficient algorithm for solving

the original multiband sensing-time-adaptive joint detection framework in which ε

and τ are both optimization variables.

3.3.1 Constant τ

Here, we consider the case where τ is a pre-determined value and unrelated to the

optimization process. Accordingly, by simplifying both the objective and constraint

functions, it is seen that this case has the same framework as multiband joint de-

tection and the optimization problem (P3.1) is transformed into (P3.4). Taking

advantage of the monotonicity of the Q-function, (P3.4) is further simplified to

min.
ε

Rmiss(ε) =
N
∑

k=1

rkP
(k)
f (εk) (P3.5)

s.t. I(ε) ≤ ξ (C3.5)

εk,min ≤ εk ≤ εk,max, k = 1, 2, . . . , N (C3.6)

where

εk,max = σ2
w

[√
2γk + 1√

τfs
Q−1(1− αk) + γk + 1

]

(3.32)

is the maximum detection threshold that can be chosen in subband k based on αk

given in the constraint (C3.2) and

εk,min = σ2
w

[

Q−1(βk)√
τfs

+ 1

]

(3.33)

determines the minimum tolerable threshold value which is chosen so as to satisfy

the constraint (C3.3). Note that the main difference between (P3.4) and (P3.5)

is that the nonlinear constraints (C3.2) and (C3.3) are transformed into the linear

constraint (C3.6). Recall that the problem (P3.5) is a convex optimization problem

if the conditions given in (3.30) are applied. Therefore, it is possible to find the

global optimal solution using numerical methods such as the interior-point method.

However, in order to have a more insightful view of the optimization process and
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to solve the optimization problem with less complexity, we propose an optimal

algorithm which quickly and efficiently computes the optimal threshold vector.

3.3.2 Dual Problem

In order to further explore the optimization problem (P3.5), we take advantage of

the Lagrangian duality properties presented in [39]. Consequently, we define the

Lagrangian of the problem (P3.5) as

L(ε, λ1, λ2, λ3) = rT Pf (ε) + λ1(I(ε)− ξ) + λT
2 (ε− εmax) + λT

3 (−ε + εmin) (3.34)

where λ1, λ2 =
[

λ
(1)
2 , λ

(2)
2 , . . . , λ

(N)
2

]

and λ3 =
[

λ
(1)
3 , λ

(2)
3 , . . . , λ

(N)
3

]

are non-

negative Lagrangian dual variables associated with the constraint functions. Ac-

cordingly, the Lagrangian dual function is defined as

g(λ1, λ2, λ3) = inf.
ε

L(ε, λ1, λ2, λ3). (3.35)

Recall that the dual function is a lower bound on the optimal solution of the problem

(P3.5), p̄, which is achieved by the primal optimal variable ε̄. That is, the inequality

g(λ1, λ2, λ3) ≤ p̄ holds for any λ1 ≥ 0, λ2 � 0 and λ3 � 0. Consequently, the dual

optimization problem is defined as

max. g(λ1, λ2, λ3) (3.36)

s. t. λ1 ≥ 0, λ2 � 0, λ3 � 0

which is formulated to reduce the gap between the optimal solution p̄ and the

Lagrangian function g(λ1, λ2, λ3). Denote the optimal solution of the dual problem

(3.36) as d̄ which is achievable by the optimal dual variables λ̄1, λ̄2 and λ̄3, i.e.

d̄ = g(λ̄1, λ̄2, λ̄3). Since the original problem (P3.5) is convex and Slater’s condition

is satisfied, strong duality holds for this problem which means that the duality gap

p̄− d̄ is zero [39] and consequently, any primal and dual optimal variables ε̄, λ̄1, λ̄2

and λ̄3 must satisfy the Karush-Kuhn-Tucker (KKT) conditions
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I(ε̄) ≤ ξ (K3.1)

εk,min ≤ ε̄k ≤ εk,max, k = 1, 2, . . . , N (K3.2)

λ̄1 ≥ 0, λ̄2 � 0, λ̄3 � 0 (K3.3)

λ̄1 (I(ε̄)− ξ) = 0 (K3.4)

λ̄
(k)
2 (ε̄k − εk,max) = 0, k = 1, 2, . . . , N (K3.5)

λ̄
(k)
3 (−ε̄k + εk,min) = 0, k = 1, 2, . . . , N (K3.6)

∇L
(

ε̄, λ̄1, λ̄2, λ̄3
)

= 0. (K3.7)

On the other hand, given the fact that the primal problem is convex, satisfying the

KKT conditions is sufficient for finding the primal and dual optimal points. That

is, any primal and dual variables ε̄, λ̄1, λ̄2 and λ̄3 set which satisfies the KKT

conditions is the optimal solution and results in zero duality gap. Before refining

the KKT conditions, we need the following Lemma.

Lemma 5. If I(εmax) ≥ ξ, then the objective function of the problem (P3.5) is

minimized if I(ε) = ξ.

Proof. In order to prove this Lemma, we first show that

1

ck

dRmiss

dP
(k)
m

≤ 0, k = 1, 2, . . . , N. (3.38)

We define tk =
(

εk

σ2
w
− γk − 1

)√
τfs. In line with proving the inequality (3.38), we

have
dP

(k)
f

dεk
=
−√τfs√

2π
exp

(

−
(

tk + γk

√
τfs
)2

2

)

and
dP

(k)
m

dεk
=

√
τfs

√

2π (2γk + 1)
exp

(

− t2k
2(2γk + 1)

)

. (3.39)

Therefore, it follows

dP
(k)
f

dP
(k)
m

=
dP

(k)
f

dεk

1

dP
(k)
m

dεk

= −
√

2γk + 1 exp

(

(

tk + γk

√
τfs
)2

2
− t2k

2(2γk + 1)

)

≤ 0.

(3.40)

29



Thus, it can be shown that

1

ck

dRmiss

dP
(k)
m

=
rk

ck

dP
(k)
f

dP
(k)
m

≤ 0, k = 1, 2, . . . , N. (3.41)

The inequality (3.38) shows that, Rmiss(ε) is decreasing in all components of I(ε),

so the objective function of the problem (P3.3) is minimized if the aggregate inter-

ference I(ε) is set to its maximum value ξ.

According to Lemma 5, it is seen that condition (K3.1) is an equality constraint

rather than an inequality constraint. Moreover, condition (K3.4) is satisfied for any

λ̄1 ≥ 0 and thus, it can be eliminated from (K3). In order to solve the remaining

KKT conditions, we start with extracting the condition (K3.7) as

rk

dP
(k)
f

dε̄k
+ λ̄1ck

dP
(k)
m

dε̄k
+ λ̄

(k)
2 − λ̄

(k)
3 = 0, k = 1, . . . , N. (K3.8)

Denoting

t̄k =

(

ε̄k

σ2
w

− γk − 1

)

√

τfs (3.42)

as the transformed primal variable, we can re-write (K3.8) as

− rk

√
τfs√
2π

exp

(

− (t̄k + γk

√
τfs
)2

2

)

+ λ̄1ck

√
τfs

√

2π (2γk + 1)
exp

(

−t̄k
2

2 (2γk + 1)

)

+ λ̄
(k)
2 − λ̄

(k)
3 = 0 (K3.9)

which is a nonlinear equation in multiple variables and is very difficult to solve.

Generally, there is no conventional method for solving KKT conditions and only a

few special cases result in a closed-form solution. In our problem, since the KKT

conditions (K3.1) and (K3.7) are non-linear equations, finding a closed-form solution

is extremely difficult and thus, a numerical algorithm is indicated.

3.3.3 Efficient Algorithm for the Multiband Joint Detection

Here, we would like to find the optimal primal and dual parameters ε̄, λ̄1, λ̄2 and

λ̄3 by satisfying the KKT conditions given in (K3). Aiming to further simplify

the problem, we first assume that all the optimal thresholds {ε̄k}Nk=1 lie strictly
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between the specified maximum and minimum values, i.e. εk,min < ε̄k < εk,max

for all k. In other words, we assume that the condition (K3.2) is valid even if

the equality is removed. This assumption may not be generally valid and some of

the thresholds must assume the boundary values in order to satisfy all the KKT

conditions. However, for the interim, we present results based on the aforementioned

assumption and will deal with the boundary thresholds in the next stages of the

algorithm. Based on the assumption, it is seen that λ̄
(k)
2 and λ̄

(k)
3 are zero for all k =

1, . . . , N according to conditions (K3.5)-(K3.6). As a result, only the exponential

factors remain in condition (K3.9), i.e., we have

exp

(

0.5t̄k
2

2γk + 1
−
(

t̄k + γk

√
τfs
)2

2

)

=
λ̄1ck

rk
√

2γk + 1
. (3.43)

After taking the logarithms of both sides of the equation and doing some simplifi-

cations, (3.43) is transformed into

(

t̄k +

√
τfs

2
+ γk

√

τfs

)2

= −2γk + 1

γk
log

(

λ̄1ck

rk
√

2γk + 1

)

+
τfs

4
(2γk + 1) . (3.44)

Generally, equation (3.44) has two solutions, but only one of them is valid for our

problem as can easily be shown using (3.33). Substituting (3.42) in (3.44), we can

write the detection threshold ε̄k as

ε̄k = σ2
w





1

2
+

√

√

√

√

2γk + 1

γk

[

−1

τfs
log

(

λ̄1ck

rk
√

2γk + 1

)

+
γk

4

]



 (3.45)

which is a closed-form function of λ̄1. Having such a function enables us to substitute

(3.45) into the KKT condition (K3.1) and obtain the optimal λ̄1. Note that equation

(K3.1) is an equality condition and can easily be solved using various fast and

efficient numerical root-finding methods such as the Newton-Raphson method, fixed

point iteration method, etc. Once λ̄1 is obtained, the detection thresholds {ε̄k}Nk=1

are accordingly obtained. Note that these computed threshold values are optimal

only if they satisfy the assumption of strictly lying between the specified values,

i.e. εk,min < ε̄k < εk,max for all k = 1, . . . , N , since the other KKT conditions

are easily shown to be satisfied. That is, if some of the computed threshold values
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{ε̄k}Nk=1 take values outside of the admissible range [εk,min, εk,max], it means that

neither is the solution optimal nor is the assumption of λ̄2 and λ̄3 being zero valid.

