
University of Alberta

Content A daptation Architecture for Universal M ultim edia Access

by

Sunil Kumar Bandaru

A thesis subm itted to the Faculty of G raduate Studies and Research in
partial fulfillment of the

requirem ents for the degree of Master o f Science

D epartm ent of Electrical and Computer Engineering

Edmonton, Alberta
Spring 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395 Wellington Street
Ottawa ON K1A 0N4
Canada

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-612-96447-7
Our file Notre reference
ISBN: 0-612-96447-7

The author has granted a non
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque et Archives Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

The use of multimedia data is growing at a rapid rate. Bringing multimedia

services to terminals with limited capabilities such as limited bandwidths, and

limited resolutions is a challenge to be dealt with. The features of these terminal

devices generally vary in terms of storage capacity, memory, resolution,

processing speed and bandwidth. Therefore an efficient scheme is required for

adapting the multimedia content for delivery to the devices with limited

resources. In this thesis we propose a novel distributed adaptation architecture

suitable for resource-limited multimedia terminals as well as wired connections

with high bandwidths. A novel part of the proposed architecture is efficient use of

the cached data at the proxy server. We propose a cache replacement policy for

efficient cache management in the proxy. The proposed policy provides superior

performance compared to other existing cache replacement policies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I would like to thank my supervisor Dr M. K Mandal for his financial support

and invaluable guidance in my research. Without his vision and encouragement

this work would not have been possible. Dr Mandal helped me by providing new

ideas about implementation of the architecture and also some methodologies for

evaluating cache policies. These were very crucial for completion of my thesis.

I would like to thank all the members of MCCL laboratory for their co

operation and help. I would especially like to thank Patrick Sessanga for his

suggestions, which helped me significantly in my research work.

Finally, I would like to thank my family for their continuous support and

encouragement to finish my thesis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Abstract

Acknowledgements

Table of Contents

List of Figures

List of Tables

List of Abbreviations

1. Introduction 1

1.1 Motivation 2

1.2 Major Contribution 3

1.3 Overview 3

2. Review of Related Work 4

2.1 Multimedia Documents 4

2.2 Concept Universal Multimedia Access 7

2.3 Content Adaptation 9

2.3.1 Adaptation at server 10

2.3.2 Adaptation at proxy 13

2.4 Cache 20

2.5 Workload Generator 26

2.6 Summary 30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Proposed Content Adaptation Architecture 31

3.1 Adaptation Architecture 31

3.1.1 W ebserver 32

3.1.2 Proxy Server 33

3.2 Timing Analysis of the proposed Architecture 36

3.3 Cache Management Criteria 41

3.4 Application Scenario 44

3.5 Advantages of Proposed Architecture 46

3.6 Summary 47

4. Performance Evaluation 48

4.1 Performance of the cache replacement policy 48

4.1.1 Assumptions for the simulation 49

4.1.2 Description of the Developed Simulator 55

4.2 Performance of the Overall Architecture 56

4.3 Summary 67

5. Conclusions and Future work 69

6. Bibliography 71

Appendix- A 78

Appendix- B 80

Appendix- C 92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

Table 2.1 Image Formats

Table 2.2 Video Formats

Table 2.3 Typical Synthetic Trace

Table 4.1 Trace Specifications

Table 4.2 Traffic Shaper Configuration

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

Figure 2.1 Universal Access Concept 9

Figure 2.2 Schematic of Server Based Adaptation 10

Figure 2.3 Multi Resolution Format 13

Figure 2.4. InfoPyramid scheme 11

Figure 2.5. A schematic of proxy based adaptation 14

Figure2.6 Schematic representation of the processing agents in MMCM mode 15

Figure 2.7 Architecture of a cluster based TACC Server 16

Figure 2.8 Architecture of Image transcoding proxy 18

Figure 2.9 Distributed adaptation technique for satellite and cellular networks 20

Figure 2.10 Scenario showing the effectiveness of Caching in a Network 22

Figure 2.11 Snapshot of the Workload Generator 29

Figure 3.1 Proposed Content Adaptation Architecture 33

Figure 3.2 Flow chart for the Information Analyzer Decision 36

Figure 3.3 Flow chart for the Adaptation Decision 39

Figure 3.4 Flow chart of event execution in the Architecture 41

Figure 3.5 Application Scenario of the proposed architecture 45

Figure 4.1 Simulation set up for performance evaluation 49

Figure 4.2 Document Popularity profile Trace 1 with a=0.80, and
Trace 2 with a=0.75

51

Figure 4.3 Hit ratio versus cache size, a) trace 1 and, b) trace2 52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.4 Byte hit ratio versus cache size of a) trace 1 and b) trace2 53

Figure 4.5 Traffic saving cost versus cache size, a) tracel, and b) trace2 54

Figure 4.6 Snapshot of the simulator 56

Figure 4.7 Simulation setup for performance evaluation 58

Figure 4.8 Snap shot of the entire 3-tier System developed for simulation 60

Figure 4.9 JPEG compressed images of size 256x256 stored in the server in
MRMM format

62

Figure 4.10 Total transmission time of JPEG images at different bandwidths 62

Figure 4.11 Total transmission time of JPEG images at different bandwidths.
Adaptation decision is made using condition TW,\<Tna

63

Figure 4.12 JPEG2000 Compressed images using KAKADU software with

varying bits/pixel

64

Figure 4.13 Client transmission time (server to client) of JPEG2000 compressed
images at different bandwidth

65

Figure 4.14 Client transmission time (proxy to client) at various bandwidth
using cached data at the proxy

65

Figure 4.15 Performance of proposed architecture when compared with a 2-tier
architecture

67

Figure A.1 Handshake Model of 3 -tier architecture implemented using java
sockets

79

Figure A.2 Facade design pattern used by the trace driven simulator 92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Abbreviations

AF Aging Factor

CC/PP Composite Capability/ Preference Profiles

GIF Graphic Interchange Format

HDC Hand Held Device

HTTP Hyper Text Transfer Protocol

JPEG Joint Photo Experts Group

LAN Local Area Network

LRU Least Recently Used

LFU Least Frequently Used

MMCM Multimedia Content Model

MRMM Multiple Resolution Multiple Modalities

MTTR Mean Time-To-Re-access

PDA Personnel Digital Assistant

QOS Quality of Service

TACC Transformation, Aggregation, Caching and customization
Architecture

TCP Transmission Control protocol

TS Traffic Shaper

UDP User Datagram Protocol

UMA Universal Multimedia Access

WWW World Wide Web

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

The usage of the Internet has increased enormously causing almost an

exponential increase in the web content authored for the users. Recent

developments have seen a tremendous increase in the usage of network

appliances and mobile devices; the devices include hand-held personal computers

(HPCs), personal digital assistants (PDAs), set-top boxes, smart cellular phones

and network computers. The consumers use these devices to access rich

multimedia content through the Internet. However some of these devices have

limited resources, and are connected to networks of limited bandwidth. The

features of these devices normally vary in terms of storage capacity, memory,

resolution, processing speed and downlink bandwidth. For example screen sizes

for personal computers (PCs) vary between 800x600 to 1024x780 pixels, for

HPCs between 48x240 to 640x240 range, and for PDAs between 160x160 to

320x240 range. Screen colors range from 24 bit and 8 bit color to 4 bit and 2 bit

gray level. These also use a variety of network connections ranging from cable to

mobile, with varying bandwidth, connection characteristics and costs. Most of the

multimedia content authored today is targeted towards PCs as a client. World

Wide Web (WWW) documents, which have rapidly become the largest form of

multimedia, are also authored specifically for personal computers with reasonable

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

high bandwidths. With the rapid development in wireless devices and large

variety of the mobile devices available commercially the content providers are

targeting to provide rich multimedia to these low bandwidths devices. The

diversity of these devices makes it difficult and expensive to author multimedia

content separately for each individual type of device. Content providers, therefore

have to use different adaptation approaches for better Quality of Service (QOS)

and faster responses. There are many important factors that can affect QOS such

as network traffic, bandwidth, caching, and loading of media server or proxy

server. A number of solutions have been proposed in an attempt to address the

problems discussed above. Several caching techniques have been developed but

their performance needs a significant improvement to address the QOS concerns

in these architectures.

1.1 Motivation

Most of the content adaptation algorithms are implemented either in a media

server or proxy server, resulting in overloading of the server or proxy. Current

proxy-based architectures do not use the cached data at the proxy efficiently for

adaptation. The proxy caching is an approach, which reduces the network traffic

on the Internet back bone. The performance of the proxy caching is a major factor

that can improve the performance and reduce the server latency. There is no

reported work addressing the cache replacement policy for Universal Multimedia

Access (UMA) based architectures. The approach of distributed adaptation of

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

content with efficient use of cached data in the proxy can greatly improve the

performance of content adaptation architecture.

1.2 Major Contributions

The major contributions of this thesis are as follows

• An efficient architecture, which can deliver content for mobile and

desktops users with improved QOS and reduced server latency.

• An efficient proxy cache replacement policy that can provide superior

performance then the existing proxy cache replacement policies.

1.3 Organization of the Thesis

The thesis is organized as follows. Chapter 2 presents review of the background

work that includes different adaptation architecture for universal multimedia

access, cache replacement schemes that are used in proxy servers and their

drawbacks, and synthetic workload generator. Chapter 3 presents the proposed

adaptation architecture and the cache management policy. Chapter 4 shows the

performance evaluation of the proposed architecture and the cache management

policy. The conclusions and directions for future work are presented in chapter 5.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Review of Related Works

In this chapter, we present a comprehensive review of multimedia content,

universal multimedia access and then data adaptation techniques. We also review

a few selected cache replacement policies.

2.1 Multimedia Documents

Multimedia is one of the most exciting developments in the field of content

representation. Multimedia refers to the simultaneous presentation of information

using more than one mode of information transfer. Media include text, audio,

graphics, animation, and video. Rich multimedia content is used for better

interaction and communication.

Multimedia Documents [1] are most popular documents on web. A multimedia

document consists of a number of different content types, such as text, still

images, videos, audios and 3D scenes. The description of some of the content

types is given below.

Images, audio, and video are most widely accessed content in the internet.

Some of the common image formats are listed in Table 2.1. A video is a set of

images, which are displayed sequentially, video track can have an accompanying

audio track. Some of the movie file formats are listed in Table 2.2.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 2.1: Image Formats
Image Formats Comments

Monochrome Image 1 .Each pixel is stored as a single bit (0 or 1)
Gray Scale Image 1 .Each pixel is usually stored as a byte (value

between 0 to 255)

24-bit color Image 1 .Each pixel is represented by three bytes (e.g.,

RGB).

2.Supports 256 x 256 x 256 possible combined

colors (16,777,216)

8-bit color Image l.One byte for each pixel

2. Supports 256 out of the millions colors possible,

acceptable color quality

3.Requires Color Look-Up Tables (LUTs)

GIF (Graphics Interchange
Format)

1.Uses the Lempel-Ziv Welch algorithm

2.Limited to only 8-bit (256) color images, suitable

for images with few distinctive colors.

3.Supports interlacing

JPEG (Joint Photographies
Experts Group)

1. Takes advantage of limitations in the human

vision system to achieve high rates of compression.

2. Lossy compression, which allows user to set the

desired level of quality/compression.

TIFF (Tagged Image File
Format)

l.TIFF is a lossless format.

2.1t does not provide any major advantages over

JPEG and is not as user-controllable. It appears to

be declining in popularity

JPEG2000 1 .This format uses wavelet-based compression.

2.1t also has progressive coding scheme.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 2.2: Video Formats
Video Formats Comments
AVI (Audio Video

Interleave)

1 .It is an audio video standard designed by Microsoft.

2.Files in this format have an .AVI extension.

3.These files are limited to 320 x 240 resolution, and 30

frames per second

MPEG (Motion

Picture Experts Group)

1 .MPEG audio and video are the standard formats used

on Video CDs and DVDs.

2.Very popular on the Internet due to its combination of

high quality and high compression ratio

Quick Time 1 .Developed by Apple computer

2.QuickTime supports most encoding formats,

including Cinepak, JPEG and MPEG.

3.The file extension is MOV

Real Video 1 .Streaming technology developed by Real Networks.

2.RealVideo uses a variety of data compression

techniques and works with both normal IP connections

as well as IP Multicast connections.

3.One of leading formats in Internet audio and video,

giving access to more than 85% of the streaming media

programming on the Web

Shockwave 1. Shockwave is the method used to display

Macromedia's Director movies over the web. Director is

multimedia tool that uses the "Lingo" scripting

language.

2.It allows extremely complex multimedia displays to

be created.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Concept of Universal Multimedia Access

The concept of Universal Multimedia Access (LIMA) deals with delivery of

images, video, audio and multimedia content under different network conditions,

user and publisher preferences, and capabilities of terminal devices; such as

Internet, wireless LAN or others from any type of terminals with varying

capabilities such as mobile phones, personal computers and television sets. The

primary function of UMA services is to provide the best QOS or user experience

by either selecting appropriate content format or adapting the content format

directly. The concept of the UMA has two aspects. From the user side, UMA

allows users access to a rich set of multimedia content through various

connections such as Internet, optical Ethernet, DSL, satellite and others, with

different terminal devices. From the content or service provider side, UMA

promises to deliver timely multimedia contents with various formats to a wide

range of receivers that have different capabilities and are connected through

various access networks. A major motivation behind UMA is to enable terminals

with limited communication, processing, storage and display capabilities to

access rich multimedia content.

Figure. 2.1 shows the concept of UMA. The UMA application suits the next

generation mobile and wireless systems, as seen in the developments of third

generation systems such as the European Universal Mobile Telecommunications

System (UMTS) and the efforts of the Third Generation Project Partnership

(3GPP). For these applications, UMA will enable users access to future services

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

independently on their choice of access technology, terminal equipment and

usage preferences.

The mobile devices typically have limited memory, power and resolution while

the mobile networks are mostly of low bandwidths and unreliable connectivity.

Some of the problems are discussed in detail.

Limited Resolution: The mobile phones and PDA’s have very small screens

with limited resolutions and color depths. When a user using these devices

accesses the conventional web page, the images on the page cannot be displayed

due to the lack of resources. Hence content has to be modified to meet the

requirements of the user’s mobile devices.

Limited Power and Memory: The mobile devices have limited memory and

hence are not suitable for displaying websites with huge data items such as

images and videos. Power consumption in mobile device is another constraint,

huge data requires more processing time to display and this indeed consumes

more power.

