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Abstract 

Medical images are largely used to diagnose medical conditions and to plan, implement, and 

evaluate surgical and therapeutic procedures. It is therefore crucial that the information 

obtained from these images be timely, relevant and accurate. Precisely registering images over 

time or across modalities is necessary before extracting relevant clinical information. The 

precision of registration solutions is usually verified by visual inspection, which is time 

consuming. To address this issue, a fuzzy computing framework that could be used to 

automatically assess the quality of the registration solutions was developed. Fuzzy computing 

was chosen because of its ability to deal with imprecise or ambiguous regions in images. This 

work had two objectives: 1) to develop a similarity measure for image registration; and 2) to 

develop an overlap measure to assess the quality of registration solutions. Since the clinical 

focus was on spinal deformities, the main interest was on measuring the inclinations of 

vertebrae in spine radiographs. A registration algorithm based on the proposed similarity 

measure was applied on 16 vertebral endplates. The similarity measure parameters were 

adjusted until satisfactory results (as assessed by an expert) were achieved. The registration 

was successful in all the cases. These results outperformed those obtained using a registration 

algorithm based on the mean squared errors (MSE) similarity measure (which was successful 

in 80% of the cases). A registration algorithm based on the proposed similarity measure was 

applied with fixed registration parameters on 141 vertebral endplates. The proposed overlap 

measure and image descriptors were then computed. The resulting dataset was divided into 

training and test set. The training set was used to configure three classifiers: a support vector 

classifier (SVC), a decision tree classifier (DT) and a logistic regression classifier (LR). Their 

performance was evaluated on the test set. The SVC had an accuracy of 86% discriminating 

Large Misregistrations (those above 3°) from Small Misregistrations. This accuracy was better 



than that of the LR (76%) and DT (68%). The differentiation between Large Misregistrations 

and Small Misregistrations using the proposed overlap measure, image data, and a support 

vector classifier was achieved successfully. 
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1 Introduction 

Scoliosis [58], [40] is a condition that involves abnormal lateral curvature and rotation 

of the spine and usually causes noticeable trunk distortions. These distortions may include 

asymmetrical elevations of the shoulders and/or hips, prominence of a scapula, and subtle 

twisting of the trunk. Scoliosis affects between 2 and 4% of adolescents [58] and between 70 

and 80% of the cases have an unknown cause [40]. The most common descriptor of the 

severity of scoliosis is the Cobb angle [13]. This radiographic indicator is obtained from 

standing posterior-anterior (PA) radiographs of the spine. The Cobb angle is measured 

between the inflection points of the spine curve (see Figure 1-1). Two other radiographic 

indicators of interest in spinal deformity research are the vertebral wedge angle and the inter

vertebral wedge angle [2], [66], [1]. Wedge angles are determined by assessing the vertebral 

endplates inclinations [2]. The inclination of the upper vertebral endplate is given by the 

inclination (with respect to the horizontal axis) of the line going through points 1 and 2 in 

Figure 1-2. The inclination of the lower vertebral endplate is given by the inclination (with 

respect to the horizontal axis) of the line going through points 3 and 4 in Figure 1-2. The 

vertebral wedge angle is the difference in angle between the inclinations of the upper and 

lower vertebral endplates. The inter-vertebral wedge angle is the difference in angle between 

the inclination of the lower endplate of the superior vertebra and the inclination of the upper 

endplate of the inferior vertebra. For example, the inter-vertebral wedge angle between 

vertebra A and vertebra B in Figure 1-3 would be equal to the difference of the inclinations of 

the line going through points 3 and 4 of vertebra A and the inclination of the line going 

through points 1 and 2 of vertebra B. The measurement of the wedge and Cobb angles are 

subject to technical errors [66]. In the case of the Cobb angle, errors are associated with the 

vertebral endplate selection and with intrinsic intra- and inter-observer measurements 
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variability [46]. Measurements of the Cobb angle have an associated intra- and inter-observer 

variability of approximately 4° to 8° [23]. In the case of wedging, vertebra selection does not 

contribute to measurement error [66]. Therefore, the error in wedging measurement is 

expected to be approximately 4°, based on the study of Morrissy et al. [46]. Other errors result 

from variations in patient posture, and these would affect the measures of Cobb angle and 

inter-vertebral wedging but not of vertebral wedging [66]. In addition to the errors associated 

with the measurement of wedging, it is important to note that measuring vertebral and inter

vertebral wedging is a time consuming endeavour. Therefore, the development of a system 

that assists clinicians as an accurate and reliable screening tool to assess and monitor changes 

in vertebral morphology and scoliotic curve severity is justified. 

Figure 1-1: Cobb angle measurement. The Cobb angle is the difference in angle between lines 
going through the upper and lower endplates of the vertebrae most tilted into the concavity of the 
curve. In the case of the image above, the Cobb angle is equal to 85°. 

2 



ftroT 
3 * . A J 4 

Figure 1-2: Diagram of points used to measure the vertebral and inter-vertebral wedging. 

Figure 1-3: Inter-vertebral wedge angle measurement. The inter-vertebral wedge angle is the 
difference in angle between the line going through the lower endplate of the superior vertebra and 
the line going through the upper endplate of the inferior vertebra. 

Measurement of Cobb and wedge angles involves the identification of vertebral 

endplates in radiographs, the matching of the endplates with a pre-defined anatomical model 

(a line), and the establishment of relations between models (i.e., measuring the angles). This 

task can be automated with the help of image registration. Image registration [24], [27], [84] 

finds a geometric relation or transformation between corresponding anatomical structures in 

two images or between a model and an anatomical structure in an image. The main 

components of any image registration algorithm are geometrical transformation, similarity 

measure, interpolation method, and optimization strategy. Geometrical transformations align 

corresponding objects in two or more images. Similarity measures quantify the quality of the 

match of the images. Interpolation methods estimate pixel intensity values at requested 

positions resulting from transforming points from one image to another. Optimization strategy 

refers to the iterative approach of adjusting the transformation parameters in an attempt to 

improve the similarity measure. 
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Spine radiographs of patients with scoliosis present two main challenges for image 

registration: first, they have variable contrast and second, they have moderate focus. To deal 

with these challenges, a computing framework that can deal with imprecision is needed. One 

of such frameworks is fuzzy computing. Fuzzy computing [29] is concerned with computing 

using fuzzy sets. A fuzzy set [82], [83], [50] is a collection of objects with associated 

membership values on the real continuous interval [0,1]. Because fuzzy sets are able to 

express the notion of partial membership of an element to a particular group, they can handle 

uncertainty and imprecision. This property has been instrumental in the success of fuzzy 

computing in applications that range from image processing and pattern recognition to 

decision support systems and fuzzy control systems. Fuzzy computing was chosen for the 

proposed image registration application because it provides a suitable methodology for 

analyzing complex systems when the pattern indeterminacy is due to inherent variability or 

fuzziness as is the case in image processing applications. Moreover, fuzzy computing has been 

used to incorporate knowledge in the determination of the transformation and correspondence 

and to select and pre-process the features to be registered [55]. 

Before using the results obtained with medical image registration applications, it is 

necessary to verify the goodness of the alignment because any error or uncertainty in the 

registration may lead to uncertainties in diagnosis or in planning, implementing, and 

evaluating surgical and therapeutic procedures. Assessment of registration accuracy is usually 

done by visual inspection. Unfortunately, this approach is time consuming and highly 

dependant on the level of expertise of the radiologist, physician, or other clinical expert. This 

complicates the adoption of image registration methods in clinical practice. To address this 

issue, a classification strategy that would indicate whether the registration was successful or 
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not was developed. An innovative approach to develop such a classifier strategy was a 

challenging task because it required the incorporation of both image information and domain 

knowledge to successfully distinguish good registrations solutions from bad registration 

solutions. To deal with these challenges a fuzzy computing framework was used to get an 

estimation of the overlap between corresponding anatomical structures in the registered 

images. 

Support Vector Classifiers (SVC) [76] were used to find a relation between the 

proposed measure of fuzzy overlap and registration quality. The main goal was to determine 

whether SVC, using the proposed measure of fuzzy overlap, could predict registration quality 

sufficiently well to be used in clinical practice. SVC were chosen because they usually 

outperform techniques such as Artificial Neural Networks when trained using small datasets 

as is usually the case in scoliosis research. Moreover, unpublished preliminary studies 

comparing the performance of radial basis function neural networks [3] and SVC indicated the 

superiority of the latter in our datasets of scoliosis patients. Finally, the results of applying a 

SVC to the dataset of scoliosis patients were compared to those obtained by applying logistic 

regression [65] and classification decision trees [12] to the dataset. 

1.1 Objectives 

This work had two objectives: a clinical objective and an engineering objective. The 

clinical objective was to develop a system for measuring inclinations of vertebrae in spine 

radiographs of patients with scoliosis. The engineering objective was to develop a novel 

overlap measure that could be used to assess the quality of medical image registration results. 

The engineering objective involved two main tasks: 
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1. to study the proposed overlap measure to control image registration processes; and 

2. to use the overlap measure to assess the quality of registration results in a model-to-

image registration application. 

1.2 Clinical significance 

This work developed a new research tool to assess and monitor changes in vertebral 

morphology and changes in scoliotic curve severity. Scoliosis is a condition that affects 

between 2 and 4% of adolescents [58]. It involves lateral deviation and rotation of the spine. 

Depending on the severity of the scoliotic curve, the patient could remain in observation, 

could be a candidate for bracing or may be a surgical candidate [7]. The underlying cause of 

most scoliosis cases remains unknown [40]. The techniques developed from this research 

promise to provide a system that will assist clinicians as an accurate and reliable screening 

tool in assessing vertebral and inter-vertebral wedging and assessing the severity of the 

scoliotic curve. Moreover, the proposed system will provide clinicians with a quantitative 

profile of the changes associated with the scoliotic process, which is crucial for studying their 

association with suspected risk factors and symptoms. 

1.3 Engineering significance 

This work developed an intelligent system for automatically evaluating medical image 

registration results. Such a system includes the following components: 
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1. The identification of a feature space for image registration that facilitates the 

incorporation of spatial information into intensity-based image registration 

approaches. 

2. The development of a theoretical basis for the evaluation of a similarity measure 

based on the new feature space. 

3. The development of a theoretical basis for and evaluation of a reliable measure of 

the overlap between registered images. 

4. The development and evaluation of a reliable indicator of registration quality. 

5. The testing of the proposed framework on a clinical application to measure 

vertebrae inclinations. 

The techniques developed from this research promise to provide the foundations for the 

application of fuzzy computing for medical image registration. Moreover, the excellent results 

obtained with the proposed framework may encourage the development of new intelligent 

systems based on fuzzy computing and support vector classifiers to automatically assess the 

quality of registration results. 

1.4 Thesis overview 

This thesis consists of six chapters. Chapter 2 reviews the literature on imaging of 

scoliosis, fuzzy computing, medical image registration, the application of image registration in 

the analysis of spine images, and the assessment of goodness of fit in image registration 

applications. Chapter 3 describes the proposed similarity measure for medical image 

registration in a fuzzy computing framework. A registration algorithm based on the proposed 

similarity measure is used for model-to-image registration of vertebral endplates in spine 
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radiographs. Additional numerical simulations are presented to illustrate the applicability of 

the proposed similarity measure in other medical image registration applications. Chapter 4 

introduces the proposed methodology to assess the goodness of the image registration 

solution. Detailed numerical studies, involving the model-to-image registration of vertebral 

endplates, are presented to determine whether the proposed system could assess the quality of 

the registration solution sufficiently well to be used in clinical practice. Chapter 5 is devoted 

to the discussion of results obtained in the course of the research work. Chapter 6 contains the 

conclusions resulting from this research, the summary of contributions, and a series of 

recommendations for future work. 

The appendices contain a description of the proposed use for this work's contributions, 

the algorithms and source code associated with this work, and a list of software contributions 

made to the premier open source image analysis project, the Insight Segmentation and 

Registration Toolkit (ITK, www.itk.org) [33]. 
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2 Literature review 

This chapter introduces the background on fuzzy computing [29]. The main focus is on 

the operations available for computing with fuzzy sets [82], [83], [50]. Next, a review of the 

literature on imaging of scoliosis is presented. After that, the background on medical image 

registration [24] is presented. It includes the main application areas of a medical image 

registration solution, the main components of an image registration solution, and a description 

of the image registration process. Also, this chapter reviews the literature on the application of 

image registration for the quantitative analysis of spine images. The chapter concludes with a 

review of the literature on the assessment of the goodness of fit of registration solutions 

2.1 Fuzzy computing 

It is human nature to use abstractions to deal with the large amount of information that 

surround them. These abstractions can be represented by sets. Once a set is defined, objects 

are classified either as members or not of the set. This type of binary classification works well 

in a number of straightforward cases such as the set of "even numbers", the set of "odd 

numbers", and the set of "Canadian provinces". Binary classification does not work as well 

when there is a need to express notions such as "tall people", "heavy snowfall" and "low 

temperature". To properly understand those notions, there is a need to have some context 

associated with them. For instance, "low temperature" in Edmonton, Alberta could mean a 

temperature of around -20°C in winter time or a temperature of around 5°C in summer time. 

Moreover, a "low temperature" in Caracas, Venezuela could mean a temperature of around 

15°C all year around. As the previous examples show, time and location play a role in 

defining the notion "low temperature". In addition to time and location, personal preferences 
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and previous experiences affect the definition of "low temperature". To deal with notions such 

as "low temperature", Zadeh introduced the concept of fuzzy sets [82]. A fuzzy set [82], [83], 

[50] is a collection of objects with associated membership values on the real continuous 

interval [0,1], where the endpoints 0 and 1 represent no membership to the collection and full 

membership to the collection respectively. The contexts associated with the everyday life 

notions ("low temperature", "heavy snowfall", "tall people", etc.) are incorporated with the 

help of membership functions (which map objects from the problem domain to the unit 

interval [0,1]). Fuzzy computing [29] is concerned with computing using fuzzy sets. Fuzzy 

computing has been successfully used in applications that range from image processing and 

pattern recognition to decision support systems and fuzzy control systems [63]. The rest of 

this section will cover in more detail the theory of fuzzy sets and its applicability in image 

processing. 

2.1.1 Fuzzy sets 

A fuzzy set [50],[82] A in a universe of discourse X = {xux2,...,xn } is defined by a 

mapping from the universe of discourse to the interval [0,1], i.e.: 

Thus, a fuzzy set A in X may be represented as a set of ordered pairs 

{( *, , Ayx^)), ( x2, A(x2 )),••.,( xn, A(xn ))}, where AyXj) describes a degree of membership of xtin A. 

Consider, for example, the concept of low temperature in an environmental context with 

temperatures distributed in the interval [0,100] defined in degrees Celsius (°C). Clearly, 100°C 

will not represent a low temperature in that interval, and one may assign it a membership 
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degree of zero to the concept of low temperature (i.e., l(l00) = 0, with L being the fuzzy set of 

low temperature). Similarly, 10°C and below are certainly low temperatures, and one may 

assign a membership degree of one to express a full degree of compatibility with the concept 

of low temperature (i.e., Z,(lo) = l,z(9) = l,2,(8)=l, ..., l(o) = l) . The degree of belongingness 

for the remaining temperature values can be determined through a mapping such as the one 

depicted in Figure 2-1, which is a membership function L :T ->• [o,l] characterizing the fuzzy 

set L of low temperatures in the universe T=[0,100]. 

As fuzzy sets are described by membership functions, it is useful to develop a lexicon of 

terms to describe various special features of these functions. Figure 2-2 assist in this 

description. 

• Core [50], [62]. The core of a membership function for some fuzzy set A, in a 

universe X, is the set of all elements of X that have a full membership in the fuzzy 

set A. That is 

Core(A) = {xeX/A(x) = l} 

" Support [50], [62]. The support of a membership function for some fuzzy set^, in a 

universe X, is the set of all elements of X that have a nonzero membership in the 

fuzzy set A. That is 

Supp(A) = {XG X/A(x) > 0} 
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Boundaries [50], [62]. The boundaries of a membership function for some fuzzy set 

A, in a universe X, is the set of all elements of X that have a nonzero membership 

but not complete membership in the fuzzy set A. That is 

Bound{A) = {x e X/0 < A(x) < l} r 2 4 "» 

Height [50], [62]. The height of a membership function for some fuzzy set A, in a 

universe X, is the maximum value of the membership function. That is 

hgt(A) = sup{A(x)} , 2_5 . 

• Normality [50], [62]. A normal fuzzy set is one whose height is equal to 1. 

• /l-cut [50], [62]. An /l-cut of a membership function for some fuzzy set A, in a 

universe X, is given by 

Ax={xeX/A(x)zA} ( 2 _ 6 ) 

Cardinality [50], [62]. The cardinality of a membership function for some fuzzy set 

A, in a universe X, is given by 

card{A)=YJ
A(x) (2-7) 

12 



membership 

1 -J y 
0.9 ^ V 

0.8 \ ^ 

0.7- ^ v 

0.6 >^ 

0.5 > . 

0.4 ^ V 

0.3 ^ y 

0.2 >. 

0.1 >^ 

0 10 20 30 40 30 60 70 80 90 100 

T(°Q 

Figure 2-1. Example of a membership function representing the concept "/o»v" temperature. 
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Figure 2-2. Core, support, and boundaries of a fuzzy set. 

To illustrate the concepts of crisp set and fuzzy set memberships from a two-

dimensional perspective, one can consider the example illustrated in Figure 2-3. For a given 

universe of discourse X, Figure 2-3a shows a crisp set A in which the borders are clearly 

defined. In Figure 2-3a, point a is a member of crisp set^4 while point b is unambiguously not 

a member of set A. Figure 2-3b shows the vague, ambiguous boundary of a fuzzy set B on the 

same universe of discourse X. The shaded boundary represents the boundary of B. In the 

central (completely white) area of the fuzzy set, point a is a full member of the fuzzy set. 
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Outside the boundary region, point b is not a member of the fuzzy set. The membership of 

points c and d, which are in the boundary region, is ambiguous. If complete membership to the 

fuzzy set (such as point a in Figure 2-3b) is represented by the number 1 and no membership 

to the fuzzy set (such as point b in Figure 2-3b) is represented by the number 0, then points c 

and d in Figure 2-3b must have some intermediate value of membership (partial membership 

to the fuzzy set). Presumably, the point d in Figure 2-3b has a membership value greater than 

the membership value of the point c because it is closer to the central (completely white) area 

of the fuzzy set B. 

Crisp sets are nondifferentiable constructs. Their usage reduces the applicability of 

gradient-based optimization tools. As a consequence, when working with crisp sets, one 

usually resorts to optimization tools that can provide global optimization and do not require 

derivative information (such as random search or genetic algorithms [22]). In contrast, fuzzy 

sets are differentiable constructs. Therefore, when working with fuzzy sets, one can use 

gradient-based optimization tools [29]. 

Universe of discourse X Universe of discourse X 

(a) (b) 

Figure 2-3. Diagrams for (a) crisp set boundary and (b) fuzzy set boundary. 
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Fuzzy sets can be regarded as linguistic granules. Linguistic granules can be common 

sense notions (tall individuals, high inflation, low interest rate, etc.) or specific technical terms 

(high power consumption, small positive error in a control loop, ill-defined matrix, etc.). 

Terms such as high oil royalty rate and low employee turnover are highly descriptive and 

meaningful. These terms are often more useful than precise descriptions such as oil royalty 

rate of 20.25% or 2.25% employee turnover. By using fuzzy sets, one can summarize the 

domain knowledge in a convenient format. On the operational side of the technology of fuzzy 

sets, there is a large group of methods that supports all facets of computing with fuzzy sets. 

Logic operations on fuzzy sets, linguistic modifiers, and comparison operations are a few 

among the operations that are available. 

2.1.2 Logic operations on fuzzy sets 

The AND, OR, and NOT operators of boolean logic exist in fuzzy logic [83]. The AND 

operator is used to find the intersection between two sets (it was originally defined as the 

minimum between two Fuzzy Sets [83]). The OR operator is used to find the union between 

two sets (it was originally defined as the maximum between two Fuzzy Sets [83]). The NOT 

operator is used to find the complement of a set (it was originally defined as the subtraction of 

a membership function from 1 [83]). The intersection and the union are completed via t-norms 

ands-norms [50]. 

AnB: (A(X) n B(x)) = A(x) t B{y) %J& 

AKjB:(A(x)uB{x))=A(x)sB(y) 
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A:A(X) = 1-A(X) (2-10) 

A t-norm is a two argument function t :[o,l]2 -> [o,l] that satisfies the following 

conditions [50]: 

" Commutativity: xty = ytx 

• Associativity: xt(ytz) = (xty)tz 

• Monotonicity: If x < y and w < z, then xtw<ytz 

• Boundary condition: 01 x = 0, l t x = x 

An s-norm is a two argument function s: [o, l]2 -> [o,l] that satisfies the following 

conditions [50]: 

• Commutativity: x s y = y s x 

• Associativity: xs(ysz)=(xsy)sz 

• Monotonicity: If x < y and w < z, dien x s w < y s z 

• Boundary condition: 0sx = x, lsx = l 
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Some commonly used t-norms are: 

xty = min(x,y) ll\\\ 

xty = x-y 

xty = max{0,\l + p)-(x + y-l)- p-x- y), p>-\ 

Some commonly used s-norms are: 

xsy = x + y-x-y 

(2-12) 

(2-13) 

xsy = max(x,y) (i\d\ 

(2-15) 

xsy = min(l,x + y + p-x-y), p>0 r21fi^ 

For a comprehensive list of examples of t-norms and s-norms, the reader is referred to 

[50]. 
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2.1.3 Linguistic modifiers 

Linguistic modifiers or linguistic hedges are operators that modify linguistic terms from 

their original interpretation. Examples of linguistic modifiers are very, plus, slightly, and 

minus [62]. For a given fuzzy set A, one can define those linguistic modifiers as follows: 

very(A)=A2(x) (2-17) 

plus(A)=Al25(x) ( 2 . 1 8 ) 

slightfy(A)=A0S(x) ( 2 _ i 9 ) 

minus(A)=A015(x) (2-20) 

Very and plus [62] are linguistic modifiers known as concentrations. Concentration 

reduces the membership values of a fuzzy set concentrating them around points with a higher 

membership grade. For instance, by using equation ( 2-17 ) for the linguistic modifier very, a 

membership value of 0.9 is reduced by 10% to a value of 0.81 while a membership value of 

0.1 is reduced by 90% to a value of 0.01. This decrease is a result of the properties of 

membership values: for 0 < A(x)<l, then A2(x)< A(x). Concentrations can be generalized by 

using any exponentp>\, i.e.: 

Con(A)=A"(x) ( 2 . 2 1 ) 
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Slightly and minus [62] are linguistic modifiers known as dilations. Dilation increases 

the membership value of a fuzzy set stretching them around points with lower membership 

grade. For instance, by using equation ( 2-19 ) for the linguistic modifier slightly, a 

membership value of 0.9 is increased 5.4% to a value of 0.95 while a membership value of 0.1 

is increased by 216% to a value of 0.32. This increase is a result of the properties of 

membership values: for 0<^(x)<l , then A°-5(X)>A(X). Dilations can be generalized by 

admitting any exponent r e (o,l), i.e.: 

Dil(A) = A'{x) ( 2 . 2 2 ) 

Concentrations and dilations can be combined to produce a plethora of new linguistic 

modifiers. Two such modifiers are contrast intensification and fuzzification [62]. Contrast 

intensification increases the membership values of those elements with original membership 

values greater than 0.5 and it decreases the membership values of those elements with original 

membership values less than 0.5. The operation is defined by 

M(A)J2-AV' *°^M*a5 ("3) 
[ l -2- ( l -4x)) 2 , otherwise 

Contrast intensification can be generalized by using any exponentp>\, i.e.: 

{l-2p-l-(l-A(x))p, otherwise 
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Fuzzification is complementary to contrast intensification. It is produced by altering the 

original membership function with the following expression 

FuZZ(A)=\^'^ i fOM*)*0 .5 (2-25) 
[l-J(l-A(x))/2, otherwise 

2.1.4 Relations between fuzzy sets: Equality and inclusion 

Equality. Two fuzzy sets A and B, defined in the same universe of discourse X, are said 

to be equal if and only if (iff) their membership functions are identical [50]. That is: 

A = B, iff A{x) = B(x), Vx e X 

Inclusion. Given two fuzzy sets A and B, defined in the same universe of discourse X, A 

is said to be included in B if and only if (iff) the membership function of A is less than or equal 

to that of B for each x in X [50]. That is: 

A c B, iff A(x) < B(x), Vx e X 

2.1.5 Comparison operations 

Given two fuzzy sets A and B, defined in the same universe of discourse X, there are a 

plethora of measures proposed to express the extent to which the two fuzzy sets match. 

Several classes of methods available today for satisfying this objective are presented. The 

main classes of methods are reviewed and the aspects of matching supported by them are 

highlighted. 
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• Possibility measure. The possibility measure, denoted by Poss(A, B), describes a 

level of overlap between two fuzzy sets [50]. It is defined as 

Poss(A, B) = max\A{x) t B(x)] r 2 26"» 

Computationally, the possibility measure is concerned with the determination of the 

intersection between A and B, A{x) t B(x), followed by the optimistic assessment of 

this intersection. This is achieved by selecting the highest values among the 

intersection grades of A and B that are taken over all elements of the universe of 

discourse X. The possibility measure is symmetric: POSS(A,B) = POSS(B,A) • 

• Necessity measure. The necessity measure, denoted by Nec(A, B), describes a 

degree to which B is included in A [50]. It is defined as 

Nec(A, B) = min[(\ - A(X)) S B(X)] ( 2-27) 

Computationally, the necessity measure is concerned with the determination of the 

union between (l-A) and B, {\-A(x)) s B(x), followed by the pessimistic assessment of 

this union. This is achieved by selecting the lowest values among the union grades 

of (1-̂ 4) and B that are taken over all elements of the universe of discourse X. The 

necessity measure is asymmetrical: Nec(A,B)* Nec(B,A) • 
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The next two types of operations do not place the comparison procedure in the set 

theoretic perspective. 

" Distance measures. Distance measures view membership functions as real 

functions and compute the distance between A and B. Because the computations 

involve two functions, they emphasize the functional facet of fuzzy sets [50]. The 

more similar the two fuzzy sets, the lower the distance function between them. In 

general, the distance between A and B can be defined using the Minkowski distance 

d{A,B)-. zi4*)-*wr 
i/p 

(2-28) 

where p > 1. Depending on the value ofp, one can distinguish several well-known 

forms of the distance function [12]. 