This means that, there might be some {λ̄(k)
2 }Nk=1 (or {λ̄(k)

3 }Nk=1) which must have

non-zero values and accordingly, the associated thresholds must take the boundary

values {εk,min}Nk=1 (or {εk,max}Nk=1). This fact is easily concluded from the KKT

conditions (K3.5)-(K3.6).

Generally, there is no way to know which {λ̄(k)
2 }Nk=1 (or {λ̄(k)

3 }Nk=1) are non-zero

and in the worst case an exhaustive search may be needed. However, we observe

that once a specific subset of {λ̄(k)
2 }Nk=1 (or {λ̄(k)

3 }Nk=1) are known to be non-zero (say,

for example, the subset Sp), then the thresholds associated with Sp must take the

boundary values εk,min (or εk,max). Consequently, equation (3.45) and a modified

version of equation (K3.1) can be written for the remaining {ε̄k}Nk=1 − Sp primal

variables and, accordingly, the optimal λ̄1 can be computed. Therefore, if Sp is

determined, the problem can easily be solved. Given this, the main question is

how to determine Sp. One possible and naive algorithm is to iteratively search for

different scenarios. That is, in each iteration we assume a subset of {ε̄k}Nk=1 contains

the boundary value and consequently compute the remaining variables. We stop

the iteration when all the thresholds satisfy condition (K3.2). The main problem

with this strategy is that its complexity is very high and increases exponentially

with the number of primal variables N . In the worst case, the number of iterations

is 2(N+1) which is undesirable when the number of subchannels is relatively large.

In order to decrease the complexity, we propose an efficient algorithm which finds

the optimal solution with much lower complexity.

To present the algorithm, we first exploit the fact that ε̄k is a monotonically non-

increasing function of λ̄1 according to (3.45). This property allows us to specify a

maximum and minimum value for λ̄1 in each subchannel k based on KKT condition

(K3.2). Thus, we can define

λ̄
(k)
1,max(min) =

rk
√

2γk + 1

ck
× exp

(

−γk τfs

2γk + 1

(

εk,min(max)
2

σ4
w

+
εk,min(max)

σ2
w

− γk

2

))

(3.46)

as the maximum (minimum) value associated with λ̄1 in the k-th subchannel. Note

that these values are obtained under the assumption that λ̄2 and λ̄3 are zero. To
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further explain the algorithm, we need the following Lemma.

Lemma 6. If λ̄1 is a known value and has been proved to be the optimal dual

Lagrangian variable which satisfies all the conditions (K3), we have

If λ
(k)
1,min ≤ λ̄1 ≤ λ

(k)
1,max then λ̄

(k)
2 = λ̄

(k)
3 = 0 (3.47a)

If λ̄1 < λ
(k)
1,min then λ̄

(k)
2 6= 0 and λ̄

(k)
3 = 0 (3.47b)

If λ̄1 > λ
(k)
1,max then λ̄

(k)
2 = 0 and λ̄

(k)
3 6= 0 (3.47c)

for k = 1, 2, · · · , N .

Proof. Lemma 6 can be proved by contradiction.

According to Lemma 6, if the optimal Lagrangian variable λ̄1 is known, then

all the optimal detection thresholds can be easily obtained. This is an interesting

result which forms the basis of our algorithm. On the other hand, knowing λ
(k)
1,min

and λ
(k)
1,max for all k = 1, 2, · · · , N as given in (3.46) enables us to partition the

λ̄1 ≥ 0 domain into 2N + 1 non-overlapping subdomains {S1, S2, · · · , S2N+1} in

which

Si =
{

λ̄1 ∈ Z| Ai ≤ λ̄1 < Ai+1, A1 = 0, A2N+2 =∞} (3.48)

determines the i-th subdomain. Basically, Ai is the sorted version of
{

λ
(k)
1,max, λ

(k)
1,min

}N

k=1

which can mathematically be represented as

Ai = argmin

{

N
⋃

k=1

{

λ
(k)
1,max, λ

(k)
1,min

}

− {A1, . . . , Ai−1}
}

. (3.49)

An illustrative example in which N = 6 subchannels are considered is plotted in

Fig. 3.2. As shown in the figure, we can only assume 2N + 1 different scenarios

for any optimal Lagrangian variable λ̄1. That is, in each subdomain Si, only one

of the conditions given in Lemma 6 holds for all possible λ̄1 in the subdomain Si.

In other words, if λ̄1 lies in the i-th subdomain and one specific condition among

the ones given in Lemma 6 holds, that condition is valid for all λ̄1 ∈ Si. Given this

fact, Algorithm 3.1 is adopted for solving the problem (P3.5).

As depicted in the algorithm, the maximum number of iterations is 2N +1 which

means that the iteration-complexity increases linearly with the number of subchan-
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Fig. 3.2. An example of the maximum and minimum values associated with λ̄1 in each subchannel
k and their mappings to the λ̄1 > 0 axis.

nels, N . Note that the inner loop is only for variable assignment and doesn’t add

any complexity. In each iteration, only one computation (Di) is needed whose num-

ber of flops¶ is 2N + 3. In addition, only one root-finding procedure is required.

The complexity is low since the variable of interest λ̄1 is one-dimensional. There-

fore, it can be concluded that the overall complexity of Algorithm 3.1 is O(N2)‖.

The complexity is very low when compared to the other commonly used numerical

methods such as the barrier method whose complexity is on the order of N3.5 (i.e.

O(N3.5)) [39], particularly when the number of subchannels is large which is usually

the case in practice. Although Algorithm 3.1 is specifically designed for solving the

optimization problem (P3.5), it can be easily generalized to a wide range of practical

convex optimization problems in different research areas including cognitive radio

and wireless communications.

3.3.4 Efficient Algorithm for Multiband Sensing-Time-Adaptive

Joint Detection

In this section, we propose an algorithm which computes the optimal detection

threshold vector ε and sensing time τ as given in the problem (P3.2). The basic

idea is, instead of jointly optimizing the optimization variables, we optimize them in

a disjoint two-stage algorithm. In the first stage of the algorithm, we assume that the

¶One addition, subtraction, multiplication, or division of two floating point numbers is referred
to as a floating-point operation (or flop).

‖The notation O(·) gives a rough estimation of complexity. It is computed by expressing
the number of floating-point operations (flops) needed for implementation of the algorithms as a
(polynomial) function of the problem dimensions and keeping the leading terms.
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Algorithm 3.1 Low-Complexity Implementation of the MJD Framework

Calculate Si using (3.48)
for i = 1 to 2N + 1 do

for k = 1 to N do

if λ
(k)
1,max ≥ Ai+1 and λ

(k)
1,min ≤ Ai then

Calculate ε̄k(λ̄1) using (3.45)

else if λ
(k)
1,min ≥ Ai+1 then

ε̄k(λ̄1) = εk,max

else if λ
(k)
1,max ≤ Ai then

ε̄k(λ̄1) = εk,min

end if

end for

Di = (I(ε̄(Ai))− ξ)× (I(ε̄(Ai+1))− ξ)
if Di ≤ 0 then

λ̄1 ← Solve I(ε(λ̄1)) = ξ for λ1

ε̄← Substitute λ̄1 in all ε̄k(λ̄1)
Break

end if

end for

sensing time τ is a constant value. Therefore, the original problem is reformulated

as the one stated in (P3.5). In the second stage, we update the sensing time τ

based on the information obtained from the previous stage. We also use iteration

in our algorithm in order to refine the information used in each stage. That is, after

completing stage 2, we repeat stage 1 based on the updated sensing time τ obtained

from the previous iteration and so on. However, in Section 3.4, it is shown that

the number of required iterations is small and, most likely, on the second or third

iteration, the optimal solution is obtained.