Limited Bandwidth and unreliable connectivity: The mobile networks have a

limited bandwidth. Hence if users want to download a webpage with rich

multimedia content it takes considerable amount of time to download the entire

page. The connectivity is also unreliable because of the packet loss.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

udio

k L’l
Mu!; filed d
Content

V.dCO
i m coes

Aduptdtic
riivLTtdl A c c e s s ^

Dynarn-c
Network Conditions

Figure 2.1 Universal access concept [2]

2.3 Content Adaptation

The adaptation is the device or mechanism that is changed or changes so as to

become suitable to a new or special application or situation. The phenomenon of

changing the content according to the client resources is defined as Content

adaptation. The purpose of adaptation is providing better Quality of Service to the

client. There are number of ways to adapt data, some of them are transcoding,

distillation, compression etc. Typical examples of trancoding are conversion

within media types, such as an image encoded in one standard is transcoded to

another standard. The distillation process involves in data compression, it can be

lossy or lossless.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Some research has been done in the area of content adaptation for low

bandwidth terminals. Most web content adaptation is done at the server, at the

client, or at the proxy. The adaptation at the client is not a good approach in

mobile networks, these networks have very low bandwidth, which results in slow

transmission of rich multimedia content. The low computational power of the

device also makes the content adaptation at the device slow.

2.3.1 Adaptation at the Server

Adaptation at the server is a common approach but expensive. This is because

the content has to be rewritten in multiple resolutions and/or multiple modalities.

The server selects the appropriate resolution and modality based on the client

resources and sends the data to the client.

Request

Internet

Adapted
Data

Response

Adaptation

Web server Client

Figure 2.2 Schematic of server based adaptation

The infopyramid scheme was proposed by Mohan et al. [3] for web servers.

The infopyramid is a framework used to i) combine the individual components of

multimedia content-description and ii) methods and rules for handling the content

and content descriptions. Figure 2.3 shows the infopyramid scheme. The

infopyramid describes content in different modalities, at different resolutions and

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

at multiple abstractions. In addition, it may define methods for manipulation,

translation, transcoding, and generation of the content. Primarily the infopyramid

provides a hierarchy for content descriptors in order to guide search and retrieval.

Key Frames
Resolution

2-bit
B/W 28 Kbpstitle

128 Kbps KbpsSummary 4-bit color

Closed
Caption

Text

50 Kbps1-bit color 1Mbps

Video audioImage

Modality

Figure 2.3 InfoPyramid scheme [3]

Multi-modal representation

Multimedia is usually not in multiple formats, or modalities. A video clip may

contain some data in raw format, including closed captions in two or more

languages. For certain query and retrieval tasks, the appropriate content modality

may not be available. The required modality may be obtained by transforming

other modalities. For example, a video clip can be transformed into images

showing key-frames, while text can be synthesized into speech.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Multi-resolution presentation

Each multimedia content component can also be described in numerous

resolutions. There exist various, resolution techniques to construct image and

video pyramids. For example, “Flashpix” [4] provides mechanisms for storing

and retrieval of still images at multiple resolutions. Figure 2.4 shows the Multiple

resolution format. The features and semantics are obtained at different resolutions

from the raw data, thus resulting in a feature or semantic pyramid. The features

and semantics can also be obtained by using the transformed data at different

resolutions between the client and the server. The server stores the data in

multiple modalities and multiple resolutions. On receiving a request, it selects the

required resolution and modality, which best meets the user requirement.

(a) High resolution (b) Medium Resolution (c) Low Resolution

Figure 2.4 Multi-resolution format [4]

Mohan et al. [3] have proposed a technique for adapting the multimedia content

to optimally match the capabilities of the client devices of diverse nature. They

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

proposed a progressive data representation, called infopyramid scheme, in which

web pages are transcoded in multiple resolutions and modalities. Here, the

multimedia data is represented in the server in multiple resolutions (e.g., low,

medium or high), and modalities so that they can be accessed different devices.

When a client tries to access a web page, the client information is received at the

server along with the request sent by the client. Based on the resources available,

the server determines the modality and the resolution of the data to be sent to the

client. The selection of the modality and resolution is also based on the user’s

resources such as bandwidth, terminal resolution, and memory. Although the

infopyramid scheme defines the content in different modalities and resolutions, it

does not offer the flexibility to react to the carrying adaptation needs on demand.

In other words, the options are limited and fixed due to the pre-defmed

resolutions and modalities.

2.3.2 Adaptation at the proxy

Proxy based adaptation is a popular approach used by most content adaptation

architectures. The adaptation technique requires a transparent device called proxy

server to be placed between the client and the Web server. Figure 2.5 shows the

schematic of the proxy based architecture. In this approach the data is stored in

the server and upon request from the client the data from the server is sent to the

proxy and the proxy adapts accordingly to meet the client’s requirements and

finally sends it to the user. The important issue the time required by the proxy to

adapt the data.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C ontent Adaptation

R equest
Request

Internet

R esponse R esponse

C lientProxyW eb server

Figure 2.5 Schematic of proxy based adaptation

Mesto et al. [5] have proposed the media wrapper technique to adapt the web-

data in the proxy server. The media wrapper uses a multimedia content model

(MMCM) to represent the documents in a layered format. In addition, it employs

adaptation taxonomy to adapt the multimedia data stored in MMCM format.

Figure 2.6 shows the schematic of processing agent in a MMCM model. The

media wrapper adapts the multimedia content based on a 10-step procedure,

which is controlled by the adaptation manager. The adaptation manager receives

the client information and asks the reasoner to determine the output type and

releases the data information to the reasoner. The reasoner gets the information

about the terminal and client, and decides output format and all other related

issues and sends the information to the adaptation manager, which in turn invokes

the adaptation selector. The adaptation selector asks the planner to select the

agents to be used for the adaptation. The scheduler delegates the adaptation tasks

to the selected agents and finally the agents convert the data into required format.

The data is sent back to the adaptation manager that delivers it to the client.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Although representing the data in MMCM format makes the adaptation easier,

the media wrapper has so many phases and requires excessive processing time to

perform all the processes before adapting, this leads to significant delay.

Input Output

Adaptation
Manager

Reasoner

Terminal
Agent

Client
Agent

Network
Agent

Adaptation
Selector

iZE
Planner

Scheduler

Adaptation
Agent

Figure 2.6 Schematic representation of the processing agents in MMCM model [5]

Cluster-based TACC server Architecture

Fox et al. [6] have proposed a proxy-based adaptation with “Data type specific

Distillation”. Flere, the lossy compression mechanisms are used such that they

behave differently for different data types. This approach is better than “generic”

compressors, because the generic compressors cannot make intelligent decisions

about what information to throw away because they do not understand the

semantics of the data. The authors also proposed a cluster based proxy server

Architecture, known as TACC (Transformation, Aggregation, Caching and

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

customization architecture). This server is actually made up of server

workstations working together as a group.

Figure 2.7 shows the architecture of a cluster based TACC server. The Front

Ends (FEs) are the connections to the http servers. The workers (W) are the

workstations doing one or many specific tasks assigned to them. The manager

assigns jobs to workers based on the functions to be performed. The cluster-based

approach is a scalable, and cost effective solution. But the scheduling of the

workers in cluster is time consuming and difficult task. This adds up to the

transmission delay of the data. This problem can be clearly observed in streaming

applications, which are becoming popular in the Web. In addition, managing the

cluster of workstations to perform distributed processing is difficult.

Wide Area Network

FE FEFE
Graphical
monitor

MS MSMS

ManagerInterconnect
100 Mbps Switch

User Profile
DB

WSws WS

brker

Worker pool

WS: Worker Stub, S: Cache, MS: Manager stub

Figure 2.7 Architecture of a cluster based TACC Server [6]

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dynamic Adaptation (Image Transcoding proxy)

Han et al. [7] have proposed an framework for determining whether and how

much to transcode an image to transmit to the client with lower bandwidths. The

transcoding is done generally when the total time to transmit the client is reduced

as a result of it. In this approach the transcoding proxy adapts the image

according to the network resources while trying to meet an upper bound on the

delay tolerated by the end user.

The basic architecture of the transcoding proxy is shown in the Figure 2.8. This

proxy is built by integrating a transcoding sub-system into an HTTP proxy. There

are two primary components of the transcoding subsystem 1) the policy module

and 2) transformation module. The transformation module modifies the data

before sending it to the client. The policy module makes the decision which

transcoding algorithm to use. This decision is based on several criteria such as

1. The bandwidth between the “client and proxy” and “proxy and server”.

2. The client device’s resources such as display capabilities etc.

3. The preference of the user concerning the preferred rendering of the data.

Han el al. [7] have proposed an analytical framework for deciding when to

transcode and when not to. The objective of the framework is accurately predict

image transcoding time, output size of the image and network bandwidth between

the proxy, client and the server. The policies discussed are implemented on

images in JPEG and GIF format.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Internet Internet

Client device capabilities

User Preferences
Proxy to server bandwidth

Modified Text/HTML
ContentHTTP

Text
Modification

Transcoding
Proxy

Web
Server

Web
Browser

Adaptive Transcoding Policies
To make transcoding decision

Transformation Modules

Figure 2.8 Architecture of Image transcoding proxy [7]

s = Original size of the image

Sp = Transcoded size of the image

Bsp = Bandwidth between server and proxy

Bpc = Bandwidth between proxy and client

DP = Image transcoding delay

In an automated store and forward image transcoding proxy, transcoding is

performed if the following condition is satisfied.

Dp(S)+S/Br +S,(5) /2k <S/™n(Bpc,Bsp) (2.1)

When proxy to client link is a bottleneck in a store-and-forward proxy system (ie

Bpc < Bsp), transcoding is performed in [7] only if

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dp(S) + S / B sp< [S - S p(S)]/Bpc (2.2)

The Eqs. (2.1) and (2.2) denote that transcoding is done if round trip transmission

time with proxy adaptation is less than round trip transmission time with no

proxy adaptation.

Distributed Adaptation Technique

Khan et al. [8] proposed a distributed adaptation technique (DAT) for satellite

and cellular networks. Figure 2.9 shows the schematic of DAT technique. In the

DAT, the data is stored in multiple resolutions and multiple modalities (MRMM)

at the server (similar to the infopyramid scheme). But, it distributes the load

between the server and the proxy, and has the flexibility to react to the on

demand request. Although, the DAT provides an overall better performance

compared to infopyramid scheme, it has not considered any cache management at

the proxy. Note that the proxy caching reduces the response time significantly as

the proxies are located closer to the clients. Hence, an efficient cache

management is crucial to achieve good performance. The performance of the

distributed adaptation is not evaluated in the work proposed by khan et al, which

is very critical in an architecture.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Satellite

Proxy server Ground or
Base station

Figure 2.9 Distributed adaptation technique for cellular and satellite networks [8]

2.4 Cache

Caching is a technology that is already familiar in the context of hardware.

Many hardware devices cache frequently used instructions and data in order to

speed processing tasks. The WWW can be considered as a large distributed

information system that provides access to shared data objects. The WWW is

growing exponential in time, two of the major problems that today’s web users

are suffering from are the network congestion and server overloading.

Researchers [11-15] have been working on how to improve web performance

since early 90’s. Caching popular objects at locations close to the clients has been

recognized as one of the effective solutions to alleviate web service bottlenecks,

reduce traffic over the Internet and improve the scalability of the WWW system.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The rapid increase in the usage of the Internet is crashing its backbone with

huge amount of traffic and packet loss due to packet collisions. Figure 2.10

shows the effects of network congestion and how caching can reduce it. The

caching servers mounted closer to the client that are shown in Figure 2.10 can

clear reduce the stress on the Internet backbone by many folds. This kind of

caching results in faster response to the clients, which improves the overall QOS

of the system.

Proxy caching has become one of the useful approaches for reducing the

network congestion and latency. There are several advantages of using proxy

caching

1. Proxy caching reduces bandwidth consumption, thereby decreases

network traffic and network congestion.

2. Proxy caching reduces access latency due to two reasons

a) Frequently accessed documents are fetched from nearby proxy

cache instead of remote data servers, the transmission delay is

minimized.

b) Because of the reduction in network traffic, those objects which

are not cached can also be retrieved relatively faster than

without caching due to less congestion along the path and less

workload at the server.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Proxy caching reduces the workload of the remote web server. The

number of requests sent from a proxy to the server will be reduced since

much of the data is available in the proxy’s cache.

If the remote server is not available because of server crash or network

breakage, the client can obtain a cached copy at the proxy. Thus, the robustness

of web service is enhanced.

Figure 2.10 Scenario showing the effectiveness of Caching in a Network [16]

In general, a proxy server has a fixed amount of storage. When the storage fills

up, the proxy must choose one or more media objects based on a certain caching

replacement policy. The goal of the replacement policy is to make the best use of

available resources, including disk and memory space as well as network

bandwidth. To achieve this goal, the cache replacement policy should be able to

t

N etw ork traffic
without caching

f

N etw ork traffic
yyith caching

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

accurately predict future popularity of objects and determine how to use its

limited space in the most advantageous way.

Cache Replacement policy is one of the key components in the cache

management. The Cache Replacement Policy decides which object to be removed

from the cache when it is full. There are different types of cache replacement

policies. Some of them are listed

1. Least Recently Used (LRU) [17],

2. Least Frequently Used (LFU) [17]

3. Size [IS]

These policies use access time, frequency and size as the criteria for eviction of

the objects. The LRU policy evicts the objects that are least recently used. That

means that it uses the time at which the object is accessed as criteria to evict. The

LFU policy evicts the objects that are least frequently used. The size-based policy

evicts the object based on size and evicts the larger objects. These caching

policies are more suitable for static data where data adaptation is not required.

With the recent growth in multimedia applications, the future proxies are

required to support multiple data types. The proxy based approach has become

popular in Universal Multimedia Access (UMA) Architecture. The current cache

replacement policies are not efficient in this type of architecture because the

criteria considered for eviction of objects do not depend on the network

conditions or the device resources. In UMA based architecture the network and

client resources are important factors to consider because the data is changed

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

according to these conditions. The adaptation time and round trip time of the

multimedia objects are important factors to be considered to achieve superior

proxy performance.

A few caching policies have been proposed recently, which can work for both

continuous (e.g., audio and video) and discrete (e.g., text and image) media data.

Yu et al. [19] have proposed a network adaptive cache policy for mixed media.

