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Abstract

A relativistic one-nucleon model for the charged pion photoproduction reaction on a
nucleus is discussed. The specific reactions considered are ( 7y, - p ) and the related
process { &*, ¥y p ). The incident particle reacts with a single nucleon, while the rest of the
nucleus acts as a spectator. The interaction of the projectile with the target nucleon is
comprised of the gauge invariant set of Born terms, arising from the pseudovector form
of the pion-nucleon interaction lagrangian, as well as s- and u-channel diagrams
involving delta propagation. The latter are each separately gauge invariant. The
calculations are done in coordinate space and require the solution of eight-dimensional
space-time integrals, which are simplified by making the following approximations for
diagrams that involve intermediate state propagation: i) the intermediate particle
propagates without interaction with the nuclear medium, and ii) the outer legs of one
vertex are plane waves. The propagator for each diagram is then the free momentum-
space propagator for the particle times a coordinate-space delta-function ( a local
operator ), and the integration at one vertex is done trivially. The remaining calculations
of the amplitude are then carried out in the distorted wave framework. Both the bound
and continuum state nucleons are described by solutions of the Dirac equation with
appropriate vector and scalar poteniials. The pion wave function is a solution of the
Klein-Gordon equation; the interaction of the pion with the residual nucleus is taken into
account by including an optical potential. The contribution of each of the diagrams to the
differential cross section and the final proton’s polarization, under different kinematic
conditions, are explored. In particular we study the role of the A resonance in the reaction.
We find the contribution of the delta to be important in the resonance region, but for the
(Y, =~ p ) reaction there was no case found in which that contribution is the dominant
one. For the ( nt*, ¥ p ) reaciion we found one kinematic arrangement for which the delta
provides the largest contribution to the cross section. The effects of changes in the
binding and interaction potentials are also studied. Finally the results of the model are
compared to the existing data. Qualitative agreement with the few data sets available is

achieved. This study points out the need for more precise measurements of these
reactions.
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Chapter 1 - Introduction

Consider a reaction in which a particle interacts with a single nucleon in the target
nucleus. If the interaction results in the struck nucleon being knocked out of the nucleus
the reaction can possibly be used to study the single nucleon properties of nuclei. The
picture is that of the projectile and the struck nucleon interacting almost as if the nucleon
were free and the rest of the target nucleus is simply a spectator. Typical reactions
resulting in the removal of a single proton, and hence offering a probe of the proton
distribution in the nucleus, are (p, 2r), (e, ¢ p) and (&, © p ). The neutron distribution
can be examined by reactions such as (p, np ). These reactions provide a probe of
individual nucleon motion within target nuclei as the quantities obtained must refer to the
struck nucleon; for example, polarized (P, 2p ) can detect the polarization of the proton
in the nuclear environment [Ki85].

Because of its relatively small absorption cross section ( relative to a hadron ), a real
photon provides a very clean probe of the entire nucleus. The total cross section for
photon absorption by a free proton is shown as the solid curve in figure 1-1. The curve is
a smooth fit to data by Arhens [Ah85]. The data points show the total photonuclear
absorption cross section per nucleon on the nuclei 9Be [Ah75, Ar81] and 208Pb [Le81,
Ch83]. Data from other nuclei follow the same curve [Ah85] in the region of the delta
resonance. The resonance structure is smeared out by the Fermi motion of the nucleons in
the nucleus and Pauli blocking effects reduce the magnitude of the cross section, but the
evidence of enhancement in the delta is clear. The nucleon bound in a nucleus seems to
have a universal response to the photon for photon energies in the delta region, but the
important feature for us is that the nucleon and the delta exist in the nucleus without
major modifications even in the presence of strong interactions with nearby nucleons.

The mean free path for a projectile traveling through a medium of constant density

Pg scatterers per unit volume can be written as

L =-—-l—- (1'1)

Po Ca
where G 5 is the total cross section for the absorption of the incident particle through any

channel. Consider a photon travelling through nuclear matter with a density of po = 0.17

nucleons/fm3. From figure 1-1 we take an estimate of the peak absorption Cross sevtion

-1-
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Figure 1-1. Total photonuclear absorption as a function of photon lab energy.
Solid line; absorption by a free proton, data points; absorption in nuclei:’Be
[Ah75, Ar81] and 298Pb [Le81, Ch83).
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for a photon incident on a nucleon, whether free or bound in a nucleus, to be about 65 =
0.5 mb. This yieids a minimum mean free path of L = 120 fm for a photon travelling
through nuclear matter. Note that this is a very energy dependent quantity and can change
by an order of magnitude over the range of energies shown in figure 1-1. Because of this
large mean free path the flux of photons through any part of the nucleus is almost
constant and the photon beam is probing the entire nuclear volume uniformly. This is very
different from a pion beam which has a mean free path at Ty, = 195 MeV of L = 0.5 fm,
which localizes the pion interactions at the nuclear surface.

There is of course a price to be paid for using a probe with a small interaction Cross
section: that is the low count rate for the final state particles. Fortunately there is a new
generation of machines providing high intensity electron and photon beams which will be
able to perform a variety of interesting experiments in the next few years [Ko89] in the
energy range 0.5 - 4.0 GeV.

1.1 The Quasifree Region and the Distorted Wave Impulse Approximation (DWIA)

Reactions in the quasifree region are used to study the shell structure of the nucleus
(its single particle properties ), as well as to test the effect that a nuclear environment has
on the bound nucleons. The electromagnetic probes are particularly interesting as the
wave function of the probe is not distorted by the strong interaction, making interpretation
of the experimental results more straightforward than with a strongly interacting
projectile. In order to clarify the meaning of the term ‘quasifree’ we have drawn a
schematic inelastic spectrum in figure 1-2, for a reaction

Yy+A—y +X

in which we have a beam of incident photons impinging on a nucleus with A nucleons.
The photons are observed in the final state at a fixed angle and their energy measured.
The abscissa of figure 1-2 is the energy of the incident projectile minus the measured
energy of the final projectile E, - E.,, the energy lost by the incident particle and gained by
the final state X. The number of partlcles observed in the energy range ]5.Y to E., + dl?.Y

within the ﬁnitc solid angle of the detector dQ, is proportional to the double differential
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Figure 1-2. Generic inelastic scattering spectrum. The abscissa is the
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cross section __d—zﬁ—l— . The peaks in the cross section correspond to the observation of a
dQ)y dE,

favoured final state X, beginning with the excitation of states of the residual nucleus A,

requiring a few MeV, which provide fairly sharp peaks. The broader peak at an energy

loss of 25 MeV is a giant resonance which results from a collective excitation of the

whole nucleus.

The broad peak at 60 MeV is the quasielastic peak which corresponds to the
incident projectile actuaily knocking a nucleon out of its orbit so the final state X is now a
free nucleon and a nucleus with A—1 nucleons. The energy of the final state projectile at
the peak is close to the energy that the projectile would have if it had interacted with a
free nucleon. The energy that a photon would have if it were scattered elastically from a
free nucleon is close to the peak at 60 MeV, but is shifted a bit due to kinematic
differences and the effect of nuclear binding. This is the origin of the term ‘quasifree’ or
equivalently ‘quasielastic’. The peak is very broad because the nucleon in the initial
nucleus has a range of possible momenta. In 2 Fermi gas model, with Fermi momentum
kg and nucleons of mass m, the width of the quasifree peak is gkg/m, where g is the
momentum transferred to the nucleon which is knocked out of the nucleus. Note that this
is a qualitative description only and the details of an actual spectrum can look quite
different from our simple picture.

The spectrum is not divided into sharp regions, each corresponding to a specific
process, rather the peaks blend gradually from one to the next. Neither does the spectrum
simply die away as we have drawn it. At higher energies there will be peaks from other
processes such as the excitation of a nucleon resonance ( 2 A(1232) for example ).

Frullani and Mougey [FM84] provide a very thorough discussion of the use of the
quasifree (e, e’ p) reaction to obtain nuclear structure information, and de Witt Huberts
[Hu90] discusses results of recent high precision (e, e p) data from NIKHEF. The
application of quasifree ( p, 2p ) is discussed by Kitching et al. [Ki85] who also briefly
discuss other quasifree reactions and provide references to other reviews. Much of the
nonrelativistic DWIA approximation is discussed by Goldberger and Watson [GW64].

Of particular interest to us is the portion of the inelastic spectrum in which the

photon provides sufficient energy to create a pion. We can then observe a final state in
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which there is no photon, but instead we observe the pion and a nucleon which has been
knocked out of the nucleus. The pion is created through the elementary photoproduction
process

Y+N—+1+N
This channel opens and creates a peak in the inelastic spectrum at an energy higher than
the peak due to the nucleon knockout, but the photoproduction peak is close to the
kinematics of the free pion photoproduction reaction, so this peak is also quasitree.

In the factorized DWIA model the cross section for the reaction A(y, t- p )JA-1 is
related to the cross section for pion photoproduction on a free neutron Yy + n — n~ + p.
Use of the DWIA reduces the large number of degrees of freedom of the nuclear many
body problem by assuming that for sufficiently high momenta and energies the reaction
occurs as if the target nucleon is moving without interacting with the rest of the nucleus.
Specifically the impulse approximation assumes that the energy of the projectile is much
larger than both the average kinetic energy of the bound nucleon and the average potential
binding the nucleon [GW64]. Then the amplitude for the reaction in the nuclear medium
can be written in terms of the amplitude for the free reaction. This results in an expression
where the two-body scattering matrix element ( for the free reaction ) is the operator
which takes the initial state ( photon + bound neutron ) to the final state ( pion and proton
distorted by interactions with the nucleus ). The factorization is obtained by assuming that
the two-body reaction occurs with the finally observed spins, isospins and momenta so
the two-body operator can be removed from the integral. This results in the factored form

— &6 g doem prpy) (1-2)

dQy dQ, dE, dQ lp—orrp
where K is a factor involving kinematic quantities, the two body reaction cross section is
evaluated in the center of mass of either the final pion and proton ( final state
prescription ) or the initial photon and bound neutron {initial state prescription ). The
mass of the bound neutron is not the free neutron mass in the initial state prescrirption, but
is taken to be the difference between the masses of the initial and final nuclei, so the
results from the two prescriptions can differ a bit [Ki85]. We discuss the elementary
process and the operator presented by Blomgvist and Laget, in Appendix F.