Hamming distance (p=l): 

d(A,B) = Y}A(x)~ B(x)\ ( 2-29 ) 

Euclidean distance (p=2): 

d(A,B) = ZHx)-B(X)f 
1/2 

(2-30) 

Tchebyschev distance (p—*co): 

d(A, B) = max\A(x) - B(x) | (2-31) 
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The distance function d(A,B) satisfies these requirements: 

i. d(A, B) = 0 if and only if A=B 

ii. d(A,B)>0 (nonnegative function) 

iii. d(A,B) = d(B,A) (symmetry) 

iv. d(A, C) < d(A, B) + d(B,C) (triangle inequality) 

• Similarity measures. Similarity measures [9], [18], [78], denoted by S(A, B), 

describe a degree to which B resembles A. In this thesis, a fuzzy similarity is defined 

in this way: 

Let F(X) be the class of all fuzzy sets of X and let S be a mapping 

S:F(x)xF(x)^[0,l] 

Definition: S(A,B) is said to be a degree of similarity between AsF(x) and 

B e F(X) if S(A,B) satisfies the following properties: 

• P1 (Boundary Conditions): 0 < s(A, B) < 1 

• P2: (Reflexivity): if A = B, S(A,B) = 1 

• P3 (Commutativity): s(A, B) = s(B, A) 

• P4 (Transitivity): if A c B c C A, B, C e F(x) then 

S(A,C)<S(A,B) and S(A,C)<S(B,C) 

Four examples of similarity measures are [16]: 
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J]\A{x)-B(x) (2-32) 

St(A,B)=C'"'<'^r'lB\ (2-33) 
cart d(A u B) 

SMB)= ^AA^B) (2.34) 
max\card\A), card\B)) 

min(card(A),card{B)) 

2.1.6 Fuzzy sets and digital images 

The growing interest of fuzzy sets for image analysis is due to their ability to represent 

imprecise, uncertain or ambiguous regions or structures in images [15], [4], [5], [6], [61]. 

Imprecision in medical images can be found at all levels from the observed phenomenon itself 

to image processing results. Consider, for example, tumour segmentation. A tumour is often 

difficult to segment precisely due to the smooth transition between healthy and pathological 

tissues. This is an example of imprecision due to the observed phenomenon. This type of 

imprecision will be present whatever the choice of imaging technique. Imprecision at the 

sensor level is usually caused by coarse resolution of the sensors. Imprecision in the image 

processing results is caused by imprecise image processing operators [4]. 

A digital image (having various shades of grey or intensity values) can be identified 

with a fuzzy set A that takes values on the grid points (i,j). Each value denotes the degree of 
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brightness level or some relative pixel density depending on the problem being solved [16]. 

The brightness levels might vary from a state of no brightness, or completely black, to a state 

of complete brightness, or completely white. Brightness levels in between these two extremes 

would get increasingly lighter as they move from black to white. Using the notation of fuzzy 

sets, we can write the fuzzy set representation of a digital image as an M x N array, 

' A(xu) A(x12) ••• A(xu) ••• 4 * i J l (2-36) 

4 * 2 i ) 4 * 2 2 ) ••• A(x2j) ••• A(X2N) 

A(xn) A{xl2) ••• A(XU) ••• A(xm) 

A\XM\) A{XM2) '" A\XMj) '" A\XMN) 

where i,/eK, 0<i<M and 0<j<N with M and N being the dimensions of the digital 

image. A(xy) (0<A[xiJ)<l) represents the membership value of the (y')th pixel to some 

property A. The fuzzy property A(xy) may be defined in a number of ways with respect to 

brightness level, gradient magnitude, or other image property depending on the problem. Once 

A(XJJ) is defined, all the operations on fuzzy sets can be applied to the digital images. 

Therefore, it is possible to use fuzzy sets to deal with the imprecision, uncertainty, and 

ambiguity characteristics of images at different levels of an image analysis application. 

2.2 Imaging of scoliosis 

For treating patients with scoliosis, orthopaedic surgeons need diagnostic imaging 

techniques that provide information on the possible underlying disease and prognosis to 

choose the best possible treatment [70]. After treatment is instituted, orthopaedic surgeons use 

imaging for monitoring changes of the deformity and to optimize therapy [70]. The main types 
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of imaging techniques used in the investigation and management of scoliosis are surface 

imaging, radiographs, and magnetic resonance imaging. 

2.2.1 Surface imaging 

Several methods have been introduced to find relations between trunk surface and spine 

deformity. Most of them have focused on the analysis of back surface images (e.g., [56], [28], 

[69], [21], [43], [67], [72]) obtained using 1 laser scanner or projection of patterns. Recently, 

360° images of the torso (obtained using 4 laser scanners) have also been used [36], [37]. The 

full torso scan systems provide more information about the 3-D nature of the deformity than 

back surface-based methods. However, full torso scan systems have not been widely used 

clinically because they may provide only a small increase in the correlation to the Cobb angle 

and cost substantially more than back surface scan systems. 

2.2.2 Radiographs 

Standing films of the whole spine, including parts of the pelvis, are the gold standard of 

scoliosis diagnosis, management, and pre- and post- operative assessment [70], [7]. At the 

initial visit, plain films of the whole spine in the frontal and lateral views have to be taken. In 

successive visits, a single frontal film is often sufficient [7]. The severity of the curve and its 

progression over time is measured using Cobb's method on the frontal radiograph [70], [7]. 

Figure 2-4 and Figure 2-5 show frontal radiographs of the same patient. Figure 2-4 shows a 

frontal radiograph taken before surgery. The scoliosis curve depicted is a double curve with a 

right thoracic curve having a Cobb angle of 30° and a left lumbar curve having a Cobb angle 

of 53°. Figure 2-5 shows a frontal radiograph taken after surgery. The Cobb angles of the 

thoracic and the lumbar curves are below 15°. 
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Figure 2-4: Example of a frontal radiograph of a patient with a double scoliotic curve. The Cobb 
angle of the right thoracic curve is 30°. The Cobb angle of the left lumbar curve is 53°'. 

Figure 2-5: Example of a frontal radiograph of the above spine after having undergone successful 
surgery. 

Public domain radiograph taken from the Wikipedia. 
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2.2.3 Magnetic resonance imaging (MRI) 

MRI is advisable, especially in children under the age of 12 years, to identify 

neuroanatomical defects, spinal infections, and tumours [70]. The whole spine should be 

imaged in a lateral view [7]. 

2.2.4 Other investigations 

Computed Tomography imaging might be used to examine the spinal instrumentation in 

the unlikely case of post-operative paraplegia [70] or to examine the spinal curve where there 

are multiple congenital defects [7]. 

Nuclear scintigraphy is sometimes used to detect pseudarthrose along the fused spine 

[70]. 

2.3 Medical image registration 

Medical image registration [24], [27], [84], [57] is the determination of a geometrical 

transformation that aligns anatomical structures of interest in one image with corresponding 

anatomical structures in another image. Medical image registration has a wide range of 

potential applications. These include [24]: 

2 Public domain radiograph taken from the Wikipedia. Both radiographs, before and after surgery, are 
available at http://en.wikipedia.org/wiki/Scoliosis . Last accessed on November 04, 2007. 
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• Monitoring changes, over time, in the anatomical structure of interest. This is 

achieved by registering images of the same modality (intra-modality) and same 

patient (intra-subject) acquired at different points in time. 

• Combining information, of the same patient, from multiple imaging modalities in a 

clinically meaningful way. This is achieved by registering images of different 

modality (inter-modality) and same patient (intra-subject) taken over relatively short 

periods. 

• Relating pre-intervention images to the physical reality of the patient during image-

guided interventions. This is achieved by registering images of different modality 

(inter-modality) and same patient (intra-subject). 

• Comparing one individual's anatomy with another or with a standardized atlas. This 

is achieved by registering images of the same modality (intra-modality) and 

different patients (inter-subject). 

The initial step before applying any registration method involves selecting the type of 

information that will be used in the matching of the two images [24]. This information is 

based either on features or on intensity values. The corresponding registration method is 

termed either feature-based or intensity-based, hi feature-based registration, the features 

represent anatomical structures or artificial objects added to the patient. These objects could 

be invasive (such as bone implanted markers) or non-invasive (such as skin attached markers). 

Common features used in the alignment of medical images include pairs of points, edges, 

gradient magnitudes, contours, surfaces, and principal axes. In feature-based registration, 
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errors in the feature extraction will affect negatively the registration method. Intensity-based 

registration methods use intensity values or a function of the intensity values for the alignment 

of the images. Intensity-based registration methods (the maximization of mutual information 

[44], [79], [68], in particular), have been successfully applied in a number of medical image 

registration problems because there is no need to extract features from the images. However, 

because intensity-based registration methods do not, in general, incorporate spatial 

information, their robustness is questionable [52]. 

2.3.1 Registration components 

The main components of any image registration algorithm are geometrical 

transformation, similarity measure, optimization strategy, and interpolation method [24], [57]. 

• Geometrical Transformations. Geometrical transformations align corresponding objects 

in two or more images [24]. The images could be two dimensional (2-D) or three 

dimensional (3-D), so the transformation could map points from a 2-D space to a 2-D 

space, from a 3-D space to a 3-D space, or between a 3-D space and a 2-D space [24]. 

The transformation can have several forms: rigid, similarity, affine, projective, or 

curved (Figure 2-6 shows an example in 2-D). Rigid transformations consist of rotation 

and translation only. Similarity transformations consist of rotation, translations, and 

uniform scaling. Affine transformations consist of rotations, translations, shearing and 

scaling. Projective transformations map straight lines to straight lines but parallelism is 

in general not preserved. Curved transformations may map straight lines to curves [27]. 
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Figure 2-6. Examples of 2D image transformations: (a) original image, (b) image after rigid 
transformation, (c) image after similarity transformation, (d) image after affine transformation, 
(e) image after perspective transformation, (f) image after curved transformation 

Similarity Measures. Similarity measures quantify the quality of the match of the two 

images [27]. There are two types of similarity measures: geometrical similarity 

measures (used on feature-based registration) and intensity similarity measures (used 

on intensity-based registration). Geometrical similarity measures involve minimizing 

cost functions related to the distance between corresponding features in the two 

images. Intensity similarity measures involve minimizing cost functions computed 

using the intensity values (directly or indirectly) in regions of interest in the two 

images [24]. 

Interpolation Methods. Interpolation methods estimate pixel intensity values at 

requested positions resulting from transforming points from one image to another [27]. 

Three of the most popular interpolator methods are: nearest neighbor, linear, and B-

splines. The nearest neighbor interpolation method assigns the intensity value of the 
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spatially closest neighbor. This method has the lowest complexity of implementation 

but it is the one with the largest loss of quality. The linear interpolation method assigns 

the intensity value of the weighted average of the surrounding pixels. The weight 

assigned to each pixel is proportional to its distance to the requested position. The 

linear interpolation method has a very low complexity of implementation (but higher 

than that of the nearest neighbor method) without a large loss of quality. B-splines are 

piece-wise polynomials in which the pieces are smoothly connected together. The B-

splines interpolation method assigns the intensity value of the product of the B-splines 

coefficients with shifted B-splines kernels around the requested location [73]. 

• Optimization Procedure. Optimization refers to the iterative approach of adjusting the 

transformation parameters (in the intensity-based registration) or the alignment 

between features (in feature-based registration) in an attempt to improve (maximize or 

minimize) the similarity measure [24]. In the feature-based registration, the 

transformation is computed directly from the correspondences between features. The 

optimization procedure starts with an initial estimate of the transform (or 

correspondence). Based on this estimate, the similarity measure is computed. The 

optimization procedure then makes a new estimate of the transformation parameters, 

computes the similarity measure, and continues the process until there is not significant 

improvement in the value of the similarity measure. The estimation of the 

transformation parameters is done following approaches that use information that is 

either local or global. Approaches using local information can either use similarity 

measures' derivatives or not. Examples of optimization approaches using derivatives 

are gradient descent and quasi-Newton [53]. Examples of optimization approaches that 

do not use derivatives are downhill search and Powel's method [53]. Approaches using 
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global information include search techniques based on the principles of natural 

selection, evolution theory, and probability. The main global optimization techniques 

used for medical image registration are genetic algorithms, simulated annealing, and 

deterministic annealing [55]. For local optimization procedures to converge to the 

correct answer, the initial estimate has to be sufficiently close to the expected solution, 

i.e., the initial estimate has to be within a portion of the parameter space known as the 

capture range. Because the capture range cannot be known a priori (it depends on the 

similarity measure and on image properties such as modality, field of view, and 

contents), it is important to visually inspect the initial estimate to make sure it is close 

to the correct solution. A further implication of the existence of a capture range is that 

global optimization methods must be used with caution because they can move outside 

the capture range. 

2.3.2 Registration Process 

Having described the main components of an image registration approach, one can 

summarize the algorithm as illustrated in Figure 2-7 [57]. In this figure, an input image is 

matched to a reference image. The similarity measure quantifies the goodness of the match. 

The optimization computes the optimal transformation parameters as a function of the 

similarity measure. The transformation finds the mapping that relates points in the input image 

to points in the reference image. Finally, the interpolation evaluates the image intensity values 

at the mapped positions. 
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Figure 2-7: Functional blocks of a registration process 

2.4 Image registration of spine images 

Image registration has been used to perform quantitative analysis of spinal images [25], 

[26], [32], [60], [75]. Quantitative analysis of spinal images involves the registration of 

multiple images of the same subject that are taken with the same image modality at different 

times for monitoring changes or with multiple image modalities for diagnostic purposes. 

Rogers et al. [60] and Haughton et al. [26] used an intensity-based registration method [24] for 

rigidly aligning magnetic resonance (MR) images to aid in the diagnosis of spinal instability. 

Hamadeh and Cinquin [25] used surface-based registration for rigidly registering computed 

tomography (CT) scans and radiographs to perform kinematic studies of the lumbar spine. 

Huesman et al. [32] used a combination of paired-point and intensity-based registration 

methods [44], [79] for aligning CT scans and MR images to study the progression of 

degenerative diseases in the spine, in particular spinal stenosis. Van Cleynenbreugel et al. [75] 

rigidly registered preoperative and postoperative CT scans, using an intensity-based 

registration method, for assessing the accuracy of pedicle screw insertion. The strongest point 

of the aforementioned studies on quantitative analysis of spinal images is the fact that they 

provide position and orientation information of anatomical structures of interest. This 
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information is of particular interest in the development of new approaches to diagnose, plan 

surgery, guide intra-operative procedures, and evaluate treatment outcome. The main 

limitation of these works is that they do not consider the automated evaluation of registration 

solutions. 

2.5 Assessment of quality of image registration results 

The approaches for estimating the goodness of registration solutions can be divided in 

two categories: those in which a "gold standard" (the correct registration transformation) is 

known and those in which the "gold standard is not available (as is usually the case in clinical 

practice). If a "gold standard" is available, the quality of the registration solution can be 

studied by analyzing the results obtained for one or more initial estimates [71], [51]. If the 

"gold standard" is not available, the registration performance can be estimated by a domain 

expert using visual inspection [20], [81]. In [20], the authors performed a study on the efficacy 

of visual assessment of registration accuracy on CT to MR images. Their results suggest that 

at least 80% of the time experts can detect misalignments as small as 2 mm, at least 81% of 

the time experts can detect misalignments as small as 3 mm, and at least 87% of the time 

experts can detect misalignments as small as 5 mm. In [81], the authors performed a study on 

the efficacy of visual assessment of registration accuracy on positron emission tomography 

(PET) to MR images. They considered one axis at the time (only rotation around one axis or 

translation in an axis at the time). Their results suggest that 100% of the time, experts can 

detect translational misregistrations of 3 mm or more and rotational misregistrations of 4 

degrees or more. They also reported that 60% of the time experts can detect misregistrations 

of more than 2 mm and that 80% of the time experts could detect misregistrations of more 

than 3 degrees. The problem with the visual inspection approach is that it is time consuming 
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and experts may not always be available. Moreover, for algorithms that produce a fairly 

uniform range of errors around the required accuracy, there is a risk that the expert will 

generate too many false negatives (images that are well registered, but are classified as 

failures) or too many false positives (images that are not well registered, but are classified as 

successes) [27]. The registration performance can also be estimated by computing statistical 

measurement errors based on the location of anatomical landmarks or implanted markers that 

are easily identifiable [19]. The problem with this approach is that easily identifiable 

landmarks or markers are not always available as is the case of the spine radiographs used in 

scoliosis research [11]. Another way of estimating the registration performance involves 

studying the consistency of the transformation (how close to the Identity transformation the 

registration of an image triple, A to B, B to C, and C to A) [30]. The problem with the 

consistency measurement is that it underestimates the true error of the registration algorithm 

[27]. Recently, approaches based on image segmentation have been proposed to evaluate the 

quality of the registration results [59], [15], [48], [64]. In [59], a three-phase process 

(segmentation of the images, computation of principal axes, and determination of a quality 

measure from contour volumes) was used to distinguish correctly registered solutions from 

greatly misregistered solutions. Correctly registered solutions were defined as those in which 

the translation error was less than or equal to 3 mm and the rotation error was less than or 

equal to 4 degrees following the results presented in [81]. The best result they reported had a 

sensitivity of 1.0 for a specificity of about 0.6. hi [64], a process of matching edges in small 

regions of interest was used to register 2-D single-modality images of outdoor scenes. They 

included uncertainty analysis to determine whether a registration solution was acceptable or 

not. In that work, two noise-contaminated versions of each one of three outdoor scene images 

were created for three levels of SNR (SNR=3, SNR=2, and SNR=1). One of the images in 

each pair was translated by a random number of pixels in the range [-4, 4] and an attempt to 
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solve the registration problem (the registration of one noisy image with the translated version 

of the same noisy image) was carried. The simulations were replicated 200 times. The results 

reported for the registration of noisy images with a SNR=3 indicate that the accuracy was 

between 86% and 100% depending on the images being analyzed. In [48], the authors 

presented an approach to assess the quality of the results of a registration algorithm for CT and 

MR images of the head. The process consisted of five phases: (1) registration of the CT and 

MR images, (2) segmentation of the CT image, (3) mapping of the labels of the CT image to 

the MR image resulting in an MR sub-volume labeled SMRI, (4) segmentation of the MR 

image resulting in an MR sub-volume labeled SMR2. Pixels that belonged to both SMRI and 

SMR2 were classified as safe (high registration accuracy) and colored green. Pixels that 

belonged to SMR1 but not SMR2 were classified as unsafe (low registration accuracy) and 

colored red. (5) The results were visualized in a fused CT-MR image volume, making it easy 

for the human operator to identify the regions of low and high registration accuracy. The 

results reported indicate that 99% of the unsafe pixels were classified as unsafe and between 

65% and 100% of the safe pixels (depending on the level of misregistration) were classified as 

safe. In [15], Crum et al., proposed a generalized overlap measures for evaluation of 

registration and segmentation results. The measures were based on the computation of the 

overlap of segmentation labels. For evaluating image registration solutions, the authors 

suggested comparing the segmentations of the images before and after registration to assess 

how well the registration brought them into alignment. However, the authors did not report 

any results on evaluating registration quality. The results presented were on image 

segmentation evaluation. The main problem with the approaches in [59], [64], [48], [15] is 

that they require the segmentations to be of high quality to avoid the propagation of 

segmentation errors into the registration evaluation. 
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2.6 Summary 

This chapter has provided an overview of the theoretical background associated with 

this work. This chapter has given a brief description of fuzzy sets, a list of operations available 

for fuzzy sets, and the relation between fuzzy sets and digital images. The main types of 

imaging modalities used for studying spinal deformities were introduced. Medical image 

registration was presented as well as the components of an image registration application. The 

common steps of the image registration process were also presented. A review of image 

registration for the quantitative analysis of spine images was also presented. Finally, the 

approaches for assessing the quality of a registration solution were described. 

The next chapter will present the proposed fuzzy computing approach for controlling 

image registration applications. 
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3 Combining intensity-based and gradient-based fuzzy Jaccard 

indices for the design of an image registration similarity measure 

In this chapter, with the goal of incorporating spatial information in an intensity-based 

image registration algorithm, a novel similarity measure is introduced and the proof that it is 

indeed a similarity measure is presented. The similarity measure estimates the goodness of the 

match of two images by computing the overlap of a fuzzy set [82] representation of gradient 

and intensity values. 

3.1 Digital images and fuzzy sets 

A fuzzy set A in a universe of discourse X = {x1,x2,...,xn } is defined by a mapping from 

the universe of discourse to the interval [0,1]. Thus, a fuzzy set A in X may be represented as a 

set of ordered pairs {(xuA(xi)),(x2,A(x2)),...,(xn,A(xn))}, where A(xi) describes a degree of 

membership of xi in A. Digital images can be identified with fuzzy sets that take values on the 

grid points (;', J). In this work, fuzzy sets are used to represent the brightness level in the 

images. The brightness levels might vary from a state of no brightness (with a membership 

degree of zero) to a state of complete brightness (with a membership degree of one). 

Brightness levels in between these two extremes would get increasingly lighter as they move 

from black to white (and would have membership values between 0 and 1). Using the notation 

of fuzzy sets, one can write the fuzzy set representation of a digital image as an M x N array, 

3 A version of this chapter has been submitted for publication. L. Ramirez, N. Durdle, J. Raso, Medical 
& Biological Engineering & Computing. 2007. 
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A = 

A{xn) A{xn) 
A[x2l) A\x22) 

4*n) 4*«) 

A(xXj) 

A(x2j) 

A(x0) 

4xMi) 

4*w) 

A\x2N) 

A(xIN) 

A\XMN ) 

(3-1) 

where i,j e K, 0 < i < M and 0 < j < N with M and TV being the dimensions of the digital 

image. A(xy) (0 < A{X,J)< 1) represents the membership value of the (y)th pixel to the fuzzy set 

"brightness level". By representing a digital image as a fuzzy set, one can use all the 

operations on fuzzy sets to deal with the imprecision, uncertainty, and ambiguity 

characteristics of images. 

3.2 Fuzzy sets similarity measures for medical image registration 

Medical image registration [24], [27] is the determination of a geometrical 

transformation that aligns anatomical structures of interest in one image with corresponding 

anatomical structures in another image. In image registration, similarity measures quantify the 

quality of the match of the two images. Because in this thesis fuzzy sets are used to represent 

digital images, one can use any of the similarity measures defined in Section 2.1.5 to control 

the image registration process. In this thesis, similarity between fuzzy sets is defined in this 

way: Let F(x) be the class of all fuzzy sets of X and let S be a mapping S: F(X)X F (X)-» [O, l] 

Definition: S(A,B) is said to be a degree of similarity between A e F(X) and B e F(x) if 

S{A,B) satisfies the following properties [49], [18], [9], [10]: 
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• 

PI (Boundary Conditions): 0 < s(A,B) < 1 

P2: (Reflexivity): if A = B, S(A,B) = 1 

P3 (Commutativity): S(A,B) = S(B, A) 

P4 (Transitivity): i f ^ c f i c C A,B,C<=F(X) then 

S(A,C)< S(A,B) and S(A,C)< S(B,C) 

The proposed fuzzy similarity measure (SM) to be used for image registration is [49] 

SM(A,B)=Card(AnB\ (3-2) 
v ; card{AKjB) 

with card being the cardinality of a fuzzy set (i.e., the sum of membership functions of the 

elements in the fuzzy set equation ( 3-3 ) )and AnB and i u B being the fuzzy intersection 

equation ( 3-4 ) and the fuzzy union equation ( 3-5 ) respectively. The entire expression, 

therefore, represents the ratio of the sum of the membership values of the elements in the 

fuzzy intersection of A and B to the sum of the membership values of the elements in the fuzzy 

union of A and B. It is important to note that SM is dimensionless. 

card{A)=Y,Ax) (3-3) 
xsX 

A(^B:(A(x)r)B(x))=A(x)tB(y) (3^) 

AuB: (A(X) U B(X)) = A(x) S B(y) (35) 
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SM is a fuzzy sets generalization (by taking into account partial memberships of the 

elements in the sets) of the Jaccard Index or Tanimoto Coefficient [15], referred in this thesis 

as the Fuzzy Jaccard Index (FJI). The FJI produces a smooth transition from equal 

(FJI(A,B) = 1) to completely non-equal fuzzy sets {FJI{A,B) = 0). It is based on the fuzzy set-

theoretic operations of intersection and union, which are defined for a given pair of t-norm 

and s-norm. In this thesis, min will be used for t-norm and max for s-norm. These norms were 

chosen because of their low computational cost. Low computational cost in a similarity 

measure is necessary for image registration because the similarity measure might be computed 

several hundreds (or even several thousands) times during the optimization process. The FJI 

can be written as 

Yimin{A{x),B(x)) ( 3 . 6 ) 
FJl(A, B) = f* 

y t max\A\x), B\x)) 

The choice of FJI as the basis for the proposed image registration similarity measure is 

based on the following observations: 

• First, image registration is aimed at finding the transformation that would increase 

the overlap between structures of interest in the images under study. FJI is based on 

one of the most frequently used measures for the evaluation of the overlap in 

segmentation results, the Jaccard Index [15], [74]. Therefore, FJI is a good 

candidate for controlling the image registration process. 

• Second, a step in the image registration process (Section 2.3.2) involves the 

comparison, with a similarity measure, of the reference image with a transformed 
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version of the input image. Recently, the FJI has been successfully used in the 

comparison of images for the evaluation of algorithms designed to solve problems, 

such as noise reduction, deblurring, and compression [16]. 

Third, Crum et al. [15] proposed a similarity measure based on the FJI for the 

registration of segmented (labelled) images. This suggests that in fact the FJI is a 

valid alternative as a similarity measure for medical image registration. It is 

important to note that in the approach by Crum et al. [15], the success of the 

registration is highly dependent on the quality of the segmentation and therefore 

does not always produce satisfactory results. To cope with this drawback, a 

similarity measure that does not require the segmentation of the images is proposed. 

3.2.1 Fuzzy Jaccard Index on intensity values 

Given two overlapping images A and C=M(B), with M(E) being the result of an unknown 

misalignment M to the image B, the Fuzzy Jaccard Index on intensity values (FJI,) is computed 

by 

£/»I/I(4(J:)LC,(X)) (3.7) 

2^max(A\x),C\x)) 
XGX 

with Aj(x) and C,(x) being fuzzy set representations of the intensity values of A and C 

respectively. The fuzzy set representation of intensity values (brightness) for A is computed by 

a mapping function defined by the following equation: 

A,(X)= A{t\min{AL <3"8> 
max\A)- min\A) 
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Similarly, the fuzzy set representation of intensity values (brightness) for C is computed 

by a mapping function defined by the following equation: 

C,(x) = C(x)-mi<C) (3-9) 
max\C) - minyC) 

The membership values of Afa) and C,{x) denote the degree of brightness relative to the 

intensity values of A and C. FJIt is a fuzzy similarity measure that quantifies the fuzzy overlap 

between fuzzy set representations of the brightness in both images. The aim of FJIt is to 

exploit the functional relation between sets of pixels having similar intensity values in both 

images. Registration is assumed to correspond to maximizing the FJIt. The images have to be 

aligned in such a manner that the amount of overlap between similar intensity values is 

maximized. The assumption that the images being registered are similar, except for the 

misalignment, is valid for image of the same modality that 

• differ only by Gaussian noise, 

• are used in serial studies (in which it is expected that the images being aligned 

will be identical except for small changes resulting from disease progression or 

response to treatment), or 

• are taken during the same study to correct for patient movement. 