This policy prioritizes the objects based on the media type. In this policy priority,

tendency, and frequency are used to calculate the weight of the object. Note that

priority represents the importance of an object whereas tendency is the

probability of the request hitness. When a new object comes in, if there is no free

space in the cache, the proxy flushes out the object with the lowest weight. The

weight function in this approach is defined as follows:

w = priority x (/? x tendency + (1 - /?) x frequency)

where priority represents the importance of an object. The priority depends on the

type of the object and may be on type of application. The tendency indicates the

impact of the current request on the following requests according to the continual

characteristics of the media. Frequency represents the popularity of the object to

be accessed. J3 is the control parameter balancing the impact between tendency

and frequency. Tendency shows the probability of the following request hitness.

Frequency = — -—
MTTR

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where MTTR (mean time-to-re-access) is measured as the weighted sum of the

inter-arrival times between the previous accesses.

w(i) - a x w(i ~ l), a < 1 and w(o) - I - a

mttr-YMi - ' h) x 4 ')
Z>0

Thus for a given time to MTTR (t0) = (l - a) (t0 - tx) + a x MTTR (f,)

This policy suffers from cache pollution, which is very common in WWW.

Cache pollution can be defined as a popular object suddenly becoming unpopular

in the cache, but can exist in cache with its previous popularity. This is a major

problem in UMA architectures because of the size of multimedia data relatively

larger than static data which in turn occupy huge disk space to store these data.

Xiang et al. [20] proposed a cost-based cache replacement policy for wireless

networks. In this policy cost value is calculated based on media distortion cost

(source and channel distortion), startup latency cost and network fetching cost.

C{gs) = Pt ^ Ct {gs) + PdxCd(gs) + Pqx Cq{gs)

where p t , p d, p q are the weight parameters that stand for the unit price of network

cost, latency and media distortion cost respectively.

= size (g s) x Dist(RTT x Frequency)

where Size(gs) is the size of the media object, Dist(RTT) is the distance between

the remote server and the proxy.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

c , (« > ! '
delay{RTT x frequency) i f t <D,threshold

0 else

where delay{RTT X frequency) is the delay for delivering prefix from the server

to the proxy which is a function of RTT between server and proxy.

Media distortion cost considers source distortion and channel distortion. The

media source distortion cost can be calculated by

Cq (g ,) = distortion (gs) x frequency

where distortion (gs) is the quality distortion of the media object. In general

distortion is measured in PSNR.

Although cost-based policy performs well for wireless channels, it suffers when

used in the wired networks because the factors considered in this policy have

significant impact in wireless networks than wired networks. This policy also

suffers from cache pollution, and hence it is not suitable for the UMA

architecture.

2.5 Workload Generation

Williamson et al. [21] developed a synthetic workload generator for generating

synthetic traces, which can be used for evaluating different cache replacement

policies. Figure 2.11 shows the graphical user interface of the workload

generator.

The top portion of the GUI allows the user to set parameters to control the

workload characteristics, prior to hitting ‘generate’ button. An entry box at the

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

top of the GUI specifies the name of the trace file to be generated. Sliding scale

widgets are used to specify the number of references desired in the generated

workload, as well as the number of distinct web objects and the number of one

timers. Separate sliders are used to specify the slope for the Zipf-like document

popularity distribution, the slope for pareto tail of the document size distribution,

and the degree of statistical correlation between the size and popularity of web

objects. Positive correlation means that larger objects are more likely to be

referenced. Negative correlation means that smaller objects are more likely to

referenced. The default setting of zero correlation means that document size and

document popularity are independent characteristics.

The workload generator generates the trace in the format shown in Table 2.3.

The first column is a time stamp representing the time in seconds at which a

specific web object (URL) is requested. The second column is a document

identifier, a unique integer assigned to each URL represented in the workload

trace. The third column represents the size in bytes of a specific web object. This

size is fixed throughout the trace for a given document id.

Tab e 2.3: A typical synthetic trace
TIMESTAMP D O CID SIZE

0.03245 0 1958

2.73954 9 366

3.47710 4 2536

4.1692 0 1958

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The trace generated depends on different parameters that should be given as an

input. The parameters are zipf slope [20], popularity bias, and Pareto tail index.

In recent years there have been many studies on page request distribution.

Numerous studies have found that this distribution follows Z ipf s law. Z ipf s law

expresses a power-law relationship between the popularity “P” of an item and

relative rank “r” among the referenced items, based on frequency of occurrence.

q
The relationship is of the form P = — , where c is a constant and p is often closer p

to 1. The Workload generator provides control over five key workload

characteristics, namely one-time referencing, file popularity, file size distribution,

correlation between file size and popularity, and temporal locality.

The advantage of using this workload generator is that it allows the user to

generate various traces with different combinations of input parameters. This

makes the evaluation of cache management polices more efficient.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7j ■ ■ ■ ■■ ■ ■ ■ ■ ■ ■ ■ • ■ v - . v - = W K LOiX
O utpu t file nam e:

Hum R efe ren ces : 100 D ocum ents (% re fe re n c e s) : 30 j O ne-T im ers (% o f d o cu m en ts): 70 I Zipf Slope: 0 .75
__ ■ —

f! I..;:.. J_f
1 1 0 100 IK 10K 100K 1M 10M ; 0 1 0 2 0 3 0 4 0 5 0 B 0 7 0 8 0 9 0 1 0 0 | 0 1 0 2 0 3 0 4 0 5 0 BO70 80 90 100 ! 0 .0 0 .2 0 .4 0.6 0 .0 1.0

P are to Tail Index: 1.Z0

1.0 1.Z 1 . 4 1 ,6 1 .0 Z.0

LRU s ta c k probabilities file:

LRU S ta c k D epth: 100

Size-Popularity Correlation: 0 .0 I: Popularity B ias: 0.20

- 1.0 0.0 1.0 0.0 0.Z 0 .4 0.6 0 .0 1.0

1 10 100 1000

V Independent R eference Model ♦ S ta tic LRU S ta c k Model

v D ynam ic LRU S ta c k MOdel y N ew LRU S ta c k Model

R e se t D efaults G en e ra te

In terarrival Time i|: D ata file nam e: - d o M
X Limit (op tional): \

R eq u es ts P er Interval

B y te s P e r Interval

V ariance Time

Graph Tide (optional):

AC lags (optional):

Time In terval BPI (optional):ii Size Limit (op tional):

Time In terval RPI (op tional): j§0 One-Tim ers In te rv a ls (op tional):

ieo

Hum ber o f B uck e ts : 100

RrS S ta tis t ic s

A utocorrelation

♦ Points ... Lines

10 100

Input t ra c e file nam e: 'Default

Cache S ize: 1000000 b y te s 2 In stan tan eo u s H it R atio S am ples: 1 0 :

:.— -J— --------- !
1 1 KB 1 0 K 1 0 0 K 1 MB 1 0 M 1 0 0 M 1 GB] Z 10 20 30 40 SO 60 70 00 90 100 i

t LRU ... LFU

Popularity Profile

Size Distribution

LLCD Plot

O ne tim ers

.RU S ta c k D epth A nalyst

R e s e t G raph D efaults

About

Ratio v s . Time R u n S ize

v GD-Size RAND v FIFO Run Policies
Exit

Figure 2.11 Snapshot of the Workload Generator [16]

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.6 Summary

A comprehensive review of various content adaptation architecture and their

drawbacks were presented in this chapter. Various cache replacement policies

that are used in the WWW were also reviewed. Performance setbacks of these

policies when used in UMA based architectures were also discussed. A detailed

review on the workload generator that will be used later in this thesis for

performance evaluation of the cache replacement policies was presented.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Proposed Architecture

In the previous chapter, several content adaptation architecture were presented.

It was mentioned that these architecture are not efficient in providing better QOS.

In this chapter we are going present the proposed architecture for content

adaptation. For Most existing architectures, content adaptation is performed at the

proxy or at the server. This results in extra processing load at the server or proxy

and hence results in a slower response. This slow response degrades the overall

performance when congestion occurs. Most of the adaptation architectures do not

exploit the cached data in the proxy to the maximum level. The efficient usage of

cached data at the proxy results in faster response time. Proxies are typically

located closer to the clients.

The proposed architecture exploits the concept of distributed adaptation where

partial adaptation is performed at the web server and remaining adaptation is

performed at the proxy with efficient caching mechanism. This reduces the

network latency, load on the server and improves the performance of the proxy.

The proxy has the capability to adapt the cached data efficiently.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1 Adaptation Architecture

The schematic of the proposed architecture is shown in Figure. 3.1. The

architecture has three main components - the server, proxy and cache, which are

briefly discussed in the following.

3.1.1 Web-Server

The web server in the proposed architecture is a critical component. It has been

observed in Chapter 2 that the infopyramid is a flexible format for representing

web-data. The data represented in infopyramid can be accessed by a variety of

client devices. However, the processing load at the server may still be high, and

the format is not flexible for on-demand adaptation. In addition, it would be

difficult to re-write the existing web pages in infopyramid format because it

requires huge disk space for this representation. In the proposed architecture, the

web server has the data is represented in a multi-resolution and multiple

modalities (MRMM) format. The MRMM format is a simplified version of the

infopyramid representation where the processing at the server is kept at a

minimum level, and most of the required processing is performed at the proxy.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P r o x y S e r v e r
R e s p o n s eR e q u e s t

► M R M M

C a c h e

D B

V o i c e to T e x t

I n f o r m a t i o n
A n a l y z e r

A d a p t a t i o n

C l i e n t

S e r v e r

Figure 3.1 Proposed Content Adaptation Architecture

3.1.2 Proxy Server

The proxy server in the proposed architecture is a transparent agent that

communicates with both the web server and the client. As shown in Figure 3.1

the proxy server has several modules. The information analyzer in the proxy

server receives the client request and the request is sent to the cache manager to

check whether the requested file is stored in the cache. The information analyzer

gets the response from the cache manager if the file exists in the cache or not. If

the file does exist in the cache the information manager gets the client

information from Database Manager (DB) and then sends it along with the

requested file to the adaptation manager. The adaptation manager makes the

decision whether to adapt the cached data or not. Once the decision is made the

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

data is sent to the cache manager. The cache manager assigns the cost using the

proposed cache replacement policy and stores the data in the cache. If the file

does not exist in the cache the information manager sends the client profile and

the request to the server. The server adapts the data according to the client profile

and sends the file to the proxy. The adaptation manager makes the decision

whether to still adapt the data or not based on the client profile. The adaptation

manager adapts the data using one of appropriate modules that is suitable for

requested data. The adaptation manager sends the adapted data to the cache

manager. The adapted data is stored in the cache and then it is sent to the client.

The detailed functionality of each module is explained below

Adaptation Manager

Adaptation Manager is one of the key components of the architecture. It uses a

decision making mechanism to accurately calculate the estimated transmission

time between Server, Proxy and the client. The adaptation manager can choose a

module like Image transcoding or compression or Video to Images or Images to

Text or Voice to Text based on the client resources.

Cache Manager

Cache Manager is an important component in the proposed architecture. The

proxy caching is a better approach for alleviating network congestion and reduce

latency through distributed network load. Cache replacement policy is a key

component in the cache management. The performance of the replacement policy

can be determined by the hit ratio, byte hit ratio and traffic saving cost metrics.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Cost based replacement policy replaces the objects based on the cost of the Media

objects. If a new object is requested and if the proxy is not full the object is

simply cached in the proxy. If the proxy is full, the object with lowest cost will be

removed. This operation stops only when the cost of the requested object is lower

than those of all the objects in the cache.

Information Analyzer

This module checks the response from the cache manager whether the

requested file is there in the cache or not. If the requested file is there in the

cache, the Information Analyzer will get the client profile from the Database

Manager and then send the file along with client profile to the adaptation

manager. The adaptation manager decides whether to adapt the data or not. If the

requested file is not there in the cache, the analyzer sends the client request along

with the client profile to the server. Figure 3.2 shows the flow chart of the

Information analyzer.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

File
Request

Yes Cache
Response?

No

Data from cache and
Client profile from the
database is sent to the
adaptation manager
in the proxy_______

The client profile from
Database manager is sent
to the server along with
file requested_________

Figure 3.2 Flow chart for the Information Analyzer Decision

3.2 Timing analysis of the proposed architecture

Adaptation Manager makes the decision whether to adapt the data at the proxy

or not. If the data has to be adapted it will request the module selector to select

the appropriate module to adapt the data. The adapted data is send back the

adaptation manager and from there it is stored in the cache by the cache manager.

If the data do not need adaptation then it will be sent directly to the client. The

proposed architecture proxy can also adapt the cached data, which is efficient

mechanism to improve the performance. The timing analysis for decision making

for adaptation of Data is given by the following equations.

Data fetched from the server

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where

Ds : Data Size of the Original Image

Dt : Data Size of Transcoded Image.

Tser: Time taken by the data to get processed at the server.

Bsp: Bandwidth between Server and Proxy.

Bt : Internal Bandwidth of the Transcoding Proxy.

Bs : Internal Bandwidth of the Server.

Bpc: Bandwidth between Proxy and Client.

Bsc : Bandwidth between Sever and Client.
T ■ Time taken by the data to get processed at the proxy
T ■A sp ■ Time taken by the data to be sent from server to proxy.
Txpc-up • Time taken for un-processed data to be sent from the proxy to client.

Tpc-p: Time taken for processed data to be sent from the proxy to client.

XP : Load on the proxy server (in-terms of the number of jobs being
processed)

Xs : Load on the server

Sp : Speed of the processor used in the Proxy server

Twâ Total time taken by the data to reach the client after adaptation

Tna : Total time taken by the data to reach the client without adaptation

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Timing Analysis for Cached Data

The decision whether to adapt the cached data or not is done by using the

following timing analysis.

T - ° ‘c
C P C -P T)

pc

’J 1_______________ ^ s c
c p c -u p ~ D

B PC

T _ DSCX P
pc

S p B t

T =T +TWA p c c p c -p

T =TNA cp c -u p

we will define the following parameters used in the decision making process for

cached data.

D,c : Data Size of Transcoded cached Image.

Tcpc-up: Time taken for un-processed cache data to be sent from the proxy to
client.

Tcpc-p : Time taken for processed cache data to be sent from the proxy to client.

Tpc: Time taken by the cache data to get processed at the proxy

The data will be adapted in the proxy if the total transmission time with adaptation (TWA)

is less than the total transmission time with no adaptation (TNA).

T <TWA NA

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Start

NoYes Adaptation
required?