The distorted momenturm distribution p(pg) is related to the nuclear overlap
function



WB(E) = <Yl T2, oo, TA) LW T, Tap o, Fa) > (1-3)
which in the shell model is just the bound state wave function with the required quantum
numbers to specify the state. Note that we have given the target nucleon the coordinate T,
and the other nucleons are labeled from 2 to A. The distorted momentum distribution is

then written as
2

j Pyl @ ® va@ e ke T (1-4)

where the wave functions of the final proton and pion are distorted through interaction

p(ps)=

with the final state nucleus. In the limit that the final proton and pion do not interact with
the residual nucleus, the distorted momentum distribution is just the Fourier transform of
the bound state wave function.

The factorized form of the cross section has a very simple interpretation. The cross
section for pion photoproduction on a nucleus is given by the product of the cross section
for the reaction to take place in free space with the probability of finding the struck
nucleon in the initial nucleus in a state with the momentum demanded by energy

conservation, while the rest of the nucleus is in the required final state.
1.2 Experiments and Their Interpretation

Coincidence measurements of pion photoproduction have been performed on
deuterium in order to extract observables for the elementary charged pion
photoproduction process on neutrons ¥ + n —* n- + p. References to these experiments
can be found in the compilation of photoproduction data by Menze, Pfeil and Wilcke
[Me77].

The basic idea for these experiments is that the proton in deuterium is a spectator to
the pion photoproduction reaction taking place on the neutron. This should be a good
approximation when the momentum transfer to the spectator is small. Alsc the deuteron is
the least bound nuclear system with a binding energy of only 2.22 MeV so kinematic
shifts due to binding energy will be small. The energy of the incident photon from a
Bremsstrahlung beam is not known exactly, so the momentum and direction of both the

pion and ejected proton are measured and the energy of the incident photon calculated.
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The first coincidence measurement on a slightly heavier nucleus was performed at
Saclay by Argan and coworkers [Ar72]. They studied the reaction “He( v, ©= p )ppn in the
A region in an attempt to understand how the pion photoproduction mechanism on a free
nucleon is modified by the presence of other nucleons.

The experiment was done in a coplanar geometry and the three-momenta of the pion
and proton measured in coincidence. The differential cross section was measured as a
function of the center of mass energy of the final proton-pion system for two values of
momentum for the recoil nucleus: pg = 50 MeV/c and pg = 200 MeV/c. The data were
compared to the factorized calculations of Laget [La72] and at the lower recoil
momentum the results of the calculation were multiplied by a factor of 1.25 to bring the
calculations closer to the data. At the larger recoil momentum the calculation had a
different shape from the data and the authors multiplied the results of the calculations by
2.1 to bring the calculation closer to the data, but this still did not provide agreement.
Some of the data points were roughly a factor of four larger than the peak of the
theoretical ( not renormalized ) calculations. The discrepancy between data and theory
was attributed to possible resonant processes involving two or more nucleons. They
concluded that for small recoil momenta ( = 50 MeV/c ) a one nucleon description of the
reaction is adequate, while for large recoil momenta ( = 200 MeV/c ) other processes are
important.

After this experiment coincidence measurements were largely restricted to
deuterium [eg. Ar77] and the examination of the role of mechanisms other than that
involving a single nucleon. The review by Laget {La81] discusses the results of these
measurements and the many additions to the theoretical model required to describe the
data at high recoil momenta. The important additions involve the rescattering of the pion
from the recoil proton and the interaction of the two final state nucleons. These additions
result in agreement between data and theory to a recoil momentum of 500 MeV/c.

I.V. Glavanakov and his coworkers at the Tomsk cyclotron have made two

measurements of triple differential cross sections —dc on 12C [GS79a, AG90}
dQdy dQ,, dE,,

for the reaction 12C(y, = p )!1C in which the pion and proton are detected in coincidence
in a coplanar geometry with the proton detector on one side of the photon beam and the
pion detector on the other.



In the first experiment [GS79a] pions were detected with kinetic energy in the range
40 MeV to 180 MeV, while the range of energy for the detected protons was 50 MeV to
190 MeV. The pion and proton angles were O = 120° and ©,, = 20° respectively. Data
were obtained for three values of incident photon energy Ey = 340, 360 and 380 MeV.
They obtained triple differential cross sections as a function of final proton kinetic energy
for two ranges of excitation energy of the final 11C nucleus. One set for E, < 10 MeV, for
which the primary contribution is the quasifree process removing a p;;, neutron and
leaving a ground state 1!C. The other data include events with the final excitation energy
of the residual nucleus in the range 10 MeV < E; <40 MeV. The primary contribution to
this data is the quasifree knockout of an s, neutron leaving a hole of excitation energy
E, = 16 MeV.

The data were compared to the factorized model mentioned above. Pion and proton
distortions were included through the eikonal approximation [GW64] The momentum
distribution was calculated using harmonic oscillator wave functions to describe the
neutrons. The calculations were found to provide a qualitative description of the data. The
shapes of the distributions for excitation energy in the range 10 MeV < E, < 40 MeV
were reproduced but the magnitudes of the data are slightly larger than the calculation,
perhaps due to the inclusion of final states other than the 18y, hole in 11C.

The general features of the 1p;p, distribution are reproduced in that the minimum
where the momentum transfer is almost zero occurs in almost the same place in both data
and calculations, and there is an asymmetry around this minimum. They state that the
differences may be due to the limited energy resolution of the apparatus ( which might be
responsible for filling in the minimum where the momentum transfer is almost zero ), the
existence of a significant width for the hole states and/or the overlap of the shells.

The excitation spectrum of the data from reference {GS79a] was integrated over all
encrgles to obtain inclusive data [GS79b] which were then compared with the factorized
calculatlon in an attempt to disentangle the relative contributions from s- and p-shell
knockout. the calculations couldn’t reproduce the shape of the distributions, but one set of
proton optical potentials yielded a magnitude of the cross section peak in agreement with
data.

Comparison of the data for the reaction }2C(Y, 7~ p) with data for 12C(y, ®©~ ) using
the factorized approximation and a shell model description of the nucleus led to the
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conclusion [G180] that the eikonal approximation provides a satisfactory description of
the proton’s final state interaction with the residual carbon nucleus. He also finds a
significant quasifree component to the pion photoproduction reaction 2C(y, &~ ).

In a further analysis of this data [GI82] Glavanakov extracts cross sections tor the
elementary process Y + n — ®~ + p using a model comprised of the factorized
approximation for the quasifree component and the assumption that at large excitation
energies of the residual nucleus an additional contribution to the cross section comes from
the reaction 2C(v, =~ p 3He )®Be. He finds that the assumption of a considerable
modification of the parameters of the A(1232) in photoproduction on carbon is not
verified.

Glavanakov has made an attempt to ailow for exchange effects [GI89] related to the
antisymmetry of the system of nucleons comprised of the free nucleon and the residual
nucleus, which could be important for low momenta of the free proton. The impulse
approximation was used to write the amplitude for the reaction A7, =~ p )B as a sum of
elementary pion photoproduction reactions taking place on all the nucleons in the nucleus.
The multiparticle wave function of the initial nucleus is written as a linear combination of
the products of wave functions for a system of A-1 nucleons and the target nucleon. In
the plane wave approximation the amplitude can be written as the sum of two terms; a
direct amplitude corresponding to the quasifree production of pions on the valence
nucleon, and an exchange amplitude corresponding to the photoproduction of a pion on
the residual nucleus without involvement from the detected proton. The direct term is
unfactorized and this term alone is referred to as the ‘quasifree approximation’.

Final state interactions are introduced through the eikonal approximation (GW64].
Harmonic oscillator wave functions are used to describe the nuclear single particle
states,with levels separated by about 16 MeV. T :eply excited states of the residual
nucleus are not considered in the model. The form for the one nucleon pion
photoproduction is that introduced by Chew, Goldberger, Low and Nambu [Ch57] and
the amplitudes are those of Berends, Donnachie and Weaver [Be57]. In the exchange term
the elementary amplitude is averaged over the states of the nucleons bound in the nucleus.

The model was compared with data for the neutral pion photoproduction reaction 12C(,

7 p ) and the exchange amplitude was found to be the dominant contributor to the cross
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section when the momentum transfer to the recoil nucleus is large, however the full
calculation was a factor of 2 to 4 below the data.

In comparing with the charged pion photoproduction data [GS79a] the shapes of the
curves were reproduced by both factorized and unfactorized forms of the direct portion of
the model. The factorization didn’t seem to have much effect for the kinematical region
covered by the data. The factorization was shown to have a large effect for a plane wave
calculation of neutral pion photoproduction when the residual nucleus is left in a 1sy,5
hole state. He concluded that when the momentum of the ejected nucleon is small there
must be some sort of resonance contribution to the reaction in which the pion is produced
and the nucleus excited which then decays by emitting a nucleon.

The results of the second coincidence experiment on 12C were published in 1990 by
Anan’in and Glavanakov [AG90]. The detected pions had kinetic energies in the range 30
MeV to 180 MeV while the protons were detected with kinetic energies in the range 30
MeV to 200 MeV. The pion and proton angles were ®, = 120" and 6 = 40°, The
experiment was carried out in the quasifree region where contribution to the reaction
cross section from knockout of an s-shell nucleon was assumed to be less than ten percent
of the total. The analysis was therefore carried out under the assumption that the residual
11C nucleus was left in its ground state. The authors presented triple differential cross
section data as a function of final proton kinetic energy. The final pion kinetic energy is
held fixed in roughly 10 MeV steps from 33.2 MeV to 129.5 MeV in each of ten graphs,
so the incident photon energy varies as the proton energy varies. The data are compared
to the nonfactorized direct photoproduction calculation discussed previously ( the
quasifree approximation ) [G189]. Both plane wave and distorted wave calculations have
shapes close to that of the data but the plane wave curves are systematically larger than
the data while the distorted wave calculations are generally below the data. The distorted
calculations do pass through some of the data for high proton energy.