Since the first stage of the algorithm has already been explained in Section 3.3.3,

we focus on the second stage here. In order to implement stage 2, we need some

information from the previous stage. We specifically exploit probabilities of missed

detection for this purpose. There are four main parameters which are effective

in determining probabilities of missed detection Pm(ε, τ). These parameters are

the achievable throughput rk, the interference cost ck, the channel SNR γk and

the sensing time τ . This is an intuitive result which can be easily extracted from

the objective and constraint functions in the problem (P3.1). To be more specific,

equation (C3.1) determines how to assign different values to every P
(k)
m (·) based
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on the aforementioned four main parameters in order to achieve the maximum

secondary aggregate throughput. In other words, these parameters determine the

relation of different missed detection probabilities (i.e. their relative proportion)

and accordingly equation (C3.1) fixes them to specific values.

Having this fact in mind, we observe that the parameters γk, ck and rk are

channel-dependent values and can vary in each subchannel but the sensing time τ

is a global value and is the same in each subchannel. Therefore, we can intuitively

conclude that the channel-dependent parameters are more effective in determining

the missed detection probabilities than the channel-independent sensing time τ .

That is, the relative proportion of different missed detection probabilities is mostly

dependent on the parameters which are different in each subchannel rather than

the globally constant sensing time τ . On the other hand, it is seen that these so

called channel-dependent parameters are fixed values and depend only on the sys-

tem model. Thus, the computed missed detection probabilities in the first stage

will remain almost unchanged even if the sensing time τ changes in the next itera-

tion. We exploit this information to implement the second stage of the algorithm.

Accordingly, in the second stage, we assume that probabilities of missed detection

are fixed at the values P̂
(k)
m obtained from the first stage. Thus, we can write the

probability of false alarm as

P
(k)
f (τ) = Q

(

√

2γk + 1Q−1(1− P̂ (k)
m ) +

√

τfsγk

)

. (3.50)

Accordingly, the optimization problem is converted to

min.
τ

Rmiss(τ) =
N
∑

k=1

rk

((

1− τ

T

)

P
(k)
f (τ) +

τ

T

)

(P3.6)

s.t. Pf (τ) � β (C3.7)

which has been proved to be convex if 0 ≤ βk ≤ 0.5 [35]. Since the only optimization

variable is τ , we can re-write the problem as

min.
τ

Rmiss(τ) (P3.7)

s.t. τ ≥ argmax
{

τ
(1)
min, τ

(2)
min, . . . , τ

(N)
min

}

(C3.8)
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Algorithm 3.2 Low-Complexity Implementation of the proposed MSJD
Framework

Choose an initial sensing time τ (e.g. τ = 2τmin)
δ = Accuracy threshold
repeat

Run Algorithm 3.1
Rold

miss ← Compute Rmiss(ε, τ)

Calculate P̂
(k)
m

τ ← Solve (P3.7) for τ
Rnew

miss ← Compute Rmiss(τ)
until |Rnew

miss −Rold
miss| < δ

in which

τ
(k)
min =

1

γ2
kfs

[

Q−1(βk)−
√

2γk + 1Q−1(1− P̂ (k)
m )

]2
(3.51)

is the minimum required sensing time at subchannel k obtained from (3.50).

The optimization problem (P3.7) can easily be solved by taking the derivative of

the objective function and setting it to zero in order to obtain the optimal value

of τ . The calculated τ is the optimal solution if it satisfies the constraint (C3.8),

otherwise the boundary value given in (C3.8) is chosen. After solving the problem

(P3.7), the second stage of the algorithm is complete and we can repeat the first stage

based on the updated value of τ until the solution is accurate enough. However, we

intuitively showed that the probabilities of missed detection are not very dependent

on the sensing time τ , thus the number of iterations would be very small. As a

validation, in Section 3.4, it is shown that on the second or third iteration a very

accurate solution is obtained. Therefore, we can conclude that the complexity order

of this strategy is the same as the one in Algorithm 3.1 (i.e. O(N2)). In order to

explain the procedures in a unified matter, Algorithm 3.2 is adopted.

3.4 Simulation Results

In this section, computer simulation results are presented to evaluate the proposed

spectrum sensing schemes. Consider a primary user communication over a wideband

spectrum of 6.4-MHz in which OFDM modulation with 16 subcarriers is adopted

(i.e. N = 16). Each individual subchannel is characterized by different parameters

in which γk, rk, and ck denote the received SNR, the throughput rate (kbps), and
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TABLE 3.1
Typical system parameter set used for the simulation - wideband sensing with

uniform channel sensing durations

k 1 2 3 4 5 6 7 8

γk 0.38 1.37 0.32 0.24 0.35 0.27 0.39 0.38

rk (kbps) 857 206 853 900 611 808 561 325

ck 8.94 1.68 3.81 6.91 9.01 2.07 3.43 3.44

k 9 10 11 12 13 14 15 16

γk 0.74 0.37 0.51 0.26 0.31 0.25 0.23 0.81

rk (kbps) 212 391 219 830 308 650 924 138

ck 1.79 3.38 1.63 1.66 1.02 3.30 1.98 8.91

the cost coefficient, respectively. Furthermore, in each subchannel k, we assume a

minimum primary user protection level of 90%, i.e. αk = 0.1 and an opportunity

detection margin of βk = 0.2. Moreover, the maximum time for which the secondary

network is unaware of the primary activity (i.e. T ) is chosen such that fsT = 3000.

3.4.1 Example 1: Multiband Sensing-Time-Adaptive Joint

Detection Framework

In this example, we evaluate the multiband sensing-time-adaptive joint detection

(MSJD) framework. To make a fair comparison, two schemes are considered here.

First, a multiband joint detection (MJD) framework [33] with the same constraints

and the number of samples M = τfs = 150 is examined. Recall that the MJD

framework maximizes the available secondary throughput by a joint optimization of

the detection thresholds. Second, an algorithm which searches uniform thresholds

to maximize the available throughput within the same framework is studied. One

typical parameter set used for simulation is given in Table 3.1.

Fig. 3.3 plots the maximum available throughput for cognitive radio trans-

mission versus the aggregate interference in the primary network. The percentages

given in the figure represent the maximum available throughput relative to the max-

imum ideal throughput which denotes the throughput achieved with no sensing error

and zero sensing time (i.e.
∑N

k=1rk). It is evident in the figure that our proposed

framework achieves a performance superior to the other approaches. Two main ob-

servations are notable here. First, other than the detection thresholds, the sensing
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time is a critical parameter which should be dynamically assigned due to the chan-

nel fluctuations and fading effects. Second, in order to adjust a intelligent tradeoff

between the available throughput and interference to the primary user, we need a

unified framework which optimizes all of these parameters. These considerations

are well adopted in our framework.
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Fig. 3.3. The available opportunistic throughput for cognitive radio transmission vs. the aggregate
interference to the primary network.

In Fig. 3.4, the number of samples M is plotted versus the SNR increment above

the γk’s listed in Table 3.1. We observe that as the channel condition improves,

the optimal number of samples is decreased. This study is interesting since it

illustrates the necessity of dynamically assigning the sensing time as opposed to

a fixed allocation strategy considered in the MJD algorithm. Moreover, Fig. 3.4

reveals that the minimum number of samples obtained from the constraints is not

drastically smaller than the optimal number. This verifies the approximation used

in (3.25). Another validation to our approximation is depicted in Fig. 3.5, which

shows the available throughput versus the normalized minimum sensing time τnorm
min

.

It can be seen that the approximation used in (3.25) becomes more precise as τnorm
min

decreases.
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Fig. 3.4. The number of samples vs. the SNR increment (dB) above the SNRs, γk, listed in Table
3.1, when the aggregate interference to the primary network ξ = 1 and fsT = 8000.
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Fig. 3.5. The available opportunistic throughput for cognitive transmission vs. the normalized
minimum sensing time τnorm

min , when the aggregate interference to the primary network ξ = 1.
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3.4.2 Example 2: Efficient Low-Complexity Wideband Sensing

Algorithm

This example studies the optimal algorithms which are proposed for solving both the

MSJD and MJD framework. Algorithm 3.1 optimizes the detection threshold vector

ε when the sensing time τ is a predetermined value which better suits the MJD

framework. Considering the design concerns presented in the MSJD framework, we

further developed an optimal iterative algorithm (named as Algorithm 3.2) which

computes the optimal values of both the detection threshold vector ε and sensing

time τ .

Fig. 3.6 plots the the maximum available throughput for cognitive radio trans-

mission versus the aggregate interference in the primary network. The parameter

set used for simulation is the same as the one given in Table 3.1. As depicted in the

figure, the optimal solutions can easily be achieved by the proposed algorithms. It

should also be noted that only two iterations are used for implementing Algorithm

3.2 which verifies that the required number of iterations is very small.
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Fig. 3.6. The available opportunistic throughput for cognitive radio transmission vs. the aggregate
interference to the primary network.

