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Abstract—What is a developer’s contribution to a repository?
By only counting commits and number of lines changed, existing
tools that visualize source code repositories (such as GitHub’s
graphs) fall short on showing the effective contributions made
by each developer. When many commits are viewed as a group,
the details are lost. Commit information can be misleading since
lines of code give no indication of what was actually being
worked on without careful examination of the changed code.
Providing a semantic view of this information could provide
deeper insights into how software projects evolve since changes
to design and features are not clearly visible from line changes
alone. We present TypeV: a method for visualizing Java source
code repositories. Instead of counting line changes in a commit
we extract detailed type information over time by using the
differences between abstract syntax trees (ASTs). We are then
able to track the additions and deletions of declarations and in-
vocations for each type. Furthermore, we can track each author’s
type usage over time. Using TypeV, we examine specific cases in
well-known repositories where our tool reveals interesting and
useful information. We then compare type coverage information
from the AST compared to file coverage to determine if unique
information is provided by type information.

I. INTRODUCTION

Visualizations can assist our understanding of a software
repository. Popular source code repository hosting websites
such as GitHub [1] and BitBucket [2] often provide a way
to visualize project evolution. These visualizations often show
changes to lines of code, as line changes are what the underly-
ing version control system tracks. The advantage of visualizing
line changes is that it works for any text-based file. There is a
major disadvantage, however: by only visualizing changes to
lines of code, GitHub (Figure 1) and similar visualizations lose
the meaning behind those changes. Although a programmer
may type individual characters into their text editor, the lines
of code represent something much deeper. A Java programmer,
for instance, writes lines of code with the intent of creating
packages, defining classes, declaring fields, and implementing
methods. An author commits lines of code to implement
features, write tests, fix bugs, and refactor code bases. Lines
of code merely tell us that changes were made; not the reason
for the changes.

To address the lack of semantically-aware visualizations
we created TypeV. Instead of visualization changes to lines
of code, we visualize changes to type usages and invocations.
By using types instead of lines of code, our visualization

can better answer the high-level questions programmers
often ask [3]. TypeV is composed of two parts: a data
extraction application that performs commit-by-commit AST
differencing to extract type changes; and an interactive web
visualization that allows for the exploration of a project’s
evolution. Using TypeV, we seek to answer the following
research questions:

RQ1: How can we extract type and method usage from
repositories over time?

RQ2: How does type coverage compare to file coverage?

RQ3: What extra insight can we gain from type-based
visualization?

II. RELATED WORK

We examined research which analyses software repositories
for information on language and feature usage, tools for visu-
alizing project evolution, collaboration in software repositories
and other tools for understanding repositories.

A. Analysis of Languages and Features

Analyzing source code is a popular research topic and Java
is often chosen as the subject of study due to its popularity
and abundance of tools. Grechanik et al. [4] examined the
structure of Java programs mined from 2080 programs. This
paper examined the breakdown of syntactic structures in open
source repositories, however it does not consider per author
statistics. Parnin et al. [5] mined repositories to see how Java
generics have been used in open source projects and found that
generic usages were often introduced by a single developer in
a project and were primarily being used for collecting and
traversing lists of objects.

Further analysis of the Java language has been done using
ASTs. Lämmel et al. [6] used ASTs to examine the usage of
APIs in Java projects. They found which APIs are popular
and if they were used in a framework-like manner. Dyer
et al. [7] mined AST nodes to study the use of new Java
language features over time. The authors found the most
popular features and the adoption rate of new features over
time. They did not check to see how much a developer used
a feature but instead checked to see if they used it at all. In a



Fig. 1. GitHub’s code frequency graph for ANTLR4. Note that the graph was cropped to better show the details. Thus, the changes that occur in mid 2015
are much larger than shown. The additions reach over 400k and the deletions are over 300k.

more general analysis of programming languages, Meyerovich
and Rabkin [8] surveyed developers and examined repositories
to learn about language adoption and usage. Developers feel
that certain language features are more important than others.

The focus of these papers was on how programming lan-
guages and features are used by looking at many repositories.
Java is a statically-typed language—its types are checked
at compile time—yet there is no focus specifically on how
types are used throughout a project. Type data may provide
additional information on how developers use languages but
this has yet to be explored.