Adapt the data with
Appropriate module and
Send it to the client

Send un-adapted data to
the client

Figure 3.3 Flow chart for the Adaptation Decision

Case Study

Consider a scenario where the bandwidth between the server and proxy is 2MB,

the bandwidth between the proxy and the client is 20kbps, the internal bandwidth

for processing is 1MB. The data size that has been transmitted to the proxy is 300

KB. Size of the data after adaptation is 150KB

Ds 300K n i .T = -? - =-------- = 0.15 sec
P Bsp 2 M

D, 150k „ e
Tpc_p = —L = = 7.5 sec

p Bpc 20k

Ds 300k 1CT = —— = ------- = 15 secpc-HP 2Qk

r DSX P 300k X 4 1 ^
T = ----- = = 1.2 sec
P SPB, 1M

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If the data exists in the cache then the calculation can be done as follows

T Dtc 150kT - —— = --------= 7.5 sec
c p c - p 2 Q k

Dsc 300k 1C
T = —— = ------- = 15 sec
cpc~up B 20 kp c

rp DSX P 300k x 4 1 0T , = ----- = ------------ = 1.2 sec
pc SpBt 1M

T = T +TWA p c CpC-p

= 7.5+ 1.2 = 8.75 sec

T =TNA cp c -u p

- 15 sec

Because Twa < TNa the proxy adapts the data and sends it to the client.

3.2.1 Control Flow in the Architecture

Figure 3.4 shows the control flow of the architecture when a client request for a

fde. The client ID is grabbed by the information analyzer to check for the client

profile information from the database. The information analyzer also checks with

the cache manager for the existence of the requested file in the cache. Based on

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the response from the cache manager, the file request goes to the server or the

adaptation manager in the proxy for further processing.

Request YesN o

Cache?
i r

Request

Response
Client

Get Client profile
From Database

Based on ClientID

Send the Request to
the server along with

the profile

Adaptation Manager
Decision Analysis

Store it in the Cache-

Server chooses
the appropriate

Format based on the
client resources

Figure 3.4 Flow chart of event execution in the Architecture

3.3 Cache Management Criteria

The key component of proxy caching in the proposed architecture is the cache

replacement policy. We briefly mentioned the network adaptive cache policy [19]

and the cost-based cache replacement policy [20] in chapter 2. Although, these

policies generally perform well, they suffer from cache pollution that is very

common in the WWW. Hence these policies are not suitable for the UMA-type

architecture.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In this thesis, we propose a cost based cache replacement policy where we

make best use of the available resources such as disk space and network

bandwidth. It considers the following factors that have significant impact on the

different data types.

1. Round trip time for fetching the object,

_ Size o f the objectiv J i ̂
Bandwidth between proxy and server

2. Adaptation Time at the proxy server (if adapted)

Size o f the object x complexity

AM Internal Bandwidth o f proxy

3. Request Frequency of the obj ect

4. Aging Factor

Round trip time is consider because it will change with the type of the media

transmitted. The order of size variation for different types of media can be given

as Text<Image<Audio<Video. Preference can be given based on the type of

object that is transmitted. And also RTT gives the distance of the server to proxy.

The cost of fetching an object from local server is less than the cost of fetching

from a remote server.

Adaptation time is critical factor in the proxy because importance should be

given to object based on the complexity of the adaptation process.

Frequency is used to determine the popularity of the object. Aging factor is

used to decrease the cache pollution in the proxy cache.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The cost calculation in the proposed policy includes two aspects: i) fetching

cost of the media object from the server, and ii) the adaptation cost of media

objects. The Fetching Cost (CF) is calculated as follows:

CP = P f xRTTMx f M

where RTTM is the round-trip-time to fetch the media object from the server to the

proxy, f M is the request frequency of the media object, and p f is the unit cost of

the fetching time.

Note that the data adaptation time depends on the proxy internal bandwidth and

adaptation complexity (which generally depends on the type of adaptation and

media). Hence, the adaptation cost (CA) is calculated using the following

equation.

CA = P a x Tam x f M

Where TAM is time required to adapt a media object, and p a is the unit price of
the adaptation.

Cache pollution is a common problem in the WWW, where a popular object

suddenly becomes unpopular, but the object still remains in the cache because of

the previous popularity. In order to reduce the cache pollution, we add an Aging

Factor to the cost value. Aging factor determines how recently the object has

been accessed. So when an object is brought to the cache, the aging factor is zero.

When there is a hit, the aging factor of the requested object is set to the current

time and is added to the total cost of the object. The aging factor of an object is

calculated as follows. Assume that an object was first put in the cache at time t0,

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which is set to zero. After that the object has been accessed N times at time

 tN] • The aging factor (AF) will then be:

& = 2 > <
1=1

For instance the object has been accessed 3 times from a cache then the AF is
will be

AF=(ti-to)+ (t2'tl)+ (t3-t2)
- t3-to
= t3

AF is nothing but the current time at which the object is accessed. Incorporating

the aging factor, the final cost value CT can be calculated as follows.

CT — CP +CA + paj- x AF

Where p af is the unit price of proxy access time.

The cache manager calculates the cost (c r) of each object. When the cache is

full, the cache manager removes the objects with lowest cT value in order to

create space for new objects having higher cost values.

3.4 Application Scenario

Figure. 3.5 shows the application scenario of the proposed architecture. The

proposed architecture is flexible to serve multiple clients with different resources.

For instance a desktop user request a file that does not exist in a cache, the proxy

sends the request along with the client information to the server. The server uses

its decision making scheme to decide which format of data should be sent. As the

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

request is from a desktop user who has lot of resources, the server sends a higher

resolution data. Proxy gets it from the server and it cache the data, and sends it to

the client. If the next user is a PDA requesting for the same file then proxy gets

from the cache, analyzes the resources of the client and adapts if it is necessary

accordingly and sends it to the client. This mechanism provides faster response

time to the client. The adaptation of the cached data can improve the performance

of the proxy server and QOS of the all system. This approach reduces load on

remote servers by considerable amount.

Server

Cache

Figure 3.5 Application Scenario of the proposed architecture

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5 Advantages of Proposed Architecture

The proposed architecture has several advantages.

1. Bandwidth of the network is saved when reduced resolution and a few

modalities are sent to the proxy server. The bandwidth and transmission time

are saved.

2. Flexibility can be obtained by allowing the users profile to be changed if a

client wants to use different resources with same terminal.

3. The adaptation is flexible enough. The bandwidth of the channel is further

reduced, the filtering or “data type specific distillation” can be performed at

the proxy to ensure that the data rate suites the users requirements exactly.

4. Caching in the proxy server reduces the round trip time involved in fetching

the document if the document is available in the cache.

5. Adaptation of the cached objects saves the server bandwidth and increases the

proxy performance and the QOS.

6. If this architecture is used in satellite networks, it saves the bandwidth of the

satellite channel uplink (from the user to the ground-station) as only an ID has

to be sent by the client because the architecture maintains a client profile

database, based on the client ID the client profile can be retrieved from the

database.

7. Proxies are located closer to the clients, and hence the response time is

reduced significantly.

8. Reduce the cost of building multiple configurations for different networks.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.6 Summary

In this chapter a content adaptation architecture for universal multimedia access

has been proposed. Different components of the architecture and their

functionalities have been presented in detail. An efficient cache replacement

policy for UMA based architecture has been proposed. A decision making

scheme which calculates transmission time and uses them to make decisions for

adaptation manager has been presented. The various advantages of the proposed

architecture have been presented.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Performance Evaluation

In previous chapter, we presented the proposed architecture for content

adaptation. In this chapter we will evaluate the performance of the proposed

architecture. First we evaluate the proposed cache replacement policy using the

trace driven simulator developed as a part of the work proposed. We then

evaluate the content adaptation architecture using the simulation test bed

developed in our laboratory.

4.1 Performance Evaluation of the Cache Policy

Figure. 4.1 shows the simulation setup for performance evaluation. A

synthetic workload generator developed by Williamson et al. [21] is used to

generate the traces for the simulation. The traces generated are used by the

simulator to evaluate the performance of the proposed replacement policy. The

trace driven simulator is written in Java language. The trace driven simulator can

calculate the hit ratio, byte hit ratio and traffic saving cost metrics of different

policies.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LRU

LFU

TRACE
SIZE

COST

PROP

Trace
Driven

Simulator

Workload
Generator

Hit Ratio,

Byte Hit
Ratio,

Traffic
Saving

Cost

Figure 4.1. Simulation set up for performance evaluation

Performance evaluating metrics definitions

Hit Ratio: Is the percentage of number of hits from the cache over the total

number of request.

Number of Hits
xlOO (4.1)

Number of Hits + Number of Miss

Byte Hit Ratio-. Is the percentage of number of bytes transferred from the cache

over the total number of bytes requested.

Numberof Byte Hit
Vbhr — x 100 (4.2)

Numberof Bytes H it+ Numberof Bytes Miss

Traffic saving cost: Is a metric for measuring the reduction in the network

congestion cost. Traffic saving cost is measured in terms of giga bytes of data

that has been transferred from the proxy as a result of hits in the cache.

4.1.1 Assumptions for the simulation

The bandwidth between the proxy server and the server is assumed to be

fixed and is high. The internal bandwidth of the proxy is assumed to be fixed.

Note that the internal bandwidth of the proxy server is an important factor that

determines the adaptation time required for an object of given size in the proxy.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.1 shows the different input parameter given to the workload generator for

generating synthetic traces. In the past studies on document request patterns,

researchers [23-28] have found that the zip f slope value varies between 0.65 to

0.8 in a typical proxy server. Zipf slope is denoted by ‘a ’. Hence, in this thesis

we have used traces with a=0.75 and a=0.80.

Table 4.1: Trace Specifications
Trace 1 Trace2

No of references 0.1 million 0.5 million
Document (% references) 30 40
One Timers 70 70
Zipf Slope (a) 0.80 0.75
Pareto tail Slope 1.20 1.20
Size popularity correlation 0.03 -0.03
Popularity Bias 0.20 0.20

The zipf slope gives relationship between document rank and popularity. This

parameter is crucial because it varies with positioning of cache in the network.

The value of zipf slope is different if the cache resides in the web server and if it

resides in the proxy. Size popularity correlation is also varied to check the

performance with larger and smaller size objects in the tracel and trace 2. Figure.

4.2 shows the popularity profile of two different traces with a — 0.80 and a -0.15

respectively. These traces are used as input for the trace driven simulator

developed for evaluating the performance of the different cache replacement

policies.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1000

Tracel

——Trace2
I 100 -
ec
o
&c
03

UL

10 100 1000 10000 100000

Document Rank

Figure 4.2 Document Popularity profile Trace 1 with a=0.80, and Trace 2 with a=0.75.

To evaluate the performance of our proposed replacement policy, we compare

it with the LRU, LFU, Size, and cost based policy. Hit Ratio and Byte Hit Ratio

can vary depending on the trace used for the simulation. A trace might have high

hit ratio but it does not imply that it should have high byte hit ratio because the

hits might on smaller size objects. In the same manner a trace having a high byte

hit ratio might not have a high hit ratio. This metrics some times may be identical

for some traces, so evaluate the performance using these metrics is very crucial.

We vary the cache size to study the hit ratio of the proxy caching for different

polices for the two traces. Figure. 4.3 shows the hit ratio of the different cache

replacement policies. It is observed that the hit ratio increases with the increasing

cache size for all policies, which is expected as large cache can store more

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

objects. It is also observed that the proposed replacement policy performs better

than the LRU, LFU, Size, and cost based replacement policies.

100
LRU

LFU

Size

cost

Prop
C

o

40
x

10000.1 1 10 100
CacheSize (Mbytes)

o
Q

70
LRU

LFU

Size

cost

Prop

60

50

40

30

20

10

0
0.1 1 100 100010

Cache Size (Mbytes)
(b)

Figure 4.3. Hit ratio versus cache size, a) tracel and, b) trace2.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure. 4.4 shows the byte hit ratio of different cache replacement policies. We

vary the cache size to study the byte hit ratio performance. It is observed that the

proposed replacement policy performs better than other replacement policies.

00
LRU
LFU
Size
cost

90

80

70

60

50

40

30

20

10

0
0.1 10 100 10001

CacheSize (Mbytes)

(a)
60

LRU
LFU
Size
cost
Prop

50

40

30

20

10

0
0.1 1 10 100 1000

Cache Size (Mbytes)

Figure 4.4 Byte hit ratio versus cache size of a) tracel and b) trace2.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure. 4.5 shows the traffic saving cost in giga bytes for different cache

replacement policies. The cache size is varied to study the traffic saving metric. It

is observed that the proposed replacement policy provides higher network cost

saving value than other replacement policies.

1.6
LRU
LFU
Size
cost
Prop

1.4

1.2

1

O 0.8
O)

0.6

0.4

0.2

0
0.1 1 10 100 1000

Cache Size (Mbytes)
(a)

3
LRU
LFU
Size
cost
Prop

2.5

2

1.5

1

0.5

0
0.1 10 100 1000

CacheSize (Mbytes)

(b)

Figure 4.5 Traffic saving cost versus cache size, a) tracel, and b) trace2.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In some cases the other policies can perform better than the proposed policy

where the trace parameters are different. The traces used in the simulations have

the parameters, which are most common traces have on the web. The proposed

policy might suffer when the trace has objects with smaller size and more one

timers. The generation of such a trace which has very large one timers and

smaller size is difficult task. So in this thesis we could not determine the exact

performance degradation of the proposed policy in such scenario. The cache

replacement policy is designed for UMA architectures in which most of the

objects are multimedia objects whose size usually large.

4.1.2 Description of the Simulator

Figure. 4.6 shows the snapshot of the simulator, which is written in the Java

programming language. The name of the trace should be typed in the input field

“Name of Trace”, cache size should be specified in the next field. The required

cache policy should be selected from a drop down menu list. If the user clicks on

the button “Get Hit Ratio”, then the simulator will display the number of hits for

the trace, number of misses, and the percentage (i.e. the hit ratio). If the user

clicks the button “Get Byte Hit Ratio”, then the simulator will display the number

of byte hits, number of byte misses and the percentage (i.e. the byte hit ratio). The

number of byte hits gives the number of bytes transferred from the proxy as a

result of the hit, which gives the traffic saving cost.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tmrp Driven SimuKilnr

Trace Driven Sim ulation

N am e ot T race

C ach e S ize

C a ch e R e p la cem en t Policy

inewtracel

,1 00000

I'I opiJSl'U

Get Hit Ratio (..:l ir/d - Hit I'.alio

No o f Hits,iByte_jiri

No of M iss® yto_M iss

P ercen tag e %

2 0 4 9 3

2 1 . 1 7 5 2 6 0

Figure 4.6 Snapshot of the simulator

4.2 Performance of the Overall Architecture

The performance of the proposed architecture is evaluated by creating a low

bandwidth environment. Low bandwidth environment is created at client side by

reducing the transmission rate at the proxy. This is done on the Linux workstation

by using a traffic shaper (TS) [40]. Note that the TS acts as a virtual device that

can control the outgoing traffic of the system. The TS creates a pseudo

networking device that is used by the system, but it relies on the underlying

Ethernet interface to actually carry the traffic. Using the TS, the bandwidth can

be varied from 10-250 kbps. The mobile devices generally have a bandwidth

ranging from 9-30 kbps, and hence the bandwidth is varied between 10-100 kbps

in this simulation.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The client, proxy and server programs are written in Java, as it gives the

flexibility to run the simulation on different operating environments. In the

simulation the proxy and server runs on the same workstation, and the bandwidth

between them is very high.