41



To demonstrate the efficiency of the proposed algorithms, Fig. 3.7, which

roughly compares the implementation complexity of the Algorithm 3.1 with other

numerical convex optimization methods, is given. Specifically, Fig. 3.7 plots the

average time required for implementing the MJD framework versus the number of

narrowband subchannels in the wideband spectrum. The parameters used here are

the same as the ones given in Table 3.1. We observe that the average running time of

the proposed algorithm is much smaller than the average running time of the other

numerical methods, all implemented on the same machine. Although this study

is dependent on several factors like the processor speed, the memory capacity, the

specific computer code and etc., it gives us a rough and qualitative measure of the

implementation complexity. It also proves the efficiency of the proposed algorithm

and shows its cost- and time- effectiveness.
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Fig. 3.7. The average running time used for implementation of the MJD framework vs. the
number of narrowband subchannels in the wideband spectrum, when the normalized aggregate
interference to the primary user ξ = 1 and ||c|| = 15, where || · || denotes Euclidean norm.

In Fig. 3.8, the maximum available throughput for the cognitive transmission is

plotted versus the initial number of samples (initial sensing time) given in Algorithm

3.2. In order to present another evaluation of Algorithm 3.1, the number of samples

for the MJD framework is set to the given initial number of samples. It is evident

42



in the figure that we can obtain the optimal solution with running at most three

iterations. This is another validation of the small of number of iterations required

by Algorithm 3.2. We also observe that the MSJD framework outperforms the

MJD framework. The optimized missed detection probabilities in each iteration are

depicted in Fig. 3.9 for illustration. This figure shows that the values assigned to

missed detection probabilities are almost independent of the number of samples M ,

which illustrates the procedure exploited in Section 3.3.4.
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Fig. 3.8. The available opportunistic throughput for cognitive radio transmission vs. the initial
number of samples defined in Algorithm 3.2, when the aggregate interference to the primary user
ξ = 1.

Generally speaking, the simulation results show that the MSJD framework can

improve the secondary network capacity while protecting the the primary network

from harmful interference, and it can be implemented in practical systems with very

low computation (hence implementation) complexity using the proposed algorithms.

3.5 Summary

In this chapter, we first proposed an optimal framework for wideband spectrum

sensing with uniform channel sensing durations, referred to as multiband sensing-
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Fig. 3.9. The probability of missed detection obtained in each iteration of Algorithm 3.2, when
the aggregate interference to the primary user ξ = 1.

time-adaptive joint detection (MSJD). Considering a periodic sensing scheme, we

maximized the achievable opportunistic throughput of the secondary user while

keeping the interference with the primary network bounded to a reasonably low level.

More specifically, we formulated our problem as a joint optimization of the sensing

slot duration and individual channel parameters, where the objective function is

the throughput capacity of the secondary user and the constraint is the aggregate

(weighted) interference to the primary users. Furthermore, we demonstrated that

our problem, which is generally non-convex, can be solved as a convex optimization

problem if certain practical constraints are imposed.

In addition, we proposed an efficient algorithm which quickly and effectively

computes the optimal sensing parameters within the aforementioned MSJD frame-

work. In particular, taking advantage of Lagrangian duality properties presented

in [39], we transformed the original optimization problem into a class of equivalent

subproblems and solved them accordingly. It was also demonstrated that the com-

putational (hence implementation) complexity of the proposed algorithm is much

lower than that of other commonly used numerical approaches such as the interior-
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point methods. In particular, we illustrated that the iteration-complexity and the

complexity-per-iteration of the proposed algorithm increases linearly as the number

of primary individual channels increases. This level of complexity is very inter-

esting from a practical/implementation viewpoint since it is remarkably time- and

cost-effective.
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Chapter 4

Multichannel Spectrum Sensing

With Non-Uniform Channel

Sensing Durations†

In this chapter, we first present the relevant system model and then review the

signal detection in individual subchannels. This leads to the presentation of the

sequential multichannel joint detection (SMJD) framework which is well-suited for

the case of non-uniform channel sensing durations.

4.1 System Model

Here, we consider a more general primary communication system and assume that

the primary wideband received signal is not decomposable and can not be divided

into multiple signal waveforms. That is, the multicarrier modulation-based primary

system is not the case here, implying that N multiple narrowband signals can not be

extracted from the received wideband signal. This means that, instead of capturing

the primary wideband signal and decomposing it into multiple narrowband signals,

each individual narrowband frequency band‡ must be sensed separately. On the

other hand, in order to collectively consider all the narrowband channels and have

†This chapter has been submitted in part to IEEE Transactions in Communications [46], and
Proceedings of IEEE International Conference on Communications (ICC’11) [47], and Proceedings
of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’11) [48].

‡We refer to the “narrowband frequency bands” as “channels”, in subsequent sections.
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a more effective sensing framework, the secondary user should sequentially sense N

multiple channels during the sensing phase.

4.1.1 Sequential Periodic Sensing

A modified version of the previously presented periodic sensing scheme is considered

here. In each sensing frame, there is a sensing phase and a transmission phase. In

order to take into account all the narrowband channels, the secondary user should

sequentially sense N multiple channels during the sensing phase. Fig. 4.1 represents

the frame structure used for the sequential periodic sensing. Each frame consists of

a sensing period τ and a transmission period T − τ . The sensing slot τ is divided

into N subslots which are assigned for sensing the individual channels. Note that

the order of the channels to be sensed is not relevant to the sensing performance.

The sensing time duration τ and the sensing subslot durations {τk}Nk=1 are the sens-

ing design parameters which must be determined. Note that non-uniform channel

sensing durations is attainable in this scenario since the channels are sensed sepa-

rately allowing different sensing time durations {τk}Nk=1. For a given sensing subslot

duration τk, the number of samples used for sensing subchannel k is Mk = τkfs,

where fs denotes the sensing sampling frequency.

Frame JFrame 2Frame 1

N

T − τ

21

τ

Fig. 4.1. The frame structure of the sequential periodic sensing.
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4.1.2 Signal Detection in Each Channel

As explained before, binary hypothesis testing is used for modeling the detection

problem on each channel; i.e. we have two hypotheses,

H0,k : rk(n) = wk(n), k = 1, 2, . . . , N

H1,k : rk(n) = hksk(n) + wk(n), k = 1, 2, . . . , N (4.1)

where rk(n) is the n-th received sample on channel k and hk denotes the channel re-

sponse of the k-th narrowband channel, which is regarded as flat fading and assumed

to be constant during the sensing period (i.e. slowly fading). Signal sk(n) represents

the n-th symbol transmitted by the primary network over the k-th frequency band

and the wk(n) are independent and identically distributed (i.i.d.) additive noise

samples which are assumed to be circularly symmetric complex Gaussian (CSCG)

with zero mean and variance σ2
w.

Exploiting energy detection, the decision statistic at the k-th channel can be

written as

Tk(r) =
1

Mk

Mk
∑

n=1

|rk(n)|2, k = 1, 2, . . . , N (4.2)

where Mk, as defined before, represents the number of samples used for sensing the

frequency band k. Moreover, we define the received signal-to-noise ratio (SNR) of

the k-th channel as

γk =
E
[|sk|2

] |hk|2
σ2

w

(4.3)

in which E[·] denotes expectation. For the sake of brevity, we also assume that

all primary signals are complex-valued phase-shift-keying (PSK) signals. Following

the same central limit theorem (CLT) given in section 3.1.2, we approximate the

cumulative distribution function (CDF) of Tk(r) as a normal distribution under

both hypotheses and compute the probability of false alarm P
(k)
f (εk, τk) and the

probability of detection P
(k)
d (εk, τk) for the k-th channel as

P
(k)
f (εk, τk) = Pr(Tk > εk | H0,k) = Q

((

εk

σ2
w

− 1

)

√

τkfs

)

(4.4)
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and

P
(k)
d (εk, τk) = Pr(Tk > εk | H1,k) = Q

(

(

εk

σ2
w

− γk − 1

)

√

τkfs

2γk + 1

)

(4.5)

respectively, where εk denotes the decision threshold.

4.2 Optimal Multichannel Spectrum Sensing Framework

- Generic Perspective

In this section, we present the “sequential multichannel joint detection” (SMJD)

framework, within which we aim to find the optimal sensing parameters {εk}, {τk}§

and τ to maximize the opportunistic secondary network throughput capacity while

limiting the aggregate interference on the primary network. Fig. 4.2 illustrates the

MSJD framework.
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Fig. 4.2. The sequential multiband joint detection framework for multichannel spectrum sensing.