FJIt might fail if the data diverges too much from the cases presented above. For 

example, if a small number of pixels change intensity by a large amount, they can have a large 

effect on the change in FJIt. See, for instance, the example presented in Table 3-1. In the 

example, the similarity measure is computed for a Reference Image and three input images. In 

44 



the first case, the Input Image is identical to the Reference Image. The resulting FJIt is, as 

expected, equal to 1.0 (which is the maximum possible value). In the second case, the Input 

Image is a shifted version of the Reference Image. The resulting FJIt is equal to 0.43. The 

Input Image, in the third case, has the same shift as the Input Image in the second case. In the 

third case, however, three pixels also changed intensity by a large amount. As a result, the FJlt 

is smaller than the one in the second case. The new FJIt is equal to 0.24 (equivalent to a 

reduction of 44% in the value ofFJIt). 

Reference 
Input 1 
Input 2 
Input 3 

Intensity values of sample images 

0 5 50 50 70 0 
0 5 50 50 70 0 
0 0 5 50 50 70 
0 0 5 150 150 170 

Fuzzy sets representations 
0.00 0.02 0.20 0.20 0.27 0.00 
0.00 0.02 0.20 0.20 0.27 0.00 
0.00 0.00 0.02 0.20 0.20 0.27 
0.00 0.00 0.02 0.59 0.59 0.67 

FJI,{Ref., Input) 

1.00 
0.43 
0.24 

Table 3-1: Example of FJI, computation. The column labelled Intensity values of sample images 
contains the images to be registered. The column labelled Fuzzy sets representations contains 
membership values denoting the degree of brightness of the pixels in the Sample Images. The 
column labelled FJi( contains the Fuzzy Jaccard Indices for the Reference and Input Images. 

To reduce the effect of changes in intensity value, a new similarity measure that 

involves the computation of the Fuzzy Jaccard Index on gradient values instead of intensity 

values is presented. 

3.2.2 Fuzzy Jaccard Index on gradient values 

Given two overlapping images A and C=M(B), with M(B) being the result of an unknown 

misalignment M to the image B, the Fuzzy Jaccard Index on gradient magnitude values (FJIg) 

is computed by 

Y,mir{Ag(x),Cg(x)) ( 3 . 1 0 ) 

FJI. (A,C)= ^ T—r-, r ^ 
Y4max{Ag{x),Cg(x)) 
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with Ag(x) and Cg(x) being fuzzy set representations of the gradient magnitude values of A and 

C respectively. The gradient is a vector that is perpendicular to the edges in the image and that 

contains the partial derivatives in all directions [34]. The magnitude of the gradient is a 

measure of the strength of the edges independently of its direction [34]. Because digital 

images are a collection of discrete values on a discrete grid and are not based on an analytical 

function, there is no set of rules on how to compute the derivatives. This is why the partial 

derivatives are usually approximated by discrete differences [34] at a certain scale in which 

the differentiation should be performed. This is usually done by preprocessing the image with 

a smoothing filter and then applying a differential operator. In this work, the magnitude 

computed on the discrete differences will be called gradient magnitude following the 

convention adopted in the image registration community [33]. The most popular filter for 

doing the image smoothing is the Gaussian kernel. By choosing a particular value for the 

standard deviation (a) of the Gaussian, an associated scale is selected that removes high image 

frequencies content and has a smoothing effect on the image [33]. Figure 3-1 shows some 

examples of scaled gradient magnitude images. Note that more and more details vanish from 

the images as the value of a increases. 

The process of computing a fuzzy sets representation of gradient magnitudes is as 

follows. First, the gradients for the input and reference images are computed at a certain scale 

{a). Then, a fuzzy set representation of gradient magnitude values is computed by linearly 

scaling the gradients between 0 and 1 with the following equation: 

A(x) lv
f4*)|-wMV<^l) (3-11) 

gK ' max{\VaA\)-min^VaA\) 
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with \VCA | being the gradient magnitude of the image A at a given scale a. Similarly, the 

fuzzy set representation of gradient magnitude values (edgeness) for C is computed by a 

mapping function defined by the following equation: 

CM- M^l-Hyl), (3-i2) 
maxi\VaC\)-minl\VaC\) 

The membership values of AJx) and Cg(x) denote the degree of edgeness relative to the 

gradient magnitude values of A and C. FJIg is a fuzzy similarity measure that quantifies the 

fuzzy overlap between fuzzy set representations of the gradient magnitude values in both 

images. The aim of FJIg is to exploit the functional relation between sets of pixels having large 

gradient magnitude in both images. Registration is assumed to correspond to maximizing the 

FJIg. The images have to be aligned in such a manner that the amount of overlap between 

similar gradient magnitude values is maximized. The assumption that the images being 

registered have similar gradient magnitude values is valid not only for images of the same 

modality but also for images of different modalities that depict the same tissue transitions. 

47 



(c) a = 2.0 (d) a = 5.0 

Figure 3-1: Gradient magnitude images of a lumbar vertebra image, (a) Original image, (b), (c), 
and (d): gradient magnitude images at scales a = 1.0, a = 2.0, and a = 5.0 respectively. 

FJIg can fail if the images do not depict the same tissue transitions which may cause 

strong gradients in one image modality to be absent or less prominent in the other modality. 

Unlike FJIh if a small number of pixels change intensity by a large amount, they would have a 

moderate effect on the change in FJIg. See for instance the example presented in Table 3-2. In 

the example, the similarity measure is computed for the same Reference Image and input 

images shown in Table 3-1. The Gradient Images are computed for <r=1.0. In the first case, 

the Input Image is identical to the Reference Image. The resulting FJIg is, as expected, equal to 

1.0 (which is the maximum possible value). In the second case, the Input Image is a shifted 

version of the Reference Image. The resulting FJIg is equal to 0.46. The Input Image, in the 

third case and the Input Image in the second case have the same shift. In the third case, 

however, three pixels also changed intensity by a large amount. As a result, the FJIg is smaller 
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than the one in the second case. The new FJIg is equal to 0.35 (equivalent to a reduction of 

23% in the value of FJIg). 

Comparing the effect of large changes in the intensity values of a small number of 

pixels when computing FJIt and FJIg, it looks like the FJIg might be more robust. The reduction 

in the value of FJIg was 23% compared to a reduction of 44% in the value of FJIt for the same 

displacement and same change in intensity value. 

Reference 
Input 1 
Input 2 
Input 3 

Gradient magnitudes of 
sample images 

41 192 193 0 180 255 
41 192 192 0 180 255 

0 85 241 255 162 93 
0 81 250 255 107 31 

Fuzzy sets representations 

0.16 0.75 0.76 0.00 0.71 1.00 
0.16 0.75 0.76 0.00 0.71 1.00 
0.00 0.33 0.95 1.00 0.64 0.36 
0.00 0.32 0.98 1.00 0.42 0.12 

FJIg(Ref., Input) 

1.00 
0.46 
0.35 

Table 3-2: Example of FJIg computation. The column labelled Gradient magnitudes of sample 
images contains the gradient magnitudes of the images to be registered. The column labelled 
Fuzzy sets representations contains membership values denoting the degree of edgeness of the 
pixels in the Sample images. The column labelled FJIg contains the Fuzzy Jaccard Indices for the 
Reference and Input Images. The Reference and Input images used in this example were obtained 
by finding the gradient magnitude of the images in Table 3-1. 

3.2.3 The FJI as a fuzzy sets similarity measure 

Before using the proposed similarity measure in image registration applications, it is 

important to prove that the Fuzzy Jaccard Index is indeed a fuzzy sets similarity measure as 

defined at the beginning of Section 3.2. The following proof follows an approach similar to 

that suggested in [18]. 

Proof: Given two fuzzy sets A and B defined in the same universe of discourse X, to be a 

similarity measure, any functional has to satisfy the properties described at the beginning of 

Section 3.2. That is 

• PI (Boundary Conditions): 0 < S(A,B) < 1 

• P2: (Reflexivity): if A = B, S(A,B) = 1 
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• P3 (Commutativity): S(A,B) = s(B, A) 

• P4 (Transitivity): if Ac BcC A,B,Ce F(x) then 

S(A,C)<S(A,B) and S(A,C)<S(B,C) 

^min(A(x),B(x)) 

PI: First, recall the definition of FJl{A,B) = -̂ fif T—T\—n\ > t n e n because 
/ max(,4(x), £(*)) 

*eX 

0 < w/«(^(x),B(x))< OTOX:(^(X),5(X)), one has that 0 < FJl(A,B)< 1 

^ min{A\x), B(x)) 
P2: First, recall the definition of FJl(A,B) = ^ . , , ,, , then if A=B 

2_, max{A(x), B(x)) 
xeX 

min{A{x),B{x)) = min(A{x),A(x))= A(x) and max(A(x),B(x)) = max(A(x), A(x)) = A(x), one has that 

/[ m in{A(x), A(x)) /A(x) 

FJI{A,B) = FJI{A,A)=^— ~x = 1 

y j max{A{x), A[x)) > A[x) 

:.FJI(A,B) = \ 

2_, min{A{x), B[x)) 
P3: First, recall the definition of FJI(A,B) = - ^ , , . , .. and 

2^ max\A(x), B\x)) 
xeX 

^min(B{x), A(X)) 

FJl(B,A) = = f TJ-\—Tl\' ^ n e n because min(A(x),B(x]) = mm(B(x),A(x)) and 
2^ max(B\x), A\x)) 
xsX 

max(A(x),B(x)) - max(B(x), A(X)) , one has that 

> min (A(x),B(x)} Y,min(B(x)'A(x)) 
FJl(A, B) = ^ . = •& = ^.7/(5, ^) 

> wax(/l(xJ,,B(x)) / /Kax(.B(x), A\x)) 
xeX K X 
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P4: First, recall the definition of FJI(A,B), FJI(A,Q, and FJI(B,Q 

^T min(A(x), B(X)) 
FJI(A,B) = 

V max\A(x), B(X)) 

FJI(B,C) = - ^ 

Yjmm(B(x),C(x)) 

Yjmax(B(x)tC(x)) 

Then recall that if A c B then 

A(X)<B(X),\/XGX 

i f S c C then 

B(x)<C(x),\/xeX 

and if A c C then 

4x)<C(x),VxeX 

Using (3-16): 

mm (A(X),B(X))=A(X) 

and 

(3-13) 

Y,min{A(x),C(x)) ( 3 . 1 4 ) 

FJ/^.C) = f ? 
2^ «Jax(̂ 4(x j , C(jcj) 

(3-15) 

(3-16) 

(3-17) 

(3-18) 

(3-19) 
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Using (3-17): 

and 

Using (3-18): 

and 

max{A[x),B[x)) - B[x) f 3 2(H 

min(B(x),C{x)) = B(x) , , . . > 

max(B(x),c(x))=C(x) 

max (A(X),C(X))=C{X) 

FJI(A,B) = 
1^(4440) £*(*) 
xeX 

Using ( 3-23 ) and (3-24 ) in ( 3-14 ): 

(3-22) 

min{A(x),C(x)) = A(X) r 3 23 "> 

(3-24) 

Using ( 3-19 ) and ( 3-20 ) in ( 3-13 ): 

Z min(A(x)> B(x)) X 4*) (3-25) 

Z min(A(x\ C(x)) Z A(x) (3-26) 
TT> JTI A f~\ | X £ A. X £ A 

^max(A(x),C(x)) Z C ( X ) 
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From ( 3-17 ) in ( 3-25 ) and ( 3-26 ): 

£4*) Z^) (3-27) 

xeX 

:.FJI(A,C)<FJI(A,B) 

Using ( 3-21) and ( 3-22 ) in( 3-15 ): 

5>*(i*(4c(*)) £*(*) ( 3 .28) 
FJI(B,C)--

Yimax(B(x),C(x)) £ c ( * ) 
xeX 

From ( 3-16 ) in ( 3-26) and ( 3-28 ): 

£4x) Y,B(x) (3_29) 

:.FJI(A,C)<FJI(B,C) 

Q.E.D. 

3.3 The Combined Fuzzy Jaccard Index (CFJI) 

The CFJI combines the proposed overlap measure on gradient magnitudes (the FJI on 

gradients or FJIg) with a version of the proposed overlap measure that computed the overlap 

on intensity values (the FJI on intensities or FJIj). As a result, the new similarity measure 

focuses on simultaneously aligning corresponding edges and corresponding regions of smooth 

intensity values. 
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Crum et al. [15] proposed a similarity measure based on the FJI for the registration of 

segmented (labelled) images. In their case, the success of the registration is highly dependent 

on the quality of the segmentation and therefore does not always produce satisfactory results. 

To cope with this drawback, a feature extraction methodology that allows the use of the FJI 

while effectively exploiting the available information in the images is proposed in this work. 

The main feature set considered is the edges of the images because they contain useful 

structural information about the boundaries of the objects of interest. In particular, the focus is 

on the gradient magnitude. The gradient magnitude measures the local steepness of the 

intensity landscape, which has local maxima at the edges. However, working only with 

gradients would discard a lot of information from the intensity values in the images. For this 

reason, a second feature set consisting of the intensity values in the images is considered. This 

second feature set takes into account the functional relation between sets of pixels having 

similar intensity values in both images. Therefore, the goal of the proposed similarity measure 

is to align, simultaneously, corresponding edges and corresponding regions of smooth 

intensity values. 

Registration is assumed to correspond to maximizing the Combined Fuzzy Jaccard 

Index (CFJI). The images have to be aligned in such a manner that the amount of overlap 

between structures of interest is maximized. The CFJI and the intersection are computed for 

the overlapping parts of the images. A problem that can occur when using the intersection on 

its own is that there is no simple guideline to determine which values are associated with a 

high degree of alignment. For example, when registering images in which the background is 

large when compared to the structures of interest, the value of the intersection would be small 

even for high degrees of alignment. The CFJI is better equipped to avoid such problems 

because it includes the union of the overlapping parts of the images. 
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The process of computing the proposed similarity measure is as follows. First, the 

gradients for the input and reference images are computed at a certain scale level (<r). Then, a 

fuzzy set representation of edges is computed by mapping functions defined by equations ( 

3-11 ) and ( 3-12 ). Next, one can compute the FJIg by using equation ( 3-10 ). After 

computing FJIg, it is necessary to compute the portion of the similarity measure that takes into 

account the functional relation between sets of pixels having similar intensity values in both 

images. A fuzzy set representation of intensity values is computed by mapping functions 

defined by equations ( 3-8 ) and ( 3-9 ). Next, one can compute the FJIt by using equation ( 3-7 

). The final step to compute the proposed similarity measure is to compute a weighted sum (a 

special case of the models described in [14]) of the FJIg and FJIh i.e. 

CFJl(A, C) = a- FJIg {A, C) + (l - a) • FJIf (A, C) , 0 < a < 1 ( 3 3 Q . 

where a e [o,l] is a weighting factor that controls the impact of FJIg and FJIt in the 

computation of CFJI. For a = 1, CFJI is equal to FJIg i.e., the fuzzy sets representation of the 

gradient magnitude values will have the highest impact on the proposed similarity measure. 

For a = 0, CFJI is equal to FJIt i.e., the fuzzy sets representation of the intensity values will 

have the highest impact on the proposed similarity measure. For values of a in between these 

two extremes, CFJI would get increasingly reliant on the gradient magnitude values as a 

moves from 0 to 1. 

55 



3.3.1 The Combined Fuzzy Jaccard Index (CFJI) as a fuzzy sets similarity measure 

Given that the FJI was proven to be a fuzzy sets similarity measure, as defined at the 

beginning of Section 3.2, it is of interest to prove that the CFJI is also a fuzzy sets similarity 

measure. The following proof follows an approach similar to that suggested in [18]. 

Proof: Given two fuzzy sets A and B defined in the same universe of discourse X, to be a 

similarity measure, any functional has to satisfy the properties described at the beginning of 

Section 3.2. That is 

• P1 (Boundary Conditions): 0 < s(A, B) < 1 

• P2: (Reflexivity): if A = B, S(A,B) = 1 

• P3 (Commutativity): S(A,B) = S(B,A) 

• P4 (Transitivity): if A^B^C A,B,CeF(x) then 

S(A,C) < S(A,B) and S(A,C)< S(B,c) 

PI: First, recall the definition of CFJl(A,B) = a • FJIg(A,B)+{\- a)- FJI,(A,B) , then because 

0 < a < 1, 0 < FJIg(A,B) <1, and 0 < FJI,(A,B)< 1, one has that 0 < CFJl(A,B) < 1 

P2: First, recall the definition of CFJl(A,B) = a-FJIg(A,B) + (\-a)-FJI,(A,B), then if A=B: 

FJIg(A,A) = i and FJIi{A,A) = \ 

:. CFJI(A,A)= a• FJIg(A,A)+(l-a)- FJI1(AIA)= a-l + ( l -a) - l = l 

P3: First, recall the definition of CFJl{A, B) = CC- FJIg (A,B) + (l-a)- FJli (A, B) and 

CFJl(B,A)=a- FJIg(B,A)+(1-CC)- FJI,(B,A), then because FJIg(A,B) = FJIg(B,A) and 

FJI, (A, B) = FJI, (B,A), one has that 

CFJI (A, B) = a- FJIg (A, B) + (l - a) • FJI, (A, B)=CC- FJIg (B,A)+(l-a)- FJI, (B,A)= CFJl(B, A) 
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P4: First, based on the definition of CFJI: 

CFJl(A,C) = a-FJIg(A,c) + (l-a)- FJI,(A,C), CFJl(A,B) = CC-FJIg(A,B)+{l-a)- FJI,(A,B), and 

CFJl(B, C)=a- FJIg (B,C)+(l-a)- FJI, (B,C). 

From (3-27 ): 

FJIg{A,C)<FJIg{A,B) ( 3 _ 3 1 ) 

FJIXA^FJIXAB) (3_32) 

From ( 3-29 ): 

FJIg{A,c)<FJIg(B.C) ( 3 _ 3 3 ) 

FJI^C^FJlfac) ( 3 _ 3 4 ) 

Using (3-31) and (3-32): 

CFJl(A,C) = a • FJIg (A,C)+(\-a)- FJI, (A,C)<a- FJIg (A,B)+(l-a)- FJI, (A, B) = CFJl(A, B) 

:. CFJI(A,C)<CFJI(A,B) 

Using ( 3-33 ) and ( 3-34 ): 

CFJl(A, C) = a- FJIg (A,C)+(l-a)- FJIt (A, C)<a- FJIg (B,C)+(\-a)- FJlt (B,C)= CFJl(B, C) 

.: CFJI(A,C)<CFJI(B,C) 

Q.E.D 
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3.3.2 Exploring the sensitivity of the Combined Jaccard Index to various values of a 

and a 

The CFJI measures the amount of area overlap between input and reference images with 

respect to the total area. However, the value of CFJI is affected not only by the amount of 

misalignment but also by a number of factors such as the type of registration problem being 

solved (single-modality versus multimodality), the scale factor {a) used in the computation of 

gradient, and the weighting factor (a). To illustrate this, two examples exploring the domain 

of the similarity measure for the single-modality and multimodality registration problems is 

presented. For the single-modality registration problem, a radiograph of a dry-bone thoracic 

vertebra is used as input and reference images (Figure 3-2). For the multimodality registration 

problem, brain images were used, a Tl Magnetic Resonance Image (MRI) as reference image 

and a Proton Density MRI as input image (Figure 3-9). The algorithms for the implementation 

were implemented using the C++ programming language and the Insight Toolkit (ITK, 

www.itk.org) [33]. The corresponding source code is depicted in Appendices 2 and 3. 

Single-modality registration problem 

These examples aim to illustrate the form of the outputs produced by the proposed 

similarity measure in a single-modality image registration case. For these simulations, the 

parametric space to explore consists of a group of translations in a two dimensional (2-D) 

space. The translations were distributed uniformly in the [-10, 10] pixels interval. The 

weighting factor a was set to one of three values a =0.0, or =0.5, or a=1.0. The scaling factor 

crwas set to either cr=1.0 or a=5.0. The characteristics for a =0.0 and cr=1.0 are depicted in 

Figure 3-3. The characteristics for a=0.0 and <r=5.0 are depicted in Figure 3-4. The 

characteristics for a =0.5 and <r=1.0 are depicted in Figure 3-5. The characteristics for or =0.5 

and cr=5.0 are depicted in Figure 3-6. The characteristics for a=1.0 and CT=1.0 are depicted in 
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Figure 3-7. The characteristics for a =1.0 and cr=5.0 are depicted in Figure 3-8. These Figures 

suggest that for increasing values of a, the baseline value (the value obtained for the largest 

misregistration applied to the input image) decreases. For increasing values of a, there is an 

increase in the number of local maxima. For a =0, the value of a has no effect on the response 

of the similarity measure to various levels of misalignment. 

Figure 3-2: Dry-bone radiographs of a thoracic vertebra for the single-modality registration 
problem, (a) Reference image, (b) input image. 
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Figure 3-3: Single-modality similarity measure surface plots for a = 0 and a = 1.0. 
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Figure 3-4: Single-modality similarity measure surface plots for a = 0 and a = 5.0 
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Figure 3-5: Single-modality similarity measure surface plots for a = 0.5 and a = 1.0. 
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Figure 3-6: Single-modality similarity measure surface plots for a = 0.5 and a = 5.0, 
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Figure 3-7: Single-modality similarity measure surface plots for a = 1 and a = 1.0. 
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Situ lar i ty Measure 

Figure 3-8: Single-modality similarity measure surface plots for a = 1.0 and a = 5.0 . 

Multi-modality registration problem 

These examples aim to illustrate the form of the outputs produced by the proposed 

similarity measure in a multi-modality image registration case. For these simulations, the 

parametric space to explore consists of a group of translations in 2-D that were distributed 

uniformly in the [-10, 10] pixels interval. The weighting factor or was set to one of three values 

a=0.0, a=0.5, or a=\.0. The scaling factor a was set to either cr=1.0 or a=5.0. The 

characteristics for ar=0.0 and cr=1.0 are depicted in Figure 3-10. The characteristics for 

or=0.0 and cr=5.0 are depicted in Figure 3-11. The characteristics for a=0.5 and cr=1.0 are 

depicted in Figure 3-12. The characteristics for a =0.5 and cr=5.0 are depicted in Figure 3-13. 

The characteristics for a=1.0 and cr=1.0 are depicted in Figure 3-14. The characteristics for 

or=1.0 and cr=5.0 are depicted in Figure 3-15. These Figures suggest that for increasing 

values of a, the baseline value (the value obtained for the largest misregistration applied to 
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the input image) decreases. For increasing values of a, there is an increase in the number of 

local maxima. For a=0, the value of a has no effect on the response of the similarity measure 

to various levels of misalignment. 

(a> (b) 

Figure 3-9: Brain Magnetic Resonance Images (MRI) for the multi-modality registration 
problem, (a) Reference image (Tl-MRI). (b) Input image (Proton Density MRI). 

Sinilarlta Heasure 

Figure 3-10: Multi-modality similarity measure surface plots for a = 0 and a = 1.0. 
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Figure 3-11: Multi-modality similarity measure surface plots for or = 0 and a = 5.0 , 
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Figure 3-12: Multi-modality similarity measure surface plots for a = 0.5 and a = 1.0. 
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Figure 3-13: Multi-modality similarity measure surface plots for a = 0.5 and cr = 5.0. 
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Figure 3-14: Multi-modality similarity measure surface plots for a = 1 and a = 1.0. 
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Figure 3-15: Multi-modality similarity measure surface plots for a = 1.0 and a = 5.0. 

3.4 Study of the performance of the CFJI in single-modality, multimodality, and 

model-to-image registration problems 

The aim of these simulations was to study the performance of the proposed similarity 

measure not only on model-to-image registration (which is the focus of this thesis) but also on 

single-modality and multimodality registration problems. The goal was to verify the validity 

of the hypothesis that registration algorithms based on the CFJI can perform well in a variety 

of registration problems. For these experiments, three type of image-registration problems 

were considered: a single-modality case in which two Proton Density magnetic resonance 

images of a brain were registered (see Figure 3-16), a multi-modality case in which a Proton 

Density magnetic resonance image of a brain was registered to a Tl magnetic resonance 

image of the same brain (see Figure 3-17), and a model-to-image registration in which a line 

model was registered to images of a vertebral endplates (see Figure 3-18). The brain images 
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were taken from the Examples directory of the Insight Toolkit (ITK) [33], a freely available 

toolkit for image processing, registration and segmentation. The images of the vertebral 

endplates came from frontal radiographs of scoliosis patients from the database of the scoliosis 

clinic at Glenrose Rehabilitation Hospital (the images were obtained with approval from the 

Ethics Panel on Health Research). 

The design considerations for these simulations were as follows (See Appendices 2, 4, 

and 5 for associated computer codes): 

• Geometrical transformation. Rigid transformations were used for the model-to-

image registration problem. Similarity transformations were used for the single- and 

multi-modality registration problem. The similarity transformation can be seen as a 

composition of rotations, translations and uniform scaling. 

• Similarity measure. The similarity measure used in the experiments was the 

Combined Fuzzy Jaccard Index (CFJI) as given by equation ( 3-30 ) (for the CFJI 

implementation, see Appendix 2). The experiments were also performed with one 

commonly used similarity measure, the Mean Squared Error (MSE) [24], [27], [84] 

(for the MSE implementation, see Appendix 4). Given two overlapping images A and 

C=M(B), with M(B) being the result of an unknown misalignment M to the image B, 

the MSE is computed by 

MSE{A,C)=^\A(x)-C(xf (3-35) 
1 * v=Y 
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with N being the number of pixels that are located in the area of overlap between A 

and C. MSE has a minimum when the images are perfectly aligned and it increases 

with the misalignment. It is important to note that even though the MSE is an image 

registration similarity measure, it does not satisfy the requirements presented in 

Section 3.2 for it to be considered a fuzzy sets similarity measure. 

• Interpolation method. The linear interpolation method was selected for this work 

because it provides a good trade-off between computation complexity and 

interpolation quality. 

• Optimization procedure. In this work, a regular step gradient descent optimizer [33] 

was used. This optimizer is a variant of the gradient descent that attempts to prevent 

it from taking steps that are too large. At each iteration, the current position (P,) is 

computed according to 

with P,-.! being the previous position and S, being the current step that is given by 

&,=Dfi(SM) ( 3 _ 3 7 ) 

where SM is the value of the similarity measure, G(SM) is the numerical derivative 

of the similarity measure, and D, is the current step length. If the G(SM) changes of 

direction, the D{ is given by 
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D,=D„RF ( 3 _ 3 8 ) 

with RF, the relaxation factor, being a constant in (0, 1) that must be set to a value 

that prevent the premature shrinkage of the step length in the presence of a noisy 

metric. For the regular step gradient descent optimizer there are five open 

parameters that must be set by the user. Two of them (the initial step length, D0, and 

the relaxation factor, RF) control the speed of convergence while the other three 

(smallest step length, Dstop, smallest gradient magnitude, Gstop, and maximum 

number of iterations, Niter) represent stop conditions. In addition to the mentioned 

five parameters, it is helpful to set scaling factors (or normalization factors) that 

would put all the variables being optimized in the same range of values. The number 

of scaling factors would depend on the type of transformation being used. For 

instance, for a two-dimensional similarity transformation, there would be four 

scaling factors: two for translations, one for rotation, and one for scaling. 