B. Visualizing Project Evolution
Several visualization tools have been created to understand

how a software system changes over time. Wu et al. [9] ex-
plored punctuated changes of software repositories with a tool
that generates an Evolution Spectrograph. In this visualization,
each file has a row in the chart and each cell represents a
section of time where an incoming or outgoing dependency
can be changed. The colour is determined by the frequency of
change. This work was continued to show file directories and
display the cardinality of a developer’s commits in subsequent
paper by Wu et al. [10]. The cardinality of a commit is the
number of files or subsystems it affects in a system, indicating
the scope of the change. Other tools also look at changes in
code dependencies [11] or files [12], [13], [14] over time.
Alcocer et al. [15] created a Performance Evolution Blueprint,
which displays the changes in performance over time as a
project evolves. Ogawa and Ma created code_swarm [16],
a generative art visualization which presents the progressive
evolution of file changes made by authors in a source control
repository over time. Gource [17] is a similar visualization,
showing an animated force-directed tree of the file hierarchy
as authors make changes to files in the source code repository
over time. Ens et al. created ChronoTwigger to visualize the
co-evolution of source and test files [18]. This allowed testing
practices to be more closely examined. Anslow et al. [19]
created SourceVis, a suite of software visualizations includ-
ing visualizations for semantically-aware project evolution.
SourceVis displays the evolution of Java source code metrics
such as number of packages, classes, methods, and fields.

Tools also exist which track changes over time in a more
complex manner. Kim et al. [20] built a tool called Logical

Structural Diff (LSdiff) which examines code changes and
produces logical rules to represent them. Changes which do
not match the rules are then pointed out to the developer.
Reiss and Tarvo created an IDE which allows users to see the
history of files and changes to lines of code from each author
as they are editing a project [21]. Van Hees and Hage use
a voronoi treemap to visualize changes in class and method
structure [22]. Servant and Jones created CHRONOS, a tool
which creates a timeline of changes to a selection of code as
well as the ability to query those changes [23].

C. Project Collaboration

There is also research on how developers use software
repositories to collaborate. Wagstrom et al. [24] explored the
roles that developers take in networked, social development
environments like GitHub. These roles were defined by their
level of contribution as well as the types of issues they
dealt with. They found that developers will take on multiple
roles in a project and will sometimes fulfill the same role
across different projects. Lee et al. [25] developed a tool
for visualizing the branching structure of Git repositories.
This was used to analyze concurrent workflows in popular
open source repositories. Elsen also created a visualization for
branches in Git, with the ability to expand branches to view
the directory structure of a project at that point [26]. Shrestha
et al. made a visualization for the geographic location of a
commit [27] and Minelli et al. [28] looked at the real time
changes developers made to a repository.

D. Non-academic works

Some visualization tools are made for managing or making
decisions about software rather than studying the changes
taking place in an academic context. EasyBi [29] is a service
that provides additional visualizations for Git repositories for
the purpose of business decisions. EasyBi works by taking
the git log file and generating charts and graphs from
it. It tries to solve the issue of summarizing many commits
and has greater controls for granularity and authors but still
operates on commits and line differences. The Gitinspector
project [30] is an open source tool for the statistical analysis
of Git repositories. It provides an advanced timeline view of
changes per author and cumulative statistics but again relies



Fig. 2. Data extraction pipeline for TypeV. First, we list the commits in
branch chronological order. Then we calculate the AST difference between
each changed file across each pair of consecutive commits. Finally, we may
visualize the information in a variety of ways.

upon the line differences to summarize the work of each
author.

Developers using the massively popular GitHub website for
hosting their Git repositories instantly have access to basic vi-
sualizations, known as GitHub Graphs (Figure 1) [1]. GitHub
Graphs tracks contributions based only on the number of
commits and number of lines changed. This has the advantage
of not relying on the code which was committed. It does not
matter what language is used or if errors exist in the commit—
GitHub will simply output the number of line additions and
deletions. The issue with this type of analysis is that it does not
give a clear idea of what is being changed, only that changes
have occurred. This data may be lacking, or even misleading
which contributes to the need for better tools.