§Note that {εk} and {τk} denote the set {ε1, ε2, . . . , εN} and {τ1, τ2, . . . , τN}, respectively.
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4.2.1 Problem Formulation

Following the same approach given in Section 3.2.1, let rk denote the opportunistic

throughput of the secondary user over channel k when it operates in the absence

of the primary users. Thus, the available opportunistic throughput capacity of the

cognitive radio is defined as

R ({εk}, {τk}, τ) =

(

T − τ

T

) N
∑

k=1

rk

(

1− P
(k)
f (εk, τk)

)

. (4.6)

In the case of multichannel sensing, the effect of interference can also be char-

acterized by assigning some relative interference protection priorities over the N

channels. Having ck as the cost of interfering with a primary user in channel k, the

aggregate interference to the primary network is defined as

I({εk}, {τk}, τ) =
N
∑

k=1

ckP
(k)
m (εk, τk). (4.7)

Consequently, the optimization problem is formulated as

maximize
{εk},{τk},τ

R({εk}, {τk}, τ) (P4.1)

subject to I({εk}, {τk}, τ) ≤ ξ (C4.1)

P (k)
m (εk, τk) ≤ αk, k = 1, 2, . . . , N (C4.2)

P
(k)
f (εk, τk) ≤ βk, k = 1, 2, . . . , N (C4.3)

0 ≤ τ ≤ τmax (C4.4)

∑N

k=1
τk = τ (0 ≤ τk ≤ τ, k = 1, 2, . . . , N) (C4.5)

where constraint (C4.1) limits the aggregate interference through ξ, and αk in (C4.2)

denotes the maximum probability of missed detection which can be accommodated

in channel k. The constraint (C4.3) dictates a minimum opportunistic spectrum

utilization of 1 − βk in the k-th channel and τmax in (C4.4) denotes the maximum

allowed sensing time. The alternative problem is given as

minimize
{εk},{τk},τ

Rmiss({εk}, {τk}, τ) (P4.2)
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where

Rmiss({εk}, {τk}, τ) =
N
∑

k=1

rk

((

1− τ

T

)

P
(k)
f (εk, τk) +

τ

T

)

(4.8)

is the opportunistic throughput loss. The constraints are the same as the ones in

(P4.1).

4.2.2 Minimum Value of Sensing Time τ

Following the same approach given in Section 3.2.2, we derive the minimum sensing

time τ which is required to meet the constraints (C4.1)-(C4.5). To do so, we fix the

probability of false alarm at its maximum tolerable value βk, for all k = 1, 2 . . . , N .

Accordingly, the probability of missed detection P
(k)
m (τk) is shown to be

P (k)
m (τk) = Q

(

1√
2γk + 1

(

√

τkfsγk −Q−1(βk)
)

)

. (4.9)

Consequently, the minimum sensing time τmin is calculated as

τmin = argmin
∑N

k=1
τk (P4.3)

s. t.
∑N

k=1
ckP

(k)
m (τk) ≤ ξ

P (k)
m (τk) ≤ αk, k = 1, 2, . . . , N.

4.2.3 Convex Optimization

First, we show that the problem (P4.2) can not be solved as a convex optimization.

Lemma 7. The problem (P4.2) is not a convex optimization problem.

Proof. In order to prove Lemma 7, we use proof by contradiction. Assume that prob-

lem (P4.2) is a convex problem. Then, the objective function Rmiss({εk}, {τk}, τ)

is convex in {εk}, {τk} and τ . Accordingly, we conclude that the throughput loss

function in channel j, j ∈ {1, . . . , N},

R
(j)
miss(εj , τj , τ) = rj

[(

1− τ

T

)

P
(j)
f (εj , τj) +

τ

T

]
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which is a three-dimensional function, is also convex in εj , τj and τ . It can easily

be shown that the Hessian matrix of R
(j)
miss(εj , τj , τ) is not positive semi-definite and

consequently the function is not convex. This contradicts the initial assumption of

Rmiss({εk}, {τk}, τ) being convex. Thus, we conclude that the problem (P4.2) is not

a convex optimization problem.

Given Lemma 7, one can conclude that it is very difficult to find the global opti-

mal solution of (P4.2) and consequently a suboptimal solution may be indicated for

many cases. However, we observe that it can be made convex under some practical

conditions. Specifically, two classes are considered, uniform sensing subslots and

non-uniform sensing subslots.

4.2.3.1 Uniform Sensing Subslots

First, we assume that all subslot durations {τk} are required to have the same value.

That is, the same amount of time must be assigned for sensing each subchannel. This

was the case in the wideband spectrum sensing investigated in Chapter 3. Given this

assumption, we see that τk = τ/N according to the constraint (C4.5). Accordingly,

the optimization problem is simplified to

min.
{εk},τ

Rmiss({εk}, τ) =
N
∑

k=1

rk

((

1− τ

T

)

P
(k)
f (εk, τ) +

τ

T

)

(P4.4)

where P
(k)
f (εk, τ) is derived by substituting τk = τ/N in (4.4) and is a function of

εk and τ only. It is seen that this case simplifies to the “multiband sensing-time-

adaptive joint detection” (MSJD) framework, as explained in Section 3.2. It’s been

proved that (P4.4) is convex, if the following conditions are satisfied;

0 ≤ αk ≤ Q(1/
√

3), k = 1, 2, . . . , N (4.10a)

0 ≤ βk ≤ Q(1/
√

3), k = 1, 2, . . . , N (4.10b)

0 ≤ τmax ≤ 0.5 T (4.10c)
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4.2.3.2 Non-Uniform Sensing Subslots

Solving (P4.2) when the subslot durations can be chosen non-uniformly is not

straightforward since it is not convex. However, we observe that it can also be

transformed into a convex optimization problem by a change of variables and a

transformation of the objective and constraints. Let {ε̊k}, {τ̊k} and τ̊ denote the

new variables whose relation with the original variables are,























ε̊k = ( εk

σ2
w
− 1)

τ̊k = (τkfs)/τ

τ̊ = τ

(4.11)

for k = 1, 2, . . . , N . Substituting the new variables, the probabilities of false alarm

and missed detection for channel k can be represented as

P
(k)
f (ε̊k, τ̊k, τ̊) = Q

(

ε̊k

√

τ̊kτ̊
)

(4.12)

and
P (k)

m (ε̊k, τ̊k, τ̊) = 1−Q

(

(ε̊k − γk)

√

τ̊kτ̊

2γk + 1

)

(4.13)

respectively. We apply this transformation to the aggregate interference I({εk}, {τk}, τ)

and throughput loss Rmiss({εk}, {τk}, τ), as defined in (4.7) and (4.8), respectively.

Consequently, the problem (P4.2) is transformed into

minimize
{ε̊k},{τ̊k},̊τ

Rmiss({ε̊k}, {τ̊k}, τ̊) (P4.5)

subjectto I({ε̊k}, {τ̊k}, τ̊) ≤ ξ (C4.6)

P (k)
m (ε̊k, τ̊k, τ̊) ≤ αk, k = 1, 2, . . . , N (C4.7)

P
(k)
f (ε̊k, τ̊k, τ̊) ≤ βk, k = 1, 2, . . . , N (C4.8)

0 ≤ τ̊ ≤ τmax (C4.9)

∑N

k=1
τ̊k = fs (0 ≤ τ̊k ≤ fs, k = 1, . . . , N). (C4.10)

Lemma 8. The function P
(k)
f (ε̊k, τ̊k, τ̊) is convex in ε̊k ,τ̊k and τ̊ if P

(k)
f (ε̊k, τ̊k, τ̊) ≤

Q(1/
√

2).
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Proof. To prove Lemma 8, we compute the Hessian matrix as

ak ×

























ε̊k

√
τ̊k

τ̊
√

τ̊
+

ε̊3
kτ̊k

√
τ̊k√

τ̊

−ε̊k√
τ̊kτ̊

+ ε̊3
k

√
τ̊kτ̊ −2

√

τ̊k

τ̊
+ 2ε̊2

kτ̊k

√
τ̊kτ̊

−ε̊k√
τ̊kτ̊

+ ε̊3
k

√
τ̊kτ̊

ε̊k

√
τ̊

τ̊k

√
τ̊k

+
ε̊3
kτ̊
√

τ̊√
τ̊k

−2

√

τ̊

τ̊k
+ 2ε̊2

kτ̊
√

τ̊kτ̊

−2

√

τ̊k

τ̊
+ 2ε̊2

kτ̊k

√
τ̊kτ̊ −2

√

τ̊

τ̊k
+ 2ε̊2

kτ̊
√

τ̊kτ̊ 4ε̊kτ̊kτ̊
√

τ̊kτ̊

























where

ak =
1

4
√

2π
exp

(

− ε̊2
kτ̊kτ̊

2

)

. (4.14)

It can easily be shown that the Hessian matrix is positive semi-definite if

ε̊k

√
τ̊kτ̊ ≥ 1/

√
2. This implies that the function P

(k)
f (ε̊k, τ̊k, τ̊) is convex under

the stated condition.

Lemma 9. The function P
(k)
m (ε̊k, τ̊k, τ̊) is convex in ε̊k ,τ̊k and τ̊ if P

(k)
m (ε̊k, τ̊k, τ̊) ≤

Q(1/
√

2).

Proof. Following the same approach given in the proof of Lemma 8, it can be shown

that P
(k)
d (ε̊k, τ̊k, τ̊) is concave, hence P

(k)
m (̊εk, τ̊k, τ̊) = 1− P

(k)
d (̊εk, τ̊k, τ̊) is a convex

function under the stated condition.