They conclude that the quasifree approximation provides a satisfactory description
of the data for small values of momentum transfer to the recoil nucleus and large
momentum of the free proton, exactly where the impulse approximation should work.
When the pion or proton momenta are small the calculations are below the data due to

other mechanisms not included in the model.
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Pham and his coworkers [Ph89, Ph92] have performed a measurement of the
reaction 160( vy, - p )130 for an incident photon beam endpoint energy of Ey = 350 MeV.
Measurements were made at two pion-proton laboratory angle pairs:

i) O,=64 o, = 40°

ii) ©, = 120° o, = 20°
At each pion angle protons were detected in an array of seven plastic scintillator detectors
arranged perpendicular to the plane defined by the photon and pion momenta. The data
were compared with the factorized DWIA calculation of Laget [La72] using the pion
photoproduction operator of Blomqvist and Laget. The calculations are about a factor of 3
larger than the data at the forward pion angle while the calculations are nearly a factor of
1.5 larger than the data at the backward pion angle.

The results from TRIUMF experiment 550 of a measurement of triple differential
cross sections for the reaction 160( &*, v p )150 will be available soon [Fa91], and there
exists the possibility of data on carbon for the reaction 1*C(, &~ p YUC at an incident

photon energy of E, = 230 MeV from experiment #36 at the Saskatchewan Accelerator
Laboratory [Hac92].

1.3 A Dirac Equation Based Model of Pion Photoproduction on a Nucleus

We consider a model of nuclear pion photoproduction using the photon, pion,
nucleon and delta as the elementary particles in the problem. We ignore the fact that the
hadrons are composite particles ( in other words we ignore the quark and gluon degrees of
freedom ). In the region of the delta resonance ( E, = 300 MeV ) the spatial resolution of
the photon is of the order of the nucleon size ( 1 - 2 fm ), and so we will not be able to
resolve the constituents of the nucleons.

Our model of pion photoproduction on a nucleus begins with the pion-nucleon
interaction lagrangian with pseudovector coupling. The minimal gauge-invariant
substitution yields photon-pion and photon-nucleon interaction terms, in addition to a
lagrangian interaction allowing the interaction of the photon, the pion and two nucleons at
one vertex, leading to the so-called seagull diagram. The lagrangians for the interaction
between the photon, nucleon and delta as well as the pion, nucleon and delta, are also
included, This model lagrangian was developed by Olsson and Osypowski [0175] and
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later by Blomqvist and Laget [BL76]. We extend this to the case of production on a
nucleon bound in a nucleus and treat the nuclear dynamics according to the model
recently proposed by Walecka and his coworkers [SW86]. The pion and nucleon wave
functions are solutions of relativistic equations; the pion being described by the Klein-
Gordon equation, while the nucleors are described using the Dirac equation. The
equations contain potential terms representing the interactions of these with the nucleus.

A relativistic description of the dynamics of nucleon interaction has been successful
in reproducing the observed properties of nuclear matter and finite nuclei [SW86]. The
use of the Dirac equation with scalar and zeroth-component vector potentials to describe
the nucleon has provided a better explanation of proton elastic scattering observables at
intermediate energies than the nonrelativistic Schrodinger equation based approach,
particularly for the spin observables [Ko85]. In addition a relativistic model of inelastic
proton scattering leading to the excitation of collective states [3088] is in good agreement
with experimental data, and provides a better description of analyzing power data than the
nonrelativistic theory. Dirac phenomenology has also resulted in improved descriptions of
the cross sections and spin observables for the reactions (p, ® ) and (v, p) [Co82, Lo92].
Because of these successes of Dirac phenomenology we propose to extend this to
negative pion photoproduction on a nucleus.

Our model remains fully relativistic, and does not include a factorization
approximation, in which case the cross section would have the form of equation (1-2).
The diagrams containing two vertices involve evaluating six-dimensional space integrals.
In addition, the propagating particle should be allowed to interact with the nucleus as it
travels so the propagator is no longer free but must be modified to allow for the
interaction. The calculations in this form have proven to be numerically intractable and
we have had to make approximations in order to carry out the calculation. First, the
propagators are taken to be the momentum space propagators times a coordinate space 8-
function, removing the integration at one vertex, i.e. we have made the propagators local.
This affects all the diagrams except the seagull, which is evaluated exactly. Second, the
Bom terms with the photon coupling .to electric charge are not gauge invariant in the
distorted wave calculations, although they are gauge invariant when the pion and proton

are described by plane waves. The terms in which the photon couples to the anomealous
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magnetic moment of the nucleon and the delta diagrams are each separately gauge
invariant for both the plane and distorted wave calculations.

In chapter 2 we derive the s-matrix for the pion photoproduction reaction on a
nucleus A( ¥, n~ p J)A-1. Chapter 3 includes a discussion of the Dirac equation based
model of proton elastic scattering from a nucleus, and the optical potential model of pion-
nucleus elastic scattering. In chapter 4 we discuss the sensitivity of our model to changes
in the wave functions of the bound neutron, the pion and the proton. We then examine the
behaviour of the results under changing kinematic conditions, and finally we compare
with the available experimental data. In chapter 5 we derive the s-matrix for the reaction
A( 7+, v p YA-1 and present calculations for some of the angles and energies for which

data were taken { TRIUMF experiment 550 ). Chapter 6 contains our conclusions.
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Chapter 2 - A One Nucleon Model for the Reaction A(y, t- p)A-1

This model for the (¥, =~ p ) reaction has the incident photon interacting with a
bound neutron through some process denoted by the blob in figure 2-1. A proton and a
negatively charged pion are produced and are detected experimentally. The residual
nucleus is left with a hole corresponding to the removal of the active nucleon. The wave
functions for the initial neutron and final proton are solutions of the Dirac equation with
appropriate scalar and vector potentials; these describe the interactions of the particles
with the initial and final nuclei. The pion wave function is a solution of the Klein-Gordon
equation with an appropriate optical potential for the pion-nucleus system. We will
explore the importance of various contributions to the interaction blob by the diagrams
shown in figure 2-2. The four diagrams, 2-2a) to 2-2d), are the Born terms, and the
diagrams 2-2¢) and 2-2f) are the s-channel and u-channel A diagrams. Note that in figure
2-2¢) the photon can couple to the proton through both the electric charge and the
anomalous magnetic moment of the proton, while in figure 2-2d) the photon can only

couple to the neutron through the anomalous magnetic moment.

Figure 2-1. The one nucleon model for A(y, = p )A-1

2.1 Model Lagrangian

The total lagrangian density for a system of pions and nucleons is the sum of the

free lagrangians for the nucleon and pion and the lagrangian which provides for
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Figure 2-2. Diagrams contributing to pion photoproduction on a nucleus.
a-d) the Born terms, e) the s-channel A diagram, and i) the u-channel A
diagram. The line designations shown in a) will be used consistently
throughout this work: photon ( wavy line ), pion ( dashed line ),

nucleon ( solid line ) and A(1232) ( double line ).
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interaction between the particles { we use natural units throughout this work i=c=1)
T =y (id-my+1(3,0-90-mieo-9)+ Buwn @1

where the interaction lagrangian can have two forms ( fields: pion ¢ and nucleon )

—

pseudoscalar : —igaWYsT QY (2-2a)
pseudovector : - i%: WSt doy (2-2b)

The Feynman slash notation for a vector A [BD64] means take the dot product of the
vector with the Dirac gamma matrices A= Aty = Al 70—-;( . ? . We use the
pseudovector pion-nucleon coupling because it satisfies the hypothesis of partial
conservation of the axial vector current ( is consistent with chiral invariance ). In addition
the Born terms calculated with pseudovector coupling are consistent with low energy
theorems and current algebra predictions [BL77]. Blomgvist and Laget find that the
psuedovector coupling is to be preferred over the pseudoscalar in a nonrelativistic
calculation of the elementary pion photoproduction process.

We introduce interactions with photons by using the minimal substitution
o" > 9" +iq A%, where q is the charge of the field to which the photon couples, in the
lagrangian (2-1) with the pscudovector interaction term (2-2b). We also include
interaction terms which allow YNA and TNA vertices. The resulting lagrangian is

L = 'BFREE"'-BT:NN‘*‘SWN"'£m+£m+£mNN+£nNA+£7NA (2-3)

with the non-delta interaction terms

.BnNNz—-r%’-‘;t—Gyg; [T.dn + T, dn*+ 1380 ]y

— X — - ~
Tyn=—¢ ‘I'Al-g@ v- pzllN ¥y 1;T3W_KD;N ¥ 0 Fuy 1213 »
£m=i§'A"[ﬂ+aun‘+Bun“u+—n'apn+—au1t+n'] (2-4)

F - =%2-AHA“ (R*r-+nnt)
37nun=—i°,-§iﬁ'¥5ﬂ[T+E+—T-E“]‘If
where the unit of charge is positive ( ¢ > 0 ) throughout this work. The nucleon is

described by a two component spinor in isospin space with the upper component
describing the proton and the lower component describing the neutron

=| ¥p -
v [%] (2-5)

The nucleon charge operator in Lynn is qN=-§'—(1+t3) and takes the value e for the
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proton and O for the neutron.
The magnetic dipole term has been added to Lynn to account for the anomalous
magnetic moment of the nucleons [BD64). The magnetic moment of the proton is 2.79y

and the neutron magnetic moment is —1.91jy where the nuclear magneton is PN = —2-—¢m—
p

The Dirac values of the magnetic moment are Ly for the proton and O for the neutron. The
anomalous magnetic moment is the difference between the actual value of the magnetic
moment and the Dirac value and the magnitudes of the anomalous magnetic moments for
the proton and neutron are Kp = 1.79 and k; =-1.91.
The charged pion fields are written in terms of three components of a real
pseudoscalar field as ( appendix A )
nt= (P Eies)
0=
Note that + and — on the pion fields indicate the charge that the field destroys, so that the

(2-6)

charged pion field with a + sign has the same effect on the charge as the positively
charged nucleon field. Similarly the isospin raising and lowering operators for the
nucleon are written in terms of the Pauli isospin matrices as
Ty = % (1 £iTy) (2-7)
where the Pauli matrices are
asd] w03) w3 e
and the + and — on the T matrices indicate that they raise or lower the isospin projection of
the nucleon by one unit.
We will need to use an explicit representation of the gamma matrices and we use the
representation that Bjorken and Drell have made standard [BD64]

_|10 ] 0 o =[0’1] 2.9
T [O_ﬂ] we & 5] w Lo 29)

where 1 is a 2x2 unit matrix and the o, are the usuval Pauli spin matrices of equation (2-8),
which makes the gamma matrices 4x4 matrices.