Of the services we have surveyed, none of the tools that
visualize project evolution address semantic history extraction
using granular type analysis per author via commit-by-commit
abstract syntax tree differencing.

III. DATA EXTRACTION

RQ1: How can we extract type and method usage from
repositories over time?

Given a Git repository, we want to extract per-author use
of types over time. We accomplish this by computing the
differences between abstract syntax trees of every consecutive
pair of commits (Figure 2). This extracted data can then be
used in a variety of visualizations as discussed in Section IV.
The reason for using ASTs is that they capture the semantics
of the code far better than simple line counts.

An abstract syntax tree (AST) is a data structure derived
from source code that breaks its syntactic constructs into a
tree. Each node in the tree represents a syntactically valid
chunk of code. This captures the structure of the code in an
abstract and tractable manner. When a programmer makes a
non-trivial change to a source code file, that difference will
be reflected in the AST. Non-trivial changes are those that
affect how a compiler will interpret the source code, and
may have effects on the executable code. Trivial changes are
those that have no effect on how a compiler will interpret
the source text, such as changing insignificant whitespace or
comments in source code. Thus, ASTs of consecutive revisions
in a code repository can be compared to see what structures
a programmer is modifying.

The Java ASTs in our analysis were generated using
Spoon [31]. Spoon is a tool for transforming and analyz-
ing Java source code. It breaks code up into a meta-model
consisting of three parts: structural elements, code elements
and references to program elements. According to Spoon’s
authors: “The structural part contains the declarations of the
program elements, such as interface, class, variable, method,
annotation, and enum declarations. The code part contains
the executable Java code, such as the one found in method
bodies. The reference part models the references to program
elements (for instance a reference to a type)” [31]. The Spoon
model is convenient because it provides the infrastructure for
performing AST differencing (described later) while retaining
code elements for analysis afterwards. Spoon also preserves
all type and package (library) information, information vital
to our semantic analysis.

To determine what has changed between two subsequent
commits, we computed their AST difference. Given two ASTs,
an AST difference (or simply as AST diff ) states which nodes
must be added and which nodes must be removed to transform
one tree to the next (step two in Figure 2). This allows us
to precisely track changes between two consecutive revisions
of the same file. For AST diffing, we used GumTree [32],
an algorithm made to compute the difference between two
ASTs generated by Spoon. For new files and deleted files, it
is unnecessary to calculate an AST difference; we simply run
Spoon on the files and treated everything as an addition or
deletion respectively.

Once we calculate the AST diffs, we were able to traverse
through the trees to count the number of added or deleted
declarations and invocations for a given type.



declaration: Stating the use of a field or variable of a
given type. For example declaration of a String type
variable might look as follows:

String myString;

invocation: A call site for a method that belongs to a
type. For example an invocation of the trim method of
a String type might look as follows:

myString.trim();

Each change of declaration or invocation is detected and
tallied per file per commit. These changes are emitted in an
ad hoc file format. For example, the following is the output of
a commit that changed two declaration of String variables
to URI variables:

#DECLARE | INSERT | java.net.URI | 2
#DECLARE | DELETE | java.lang.String | 2

This states that two declarations of type
java.net.URI were added, and two declarations of
type java.lang.String were deleted. Note that TypeV
is able to find the fully qualified type names. Thus, the source
text may not literally have the characters java.net.URI,
but Spoon was able to infer from the import statements in
the Java source text that references to “URI” resolve to the
fully-qualified type name java.net.URI.