Lemma 10. The function

[(

1− τ̊

T

)

P
(k)
f (ε̊k, τ̊k, τ̊) +

τ̊

T

]

is convex in ε̊k ,τ̊k and τ̊

if P
(k)
f (ε̊k, τ̊k, τ̊) ≤ Q(1/

√
2) and τ̊ /T ≤ 0.4.

Proof. The Hessian matrix is computed as

























(

1− τ̊

T

)

∂2P
(k)
f

∂ε̊2
k

(

1− τ̊

T

)

∂2P
(k)
f

∂ε̊k∂τ̊k

(

1− τ̊

T

)

∂2P
(k)
f

∂ε̊k∂τ̊
− 1

T

∂P
(k)
f

∂ε̊k

(

1− τ̊

T

)

∂2P
(k)
f

∂ε̊k∂τ̊k

(

1− τ̊

T

)

∂2P
(k)
f

∂τ̊2
k

(

1− τ̊

T

)

∂2P
(k)
f

∂τ̊k∂τ̊
− 1

T

∂P
(k)
f

∂τ̊k

(

1− τ̊

T

)

∂2P
(k)
f

∂ε̊k∂τ̊
− 1

T

∂P
(k)
f

∂ε̊k

(

1− τ̊

T

)

∂2P
(k)
f

∂τ̊k∂τ̊
− 1

T

∂P
(k)
f

∂τ̊k

(

1− τ̊

T

)

∂2P
(k)
f

∂τ̊2
− 2

T

∂P
(k)
f

∂τ̊

























which is shown to be positive semi-definite if τ̊k/T ≤ 2/5 and ε̊k

√
τ̊kτ̊ ≥ 1/

√
2.

Thus, the function is convex under the given conditions.

Note that the equality constraint (C4.10) is linear. Also recall that a non-

negative weighted sum of a set of convex functions is also convex [39]. This means
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that the objective function and constraints (C4.6)-(C4.9) of problem (P4.5) are

convex if conditions

0 ≤ αk ≤ Q(1/
√

2), k = 1, 2, . . . , N (4.15a)

0 ≤ βk ≤ Q(1/
√

2), k = 1, 2, . . . , N (4.15b)

0 ≤ τmax ≤ 0.4 T (4.15c)

are satisfied. Given all these facts, we conclude that the problem (P4.5) is convex if

the conditions (4.15) are imposed. The conditions given in (4.15) are also of practical

interest, since a very efficient use of spectrum holes is forced while imposing a very

small interference on primary users and keeping the sensing overhead desirably low.

4.2.4 Large-Period Regimes

Following the same argument given in Section 3.2.4, consider the case where T is

large such that τ/T ≪ 1 which is mathematically defined as

τnorm
min =

τmin

T
< 0.01. (4.16)

where τnorm
min is the normalized minimum sensing time. Likewise, the opportunistic

throughput loss defined in (4.8) is approximated as

Rmiss({εk}, {τk}, τ) ⋍
N
∑

k=1

rk

[

P
(k)
f (εk, τk) +

τ

T

]

(4.17)

which is generally a lower bound to the exact value of Rmiss(·), however, in this case,

a very tight one. Having (4.17) as the new objective function, we propose that the

problem (P4.2) can be solved by convex optimization under much wider conditions

compared to the ones given in (4.15). We use the “change of variables” method to

transform the problem (P4.2) into a convex problem. Let {ε′′k}, {τ ′′
k } and τ ′′ denote

the new variables whose relation with the original variables are
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





















ε′′k = εk

σ2
w

√
τkfs

τ ′′
k =
√

τkfs

τ ′′ = τ.

(4.18)

Accordingly, the probabilities of false alarm and missed detection can be respectively

written as

P
(k)
f (ε′′k, τ

′′
k ) = Q

(

ε′′k − τ ′′
k

)

(4.19)

and

P (k)
m (ε′′k, τ

′′
k ) = 1−Q

(

ε′′k − (γk + 1)τ ′′

√
2γk + 1

)

. (4.20)

It can easily be shown that the transformed objective and constraint functions of

the problem (P4.2) are convex ¶, under the conditions,

0 ≤ αk ≤ 0.5, k = 1, 2, . . . , N (4.21a)

0 ≤ βk ≤ 0.5, k = 1, 2, . . . , N. (4.21b)

4.3 Optimal Multichannel Spectrum Sensing Framework

- Decoupled Perspective

4.3.1 Detection Problem

In the previous section, we considered the “sequential multichannel joint detection”

(SMJD) framework. Within the framework, we optimized the sensing parameters

{εk}, {τk} and τ , so as to maximize the opportunistic secondary throughput given

a bound on the aggregate interference imposed on the primary network. Note that

in the SMJD framework, the overall interference on the primary network is aggre-

gated into a functional form I({εk}, {τk}, τ). Although the aggregate interference

I({εk}, {τk}, τ) is an effective and practical measure of the amount of interference

imposed on the primary network, it may not be suitable for some systems.

Recall that we defined some relative priority coefficients in order to characterize

the impact of interference induced by the cognitive users. Specifically, we defined

¶Refer to the proof of Lemma 4.
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ck as the cost incurred if a primary communication in channel k is interfered with.

However, in some situations, it is either difficult or infeasible to define such priority

coefficients. That is, transforming the relative periorities assigned to multiple chan-

nels into some coefficients might not be possible for certain applications. Therefore,

for these applications, interference on each channel should be bounded separately

(i.e. independently), making the individual channels partially decoupled. Given

this fact, we propose another optimal framework, referred to as “decoupled sequen-

tial multichannel joint detection” (D-SMJD), which considers interference on each

channel independently. Excluding the aggregate interference from (P4.1), the opti-

mization problem can be written as

maximize
{εk},{τk},τ

R({εk}, {τk}, τ) (P4.6)

s. t. P (k)
m (εk, τk) ≤ α′

k, k = 1, 2, . . . , N (C4.11)

where α′
k is chosen such that the interference to the primary network on channel k

is effectively and sufficiently limited. Note that the other constraints (C4.3)-(C4.5)

are unchanged and are the same as the constraints in (P4.1). The choice of α′
k also

reflects the relative priorities of primary communication in each frequency band.

Specifically, α′
k is selected tight enough in order to sufficiently protect each channel

according to its priority (i.e. α′
k ≤ αk, for all k). As noted before, instead of

exploiting the aggregate interference function I({ε′k}, {τ ′
k}, τ ′), we set the boundary

values {α′
k}Nk=1 such that the relative primary interference protection, and effective

limitation of the interference to primary users, are accounted for.

To continue further, we use the following result; the proof is omitted due to its

similarity to the proof of Lemma 5.

Lemma 11. The objective function R({εk}, {τk}, τ) in (P4.6) is maximized if

P
(k)
m (εk, τk) = α′

k, for all k = 1, 2, . . . , N .

According to Lemma 11, the probability of false alarm in channel k can be

simplified by setting the probability of detection P
(k)
m (εk, τk) = α′

k, i.e.

P
(k)
f (τk) = Q

(

√

2γk + 1Q−1(1− α′
k) +

√

τkfsγk

)

(4.22)
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is the simplified probability of false alarm which is a function of τk only. Since the

decision threshold εk has been removed from the equation (4.22), we conclude that

the individual channels have become partially decoupled. Note that they are still

coupled (i.e. dependent) due to the sensing subslot τk. According, the optimization

problem (P4.6) can be converted to

min.
{τk},τ

Rmiss({τk}, τ) =
N
∑

k=1

rk

((

1− τ

T

)

P
(k)
f (τk) +

τ

T

)

(P4.7)

s. t. P
(k)
f (τk) ≤ βk, k = 1, 2, . . . , N (C4.12)

0 ≤ τ ≤ τmax

∑N

k=1
τk = τ (0 ≤ τk ≤ τ, k = 1, . . . , N).

which is still a non-convex problem. However, we observe that it can also be made

convex under some practical conditions.

4.3.2 Convex Optimization

Similar to the study given in Section 4.2.3, we consider two specific classes; uniform

sensing subslots and non-uniform sensing subslots.

4.3.2.1 Uniform Sensing Subslots

First, we assume that all subslot durations {τk} are required to have the same value

which results in τk = τ/N according to the constraint (C4.5). Accordingly, the

optimization problem is simplified to

min.
τ

Rmiss(τ) =
N
∑

k=1

rk

((

1− τ

T

)

P
(k)
f (τ) +

τ

T

)

(P4.7)

s. t. P
(k)
f (τ) ≤ βk, k = 1, 2, . . . , N (C4.13)

0 ≤ τ ≤ τmax

where P
(k)
f (τ) is derived by substituting τk = τ/N in (4.22) and is a function of τ

only.
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Lemma 12. The function P
(k)
f (τ) as defined in (4.22) is convex in τ if

P
(k)
f (τ) ≤ 0.5 [35].