3.4.1 Single-modality registration 

For the single-modality experimental part of this study, two proton density magnetic 

resonance images of a brain were aligned. One proton density magnetic resonance image was 

used as a reference image (Figure 3-16 (a)). The input image was the result of intentionally 

rotating the reference image by 10 degrees, scaling it by 0.833 and then translating it by -13 

mm in the x-axis and -17 mm in the y-axis (Figure 3-16 (b)). Both images had unit spacing 

and dimensions of 221 x 257 pixels. The image matching algorithms were implemented using 

the C++ programming language and the Insight Toolkit (ITK, www.itk.org) [33], a set of 
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open-source set of libraries for medical image processing, registration, and segmentation. The 

optimizer parameters were set as follows: D0 = 1, RF = 0.5, Dstop = 0.0001, Gstop = 0.0001, 

and Niter = 500. The Combined Fuzzy Jaccard Index similarity measure parameters were set 

as follows: a = 0.5 and a = 1.0 . 

(a) (b) 

Figure 3-16: Reference image (a) and input image (b) for the single-modality registration 
example. The input image is the result of rotating the reference image by 10 degrees, scaling it by 
0.833 and then translating it by -13 mm in the x-axis and -17 mm in the y-axis. 

3.4.2 Multi-modality registration 

For the multi-modality experimental part of this study, two magnetic resonance images 

of a brain were aligned. A Tl magnetic resonance image was used as a reference image 

(Figure 3-17 (a)). The input image was a proton density magnetic resonance image that was 

misaligned by a rotation of 10 degrees, a scaling of 0.833 and a translation of-13 mm in the x-

axis and -17 mm in the y-axis (Figure 3-17 (b)). Both images had unit spacing and dimensions 

of 221 x 257 pixels. The image matching algorithms were implemented using the C++ 

programming language and the Insight Toolkit (ITK, www.itk.org) [33]. The optimizer 

parameters were set as follows: D0 = 1, RF = 0.5, Dstop = 0.0001, Gstop = 0.0001, and 

Niter = 500. The Combined Fuzzy laccard Index similarity measure parameters were set as 

follows: a = 0.75 and a = 1.0. The value of a was set to give a higher weight to the gradient 
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magnitudes. This was necessary because for multi-modality images the intensity levels of 

corresponding anatomical structures may not be in the same range of values. 

(a) (b) 

Figure 3-17: Reference image (a) and input image (b) for the multi-modality registration example. 
The input image is rotated 10 degrees, translated -13 mm in the x-axis, translated -17 mm in the 
y-axis and scaled by 0.833 with respect to the reference image. 

3.4.3 Model-to-image registration 

For the model-to-image experimental part of this study, a clinical data set from the 

Scoliosis Clinic at the Glenrose Rehabilitation Hospital in Edmonton, Alberta was used. A 

frontal radiograph of a patient with scoliosis was used in the experiments. The radiograph was 

carefully annotated to create the "ground truth". A graphical user interface was used to allow 

the user to select 16 vertebral endplates to be analyzed. Based on the user selection, regions of 

interest (ROIs) were created to be used as reference images (see Figure 3-18 (a) for an 

example of a reference image). A model (Figure 3-18 (b)) was used as input image. Both 

images had unit spacing and dimensions of 401 x 101 pixels. The image matching algorithms 

were implemented using the C++ programming language and the Insight Toolkit (ITK, 

www.itk.org) [33]. The optimizer parameters were set as follows: RF = 0.5, Dstop = 0.0001, 

Gstop — 0.0001, and Niter = 500. To select the appropriate values for the optimizer's 

parameter D0 and the CFJfs parameters a and a, a process of trial and error was carried out. 
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The candidate sets of parameters were: D0 e {1,2,..., 10 }, a e {0.25,0.5,0.75,1.0 } and a e [l, l]. 

The goodness of the registration was assessed by visual inspection. The rotation angles 

obtained with both registration algorithms (using the CFJI similarity measure and using the 

MSE similarity measure) were compared with those measured by an expert to compute the 

precision of each registration algorithm. 

(a) (b) 

Figure 3-18: Sample reference image (a) and model (b) for the model-image registration example. 

3.5 Results 

3.5.1 Single-modality registration problem 

This section compares the results obtained using the CFJI and MSE similarity measures 

for a single-modality registration case. The results obtained using both similarity measures 

were close to each other and close to the expected results (Table 3-3). Using the CFJI 

similarity measure, the registration took 71 optimization iterations and the resulting similarity 

measure value was 0.9. Using the MSE similarity measure, the registration took 42 

optimization iterations and resulting similarity measure value was 52.96. 

Scale Factor 
Rotation Angle (°) 
Translation in X (mm) 
Translation in Y (mm) 

Expected 

0.833 
10 
13 
17 

Obtained 
CFJI 
0.833 
10.0 
13.3 
15.8 

MSE 
0.833 
10.0 
13.3 
15.7 

Table 3-3: The resulting transformation parameters for registration of Proton Density Magnetic 
Resonance Images of a brain, using the CFJI and MSE similarity measures. 

Figure 3-19 (a) shows the squared magnitude of pixel intensity values differences 

between the reference image and the input image before registration. Figure 3-19 (b) shows 
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the squared magnitude of pixel intensity values differences between the reference image and 

the resampled input image after registration done using the CFJI similarity measure. Figure 

3-19 (c) shows the squared magnitude of pixel intensity values differences between the 

reference image and the resampled input image after registration done using the MSE 

similarity measure. There is no visually detectable difference between the outputs obtained 

using the CFJI similarity measure and the output obtained using the MSE similarity measure. 

(a) (b) (c) 

Figure 3-19: Difference before registration (a) and difference after registration using the CFJI(b) 
and MSE (c) similarity measures for the single-modality registration example. 

3.5.2 Multi-modality registration problem 

This section compares the results obtained using the CFJI and MSE similarity measures 

for a multi-modality registration case. The results obtained using the CFJI similarity measure 

were close to the expected results (Table 3-4). From the results obtained using the MSE 

similarity measure, the translations were close to the expected results (Table 3-4) but the 

rotation and the scaling were not. Using the CFJI similarity measure, the registration took 

optimization 500 iterations and the resulting similarity measure value was 0.5. Using the MSE 

similarity measure, the registration took 57 optimization iterations and resulting similarity 

measure value was 3107.49. 
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Scale Factor 
Rotation Angle (°) 
Translation in X (mm) 
Translation in Y (mm) 

Expected 

0.833 
10 
13 
17 

Obtained 
CFJI 
0.845 
10.1 
13.9 
15.4 

MSE 
0.969 
27.4 
12.9 
16.2 

Table 3-4: The resulting transformation parameters for the registration of a Proton Density 
Magnetic Resonance Image to a Tl Magnetic Resonance Image of a brain, using the CFJI and 
MSE similarity measures. 

Figure 3-20(a) shows the squared magnitude of pixel intensity values differences 

between the reference image and the input image before registration. Figure 3-20(b) shows the 

squared magnitude of pixel intensity values differences between the reference image and the 

resampled input image after registration done using the CFJI similarity measure. Figure 

3-20(c) shows the squared magnitude of pixel intensity values differences between the 

reference image and the resampled input image after registration done using the MSE 

similarity measure. The difference after registration done using the MSE similarity measure 

shows that the images were not properly registered. 

(a) (b) (c) 

Figure 3-20: Difference before registration (a) and difference after registration using the CFJI (b) 
and MSE (c) similarity measures for the multi-modality registration example. 

3.5.3 Model-to-image registration problem 

This section compares the results obtained using the CFJI and MSE similarity measures 

for a model-to-image registration case. After performing visual inspection to determine the 

goodness of the registration solutions, it was determined that in 100% of the cases (16 out of 

16), the results obtained using the CFJI similarity measure were acceptable. On the other hand, 
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the results obtained with the MSE similarity measure were acceptable in 80% of the cases (12 

out of 16). The rotation angles obtained using the CFJI similarity measure showed a very high 

correlation (0.99) to the expected results (Table 3-5). Moreover, the absolute registration error 

for the rotation angle was only 1.2° in the case of the CFJI similarity measure. From the results 

obtained using the MSE similarity measure, it can be seen that even though the registration 

failed in four cases, the obtained rotation angle showed a high correlation (0.76) to the 

expected results. 

Figure 3-21 shows two examples of registration solutions obtained using the CFJI 

similarity measure. Figure 3-21(a) shows the reference image. Figure 3-21(b) shows the 

squared magnitude of pixel intensity values differences between a reference image and a 

model before registration. Figure 3-21(c) shows the squared magnitude of pixel intensity 

values differences between the reference image and the resampled model after registration. 

Figure 3-21(d) shows the reference image. Figure 3-21(e) shows the squared magnitude of 

pixel intensity values differences between another reference image and a model before 

registration. Figure 3-21(f) shows the squared magnitude of pixel intensity values differences 

between the reference image and the resampled model after registration. 

Figure 3-22 shows the four unacceptable registration solutions obtained using the MSE 

similarity measure. Figure 3-23 shows the corresponding four registration solutions obtained 

using the CFJI similarity measure. 

— \ 

(a) (b) (c) 

— \ 

(d) (e) (f) 

Figure 3-21: Reference image (a), difference before registration (b) and difference after 
registration (c) for model-to-image registration of a bottom vertebral endplate using the CFJI 
similarity measure. Reference image (d), difference before registration (e) and difference after 
registration (f) for model-to-image registration of a top vertebral endplate using the CFJI 
similarity measure. 
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(a) (b) 

(c) (d) 

Figure 3-22: The four bad registration solutions out of 16 obtained using the MSE. (a) 
Registration error of 11° when matching a top endplate. (b) Registration error of 39° when 
matching a bottom endplate. (c) Registration error of 5° when matching a top endplate (note that 
the model was not translated correctly), (d) Registration error of 2° when matching a top 
endplate (note that the model was not translated correctly). 

\ \ 

(a) (b) 

(c) (d) 

Figure 3-23: The registration solutions obtained with the CFJI similarity measure that 
correspond to the four bad registration solutions out of 16 obtained using the MSE. (a) 
Registration error of 1° when matching a top endplate. (b) Registration error of 0° when 
matching a bottom endplate. (c) Registration error of 1° when matching a top endplate. (d) 
Registration error of 1° when matching a top endplate. 

Percentage of successful registrations 
Absolute error in rotation angle (mean ± stdev) 
Absolute error in rotation angle ([min, max]) 
Correlation coefficient (expected vs obtained rotation angle) 

CFJI 
100% 

1.2° ±0.9° 
[0.2°, 2.9°] 

0.99 

MSE 
80% 

5.3° ±9.3° 
[0.4°, 38.4°] 

0.76 

Table 3-5: Registration performance results for the model-to-image registration problem using 
the CFJI and MSE similarity measures. 

3.6 Discussion 

A fuzzy computing algorithm was developed for the registration of fuzzy sets 

representations of intensity values and gradient magnitude values. The key component of the 
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proposed algorithm is a similarity measure based on the fuzzy Jaccard index -the Combined 

Fuzzy Jaccard Index (CFJI). The CFJI allows focusing in intensity values, gradient 

magnitudes, or both to better deal with a variety of registration problems. In the registration 

cases presented in this chapter, the proposed approach outperformed a MSS-based registration 

algorithm in terms of precision and percentage of good registration solutions in multimodal 

and model-to-image registration problems. 

The studies presented in the previous section indicated that the current implementation 

of the CFJI-based registration algorithm performed well in the single-modality, multimodality, 

and model-to-image registration problems. One important feature of the Combined Fuzzy 

Jaccard Index similarity measure is the presence of the configuration parameters a and <r that 

can be used to control the behaviour of the similarity measure in attention to the registration 

problem at hand. For single-modality registration problems, a = 0.5 is usually adequate to get 

a good registration result. In more challenging scenarios, such as the registration of images of 

different modalities or the registration of models to images, it is necessary to adjust the value 

of a until acceptable results are obtained. In practice, the similarity measure parameters must 

be adjusted to suit the problem at hand. Specifically, adapting a and a to the type of images 

or noise level is recommended. For instance, for weak edges low values of a and a are 

commended, a e [l, 2] usually performs well in practice. Regarding the value of a, values in 

{0,0.25,0.5,0.75,1.0} are adequate for a variety of scenarios. It is important to note that for 

a =0, the value of a has no effect on the response of the similarity measure to various levels 

of misalignment. This is due to the fact that the value of a is only used in the computation of 

FJIg. For a=Q, the value of FJIg is not taken into account in the computation of the CFJI. 
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The CFJI is a good similarity measure for registration problems dealing with images 

with variable contrast and moderate focus such as the clinical images associated with scoliosis 

management. However, for images that are well-focused, are of high resolution, and are of 

only one modality, similarity measures like the MSE may be preferred, in particular, due to its 

low computational cost. In all the previous simulations, the MSii-based registration algorithm 

was about three times faster than the CFJI-based registration algorithm (which took an average 

of 1 second per optimization iteration for the model-to-image registration problem). 

In short, the proposed approach is a good alternative for medical tasks involving the 

matching of models to images. 

3.7 Summary 

This chapter has described a novel approach to use fuzzy similarity measures for image 

registration. The theory behind such approach was presented and some examples illustrating 

its features were described. Three experiments were presented to show the usefulness of the 

proposed similarity measure in a registration algorithm and to compare its performance to that 

of a Mean Squared Errors-base registration algorithm. 

The next chapter will present a computational intelligence approach to estimate the 

quality of fit of an image registration solution. 
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4 A support vector machines classifier to assess the quality of 

registration solutions from fuzzy overlap measures4 

4.1 Introduction 

Medical image registration [24], [27], [84] is a key component of image analysis 

applications. It is used for extracting clinical information for the diagnosis of medical 

conditions and for the planning and evaluating of therapeutic procedures. Before extracting 

clinical information from aligned images, it is necessary to verify the quality of the 

registration solution. Bad registration solutions may lead to uncertainties that jeopardize the 

validity of the diagnosis and/or the validity of the planning and evaluating of therapeutic 

procedures. In this chapter, a novel application of measures of fuzzy sets overlap is presented. 

The application consists on automatically determining the quality of registration results. 

Because the clinical focus of this work was on spinal deformities, the main interest was on 

measuring inclinations of vertebrae. To measure such angles a model-to-image registration 

approach was used. The model-to-image registration approach involved registering a model 

(in the form of a line) to vertebral endplates to estimate the tilt angle of the endplates. A 

Support Vector Classifier (SVC) [76], [77], [47] was used to find a relation between the 

proposed overlap measure and the quality of the registration results as assessed by an expert. 

The main goal was to determine whether a SVC, using the proposed overlap measure, could 

predict the quality of the registration results sufficiently well to be used in clinical practice. A 

SVC was chosen because, unlike techniques such as Artificial Neural Networks [3], the 

support vector machines theory offers the possibility to train generalizable non-linear 

classifiers using small datasets as is usually the case in scoliosis research. Moreover, 

4 A version of this chapter has been submitted for publication. L. Ramirez, N. Durdle, J. Raso, IEEE 
Transactions on Information Technology in Biomedicine. 2007. 
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unpublished preliminary studies comparing the performance of radial basis function neural 

networks [3] and SVC indicated the superiority of the latter in the datasets considered in this 

work. Finally, the results of applying a SVC to the dataset of scoliosis patients was compared 

to those obtained by applying logistic regression [31] and classification decision trees [12] to 

the dataset to fulfill the requirements of comparability needed for decision support systems 

[65]. 

4.2 Proposed overlap measure 

Two-dimensional digital images can be identified with fuzzy sets that take values on the 

grid points (i, j). Using the notation of fuzzy sets [82], one can write the fuzzy set 

representation of a digital image as an M x N array, 

A[xu) A\xu) ••• A\xXJ) ••• A(xlN) (4-1) 

4*2i) ^ 2 2 ) ••• Ax2j) ••• A(X2N) 

A(xn) A(xl2) ••• A(X,J) ••• A(xm) 

A{xm) A(xU2) ••• A(xM) ••• A(xMN)_ 

where y e K, 0<i<M and 0<j<N with M and N being the dimensions of the digital 

image. A(xy) (0 < A(XV)< 1) represents the membership value of the (ij)th pixel to a fuzzy set. 

By representing a digital image as a fuzzy set, one can use all the operations on fuzzy sets in 

the analysis of images. In this chapter, the interest is on operations that allow measuring the 

similarity between fuzzy sets. The interest in the similarity measures comes from the 

following observation: two medical images to be registered are related through the common 

anatomical structure they measure. Therefore, when images are correctly registered, the 

corresponding structures overlap. When the overlap is maximal, the similarity between the 
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fuzzy set representations of the images is maximal. Based on that observation, one can use 

fuzzy similarity measures to assess the quality of the registration results. In this work, the 

focus will be on the Fuzzy Jaccard Index (FJI) [16]: 

£/«/«(4(x),C,.(x)) ( 4_ 2 ) 

FJl(A,C) = ^ , , , , ^ 
2mjmax{Ai{x),Ci\x)) 

with A being the fuzzy set representation of the reference image and C being the fuzzy set 

representation of the registered input image. 

The FJI is a generalization of the Jaccard Index (or Tannimoto Coefficient) [15]. The 

Jaccard Index has been successfully used for the evaluation of image segmentation 

applications [15], [38], [74], for the comparison of images to evaluate image processing 

applications [16], and for controlling image registration processes [15]. Given two overlapping 

images A and C = M(B), with M(B) being the result of an unknown misalignment M to the 

image B, the Jaccard Index (Jl) is computed by 

j/(4C) = P ^ ( 4 ' 3 ) 

V ' \AKJC 

\A n C\ is the number of elements in the intersection, which, in the case of the FJI, is modeled 

by ^min{Aj(x),Cj{xf). \A U c\ is the number of elements in the union, which, in the case of the 

FJI, is modeled by ^max(Ai(x),Ci(x)). 
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The JI requires knowledge of the labels identifying elements in the regions of interest. 

These labels are not always available. To deal with this situation, the use of a fuzzy sets 

representation of image features is proposed. By using fuzzy sets instead of labels, one can use 

the JI while effectively exploiting the available information in the images. The main features 

considered are the edges of the images because they contain useful structural information 

about the boundaries of the objects of interest. In particular, the focus is on the gradient 

magnitude that measures the local steepness of the intensity landscape, which has local 

maxima at the edges. With this in mind, one can use the FJI on gradient magnitude (FJIG) to 

quantify the fuzzy overlap between fuzzy set representations of the edges in both images. The 

aim of the FJIG is to exploit the functional relation between sets of pixels having large 

gradient magnitudes in both images. 

The FJIG measures the amount of area overlap between input and reference images with 

respect to the total area. This is precisely how a domain expert would evaluate the quality of 

the registration solution. However, the numeric value of the FJIG cannot be used directly as a 

measure of the quality of the registration solution because the value of the FJIG is affected not 

only by the amount of misalignment but also by the type of registration problem being solved 

(single-modality, multimodaliry, or model-to-image registration) and the scale factor (a) used 

in the computation of the gradient. To deal with this situation, a Support Vector Classifier 

(SVC) will be used to find a relation between the FJIG and the quality of the registration 

results as assessed by an expert. 
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4.3 Proposed use of the system 

The proposed overlap measure is used to evaluate the quality of registration solutions in 

a clinical application for measuring the tilt angle of vertebral endplates in spine radiographs of 

patients with scoliosis. The proposed use of the system is as follows (see Appendix 1 for a 

general overview on the use of the system). A graphical user interface, written in the Perl 

programming language, was used to allow the user to select the vertebral endplates to be 

analyzed. Figure 4-1 shows an example of graphical user interface for the measurement of 

vertebral wedging. Figure 4-2 shows an example of graphical user interface for the 

measurement of Cobb angle. Based on the user selection, regions of interest (ROIs) were 

created (Figure 4-3 (a)). A model ( Figure 4-3 (b)) was then registered to the ROIs, using 

custom-made software, to find the location and tilt angles of the vertebral endplates under 

study. The software used is depicted in Appendix 5. If the registration solution indicates a tilt 

angle greater than 45°, the solution was flagged as requiring human assessment because such a 

tilt suggests either a large misregistration or a very high Cobb angle. For registration solutions 

with a tilt angle of less than 45°, a two-class classifier was used to discriminate groups of 

registration solutions based on their tilt angle: good registration solutions (in which the 

difference between the obtained tilt angle and the expected tilt angle was less than or equal to 

3°) and bad registration solutions (in which the difference between the obtained tilt angle and 

the expected tilt angle was greater than 3°). Good registration solutions are used to compute 

the vertebral wedging or Cobb angle and the results are shown graphically as indicated in 

Figure 4-4 and Figure 4-5. 
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Figure 4-1: Graphical user interface used to select vertebral endplates for the measurement of 
vertebral wedging. 

Figure 4-2: Graphical user interface used to select vertebral endplates for the measurement of 
Cobb angle. 
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(a) (b) 

Figure 4-3: Sample reference image (a) and model (b) for model-to-image registration. 

Figure 4-4: Measured wedge for vertebra under study. 
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Figure 4-5: Measured Cobb angle. 

4.4 Patient data set 

Retrospectively, radiographs of patients with scoliosis from the database of the scoliosis 

clinic at the Glenrose Rehabilitation Hospital were examined, after getting Ethics Approval, to 

select patients for the study. The following inclusion criteria were used: 1) having available a 

posterior-anterior standing radiograph with a maximum Cobb angle of less than 75°; 2) not 

having undergone surgery; and 3) having at least a visually identifiable vertebral endplate. 

Eighteen patients and a total of 141 vertebral endplates satisfied the inclusion criteria. Figure 

4-6 shows an example of a region of interest around a vertebral endplate that satisfied the 

inclusion criteria. Patients had a variety of spinal curvatures, with an average of maximum 
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Cobb angle of 39° ± 18° (range 8°-74°). There were 7 (39%) patients with double curve and 

11 (61%) patients with single curves. 

After performing registration on the ROIs corresponding to the 141 vertebral endplates 

under study, the FJIGs on the ROIs and the models were computed (see Appendix 6). In 

addition, the mean value (MeanG), median value (MedianG), range of values (RangeG), and 

standard deviation (StDevG) of the gradient magnitudes of the ROIs were computed by (see 

Appendix 6) 

MeanG(x) = -Yxi (4"4) 

with n being the number of samples x;. in the data set. 

MedianG(x) = 50th percentile(x) , 4,5 \ 

RangeGyx) = max(x)-min(x) 

If, n \ 
StDevG(x)= -Y(x-MeanG(x))2 

with n being the number of samples x,. in the data set. 

(4-6) 

(4-7) 
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Figure 4-6: Example of a vertebral endplate that satisfied the inclusion criteria. 



It is important to note that the lack of a known transformation makes evaluation of 

registration accuracy difficult. To overcome this challenge, a set of landmarks to be used as a 

ground truth for the evaluation of the registration algorithms were defined. To define the 

ground truth, each of the 18 spine radiographs was rendered and selected landmarks were 

traced manually using anatomic criteria. The landmarks chosen were lines going through the 

most visible edge of each vertebral endplate. The tilt angle for each line was also recorded. 

The landmarks were traced before reviewing the registration results. Moreover, the same 

landmarks were used to evaluate all the registration results obtained with the different 

algorithms. This approach ensures that any inaccuracies in landmark identification are not 

biased with respect to the model or method being tested and that such inaccuracy is equally 

likely to be detrimental to the apparent performance of any of the registration strategies. To 

indirectly assess the accuracy of the location of the landmarks, a study was performed to 

determine the intra- and inter-observer reliability of the Cobb angle measurements made by 

the person that identified the landmarks and by a well-experienced orthopaedic surgeon. 

Twenty-three Cobb angles were used in this study. The measurements were carried out 

independently three times with a three week interval between sessions. The intra-observer 

variability was 2° ± 1° (with a range of 0° - 5°). The inter-observer variability was 3°± 2° 

(with a range of 0° - 10°). These results agree with the accepted intra- and inter-observer 

variability of 4° to 8° [23] suggesting that, in fact, the measurements made can serve as gold 

standard. 
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(a) ROI of top vertebral endplate under study 

(b) Difference before registration 

(c) Difference after registration 

Figure 4-7: Sample reference image used in the model-to-image registration example (a). 
Difference before registration (b) and difference after registration (c) for a model-to-image 
registration example of a top vertebral endplate using the CFJI similarity measure. 

4.5 Support vector classifiers 

Support vector classifiers (SVC) [77], originally designed to solve two-class 

classification problems, have been used with a high degree of success in several applications 

ranging from bioinformatics to text categorization. In their basic form, SVC learn linear 

decision rules of the following form: 

D(x) = sign((yvx)+b) ( 4 8 ) 

The decision rule D(x) is equal to +1 for positive values of (w • x) + b . D(x) is equal to -1 

for negative values of (w-x) + b. The weight vector w and threshold b are found during 

training and they describe a hyperplane (a higher-dimensional generalization of a plane in 3-
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dimensional Euclidean geometry). Observations (x) are classified according to the side of the 

hyperplane in which they are located. During training, the SVC approach finds the hyperplane 

that classifies most training samples correctly while keeping the largest separation possible 

between classes. If all the training samples can be classified without error, the distance from 

the hyperplane to the closest training sample is known as the margin. Otherwise, the margin is 

the distance from the hyperplane to the closest correctly classified samples. 

For cases in which the data set cannot be correctly classified by a linear decision rule, 

the training observations (x) are mapped, by a function <X>(x), to a feature space where the 

observations become linearly separable. The resulting decision rule has the form: 

D(x) = sign((yv®(x)) + b) ( 4 9 ) 

w and b are found during training. To find the w that maximizes the margin, a dual 

optimization problem is usually solved, leading to the following decision rule (the reader is 

referred to [47] for a detailed derivation): 

( " 
D(x) = sign X M (*(*, )•*(*)) + * 

with n being the number of samples in the training set. 

This decision rule is often written as 

(4-10) 

D(x)=sign\Yj/JiAiK(xi,x) + b (4-11) 
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with n being the number of samples in the training set and with A:(X,,X) being a kernel 

function of a pattern to be classified x and a training pattern x,. Examples of kernel functions 

are a linear kernel (AT(x1,-x) = (x, x)) and a radial basis function kernel 

(A:(x,.,-x) = exp\- yjp., • x||2 j , y > 0 ). S is a subset of the training set. A, e {-1, 1} is the label of 

sample x,. /?, is the Lagrange multiplier associated with the sample x,. b is the threshold. As 

described in [77] and [47], during training, optimization of /?,. is achieved by 

i^-^Hm^M^j) 
\i=\ 2 i=1 7=1 

(4-12) 

Subject to 

Z M = O (4-13) 

and 

0 </?,< C 
(4-14) 

The class overlap is controlled by the penalty weight C > 0. For C -»oo , no overlap is 

allowed. During optimization, the values of all /?,. become 0, except for the j3t associated with 

the support vectors (a special subset of the training samples). Consequently the support 

vectors are the only patterns needed in deciding the position of the decision boundary. 
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Summarizing the SVC approach, the input vector x and the support vectors x, are 

mapped into a feature space where the necessary dot products are computed by using the 

kernel function K. The kernel function is chosen a priori, and it determines the type of 

classifier (e.g., linear or radial basis function). The penalty weight C is also chosen a priori. C 

controls the amount of allowed overlap between classes. All other parameters (the number of 

support vectors and weights and the threshold) are found during training. 