In order to gather all the changes for a given repository
over time, we generated ASTs for each commit and compared
the difference. We did this by running git log over the
Git repository and listed all commit IDs in chronological
order (Figure 3). For each commit, we collected the following
information, as can be seen in Figure 4: the author’s name,
date of commit, commit ID (SHA), commit message, files the

Fig. 3. Commits increase in time from bottom up. Therefore, ASTs from B
and C are diff’d against ASTs in A. ASTs from E are diff’d against D. Since
D is a merge commit, its changes are ignored as they are recorded in C and
B.

commit edited, and files in the repository at the time of the
commit. For all the edited Java files we also compared the file
at the time of the commit with its parent commit using AST
differencing as described above. We achieved this by invoking
git difftool and specifying our AST differencing tool.
One case where git difftool fails is when the commit
has no parent, such as the initial commit. We were able to
handle this by calling git show and saving the output to
a temporary file to be used with the AST differencing tool.
When calling git show instead of git difftool we
treat everything as an addition, as in commit A in Figure 3.
Since we compare each commit to its parent as reported by
Git, we are able to account for any branching that happened
outside the primary branch of the repository (usually named
master). If a commit has more than one parent, like commit
D in Figure 3, it indicates a merge commit in Git.

We deliberately chose to ignore merge commits. A merge
commit has two cases to consider: The first case is when the
parents of the commit can be automatically merged. In this
case all the relevant changes are already recorded in the parent
of the commit so we can safely ignore the merge commit [33].
The second case occurs when the parents cannot be merged
automatically: this is a merge conflict which requires manual
resolution on the part of a developer. In this case, the developer
will try to resolve the issue by modifying code. If we decide
to include the merge commit we run into several edge case
issues such as how to compare the merge commit with its
multiple parent commits and how to account for the possible
modifications made to resolve the merge conflict. We could
consider comparing the merge commit with only one parent
commit at a time; however, we will end up counting all
the changes already recorded in the other parent branch.
Additionally, all changes made during the resolution of a
conflict will be attributed to the author making the merge.
This may exclude the author that actually wrote the code in
the first place. The other option is to simply ignore the merge
commit such that we do not count the changes done during a
merge commit. We made the assumptions that merge conflicts
occur infrequently and when they do occur, the changes made
to resolve a merge conflict are usually minor. Therefore, we
chose to ignore merge commits.

The data collected from running the AST differencing
component over the commits is saved to a file to be visualized
later; this data is in a general format, and is not bound to any
particular visualization. Figure 4 summarizes the hierarchy of
the data extracted by our tool.

The major downside of AST diffs over a method like line
count is that ASTs are more expensive to compute. Our
experiments were run on an Intel i7 with 16GB of RAM and
an SSD. Calculating the AST diffs varied from an hour or
two for smaller projects to a couple of days for very large
projects. For example ANTLR4 took about 8 hours while
Apache BookKeeper only took a couple of hours. The good
news for ongoing projects is that AST diffs only need to be
computed for new commits; TypeV can resume calculating
diffs and augment statistics at any time.



Fig. 4. Hierarchy of data extracted by TypeV. Each repository may have
zero or more commits; each commit may have zero or more changed files;
each changed file may have zero or more changes, as computed by our AST
differencing tool.

IV. VISUALIZATION

Although rich in detail, the AST diffs are difficult to analyze
if displayed in their raw form; hence, we created an HTML5
web visualization application which is intended for developers,
project managers, and researchers to use (Figure 5). The source
code for TypeV—both the AST differencing component and
the web application—is available online on GitHub.1

A. Timeline View

For our main demonstration of semantically-aware project
evolution, we chose an interactive timeline view that displays
the most popular types over time. The timeline displays
several rows of stacked bar graphs which show changes to
an individual type or method over a selectable period of time
in a project (Figure 5). The light blue and dark red
portions account for the number of additions and deletions
respectively, in a similar fashion to GitHub’s code frequency
graph (Figure 1). The height of each bar shows the relative
number of changes to a type. The width of each bar is fixed,
and represents a time period for binning commits that can be
configured to an hour, day, week, or month’s worth of commits
per each bar. A bar that completely fills its row vertically is
the period with the largest number of changes to that type in
the visible date range. The height of the other bars in the row
are in proportion to the maximum number of changes. The bar
height is calculated by multiplying the maximum bar height

1https://github.com/mdfeist/TypeV

by the number of changes during that time period divided by
the maximum number of changes attested for this type.