Proof. Defining δ =
√

2γk + 1Q−1(1− α′
k), we have

P
(k)
f (τ) = Q

(

δ +
√

τfsγk

)

. (4.23)

Then, we simply take the second derivative of P
(k)
f (τ) as

d2P
(k)
f

dτ2
=

d

dτ

[

−γk

√
fsτ

−1/2

2
√

2π
exp

(

−
(

δ +
√

τfsγk

)2

2

)]

=
τ−1
√

fsγk

4
√

2π

(

τ−1/2 + (δ +
√

τfsγk)
√

fsγk

)

exp (·) (4.24)

which has positive value if P
(k)
f (τ) ≤ 0.5 and thus P

(k)
f (τ) is convex. We also observe

that P
(k)
f (τ) is a monotonically decreasing function under the stated condition.

Lemma 13. The function R
(k)
miss =

(

1− τ

T

)

P
(k)
f (τ) +

τ

T
in τ is convex if

P
(k)
f (τ) ≤ 0.5 [35].

Proof. Taking the second derivative of R
(k)
miss, we have

d2R
(k)
miss

dτ2
= − 2

T

dP
(k)
f

dτ
+

(

1− τ

T

) d2P
(k)
f

dτ2
(4.25)

which has positive value under the stated condition, this is due to P
(k)
f (τ) being

convex and monotonically decreasing.

Given all these facts, we conclude that the problem (P4.7) is convex optimization

and can be solved efficiently if the following conditions are satisfied;

0 ≤ βk ≤ 0.5, k = 1, 2, . . . , N.

4.3.2.2 Non-Uniform Sensing Subslots

Here, we consider the challenging case of “non-uniform sensing subslots” which is the

main focus of this chapter. Before examining the problem (P4.7), we point out that

a similar sensing problem is studied in [37]. However the development in [37] does
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not consider the convexity properties, and, proposes a bilevel iterative algorithm for

solving the formulated sensing problem. In the first stage (level) it is assumed that

τ is a constant value and a transformed version of problem (P4.7), which is convex,

is solved. In the next level, the sensing slot τ is updated based on the previous

stage.

It is observed that the approach given in [37] is neither simple nor efficient and

in most cases the number of iterations for obtaining the optimum solution exploiting

this strategy is large. For instance, it has been shown in [37] that the number of

iterations could be as large as 1.5× 105 under some specific conditions. Apart from

the iteration complexity, in each iteration, a convex problem must be solved which

makes the implementation of the algorithm unwieldy.

Although the problem (P4.7) is generally non-convex, we observe that it can

be transformed into a convex optimization problem by a change of variables and a

transformation of the objective and constraints. Let {τ̄k}Nk=1 and τ̄ denote the new

variables whose relation with the original variables are,










τ̄ = τ

τ̄k = τk/τ

for k = 1, 2, . . . , N . By substituting these new variables, the probability of false

alarm for channel k can be represented as

P
(k)
f (τ̄k, τ̄) = Q

(

√

2γk + 1Q−1(1− α′
k) +

√

τ̄kτ̄ fsγk

)

. (4.26)

The throughput loss Rmiss({τk}, τ), as defined in (4.8), is transformed accordingly.

The optimization problem (P4.7) can be re-written as

min.
{τ̄k},τ̄

Rmiss({τ̄k}, τ̄) (P4.8)

s. t. P
(k)
f (τ̄k, τ̄) ≤ βk, k = 1, 2, . . . , N (C4.14)

0 ≤ τ̄ ≤ τmax (C4.15)

∑N

k=1
τ̄k = 1 (0 ≤ τ̄k ≤ 1, k = 1, 2, . . . , N). (C4.16)

Lemma 14. The function P
(k)
f (τ̄k, τ̄) is convex in τ̄k and τ̄ if P

(k)
f (τ̄k, τ̄) ≤ 0.5.

60



Proof. We simply compute the Hessian matrix as

ck ×











bk
√

τ̄k

τ̄
√

τ̄
+

τ̄k
√

τ̄k

bk

√
τ̄

+
δkτ̄k

τ̄

√
τ̄ τ̄k

bk
− bk√

τ̄ τ̄k
+ δk

√
τ̄ τ̄k

bk
− bk√

τ̄ τ̄k
+ δk

bk

√
τ̄

τ̄k
√

τ̄k
+

τ̄
√

τ̄

bk
√

τ̄k
+

δkτ̄

τ̄k











where

ck =
fsγ

2
k

4
√

2π
exp

(

−
(

δk +
√

τ̄ τ̄kfsγk

)2

2

)

δk =
√

2γk + 1Q−1(1 − α′
k) and bk = 1/(

√
fsγk). The trace of the matrix is easily

shown to be non-negative. Its determinant can be simplified as

Det(·) = c2
k

(

4 + 4
δkbk√
τ̄ τ̄k

)

which is non-negative if
(

δk +
√

τ̄ τ̄kfsγk

) ≥ 0. This means the Hessian matrix is

positive semi-definite under the stated condition and hence, the function P
(k)
f (τ̄k, τ̄)

is convex.

Lemma 15. The function

[(

1− τ̄

T

)

P
(k)
f (τ̄k, τ̄) +

τ̄

T

]

is convex in τ̄k and τ̄ if

P
(k)
f (τ̄k, τ̄) ≤ 0.5 and τ̄ /T ≤ 2/3.

Proof. The Hessian matrix is computes as

ck ×















4bk

T

√

τ̄k
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where

ck =
fsγ

2
k

4
√

2π
exp

(

−
(

δk +
√

τ̄ τ̄kfsγk

)2

2

)

δk =
√

2γk + 1Q−1(1 − α′
k) and bk = 1/(

√
fsγk). It can easily be shown that the

matrix is positive semi-definite under the stated condition and thus, the function
[(

1− τ̄

T

)

P
(k)
f (τ̄k, τ̄) +

τ̄

T

]

is convex.

Given all these results, the problem (P4.8) is convex given the conditions
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0 ≤ βk ≤ 0.5, k = 1, 2, . . . , N (4.25a)

0 ≤ τmax ≤
2

3
T (4.25b)

which makes it possible to find the optimal solution efficiently [39].

4.4 Simulation Results

In this section, we numerically evaluate the proposed multichannel spectrum sensing

frameworks. Consider a cognitive radio system which is to sequentially sense N = 16

channels. The maximum time that the secondary user disregards primary activities

(i.e. T ) is set to 500 ms. For each channel, it is expected that opportunistic

spectrum utilization is at least 80% (i.e. βk = 0.2 for all k) and the primary

protection level is αk = 0.1. The sampling frequency and the noise variance are

assumed to be fs = 25 KHz and σ2
w = 1, respectively. Other system parameters are

given in Table 4.1.

4.4.1 Example 1: Sequential Multichannel Joint Detection

Framework

First, we examine the proposed “sequential multichannel joint detection” (SMJD)

framework in which the aggregate interference is considered as the constraint. Specif-

ically, two cases are examined here, uniform sensing subslots and non-uniform

sensing subslots which were explained in Sections 4.2.3.1 and 4.2.3.2, respectively.

While the former characterizes the “multiband sensing-time-adaptive joint detec-

tion” (MSJD), the latter refers to the proposed SMJD. To demonstrate the effec-

tiveness of the proposed framework and to make a fair comparison, a “multiband

joint detection” (MJD) framework is also examined. Within the MJD framework,

the sensing time τ is considered to be fixed in MJD and the subslot durations {τk}
uniform. For simulation, we assume τ = 65 ms.

Fig. 4.3 plots the maximum available throughput for CR transmission versus

the aggregate interference on the primary network. The percentages given in the

figure represent the maximum available throughput relative to the maximum ideal
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TABLE 4.1
Typical system parameter set used for the simulation - multichannel sensing with

non-uniform channel sensing durations

k 1 2 3 4 5 6 7 8

γk 0.38 1.37 0.32 0.24 0.35 0.27 0.39 0.38

rk (kbps) 857 206 853 900 611 808 561 325

ck 6.24 1.18 2.67 4.84 6.31 1.45 2.40 2.41

α′
k

0.04 0.06 0.02 0.02 0.03 0.05 0.02 0.04

k 9 10 11 12 13 14 15 16

γk 0.74 0.37 0.51 0.26 0.31 0.25 0.23 0.81

rk (kbps) 212 391 219 830 308 650 924 138

ck 1.25 2.37 1.14 1.16 0.71 2.31 1.39 6.24

α′
k

0.03 0.04 0.06 0.05 0.02 0.03 0.02 0.04

throughput which denotes the throughput achieved with no sensing error and zero

sensing time (i.e.
∑N

k=1rk). We observe that both the uniform and non-uniform sens-

ing subslots cases, which refer to the MSJD and the proposed SMJD, respectively,

remarkably outperform the MJD. We also observe that SMJD achieves superior per-

formance compared to the MSJD. Two facts can be concluded. First, as opposed

to the MJD strategy, the sensing time τ is a critical parameter which should be

dynamically assigned due to the channel fluctuations and fading effects. This has

been taken care of in the both the SMJD and MSJD. Second, other than the sensing

time τ , the sensing subslot durations {τk}Nk=1 are greatly influential in the overall

performance and should be adaptively optimized. This is adopted effectively in our

framework.