Table 4.2 shows the configuration of the shaper device used for controlling the

traffic. The line-1 of code attaches the shaper module to the Ethernet, which is the

physical transmission device. The line-2 of code set the bandwidth of the shaper

at what rate it has to transmit the data. The bandwidth is varied by changing

speed in the line-2. The line-3 configures the system IP address to the shaper. The

line-5 deletes the existing gateway configuration. The line-6 will add the new

gateway configuration with the traffic shaper and this makes the traffic go

through the traffic shaper device.

ProxyServer

OS: W indows 2000
CPU Speed: 800M hz
RAM: 64M B
Processor: AM D

Client

OS: Red Hat Linux 7.2
CPU Speed: 501M hz
RAM: 256M B
Processor: Intel III

(a)

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UDPTCP

UDP.TCP

Traffic
Shaper

ProxyServer Client
(Java Applet)

(b)

Figure 4.7. Simulation setup for performance evaluation a) System specification b)
schematic of the simulation setup.

Using simulation setup shown in Figure 4.7, we evaluated the following

scenarios - i) the adaptation at the server without any adaptation at proxy, and ii)

the adaptation of cached data at the proxy. The proxy transmits the image data to

the client through UDP. The packet size of the UDP can be specified in the

proxy.

__________________ Table 4.2: Traffic shaper configuration__________________
Configuration Commands

shapecfg attach shaperO ethO

shapecfg speed shaperO 10000

Ifconfig shaperO 129.128.197.172 netmask 255.255.255.0 up

Route add-net 129.128.197.0 netmask 255.255.255.0 dev shaperO

route delete default ethO

route add default gw 129.128.197.1 shaperO

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure. 4.8 shows the snapshot of whole system developed for simulation. The

client interface has several options for requesting GIF, JPEG2000 and JPEG

Images. The client can request various image qualities. It displays the total time

taken for receiving the images at client side. The system uses UDP and TCP

based connection to communicate between the client, proxy and the server

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Se
rv

er

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
gu

re

4.8

Sn
ap

sh

ot
 o

f
the

en

tir
e

3-
tie

r
Sy

ste
m

de
ve

lo
pe

d
for

si

m
ul

at
io

n

Figure. 4.9 shows the JPEG images used in the simulation. Figure. 4.10 shows

the transmission time for JPEG-compressed images. We observe in Figure 4.10

that at lower bandwidths TWA < TNA, and hence the adaptation of the JPEG images

reduces the transmission time. As the bandwidth increases, |TNA - TWA\ decreases,

and eventually will become zero. Let us denote this bandwidth as the critical

bandwidth. In other words, at the critical bandwidth, TWA = TNA. Note that below

the critical bandwidth, the data adaptation reduces the transmission time (at the

cost of the image quality). The overall transmission time of the JPEG image at

various bandwidths is shown in Fig. 4.11. If a lower quality image is acceptable

to the client, the adaptation manager adapts the data before transmission;

otherwise, the proxy sends the unadapted data with a larger transmission time.

This is shown by two sets of transmission time (when bandwidth < critical

bandwidth) in Fig. 4.11. If the available bandwidth is above the critical

bandwidth, then TWA > TNA, and hence adaptation is not beneficial.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a)High Resolution (b) Medium Resolution (c)Low Resolution

Figure 4. 9. JPEG compressed images of size 256x256 stored in the server in MRMM
format.

Wit hout A d a p t

With Ad a p t
2.5

oo
CO
of
E
F Critical Bandwidthc
o
ww
E
to
c
2H 0.5

0 20 40 60 80 100

B a n d w id th (K b p s)

Figure 4.10. Total transmission time of JPEG images at different bandwidths.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

Oa)
w
're
E
Fc
0
</></>
1 (/) c
re

2.5

1.5 -

0.5

-♦— w ithoutAdapt

M— Prop A rch

20 40 60
B an d w id th (kb p s)

80 100

Figure 4.11. Total transmission time of JPEG images at different bandwidths. Adaptation
decision is made using condition TWA<TNA.

Figure. 4.12 shows the JPEG2000 compressed images used in the simulation.

Note that the JPEG2000 provides embedded bitstream, and hence the data can be

considered to be in MRMM format. This reduces the problem of storing images

of different resolution at the server. Figure. 4.13 shows the performance of the

architecture with varying bandwidths. As the data is in the embedded form, the

server decides the size of the bitstream to be sent to the client based on the client

resources. It is observed that there is a trade-off among the bandwidth,

transmission time and image quality. The proposed architecture has the ability to

decide the best policy depending on the user requirement.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) (b) (c)

Figure 4.12 JPEG2000 Compressed images using KAKADU software with varying
bits/pixel a) High Resolution (1 bits/pixel) b) Medium Resolution (0.7bits/pixel) c) Low
Resolution (0.5 bits/pixel)

Figure. 4.14 shows the transmission times when the requested data is available

in the proxy-cache. As the data is available in the cache, the transmission times in

Figure. 4.14 are smaller compared to Figure. 4.13. It shows the proxy caching

mechanism improves the performance and provides faster response time to the

clients.

The performance evaluation results in section 4.1 show that the proposed policy

provides a better hit ratio than other policies. The proposed architecture uses this

policy, which provides better overall performance than other policies. The

fetching time from the server is saved due to the effective caching mechanism.

Adapting of the cached data can reduce the response time, which can be seen in

Figure. 4.13. The overall Quality of Service of the system is improved.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.4

1.2

1c o
io
(A . .

E o 0.8
(A </)

§ ¥£ . i 0.6
4-> 1—co
o 0.4

0.2

bits/p ixe l=1

b its /p ixe l= 0 .7

b its /p ixe l= 0 .5

20 40 60

B andw id th (kbps)

80 100

Figure 4.13. Client transmission time (server to client) of JPEG2000 compressed images
at different bandwidth.

4

b its/p ixe 1= 1
b its/p ix e l= 0.7
b its/p ix e I = 0.5

2

1

0.8

0.6

0.4

0.2

0
0 20 40 60 80 100

B a n d w i d t h (k b p s)

Figure 4.14. C lient transm ission tim e (proxy to clien t) at various bandw idth u sing cached
data at the proxy.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The overall performance can be shown by evaluated by using the following

analytical analysis.

Case study

From the performance results of section 4.1 for 10 MB of cache size the

proposed policy can achieve 40% hit ratio. We can calculate the average time of

the total system by using the formula

Average Time = 0.4 x Tpc + 0.6 x Tsc

where TPc is the transmission time between the proxy and the client and Tsc is the

transmission time between the server and the client.

From the Figures. 4.13 and 4.14 the time taken for a high quality image at 20

Kbps takes 1.34 sec if there is a miss in the proxy cache and takes 1.18 sec if

there us a hit in the proxy cache.

Average time = 0.4*(1.18)+0.6*(1.34)

= 0.472 + 0.824

= 1.296 sec

The average time taken for a server to transmit a high quality image at 20 kbps

in 2-tier architecture using other existing cache policy is 1.37 sec. The proposed

architecture provides faster response times.

Figure. 4.15 shows the performance of the proposed architecture when

compared with a 2-tier architecture. The decision-making scheme in the proxy

helps to decide which data should be adapted and which should not be. From the

transmission results we can observe that the proposed architecture can transmit

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

varying resolutions of images based on client resources. The client response

times is reduced considerably when compared with respective to the 2-tier

architecture. The effectiveness of the scheme makes a considerable impact on the

QOS of the overall system.

oa>OTaf
E

inin
Iincra

5
2-tier

Prop Arch4.5

4

3.5

3

2.5

2

1.5

1

0.5

0
0 20 40 60 80 100 120

Bandwidth(kbps)

Figure 4.15 Performance of proposed architecture when compared with a 2-tier
architecture

4.3 Summary

Performance of the proposed cache replacement policy was evaluated by

comparing the performance metrics with the other existing replacement policies.

The results show that the proposed replacement policy provided superior

performance. The proposed content adaptation architecture was evaluated using

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the simulation set up. Different transmission times were noted to evaluate the

performance of the system with cached data at the proxy, with adaptation at the

server and adaptation of cached data at the proxy server. The results show that the

proposed architecture along with proposed cache replacement policy can perform

better than existing architectures.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Conclusions and Future work

In this thesis an efficient content adaptation architecture for Universal

Multimedia Access has been proposed. The content adaptation is performed on

the fly. The proposed architecture adapts data both at the proxy and content

server. The distributed adaptation reduces the load on the proxy and the content

server.

The proposed architecture [44] efficiently uses the cached data in the proxy,

which reduces the network congestion, latency and improves the proxy

performance. The simulation results show that the response time is reduced and

server side latency is also reduced.

An efficient cache replacement policy [45] that provides superior performance

than the existing cache replacement policies has also been proposed. The

simulation results prove that the proposed cache replacement policy will provide

better performance. The proposed cache replacement policy also improves the

efficiency of the proxy server by allowing more request served from the proxy

cache.

The proposed architecture has an efficient decision making scheme which

decides when to adapt the data. This decision-making criteria makes the

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

architecture more robust. The proposed adaptation architecture with the caching

mechanism will be very efficient in mobile and wired networks especially for

large size multimedia data.

Future Work Recommendations

The performance of the proposed architecture has been evaluated using a

simulator under lighter load. It would be useful to evaluate the performance under

heavy client loads. Although simulation gives an indication of how the

architecture works, it would be important to implement and evaluate the

architecture in real time environment. There is also a need to develop a load

balancing strategy for effective distribution of client loads between the content

server and the proxy. Client profiles can also be implemented using the CC/PP

(Composite Capability/ Preference Profiles) protocol [46], CC/PP protocol gets

the client resource from a mobile device in the form of a XML document, which

can be stored in the database.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

1. M. K Mandal, “Multimedia Systems and Signals,” Kluwer Academic, Jan

2003.

2. http://www.ercim.org/publication/Ercim News/enw48/perkis.html

3. R. Mohan, R. Smith, and C. S. Li, “Adapting Multimedia Internet Content

for Universal Access,” IEEE Transactions on Multimedia, Vol. 1, No.l,

pp. 104-114, Mar 1999.

4. http://www.kodak.com/US/en/digital/flashPix/

5. M. Mesto, A. Koivisto and J. Sauvola “The Media Wrapper in the

Applications of Multimedia Content for Mobile Environments,”

Proceedings o f SPIE: Multimedia Systems and Applications III, Vol.

4209, pp. 132-139, Boston, MA, 2001.

6. A Fox, S. D Gribble, and E. A Brewer and E. Amir; “Reducing www

latency and bandwidth requirements by real-time distillation,” Proceeding

o f 5th Int. www Conf, Paris, France, 1996.

7. R. Han, P. Bhagwat, R. Lamaire, T. Mummert, V. Perret and J. Rubs,

“Dynamic Adaptation in a Image Transcoding Proxy For Mobile Web

Browsing,” IEEE Personal Communications, December 1998. PP 8-17.

8. S. Khan and M. K. Mandal, “Distributed Adaptation Technique for

Mobile Web Browsing,” Proc. o f SPIE: Internet Multimedia Management

System III, Vol. 4862, pp. 231-230, Boston, July 29-Aug 2, 2002.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.ercim.org/publication/Ercim
http://www.kodak.com/US/en/digital/flashPix/

9. A. Lera, A. Molinaro, and S. Marano, “Wireless broadband applications:

the teleservice model and Adaptive QOS provisioning,” IEEE

Communication Magazine, Vol. 7, No.10, pp. 71-75, Oct 1999.

10. M. Kojo, K. Raatikainen, and T. Alanko, “Connecting Mobile

Workstations to the Internet over a Digital Cellular Telephone Network,”

Proc. o f the Mobidata Workshop on Mobile and Wireless Information

Systems, Rutgers University, NJ, Nov 1994.

11. J. Wang, “A survey of webcaching schemes for the internet,” ACM

computer communication review, Vol 29(5), October 1999.

12. G. Abdulla, E. A. Fox, M. Abrams, and S. Williams, “Caching Proxies:

limitations and potentials,” Proceedings o f the 4th International WWW

conference, Boston, USA, December 1995.

13. C. Aggarwal, J. L. Wolf, and P.S. Yu, “Caching on the World Wide

Web,” IEEE Transactions on Knowledge and data Engineering, V ol.ll,

No. 1, January 1999.

14. P. Barford, A. Bestavros, A. Bradley, and M. E. Crovella, “Changes in

Web client access patterns: characteristics and caching implications, ”

World Wide Web (Special issue on Characterization and Performance

Evaluation), 1999.

15. S. Bhattacharjee, K. Calvert, and E. W. Zegura, “self organizing wide-

area network caches,” IEEE Infocom ’98, April 1998.

16. Caching for Improved Content Delivery by Intel corp.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17. D. L. Willick, D. L. Eager, and R. B. Bunt, “Disk cache replacement

policies for network file servers,” Proceedings o f the 13th Intl. Conf. on

Distributed Computing System, pp.2-11, May 1993.

18. S. Williams, M. Abrams, C. R. Standridge, G. Addulla, and E. A. Fox,

“Removal policies in network caches for World Wide Web documents,”

Proceeding o f SIGCOMM, pp. 293-305, Stanford, CA, Aug 1996.

19. F. Yu, Q. Zhang, W. Zhu and Y. Zhang “Network-Adaptive Cache

Management schemes for Mixed Media,” The second IEEE Pacific-Rim

Conference on Multimedia (IEEE-PCM) 2001, Beijing, China, Oct 2001.

20. Z. Xiang, Q. Zhang, W. Zhu and Y. Zhang “Cost-Based Replacement

Policy for Multimedia Proxy across Wireless Internet,” IEEE

Globecom ’01, San Antonio, USA, Nov 2001.