One can interact with the overview by hovering and clicking
on the bars. When a user mouses over a specific bar in the
graph they are given summary information for the type and
time period at that location. The information includes the fully-
qualified name of the type, the number of commits, the number
of authors, the number of additions, the number of deletions,
and the start and end date of that time period. If the user clicks
on the bar, they are given more detailed statistics which list
the authors who made the commits and each commit message.

To allow for a more detailed analysis of a specific com-
ponent of the repository we added filtering tools. Users can
filter by type name; view changes that fall within a specific
start and end date; and select whether to see only declarations
of types, types used in declarations and invocations, or only
invocations.

One issue with analyzing source code repositories is that au-
thors can commit from a variety of different computers which
can have different emails and usernames attached to their
Git configuration. This may result in one author appearing as
several different authors in the git log. There is no perfect
way to deal with this problem; however, we added an interface
for managing authors (Figure 6). A user can manually specify
an author’s various aliases using a simple dropdown list. All
statistics attributed to an author’s various aliases are then
remapped as belonging to one canonical author as specified
by the user. The author managing view also provides a facility
for selecting and deselecting authors shown in the timeline.
Thus, visualization users can focus on the changes made by a
particular author or a group of authors, rather than having to
view the changes made by all authors.

B. Design Decisions

The purpose of displaying stacked bar charts is that they are
a familiar visualization. They can be viewed as an enhanced
version of GitHub’s code frequency graph [1], with semantic
data. We chose to create a similar visualization to GitHub to
work with a layout people may already be familiar with and
to evaluate our visualization tools’ density of data.

The stacked bar graphs succinctly displays the relative
amounts of additions and deletions per each time period. This
creates a dense view of the project’s evolution. We chose to
make the height of the bars relative to only the type itself to
make it easy for a user to scan a single type and see when it
was modified. This makes tasks such as finding a refactoring
(Section VI-A) very clear to see simply by browsing the line.
We stacked the additions on top of the deletions such that users
can immediately compare the relative frequency of changes of
a single type throughout the chosen time span.

Our choice of colours was motivated to be high contrast and
culturally indicative of their meaning. The particular colours
chosen are high contrast, and are distinct to those experiencing
protanomaly or deuteranomaly—red-green colour blindness.
The red colour suggests a negative valence [34], hence sug-



Fig. 5. Screenshot showing the main view for TypeV. The data being displayed is from the ANTLR4 repository. Light blue bars indicate additions; dark
red bars indicate deletions.

Fig. 6. Screenshot showing the author management view for Apache
Bookkeeper. Users can use a drop-down list to select the aliases for an author,
and select whether to show or hide the author in the timeline view. Authors
in the drop-down list are sorted in decreasing order of Jaccard similarity.

gesting deletions. The blue serves as a contrast to the red,
indicating the opposite action (in this case, additions).

The rows are sorted so that the graph for the most used types
or methods appear the top and are in descending order of use
such that the most frequently used type is the first visible. The
height allows users to see when certain types are being edited
and ensures that highly used types do not overpower less used
types making their changes less significant.

By adding interaction, the user is able to explore the timeline
to find the specific information that they are interested in

TABLE I
SUMMARY OF PROJECTS USED IN THE EVALUATION.

Project Commits Authors Files Types Changes
ANTLR4 3930 19 1792 2635 58425

BookKeeper 660 10 758 1872 31817
Curator 1524 35 1211 1269 27957

Tika 860 10 604 757 20764

Totals for the four projects we analyzed. “Changes” refers to the total
number of invocation or declaration changes observed from the AST
diffs.

and drill-down at their leisure. Although our tool extracts a
great deal of information, users can gradually reveal more
information as they need it, rather than be bombarded with
all of the information at once.

V. EVALUATION

TABLE II
COMPARISON OF TYPE COVERAGE AND FILE COVERAGE IN PROJECTS

Project Wilcoxon Pearson (linear) Spearman (rank)
p-value Correlation Correlation

ANTLR4 p � 0.01 0.943 0.907
BookKeeper 0.313 0.984 0.972

Curator 0.007 0.975 0.980
Tika 0.653 0.955 0.998

RQ2: Is it worth the effort of computing commit-by-commit
AST differences if we can simply count changes to files? We
will answer this question by comparing type coverage and
file coverage. We define type coverage as the number of types
that have been touched out of the total number of types during
either a certain time period or the entire project. File coverage
is the same measurement, but using the number of source
files touched instead. File coverage can be trivially determined



Fig. 7. R density plot of type and file coverage for commits. The graph shows
what percentage of type and file coverage the majority of commits have. One
can see that the majority of commits have a type and file coverage around
0% to 20%. We can also see a difference between these measurements on
the higher end of the graph. File coverage seems to have a group of commits
that had a file coverage between 20% and 50% whereas type coverage have
a similar looking grouping but between 40% and 60%.