The interaction terms involving the propagation of a A isobar are [Ka88, O175]

f ——y = - — -
o (VAT 3,0y + ¥ (T-%u0)" ¥y )

LnNa =
. (2-10)
Byna = iC—gnA { V‘;T?,YVYS Fuvy + GT;'Y“'YS Fuv Wil
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where the 4x2 isospin matrices T which connect the isospin T=1/2 nucleon with the

isospin T=3/2 isobar are of the form ( appendix A)

-1?“_ 1 0 0 0

0 ~I ; 0 IN3 1 0

T =L T, =L Ta= 2 211

s B V. A 2°¥Z| W3 o 31[201( )
0 1 0 1 0 0

The values which we use for the coupling constants are listed in table 2-1). The fine
structure constant is taken from the Review of Particle Properties [PaS2] and is actually
known more accurately than shown in the table. The pseudovector tNN coupling constant
is typically taken to be [Ma89] f, = 1.0 but some recent analyses [K191, Ar90] have been
arguing for a smaller value for the coupling constant. From these analyses of increased
data sets Klomp et al. recommend a value of f;; = 0.97 which is the value we adopt. The
measured value for the width of the A resonance implies a *NA coupling constant of
fona = 2.1, while the quark model [BW75] predicts a significantly smaller value of
fana = 1.7. Another value of fana = 1.9, was obtained by Olsson and Osypowski [0175]
from an analysis of resonant multipoles and of the resonant elastic phase shifts. We
choose the value obtained from the width of the A. Olsson and Osypowski also obtain a
value for the YNA coupling constant such that fyna =0.32 which is close to the quark
model value of fyna = 0.30.

coupling £
constant YA 17
.
e 0.3028 137.036

fr 097 0.075

fana 2.1 0.35

faa 032 0.0081

Table 2-1. Coupling constants we choose in our
lagrangian model (2-4) and (2-10).
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2.2 Scattering Matrix

An interaction hamiltonian density, which has no derivatives acting on the fields, is
simply the negative of the interaction lagrangian density
i =— Bint (2-12)
We have a more complicated situation however since our interaction lagrangian density
contains terms with derivatives of the photon and pion fields. The straightforward
calculation of the hamiltonian density through the transformation
% =) m¢p-B (2-13)
where the sum extends over all the fiellds in the lagrangian density, has difficulties
analogous to the problems encountered with a velocity dependent potential in classical
mechanics [Go80].

The s-matrix can be expanded in terms of the interaction lagrangian as [Ni69]

s=1+ 2, & I dxy -+ @ Twl Binex) - Bin (k) @-14)
n=1""

where Ty refers to Wick time ordering [Bo80], which defines the time-ordering of fields
which have derivatives acting on them as the derivative of the time ordered product of the
fields

Twl 3k o) 3yp(y) 1 = 35y TL ¢(x) ¢(y) ] (2-15)
This procedure avoids the noncovariant terms which arise in the hamiltonian formulation
(appendix E ).

In the following sections we consider the importance of contributions to the s-matrix
for the reaction A (Y, T N)A-1, of the diagrams shown in figure 2-2. We will look at the
diagrams roughly in increasing order of complexity in matrix structure. We start with a
fairly detailed look at the seagull diagram and get an expression for the s-matrix which
involves a three dimensional integral over the appropriate wave functions. We then
consider the pion pole diagram which involves two vertices and show the approximations
made to reduce the calculation to one three dimensional integral. The other diagrams
follow similarly.
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2.2.1 Seagull Diagram

The s-matrix to first order in the interaction lagrangian is

For the reaction A (Y, N)A-1 the initial state | i > contains a photon and a nucleus with
A nucleons while the final state | f > contains a pion, a nucleon ejected from the initial
nucleus and a final nucleus with A-1 nucleons. In this one nucleon model for (Y, " p) we
can write the initial and final states using creation and annihilation operators. We write
the initial state as [Ja71]:

li>=al(ky) 3, (J.J5:MMglli, M) d3,5 (T ) by, 1 61 > (2-17)
JgMgl

where a{,(ﬁ,) creates a photon with momentum E, and polarization p, while b}nMa creates
a bound nucleon with angular mementum J g and projection Mg bound to the core I¢§d>.
4510 p) is a coefficient of fractional parentage such that [ 11 ( g)J is the probability that
the target is in a configuration that consists of the vector product of a single particle
bound state with angular momentum Jg and an eigenstate of A-1 nucleons with angular
momentum J.

The final state is

£ > = al(kn) Bi(Kp) | 0 > (2-18)

where ajr(k.n) creates a negative pion with momentum _lE,, , b:t(i{.p) creates a nucleon with
momentum -IEF and angular momentum projection y while the state l¢h;§’> describes the
residual nucleus with angular momentum J ¢ and projection Mg.

The interaction lagrangian density which gives rise to the seagull diagram is, from

our model lagrangian (2-4):

LomNN =—ic;,fl~’::ﬁvslt['r+1t+—'c_n"]w (2-19)
The charged pseudoscalar field ( pion ) is written in second quantized form
( appendix A ) as
3 o —-
wtx) =—L— | 4K {3 E) vk x) + ba) unox 2-20

where a;ft(i(.) creates pion with momentum k and charge —, while bn(E) destroys a pion

-21-



with momentum k and charge ¢. The pion continuum states are written as ug(k,x) and

va(k,X) so the change to distorted waves will be transparent. The other pion fields are
written similarly.

The Dirac spinor ( nucleon ) is expanded as

! - -
v =—_Y f (2] (0 o) + a1 w0

@r)3R A

(2-21)
+ 3 { bata(x) + dhva(x) }

where by(k) destroys a nucleon with momentum Kk, d;f(iﬁ.) creates an antinucleon with

momentum K and ug(k,x) and vy(k,x) are continuum wave functions. Also b, destroys a
bound nucleon with angular momentum n = { Ly, Jg. Mg }, dﬁ creates a bound
antinucleon and u,(x)} and v,(x) are nucleon bound states.
The photon is expanded in a similar fashion as

A"'{x)=(—21-t)3%; et‘f?d—;_&{ 2(K) e-ik- % + af (K) eik % } 2-22)
where a,(K) destroys a photon with momentum K and polarization r while af (E) creates a
photon with momentum kand polarization r. The photon polarization vector &' is normal
to the photon momentum with emkf: =0 and also must be such that €, & =—1, We use
the Coulomb gauge ¢,k =0, and we have a real photon so o = 0.

Now we begin combining the bits and pieces to calculate the first order s-matrix
element

<flSIi>ESﬁ=—i[<f|iC%WVSA[mn*—Ln‘]wlbd"x (2-23)

The isospin raising and lowering operators have the following action on the nucleon

spinor written in two component form as in equation (2-5):

YT, y=V2 ap Yn
X R 2-24
VT y=YZ ¥ ¥ @24
so the s-matrix becomes

Ss=12e -rfﬁ"; [ <fl [WpysAn* yy ~YaYsATyp ] li> dx (2-25)

We begin the evaluation of the scattering matrix element by evaluating the various
Fock space matrix elements using the properties of the creation and annihilation
operators. The particles are all distinguishable so their matrix elements can be considered
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individually.

Consider first the two pion matrix elements. Recall that we have a negatively

charged pion in the final state and no pions in the initial state. Using equation (2-20) we
write

<0l a,;(i(.u) T (x) 10>

=<0l anlkn) ——

(2-26)
on )3,2 r{an(k) vk, x)"'bn(k) uzk,x) } 10>

To calculate this we use the following properties of the pion creation and annihilation

operators:
<01 &k, be&)10>=0

o 3 = 2-27)
<0} anfky) al(k) 10> = 8" (k —kr)
and the result is
<0 ankn) T (x) 10> = -( )312 .{_2._ vk x) (2-28)
where for an incoming plane wave pion we would have
Vn(kp, X ) = e—ikn'x (2-29)

The other pion matrix element that we need is <01 agkn 7~ (x) 0>, but the vacuum
matrix elements are zero

<0 azky) biK) 10>=0

<0l ankp ank) 10>=0
thus the matrix element with the negative pion field is

<0l agky) 7 (x) 10> =0 (2-31)

which is what we expect since %~ (x; can create a positive pion or destroy a negative pion.

(2-30)

The second term of the s-matrix therefore doesn't contribute and the contribution to the
first term from the pion field is given by (2-28).

Now we consider the photon matrix element. There is a photon in the initial state
and none in the final state and carrying out the calculation as we did for the pions we get

k. =1 1 —ikyx .
<01 AM(x) a{,(ky) 10> = i mee“ e (2-32)

Similarly the matrix element for the final state continuum proton is
k)W =1 __ (m)i2g 2-33
<01 bskp) Wp(x) 10> W (Ep ) us{kp.x) (2-33)

where the adjoint proton field is ﬁp(x) = qr’{,(x) Yo and the hermitian conjugate is of the
fermion field (2-21).
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The initial neutron is coupled to the core vectorially making the result look a bit
more complicated but the result is nevertheless obtained in the same manner as the above
matrix element. We get

<OY It Y, (1I3MMptTiM)) §y0s) by, 107 >

Ty Msl (2-34)

= 3 (JpJp;MeMgIT;,M;) $55(08) unma(x)
Jy My

In the reactions we consider, the initial target is a closed shell even-even nucleus with J, =
0. Another case that can be quite simple to consider is a closed shell even-even final state
with J; =0, but we will carry the general result along for now.