4.6 Logistic regression 

Linear regression is used to explore the relation between a response variable and one or 

more explanatory variables. However, when the response variable is binary, linear regression 

is not appropriate because in linear regression results are, in general, unbounded as the 

explanatory variables tend to infinity and with a binary response variable there are only two 

possible values [31]. Examples of binary response variables are: large vs. Small 

misregistrations, presence vs. absence of a condition, occurrence vs. non-occurrence of a 

response within a defined period of observation. For these types of examples, the logistic 

regression (LR) [31] model has become one of the most commonly used methods of analysis 

[31]. Logistic regression assumes that the relation between the explanatory variables and the 

response variable is nonlinear. In logistic regression, the response variable is given by 

exp 

D(X) = _ 

(4-15) A, + £ A*, 

c 
l + exp 

V 

- + E 

A + £ / U 
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where /?,. are the regression coefficients; x, are the explanatory variables in x; and s is a 

random disturbance term that is assumed to be uncorrelated to the explanatory variables x, 

[31]. 

4.7 Decision trees 

Decision trees (DT) [12] consist of nodes and branches connecting the nodes. The nodes 

located at the bottom of the decision tree are called leaves. They indicate the classes 

associated with the response variables. The top node in the decision tree is called the root. The 

root contains all the training samples associated with the explanatory variables. All nodes but 

the leaves are called decision nodes because they specify some decision to partition the data 

set based on a selected explanatory variable. Figure 4-8 shows a decision tree used for the 

classification of three types of flowers. In the figure, it can be seen that there are five leaves 

nodes (one node for the class iris-setosa and two nodes for each of the remaining classes). 

Decision trees are classifiers trained by an iterative process in which features are selected and 

corresponding thresholds are identified at each node of the tree to improve the prediction 

accuracy. The main advantages of decision trees are [35]: 

• their speed (because only the explanatory variables needed to classify the test 

pattern of interest are considered, the classification can be done with a low 

computational cost); 

• their interpretability (because decision trees can be represented by a group of if then 

rules in terms of the selected explanatory variables, the results are clearly 

interpretable); and 

• their capability to handle categorical and numerical data. 
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H iris-setosa (50/0) 

root node 

iris-virginica (46/1) 

iris-versicolor (48/1) 

*( iris-virginica (3/0) iris-versicolor (3/1) H 

leaves nodes • 

Figure 4-8: A decision tree for the classification of three types of flowers: iris-setosa, iris-
versicolor, and iris-virginica. The leaves nodes indicate the number of samples in each particular 
class (e.g. the leaf node iris-setosa classified correctly 50 samples while 0 samples were incorrectly 
classified). The values in the branches indicate the criteria to divide the data set (e.g. if petal 
width is less than or equal to 0.6 then the flower is iris-setosa). 

4.8 Data preparation 

The data set for the experiments was divided into training and test set according to the 

time in which the data became available. The training set consisted of 14 radiographs from 

which 104 vertebral endplates were selected using the selection criteria previously discussed. 

The test set consisted of 4 radiographs that became available after the first group. From the 

second group of radiographs, 37 vertebral endplates were selected following the inclusion 

criteria previously discussed. Once the endplates were selected, model-to-image registrations 

were performed using the proposed similarity measure (CFJI) described on Chapter 3 (see 

Appendices 2, 4, and 5 for the algorithms and computer codes). The parameters used for the 

combined fuzzy Jaccard index similarity measure were or = 0.5 and cr = 2.0. The optimizer 

parameters were set to RF = 0.5, D0 = 5.0, Dstop = 0.0001, Gstop = 0.0001, and Niter = 500. 

After registration, each solution was evaluated with respect to the ground truth. If the 
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difference in the rotation angle was greater than 3° the solution was labelled as a Large 

Misregistration (LM). Otherwise, the location of the registered model was assessed visually to 

assign one of two possible labels: Large Misregistration (LM) or Small Misregistration (SM). 

For the training set there were 54 registration solutions labelled as LM and 50 registration 

solutions labelled as SM. For test set there were 25 registration solutions labelled as LM and 

12 registration solutions labelled as SM. It is important to note that these registration results 

were obtained without any optimization of the registration parameters. No optimization was 

attempted because for training and testing the classifiers, it was necessary to have good 

registration solutions and bad registrations solutions. Therefore, the criterion for setting up the 

parameters was to select those parameters that provided the greater number of good 

registration in Chapter 3. After registration, the overlap measures presented in this chapter 

were computed. To compute the gradient images a = 1.0 was used. 

4.9 Exploratory data analysis 

Table 4-1 depicts statistical information of the features contained in the training data set. 

From Table 4-1, one can notice that all the explanatory variables had a significant correlation 

to the class of registration solutions (Large Misregistration and Small Misregistrations). The 

MeanG and MedianG had similar mean value (0.363 for MeanG and 0.349 for MedianG) and 

standard deviation (0.203 for MeanG and 0.204 for MedianG). Based on this observation one 

could hypothesize that the MeanG and MedianG were related. To test that hypothesis, the 

correlation coefficient between MeanG and MedianG was computed. The correlation coefficient 

between MeanG and MedianG was r = 0.99 suggesting that there was a very large linear 

correlation between the two variables. The coefficient of determination was r2 = 0.98 

suggesting that 98% of the total variation in one variable could be expressed by the linear 
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relation between both variables. These findings suggest that the hypothesis that MeanG and 

MedianG were related was true. Because of the very high correlation between MeanG and 

MedianG, it was possible to assume that they were redundant. Therefore, for the classification 

problem only the variable with the highest correlation to the class of registration solutions 

{MeanG) was considered. 

Figure 4-9 through Figure 4-14 provide a graphical representation of the training set 

variables used in the classification experiments. Patterns associated with the class of Large 

Misregistrations were identified with crosses while patterns associated with the class of Small 

Misregistrations were identified with dots. Figure 4-9 through Figure 4-11 show samples 

belonging to the same class grouped together. This may suggest that FJIG in combination with 

any of the other explanatory variables have a good discriminatory power of the class of 

registration solutions. Figure 4-12 through Figure 4-14 show samples belonging to the same 

class scattered over the graph. This may suggest that, compared to using FJIG with other 

explanatory variables, it is harder to discriminate the class of registration solutions by using a 

combination of the explanatory variables MeanG, RangeG, and StDevG. 

Name 
FJIG 
MeanG 
MedianG 
RangeG 

StDevG 

Mean 
0.020 
0.363 
0.349 
0.544 
0.429 

SD 
0.005 
0.203 
0.204 
0.266 
0.228 

Min 
0.009 
0.000 
0.000 
0.000 
0.000 

Max 
0.035 
1.000 
1.000 
1.000 
1.000 

r 
0.781* 
0.579* 
0.550* 
0.573* 
0.591* 

Table 4-1: List of features of the training set. SD: standard deviation. 
N: Number of vertebral endplates = 104. r: Pearson coefficient of correlation to the class of 
registration solutions; for N=104, r>0.193 for significance at p<0.05. * indicates significance at 
p<0.05. 
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Figure 4-9: Scatter plot of FJIG versus MeanG for the training set. Patterns labelled as "LM" 
belong to the class of "Large Misregistrations". Patterns labelled as "SM" belong to the class 
"Small Misregistrations". 
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Figure 4-10: Scatter plot of FJIG versus RangeG for the training set. Patterns labelled as "LM" 
belong to the class of "Large Misregistrations". Patterns labelled as "SM" belong to the class 
"Small Misregistrations". 
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Figure 4-11: Scatter plot of FJIG versus StDevG for the training set. Patterns labelled as "LM" 
belong to the class of "Large Misregistrations". Patterns labelled as "SM" belong to the class 
"Small Misregistrations". 
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Figure 4-12: Scatter plot of MeanG versus RangeG for the training set. Patterns labelled as 
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Figure 4-13: Scatter plot of MeanG versus StDevG for the training set. Patterns labelled as 
"LM" belong to the class of "Large Misregistrations". Patterns labelled as "SM" belong to the 
class "Small Misregistrations". 
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Figure 4-14: Scatter plot of RangeG versus StDevG for the training set. Patterns labelled as 
"LM" belong to the class of "Large Misregistrations". Patterns labelled as "SM" belong to the 
class "Small Misregistrations". 
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To verify the hypothesis that the samples in the test data set were representatives of the 

same general population from which the training data set was draw, the same statistics and 

scatter plots computed for the training set were computed for the test set. Table 4-2 depicts 

statistical information of the features contained in the test data set. From Table 4-2, one can 

notice that all the explanatory variables had a significant correlation to the class of registration 

solutions (Large Misregistration and Small Misregistrations). The MeanG and MedianG had 

similar mean value (0.503 for MeanG and 0.488 for MedianG) and standard deviation (0.269 

for MeanG and 0.262 for MedianG). The correlation coefficient between MeanG and MedianG 

was r = 0.99 suggesting that there was a very large linear correlation between the two 

variables. The coefficient of determination was r2 = 0.98 suggesting that 98% of the total 

variation in one variable can be expressed by the linear relation between both variables. These 

findings confirmed that the hypothesis that the MeanG and MedianG were related was true. 

Figure 4-15 through Figure 4-20 provide a graphical representation of the test set 

variables. Patterns associated with the class of Large Misregistrations were identified with 

crosses while patterns associated with the class of Small Misregistrations were identified with 

dots. Figure 4-15 through Figure 4-17 show samples belonging to the same class grouped 

together. Figure 4-18 through Figure 4-20 show samples belonging to the same class scattered 

over the graph. These findings were in agreement to the ones obtained for the training set. 

Name 
FJIG 
MeanG 
MedianG 
RangeG 

StDevG 

Mean 
0.023 
0.503 
0.488 
0.547 
0.532 

SD 
0.006 
0.269 
0.262 
0.292 
0.510 

Min 
0.010 
0.000 
0.000 
0.000 
0.000 

Max 
0.037 
1.000 
1.000 
1.000 
1.000 

r 
0.809* 
0.546* 
0.536* 
0.595* 
0.566* 

Table 4-2: List of features of the test set. SD: standard deviation. 
N: Number of vertebral endplates = 37. r: Pearson coefficient of correlation to the class of 
registration solutions; for N=37, r>0.325 for significance at p<0.05. * indicates significance at 
p<0.05. 
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Figure 4-15: Scatter plot of FJIG versus MeanG for the test set. Patterns labelled as "LM" 
belong to the class of "Large Misregistrations". Patterns labelled as "SM" belong to the class 
"Small Misregistrations". 
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Figure 4-16: Scatter plot of FJIG versus RangeG for the test set. Patterns labelled as "LM" 
belong to the class of "Large Misregistrations". Patterns labelled as "SM" belong to the class 
"Small Misregistrations". 
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Figure 4-17: Scatter plot of FJIG versus StDevG for the test set. Patterns labelled as "LM" 
belong to the class of "Large Misregistrations". Patterns labelled as "SM" belong to the class 
"Small Misregistrations". 
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Figure 4-18: Scatter plot of MeanG versus RangeG for the test set. Patterns labelled as "LM" 

belong to the class of "Large Misregistrations". Patterns labelled as "SM" belong to the class 
"Small Misregistrations". 
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Figure 4-19: Scatter plot of MeanG versus StDevG for the test set. Patterns labelled as "LM" 
belong to the class of "Large Misregistrations". Patterns labelled as "SM" belong to the class 
"Small Misregistrations". 
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Figure 4-20: Scatter plot of RangeG versus StDevG for the test set. Patterns labelled as "LM" 
belong to the class of "Large Misregistrations". Patterns labelled as "SM" belong to the class 
"Small Misregistrations". 
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4.10 Training and testing of the classifiers 

To test the hypothesis that the support vector classifier (SVC) with the proposed set of 

input variables (FJIG, MeanG, StDevG, RangeG) could discriminate between good and bad 

registration solutions, two classification problems were solved. 

1. For the first classification problem, the training and testing of the classifiers were 

done using a 10-fold cross-validation approach. The training data set was divided 

into 10 non-overlapping groups. Training was done using 9 out of the 10 groups and 

testing was done in the remaining group. A rotation method was then employed 

repeating the experiments 10 times. The results obtained after the ten iterations were 

averaged. 

2. For the second classification problem, the training was done using the complete 

training data set and the testing was done using the testing data set. 

The training data for the experiments were linearly scaled to be in the range [-1, 1]. The 

minimum and maximum values in the training data were then used to scale the testing data for 

the experiments. To compare the classifiers the McNemar's test was used as suggested in [65] 

and [17]. This test is based on a Chi-square {%2) test for goodness of fit. This test was used to 

determine if two observed results were different either due to chance or due to a real 

difference. The x1 test was performed following these steps: 1) build a contingency table, as 

the one shown in Table 4-3; 2) compute the statistics equation ( 4-16 ); and 3) if the result of 

equation ( 4-16 ) is greater than %?095 =3.8, then reject the null hypothesis in favour of the 
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hypothesis that the two classifiers have different performance when trained on a particular 

training set [17]. 

C A \ C B 

NOS Misclassified by CA 

NOS no Misclassified by CB 

NOS Misclassified by CA 

N00 
N10 

NOS no Misclassified by CB 
N01 
N i l 

Table 4-3: Contingency table used to compare two classifiers: Classifier A (CA) and Classifier B 
(CB). NOS = Number of Samples. 

N0,-N10|-lJ7(N01+NIO) (4-16) 

The accuracy, sensitivity and specificity of the classifiers were also computed. The 

accuracy was given by the percentage of registration solutions that were correctly labelled as 

either Large Misregistration (true positives) or correctly flagged as Small Misregistration (true 

negatives). The sensitivity (SN) and specificity (SP) were given by 

TP SN = —^-— (4-17) 
TP + FN 

TN 
SP = ——— (4-18) 

FP + TN 

with TP being the "true positives" (number of registration solutions that were not correctly 

registered and were classified as having a Large Misregistration); TN being the "true 

negatives" (number of registration solutions that were correctly registered and were classified 

as having a Small Misregistration); FP being the "false positives" (number of registration 

solutions that were correctly registered and were classified as having a Large Misregistration); 

FN being the "false negatives" (number of solutions that were not correctly registered and 
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were classified as having a Small Misregistration). In clinical practice, a classification 

approach should have zero (or very close to zero) false negative while the number of false 

positives is small. 

For the SVC, the type of kernel selected was the radial basis function kernel. This kernel 

can handle non-linear relations between class labels and features and can also perform as a 

linear kernel for some parameters C (the error penalty term) and y (the spread for the radial 

basis kernel) [39]. To select the appropriate values for C and y, a process of two-level 5-fold 

cross-validation of the dataset was carried out. hi the first level, the sets of parameters used in 

the cross-validation were: y e {l~n, 2-",..., 22}andCe{2"2 , 2"1,..., 214 }. This level was used 

to determine the intervals of the parameters that produced the best results. In the second level, 

based on the intervals obtained in the first level, the sets of parameters used in the cross-

validation were: y^{rr\ 2^s, 2~60, 2-55, 2'50} and Ce {26,25,24,23,22,2',2° }. The SVC 

used in the experiments was designed using the LIBSVM [8] (an open source library for 

support vector machines) implementation in Weka [80] (an open source collection of machine 

learning algorithms in the Java programming language). 

For the decision tree classifier, a C4.5 [54] decision tree implemented in Weka [80] was 

considered. C4.5 builds decision trees from a set of training data using the concept of 

Information Entropy. The Information Entropy of a decision tree node is the sum over all 

classes represented in the node of the proportion of the samples belonging to a particular class 

times the logarithm in base two of the proportion. The Information Entropy reaches a 

maximum value of one when only one class is represented at a node and it reaches a minimum 

value of zero when class sizes at the node are equal. C4.5 uses the fact that each explanatory 

variable in the data set can be used to make a decision that splits the data set into smaller 
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subsets. C4.5 examines the normalized Information Gain (difference in Information Entropy) 

that results from choosing an attribute for splitting the data. The attribute with the highest 

normalized information gain is the one used to make the decision. The algorithm is then 

repeated on the resulting smaller sub-trees. The decision tree keeps growing as long as new 

splits can be found that improve the accuracy on the training set. If left as is, the resulting tree 

may perform poorly on a test set. To increase the accuracy of the resulting tree, pruning 

(eliminating splits) needs to be performed. For the C4.5 implementation the level of pruning is 

controlled by the pruning confidence factor. The pruning confidence factor (pc) takes on 

values between 0 and 1. For pc values close to 1, almost no pruning is performed. For pc 

values close to 0, aggressive pruning is performed. To select an appropriate value for pc a 

process of two-level 5-fold cross-validation of the dataset was carried out. In the first level, the 

sets of parameters used in the cross-validation were: pee {0.10,0.20,...,0.50}. This level was 

used to determine the intervals of the parameters that produced the best results. In the second 

level, based on the intervals obtained in the first level, the sets of parameters used in the cross-

validation were: pc e {0.20,0.25,0.30 }. 

For the logistic regression classifier, the logistic regression implementation in Weka 

[80] was considered. For this implementation there was only one open parameter, the penalty 

parameter (X). The penalty parameter controls the amount of shrinkage of the regression 

coefficients while training the logistic regression classifier [42]. When A-»oo, all the 

regression coefficients tend to zero. When A = 0, the regression coefficients are computed by 

solving a maximum likelihood estimation [42]. To select an appropriate value for the penalty 

parameter (A) a process of two-level 5-fold cross-validation of the dataset was carried out. In 

the first level, the sets of parameters used in the cross-validation were: A e {2-30, 2^ 2 \ . . . , 2" 5}. 

This level was used to determine the intervals of the parameters that produced the best results. 
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In the second level, based on the intervals obtained in the first level, the sets of parameters 

used in the cross-validation were: ye^.'10, 2"65, 2"60, 2~55, 2~50}. 

4.11 Results 

This section compares the results, in testing, of the Support Vector Classifier (SVC) 

with those of the Decision Tree (DT) and Logistic Regression (LR) classifiers and evaluates 

their performance. The results of classifying the cases into "Large Misregistration" and "Small 

Misregistration" for the first classification problem (using a 10-fold cross-validation approach 

on the training data set) are summarized in Table 4-4. In terms of accuracy, the DT performed 

slightly better than the SVC and LR classifiers with an accuracy of 93% compared to 92% for 

the SVC and 90% for the LR. The SVC and LR detected the highest percentage of cases with 

Large Misregistration: 89%, compared to 87% of the DT. For the first two-class classification 

problem, all the classifiers performed slightly better than a radial basis function neural 

network used in preliminary studies that achieved an average 89% of accuracy in testing. 

For the training data set, the SVC and LR classifiers had the largest sensitivity 

(SN=0.89). The DT had a sensitivity SN=0.87. The largest specificity was achieved by the DT 

(SP=1.0). It was followed by the SVC (with an SP=0.96) and the LR (with an SP=0.92). 

For the first two-class classification problem, Table 4-5 shows the contingency table of 

SVC vs. LR. Using the results from this table, the McNemar's test score MT was equal to 0.5 . 

This result was less than the minimum value (Zioss =3.841459) required to reject the null 

hypothesis with a 95% of confidence. Therefore, statistically, the SVC and the LR had similar 

performance. Table 4-6 shows the contingency table of SVC vs. DT. Using the results from 
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this table, the McNemar's test score MT was equal to 0. This result was less than the 

minimum value (Xio.9s =3.841459) required to reject the null hypothesis with a 95% of 

confidence. Therefore, statistically, the SVC and the DT had similar performance. 

TO\CO 

LM 
SM 
Accuracy 
SN 
SP 

SVC 
LM SM 

48(89%) 6(11%) 
2(4%) 48(96%) 

92% 
0.89 
0.96 

DT 
LM SM 
47(87%) 7(13%) 

0(0%) 50(100%) 
93% 
0.87 
1.00 

LR 
LM SM 
48(89%) 6(11%) 

4(8%) 46(92%) 
90% 
0.89 
0.92 

Table 4-4: First two-class classification problem: Large Misregistrations versus Small 
Misregistrations. Test results with the SVC, DT, and LR classifiers using a 10-fold crossvalidation 
approach on the training set. TO: True Output. CO: Classifier Output. LM: Large 
Misregistrations. SM: Small Misregistrations. SN: Sensitivity. SP Specificity 

LR\SVC 
Misclassified by LR 
No Misclassified by LR 
McNemar's Test ( MT)Result 

Misclassified by SVC 
8 
0 

No Misclassified by SVC 
2 
94 

MT = 0.5 < zto.9s = 3.841459 

Table 4-5: First two-class problem: Large Misregistration versus Small Misregistration. 
Contingency table of SVC versus LR using a 10-fold crossvalidation approach on the training 
data set. 

DT\SVC 
Misclassified by DT 
No Misclassified by DT 
McNemar's Test (Mr)Result 

Misclassified by SVC 
6 
2 

No Misclassified by SVC 
1 

95 

MT = 0<zffi.95 =3.841459 

Table 4-6: First two-class problem: Large Misregistration versus Small Misregistration. 
Contingency table of SVC versus DT using a 10-fold crossvalidation approach on the training 
data set. 

The results of classifying the cases into "Large Misregistration" and "Small 

Misregistration" for the second classification problem (using the test data set) are summarized 

in Table 4-7. In terms of accuracy, the SVC outperformed the DT and LR classifiers with 

accuracy of 86% compared to 68% and 76%, respectively, for the DT and LR. Moreover, the 
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SVC detected the largest percentage of cases with Large Misregistration: 96%, compared to 

64% of the LR and only 52% of the DT. 

For the test data set, the SVC had the largest sensitivity (SN=0.96). It was followed by 

the LR (with an SN=0.64) and the DT (with an SN=0.52). The largest specificity was achieved 

by both the DT and LR classifiers (SP=1.0). The SVC achieved a specificity of SP=0.67. 

For the second two-class classification problem, Table 4-8 shows the contingency table 

of SVC vs. LR. Using the results from this table, the McNemar's test score MT was equal to 

0.75. This result was less than the minimum value (j,2
095 =3.841459) required to reject the 

null hypothesis with a 95% of confidence. Therefore, statistically, the SVC and the LR had 

similar performance. Table 4-9 shows the contingency table of SVC vs. DT. Using the results 

from this table, the McNemar's test score M was equal to 2.4. This result was less than the 

minimum value (^0 9 5 =3.841459) required to reject the null hypothesis with a 95% of 

confidence. Therefore, statistically, the SVC and the DT had similar performance. 

TO\CO 

LM 
SM 
Accuracy 
SN 
SP 

SVC 
LM SM 
24(96%) 1(4%) 
4(33%) 8(67%) 

86% 
0.96 
0.67 

DT 
LM SM 
13(52%) 12(48%) 

0(0%) 12(100%) 
68% 
0.52 
1.00 

LR 
LM SM 
16(64%) 9(36%) 

0(0%) 12(100%) 
76% 
0.64 
1.00 

Table 4-7: Second two-class classification problem: Large Misregistrations versus Small 
Misregistrations. Test results with the SVC, DT, and LR classifiers on the test set. TO: True 
Output. CO: Classifier Output. LM: Large Misregistrations. SM: Small Misregistrations. SN: 
Sensitivity. SP Specificity 
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LRASVC 
Misclassified by LR 
No Misclassified by LR 
McNemar's Test (MT )Res\xlt 

Misclassified by SVC 
1 
4 

No Misclassified by SVC 
8 

24 

MT = 0.75 <xto.9s =3.841459 

Table 4-8: Second two-class problem: Large Misregistration versus Small Misregistration. 
Contingency table of SVC versus LR on the test data set. 

DT\SVC 
Misclassified by DT 
No Misclassified by DT 
McNemar's Test (Mr)Result 

Misclassified by SVC 
1 
4 

No Misclassified by SVC 
11 
21 

MT = 2.4 <Zi,o.95= 3.841459 

Table 4-9: Second two-class problem: Large Misregistration versus Small Misregistration. 
Contingency table of SVC versus DT on the test data set. 

4.12 Discussion 

This research was motivated by the observation that there is a need for better evaluation 

techniques for image registration solutions. With this in mind, a novel methodology for 

automatically detecting large misregistrations was developed. The main components of the 

proposed methodology are a novel fuzzy overlap measure and a support vector machines 

classifier. The results show that, when solving model-to-image registration problems on spine 

radiographs, the proposed approach achieved between 86% and 92% of classification accuracy 

for determining whether a registration solution was a Large Misregistration or not. 

Results obtained from comparing classifiers with a test set showed that the support 

vector outperformed a decision tree and logistic regression classifiers. The classification 

accuracy for the SVC was 86% in testing with a sensitivity SN=0.96 and a specificity of 

SP=0.67. The classification accuracy for the DT was 68% in testing with a sensitivity 

SN=0.52 and a specificity of SP=1.0. The classification accuracy for the LR was 76% in 

testing with a sensitivity SN=0.64 and a specificity of SP=1.0. Even though, the SVC achieved 
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a high sensitivity to Large Misregistrations, work on improving its sensitivity continues 

because improvements in the sensitivity will translate to early detection of large 

misregistration guaranteeing a high level of care for the patients. It was observed that 1 record 

in the test set was misclassified by all the classifiers. This may suggest that the misclassified 

record was an outlier present in the data set. 

The results in Table 4-1 and Table 4-2, show that the fuzzy overlap indicator {FJIG) 

had a statistically significant correlation to the class of type of registration solutions (r = 0.781 

for the training data set and r = 0.807 for the test data set) at jo<0.05. The image descriptors 

(MeanG, MedianG, RangeG, and StDevG) also showed a statistically significant correlation 

to the class of the type of registration solutions (r in [0.550, 0.591] for the training data set and 

r in [0.536, 0.595] for the test data set) at /><0.05. It is important to note that the image 

descriptors were computed only for the pixels in the reference image that corresponded to the 

pixels in the registered input model that had the maximum membership value. 

Figure 4-9 shows a scatter plot of the FJIG versus MeanG; Figure 4-10 shows a scater 

plot of the FJIG versus RangeG; and Figure 4-11 shows a scatter plot of the FJIG versus 

StDevG. In all these scatter plots, two distinct clusters (collection of patterns that are close to 

each other on the screen) can be seen. One cluster is labelled as "LM" (Large Misregistration) 

and is represented by crosses. The other cluster is labelled as "SM" (Small Misregistration) 

and is represented by dots. The fact that the data set can be divided by class suggests that the 

proposed fuzzy overlap measure has a high discriminatory power. 