Fig. 8. R density plot of type and file coverage for commits. Here we can
see that commits did not have much file coverage between 25% and 75%. On
the other hand there were a lot of commits that have type coverage around
50%.

from an author’s commit history. Type coverage, however, is
uniquely provided by AST differencing, as we have described.

Java’s syntax encourages the creation of classes, thus we
expect substantial Java projects to define many domain-specific
types. Additionally, Java places the constraint that each source
file must define one class. When writing or contributing to a
project, the author’s choice of which part of the program to
edit will in turn affect what types they end up working with
— that is, it will affect the author’s type coverage. Similarly,
the set of files that an author works with affects that author’s
file coverage.

To determine if type coverage yields different information
than file coverage, we analyzed four open source Java projects:
ANTLR4, Apache BookKeeper, Apache Curator and Apache
Tika (Table I). We chose ANTLR4 because it is a large Java
project with a rich history of commits. ANTLR4 is also a

member of the Qualitas Corpus [35], a curated collection
of Java systems curated for empirical software engineering
research. We then collected three smaller projects from the
Apache foundation, as they host a large number of well-
curated open source Java projects. These particular Apache
projects were chosen for their clear development practices and
easily available documentation. We counted the file coverage
and type coverage on a commit-by-commit basis for each
author. That is, each datum represents a commit with three
dimensions: file coverage, type coverage, and its commit date.
Data is sorted in ascending order of commit date. Table II lists
a summary of the statistics measured.

We displayed the density distributions for two different
projects: ANTLR4 (Figure 7) and Apache Tika (Figure 8).
These plots were produced using R and show the distribution
of the amount of commits that have X% of type and file
coverage. The red plot represents file coverage and the blue
plot represents type coverage. The x-axis shows the percent
of the coverage and the y-axis shows the number of commits
which have the similar percent of coverage. For example,
Figure 8 shows that there are many commits with 50% type
coverage and relatively few commits with 50% file coverage.
Also notice how in Figure 7 the type coverage is pushed to
the right, meaning commits usually touch a higher percentage
of types than files. So if we only looked at files touched we
might be missing important changes in the project. Figures 7
and 8 show that even though the type and file coverage plots
may have a similar shape, the commits are showing different
levels of information.

In general, type coverage and file coverage are strongly cor-
related, both using Pearson (linear) correlation, and Spearman
(rank) correlation. As type coverage and file coverage are both
cumulative measures, positive correlation is expected. How-
ever, even when the distributions are significantly different
(as with ANTLR and Curator), the correlation is still strongly
positive, but not 100%. This means that when the coverage
for types and files of a commit increase, the relationship is
not necessarily one-to-one. This is remarkable in a language
like Java, as classes and files are generally in a one-to-one
relationship.

We conclude from these findings that type coverage yields
related, yet different information than file coverage alone.

VI. ILLUSTRATIVE CASE STUDIES

RQ3: What extra insight can we gain from type-based vi-
sualization? We present case studies demonstrating the insight
AST differencing can provide.

A. ANTLR4

We chose ANTLR4 because it is a substantial Java project
with a commit history spanning several years. We can also see
distinct changes throughout its history.