Combining these results ( while paying attention to the order of gamma matrices )

gives for the s-matrix

= pig -z (m _1__1 42
Sﬁ-—ﬁcmn(%‘t) E, ZE,;ZEy)

X 3. (Jr, Jg: Mg MplT 3, Mi) 41,5,(J8) (2-35)
Js Mg

X | &*x Tsl(kp, ) ¥5 Fp UraMy(X) Vel X) o7ir 2

We can separate the time dependence of the wave functions by writing
ﬁs;(kpax) = gibst Gs.(kp’i‘.)
UrpMp(X ) = e~1Et yy,(X)
v;t(kﬂ!x) = eiEﬂl (P;C(kﬂa-x.)
e ik X = o-iEp piky X
so the integration over time can be done to get a delta function which provides for
conservation of energy in the reaction

(2-36)

[ei(E’+E""E“'E')ldt=2n 8(Ep + En— Ep - Ey) (2-37)
The s-matrix is then
—yTett om)-2 § _Eg-E,) (&Ll L))"
S ="Z ez (2m)~" §(Ep + En—~Ep E,)(EpszY

"2 (J5 Jg: Mg MplJi, M; ) 45.5,JB) (2-38)
JsMp

x | &x WIf(kpa X) [seagull \I-‘ISMBG‘.) (P;r(km X)eikrx

where we have used the definition of the adjoint spinor y;, = ‘4’:,70 and the vertex function

T, which operates on the nucleon spinors is given by:
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Teagult =Yo ¥s &p (2-39)

All the other diagrams that we will consider have two vertices, so they involve 8-
dimensional integrals. We look at the pion pole diagram in detail to clarify the procedure
and the approximations that are made to the propagators. The rest of the diagrams will

vary in details but the major steps in the procedure will be the same.
2.2.2 The Pion Pole

The s-matrix for the pion pole contribution to the reaction (Y, T~ p) shown in

diagram 2-2b) in second order is:
<fISli>=- %‘f <l T{ Binteraction (X) Linteraction (¥) }ii> d4Xd4y (2-40)

where T is the time ordering operator, which places events that happen first to the right of
events that happen later
T{ Bx) B(y) } = 8(x0-y0) B(x) H(y) + 6(yo—x0) LLy) H(x) (2-41)
and the © function is given by
o= < (2-42)
There are two terms which can contribute to the s-matrix for the pion pole diagram which
we can combine into a single term since we have an even number of anticommuting

fermion fields in the interaction lagrangians

<fISli> = —%J <f1 T{ Bann®) Lyrnly) + Loynl(x) Bann(y) }lis> d*xdty
(2-43)
=—J <fIT{ Brnn(X) Lymnly) }1i> d*xdty

Now expand the time-ordered product in terms of normal ordered products and
contractions using Wick's theorem. The contraction of two fields is the vacuum
expectation value of the time ordered product of the fields

Tr(x) ©(y) = <01 T{ =*(x) =~(y) } 10>

=0 (t-ty) <OI®*x) 7~() 10>+ 8 (ty—tx) <01 °(y) ar(x) 10>
and is interesting to us because it is actually i times the Feynman propagator. The only

non-zero contractions for the charged pion field are
THEI(y) Tt (y) LA E L) I (2-45)

-25-



The isospin matrix elements (2-24) are used to give:
T{ B ann(X) L yen(¥) }

. f j—
=- L ET{ [y (T.dm +r dnt +3dn®) yii

(2-46)
X[AF (Rt oy m + O R -y —dy a7 ) |y )

=1{7ie—£’i { :[ﬁp'YS'YuWn 1x al;ﬁ*'(x)ft'(y) { Avav7c+ Iy:

— [ Wp¥s Yu Wa 1x D5 (X) Bym(y) [ Aym* 1y

+ terms involving : a5 81y, )
Take the Fock space matrix elements as we did for the seagull diagram. All the

particles are distingnishable so normal ordering acts on single creation and annihilation
operators. The s-matrix is then

St =~ V7 ek (2ny " B 2 (JeTMe Myl Mi) 1305)

[ d*xdy { Talkp, X) Y5 Y Uiga(X) D5 THX) 1-(y) D ekry By vtk y) (247

— A% :
- us;(kp’ X) Ys ‘YIJ. Uy Mn(x) a;l R+(X) ay Tr(Y) 58 c-—lk-ry V;;(km Y) }
Integrate the first term by parts once over y to remove the derivative from the pion wave
function. This makes 8\; act on the contraction and on the photon wave function. The term
with the gradient on the photon has eﬁaue-ikry = —ieﬁk_’y‘e—ikry =0 since eﬁk.’vl =0 fora
real photon. The s-matrix for the pion pole contribution becomes

L . _fi 9 1/2 . ) .
Sti =2V iegk (2m) [Epmmy] JBZMB(Jf,JB,Mf,MBu,,Ml):hij,(Jn) (2-48)

] d4x d4y Ty (kp, X)¥s Y ipMa(x) O 1H(X) By m(y) €] eikr ¥ vyl y)

The contraction of the pion fields is just i times the pion propagator, with the momentum
of the propagating pion equal to the incident photon 4-momentum minus the final pion 4-
momentur. The contraction of the derivatives of the pion fields yields the contraction of

the pion fields times two factors of the propagating pion momentum and is { appendix B )
ke W ( Ky —kr )V
Hr+(x) dyr-(y) = i (ky~ k) “:"’ 2") 5 (x—y) (2-49)
—_ (ky~kg ) —myp
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The delta function allows us to do the integration over y trivially. We separate the time
dependence as we did for the seagull contribution (2-36) to do the time integration. The s-

matrix can then be written in the same form as the seagull (2-38)

S =17 e % (2m)72 8(Bp + Ex~ Ep ~ Ey) EnlilEZ?alE 12
T

XY, (I T5:Ms Malli, M) 913,78 (2-50)
JaMpg
x | 3% Wi (kp %) Tpion Wigma(X) O3lkn, ) eikr¥

and the 4x4 matrix that operates on the nucleon spinors is

Ep- k
1.‘picm -2 Yo Y5 K (2-31)
k? — m3

The momentum of the propagating pion is the photon momentum minus the final pion

momentum k = ky—ky . All the other diagrams will be written in this form but with

slightly more complicated I''s.
2.2.3 The Nucleon Poles

Terms contributing to the s-matrix involving nucleon propagators can arise

from
<fiSli>= -—j d?x d4y <flT{ 31NN(X) Lannly) ) li> (2-52)

Take the interaction lagrangians from (2-4) and use the Wick expansion of the time

ordered product to get three terms which can contribute to the reaction with a &~ in the
final state.

Sﬁ:—ﬁ[ dixd4y <fl { er%: W AV Ik [Wpysnt v Ty
KpliN
T2

KN fr . v i
n2 N l'lTﬂ::t : [\pp7531c+% k [Wao*EuwWn ly: } 11>

where the third term has been rearranged using the fact that there are an even number of

nfo; [ 90" FuyWp b [Wp¥s8m* i Iy (2-53)

anticommuting fermion fields, to write
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[?nowFqun]x[Ep'YSan+Wn]y =[-‘~I}p7537t+‘lfn]y [ﬁnU“VvaWn]x (2-54)
I | | S—— -

and the integration variables, x and y, have been interchanged.

The first two terms of (2-53) correspond to the proton pole term of figure 2-2c),
where the first term is due to the photon coupling to the proton through the electric charge
and the second term has the photon coupling tc the proton through the anomalous
magnetic moment. The third term is the neutron pole term of figure 2-2d) which allows
the photon to couple to the uncharged neutron only through its anomalous magnetic
moment.

The matrix elements between initial and final states are reduced as before. Thus for

the proton pole term with the photon coupling through the electric charge we have

i =“‘Ee%‘ (@2ny®7? [‘én—z—lEgzL}m ¥ (J5, Ip; Mg Mglli, M; ) 41,1,(JB)
" P EY JgMs (2_55)

] d4x d4y 'ﬁs;(kpa X) ép eikyx ‘I’p(x) —\I}p (Y) Vs av‘;:(kﬂ’ y) anMB(Y)

The contraction of the proton fields is i times the Dirac propagator with the momentum

of the propagating particle given by the proton momentum minus the photon momentum.
The contraction is then ( appendix B )

K~ Ky+m
The y integration is again done using the delta function. Notice that we have a derivative
acting on the pion wave function. We make the same approximation that we have made
for the propagators, ie. the major contribution to the integral comes from the momentum
components close to the plane wave value and we write

Iva(kn, y) = 1 ¥ Valkn, y) (2-57)
Performing the integration in time yields the s-matrix in the form (2-38) with the 4x4
matrix between the nucleon spinors

I-.epﬂ.roton =Y ép ‘gim' Ys kn (2-58)
k? - m?

Yo(®) Ypy) =i 8*(x-y) (2-56)

where the momentum of the propagating proton is the incident photon momentum minus
the momentum of the final protonk = kj — ky.

The anomalous magnetic moment portion of the proton pole term contains the

Maxweli field tensor which is written in terms of the photon field as
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Fu\r = ap. AV - av A’J_

(2-59)
=__..L d3k (k -k &y a Ec-ik-x+ TEcik-x
(m)m,jffw_k v~ Kueve ) { adK) af(K)etk* )
The matrix element of Fy;, between initial and final states is
<0 Fyy(x) af(ky) 10> =—L L (Wewp-Klewp)eitrr  (2:60)

. (21t)3/2 (20)1;)”2
and we use c“":é—['r‘,y"] to write
< 016" Fuy(x) al(ky) 10> =—1 L [%, &, ]eikex (2-61)
HY ap Y (2,‘)3/2 (20%)112 Y ép
The s-matrix for the anomalous proton pole contribution is then

proton _ . o2 KpUN fr [m 1 1 i
SEO" = - VT Qmy P - mn[Eszanvj

> (35, Tp:Ms M3ll;, M; ) 91,5,08) (2-62)
JgMp

[ d*xd%y Ty (kp, X) [ ¥y, £p Te~ikr % Yo(x) Wp(¥) 75 ko vk, ) trgnta(3)

and we use the contraction of the proton field (2-56) to get the I matrix for the anomalous

proton pole contribution to be ( using [ty = e/2m with m the nucleon mass )
K
rt:roton = 41,1:1 Yo [ %y & ] ﬁ;?ﬁ | & (2-63)

The contribution due to the neutron pole term is evaluated in the same manner and
when we use the contraction of the neutron fields
‘Vn(x)i;n(Y)= i —I{M 84 x-y)

(ka+kyg)? — m? (2-64)
with ks — kg and kg = k;

we get the T matrix to be

Treuton =32 %015 kn I [y, 6] (2-65)
-m

and the four-momentum of the intermediate neutron is the sum of the momenta of the

final proton and pionk =kp + k.
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2.2.4 A(1232) Poles

The A(1232) is the first excited state of the nucleon, and has total spin J = 3/2 and
isospin T = 3/2. The latest nominal mass of the four charge states of the A is M, = 1232
MeV [Pa92] with a width T = 120£ 5 MeV (or a lifetime of 5.5 x 10-24 seconds ).