The SVC-based system outperformed systems for the evaluation of registration accuracy 

based on expert analysis [81], and segmentation of registered images [59] proposed in the 
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literature. In [81], the authors performed a study on the efficacy of visual assessment of 

registration accuracy on PET to MR images. They considered one axis at the time (only 

rotation around one axis or translation in an axis at the time). Their results indicated that 100% 

of the time, experts could detect translational misregistrations of 3 mm or more and rotational 

misregistrations of 4 degrees or more. They also reported that 60% of the time, the experts 

could detect misregistrations of more than 2 mm and that 80% of the time, the experts could 

detect misregistrations of 3 degrees or more. With accuracies over 86%, the SVC-based 

system is a clear alternative to visual inspection by a domain expert. In [59], a three-phase 

process (segmentation of the images, computation of principal axes, and determination of a 

quality measure from contour volumes) was used to distinguish correctly registered solutions 

from greatly misregistered solutions. Correctly registered solutions were defined as those in 

which the translation error was less than or equal to 3 mm and the rotation error was less than 

or equal to 4 degrees following the results presented in [81]. The best result they reported had 

a sensitivity to large misregistrations of SN=0.6 for a specificity of SP=0.97. The SVC-based 

approach has better performance considering first that the misregistrations it detected were 

smaller (above 3 degrees) and second that the SVC-based system achieved a sensitivity of 

SN=0.96 for a specificity of SP=0.67. It is important to mention that in clinical practice, it is 

of utmost interest to achieve the largest sensitivity possible to large misregistrations while 

attaining a high specificity. This is needed to avoid that large misregistration solutions 

compromise the validity of diagnosis and/or the validity of the planning and evaluating of 

therapeutic procedures. 

Another work that is related to the work presented here is that presented in [15]. In that 

work, a fuzzy Jaccard index on fuzzy labels was used to drive a registration method and to 

evaluate the quality of segmentation results. A direct comparison is not possible, because the 
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authors suggest performing segmentation as a means to evaluating registration accuracy. 

Moreover, because segmentation in itself is a very challenging problem, the SVC-based 

approach could have a higher applicability in the assessment of the quality of registration 

solutions. 

Although the SVC-based method was designed for estimating the quality of model-to-

image registrations of spine radiographs, the proposed approach may be useful in other 

contexts as well. Since the method does not rely on explicit landmark identification, it should 

be applicable to the analysis of registration solutions from other imaging modalities and 

possibly to images of other parts of the body. 

All these findings suggest that the proposed system may be a valid option for 

monitoring the quality of image registration solutions without requiring close supervision 

from neither a domain expert nor an image registration expert. This could encourage the use of 

the proposed approach in autonomous image registration applications. 

4.13 Summary 

This chapter has described a novel approach to use fuzzy overlap measure for the 

assessment of the quality of image registration solutions. The theory behind such an approach 

was presented. Two classification problems were used to evaluate the performance of a 

Support Vector Classifier, using the proposed fuzzy overlap measure, in the categorization of 

registration solutions. The results suggest that it is possible to differentiate Large 

Misregistrations from Small Misregistration by using the proposed fuzzy overlap measure, 

image data, and a support vector classifier. This finding may be useful in identifying when an 
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image registration application requires expert intervention to provide new configuration 

settings that could improve the registration solutions. 

Compared to the decision tree and logistic regression classifiers and compared to the 

results presented in the literature, the proposed support vector classifier-based system 

achieved superior performance in terms of classification accuracy. These results may 

encourage the development of new intelligent systems based on support vector classifiers to 

automatically assess the quality of registration solutions. 
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5 Discussion 

In this work, a common overlap measure was generalized with the help of fuzzy sets 

theory to measure overlap either between corresponding anatomical structures of interest in 

two images or between an image and an anatomical model. To focus on the anatomical 

structures, the overlap measure was computed on fuzzy set representations of the gradient 

magnitudes of the images. The applicability of the overlap measure was verified by using it in 

a similarity measure for image registration and as one of the inputs in a classifier to 

discriminate acceptable registration solutions from unacceptable ones. Because the clinical 

focus of this work was on spinal deformities, the main interest was on study of the inclinations 

of vertebrae. This interest was reflected in the use of the assessment of vertebral endplate 

rotation as an indicator of registration accuracy. 

5.1 Proposed overlap measure in a similarity measure for image registration. 

The proposed overlap measure (the Fuzzy Jaccard Index - FJI) was applied on fuzzy set 

representations of gradient magnitudes to focus on finding the best possible match between the 

gradient magnitudes of the images being registered. However, working only with gradients 

would discard important information from the intensity values in the images. For this reason, a 

novel similarity measure, the Combined Fuzzy Jaccard Index (CFJI), was considered for 

image registration. The CFJI combined the proposed overlap measure on gradient magnitudes 

(the FJI on gradients or FJQ with a version of the proposed overlap measure that computed 

the overlap on intensity values (the FJI on intensities or FJIi). As a result, the new similarity 

measure focused on simultaneously aligning corresponding edges and corresponding regions 

of smooth intensity values. The CFJI has two configuration parameters: a weighting factor (a) 

and a smoothing factor (o). Both parameters are positive numbers less than or equal to 1. The 
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weighting factor controls the focus of the similarity measure on edges or on intensity values. 

As the specified value of the weighting factor increases, the focus of the similarity measure on 

the edges increases and the focus on intensity values decreases. The smoothing factor controls 

the level of smoothing applied to the image before computing the gradient. As the specified 

value of the smoothing factor increases, the similarity measure sensitivity to noise decreases 

along with the similarity measure's ability to deal with weak edges. 

To test the hypothesis that the CFJI could be a valid alternative as a similarity measure 

for medical image registration of spine radiographs, a model-to-image registration experiment 

was set up. Sixteen vertebral endplates were selected and a CFJI-based image registration 

algorithm was used to register a model to the vertebral endplates. The CFJI -based registration 

algorithm was able to precisely register the model to endplates in all the cases (an accuracy of 

100%). The correlation coefficient between the expected rotation angle and the computed 

rotation angle was r=0.99. These results compare favourable with those obtained using a 

registration algorithm based on the mean squared errors (MSE) similarity measure on the same 

data set. The accuracy of the MSZs-based registration algorithm was 80%. The correlation 

coefficient between the expected rotation angle and the computed rotation angle was r=0.76 

for the MSE-based registration algorithm. These results suggest that the proposed similarity 

measure works well for images with variable contrast and moderate focus such as the clinical 

images associated with scoliosis management. 

The proposed image registration similarity measure was tested mainly with spine 

radiographs of patients with scoliosis. Registration of radiographs is challenging due to their 

variable contrast, moderate focus, low resolution, and variability associated with the 

representation of three dimensional (3-D) anatomical structures in two dimensional (2-D) 
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images. Because its controlled focus on edges and intensity values information, the proposed 

similarity measure enhanced the performance of the registration algorithm used in this work in 

such a way that it could handle those challenges. It is expected that registration algorithms 

based on the proposed similarity measure will perform well in model-to-image registration of 

spine images from other modalities (which could be useful in other areas of spine-related 

research). 

These results are important because they suggest that a registration algorithm based on 

the proposed similarity measure could be used to assess wedge angles in spinal deformities 

research. As suggested by Aubin et al. [1], the wedge angles obtained from spine radiographs 

give reliable information that allows partial characterization of the real 3-D vertebral body 

wedging. However, as Aubin et al. [1] also comment, the location of the maximum wedging 

angle can not be obtained nor deduced from radiographic measurements. If the location of the 

maximum wedging angle is required, one can envision using a 3-D model-to-image 

registration algorithm based on the proposed similarity measure to determine 3-D vertebral 

wedging. 

Regarding the applicability of the proposed similarity measure in single- and multi-

modality registration, preliminary results using brain images suggest that it is possible to use 

the proposed similarity measure in the registration of anatomical structures other than 

vertebral endplates. 
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5.2 Proposed overlap measure as a measure of registration quality 

Obtaining precise results in the registration of images is important because it allows the 

extraction of relevant clinical information. Before extracting clinical information from the 

aligned images, it is necessary to verify the goodness of the alignment. This task is usually 

done by visual inspection. Unfortunately, this approach is time consuming and highly 

dependant on the level of expertise of the radiologist, physician, or other clinical expert. This 

complicates the adoption of image registration methods in clinical practice. To solve this 

problem, a classification strategy, using the proposed overlap measure, was developed to 

automatically assess whether the registration was successful or not. 

The proposed overlap measure (the Fuzzy Jaccard Index - FJI) was applied on fuzzy set 

representations of gradient magnitudes to measure the fuzzy overlap between a model and the 

region of interest containing the vertebral endplate under study. The FJI on gradient 

magnitudes (FJIG) has one configuration parameter: a smoothing factor (o). The smoothing 

factor attains positive values in [0, 1]. The smoothing factor is the standard deviation of the 

Gaussian smoothing kernel used to filter the image before computing the gradient magnitudes. 

To test the hypothesis that the FJIG was related to the category of the registration 

solution quality (large misregistration or Small misregistration), the correlation coefficient 

between the FJIG and the class of registration solutions was computed. The correlation 

coefficient was equal to r=0.78 which is equivalent to an r2 = 0.61. The value of r2 indicates 

that 61%of the total variation in the class of registration solutions can be explained by the 

linear relation between FJIG and the class of registration solution. This result suggests that the 

FJIG can, indeed, help in discriminating large misregistrations from Small misregistrations. 
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The main thrust of this work was not only to develop an overlap measure that was 

related to registration quality but also to demonstrate that taken together with a group of image 

descriptors, the resulting indices could estimate registration quality accurately. The 

contribution of individual indices to this estimation should be tested more thoroughly and 

formally with growth of the data set over time. 

To test the hypothesis that a Support Vector Classifier (SVC), using the FJIG, could 

predict the quality of registration solutions sufficiently well to be used in an automated system 

for detecting large misregistrations, a model-to-image registration experiment was set up. 141 

vertebral endplates were selected. 104 vertebral endplates were used as a training set and 37 

vertebral endplates were used as a test set. A CFJT-based image registration algorithm was 

used to register a model to the vertebral endplates using a fix set of values for the weighting 

and smoothing factors (a =0.5 and <r=2.0 respectively). Fifty four of the registration 

solutions in the training set were labelled as large misregistrations and fifty of the registration 

solutions were labelled as Small misregistration solutions. The overlap measure and some 

image descriptors were computed for each vertebral endplate. The resulting data set was used 

to train a support vector classifier, a decision tree classifier, and a logistic regression classifier. 

The performance of the classifiers was assessed using a 10-fold cross-validation approach. 

The support vector classifier achieved an accuracy of 92%. This result was similar to the one 

obtained using a decision tree classifier (93%) and a logistic regression classifier (90%). 

A CFJ/-based image registration algorithm was used to register a model to the 37 

vertebral endplates in the test set using a set of fixed values for the weighting and smoothing 

factors (a =0.5 and a= 2.0 respectively). Twenty five of the registration solutions were 

labelled as large misregistrations and twelve of the registration solutions were labelled as 
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Small misregistration solutions. The overlap measure and some image descriptors were 

computed for each vertebral endplate. The resulting data set was used to assess the 

performance of a SVC in discriminating the quality of registration solutions. The performance 

was assessed using the complete training set for configuring the classifiers and using the test 

set to evaluate the performance. The support vector classifier achieved an accuracy of 86%. 

This result was better than the one obtained using a logistic regression classifier (76%) and a 

decision tree classifier (68%). The high accuracy obtained by the support vector classifier 

suggests that the proposed system is a viable alternative for automatically evaluating medical 

image registration solutions. 

The classification results were used to determine whether or not the location and 

orientation of the endplates under study could be used to calculate some clinical indicators of 

scoliosis severity with the goal of using the proposed system for automatically assessing 

scoliosis severity in clinical practice. The results were very promising showing a difference of 

less than 3° with respect to the measurements made by a clinical expert. This difference is less 

than the accepted intra- inter-observer error in measuring scoliosis severity [46]. 

Because no assumption was made regarding the image modalities under study, it is 

expected that the proposed system will perform well in evaluating the registration results of 

other model-to-image registration applications provided that the boundaries of the structures 

of interest are identifiable and an adequate model is used to match the anatomical structure of 

interest. 
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5.3 Limitations 

This document describes the development of fuzzy overlap measures and their use for 

controlling registration algorithms and for assessing registration quality in a model-to-image 

registration application. 

Some fundamental assumptions and limitations of this work should be considered when 

analysing its results. The limitations of this work are related to the size and nature of the data 

set, the available technology, and the clinical protocol. 

Although radiographs are widely used for scoliosis management and spinal deformities 

research, it is important to note that they show an incomplete 2-D description of a 3-D 

scoliotic deformity. This is why there is no single model that would work adequately for all 

the possible ways in which a vertebral endplate would look like in a radiograph. 

There were limitations related to the small sample size. We had 141 regions of interest 

(with their corresponding vertebral endplates) for 18 patients. The regions of interest were 

divided into two groups: a training set with 104 regions of interest and a test set with 37 

regions of interest. The data set may not be representative of the general population of 

scoliosis images. This leads to concerns about overfitting and potential bias on the part of the 

classifiers. These concerns were alleviated after evaluating the support vector classifier on the 

test data set and having similar results than those obtained with the training data set using a 

ten-fold cross-validation approach. 
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All the reported simulations were performed with two dimensional (2-D) images. 

Because no assumption about image dimensionality was done in the development of the 

proposed framework, it is expected that the results would be extensible to work with three 

dimensional (3-D) images. 

Finally, the results are dependant on the image modalities used, the resolution of the 

images, and the distribution of the misregistration errors created. To address this issue, 

simulations involving a larger dataset should be carried out. 
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6 Conclusion and recommendations for future work 

6.1 Conclusions 

The engineering intent of this work was to develop a novel fuzzy sets overlap measure 

that could be used to assess the quality of image registration results. This goal was divided 

into two main objectives. The first objective was to study the proposed overlap measure to 

control image registration processes. The second objective was to use the overlap measure to 

assess the quality of registration results in a model-to-image registration application. 

Regarding the first objective, this work has assessed the applicability of the proposed 

overlap measure as a similarity measure for a series of image registration tasks that included 

single-modality registration of brain images, multi-modality registration of brain images, and 

model-to-image registration of sixteen vertebral endplates images. Compared to the 

registration algorithm using the Mean Squared Error similarity measure, the registration 

algorithm using the proposed similarity measure achieved superior performance in all the 

cases. Moreover, in solving the model-to-image registration problems, the registration 

algorithm using the proposed similarity measure could precisely register the vertebral endplate 

in all the cases while the registration algorithm using the mean squared errors similarity 

measure could register precisely 80% of the vertebral endplates. The good results obtained 

with the proposed similarity measure may be related to the fact that while most similarity 

measures treat the same all pixels, the proposed similarity measure gives special attention to 

edges. Because of this, the proposed similarity measure exploits the spatial information 

contained in the location of edges. By giving special attention to the edges while using the 

information contained in the intensity values, the proposed similarity measure mimics the way 
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in which human beings analyze images (i.e., grouping similar pixels to make sense of the 

images). This fact makes it more robust than other similarities in dealing with medical images. 

Regarding the second objective, this work has assessed the applicability of a support 

vector classifier using the proposed overlap measure for assessing the quality of registration 

results in model-to-image registration tasks. Compared to logistic regression and decision tree 

classifiers the support vector classifier achieved superior classification accuracy. The support 

vector classifier had similar performance to that of the other classifiers when tested using a 10-

fold cross-validation approach on the training data. The support vector classifier, however, 

clearly outperformed the other classifiers when tested on a previously unseen test set. The 

good results obtained with the support vector classifier may be related to the fact that the 

support vector machines generally produce smooth decision surfaces that maximize the 

margin between classes. This fact makes the support vector classifier more robust than the 

other classifiers in dealing with imprecise class labels. 

The clinical intent of this work was to develop a system for measuring inclinations of 

vertebrae in spine radiographs of patients with scoliosis. This goal was achieved with an 

image registration algorithm based on the proposed similarity measure. When properly 

configured, the registration algorithm produced registration results with a very high 

correlation (r=0.99) to the expected angulations. When the registration algorithm was not 

properly configured, a support vector classifier (using the proposed overlap measure as one of 

its inputs) would indicate that there was a misregistration. In this way, misregistrations results 

would not be used in computing the inclinations. This is needed to avoid having large 

misregistration results compromise the validity of the measurements. 
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In conclusion, it is possible to differentiate Large Misregistrations from Small 

Misregistration by using the proposed fuzzy overlap measure, image data, and a support vector 

classifier. This finding may be useful in identifying when an image registration application 

requires domain expert intervention to provide new configuration settings that could improve 

the registration solutions. 

6.2 Recommendations for future work 

The designed system was shown to be able to detect reliably large misregistrations in 

model-to-image registrations applications associated with scoliosis management and research. 

Further development of this system could focus on: 

1. Developing a statistical framework for the analysis of overlap computed over 

different subsets of images in such a way that new application areas can be explored 

for the proposed system. 

2. Designing a set of classification problems in which the registration solution is 

assigned to one of four categories: excellent, good, fair, or bad. The result of this 

classification could be used in a system that would adjust the registration parameters 

automatically depending on the results of the classification. 

3. Using the proposed overlap measure as the basis for developing neighbourhood-

based overlap measures. This recommendation is based on the observation by Van 

der Weken et al. [16] that when using neighbourhood-based similarity measures to 

evaluate image quality, the results coincided better with human perception in 

comparison with the pixel-based similarity measures. 
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4. Providing the registration algorithms with good initialization parameters to reduce 

the time required to perform the model-to-image registration that currently stands at 

about 1 minute per vertebral endplate on a 3 GHz Intel Pentium machine with 2GB 

of memory. One way of finding a good set of initial rotation parameters might be as 

follows: 

i. Identifying the centre of the top and bottom vertebral endplates of the curve 

under study and the centre of the vertebra at the apex of the scoliosis curve 

under study. 

ii. Computing an interpolating spline going through the points identified in the 

previous step. 

iii. Finding the spline slopes at the locations of the candidate endplates. 

iv. Using angles that are orthogonal to the slopes of the spline. These are good 

initial rotation parameters because if the vertebrae are not wedged then the 

vertebral endplates are orthogonal to the scoliotic curve. 
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APPENDICES 

Appendix 1: Use of the System 

Here is how the use of the proposed framework works: 

• An input image is registered to a reference image. The registration method uses the 

proposed similarity measure. 

• Once registration is completed, image descriptors and the confidence measure are 

computed. 

• The classifier strategy is used to discriminate good registration solutions from bad 

registration solutions. 

• If the registration is good, the registration solutions can be used as is. 

• If the registration is not good, either an expert or an automated control system 

should adjust the registration parameters and resume the registration process. This is 

important because by using the information conveyed on the proposed confidence 

measure, it is possible to develop automated registration systems. 

Reference 
Image 

Input 
Image 

Registration 
using Proposed 

Similarity Measure 

Computation of 
Image Descriptors 

and FJIG 
I 

Adjustment 
of registration /* 

parameters 

Computation of 
Confidence Measure 

I 

egistration 
Solution 
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Appendix 2: Proposed Similarity Measure 

Algorithm for computing the proposed similarity measure 

Given Two overlapping images A and B 

Defined a, the weighting factor 
a, the smoothing factor 

Initialization Calculate the gradient magnitudes for images A and B. ( VCT(A) and VCT(B)) 

Processing For all the pixels in the region of overlap j e {1,2,...,7V } 

a. Calculate the FJIg by: 

£^(vCTM*jv>y) 
FJIg{A'B) = -f 

I*^vff(4*,))vff(*y) 

b. Calculate the FJ/; by: 

N 

Yjmin(A(xj),B(xJ)) 

FJI, {A, B) = - f 

7=1 

Determine the Combined Fuzzy Jaccard Index by: 

CFJl(A, B)=a- FJIg (A,B)+(l-a)- FJI, (A, B) 

Result The Combined Fuzzy Jaccard Index CFJI 
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Source code for computing the proposed similarity measure 

Program: Insight Segmentation & Registration Toolkit 
Module: SRCSfile: itkCombinedJaccardIndexIntensityAndGradientImageToImageMetric.h,v $ 
Language: C++ 
Date: SDate: 2007/08/09 20:04 $ 
Version: SRevision: 0.01 $ 

Copyright (c) Lino Ramirez. All rights reserved. 

This software is distributed WITHOUT ANY WARRANTY; without even 
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
PURPOSE. See the above copyright notices for more information. 

#ifndef itkCombinedJaccardlndexIntensityAndGradientlmageToImageMetricJi 

#define itkCombinedJaccardIndexIntensityAndGradientImageToImageMetric_h 

#include "itklmageToImageMetric.h" 

#include "itkGradientMagnitudeRecursiveGaussianlmageFilter.h" 
#include "itkRescalelntensitylmageFilter.h" 
#include "itkNeighborhoodOperatorlmageFilter.h" 
#include "itkPoint.h" 
#include "itkCastlmageFilter.h" 
#include "itkResamplelmageFilter.h" 
#include "itkCovariantVector.h" 

namespace itk 
{ 
/**\classCombinedJaccardIndexIntensityAndGradientImageToImageMetric 

\brief Computes a combined Jaccard Index from gradient and Intensity 
information between two images to be registered. 

The type of Intensity Information implemented in this class 
is given by the equation JII 

\f[ \frac{min(I(A),I(B)}{max(I(A), 1(B))} \f] 

Where \$ 1(A) \$ is the Intensity of image \$ A \$, rescaled to be in [0,1] 
\$ 1(B) \$ is the Intensity of image \$ B \$, rescaled to be in [0,1] 

the type of gradient information implemented in this class is given by 
the equation JIG 
\f[ \frac{ min(G(A),G(B)} { max(G(A), G(B))} \f] 

Where \$ G(A) \$ is the gradient of image \S A \$, rescaled to be in [0,1] 
\$ G(B) \$ is the gradient of image \$ B \$, rescaled to be in [0,1] 

The resulting measure is equal to 

\f[ \alpha * JIG(A,B) + ( 1 - \alpha ) * JII(A,B) \f] 

Where \$ JII \$ is the Jaccard Index Intensity of images \$ A \$ and \$ B\$. 
\$ JIG \S is the Jaccard Index Gradient of images \$ A \$ and \$ B\$. 
\$ \alpha \$ is a factor in [0, 1 ] that controls the impact of the 

JII and JIG in the resulting measure. 

This class is templated over the type of the fixed and moving 
images to be compared. 

\ingroup RegistrationMetrics */ 
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template <class TFixedlmage, class TMovingImage> 
class ITKEXPORT CombinedJaccardlndexIntensityAndGradientlmageToImageMetric : 
public ImageToImageMetric<TFixedImage, TMovingImage> 
{ 
public: 

/** Standard class typedefs. */ 
typedef CombinedJaccardlndexIntensityAndGradientlmageToImageMetric Self; 
typedef ImageToImageMetric<TFixedImage, TMovingImage> Superclass; 
typedef SmartPointer<Selfi> Pointer; 
typedef SmartPointer<const Self> ConstPointer; 

/** Method for creation through the object factory. */ 
itkNewMacro(Self); 

/** Run-time type information (and related methods). */ 
itkTypeMacro(CombinedJaccardIndexIntensityAndGradientImageToImageMetric, ImageToImageMetric); 

/** Types transferred from the base class */ 
typedef typename Superclass::RealType RealType; 
typedef typename Superclass: :TransformType TransformType; 
typedef typename Superclass: :TransformPointer TransformPointer; 
typedef typename Superclass: :TransformParametersType 

TransformParametersType; 
typedef typename Superclass::TransformJacobianType 

TransformJacobianType; 
typedef typename Superclass::GradientPixelType GradientPixelType; 
typedef typename Superclass::InputPointType InputPointType; 
typedef typename Superclass::OutputPointType OutputPointType; 
typedef typename Superclass::MeasureType MeasureType; 
typedef typename Superclass::DerivativeType DerivativeType; 
typedef typename Superclass::FixedImageType FixedlmageType; 
typedef typename Superclass::FixedImageType::PixelType FixedlmagePixelType; 
typedef typename Superclass::MovingImageType MovinglmageType; 
typedef typename Superclass::MovingImageType::PixelType MovinglmagePixelType; 
typedef typename Superclass::FixedImageConstPointer 

Fixed ImageConstPointerType; 
typedef typename Superclass::MovingImageConstPointer 
MovinglmageConstPointerType; 

itkStaticConstMacro(FixedImageDimension, unsigned int, TFixedlmage: :ImageDimension); 

/** Types for transforming the fixed image */ 
typedef itk: :Image< FixedlmagePixelType, 

itkGetStaticConstMacro( FixedlmageDimension) > 
TransformedMovinglmageType; 

typedef itk: :ResampleImageFilter< MovinglmageType, TransformedMovinglmageType > 
TransformMovinglmageFilterType; 

typedef itk::Image< RealType, 
itkGetStaticConstMacro( FixedlmageDimension) > 

FixedGradientlmageType; 

typedef typename FixedGradientlmageType: :ConstPointer FixedGradientlmageConstPointerType; 

typedef itk: :CastImageFilter< FixedlmageType, FixedlmageType > 
CastFixedlmageFilterType; 

typedef typename CastFixedlmageFilterType: :Pointer CastFixedlmageFilterPointer; 

typedef itk: :CastImageFilter< FixedlmageType, FixedGradientlmageType > 
CastFixedGradientlmageFilterType; 

typedef typename CastFixedGradientlmageFilterType: :Pointer CastFixedGradientlmageFilterPointer; 
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typedef itk: :GradientMagnitudeRecursiveGaussianImageFilter< 
FixedGradientlmageType, 
FixedGradientlmageType > GradientFixedlmageFilterType; 

typedef typenameGradientFixedImageFi1terType::PointerGradientFixedImageFilterTypePointer; 

typedef itk: :RescaleIntensityImageFilter< 
FixedGradientlmageType, 
FixedGradientlmageType > RescaleGradientFixedlmageFilterType; 

typedef typename RescaleGradientFixedImageFilterType::Pointer RescaleGradientFixedlmageFilterTypePointer; 

typedef typenameFixedGradientImageType::PixelType Fixed GradientPixelType; 

typedef itk: :RescaleIntensityImageFilter< 
FixedlmageType, 
FixedlmageType > RescaleFixedlmageFilterType; 

typedef typename RescaleFixedImageFilterType::Pointer RescaleFixedlmageFilterTypePointer; 

/** Types for transforming the moving image */ 

itkStaticConstMacro( MovedlmageDimension, unsigned int, 
MovingImageType::ImageDimension); 

typedef itk: :Image< RealType, 
itkGetStaticConstMacro( MovedlmageDimension) > 

MovedGradientlmageType; 

typedef typename MovedGradientlmageType: :ConstPointer MovedGradientlmageConstPointerType; 

typedef typename MovinglmageType: :ConstPointer MovedlmageConstPointerType; 

typedef itk: :CastImageFilter< TransformedMovinglmageType, MovedGradientlmageType > 
CastMovedGradientlmageFilterType; 

typedef typename CastMovedGradientlmageFilterType: :Pointer CastMovedGradientlmageFilterTypePointer; 

typedef itk: :CastImageFilter< TransformedMovinglmageType, TransformedMovinglmageType > 
CastMovedlmageFilterType; 

typedef typename CastMovedImageFilterType::Pointer CastMovedlmageFilterTypePointer; 

typedef itk: :GradientMagnitudeRecursiveGaussianImageFilter< 
MovedGradientlmageType, 
MovedGradientlmageType > GradientMovedlmageFilterType; 

typedef typename GradientMovedlmageFilterType: :Pointer GradientMovedlmageFilterTypePointer; 

typedef itk::RescaleIntensityImageFi1ter< 
MovedGradientlmageType, 
MovedGradientlmageType > RescaleGradientMovedlmageFilterType; 

typedef typename RescaleGradientMovedlmageFilterType: :Pointer RescaleGradientMovedlmageFilterTypePointer; 

typedef itk: :RescaleIntensityImageFilter< 
MovinglmageType, 
MovinglmageType > RescaleMovedlmageFilterType; 

typedef typename RescaleMovedlmageFilterType: :Pointer RescaleMovedlmageFilterTypePointer; 

typedef typename MovedGradientImageType::PixelType MovedGradientPixelType; 
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/** Initializes the metric. */ 
void InitializeQ throw (ExceptionObject); 