21. N. Markatchev and C. Williamson, “WebTraff: A GUI for Web proxy

cache Workload Modeling and Analysis,” Proceedings o f IEEE/ACM

International Symposium on Modeling, Analysis, and Simulation o f

Computer and Telecommunication Systems (MASCOTS), Fort Worth, TX,

pp. 356-363, October 2002.

22. M. Busari and C. Williamson, “ProWGen: A synthetic workload

Generation tool for simulation evaluation of web proxy caches,”

Computer Networks, Vol. 38, No. 6, pp. 779-794, June 2002.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23. X. Yang and G. D Veciana, “Zipf law and Effectiveness of Hierarchical

Caching,” Proceedings o f Communication Networks and Distributed

Systems 2002 (CNDS02), San Antonio, USA, Jan 2002.

24. L. Breslau, P. Cao, L. Fan, G. Phillips and S. Shanker, “Web caching and

Zipf like distribution; Evidence and Implications”, Proceedings o f IEEE

INFOCOMM conference, New York, NY, pp. 126-134, March 1999

25. M. Busari and C. Williamson, “On the sensitivity of web proxy cache

performance to workload characteristics,” Proceedings o f IEEE

INFOCOMM, Anchonage, Al, pp. 1225-1234, April 2001.

26. C. Murta and V. Almedia, “Using performance Maps to understand the

behaviour of web caching policies,” The second IEEE workshop on

Internet Applications(WIAPPOl),Sanjose, USA, July 2001.

27. S. Gadde, J. Chase, and M. Rabinovch, “Web caching and content

distibution: Aview from the interior,” Proceedings o f 5th International

web caching and content delivery workshop, 2000

28. R. Caceres, F. Douglis, A. Feldmann, G. Glass, and M. Rabinovich, “

Web proxy caching; the devil is in the details,” Workshop on Internet

server performance, Madison, USA, June 1998.

29. R. Tewari, H. Vin, A. Dan, and D. Sitaram, “Resource based caching for

web servers,” Proceedings o f SPIE/ACM conference on Multimedia

Computing, January 1998.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30. H. Kobayoshi and S. Z Yu, “Performance models of web caching and

prefetching for wireless Internet Access,” International conference on

performance evaluation: Theory, Techniques and Applications

(PERETTA 2000), Fukushima, Japan, September 2000.

31. L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “On the

implications of Z ipf s law for web caching,” Technical Report, 1998

32. M. Arlitt and C. Williamson, “Internet webservers: workload

characterization and performance implications,” IEEE/ACM transaction

on Networking, Vol 5, pp 631-645, October 1997.

33. F. Yu, Q. Zhang, W. Zhu, and Y. Q. Zhang, “QoS-adaptive proxy caching

for multimedia streaming over the Internet," Proceedings o f First IEEE

Pacic-Rim Conference on Multimedia, Sydney, Australia,” Dec. 13-15,

2000

34. V. Korolev and A. Joshi, “An End-End Approach to Wireless Web

Access,” International Workshop on Wireless Networks and Mobile

Computing, Scottdale, Arizona, USA, April 2001

35. R. Rejaie and J. Kangasharju, “Mocha: A quality adaptive multimedia

proxy cache for internet streaming,” Proceedings o f the International

Workshop on Network and Operating Systems Support for Digital Audio

and Video (NOSSDAV'Ol), pages 3-10, Port Jeerson, NY, June 2001.

ACM Press.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36. A. Hafid, G. Bochmann, and R. Dssouli, “ Distributed Multimedia

Applications and Quality of service,” Electronic journal on networks and

distributed processing, 1999.

37. L. Villard, C. Roisin and N. layada, “A XML based multimedia document

processing model for content adaptation,” proceedings o f digital

documents and electronic publishing (DDEPOO)), 2000.

38. A. Kitamoto, “ Multiresolution cache management for distributed satellite

image database using NACSIS-Thai international link”’ proceedings o f

the 6thInternational workshop on academic information networks and

systems (WAINS),pp. 243-250, 2000.

39 .1. Ari, A. Amer, E. L. Miller, S. Brandt, D. Long, “Who is more adaptive?

ACME: adaptive caching using multiple experts,” Workshop on

distributed data and structure (WDAS 2002), Paris, France, March 2002

40. www.linux.com (Information about traffic shapers)

41. www. i ava. sun.com

42. www.w3c.org

43. http://www.kakadusoftware.com

44. S. Bandaru and M. K Mandal, “Content Adaptation architecture with

usage of cached data in a Multimedia proxy,” presented at SPIE: Internet

Multimedia Management Systems, Orlando, USA, Sep 2003.

45. S. Bandaru and M. K Mandal, “Cache Replacement Policy for UMA

Architectures,” submitted to Transaction o f IEEE Multimedia.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.linux.com
http://www.w3c.org
http://www.kakadusoftware.com

46. M. Nilson, J. Hjelm, and H. Ohto, “Composite Capabilities/Preference

profiles: Requirements and Architecture,” W3C Working Draft, March

2003.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A

In Chapter 4 the simulation set up used for evaluating proposed content

adaptation architecture is described. The internal details of the communication in

the simulation setup are not explained in detailed. In this appendix a detailed

description about the communication of client, proxy and server is explained. Fig

A. 1 shows the handshake model of the client, proxy and server programs used in

the simulation. The client and proxy uses a UDP based connection to

communicate. This gives the ability to uses user defined packet size. The proxy

and server programs communicate using TCP based Connection. TCP is a

persistent connection and more reliable then UDP. The proxy program waits for

the request from the client program and once the request is received it checks for

the requested file in the cache. If the requested exists in the cache then the proxy

sends the UDP packets to the client. If the requested file does not exist in the

cache then the proxy uses a TCP based connection to connect to the server. The

server transmits the requested file to the proxy. The proxy then sends the

requested file to the client using the UDP based connection.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proxy
Client

Create Interface for the client

Create a UDP socket

Establish Connection with Proxy

Transmits the file request using datagram
packet

Close the UDP socket

Create a new UDP socket

Wait for the proxy response

Receive Datagram packets containing^ie
requested file

Close the UDP socket connection when all
packets are received or there is a timeout

/

Create a UDP socket
Wait for the Client request
Receive the file request
Close the UDP Socket
Îf (exist in cache)
{

Create a UDP socket
Wait for response from server
Transmit the file to the client
Close the UDP socket
connection

}
else{

test to
Create a TCP socket
Transmit the client re
the server
Receive the file from server
Close TCP socket
Create a UDP socket
Wait for response from server
Transmit the file to the client
Close the UDP socket
connection

Server

Create a TCP socket

^Wait for the request from the proxy

^Transmit the requested file to the
proxy

Close the TCP socket connection

Figure A.l Handshake Model of 3 -tier architecture implemented using java
sockets

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B

In Chapter 4 the description about the client interface, proxy and server was not

in detailed. The internal flow of these programs is not explained in detailed. This

appendix explains in detail about the functionality and program flow of the client,

the proxy and the server programs developed.

B.l Client Program

This appendix gives a detailed description about the client program. This

program generates the client for connecting to the proxy. This program also

generates the graphical user interface. The program connects to the proxy using

UDP connection. This program runs at port number 3000. The packets of the

requested file are received at this port number. The interface has a dropdown

menu bars which can allow the client to choose different servers it can connect,

different image formats it can request. A timer program calculates the total time

taken for serving the request to the client and is displayed on to the interface.

import j ava.awt.*;
import j ava.awt.event.*;
import j avax.swing.*;
import j avax.swing.event.*;
import java.net.*;
import java.io.*;
import java.util.*;

public class ImageClient2 extends JFrame implements
ActionListener
{

JComboBox JCB1,JCB2,JCB3,JCB4;
Container C;

// creates the graphical interface components

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

public ImageClient2()
{

Vector vl=new Vector();
v l .add("None");
v l .add("mpeg.ee.ualberta.ca");
v l .add("mccl.ee.ualberta.ca") ;
v l .add("129.128.197.176");
Vector v2=new Vector();
v 2 .add("None");
v 2 .add("lennal2 8");
v 2 .add("lenna2 56");
v 2 .add("lenna512");
Vector v3=new Vector();
v 3 .add("None");
v3.add("GIF");
v3.add("JPEG");
v 3 .add("JPEG2 0 0 0") ;
Vector v4=new Vector();
v 4 .add("None");
v 4 .add("Low");
v 4 .add("Medium");
v 4 .add("High");
JLabel title=new JLabel("Testbed for Distributed

Adaption of Multimedia Content
JLabel connection=new JLabel("Connect To :");
JLabel FileName=new JLabel("Requested File :");
JLabel FileType=new JLabel("File Type :");
JLabel Quality=new JLabel("Quality :");
JCBl=new JComboBox(vl);
JCB2=new JComboBox(v2);
JCB3=new JComboBox(v3);
JCB4=new JComboBox(v4);
JButton JB=new JButton("Establish Connection");
C=getContentPane();
C .setLayout(null);
C . add(connection);
C .add(FileName);
C .add(FileType);
C .add(Quality);
C.add(JB);
C.add(JCB1);
C .add(JCB2);
C .add(JCB3);
C .add(JCB4);
C .add(title);
setTitle("Testbed For LowBandwidth Environments"
connection.setBounds(30,40,100,25);
FileName.setBounds(30,80,100,25);
FileType.setBounds(30,120,100,25);
Quality.setBounds(30,160,100,25);
JB.setBounds(60,200,200,25);
JCB1.setBounds(190,40,140,25);
JCB2.setBounds(190,80,140,25);

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

JCB3.setBounds(190,12 0,14 0,25);
JCB4.setBounds(190, 160,14 0,25) ;
title.setBounds(45,10,350,20);
setSize (500,600) ;
setvisible(true);
setResizable(false);
JB.addActionListener(this);

This method fires the events generated by button. This method
sends the request to the proxy and then waits for the response
from the proxy.

public void actionPerformed(ActionEvent ae)
{

try {
Timer time=new Timer();
String ad=JCBl.getSelectedltem().toStringO;
String FileName=JCB2.getSelectedltem().toStringO;
String FileType=JCB3.getSelectedltem().toStringO;
if(FileType.equals("GIF"))

FileName=FileName+".gif";
if(FileType.equals("JPEG"))

FileName=FileName+".jpg";
if(FileType.equals("JPEG2 000"))

FileName=FileName+".jp2";
String Quality=JCB4.getSelectedltem().toStringO;
String transmit=FileName+"+"+Quality;
time.start ();
DatagramSocket socket=new DatagramSocket();
byte [] buf=new byte [256] ;
buf=transmit.getBytes();
InetAddress add=InetAddress.getByName(ad);
DatagramPacket packet=new
DatagramPacket(buf,buf.length, add, 5000) ;
socket.send(packet) ;
socket.close ();
DatagramSocket socketl=new DatagramSocket(3000);
socketl.setReceiveBufferSize (25000) ;
byte [] bufferl=new byte[64000];
byte[] buffer2=new byte[16000];
DatagramPacket packetl=new
DatagramPacket(bufferl,0,bufferl.length);
socketl.receive(packetl);
System.out.println("Recieved packet");
socketl. close () ,-
time.stop();

String tim=null;
if (FileType.equals("JPEG2000"))
{
FileOutputStream fis=new FileOutputStream(new

File(FileName));

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fis.write(packetl.getData());
f is . close () ;
JLabel Tim=new JLabel("Transmission "+tim);
JLabel size=new JLabel("File is Wrote to the

HardDisk");
C .add(Tim);
C .add(size);
size.setBounds(30,460,200,25) ;
Tim.setBounds(30,500,250,25) ;
try {

Process
P=Runtime.getRuntime().exec("/usr/java/jdkl.3.1
_03/bin/java JJ2KDecoder -i "+FileName);
DatalnputStream dis=new
DatalnputStream(p.getlnputStream());

String c;
while((c=dis.readLine())!=null)

{
System.out.println(c);
}

}catch (Exception e)
{

System.out.println(e);
}

}
else {
Imagelcon icon=new Imagelcon(packetl.getData());
String width=Integer.toString(icon.getlconWidth());
String height=Integer.toString(icon.getlconHeight());
String display="Image Size :"+width+"X"+height;
JLabel Tim=new JLabel("Transmission "+tim);
JLabel size=new JLabel(display);
can canv=new can(icon);
C .add(canv);
C .add(Tim);
C .add (size);
canv.setBounds(30,250,200,200) ;
size.setBounds(30,460,200,25) ;
Tim.setBounds(30,500,250,25);
}
}catch(Exception pe)
{

System.out.println(pe);
}

}

This method fires the events generated by action on the Dropdown
menu box. Changes options according to the image format selected.

public void itemStateChanged(ItemEvent it)
{

if (it. getltem () .toStringO . trim ()== "JPEG2 000 ")
{

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

System.out.println("Item is cahnged");
JCB4.setvisible (false);
Vector v=new Vector();
v .add("1");
v .add("2");
v .add("3");
v .add("4");
v .add("5");
JCB4=new JComboBox(v);
JCB4.setBounds (190,160,140,25) ;
C .add(JCB4);

}else
{
Vector v4=new Vector();
JCB4.setvisible(false);
v 4 .add("None");
v 4 .add("Low");
v 4 .add("Medium");
v 4 .add("High");
JCB4=new JComboBox(v4);
JCB4.setBounds(190,160,140,25);
C .add(JCB4);
}

}
public static void main(String[] args)
{

new ImageClient2();
}

}

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.2 Proxy Program

This program creates a proxy server that can serve the clients request based on

the resources available. The program uses a UDP connection to get receive the

request from the client. This program runs at port number 5000. This program

connects to the server using a TCP based connection. This program also checks

whether the requested file exist in the cache or not. The proxy program also

implements the decision making scheme which is discussed in chapter 3.