The spin 3/2 field ( Rarita-Schwinger field ) [Um56, Be89] has four Lorentz
components, each of which is a solution of a Dirac equation. For the free field with mass
M we have

[iY* 0, -M]yy=0 ' (2-66)
where each yy is a four component spinor, ie the wave function has sixteen components.
The Lorentz components are related through the subsidiary condition

T Y =0 2-67)
Equation (2-66) and the condition (2-67) are known as the Rarita-Schwinger equations
[RS41]. Multiplying equation (2-66) from the left by vV gives the additional condition

"y, =0 (2-68)
Equation (2-66) allows us to eliminate either the upper or lower components from each
component of the Lorentz four-vector, and the subsidiary condition (2-67) provides four
constraints leaving four independent components for the spin 3/2 field ( ie 2J+1
independent components ).

The Rarita-Schwinger equations can be obtained from the lagrangian density
Ba=yu A wy (2-69)
where
AW S [iy®3g-Migv +iA[yd +v7 "]
+%—[3A2+2A+1]‘{“ 0% Yo v (2-70)
+M[3A%2+3A+1]19y
and A is an arbitrary parameter with the restriction A= —1/2. The physical properties of
the free field do not depend on the parameter A and we choose A = -1 to get the form of
the propagator which we will use later. This gives
A = [iy%9e Mg -i[va" +7¥ 9]

2-71)
+ip % Yo ¥ + MY (
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Note that Umezawa's [Um56] expressions for the free field are reproduced if we set A =
-1/3.
Application of the Euler-Lagrange equation to this lagrangian gives the equations of
motion for the free field
Ay, =0 (2-72)
This equation contains the form of the Rarita-Schwinger equations which we have already
seen. First multiply from the left by ¥, to get
21 w213y Y+ 3IMP =0 (2-73)
while multiplication by 9, yields
& yu=3- 7 i (2-74)
From these two equations we find the conditions (2-67) and (2-68) which we use in the
equation of motion to get the Dirac equation (2-66) for each of the components.

The propagator for the Rarita-Schwinger field satisfies the equation

A Py(x) = g 8°%) (2-75)
We Fourier transform this equation using the standard transformation, and the expansion
of the Dirac delta function

Ps¥(x) = (211:)_4 I d"'p PsV(p) e-ip-x

(2-76)
§*(x) = 2m)-* ! dpe-ipx
to get the momentum space equation for the propagator
A*(p) Pe(p) = g @77
where
A*S(p) =[p-y-MIlghd—[yHpd+¥0pH
(p) =(p-y-Mlgto-[vp°+7v p*] 2-78)

PPy + MY Y
This momentum space equation can be inverted to find the propagator for the free spin-
3/2 field to be

pry+M
FI—M"*;{85"—’3]"75'1’"“gfd'gpsp""'g‘lﬁ[%?v“?ap"]} @79)

That this is indeed a solution of equation (2-77) can be checked by direct, although

Ps'(p) =

tedious, multiplication. This is the form of the propagator we will use for the A(1232)
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P S

with the modification of the denominator to include the width of the A
p2-M2—=p2-M*+iMT (2-80)
The A-pole contributions come from the interaction lagrangians (2-10) which lead to
the diagrams 2-2¢) and 2-2f) from the s-matrix

<fISli>= —[ d*xdy <fI T{ Lanalx) Synaly) } li> (2-81)

The A has isospin 3/2 which means it has four charge states. We write the A wave

function in terms of its charge states as a four component isospinor
AR,

it
A= 2-82)
Ay

AP

L .
where the subscript indicates the charge of the field. We form 4x2 isospin raising and

lowering operators Ti=%(T;iTz) allowing us to expand the isospin scalar product with

the pion as '-f'a = (T,n*+T.w+T3n?). Note that the T; are not hermitian matrices (see
appendix A ) so (T-@)t = @Lw+T! x++T] 7%,
Take the interaction lagrangians from (2-10) and use the Wick expansion of the time

ordered product to get two terms which contribute to the reaction with a - in the final
state

Sﬁ = iﬂ c———fYNAf;:NA

3 f d4Xd4y <fl { :[WDYPYSF}«IPA& ]y [E:- avn+‘|’n ]X:
mﬂ [ ———

(2-83)
- :[ﬁpauﬁ*Ag | M [EE'YP'YSFVPWD ky: Fli>

—_—

The first term of (2-83) comresponds to the u-channel A contribution of figure 2-2f) and
the second term is the s-channel A of figure 2-2e). Evaluating the matrix elements
between initial and final states yields

Au_ {2 w92 Envafana m_ 1 11 . M.
Sg = 3 @r)y7<e ) [EPZEnZE-,J JBZMB (J¢, Tp; Mg Mplli, M; ) 41,1,B)
I d*xdty Ty kp, X)¥s [ ETeyp — K6y 1 e7kr % A5(x) ALy) Oy valkn, ¥) UraMs(Y)

(2-84)
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fana 12
gas = Y2 (q)92 effNA - [m L1 } ( Jp, Jg;sMp Mplli, Mi ) 41,5,(JB)
T w B2EE Do

f d4xd*y T (kp, X)) Vrlk, X) AL AG(Y) [ Kleyp ~ K p 1 yse~kr YugMe(y)
(2-85)

The contractions we need for the delta are ( appendix B )

Pa + MA 1 1 m 2 ® 4
[ gwv— Ly L (X -4} ) ——=5P\PA1 8 &-¥)
p%—mi +imala 3 3mp 0 A% 3m} ave
(2-86)

where in the s-channel the A is uncharged (c=0) and the momentum of the A is the sum of

AE) A (y)=1

the pion and proton momenta pa = ke + kp. In the u-channel the A has a positive charge
(c=+) and the momentum of the A is the difference between the proton and photon
momenta pa = kp —ky.

We do the four dimensional integration over y and the time integration for x to get
the s-matrix in the form of (2-38) with the 4x4 operator for the s-channel A as
_ fynafana Pa + ma

Tas =
T Sfeme T pf —mf +imaTa (2-87)

kﬁ[g”"-%w“v"—ﬁ;w‘p‘a—v"pﬁ)—?’%%pipx][kyev;,—kléplys

with the momentum of the intermediate A as the sum of the momenta of the final proton
and pion py = kg + kp.
For the u-channel A the I' matrix takes the form

fina b )
_Iyna uNATO'YS[kYEup_k;iep]

FA-u—' 3f1;m1';
av _ L __1 v_ vty 2 oHov kB
[g® -3y 3m6(1ﬂ*p,; YPy ) 3m%PAPA]kv

PA +mA (2-85)

p —mj +imala
with the momentum of the propagating A as the difference between the momenta of the

incoming photon and the final state proton pa =kp — Ky .
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The total s-matrix for the reaction A( Y, ©~ p JA-! can then be written as

=y etr (omy-72 R m_ 11\
Sﬁ—ﬁemﬁ(h) 8(Ep+Egz~Eg EY)(EPZERZEY
xY, (J5J5;Ms Malli, M; ) 5,1(Tp) (2-89)
JeMp
x | #x Wlf(kp*g) Tom WigMe(X) Prlkn, X) ei-ﬁr?

where the total 4x4 operator acting on the nucleon wave functions is the sum of the

operators from all of the diagrams we consider @'t 22 I, where the I} are given in
i

equations (2-39, 2-51, 2-58, 2-63, 2-65, 2-87 and 2-88).

To evaluate this further we must specify the wave functions describing the
continuum and bound nucleons as well as the final state pion. We first do the calculation
using plane waves for both the pion and the proton and obtain an expression for the s-
matrix which is straightforward to evaluate. We then consider distorted waves for the
pion and proton, which results in a more complicated form for the s-matrix but in the

absence of distorting potentials must yield the same results as the PW calculations.

2.3 Plane Waves

The lowest order approximation is to neglect the final state interactions of the pion
and proton with the residual nucleus. The pion wave function is a solution of the free

Klein-Gordon equation with outgoing boundary conditions and is simply

Pr(Kr, X) = e K * (2-90)
The positive energy solution of the free Dirac equation with spin projection s; and
momentum Ky is [BD64]

- E +m B n e
W) =21 [Tz 2-91)
G- Kp
L E1:*"“ J

where 1 is the 2x2 unit matrix and the o; are the Pauli spin matrices.
The simple description used above for the continuum nucleon wave function cannot
be used for the bound state neutron. The interaction between the neutron and the rest of
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nucleus is what binds the neutron therefore we can't ignore that interaction. We describe
the neutron as a solution of the Dirac equation with real scalar and vector potentials
(@ F+BIm+SE®1+ VD ) wi) =E v (2-92)

where B = ¥, and o; = YpY; - There is no Coulomb potential included since the neutron has
zero charge. The potential is spherically symmetric so it depends only on the magnitude
of the radius vector r = ITl, and the neutron is described in the rest frame of the nucleus
with the origin at the center of the nucleus.

The bound nucleon has definite angular momentum quantum numbers
(Lg, Jp, Mg ) and we can write the wave function as

yp(E) = [ B0 } Yivinn (2-93)

~

—i gg(o-r
The i appears in the lower component of the bound state wave function so that fy and gg

are real relative to each other. The total energy of the bound neutron is less than the rest
mass of the neutron by the binding energy E; =m - Et.

The generalized spherical harmonic YM 1 is formed by combining a spherical

harmonic of order L with an eigenfunction of spin as

YMp= Y, (L, 12mimg ITM) YEH(Q) 1172me> (2-94)
my Itl,
This function is an eigenfunction of L2, S2, J2 and J; and has the useful property that
ot YMnr=- Yt (2-95)

withL'=2J-L.
The bound state wave function is normalized such that the total probability of

finding the particle somewhere in space is one, which gives the condition

I whoo we(x) ¢ =f [0 + gk )12 dr=1 (2-96)
0
We write the complex 4x4 operator I" in terms of complex 2x2 matrix operators as
r =[ i T2 } 2-97)
I T2

and some straightforward algebra yields for the s-matrix (2-89)
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x 3. (J5Jp:M5Malli, M; ) 915(08)
JgMs (2‘98)

X I dBxeid ¥ { far) <1250 Tel Yok, >

+1gp(r) <1/2,s¢1 Ty | :ymmn> }
where the momentum transfer to the nucleus is q = ky lcﬂ - kp and we have defined the

2x2 matrices

— e

o-Kp
Bp o 1“21 l"g = 1“12 + oy rzz (2-99)

Apart from some spin dependent factors the s-matrix looks like the Fourier transform of

the bound state wave function. The cross section is then nearly proportional to the square

rf= ru +

of the Fourier transform of the bound state wave function. The momentum transfer in the
reaction we are considering is in the range 0-2 fm-! ( 0-400 MeV/c), so if the plane wave

approximation is good we have the opportunity to examine the nuclear wave function

over a wide range of momentum transfers.