/** Sets the step length used to calculate the derivative. */ 
itkSetMacro( DerivativeStepLength, double); 

/** Returns the step length used to calculate the derivative. */ 
itkGetMacro( DerivativeStepLength, double); 

/** The scales type. */ 
typedef Array<double> ScalesType; 

/** Sets the derivative step length scales. */ 
itkSetMacro( DerivativeStepLengthScales, ScalesType); 

/** Returns the derivate step length scales. */ 
itkGetConstReferenceMacro(DerivativeStepLengthScales, ScalesType); 

/** Gets and sets alpha parameter. If alpha = 1, the JIG 
* would have a greater impact in the measure. If alpha = 0, 
* the JII would have a greater impact in the measure. 
* Default value is 1.0 */ 

itkSetMacro(Alpha, double); 
itkGetMacro(Alpha, double); 

/** Gets and sets sigma parameter. Sigma controls the effect of 
* the edges (larger sigma implies larger blurring of edges) 
* Default value is 1.0 */ 

itkSetMacro(Sigma, double); 
itkGetMacro(Sigma, double); 

/** Get the value for single valued optimizers. */ 
MeasureType GetValue(const TransformParametersType& parameters) const; 

/** Get the derivatives of the match measure. */ 
void GetDerivative(const TransformParametersType & parameters, 

DerivativeType & derivative) const; 

/** Get value and derivatives for multiple valued optimizers. */ 
void GetValueAndDerivative(const TransformParametersType & parameters, 

MeasureType& Value, 
DerivativeType& Derivative) const; 

/** Write gradient images to a files for debugging purposes. */ 
void WriteGradientlmagesToFiles(void) const; 

protected: 
/** Constructor is protected to ensure that \c New() function is used to 

create instances. */ 
CombinedJaccardlndexIntensityAndGradientlmageToImageMetricO; 
virtual ~CombinedJaccardIndexIntensityAndGradientImageToImageMetric() {}; 

/** PrintSelf funtion */ 
void PrintSelf(std::ostream& os, Indent indent) const; 

private: 
CombinedJaccardIndexIntensityAndGradientImageToImageMetric(const Self&); //purposely not implemented 
void operator=(const Self&); //purposely not implemented 

/** The step length used to calculate the derivative. */ 
double m_DerivativeStep Length; 

/** The derivative step length scales. */ 
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ScalesTypem_DerivativeStepLengthScales; 

/** The filter for transforming the moving image. */ 
typename TransformMovinglmageFilterType: :Pointer m_TransformMovingImageFilter; 

/** The gradients of the fixed image */ 
CastFixedGradientlmageFilterPointer m_CastFixedGradientImageFilter; 
CastFixedlmageFilterPointer mCastFixedlmageFilter; 

GradientFixedlmageFilterTypePointer mGradientFixedlmageFilter; 

RescaleGradientFixedlmageFilterTypePointer m_RescaleGradientFixedImageFilter; 

RescaleFixedlmageFilterTypePointer m_RescaleFixedImageFilter; 

/** The gradients of the moving image */ 
CastMovedlmageFilterTypePointer m_CastMovedImageFilter; 

CastMovedGradientlmageFilterTypePointer m_CastMovedGradientImageFilter; 

GradientMovedlmageFilterTypePointer m_GradientMovedImageFilter; 

RescaleGradientMovedlmageFilterTypePointer m_RescaleGradientMovedImageFilter; 

RescaleMovedlmageFilterTypePointer m_RescaleMovedImageFilter; 
/** A factor multiplied by JIG . */ 
double m_Alpha; 

double mSigma; 

> ; 

} // end namespace itk 

#ifndef ITK_MANUAL_INSTANTIATION 
#include "itkCombinedJaccardlndexIntensityAndGradientlmageToImageMetric.txx" 
#endif 

#endif// itkCombinedJaccardIndexIntensityAndGradientImageToImageMetric_h 

Program: Insight Segmentation & Registration Toolkit 
Module: SRCSfile: itkCombinedJaccardIndexIntensityAndGradientImageToImageMetric.txx,v $ 
Language: C++ 
Date: SDate: 2007/08/09 20:03:00 $ 
Version: SRevision: 0.01 $ 

Copyright (c) Lino Ramirez. All rights reserved. 

This software is distributed WITHOUT ANY WARRANTY; without even 
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
PURPOSE. See the above copyright notices for more information. 

#ifhdef itkCombinedJaccardIndexIntensityAndGradientImageToImageMetric_txx 
#define itkCombinedJaccardIndexIntensityAndGradientImageToImageMetric_txx 

#include "itkArray.h" 
#include "itkCombinedJaccardlndexIntensityAndGradientlmageToImageMetric.h" 
#include "itkNumericTraits.h" 
#include"itkImageRegionConstIterator.h" 
#include "itklmageRegionConstlteratorWithlndex.h" 

#include <iostream> 
#include <iomanip> 
#include <stdio.h> 
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include "itkSimpleFilterWatcher.h" 

// 
namespace itk 
{ 
template <class TFixedlmage, class TMovingImage> 
CombinedJaccardlndexIn tensity AndGradientImageToImageMetric<TFixedImage,TMovingImage> 
::CombinedJaccardIndexIntensityAndGradientImageToImageMetric() 
< 
itkDebugMacro("Constructor"); 

m_DerivativeStepLength = 0.1; 
m_DerivativeStepLengthScales.Fill(l); 
m_TransformMovingImageFilter = 0; 
m_Alpha = 1.0; 
m_Sigma= 1.0; 

} 

// 
template <class TFixedlmage, class TMovingImage> 
voidCombinedJaccardIndexIntensityAndGradientImageToImageMetric<TFixedImage, TMovingImage> 
::Initialize() throw (ExceptionObject) 
{ 
Superclass:: Initialize(); 
if (!this->m_FixedImage) 

{ 
itkExceptionMacro(«"Fixed image has not been set."); 
} 

else if (!this->m_MovingImage) 
{ 
itkExceptionMacro(«"Moving image has not been set."); 
} 

if ( ! this->GetComputeGradient() ) 
{ 
itkExceptionMacro(«"Gradients must be calculated"); 
} 

// Create the filter to resample the moving image 

m_TransformMovingImageFilter = TransformMovinglmageFilterType: :New(); 

m_TransformMovingImageFilter->SetTransform( this->m_Transform); 
m_TransformMovingImageFilter->SetInterpolator( this->m_Interpolator); 
m_TransformMovingImageFilter->SetInput( this->m_MovingImage); 

m_TransformMovinglmageFilter->SetDefaultPixelValue( 0 ); 

m_TransformMovingImageFilter->SetSize( this->rn_FixedIrnage->GetLargestPossibleRegion().GetSize()); 
m_TransformMovingImageFilter->SetOutputOrigin( this->m_FixedImage->GetOrigin()); 
m_TransformMovingImageFilter->SetOutputSpacing( this->m_FixedImage->GetSpacing()); 
m_TransformMovingImageFilter->SetOutputDirection(this->m_FixedImage->GetDirection()); 

// Compute the image gradients 

// Compute the gradient of the fixed image 

m_CastFixedImageFilter = CastFixedImageFilterType::New(); 
m_CastFixedImageFilter->SetInput( this->m_Fixed!mage); 
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m_CastFixedGradientImageFilter = CastFixedGradientlmageFilterType: :New(); 
m_CastFixedGradientImageFilter->SetInput( this->m_FixedImage); 

m_GradientFixedImageFilter = GradientFixedImageFilterType::New(); 
m_GradientFixedImageFilter->SetInput(m_CastFixedGradientImageFilter->GetOutput()); 
m_GradientFixedImageFilter->SetSigma( m_Sigma ); 

m_GradientFixedImageFilter->UpdateLargestPossibleRegion(); 

m_RescaleGradientFixedImageFilter = RescaleGradientFixedlmageFilterType: :New(); 
m_RescaleGradientFixedImageFilter->SetInput(m_GradientFixedImageFi1ter->GetOutput()); 

m_RescaleGradientFixedImageFilter->SetOutputMinimum( 0.0 ); 
m_RescaleGradientFixedImageFilter->SetOutputMaximum( 1.0 ); 

// scale intensity values of fixed image 
m_RescaleFixedImageFilter = RescaleFixedImageFilterType::New(); 
m_RescaleFixedImageFilter->SetInput(m_CastFixedImageFilter->GetOutput()); 

m_RescaleFixedImageFilter->SetOutputMmimum( 0.0 ); 
m_RescaleFixedIrnageFilter->SetOutputMaximum( 1.0 ); 

// Compute the gradient of the transformed moving image 

m_CastMovedGradientImageFilter = CastMovedGradientlmageFilterType: :New(); 
m_CastMovedGradientImageFilter->SetInput(m_TransformMovingImageFilter->GetOutput()); 

mGradientMovedlmageFilter = GradientMovedImageFilterType::New(); 
m_GradientMovedImageFilter->SetInput(m_CastMovedGradientImageFilter->GetOutput()); 
m_GradientMovedImageFilter->SetSigma( m_Sigma ); 

m_GradientMovedImageFilter->UpdateLargestPossibleRegion(); 

m_RescaleGradientMovedImageFilter = RescaleGradientMovedImageFilterType::New(); 
m_RescaleGradientMovedImageFilter->SetInput(m_GradientMovedImageFilter->GetOutput()); 

m_RescaleGradientMovedImageFilter->SetOutputMinimum( 0.0 ); 
m_RescaleGradientMovedImageFilter->SetOutputMaximurn( 1.0 ); 

// scale intensity values of moving image 

m_CastMovedImageFilter = CastMovedImageFilterType::New(); 
m_CastMovedImageFilter->SetInput(m_TransformMovingImageFilter->GetOutput()); 

m_RescaleMovedImageFilter = RescaleMovedImageFilterType::New(); 
m_RescaleMovedImageFilter->SetInput(m_CastMovedImageFilter->GetOutput()); 

m_RescaleMovedImageFilter->SetOutputMinimum( 0.0 ); 
m_RescaleMovedImageFilter->SetOutputMaximum( 1.0 ); 

} 

// 
template <class TFixedlmage, class TMovingImage> 
typename CombinedJaccardIndexIntensityAndGradientImageToImageMetric<TFixedImage,TMovingImage>::MeasureType 
CombinedJaccardIndexIntensityAndGradientImageToImageMetric<TFixedImage,TMovingImage> 
::GetValue(const TransformParametersType& parameters) const 
{ 
itkDebugMacro("GetValue(" « parameters« " ) " ) ; 
// 
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// computing JIG 
// 

this->SetTransformPararneters( parameters); 
m_TransformMovingImageFilter->UpdateLargestPossibleRegion(); 

MeasureType JIG = NumericTraits < MeasureType > :: Zero; 

// Compute the JIG 
m_RescaleGradientFixedImageFilter->UpdateLargestPossibleRegion(); 
m_RescaleGradientMovedImageFilter->UpdateLargestPosstbleRegion(); 

FixedGradientlmageConstPointerType pGradientFixed Image = this->m_RescaleGradientFixedImageFilter->GetOutput(); 
ImageRegionConstIterator<FixedGradientImageType> fixedGradientIterator(pGradientFixedImage, 

pGradientFixedImage->GetBufferedRegion()); 

fixedGradientIterator.GoToBegin(); 

MovedGradientImageConstPointerTypepGradientMovedImage = this->m_RescaleGradientMovedImageFilter->GetOutput(); 
ImageRegioriConstIterator<MovedGradientImageType> movedGradientIterator(pGradientMovedImage, 

pGradientMovedImage->GetBufferedRegion()); 
movedGradientIterator.GoToBegin(); 

this->m_NumberOfPixelsCounted = 0; 

typedef typename NumericTraits< MeasureType >::AccumulateType AccumulateType; 

AccumulateType sng = NumericTraits< AccumulateType >::Zero; 
AccumulateType sdg = NumericTraits< AccumulateType >::Zero; 

while (IfixedGradientlterator.IsAtEndO) 
{ 

//Get the moving and fixed image gradients 
RealType movingValue = movedGradientIterator.Value(); 
RealType fixedValue = fixedGradientIterator.Value(); 

// sn += min(fixedValue, movingValue); 
// sd += max(fixedValue, movingValue); 
if (fixedValue < movingValue) 

{ 
sng += fixedValue; 
sdg += movingValue; 
} 

else 
{ 
sng += movingValue; 
sdg += fixedValue; 
} 

this->m_NumberOfPixelsCounted++; 
++fixedGradientIterator; 
++movedGradientIterator; 

} 

if( this->m_NumberOfPixelsCounted > 0 && sdg != 0.0) 
{ 
JIG = sng / sdg; 
} 

// 
// computing JII 
// 

MeasureType JII = NumericTraits < MeasureType > :: Zero; 
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// Compute the JII 
m_RescaleFixedImageFilter->UpdateLargestPossibleRegion(); 
m_RescaleMovedImageFilter->UpdateLargestPossibleRegion(); 

FixedlmageConstPointerType pFixedlmage = this->m_RescaleFixedImageFilter->GetOutput(); 
ImageRegionConstIterator<FixedImageType> fixedIterator(pFixedImage, 

pFixedImage->GetBufferedRegion()); 

fixedIterator.GoToBegin(); 

MovedlmageConstPointerType pMovedlmage = this->m_RescaleMovedImageFilter->GetOutput(); 
ImageRegionConstIterator<MovingImageType> movedIterator(pMovedImage, 

pMovedImage->GetBufferedRegion()); 
movedIterator.GoToBegin(); 

this->m_NumberOfPixelsCounted = 0; 

AccumulateType sn = NumericTraits< AccumulateType >::Zero; 
AccumulateType sd = NumericTraits< AccumulateType >::Zero; 

while (!fixedIterator.IsAtEnd()) 
{ 

//Get the moving and fixed image intensity values 
RealType movingValue = movedIterator.Value(); 
RealType fixedValue = fixed!terator.Value(); 

// sn += min(fixedValue, movingValue); 
// sd += max(fixedValue, movingValue); 
if (fixedValue < movingValue) 

{ 
sn += fixedValue; 
sd += movingValue; 
} 

else 
{ 
sn 4= movingValue; 
sd += fixedValue; 
} 

this->rn_NurnberOfPixelsCounted++; 
++fixedIterator; 
++movedIterator; 

} 

if( this->m_NumberOfPixelsCounted > 0 && sd != 0.0) 
{ 
JII = sn / sd; 
} 

//computing similarity measure 
MeasureType measure = NumericTraits < MeasureType > :: Zero; 

measure = m_Alpha * JIG + (1.0 - m_Alpha) * JII; 

return (-1.0 * measure); 

} 

// 
template <class TFixedlmage, class TMovingImage> 
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void 
CombinedJaccardlndexIn tensity AndGradientImageToImageMetric<TFixedImage,TMovingImage> 
::GetDerivative(const TransformParametersType& parameters, 

DerivativeType& derivative) const 

{ 
itkDebugMacro("GetDerivative("« parameters « " ) " ) ; 

const double delta = 0.001; 
TransformParametersType testPoint; 
testPoint = parameters; 

const unsigned int numberOfParameters = this->GetNumberOfParameters(); 
derivative = DerivativeType( numberOfParameters ); 

for( unsigned int i=0; KnumberOfParameters; i++) 
{ 
testPointp] — delta; 
const MeasureType valuepO = this->GetValue( testPoint); 
testPoint[i] += 2*delta; 
const MeasureType valuepl = this->GetValue( testPoint); 
derivative[i] = (valuepl - valuepO) / (2 * delta); 
testPoint[i] =parameters[i]; 
} 

} 

// 
template <class TFixedlmage, class TMovingImage> 
void 
CombinedJaccardlndexIn tensity AndGradientlmageToImageMetric<TFixedImage,TMovingImage> 
::GetValueAndDerivative(const TransformParametersType& parameters, 

MeasureType& value, 
DerivativeType& derivative) const 

{ 
value = GetValue(parameters); 
this->GetDerivative(parameters, derivative); 

> 

// 
template <class TFixedlmage, class TMovingImage> 
void 
CombinedJaccardlndexIn tensity AndGradientImageToImageMetric<TFixedImage,TMovingImage> 
::PrintSelf(std::ostream& os, Indent indent) const 
{ 
Superclass::PrintSelf(os,indent); 
os « i n d e n t « "Derivative step length: " « m_DerivativeStepLength 

« std::endl; 
os « i n d e n t « "Derivative step length scales: "; 
os « m_DerivativeStepLengthScales « std::endl; 
o s « i n d e n t « " s i g m a : " « m_Sigma « std::endl; 
os « i n d e n t « "alpha: " « m_Alpha « std::endl; 

} 

} // end namespace itk 

#endif//itkCombinedJaccardIndexIntensityAndGradientImageToImageMetric_txx 
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Appendix 3: Characterization of the Proposed Similarity 
Measure 

Algorithm for characterizing the proposed similarity measure 

Given Two images A and B 

Defined xmin, the minimum translation in the x axis. 
Xmax, the maximum translation in the x axis. 
y„i„, the minimum translation in the y axis. 
ymax, the maximum translation in the y axis, 
or, the weighting factor 
a, the smoothing factor 

Processing For each translation in the x axis (x e [xmin, xmax ]) 

For each translation in the y axis ( y e \ymin, ymax ]) 

a. Transform image B with the given translations 
b. Apply interpolation to find the pixel values at the requested positions 
c. Calculate the combined fuzzy Jaccard index by using: 

CFJl(A, B)=a- FJIg (A,B) + (l-a)- FJI, (A, B) 

d. Output the CFJI value 

Result The CFJI values for a given set of translations 
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Source code for characterizing the proposed similarity measure 

Program: Insight Segmentation & Registration Toolkit 

Module: SRCSfile: SimilarityMeasure.cxx,v $ 

Language: C++ 

Date: SDate: 2007/08/10 08:34:00 S 

Version: SRevision: 0.1 $ 

Copyright (c) Lino Ramirez. All rights reserved. 

This software is distributed WITHOUT ANY WARRANTY; without even 

the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 

PURPOSE. See the above copyright notices for more information. 

================================================================*/ 

#if defmed(_MSC_VER) 

#pragma warning ( disable : 4786 ) 

#endif 

#include "itklmage.h" 

#include "itklmageFileReader.h" 

#include "itklmageFileWriter.h" 

#include "itkCombinedJaccardlndexIntensityAndGradientlmageToImageMetric.h" 

#include "itkTranslationTransform.h" 

#include "itkNearestNeighborlnterpolatelmageFunction.h" 

int main( int argc, char * argvQ ) 

{ 

if( argc < 4 ) 

{ 

std::cerr « "Usage: " « std::endl; 

s td : : ce r r«a rgv [0 ]«" fixedlmage movinglmage alpha" «std::endl; 

return 1; 

} 

const unsigned int Dimension = 2; 

typedef float PixelType; 

typedef itk::Image< PixelType, Dimension > ImageType; 

typedef itk::ImageFileReader< ImageType > ReaderType; 

ReaderType::Pointer fixedReader = ReaderType: :New(); 
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ReaderType::Pointer movingReader = ReaderType::New(); 

fixedReader->SetFileName( argv[ 1 ]); 

movingReader->SetFileName( argv[ 2 ]); 

try 

{ 

fixedReader->Update(); 

movingReader->Update(); 

} 

catch( itk::ExceptionObject & excep ) 

{ 

std::cerr « "Exception catched !" « std::endl; 

std;;cerr« excep « std::endl; 

} 

typedef itk::CombinedJaccardIndexIntensityAndGradientImageToImageMetric< ImageType, Image Type > MetricType; 

MetricType: :Pointer metric = MetricType::New(); 

typedef itk::TranslationTransform< double, Dimension > TransformType; 

TransformType: :Pointer transform = TransformType ::New(); 

typedef itk: :NearestNeighborInterpolateImageFunction< 

ImageType, double > InterpolatorType; 

InterpolatorType::Pointer interpolator = InterpolatorType: :New(); 

transform->SetIdentity(); 

ImageType: :ConstPointer fixedlmage = fixedReader->GetOutput(); 

ImageType::ConstPointer movinglmage = movingReader->GetOutput(); 

metric->SetTransform( transform ); 

metric->SetInterpolator( interpolator ); 

metric->SetFixedImage( fixedlmage ); 

metric->SetMovingrmage( movinglmage); 

metric->SetAlpha( atof(argv[ 3 ]) ); //valid only for JI 

metric->SetSigma( 1.0 ); //valid only for JI 

metric->SefFixedImageRegion( fixedImage->GetBufferedRegion() ); 

try 

{ 

150 



metric->Initialize(); 

} 

catch( itk::ExceptionObject & excep ) 

{ 

std::cerr « "Exception catched !" « std::endl; 

std::cerr « excep « std::endl; 

return -1 ; 

} 

MetricType::TransformParametersType displacement Dimension); 

const int rangex = 10; 

const int rangey =10; 

double dist; 

MetricType::DerivativeType derivative; 

for( int dx = -rangex; dx <= rangex; dx++ ) 

{ 

for( int dy = -rangey; dy <= rangey; dy++ ) 

{ 

displacement^] = dx; 

displacement^] = dy; 

dist = sqrt( dx* dx + dy*dy); 

const double value = metric->GetValue( displacement); 

metric->GetDerivative( displacement, derivative ); 

s t d ; : c o u t « d x « " " « d y « " " « d i s t « " " « value « " "«std::endl; 

} 

} 

return 0; 

> 
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Appendix 4: Mean Squared Errors (MSE) Similarity 
Measure 

Algorithm for computing the mean squared errors (MSE) similarity measure 

Given Two overlapping images A and B 

Processing For all the pixels in the region of overlap j e {\,2,...,N} 
a. Calculate the MSE by: 

MSE(A,B) = ±fj\A{xJ)-B(xJ]
2 

Result The Mean Squared Errors similarity measure MSE 

Source code for computing the mean squared errors (MSE) similarity measure 

Program: Insight Segmentation & Registration Toolkit 
Module: SRCSfile: itkMSEIntensityImageToImageMetric.h,v $ 
Language: C++ 
Date: SDate: 2007/08/18 01:50:10$ 
Version: SRevision: 0.01 $ 

Copyright (c) Lino Ramirez. All rights reserved. 

This software is distributed WITHOUT ANY WARRANTY; without even 
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
PURPOSE. See the above copyright notices for more information. 

#ifndef itkMSEIntensityImageToImageMetric_h 

#define itkMSEIntensityImageToImageMetric_h 

#include "itklmageToImageMetric.h" 

#include "itkNeighborhoodOperatorlmageFilter.h" 
#include "itkPoint.h" 

#include "itkResamplelmageFilter.h" 

#include "itkCovariantVector.h" 

namespace itk 
{ 
/** \class MSEIntensitylmageToImageMetric 

\brief Computes a MSE from Intensity 
information between two images to be registered. 
The type of Intensity Information implemented in this class 
is given by the equation MSEI 

\f[ MSE(I(A),I(B)) \f] 

Where \S 1(A) \$ is the Intensity of image \S A \$, rescaled to be in [0,1] 
\$ 1(B) \$ is the Intensity of image \$ B \$, rescaled to be in [0,1] 
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This class is templated over the type of the fixed and moving 
images to be compared. 

\ingroup RegistrationMetrics */ 
template <class TFixedlmage, class TMovinglmage> 
class ITKEXPORT MSEIntensitylmageToImageMetric : 
public ImageToImageMetric<TFixedIrnage, TMovingImage> 
{ 
public: 

/** Standard class typedefs. */ 
typedef MSEIntensitylmageToImageMetric Self; 
typedef ImageToImageMetric<TFixedImage, TMovingImage> Superclass; 
typedef SmartPointer<Self> Pointer; 
typedef SmartPointer<const Self> ConstPointer; 

/** Method for creation through the object factory. */ 
itkNewMacro(Self); 

/** Run-time type information (and related methods). */ 
itkTypeMacro(MSEIntensityImageToImageMetric, ImageToImageMetric); 

/** Types transferred from the base class */ 
typedef typename Superclass::RealType RealType; 
typedef typename Superclass::TransformType TransformType; 
typedef typename Superclass::TransformPointer TransformPointer; 
typedef typename Superclass: :TransformParametersType 

TransformParametersType; 
typedef typename Superclass::TransformJacobianType 

TransformJacobianType; 
typedef typename Superclass::GradientPixelType GradientPixelType; 
typedef typename Superclass::InputPointType InputPointType; 
typedef typename Superclass::OutputPointType OutputPointType; 
typedef typename Superclass::MeasureType MeasureType; 
typedef typename Superclass::DerivativeType DerivativeType; 
typedef typename Superclass::FixedImageType FixedlmageType; 
typedef typename Superclass::FixedImageType::PixelType FixedlmagePixelType; 
typedef typename Superclass::MovingImageType MovinglmageType; 
typedef typename Superclass::MovingImageType::PixelTypeMovingImagePixelType; 
typedef typename Superclass::FixedImageConstPointer 

Fixed ImageConstPointerType; 
typedef typename Superclass::MovingImageConstPointer 
MovinglmageConstPointerType; 

itkStaticConstMacro(FixedImageDimension, unsigned int, TFixedlmage: :ImageDimension); 

/** Types for transforming the fixed image */ 
typedef itk: :Image< FixedlmagePixelType, 

itkGetStaticConstMacro( FixedlmageDimension) > 
TransformedMovinglmageType; 

typedef itk::ResampleImageFilter< MovinglmageType, TransformedMovinglmageType > 
TransformMovinglmageFilterType; 

/** Types for transforming the moving image */ 

itkStaticConstMacro( MovedlmageDimension, unsigned int, 
MovingImageType::ImageDimension ); 

typedef typename MovinglmageType: :ConstPointer MovedlmageConstPointerType; 

/** Initializes the metric. */ 
void Initialize)) throw (ExceptionObject); 
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/** Sets the step length used to calculate the derivative. */ 
itkSetMacro( DerivativeStepLength, double); 

/** Returns the step length used to calculate the derivative. */ 
itkGetMacro( DerivativeStepLength, double); 

/** The scales type. */ 
typedef Array<double> ScalesType; 

/** Sets the derivative step length scales. */ 
itkSetMacro( DerivativeStepLengthScales, ScalesType); 

/** Returns the derivate step length scales. */ 
itkGetConstReferenceMacro(DerivativeStepLengthScales, ScalesType); 

/** Get the value for single valued optimizers. */ 
MeasureType GetValue(const TransformParametersType& parameters) const; 

/** Get the derivatives of the match measure. */ 
void GetDerivative(const TransformParametersType & parameters, 

DerivativeType & derivative) const; 

/** Get value and derivatives for multiple valued optimizers. */ 
void GetValueAndDerivative(const TransformParametersType & parameters, 

MeasureType& Value, 
DerivativeType& Derivative) const; 

protected: 
/** Constructor is protected to ensure that \c New() function is used to 

create instances. */ 
MSEIntensitylmageToIrnageMetricO; 
virtual ~MSEIntensityImageToImageMetricQ {}; 

/** PrintSelf funtion */ 
void PrintSelf(std::ostream& os, Indent indent) const; 

private: 
MSEIntensityImageToImageMetric(const Self&); //purposely not implemented 
void operator=(const Self&); //purposely not implemented 

/** The step length used to calculate the derivative. */ 
double m_DerivativeStep Length; 

/** The derivative step length scales. */ 
ScalesType m_DerivativeStepLengthScales; 

/** The filter for transforming the moving image. */ 
typename TransformMovingImageFilterType::Pointerm_TransforrnMovingImageFilter; 

> ; 

} // end namespace itk 

#ifhdef ITK_MANUAL_INSTANTIATION 
#include "itkMSEIntensitylmageToImageMetric.txx" 
#endif 

#endif // itkMSEIntensityImageToImageMetric_h 

/' 
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Program: Insight Segmentation & Registration Toolkit 
Module: SRCSfile: itkMSEIntensityImageToImageMetric.txx,v $ 
Language: C++ 
Date: SDate: 2007/08/17 14:45:00 $ 
Version: SRevision: 0.01 $ 

Copyright (c) Lino Ramirez. All rights reserved. 