For example, in December of 2011, in Figure 9 we can see
that the ParserATNSimulator class has a large amount
of additions and deletions in roughly equal proportion. This
suggests that ParserATNSimulator is not being removed
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Fig. 9. Screenshots of TypeV (above) and GitHub’s code frequency
graph based on line difference (below). TypeV is showing changes to
ParserATNSimulator in ANTLR4 while GitHub’s graph is showing all
line changes to ANTLR4. The date ranges from approximately April 2011 to
April 2012. Note that both the TypeV and GitHub graphs are approximately
lined up along the x-axis (time) and that we can see the loss of detail in the
GitHub graphs.

from the project but instead there is some refactoring being
done. If we take a closer look at the commit messages
we can see that they mention refactoring and reorganiza-
tion of code. Zooming in on that date, shows that during
that month they were finishing work on a new version of
ParserATNSimulator.

If we tried to do the same analysis with the GitHub tools it
would be significantly more difficult to reach this conclusion
(Figure 9). First, if we only look at line changes this change to
ParserATNSimulator is overwhelmed by other changes
and hardly shows up on the GitHub tools. If we did notice
an increase in activity we would not know what types were
being worked on. Finally, we could not quickly look at the
commit messages for that specific time and type if we used
the GitHub tools.

Using TypeV we can see that at certain times there were
major changes across all types. This shows us when major
changes to the code were being done versus code maintenance.

B. Apache BookKeeper

Fig. 10. Shows deprecated invocation getLedgerManagerType()
and replacement invocation getLedgerManagerFactoryClass() for
Apache Bookkeeper.

The purpose of deprecating software features is to give
developers time to change projects to follow a new or better
standard without breaking existing code. When a piece of
code becomes deprecated, continuing its use may lead to
design flaws or even security vulnerabilities. For example,
in Apache Nifi, an earlier version of the software used a
compromised key-derivation function; hence, this class was
deprecated, but left in for compatibility with older versions of
the software [36]. Viewing changes in terms of types can show
when usage of deprecated classes are added or removed from
a project as well as how many remain over time. Given the
time at which a feature was deprecated, seeing the progress of

replacement has some important implications. In the case of a
security flaw, that time could indicate times at which systems
or its users were vulnerable. If a feature is marked for removal,
a third party using the deprecated feature has a limited time
to make the appropriate changes. Removing all instances of
deprecated features could also mean a project can be upgraded
to use new tools or features that were not possible when the
deprecated features were present.

We searched for Apache foundation projects that featured
an instance of deprecation and found Apache BookKeeper. As
an Apache Foundation project it is a well-curated example of
an open source software project.

Apache Bookkeeper deprecated the method Abstract-
Configuration.getLedgerManagerType() in release 4.2.02 and
replaced it with AbstractConfiguration.getLedgerManager-
FactoryClass(). If we look at getLedgerManagerType() we
can see at the time of the start of the deprecation all in-
stances were removed and getLedgerManagerFactoryClass()
was added (Figure 10). After the deprecation, we see no more
changes to getLedgerManagerType() and only some additions
of getLedgerManagerFactoryClass().

VII. DISCUSSION

Having tools for analyzing repositories based on type usage
and method invocation benefits many parts of the software
development process. Software managers require a high level
understanding of the state of a repository and the changes
being made which affect the functionality of the software.
Tracking developer contributions in a less misleading way is
also important for management since important contributions
may be small and focused, but nevertheless, significant. Line
differences only provide meaningful information when they
are analyzed by someone with familiarity with the source code
being changed. Providing tools which bring more meaning
than line differences would allow people less familiar with the
code to understand changes being made. When large changes
are made that cover many aspects of a project, it is more useful
to see how the change affects the software rather than noting
that several thousands of lines have changed. Seeing how a
project has changed over time is also vital for management
since evaluating the state of completion of software can be
very difficult.

The timeline visualization presented in this paper (Sec-
tion IV) is intended to be a practical tool that enables users
to investigate the evolution of a project. Our timeline view
can be seen as an evolution of simple visualizations such as
GitHub’s code frequency [1]. GitHub’s graph is static, however
it allows one to see an entire project’s history at a glance.
TypeV improves this by enabling one to see a particular type’s
history at a glance. Given the greater density of information
available, we made our timeline interactive such that a user is
able to drill-down and explore the data at their own pace.
Using interaction, TypeV not only shows what types have
changed in a project, but makes it possible to see why a type

2https://bookkeeper.apache.org/docs/r4.2.0/apidocs/deprecated-list.html



has changed. We believe conventionality is a strong point in a
developer’s goal to make interesting discoveries in a project’s
evolution, but this has to be confirmed in user studies.