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

j ava.net.*;
j ava.io.*;
j ava.util.*;
j avax.swing.*;
j ava.awt.image.*;
j ava.awt.*;
j ava.awt.image.Bufferedlmage;
j ava.io.File;
j ava.io.IOException;
j ava.util.Iterator;
j ava.util.List;
javax.imageio.IlOImage;
j avax.imageio.ImagelO;
j avax.imageio.ImageWriteParam;
j avax.imageio.ImageWriter;
javax.imageio.metadata.IIOMetadata;
j avax.imageio.stream.ImageOutputStream;

public class imageproxy
{

String Hostadd=null;
String quality=null,name=null;
boolean cache=true;

This constructor creates the UDP sockets and receives the request
from the client.

public imageproxy()
{
try {

DatagramSocket socket=new DatagramSocket(5000);

byte[] buf=new byte [256] ;
DatagramPacket packet=new

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DatagramPacket(buf,buf.length);
socket.receive(packet);
System.out.println("Recieved packet");
String p=new String(packet.getData(),0);
StringTokenizer st=new StringTokenizer(p,"+")
name=st.nextToken ();
quality=st.nextToken().trim();
System.out.println("Image :"+name+"
Quality:"+quality);
Imagelcon h=(Imagelcon)connectserver(p);
InetAddress add=packet.getAddress();
int port=packet.getPort();
Hostadd=add.getHostAddress();
System.out.println("+++++++++"+Hostadd);
String m="bye Buddy";
buf=m.getBytes();
packet=new DatagramPacket(
buf,buf.length,add,port);
socket.send(packet);
System.out.println("data send");
}catch(Exception e)
{

System.out.println(e);
}

}

This function connects to the server if the object is not found
in the cache.

public Object connectserver(String p)
{
Object m=null;
Timer time=new Timer ();

try {
if (cache==true)
{

File f=new File(name);
int len=(int)f.length();
byte[] buf=new bytetlen];
System.out.println("reading data of
length"+len);
time.start();
DatalnputStream disl= new DatalnputStream(new
FilelnputStream(f));
System.out.println("reading data of
length"+len);
disl.read(buf,0,(int)len);
System.out.println("finished reading
data"+buf.length);
time.stop () ;
time.print("Reading Time");
int bits=Integer.parselnt(quality);
System.out.println("Quality"+bits);
switch(bits)

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{
case 1: len=len/4;

break;
case 2: len=len/2;

break;
case 3: len=(2*len)/3;

break;
case 4: len=(3*len)/4;

break;
case 5: len=len;

break;
}

System.out.println("Data size to be transmitted
"+len);
DatagramSocket socket=new DatagramSocket();
socket.setSendBufferSize(250000);
InetAddress add=InetAddress.getByName
("mpeg.ee.ualberta.ca") ;
DatagramPacket packetl=new
DatagramPacket(buf,0,len,add,3 000);
socket.send(packetl);
socket.close ();

}
else {
Socket soc=new Socket("localhost",2000);
PrintStream dos=new
PrintStream(soc.getOutputStream());
time.start();
DatalnputStream disl=new
DatalnputStream(soc.getlnputStream());
dos.println(p);
int len=disl.readlnt();
byte[] buf=new byte [len] ;
disl.read(buf,0,len);
System.out.println("Recieved Data from server
:"+len);
System.out.println("Recieved Data from server
:"+buf.length);
time.stop();
time.print("End Time:");
soc.close();

boolean adapt=adaptationManager(len);
StringTokenizer STl=new StringTokenizer(name,".");
String namel=STl.nextToken();
String ext=STl.nextToken();
if (ext.equals("jp2"))
{
if(adapt==true)

{
if(quality.trim().equals("Low"))

{
len=len/5;

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}

if(quality.trim().equals("Medium"))
{

len=len/2;
}

if(quality.trim().equals("High"))
{

len=len;
}

}
}

int templen=len/2;
byte[] templ=new byte[templen];
byte[] temp2=new byte[templen];
for (int i=0;i<templen;i++)
{

tempi[i]=buf[i];
temp2[i]=buf[templen+i];

}
System.out.println("Loaded Successfully");
System.out.println("Loaded Successfully"+len);
DatagramSocket socket=new DatagramSocket();
socket.setSendBufferSize(250000);
InetAddress
add=InetAddress.getByName("mpeg.ee.ualberta.ca");
DatagramPacket packetl=new
DatagramPacket(buf,0,len,add,3000);
socket.close();
}
}catch(Exception e)
{

System.out.println(e);
}
return m;

}

public static void write(ImageWriter writer, ImageWriteParam
imageWriteParam, IlOImage iiolmage, String filename, float
compressionQuality) throws IOException

{
ImageOutputStream out = ImagelO.createlmageOutputStream(new
File(filename));
imageWriteParam.setCompressionQuality(compressionQuality);
writer.setOutput(out);
writer.write((IIOMetadata) null, iiolmage, imageWriteParam);
out.flush();
out.close ();

}

This function decides whether to adapt the data or not.
public boolean adaptationManager(int length)

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

int Transdata=0;
int bandpc=9;
int bandinternal=1500;
int bandsp=23 00;
float

Timeprocess=0,TimeUnprocess=0,Ncache=0,Wcache=0;
float TimeAdapt=0,TimeUnadapt=0;
boolean adapt=false;

if(quality.equals("Low"))
{

Transdata=length/2;
}

if (quality.equals("Medium"))
{

Transdata=length*3/4;
}

if(quality.equals("High"))
{

Transdata=length;
}

Timeprocess=Transdata/bandpc;
TimeUnprocess=length/bandpc;
Ncache=Transdata/bandinternal;
Wcache=length/bandinternal;

TimeAdapt=Timeprocess+Ncache;
TimeUnadapt=TimeUnprocess+Wcache;
if(TimeAdaptcTimeUnadapt)
adapt=true;

System.out.println("Data Should be:"+adapt);

return adapt;

}

public static void main(String args[]) throws IOException
{

new imageproxy();
}

}

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.3 Server Program

This program generates the server. The server runs at port number 2000. The

server communicates using TCP based connection. The server has a images

stored in multiple resolutions. The server decides which resolution should be sent

to the client.

import java.net.*;
import j ava.io.*;
import j ava.awt.*;
import javax.swing.*;
import java.util.*;
public class imageserver
{

Socket s;

This constructor creates the TCP socket for serving the request
to the clients.

public imageserver()
{

String p;
Timer time=new Timer ();
try{ServerSocket ss=new ServerSocket(2000);
s=ss.accept();
DatalnputStream dis=new

DatalnputStream(s.getlnputStream ()) ;
DataOutputStream psl=new
DataOutputStream(s.getOutputStream());
String l=dis.readLine();
System.out.println(1);
StringTokenizer st=new StringTokenizer(1 ;
String name=st.nextToken();
String quality=st.nextToken() ;
System.out.println("Image :"+name+"
Quality:"+quality);

i f ((quality.trim()).equals("Low"))
{name ="1ow"+name;
System.out.println("Image quality is Low");
}if ((quality.trim()) .equals("Medium"))
name="medium"+name;
if((quality.trim()).equals("High"))
name=name;

System.out.println("File to S e r v e r + n a m e) ;
File f=new File(name);
int len=(int)f.length();

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}

byte[] buf=new byte[len];
//byte[] buf=new byte[(int)len];
System.out.println("reading data og length"+len)
time.start ();
DatalnputStream disl= new DatalnputStream(new
FilelnputStream(f));
System.out.println("reading data og length"+len)
disl.read(buf,0,(int)len);
System.out.println("finished reading
data"+buf.length);
time.stop();
time.print("Reading Time");
psl.writelnt((int)len);
psl.write(buf);
System.out.println("Data From Proxy :"+l);
psl.flush();
psl.close();
disl.close();
s . close();
}catch(IOException e)
{
e.printStackTrace() ;

}

public static void main(String[] args) throws IOExcept
{

new imageserver();
}

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX C

C.l Trace Driven Simulator

In Chapter 4 the cache replacement policies were evaluated using a trace driven

simulator. The description about the design patterns is not explained in chapter 4.

This appendix gives a detailed description about the design patterns used and

program flow of the simulator. Fig A.2 shows the design pattern used by the

trace driven simulator. Facade is an object oriented design pattern. In this pattern

main class controls the sub classes. The trace driven simulator used in chapter 4

for evaluating the proposed cache replacement policy uses this pattern to

integrate different components. The different components are nothing but the

different policies that are used in performance evaluation.

M ain program
(S im ulator)

Subprogram s

P roposedS ize C ostLR U L R U

Figure A.2 Fafade design pattern used by the trace driven simulator

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

import j avax.swing.*;
import j ava.awt.*;
import j ava.awt.event.*;
import java.util.*;
public class TraceDrivenSim implements ActionListener
{

JFrame j f;
JTextField tfl,tf2;
JLabel result=new JLabelO;
JLabel hit=new JLabelO;
JLabel miss=new JLabelO;
JComboBox jcb;
JButton j bl,j b2;

Constructer creates the graphical interface components for the
trace driven simulator.

public TraceDrivenSim() {
jf= new JFrame("Trace Driven Simulator");
tfl=new JTextField(30);
tf2=new JTextField(30);
jbl=new JButton("Get Hit Ratio");
jb2=new JButton("Get Byte Hit Ratio");
JLabel title=new JLabel("Trace Driven Simulation")
JLabel TLabel=new JLabel("Name of Trace");
JLabel CLabel=new JLabel("Cache Size");
JLabel PLabel=new JLabel("Cache Replacement Policy
JLabel HLabel=new JLabel("No of Hits/Byte_hit");
JLabel MLabel=new JLabel("No of Miss/Byte_Miss");
JLabel RLabel=new JLabel("Percentage %");
JPanel jp2=new JPanelO;
Vector v = new Vector();
v.add("LRU");
v .add("LFU");
v .add("Size") ;
v .add("Proposed");
jcb=new JComboBox(v);
title.setFont(new Font("arial",1,16)) ;
title.setForeground(Color.blue);
TLabel.setForeground(Color.red);
CLabel.setForeground(Color.red);
PLabel.setForeground(Color.red);
HLabel.setForeground(Color.red);
MLabel.setForeground(Color.red);
RLabel.setForeground(Color.red);
jbl.setForeground(Color.red);
j b 2 .setForeground(Color.red) ;
j cb.setForeground(Color.red);

jp2.add(title);
j p 2 .setLayout(null);
jp2.add(TLabel);
jp2.add(tf1);
jp2.add(CLabel);

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

jp2.add(tf2) ;
jp2.add(PLabel) ;
j p 2 .add(j cb);
jp2.add(jbl);
j p 2 .add(jb2) ;
j p 2 .add(HLabel) ;
jp2.add(MLabel);
j p 2 .add(RLabel);
j p 2 .add(hit);
jp2.add(miss);
j p 2 .add(result);

title.setBounds(70,20,200,25);
TLabel.setBounds(20,60,100,25);
tf1.setBounds(210,60,100,25);
CLabel.setBounds(20,100,100,25);
tf2.setBounds(210,100,100,25);
PLabel.setBounds(20,140,180,25);
j cb.setBounds(210,14 0,100,25) ;
jbl.setBounds(20,180,14 0,25);
jb2.setBounds(170,180,140,25);
HLabel.setBounds(20,220,180,25);
hit.setBounds(210,220,100,25);
MLabel.setBounds(20,250,180,25);
miss.setBounds(210,250,180,25);
RLabel.setBounds(20,280,180,25);
result.setBounds(210,280,100,25);
jf.getContentPane().add(jp2);
jf.setSize (400,400) ;
jf.setVisible(true);
j f .setResizable(false);
jbl.addActionListener(this);
jb2.addActionListener(this);

}

//This function fires the events generated by the buttons and
also selects the appropriate policy for testing.

public void actionPerformed(ActionEvent ae)
{

String file=tf1.getText();
String cachesize=tf2.getText();
String policy=jcb.getSelectedltem().toStringO;
if(ae.getSource()==jbl)
{

if (policy.equals("LRU"))
{
LRU l=new LRU(file,cachesize);
String percent=Float.toString(1.sunnyPrint())
String Nhit=Integer.toString(1.sunnyHit());
String Nmiss=Integer.toString(1.sunnyMiss());
hit.setText(Nhit);
miss.setText(Nmiss);

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

result.setText(percent);
}
if (policy.equals("LFU"))
{
LFU l=new LFU(file,cachesize);
String percent=Float.toString(1.sunnyPrint());
result.setText(percent);
String Nhit=Integer.toString(1.sunnyHit());
String Nmiss=Integer.toString(1.sunnyMiss());
hit.setText(Nhit);
miss.setText(Nmiss);
result.setText(percent);
}
if (policy.equals("Size"))
{
SizeBased l=new SizeBased(file,cachesize);
String percent=Float.toString(1.sunnyPrint());
String Nhit=Integer.toString(1.sunnyHit());
String Nmiss=Integer.toString(1.sunnyMiss());
hit.setText(Nhit);
miss.setText(Nmiss);
result.setText(percent);
result.setText(percent);

}
if (policy.equals("Proposed"))
{
proposedreplacement l=new
proposedreplacement(file,cachesize);
String percent=Float.toString(1.sunnyPrint());
String Nhit=Integer.toString(1.sunnyHit());
String Nmiss=Integer.toString(1.sunnyMiss());

hit.setText(Nhit);
miss.setText(Nmiss);
result.setText(percent);
result.setText(percent);

}
}

if (ae.getSource()==jb2)
{

if (policy.equals("LRU"))
{
BH_LRU l=new BH_LRU(file,cachesize);
String percent=Double.toString(1.sunnyPrint())
String Nhit=Double.toString(1.sunnyHit());
String Nmiss=Double.toString(1.sunnyMiss());

hit.setText(Nhit);
miss.setText(Nmiss);
result.setText(percent);

}
if (policy.equals("LFU"))
{
BH_LFU l=new BH_LFU(file,cachesize);

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

String percent=Double.toString(1.sunnyPrint())
result.setText(percent);
String Nhit=Double.toString(1.sunnyHit());
String Nmiss=Double.toString(1.sunnyMiss());
hit.setText(Nhit);
miss.setText(Nmiss);
result.setText(percent);
}
if (policy.equals("Size"))
{
BH_Size l=new BH_Size(file,cachesize);
String percent=Double.toString(1.sunnyPrint())
String Nhit=Double.toString(1.sunnyHit());
String Nmiss=Double.toString(1.sunnyMiss());
hit.setText(Nhit);
miss.setText(Nmiss);
result.setText(percent);
result.setText(percent);

}
if (policy.equals("Proposed"))
{
BH_proposedreplacement l=new
BH__proposedreplacement (file, cachesize) ;
String percent=Double.toString(1.sunnyPrint())
String Nhit=Double.toString(1.sunnyHit());
String Nmiss=Double.toString(1.sunnyMiss());
hit.setText(Nhit);
miss.setText(Nmiss);
result.setText(percent);
result.setText(percent);
}

public static void main(String[] args)
I

new TraceDrivenSim();

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C.1.1 LRU Policy

This program implements the least recently used algorithm. This program takes

the trace name and cache size as input arguments.