In Fig. 4.4, the overall number of samples M = τfs is plotted versus the

SNR increment above the γk’s listed in Table 4.1. We observe that as the channel

condition improves, the optimal number of sample decreases. This illustrates the

necessity for dynamically determining the sensing time as opposed to employing a

fixed allocation as in MJD. Moreover, Fig. 4.4 reveals that the minimum number of

samples obtained in Section 4.2.2 is not drastically smaller than the optimal number

of samples. This verifies the approximation used in (4.17). We also observe that the

SMJD needs a smaller sensing overhead (i.e. M) compared to the MSJD. Combining

the results of Fig. 4.3 and Fig. 4.4, we conclude that the proposed SMJD framework

(i.e. non-uniform sensing subslots case) achieves a greater performance compared
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Fig. 4.3. The available opportunistic throughput for cognitive radio transmission vs. the aggregate
interference to the primary network.

to the MSJD while exploiting smaller sensing overhead. Another validation to the

approximation used in (4.17) is depicted in Fig. 4.5, which shows the available

throughput versus the normalized minimum sensing time τnorm
min . It can be seen that

the approximation used in (4.17) becomes more precise as τnorm
min decreases.

4.4.2 Example 2: Decoupled Sequential Multichannel Joint

Detection Framework

Here, we evaluate the proposed “decoupled sequential multichannel joint detection”

(D-SMJD) framework which is given in Section 4.3.2.2. Note that the interferences

on individual channels are limited separately within this framework. To make a

fair comparison, two other cases are considered here. The first case, referred to

as “uniform subslots D-SMJD”, solves the optimization problem (P4.6) assuming

uniform sensing subslot durations which is given in Section 4.3.2.1. In the second

case, referred to as “constant sensing time D-SMJD”, we assume that the sensing slot

τ is a predetermined value, and consequently, the optimization problem (P4.7) is

solved for {τk} as the only optimization variables set. The sensing time is assumed
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to be τ = 40 ms for this case. All optimization problems are convex if (4.25a) is

satisfied. Fig. 4.6 plots the maximum opportunistic throughput versus the SNR

increment above the γk’s listed in Table 4.1. It is seen that the D-SMJD framework

outperforms the two other cases. In contrast to these two cases, in which either

only τ or only {τk} are design parameters, D-SMJD optimizes both τ and {τk}
which greatly enhances the secondary performance. As expected, when the channel

conditions improve, the available throughput increases for all cases.

4.5 Summary

In this chapter, we studied the effect of non-uniform channel sensing durations for

multichannel spectrum sensing and assumed that adopting different sensing dura-

tions for individual narrowband channels is viable. Consequently, considering a

sequential periodic sensing scheme, we proposed two optimal multichannel spec-

trum sensing frameworks. Specifically, we assumed that multiple primary narrow-

band channels are sensed sequentially using a periodic sensing approach. We also

assumed that the amount of time used for sensing different channels can be cho-
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sen non-uniformly. That is, the channels-under-sense can assume different sensing

time durations. Given this, we maximized the opportunistic secondary network

throughput capacity, while limiting the interference imposed on the primary users.

Particularly, we formulate the multichannel sensing problem as a joint optimization

of the overall sensing time slot, the sensing subslots (dedicated for sensing individual

channels) and individual detector parameters.

The first framework, referred to as “sequential multichannel joint detection”

(SMJD) considers the aggregate interference on the primary network as the con-

straint function. Specifically, within the SMJD framework some relative priority

coefficients, which characterize the relative costs incurred if the primary commu-

nications in the corresponding channels are interfered with, are assigned to every

individual channel. That is, the overall probability of interference is aggregated

(weighted) into a single functional form. In the second framework, known as “de-

coupled sequential multichannel joint detection” (D-SMJD), we assumed that such

cost/priority coefficients used in the aggregate interference function are difficult

to define for some specific applications, resulting in a tractable mathematical de-

scription of the aggregate interference being unattainable. Therefore, within the

D-SMJD, we assumed that the probability of interference on each channel is limited

independently, making the individual channels partially decoupled. Both formu-

lated optimization problems, which are shown to be non-convex, are transformed

into convex optimization problems under certain practical conditions.
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Chapter 5

Conclusion and Future Research

Directions

5.1 Conclusion

Motivated by the need and importance of wideband/multichannel spectrum sensing

in cognitive radio networks, we proposed several optimal detection frameworks for

sensing over a target wideband spectrum. In Chapter 3, we proposed an optimal

multiband sensing-time-adaptive joint detection (MSJD) framework for wideband

spectrum sensing which collectively searches the secondary transmission opportu-

nities over multiple frequency bands. Adopting a periodic sensing scheme as a

mandatory system model and considering the amount of time used for sensing as a

design parameter, we formulated the sensing problem as a joint optimization of the

sensing slot duration and individual narrowband detectors, in which we optimized

the secondary network sensing performance in an interference limited primary net-

work. In particular, we maximized the available opportunistic throughput capacity

of the secondary network while limiting the aggregate interference on the primary

network. Furthermore, we demonstrated that the optimization problem is convex if

certain practical constraints are applied. A special case, in which convexity holds

for a wider range of conditions, was also studied.

In line with decreasing the implemenation complexity of the proposed MSJD

framework, we proposed a low-complexity algorithm which quickly and efficiently

solves the formulated optimization problem. It was also established that the com-
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plexity of the algorithm is much lower than that of other existing numerical algo-

rithms. The results will be of particular interest when implementing a practical

wideband spectrum sensing system. The complexity issue which becomes more

critical when the number of individual narrowband subchannels is large will be de-

cisive in the implementation of practical systems and is effectively taken care of

in our algorithm. Generally speaking, our proposed MSJD framework adaptively

and efficiently achieves a suitable tradeoff between the secondary user access and

the primary network protection over a wideband frequency spectrum and can easily

be implemented in practical cognitive radio systems exploiting the proposed low-

complexity algorithm. Simulation results are evidence of this.

Extending the results in Chapter 3, in which the sensing slot duration is assumed

to be the same in all narrowband channels, in Chapter 4, we assumed that imple-

menting different sensing durations is feasible for multiple frequency bands. Con-

sequently, considering a sequential periodic sensing scheme, we jointly considered

the overall sensing period, individual channels’ sensing subslots and each individual

narrowband detector parameters as optimization variables. More specifically, we

proposed two optimal multichanel detection frameworks which maximize the sec-

ondary network opportunistic throughput while limiting the overall interference on

the primary network.

Within the sequential multichannel joint detection (SMJD) framework, we lim-

ited the aggregate (weighted) interference on the primary network. Pointing out

that defining the so-called aggregate interference function may not be possible for

some systems, we proposed decoupled sequential multichannel joint detection (D-

SMJD), which limits the interference on each individual channel independently (i.e.

separately). We also demonstrated that the original non-convex problems can be

transformed into convex optimization problems if certain practical conditions are

imposed, exploiting a change of variables technique. A special case of the SMJD

framework, in which convexity holds for a much wider range of conditions was also

studied. The effectiveness and performance of the proposed multichannel frame-

works were also confirmed through numerical simulations. In summary, this work

presents multiple optimal wideband/multichannel spectrum sensing frameworks for

cognitive radio networks, each suitable for specific applications.
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5.2 Future Research Directions

Since it represents a fundamental study on designing optimal wideband spectrum

sensing frameworks, this work can be extended (or can be considered as a basis for

other studies) in several ways, a number of which are stated below.

1) The frame duration T is assumed to be fixed throughout this work. Basically,

it is assumed to be chosen by the regulator and depends on the type of the primary

service, end-to-end quality of service and frequency of the primary user reappear-

ance. Optimizing the frame duration T based on the aforementioned considerations

is a possible future work.

2) This study is limited to the single cognitive radio user only (i.e. the sensing

task is performed by one user). Considering cooperation between multiple secondary

users and designing optimal collaborative wideband sensing frameworks could be

considered as an another potential research direction.

3) In this study, it is assumed that the secondary user senses all the narrowband

channels simoultaneously during the sensing period τ and transmits in the vacant

ones in the tranmission period T − τ . This assumption facilitates the analysis.

However, we point out that sensing one subchannel (or a number of subchannels)

while transmitting in the other subchannel(s) may improve the overall sensing per-

formance and can be integrated into the proposed frameworks.

4) In Chapter 4, we have assumed that the secondary user sequentially senses

all N channels during the sensing slot τ . This may not be necessary and increases

the sensing overhead, i.e. sensing a portion of N frequency bands may be enough

to meet the system requirements. In line with this, one can investigate adaptively

selecting the number of channels-to-sense while considering other requirements such

as the secondary opportunistic throughput, the primary interference protection, etc.

One possible approach can be to minimize the required number of channels-to-sense

while constraining the secondary opportunistic throughput loss and the interference

on the primary network.
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