TypeV can also be useful for bug triaging. Bug triaging for
large open source projects is a very time consuming task [37],
with hundreds of bugs being reported daily. Each bug must be
processed and assigned to a developer that has the experience
required to fix the bug. In order to be effective, the triager
has to have knowledge of what each developer has worked
on as well as the parts of the code that may be affected
by the bugs. With TypeV, the triager is able to directly see
what types a developer has worked with over time. This is
important information for triaging since the type causing the
bug, if known, will have a list of associated developers who
have recently used that type and can be assigned the bug.
The commit messages for the affected types are also visible,
providing greater context about how the type has been used.
The assigned developer can also use type information to locate
other pieces of code affected by a bug and know which
developers have been using the affected types.

A. Threats to Validity

Internal threats to validity include our treatment of merge
conflicts. As mentioned in section III, we ignore all merges, so
if there is a merge conflict, it is possible that a developer made
non-trivial changes. Changes made during merge conflict res-
olution are missed by TypeV. We have made the assumptions
that if this case happens, the changes are minor.

Some actions in Git present a problem gathering the statis-
tics. Authors can pull other projects into the repository and
these additions will count towards the author’s changes. These
will show up as massive changes by a single author with many
types that they did not actually create. Changes of this size
are visible in the graph and can be found by inspecting the
commit messages.

In addition, the author statistics given in Table I was
calculated after manual author merging. We are not personally
familiar with the project, let alone the authors collaborating on
the project. Therefore, our efforts to manually merge authors
may have been erroneous.

An external threat to validity is the limited number of
projects used in the validation. We picked curated projects
that had a long development cycle and looked into some case
studies. However, because of the limited number of projects
we observed, our conclusions may not hold for the majority
of software projects.

B. Future work

A user study is needed to test the usefulness of TypeV.
Some questions that need to be answered are: Can users new
to a project easily find when major changes took place and,
more importantly, what was being changed? Given a specific
time period, can users find what was being worked on? The
study should test TypeV against a line-based visualization such
as GitHub’s graphs [1] and a file-based visualization such as
code_swarm [16].

The methodology used in TypeV is only well-defined for
statically-typed languages such as Haskell or Java; it is not
well defined for dynamically-typed languages such as Erlang
or JavaScript. However, type annotation systems such as TypEr
for Erlang [38] or statically-typed language dialects such as
TypeScript for JavaScript may prove to be sufficient to enable
type analysis as we have demonstrated for Java.

A weakness of the timeline view described in this paper is
that details about an author’s activities are buried. As future
work, the data extracted by TypeV can be used to create a
visualization similar to Gource [17] or code_swarm [16].
These visualizations animate authors moving back-and-forth
over files they edit; we proposed to animate authors’ activities
over types. The focal point would be a particular type. The type
itself may be represented abstractly as a shape or its UML
representation that grows and shrinks as its usage increases
and wanes over time.

VIII. CONCLUSION

In this paper, we introduced TypeV, a code repository anal-
ysis and visualization tool. Using commit-by-commit abstract
syntax tree differencing enables insightful visualizations that
are not captured by tools that use commit counts, line counts,
or file changes alone. In this paper, we addressed the following
research questions:

RQ1: How can we extract type and method usage from
repositories over time?

Using abstract syntax trees, we can determine the types
affected by each commit in a repository. Type information
is not directly available through regular line diffs recorded
by Git.

RQ2: How does type coverage compare to file coverage?

Type coverage and file coverage are found to be highly
correlated but do not always have the same distribution
or a one-to-one ratio as might be expected in Java.

RQ3: Does type information give any interesting or useful
insight into the project?

The evolution of a project and developer activity can be
seen through the changes to types in a project. Significant
events can be observed with greater understanding by
seeing the changes to types in addition to existing commit
information.

Although calculating ASTs can be expensive, it is not
computationally infeasible, and we benefit from semantically-
aware code evolution visualizations that can be used to gain
better insight into our software.
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