2.4 Distorted Waves

We now allow the proton and pion to interact with the final state nucleus by
introducing appropriate potentials into the wave equation describing the motion of the
particle.

The proton is described by a solution of the Dirac equation with scalar and vector
potentials. The elastic scattering solution is asymptotically an incident plane wave with
spherical outgoing scattered waves and is denoted by qu‘:)(’i), where the superscript (+)
signifies outgoing boundary conditions. The final state proton wave function is the time
reversed state of \pg*;)('i) so it is asymptotically a plane wave with incoming spherical
waves and is denoted by quj)(i) [Jo86], where the superscript (-) indicates its incoming
boundary conditions. This is exactly analogous to the nonrelativistic description of
scattering states [Ja70)]. The final state proton wave function is then written as
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Sr 2
m (2-100)
X 3L1%JT[ fri(r), i gLin) 0-?']
The pion wave function is expanded similarly as
= — . -~ * .
Prlkn ) =4n >, il Ker) Ys) Y1 Q) @2-1L1)

Lx Mn
In the limit that the pion potentials are zero the radial functions reduce to spherical Bessel

functions and the pion wave function is exactly the plane wave function (2-90) [Ja75].
Also if the Dirac potentials are set to zero the upper component radial function reduces to
a spherical Bessel function while the lower component is related to the derivative of the
spherical Bessel function and the proton wave function is exactly the plane wave solution
of the Dirac equation (2-91). The potentials describing proton and pion elastic scattering
from a nucleus are discussed in chapter 3.

We haven't talked about a choice of coordinate system up to this point but now we
are going to choose one in order to simplify the expansion of the photon wave function.
We choose the photon momenturn - » lie along the z-axis such that the photon momentum
vector is HIET =(0,0,ky). The details of the coordinate system are shown in figure 2-3. For
the case of coplanar geometry the pion momentum is in the first quadrant of the x-z plane
so the azimuthal angle is ¢ = 0 while for the proton we have ¢p == For non-coplanar
geometry we hold the pion momentum in the x-z plane and let the proton momentum
come out of the plane. The photon polarization vector has components perpendicular to
the z-axis and we write & = (0, cos&, sin§, 0) where we choose linearly polarized light
by selecting our two basis vectors with =0 and &= n/2. This gives two linear polarization
vectors { where the label p is now the polarization angle £ ) as e};:{, = sll,=1 =(0,1,0,0)
and €_, = €25 = (0,0, 1, 0). We also have £ = €2 = (0,0, 0,0).

The photon is described by

eii:f; = eikg

2-102
=VAT Y ibt (g + 112 ) YOQ) (2-102)
Ly

where ji (kyr) is the spherical Bessel function of order Ly.

Using these expansions for the wave functions describing the continusm particles,
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Figure 2-3. Coordinate system for pion photoproduction on a nucleus.
The z-axis is chosen along the photon momentum and the pion
momentum lies in the first quadrant of the x-z plane.
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the form (2-93) for the bound state wave function and writing the T operator in terms of

2x2 complex matrices as in (2-97) the s-matrix can be written as

Q fr ¢ Eptm \1p Cm
2o (e OB+ En-Ea-By)
X Y, (JpJp:MeMglliM; 355 0p)

JgMp
x 3 ibrl-le(op, +1 )2

LIEaL,

PN * ~

x 3, Y ) Y o) (L 1sM-sesATM)

M Mr

K Xp Lx ]
X { Rf{KKBLr:Ly AII‘: E“_ (2-103)

+ Rgg[KKBthLIY] Azzl: L'r E:

K Kg Le

+1i ng[KKBLﬂLY] Arl MM M

T ' xp Lx
~ 1R KKBL,-;LY] Aa K Lyg }
L LMMBNL: |
where the radial integrals are defined as [ with k=(L -1} (2J+1)and L'=2J-L}

[
R kL] = | S10 Buawal®) viula) ) d (2-104)

and S(r) is either the upper or lower component radial function for the scattered proton
while B(r) is either the upper or lower component radial function of the bound neutron.
Also define the angular integrals as

Lx
Aa,-[ R EH YL Y, V) Y@ 40 (2-105)
MMp M

These angular integrals require a good deal more work before we can actually calculate
them and the way we do this is addressed in appendix C. Note that the angular integral is
a scalar ( a complex number ) since the 2x2 matrix is sandwiched between spin functions
as well as spherical harmonics.

We calculate the energies and momenta of the final particles using the constraints
provided by conservation of energy and momentum. These are not enough to fix the
kinematics of the outgoing particles since the final state has three particles, so we fix the
directions of two particles and the energy of one of the particles and the kinematics for
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the reaction are fixed. The integrals over radial functions are strongly convergent because
the bound state wave function decreases exponentially for large r. These integrals are
done numerically using Bode's rule {AS72]. The sums over angular momenta converge
and in our calculations the sums over proton and pion angular momenta are cut off at
some maximum L which limits the maximum value of the photon angular momentum to

roughly 2L through angular momentum coupling rules ( appendix C).

2.5 Gauge invariance

The four-vector potential (2-22) which we use to describe the photon field is not a

unique choice. The vector potential can undergo a gauge transformation of the form

Ay = Ay= Ay +9,G (2-106)
and the electric and magnetic fields will be unaltered. The observables which we calculate
should be independent of the choice of the gauge function G, or by an appropriate choice
of G we could get any answer we desire.

The gauge transformation amounts to changing the polarization vector of the photon
by a constant times the photon momentum

Epp — Eup =Eyp +aky (2-107)
which still obeys ep ky=0 since ky-ky=0 for real photons. To test whether our
calculation is gauge invariant we make the substitution [BD64]

Eup — Ky (2-108)
and if the calculation is gauge invariant the result will be zero.

First we consider the case of couplings involving the Maxwell tensor F,,. We have
four diagrams which contain couplings to the Maxwell tensor, two due to anomalous
magnetic moments and two due to the delta. The Fock space matrix element of the
Maxwell tensor of equation (2-60) is

<Fuy> k:‘;eup - kELSVP (2-109)
and when we make the replacement (2-108) we see that any diagram with the photon
described by the Maxwell tensor is gauge invariant. This is true for both plane wave and
distorted wave calculations.

The remaining diagrams have the photon coupling to 2 particle through the electric
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charge. The sum of the I" matrices for the three diagrams given in equations (2-39), (2-51)
and (2-58) is
g p—-m
= —2 2 1€ + k 2-110
Tofs [ ﬁp K2 “ ﬁp _mZ ] ( )
where the momentum of the intermediate pion is k —kT k; and the momentum of the

propagating proton is p = k; - ky. To test for gauge invariance we make the replacement

(2-108) to get the transformed I matrix to be

r =-2—b%?p-vo[kp—mnsmn 2-111)

If we now use this I matrix in the s-matrix (2-38) we have the final state proton on the
right of T and we have the combination g [ k,-m]in our s-matrix element. From the
Dirac equation for a free fermion field y with 4-momentum p, [p—-m ]y =0 we can
show that [ p —m ] =0, so that in the plane wave approximation the combination of the
three Born terms is gauge invariant. It is also clear that when the proton wave function is
a solution of an equation with potentials the s-matrix is no longer gauge invariant, but we
have no clear remedy for this and we continue on with a calculation that is gauge

invariant in the limit of vanishing potentials.
2.6 Observables for A(y, =~ p YA-1

The s-matrix is labelled by the projection of the target nucleus M; and the
polarization of the photon, as well as the projections of the proton s; and the final nucleus
M;. We define a matrix element ngidg which is labelled by the projection of the bound
target nucleon such that the coupling between the initial nucleus, the final nucleus and the
bound nucleon is taken care of through a Clebsch-Gordan coefficient. We can then write

the s-matrix in a more concise form as follows

S _Q fr ¢ Ep+m 12 §(E, + By~ Ep ~ By)
fi (EpEuEy) E, B~ Ey 2-112)

X Z (Jg, Jp; Mg Mgl M; ) 45,5, (JB) ngfﬁ,,
JgMp
where Z ;{w is a function of the polarization of the initial photon, the spin projection of

the final proton and the projection of the nuclear bound state. Zg M, contains the radial

and angular integrals and the sums over all the angular momenta. The exact form for
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ZE; M, Can be obtained by comparing with (2-98) for the plane wave calculaton or (2-103)
for the distorted wave calculation.

The cross section is then calculated through the usual procedure [BD64] of squaring
the s-matrix to get a transition probability, multiplying by the number of available final
states and dividing by the incident flux. We finally average over initial spin projections
and sum over final spin projections to get { appendix D)

=4¢n? L op (Ep+m

. do :‘]JJ(JB) s
)preppe 3, SCBHIZ 2 2-113)
dszﬂdgpdﬁp ¢ m2 B, PR 2

Sf&_,

The polarization of the final proton is found by

Im Y, Zama [zg;ﬁn]
__p_5M (2-114)

Y Zéw[Zew)

st Ma
The analyzing power due to linearly polarized incident photons is
_do, -dgy
" do, +doy
where do, is the cross section due to a photon with polarization vector perpendicular to

(2-115)

the scattering { X - z ) plane, ie. the polarization vector points along the y-axis. Similarly
doy is the cross section measured with photon polarization vector in the scattering plane

( along the x-axis here ).
2.7 Programming Tests

We have written programs to calculate observables for the (Y, ©~ p ) reaction using
both the plane wave expression for the s-matrix (2-98) (PW) and the distorted wave form
(2-103) (DW).

The T matrices are common to both programs and are functions of the four-
momenta of the particles, and the Dirac gamma matrices. The calculation of the I
matrices involves multiplication of complex 4x4 matrices and we tested our subroutines
by selecting a set of momentum four-vectors and doing the matrix multiplication for each
" by hand and comparing the results to the results of our subroutines. We obtain
agreement to the accuracy of the machine for these calculations. The s-matrix for the
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elementary process Y+n —* T~ + p can also be written in terms of these same matrices,
and we have calculated observables for this process and obtained agreement with
experimental data.

The z-matrix defined in equation (2-112) is related to the t-matrix through a
kinematic factor. In the limit that the potentials ( nuclear and Coulomb ) are turned off,
the separate PW and DW codes should give the same results for the z-matrix. We get the
z-matrix elements for the two calculations agreeing to at least four significant figures
depending on the values of several parameters governing the sums of the partial wave
series and the number integration steps we use.