This software is distributed WITHOUT ANY WARRANTY; without even 
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
PURPOSE. See the above copyright notices for more information. 

#ifndef itkMSEIntensityImageToImageMetric_txx 
#define itkMSEIn tensity rmageToImageMetricJxx 

#include "itkArray.h" 
#include "itkMSEIntensitylmageToImageMetric.h" 
#include "itkNumericTraits.h" 
#include "itklmageRegionConstlterator.h" 
#include "itklmageRegionConstlteratorWithlndex.h" 

#include <iostream> 
#include <iomanip> 
#include <stdio.h> 

^include "itkSimpleFilterWatcher.h" 

// 
namespace itk 
{ 
template <class TFixedlmage, class TMovingImage> 
MSEIntensityImageToImageMetric<TFixedImage,TMovingImage> 
: :MSEIntensityImageToImageMetric() 
{ 
itkDebugMacro("Constructor"); 

mDerivativeStepLength = 0.1; 
m_DerivativeStepLengthScales.Fill(l); 
m_TransformMovingImageFilter = 0; 

} 

// 
template <class TFixedlmage, class TMovingImage> 
void MSEIntensityImageToImageMetric<TFixedImage, TMovingImage> 
:.Tnitialize() throw (ExceptionObject) 
{ 
Superclass::Initialize(); 
if (!this->m_FixedImage) 

{ 
itkExceptionMacro(«"Fixed image has not been set."); 
} 

else if (!this->m_MovingImage) 
{ 
itkExceptionMacro(«"Moving image has not been set."); 
} 

if ( ! this->GetComputeGradient() ) 
{ 
itkExceptionMacro(«"Gradients must be calculated"); 
} 

// Create the filter to resample the moving image 
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m_TransformMovingImageFilter = TransformMovinglmageFilterType: :New(); 

m_TransformMovingImageFilter->SetTransform( this->m_Transform); 
m_TransformMovingImageFilter->SetInterpolator( this->m_Interpolator); 
m_TransformMovingImageFilter->SetInput( this->m_MovingImage); 

m_TransformMovmgImageFilter->SetDefaultPixelValue( 0);// 

m_TransformMovmgImageFilter->SetSize(this->m_FixedImage->GetLargestPossibleRegion().GetSize()); 
m_TransformMovingImageFilter->SetOutputOrigin( this->m_FixedImage->GetOrigin()); 
m_TransformMovingImageFilter->SetOutputSpacing( this->m_FixedImage->GetSpacing()); 
m_TransformMovingImageFilter->SetOutputDirection(this->m_FixedImage->GetDirection()); 

// 
template <class TFixedlmage, class TMovingImage> 
typename MSEIntensityImageToImageMetric<TFixedImage,TMovingImage>::MeasureType 
MSEIntensityImageToImageMetric<TFixedImage,TMovingImage> 
::GetValue(const TransformParametersType& parameters) const 
{ 
itkDebugMacro("GetValue( " « parameters « " ) "); 
this->SetTransformParameters( parameters); 
m_TransformMovingImageFilter->UpdateLargestPossibleRegion(); 

// 
// computing MSE 
// 

MeasureType MSE = NumericTraits < MeasureType > :: Zero; 

// Compute the MSE 
FixedlmageConstPointerType pFixedlmage = this->m_FixedImage; 
ImageRegionConstIterator<FixedImageType>fixedIterator(pFixedlmage, 

pFixedImage->GetBufferedRegion()); 

fixedIterator.GoToBegin(); 

MovedlmageConstPointerType pMovedlmage = m_TransformMovingImageFilter->GetOutput(); 
ImageRegionConstIterator<MovingImageType> movedIterator(pMovedImage, 

pMovedImage->GetBufferedRegion()); 
movedIterator.GoToBegin(); 

this->m_NumberOfPixelsCounted = 0; 

typedef typename NumericTraits< MeasureType >::AccumulateType AccumulateType; 

AccumulateType si = NumericTraits< AccumulateType >::Zero; 

while (!fixedIterator.IsAtEnd()) 
{ 

//Get the moving and fixed image intensitry values 
RealType movingValue = movedIterator.Value(); 
RealType fixedValue = fixedIterator.Value(); 
RealType diff = movingValue - fixedValue; 

si += diff * diff; 

this->m_NumberOfPixelsCounted++; 
-H-fixedlterator; 
++movedIterator; 

} 

if( this->m_NumberOiPixelsCounted > 0 ) 
{ 
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MSE = si / this->m_NumberOfPixe1sCounted; 
} 

return (MSE ); 

> 

// 
template <class TFixedlmage, class TMovingImage> 
void 
MSEIntensityImageToImageMetric<TFixedImage,TMovingImage> 
::GetDerivative(const TransformParametersType& parameters, 

DerivativeType& derivative) const 

{ 
itkDebugMacro("GetDerivative("« parameters«")") ; 

const double delta = 0.001; 
TransformParametersType testPoint; 
testPoint = parameters; 

const unsigned int numberOfParameters = this->GetNumberOfParameters(); 
derivative = DerivativeType( numberOfParameters ); 

for( unsigned int i=0; KnumberOfParameters; i++) 
{ 
testPoint[i] -= delta; 
const MeasureType valuepO = this->GetValue( testPoint); 
testPoint[i] += 2*delta; 
const MeasureType valuepl = this->GetValue( testPoint); 
derivative[i] = (valuepl - valuepO) / (2 * delta); 
testPoint[i] = parameters [i]; 
} 

} 

// 
template <class TFixedlmage, class TMovingImage> 
void 
MSEIntensityImageToImageMetric<TFixedImage,TMovingImage> 
::GetValueAndDerivative(const TransformParametersType& parameters, 

MeasureType& value, 
DerivativeType& derivative) const 

{ 
value = GetValue(parameters); 
this->GetDerivative(parameters, derivative); 

} 

// 
template <class TFixedlmage, class TMovingImage> 
void 
MSEIn tensity Image ToImageMetric<TFixedImage,TMovingImage> 
::PrintSelf(std::ostream& os, Indent indent) const 
{ 
Superclass: :PrintSelf(os,indent); 

} 

} // end namespace itk 

#endif// itkMSEIntensityImageToImageMetric_txx 
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Appendix 5: Model-to-Image Registration 

Algorithm for performing model-to-image registration 

Given Two overlapping images A and B 

Defined a, the weighting factor 
a, the smoothing factor 
Initial estimates for the geometrical transformation 
Convergence criterion for the optimization 
Maximum number of optimization iterations 
Any other parameter needed for the registration algorithm at hand. 

Initialization Initialize the geometrical transformation with the initial estimates 
Initialize the similarity measure 

Processing Find the rotation and translations that optimize the similarity measure 
following these steps: 

a. Transform image B with the given translations and rotations 
b. Apply interpolation to find the pixel values at the requested positions 
c. Calculate the similarity measure 
d. Adjust the transformation parameters to improve the similarity 

measure 
e. Repeat steps a. through d. until either the convergence criterion or the 

maximum number of iterations is reached 

Result The rotation and translations 

/*= 

Source code for performing model-to-image registration 

Language: C++ 
Date: SDate: 2007/09/17 18:13:00 $ 
Version: SRevision: 0.05 $ 

Copyright (c) Lino Ramirez. All rights reserved. 

This software is distributed WITHOUT ANY WARRANTY; without even 
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
PURPOSE. See the above copyright notices for more information. 

=*/ 
#if defmed(_MSC_VER) 
#pragma warning ( disable : 4786 ) 
#endif 

#include "itklmageRegistrationMethod.h" 
#include "itkCombinedJaccardlndexIntensityAndGradientlmageToImageMetric.h" 
#include "itkMSEIntensitylmageToImageMetric.h" 
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#include "itkLinearlnterpolatelmageFunction.h" 
#include "itkRegularStepGradientDescentOptimizer.h" 
#include "itklmage.h" 

#include "itkCenteredTransformInitializer.il" 
#include "itkCenteredRigid2DTransform.h" 

#include "itklmageFileReader.h" 
#include "itklmageFileWriter.h" 

#include "itkResamplelmageFilter.h" 
#include "itkCastlmageFilter.h" 
#include "itkSubtractlmageFilter.h" 
#include "itkRescalelntensitylmageFilter.h" 
#include"itkIdentityTransform.h" 

// The following section of code implements a Command observer 
// that will monitor the evolution of the registration process. 
// 
#include "ifkCommand.h" 
class CommandlterationUpdate : public itk::Command 

{ 
public: 

typedef CommandlterationUpdate Self; 
typedef itk::Command Superclass; 
typedef itk: :SmartPointer<Self> Pointer; 
itkNewMacro( Self); 

protected: 
CommandlterationUpdateO {}; 

public: 
typedef itk: :RegularStepGradientDescentOptimizer Optimizer Type; 
typedef const OptimizerType * OptimizerPointer; 

void Execute(itk::Object *caller, const itk::EventObject & event) 
{ 
Execute( (const itk::Object *)caller, event); 

} 

void Execute(const itk::Object * object, const itk::EventObject & event) 
{ 
OptimizerPointer optimizer = 
dynamic_cast< OptimizerPointer >( object); 

if( ! itk::IterationEvent().CheckEvent( &event) ) 
{ 
return; 
} 

std::cout« optimizer->GetCurrentIteration()« " "; 
std::cout« optinizer->GetValue() « " "; 
std::cout« optimizer->GetCurrentPosition() « std::endl; 

} 
} ; 

int main( int argc, char *argv[]) 
{ 
if( argc < 4 ) 

{ 
std::cerr « "Missing Parameters " « std::endl; 
std::cerr« "Usage : "« argv[0]; 
std::cerr « " fixedlmageFile movinglmageFile "; 
std::cerr « " outputlmagefile "; 
s td : :cerr«" [differenceBeforeRegistration]"; 
std::cerr« " [differenceAfterRegistration] "; 
std::cerr « " [alpha] [sigma] "; 
std::cerr « " [steplength]"; 
std::cerr« " [metric: 1-CJI, 2-MSE] "; 
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std:xerr « " [initialAngle]"; 
std::cerr « std::endl; 
return 1; 

} 

const unsigned int Dimension = 2; 
typedef float PixelType; 

typedef itk::Image< PixelType, Dimension > FixedlmageType; 
typedef itk::Image< PixelType, Dimension > MovinglmageType; 

typedef itk::CenteredRigid2DTransform< double > TransformType; 

typedef itk: :RegularStepGradientDescentOptimizer OptimizerType; 

typedef itk::CombinedJaccardIndexIntensityAndGradientImageToImageMetric 
< FixedlmageType, MovinglmageType > CJIMetricType; 

typedef itk: :MSEIntensityImageToImageMetric 
< FixedlmageType, MovinglmageType > MSEMetricType; 

typedef itk:: LinearInterpolateImageFunction< MovinglmageType, double > 
InterpolatorType; 

typedef itk::ImageRegistrationMethod< FixedlmageType, MovinglmageType > 
RegistrationType; 

CJIMetricType: :Pointer cjiMetric = CJIMetricType: :New(); 
MSEMetricType::Pointer mseMetric = MSEMetricType::New(); 

OptimizerType::Pointer optimizer = OptimizerType::New(); 
InterpolatorType ::Pointer interpolator = InterpolatorType: :New(); 
RegistrationType::Pointer registration = Registration Type ::New(); 

unsigned int metric = 1; 

if( argc > 9 ) 
{ 
metric = atoi( argv[9]); 
} 

if ( metric == 1 ) 
{ 
registration->SetMetric( cjiMetric ); 
> 

if (metric == 2 ) 
{ 
registration->SetMetric( mseMetric ); 
} 

registration->SetOptimizer( optimizer ); 
registration->SetInterpolator( interpolator ); 

TransformType::Pointer transform = TransformType::New(); 
registration->SetTransform( transform); 

typedef itk::ImageFileReader< FixedlmageType > FixedlmageReaderType; 
typedef itk::ImageFileReader< MovinglmageType > MovinglmageReaderType; 

FixedlmageReaderType: :Pointer fixedlmageReader = FixedlmageReaderType ::New(); 
MovinglmageReaderType: :Pointer movinglmageReader = MovinglmageReaderType: :New(); 

fixedImageReader->SetFileName( argv[l]); 
movingImageReader->SefFileName( argv[2]); 

registration->SetFixedImage( fixedImageReader->GetOutput() ); 
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registration->SetMovingImage( movingImageReader->GetOutput() ); 
fixedImageReader->Update(); 

registration->SetFixedImageRegion( 
fixedImageReader->GetOutput()->GetBufferedRegion()); 

typedef itk: :CenteredTransformInitializer< 
TransformType, 
FixedlmageType, 
MovinglmageType > TransformlnitializerType; 

TransformInitializerType::Pointer initializer = TransformInitializerType::New(); 

initializer->SetTransform( transform); 

initializer->SetFixedImage( fixedImageReader->GetOutput()); 
initializer->SetMovingImage( movingImageReader->GetOutput()); 

initializer->GeometryOn(); 

initializer->InitializeTransform(); 

double initialAngle = 0.0; 

if(argc>10) 
{ 
initialAngle = atof(argv[10]); 
} 

transform->SetAngle( initialAngle); 

registration->SetInitialTransformParameters( transform->GetParameters()); 

typedef OptimizerType::ScalesType OptimizerScalesType; 
OptimizerScalesType optimizerScales( transform->GetNumberOfParameters()); 
const double translationScale = 1.0 / 1000.0; 

optimizerScales[0] = 1.0; 
optimizerScales[l] = translationScale; 
optimizerScales[2] = translationScale; 
optimizerScales[3] = translationScale; 
optimizerScales[4] = translationScale; 

optimizer->SetScales( optimizerScales); 

double steplength = 1.0; 

if( argc > 8 ) 
{ 
steplength = atof( argv[8]); 
} 

optimizer->SetMaximumStepLength( steplength); 
optimizer->SetMinimumStepLength( 0.0001 ); 
optimizer->SetNumberOfIterations( 200 ); 

CommandIterationUpdate::Pointer observer = CommandlterationUpdate: :New(); 
optimizer->AddObserver( itk::IterationEvent(), observer); 

double alpha = 0.5; 

if( argc > 6 ) 
{ 
alpha = atof( argv[6]); 

} 

double sigma = 1.0; 
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if( argc > 7 ) 
{ 
sigma = atof( argv[7]); 
} 

if (metric == 1 ) 
{ 
cjiMetric->SetAlpha( alpha); 
cjiMetric->SetSigma( sigma); 
} 

try 
{ 
registration->StartRegistration(); 
} 

catch( itk::ExceptionObject & err) 
{ 
std::cerr « "ExceptionObject caught!" « std::endl; 
std::cerr « err « std::endl; 
return -1; 
> 

OptimizerType: Parameters Type finalParameters = 
registration->GetLastTransformParameters(); 

const double finalAngle = finalParameters[0]; 
const double finalRotationCenterX = finalParameters[l]; 
const double finalRotationCenterY = finalParameters[2]; 
const double finalTranslationX = finalParameters[3]; 
const double finalTranslationY = finalParameters[4]; 

const unsigned int numberOflterations = optimizer->GetCurrentIteration(); 

const double bestValue = optimizer->GetValue(); 

const double finalAnglelnDegrees = finalAngle * 45.0 / atan(l.O); 

std::cout« std::endl; 
std::cout« "Result = " « std::endl; 
s td : :cout«" Angle ( radians)"« finalAngle « std::endl; 
std::cout« " Angle (degrees) " « finalAnglelnDegrees « std::endl; 
s td : :cout«" Center X = " « finalRotationCenterX «std::endl; 
s td : :cout«" Center Y = " « finalRotationCenterY «std::endl; 
std::cout« " Translation X = " « finalTranslationX « std::endl; 
std::cout« " Translation Y = " « finalTranslationY « std::endl; 
std::cout« " Iterations = " « numberOflterations «std::endl; 
std::cout« " Metric value ="«bes tValue «std::endl; 

typedef itk: :ResampleImageFilter< MovinglmageType, 

FixedlmageType > ResampleFilterType; 

TransformType::Pointer finalTransform = TransformType::New(); 

finalTransform->SetParameters( finalParameters); 

ResampleFilterType: :Pointer resampler = ResampleFilterType: :New(); 
resampler->SetTransform( finalTransform); 
resampler->SetInput( movingImageReader->GetOutput()); 

FixedImageType::Pointer fixedlmage = fixedImageReader->GetOutput(); 

resampler->SetSize( fixedImage->GetLargestPossibleRegion().GetSize()); 
resampler->SetOutputOrigin( fixedImage->GetOrigin()); 
resampler->SetOutputSpacing( fixedImage->GetSpacing()); 
resampler->SefDefaultPixelValue( 100 ); 

typedef unsigned char OutputPixelType; 
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typedef itk::Image< OutputPixelType, Dimension > OutputlmageType; 

typedef itk::CastImageFilter< FixedlmageType, OutputlmageType > 
CastFilterType; 

typedef itk::ImageFileWriter< OutputlmageType > WriterType; 

WriterType::Pointer writer = WriterType: :New(); 
CastFilterType::Pointer caster = CastFilterType::New(); 

writer->SetFileName( argv[3]); 

caster->SetInput( resampler->GetOutput() ); 
writer->SetInput( caster->GetOutput() ); 
writer->Update(); 

typedef itk::SubtractImageFilter< 
FixedlmageType, 
FixedlmageType, 
FixedlmageType > DifferenceFilterType; 

DifferenceFilterType::Pointer difference = DifferenceFilterType: :New(); 

typedef itk: :RescaleIntensityImageFilter< 
FixedlmageType, 
OutputlmageType > RescalerType; 

RescalerType::Pointer intensityRescaler = RescalerType ::New(); 

intensityRescaler->Set!nput( difference->GetOutput()); 
intensityRescaler->SetOutputMinimum( 0) ; 
intensityRescaler->SetOutputMaximum( 255); 

difference->SetInputl( fixedImageReader->GetOutput()); 
difference->SetInput2( resampler->GetOutput()); 

resampler->SetDefaultPixelValue( 1 ); 

WriterType::Pointer writer2 = WriterType::New(); 
writer2->SetInput( intensityRescaler->GetOutput()); 

// Compute the difference image between the 
// fixed and resampled moving image. 
if( argc > 5 ) 

{ 
writer2->SetFileName( argv[5]); 
writer2->Update(); 
} 

typedef itk::IdentityTransform< double, Dimension > IdentityTransformType; 
Identity TransformType::Pointer identity = Identity TransformType: :New(); 

// Compute the difference image between the 
// fixed and moving image before registration. 
if( argc > 4 ) 

{ 
resampler->SetTransform( identity ); 
writer2->SetFileName( argv[4]); 
writer2->Update(); 
} 

return 0; 
} 
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Appendix 6: Computation of Measures of Overlap 

Algorithm for computing the proposed overlap measures 

Given An image A and a Mask B 

Defined a, the smoothing factor 

Initialization Calculate the gradient magnitudes for image A ( V0(A)) 

Processing For all the pixels in the images j e {\,2,...,N } 

a. Calculate the FJIG by: 

FJIG{A,B) = -£! 
£m«x(VCT(4x,)),2?y) 

For all the pixels in image A that correspond to the pixels in B that have the 
highest possible brightness level j e {1,2,....M } 

a. Calculate the MeanG by: 

1 M i \ 

b. Calculate the RangeG by: 

RangeG{A) = max(A[x))- min(A\x)) 

c. Calculate the StDevG by: 

^ i M 

StDevG(A) = — £ M * y ) - MeanG(A)} 

Result The overlap measures FJIG, MeanG, RangeG, and StDevG 
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Source code for computing the proposed overlap measures 

#!/usr/bin/perl 

# test_quality_assessment 
# 
# Author: Lino Ramirez 
# Date: 2007-October-22 
# Version: 0.5 

use warnings; 
use strict; 
use PDL; 
usePDL::Graphics::PGPLOT::Window; 
use PDL::NiceSlice; 
usePDL::IO::Pic; 

# compute_FJIG($mask, $ROI) returns the FJIG 
# for fuzzy set representations of a $mask and an $ROI 
# 
sub compute_FJIG { 

my (Smask, SROI) = @_; 

my $flat_mask = $mask->copy->flat; 
my $flat_roi = $ROI->copy->flat; 

my Sjoin = cat( $flat_mask, Sflat_roi); 

my Sintersection = sum( minimum( $join->xchg(0,l) ) ) ; 
mySunion = sum(maximum(Sjoin->xchg(0,l))); 

my SJIG = 0; 
i f ($union>0) { 

SJIG = Sintersection / Sunion; 
} 

return SJIG; 
> 

# find_stats 
sub find_stats { 

my ( Smask, SROI) = @_; 
my ( $ind_x, $ind_y) = whichND( Smask == 255 ); 
return stats( $ROI( $ind_x, $ind_y ) ); 

} 

# main 

while (defmed(my Sroot = <DATA>)) { 
chomp (Sroot); 
my $number_of_vertebrae = <DATA>; 
chomp (Snumberofvertebrae); 

foreach (1 ..Snumber_of_vertebrae){ 
my Svertebra = <DATA>; 
chomp (Svertebra); 
my $top_ROI_name = Sroot. Svertebra . "ROIJT.png"; 
my $top_output_name = Sroot. Svertebra . "output_T.png"; 

my $input_mask = rim( $top_output_name ); 
my Sinputroi = rim( $top_ROI_name ); 

my $gradient_file = $top_ROI_name . "gradient.png"; 
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my Ssigma = 1.0; # < = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = sigma 
system "./CreatingGradientlmage StopROIname $gradient_file Ssigma"; 

my $gradient_roi = rim( $gradient_file ); 
my SJI = compute_FJIG( $input_mask, $gradient_roi); 
my (Smean, $prms, $median, $min, $max, Sadev, $rms) = fmd_stats( $input_mask, $gradient_roi); 
print "$JI\t$mean\t$prms\t$median\t$min\t$max\t$adev\tSrms\n\n"; 

my SbotROIname = Sroot. Svertebra . "ROIB.png"; 
my Sbotoutputname = Sroot. Svertebra . "outputB.png"; 
$input_mask = rim( $bot_output_name ),• 
$input_roi = rim( SbotROIname); 

$gradient_file = $bot_ROI_name . "_gradient.png"; 

Ssigma = 1.0; # < =================================== sigma 

system "./CreatingGradientlmage $bot_ROI_name $gradient_file Ssigma"; 

$gradient_roi = rim( $gradient_file ); 

SJI = compute_FJIG( $input_mask, $gradient_roi); 
(Smean, Sprms, Smedian, Smin, Smax, Sadev, Srms) = find_stats( Sinput_mask, $gradient_roi); 
print "$JI\t$mean\t$prms\t$median\t$min\t$max\t$adev\t$rms\n\n"; 

} 

} 

_ D A T A _ 
Img0020R 
2 
L4 
T9 
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Appendix 7: Open Source Software Contributions 

During the realization of this work, four classes, one example and one application were 

contributed to the Insight Toolkit (ITK, http://www.itk.org ). ITK is an open source set of 

libraries for medical image processing, segmentation, and registration. This toolkit started in 

1999 with a US$ 10M investment by NIH (National Institute of Health) and collaborative 

work from 3 companies and 3 universities (with 6 additional universities working as 

subcontractors). Today, it is influencing the international medical imaging research 

community. User and developer mailing lists include over 1000 members in more than 30 

countries. The set of applications using ITK include diverse areas such as: image guided 

intervention, longitudinal studies of Alzheimer's patients using MRI, and vascular 

segmentation. ITK is a clear success in the field of medical imaging. Contributions to this 

toolkit are developed following a state-of-the-art software development process that involves: 

high-intensity design, test, and implement cycle; support from web-enabled tools; and 

automated testing integrated with the software development. This approach guarantees that 

problems are identified and fixed immediately. 

The aforementioned contributions to ITK represent the first (and only) effort from members 

from the University of Alberta to contribute to the Medical Image Computing Open Source 

Community. This community includes Universities and Companies such as: University of 

Utah, University of Pennsylvania, University of North Carolina at Chapel Hill, Columbia 

University, University of Pittsburgh, General Electric Corporate Research and Development, 

Insightful, and Kitware. 
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Classes: Morphological Image Processing and Arithmetic Operations 

Class 1: Code/BasicFilters/itkGrayscaleMorphologicalOpeninglmageFilter.h 

Class 1: Code/BasicFilters/itkGrayscaleMorphologicalOpeninglmageFilter.txx 

Class 2: Code/BasicFilters/itkGrayscaleMorphologicalClosinglmageFilter.h 

Class 2: Code/BasicFilters/itkGrayscaleMorphologicalClosinglmageFilter.txx 

Class 3: Code/BasicFilters/itkConstrainedValueAdditionlmageFilter.h 

Class 4: Code/BasicFilters/itkConstrainedValueDifferencelmageFilter.h 

Code available at: 

httpV/www.itk.org/cgi-bin/viewcvs.cgi/Code/BasicFilters^root^Insight 

Example: Morphological Image Enhancement 

Examples/Filtering/MorphologicallmageEnhancement.cxx 

Code available at: 

http://www.itk.org/cgi-bin/viewcvs.cgi/Examples/Filtering/?root=Insight 
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Application: 2-D Image Registration 

ImageRegistration2D/CommandIterationUpdate.h 

ImageRegistration2D/ImageRegistration2D.cxx 

ImageRegistration2D/ImageRegistration2D.h 

ImageRegistration2D/ImageRegistrationConsole.cxx 

ImageRegistration2D/ImageRegistrationConsole.h 

ImageRegistration2D/ImageRegistrationConsoleBase.cxx 

ImageRegistration2D/ImageRegistrationConsoleBase.h 

ImageRegistration2D/ImageRegistrationConsoleGUI.fl 

Code available at: 

http://www.itk.org/cgi-bin/viewcvs.cgi/ImageRegistration2D/?root=InsightApplications 
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