import java.io.*;
import java.util.*;

public class LRU
{

static String TraceFile;
static int cachesize=0;
Hashtable Dataset_Time=new HashtableO;
Hashtable Dataset_Size=new HashtableO;
int Counter=0;
int hit=0,miss=0;
float percent=0;
public LRU(String file,String csize)
{

String Data=null;
String ID,Time_stamp,SIZE;
TraceFile=file;
cachesize=Integer.parselnt(csize);
File trace=new File(TraceFile);
int tempcache=0;
try {
DatalnputStream dis=new DatalnputStream(new
FilelnputStream(trace));
while((Data=dis.readLine())!= null)
{
int data_size=0;
StringTokenizer st=new StringTokenizer(Data," ");
Time_stamp=st.nextToken();
ID=st.nextToken();
SIZE=st.nextToken();
data_size=Integer.parselnt(SIZE);
tempcache=tempcache+data_size;
if(tempcache<cachesize)
{

Dataset_Time.put(ID,Time_stamp);
Dataset_Size.put(ID,SIZE);
Counter++;

}else
{
break;
}
}

runTrace() ;
percent=((float)hit/(hit+miss))*100;

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

System.out.println("No of Hits:"+hit);
System.out.println("No of Miss:"+miss);
System.out.println("Hit Percentage"+percent);

}catch(Exception e)
{

System.out.println(e);
}

}

This function runs the traces, implements the least recently used
technique.

public void runTrace()
{

try {
DatalnputStream DIS=new DatalnputStream(new
FilelnputStream(new File(TraceFile)));
String Data=null;
Enumeration e=Dataset_Time.keys();
for(int i=0;i<Dataset_Time.size();i++)

{
String skip=DIS.readLine();

}

while((Data=DIS.readLine())!= null)
{
StringTokenizer st=new StringTokenizer(Data," ");
String Time_stamp=st.nextToken();
String ID=st.nextToken();
String SIZE=st.nextToken();

if(Dataset_Time.containsKey(ID))
{

hit++;
Dataset_Time.put(ID,Time_stamp);

}
else
{

miss++;
if(Dataset_Time.size()==Counter)
{
while(e.hasMoreElements())
{
Object Element_Time=e.nextElement();
float curr_time=Float.parseFloat(Time_stamp);
if(curr_time >
Float.parseFloat(Dataset_Time.get(Element_Time).toString())
)

{
Dataset_Time.remove(Element_Time);
Dataset_Size.remove(Element_Time);
Dataset_Time.put(ID,Time_stamp);
Dataset_Size.put(ID,SIZE);

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}
}
}else

{
Dataset_Time.put(ID,Time_stamp);
Dataset_Size.put(ID,SIZE);

}
}
}
}catch(Exception e)
{

System.out.println(e);
}

}
This function returns the Hit ratio value

public float sunnyPrint()
{

return percent;
}

This function returns the number of hits by the this policy
public int sunnyHit()
{

return hit;
}

This function returns the number of misses by the this policy
public int sunnyMiss()
{

return miss;
}

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C.1.2 LFU Policy

This program implements the least frequently used algorithm. This program takes

the trace name and cache size as input arguments.

import java.io.*;
import java.util.*;

public class LFU
{

String TraceFile;
Hashtable Dataset_Time=new HashtableO;
Hashtable Dataset_Frequency=new HashtableO;
Hashtable Dataset_Aging=new HashtableO;
Hashtable Dataset_Size=new HashtableO;
int Counter=0;
int hit=0,miss=0;
float percent=0;
public LFU(String file,String csize)
{

String Data=null;
String ID,Time_stamp,SIZE;
TraceFile=file;
File trace=new File(TraceFile);
int cachesize=Integer.parselnt(csize);
int tempcache=0;
try {
DatalnputStream dis=new DatalnputStream(new
FilelnputStream(trace));
while((Data=dis.readLine())!= null)
{
int data_size=0;
StringTokenizer st=new StringTokenizer(Data," ");
Time_stamp=st.nextToken() ;
ID=st.nextToken();
SIZE=st.nextToken();
data_size=Integer.parselnt(SIZE);
tempcache=tempcache+data_size;
if(tempcache<cachesize)
{

Dataset_Time.put(ID,Time_stamp);
Dataset_Size.put(ID,SIZE);
Counter++;

} else
{

break;
}
}

intialFrequency();

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

runTrace () ;
percent=((float)hit/(hit+miss))*10 0;
System.out.println("No of Hits:"+hit);
System.out.println("No of Miss:"+miss);
System.out.println("Hit Percentage"+percent);
System.out.println("No of Objects:"+Counter);
}catch(Exception e)
{

System.out.println(e);
}

}

public void intialFrequency()
{

Enumeration e=Dataset_Time.keys();
String Freq="l";
while(e.hasMoreElements())
{

Dataset_Frequency.put(e.nextElement(),Freq)
}

public float sunnyPrint()
{

return percent;
}
public int sunnyHit()
{

return hit;
}
public int sunnyMiss()
{

return miss;
}
public float ageCalculation(int Frequency, float time)
{

float age= (float)Frequency+time;
return age;

public void runTrace()
{

try{
DatalnputStream DIS=new DatalnputStream(new
FilelnputStream(new File(TraceFile)));
String Data=null;
Enumeration e=Dataset_Frequency.keys();
for(int i=0;i<Dataset_Frequency.size();i++)

{
String skip=DIS.readLine();

}

while((Data=DIS.readLine())!= null)

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

StringTokenizer st=new StringTokenizer(Data," ");
String Time_stamp=st.nextToken();
String ID=st.nextToken();
String SIZE=st.nextToken();
if(Dataset_Frequency.containsKey(ID))
{
hit++;
int freq=Integer.parselnt(

Dataset_Frequency.get(ID).toString());
freq++;

Dataset_Frequency.put(ID,Integer.toString(freq));
}
else
{

miss++;
if(Dataset_Frequency.size()==Counter)
{
Object keyl=findLowestFreqObject(Dataset_Frequency)

if (keyl!=null)
{

Dataset_Frequency.remove(keyl);
Dataset_Time.remove(keyl);
Dataset_Size.remove(keyl);
Dataset_Frequency.put(ID,"1");
Dataset_Time.put(ID,Time_stamp);
Dataset_Size.put(ID,SIZE);

}else
continue;

}else
{

Dataset_Frequency.put(ID,"1");
Dataset_Time.put(ID,Time_stamp);

}

}
}
}catch(Exception r)
{

System.out.println("Level 2 b r e a c h + r) ;
r .printStackTrace() ;

}
}

public Object findLowestFreqObject(Hashtable ht)
{

Enumeration e=ht.keys();
int minvalue=10000000;
Object key=null;
while(e.hasMoreElements())
{
Object keyl=e.nextElement();

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

int templ=Integer .parselnt (ht. get (keyl) .toStringO)
if (templ<=minvalue)

{
minvalue=templ;
key=keyl;

}

}
return key;

}

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C.1.3 Size

This program implements the size algorithm. This program takes the trace

name and cache size as input arguments.

import java.io.*;
import java.util.*;

public class SizeBased
{

static String TraceFile;
static int cachesize=0;
Hashtable Dataset_Time=new HashtableO;
Hashtable Dataset_Size=new HashtableO;
int Counter=0;
int hit=0,miss=0;
float percent=0;
public SizeBased (String file,String csize)
{

String Data=null;
String ID,Time_stamp,SIZE;
TraceFile=file;
cachesize=Integer.parselnt(csize);
File trace=new File(TraceFile);
int tempcache=0;
try {
DatalnputStream dis=new DatalnputStream(new
FilelnputStream(trace));
while((Data=dis.readLine())!= null)
{
int data_size=0;
StringTokenizer st=new StringTokenizer(Data," ");

Time_stamp=st.nextToken();
ID=st.nextToken();
SIZE=st.nextToken();
data_size=Integer.parselnt(SIZE);
tempcache=tempcache+data_size;
if(tempcache<cachesize)
{

Dataset_Time.put(ID,Time_stamp);
Dataset_Size.put(ID,SIZE);
Counter++;

}else
{
break;
}

}

runTrace () ;
percent= ((float)hit/(hit+miss))*10 0;

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

System.out.println("No of Hits:"+hit);
System.out.println("No of Miss:"+miss);
System.out.println("Hit Percentage"+percent);
System.out.println("No of Objects:"+Counter);

}catch(Exception e)
{

System.out.println(e);
}

}

public void runTrace()
{
try {
DatalnputStream DIS=new DatalnputStream(new
FilelnputStream(new File(TraceFile)));
String Data=null;
Enumeration e=Dataset_Time.keys();
for (int i = 0;i<Dataset_Time.size();i++)

{
String skip=DIS.readLine();

}

while ((Data=DIS . readLine {)) ' . = null)
{
StringTokenizer st=new StringTokenizer(Data," ")
String Time_stamp=st.nextToken();
String ID=st.nextToken();
String SIZE=st.nextToken();
int curr_Size=Integer.parselnt(SIZE);
if(Dataset_Size.containsKey(ID))
{

hit++;
}
else
{
miss++;
if(Dataset_Size.size()==Counter)
{
Object key=findLargestSize(Dataset_Size);
Dataset_Size.remove(key);
Dataset_Time.remove(key);
Dataset_Size.put(ID,Integer.toString(curr_Size))
Dataset_Time.put(ID,Time_stamp);
}else
{Dataset_Size.put(ID,Integer.toString(curr_Size))
Dataset_Time.put(ID,Time_stamp);

}

}
}
}catch(Exception r)

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{
System.out.println(r);

}
}

public Object findLargestSize(Hashtable ht)
{

Enumeration e=ht.keys();
int largevalue=0;
Object key=null;
while(e.hasMoreElements())
{
Object keyl=e.nextElement();
int templ=Integer.parselnt(ht.get(keyl).toString())
if (templ>=largevalue)
{

largevalue=templ;
key=keyl;

}
}

return key;
}
public float sunnyPrint()
{

return percent;
}
public int sunnyHit()
{

return hit;
}
public int sunnyMiss()
{

return miss;

}

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C.1.4 Proposed

This program implements the proposed algorithm. This program takes the trace

name and cache size as input arguments.

import java.util.*;
import j ava.io.*;

public class proposedreplacement
{

static String TraceFile;
static int cachesize=0;
Hashtable Dataset_frequency =new HashtableO;
Hashtable Dataset_weight =new HashtableO;
Hashtable Dataset_Size=new HashtableO;
Hashtable Dataset_Time=new HashtableO;
int hit=0,miss=0;
final int SP_BW=1000000;
final int P_BW=100000;
int Complexity=2;
int Counter=0;
float percent=0;
public proposedreplacement(String file,String csize)
{
String Data=null;
String ID,Time_stamp,SIZE;
TraceFile=file;
cachesize=Integer.parselnt(csize);
File trace=new File(TraceFile);
int tempcache=0;
int No_objects = 0 ;
try {
DatalnputStream dis=new DatalnputStream(new
FilelnputStream(trace)) ;
while((Data=dis.readLine())!= null)
{

int data_size=0;
StringTokenizer st=new StringTokenizer(Data," ");
Time_stamp=st.nextToken();
ID=st.nextToken();
SIZE=st.nextToken();
data_size=Integer.parselnt(SIZE) ;
tempcache=tempcache+data_size;
if(tempcache<cachesize)
{

Dataset_Size.put(ID,SIZE);
Dataset_Time.put(ID,Time_stamp);
Counter++;
} else
{

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

break;
}

}

No_obj ects=Counter;
intialFrequency();
intialCost();
runTrace();
percent=((float)hit/(hit+miss))*10 0;
System.out.println("No of Hits:"+hit);
System.out.println("No of Miss:"+miss);
System.out.println("Hit Percentage"+percent);

}catch(Exception e)
{

System.out.println(e);
}

}

public void intialFrequency()
{

Enumeration e=Dataset_Size.keys();
String Freq="l";
while(e.hasMoreElements())
{

Dataset_frequency.put(e.nextElement(),Freq)
}

}

public void intialCost()
{

Enumeration e=Dataset_Size.keys();
while(e.hasMoreElements())
{
Object key=e.nextElement();
int size=Integer.parselnt(

Dataset_Size.get(key).toString());
float time=Float.parseFloat(

Dataset_Time.get(key).toString());
float Cost= costCalculation(size,time);
Dataset_weight.put(key,Float.toString(Cost));

}
}

public float costCalculation(int size, float time)
{

float rtt=size/SP_BW;
float Adapt_Time=Complexity*(size/P_BW);

// float Adapt_Time=0;
float Cost=(100*rtt+50*Adapt_Time)+time;

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

return Cost;
}

public void runTrace()
{
try {
DatalnputStream DIS=new DatalnputStream(new
FilelnputStream(new File(TraceFile)));
String Data=null;
Enumeration e=Dataset_weight.keys();
for(int i=0;i<Dataset_Size.size();i++)

{
String skip=DIS.readLine();
}

while((Data=DIS.readLine())! = null)
{
StringTokenizer st=new StringTokenizer(Data," ");
String Time_stamp=st.nextToken();
String ID=st.nextToken();
String SIZE=st.nextToken();
float cost =costCalculation(
Integer.parselnt(SIZE),Float.parseFloat(Time_stamp));

if(Dataset_frequency.containsKey(ID))
{
hit++;
int freq=Integer.parselnt(
Dataset_frequency.get(ID).toString());
freq++;
Dataset_frequency.put(ID,Integer.toString(freq));
}
else
{

miss++;
if(Dataset^weight.size()==Counter)
{
Enumeration ce=Dataset_weight.keys();

while(ce.hasMoreElements())
{

Object Curr_cost=ce.nextElement();
if (cost > Float.parseFloat
(Dataset_weight.get(Curr_cost).toString()))
{

Dataset_weight.remove(Curr_cost);
Dataset_frequency.remove(Curr_cost);
Dataset_Size.remove(Curr_cost);
Dataset_Time.remove(Curr_cost);
Dataset_weight.put(ID, Float.toString(cost)) ;
Dataset_frequency.put(ID, "1");
Dataset_Size.put(ID,SIZE);
Dataset_Time.put(ID,Time_stamp);

}
}
}else
{

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dataset_weight.put(ID,Float.toString(cost));
Dataset_frequency.put(ID, "1") ;
Dataset_Size.put(ID,SIZE);
Dataset_Time.put(ID,Time_stamp);

}
}

}
}catch(Exception r)
{

System.out.println(r) ;
}

}
public float sunnyPrint()

return percent;
}
public int sunnyHit()
{

return hit;
}
public int sunnyMiss()
{

return miss;
}

}

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