The convergence of the sums in equation (2-103) as functions of the maximum
angular momenta of the pion and the proton have been tested. Holding the maximum pion
angular momentum constant at Lz** = 15 while the maximum proton angular momentum
is increased from 10 to 25, shows the calculated cross section converge to the plane wave
calculation with no discernible difference for calculations which have L§* 2 16.

Similarly when the maximum proton orbital angular momentum is held const>"t at
LE2* = 20 and the maximum pion angular momentum is increased from 7 to 15 we again
see the DWBA results converge to the PW results.

The inclusion of distortions modifies the radial wave functions describing the pion
and proton from a spherical Bessel function but doesn't affect the machinery of the radial
integration. The distorting potentials have been tested by calculating elastic scattering

observables and comparing with experimental data.
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Chapter 3 - Relativistic Potential Models for the Pion and Nucleon

In chapter 2 we derived an expression for the s-matrix for charged pion
photoproduction on a nucleus, equation (2-103), in which the proton and pion wave
functions are solutions of equations containing complex potentials. In this chapter we
discuss the optical models for proton and pion elastic scattering. We begin with a simple
model in order to clarify the origin and meaning of the imaginary part of the optical
potential. We then describe the nonrelativistic optical model of nucleon-nucleus elastic
scattering, which is discussed at length by Hodgson [Ho63]. We then make the transition
to the relativistic description of the nucleon-nucleus dynamics, Dirac phenomenology,
which we actually use in the current calculation to describe both bound and continuum
states of the nucleons [Co92). Finally we discuss the phenomenology of pion-nucleus

elastic scattering with emphasis on the potential model of Stricker, McManus and Carr
[SMC79, SMC80].

3.1 A Simple Model

A particle can interact with a nucleus through a variety of processes. The particle
may simply change direction with no change in energy in the center of momentum
system, while the nucleus is left in its ground state; this process is called elastic scattering,
Alternatively the nucleus may be left in an excited state (inelastic scattering), the
projectile may knock one or more nucleons out of the nucleus, or the nucleus may even be
shattered by the collision. The projectile can be absorbed into the nucleus with the
production of a photon or a meson and a variety of other processes can occur. The
probability that a process occurs depends on the choice of projectile and nucleus as well
as the relative momentum of the projectile and target.

The incident projectile can interact with any one of the nucleons in the nucleus or a
combination of nucleons on the way to a final state which is actually detected. The
description of a projectile-nucleus interaction through summing the relevant projectile-
nucleon possibilities can be very complicated. As an alternative we use an optical model

description of the projectile-nucleus interaction. This model is called the optical model
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because the replacement of the many body nuclear interactions by a two body projectile-
target complex potential is analogous to the description of the propagation of light in a
refracting and absorbing medium by a complex index of refraction.

We begin by examining a model simple enough to allow us to see the effects of the
imaginary part of the potential analytically.

Consider a particle travelling from left to right along the z-axis, incident on a semi-
infinite slab of nuclear matter as shown in figure 3-1. Describe the interaction of the
vrojectile with the nuclear medium through a potential U = - ( V1 V; ) where V; and V;
are positive real numbers, so the potential is cut off sharply at the edge of the medium and

is of uniform strength throughout the medium.

Figure 3-1. Projectiles incident from the left on a semi-infinite

slab of nuclear matter.

This model is translationally invariant in the x-y plane so the projectiles are described by

solutions of the one dimensional Schridinger equation ( withii=c=1)

2
(-39 + Ul @) =E () (3-1)
which we can rewrite by defining the wave vector of the particles as
k=[2m(E-U)}" (3-2)

so the wave vector of the particle changes as it enters the nuclear medium. The wave
function is then a solution of

(2 +k21y(z) =0 (3-3)
The solution is the plane wave
W(z) = eikz (3-4)
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where the wave vector is
= [2m E J'2 region I
[2Zm (E-U)}"?  regionII
Note that in region II the wave vector is now complex since the potential is complex

kp=[2m (E+ V,+iV;) ]2
sketik (3-6)

and in region II the wave function is then

(3-5)

y(z) = e-kizgikez (3-7
i.e. the incident wave function is exponentially damped when it enters the nuclear
medium. The probability density of the incident particles is
p@) =l y(z) P =e-2kz (3-8)
which decreases as the particles move into the medium.
If we assume that the sum of the energy of the projectiles and the real part of the
potential  + V, is large compared to the imaginary part of the potential V; we can write

the wavevector in region II as

- 12 1V -
kpz[2m(E+ V)] [1+12E+V,] (3-9)

The measure of the penetration of the particles into the medium is the distance at which

the probability density falls to /e of its initial value, the mean free path ( or penetration

depth ) L. Here we have the mean free path
=1
o ?El V)12 3-10)
Vi
Thus as we make the imaginary part of the optical potential stronger the mean free path
decreases ( the absorption becomes stronger ), while increasing the energy of the
projectiles allows them to penetrate deeper into the medium.

Note that we must have the imaginary part of the optical potential negative to
provide absorption. If the imaginary part is positive the probability density of the
projectiles will increase exponentially with depth into the medium and the nuclear matter
will be producing particles.

The current density of the projectiles is given by

L= [ 3y - (3" ¥ (3-11)
and the probability density is given by equation (3-8). From the wave equation (3-1) with
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E — id, we try to construct a continuity equation and find

9.1+ 0p(z) =-2 Vi p(2) (3-12)
where V; is greater than zero so again we see that the current of incident particles is not
conserved. The negative imaginary part of the optical potential leads to the absorption of
these particles in the nuclear medium.

In conclusion we note that nuclear reactions are included by adding an imaginary
part to the potential, which says rothing about which reactions occur, but is simply a way
of recording the loss of particles from the elastic channel. It must be stressed that while
the real part of the potential describes mostly the elastic scattering and the imaginary part
describes mostly the nonelastic channels, the separation is not exact and there is some
crossover in the description.

We have looked at a simple but instructive model, however a real nucleus is clearly
not well approximated by a semi-infinite slab. Realistic models have been dev=loped in
the past few decades which provide an excellent description of the elastic scattering of
protons and pions from nuclei. In the next section we will discuss the nonrelativistic
optical model description of proton-nucleus elastic scattering. We then consider the
relativistic description of proton elastic scattering, in which the proton wave function is a
solution of the Dirac equation with complex scalar and vector potentials, yielding the
continuum wave functions which we use in our model. The description of the bound
nucleon as a solution of the Dirac equation with real scalar and vector potentials is then

considered. Finally we will discuss the description of pion-nucleus elastic scattering.
3.2 Nonrelativistic Optical Model for Nucleon-Nucleus Elastic Scattering

The potential which describes the nucleon-nucleus interaction nonrelativistically
normally contains two terms; a term which is a function of the radial distance between the
projectile and the origin of potential, called the central potential, and a term which can act
on the spin of the incident particle to change its polarization state. The latter is the spin-
orbit term. The potential thus has the form

UM =Ucm + Ugo. 06+ L (3-13)
The central potential is parametrized with a function having 2 shape similar to the nuclear
density. We write the central part of the potential as
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Uc@)=VIi(r,Ry, a1 ) +iWf(r, Ry, a2) (3-14)
where the shape functions are commonly chosen to be the Woods-Saxon function
f(r.R,a)=[1+exp( I5R) ! (3-15)
In the simple impulse approximation the potential is found to be proportional to the
nuclear density, and here we see that at r=R the potential has fallen to about one half of its
value at the origin, a value which gives us an indication of the position of the nuclear
surface. The radius parameter is usually given by the relation
R=cAl3 (3-16)
where. ¢ is a parameter and A is the mass number of the nucleus. The parameter a is called
the diffuseness parameter and measures the thickness of the surface of the nucleus.
The spin-orbit potential is usually surface peaked and is parametrized using the
dc dvative of a Woods-Saxon function
Uso() =L Vo %if( nRY, &P ) +iL Wy %if( L RY,aP)  (3-17)
mg dr mé r
where the pion mass ( in fm-! ) is introduced as a matter of convention to give the
potential the correct units.
We next consider a description of the nucleon motion using the Dirac equation
instead of the Schridinger equation. This approach is found to provide an improved

description of nucleon elastic scattering.
3.3 Relativistic Description of Nucleon-Nucleus Elastic Scattering

The nucleon distorted wave needed in the evaluation the s-matrix (2-103) is a
solution of the Dirac equation with an optical potential consisting of a Lorentz scalar,
S(r), and the zeroth component of a Lorentz 3-vector, V(r). The Dirac equation is then

(G- P+BIm+SE1+VE+CH) } y@ =E wd) (3-18)
where p, m and E are the nucleon momentum, rest mass and total energy respectively.

The nucleon is described by a four component spinor and the 4x4 Dirac matrices have the
standard representation [BD64]

6';:[23} 5:[“ 0] (3-19)
c 0 0-1
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where 1 is a 2x2 unit matrix and the @; are the usual Pauli spin matrices.
C(r) is the Coulomb potential due to the target nucleus. The Coulomb potential that

we use is due to a charge distribution of the form

p() =N[1-ERF(:-2))] (3-20)
where ERF(x) is the error function. The normalization constant is determined by
integrating the charge density over all space to get the total charge of the nucleus. This
form for the charge distribution is very close to the Woods-Saxon shape inside the
nucleus if we set Rwg = Rgrr and aws=Yx/2 aggr. Outside the nucleus the Coulomb
potential falls off as 1/r as it must. This choice of Rws and aws also matches the gradient
of the Woods-Saxon function at r=R to that of p(r).

The vector and scalar potentials are parametrized as

V() = Vi (1, Ry, 201 ) +1 Wy £(1, Ryg, a2 ) (3-21)
S(r) = Vo f(r, Re1, 251 ) + 1 Ws (1, Re2, 22) (3-22)

where the shape functions, f(r,r;,a;) are symmetrized Woods-Saxon functions
f(rR,a) =1 +exp( SR 1 [ 1+exp(=LEER ) 1 (3-23)

where the radius and diffuseness parameters are as for the nonrelativistic potentals. These
symmetrized functions are chosen instead of the standard Woods-Saxon functions
because they give a zero first derivative at the center of the nucleus which must be the
case if our potential is to follow the nuclear density.

The Dirac wave function of equation (3-18) is written in a simple two component
form as

.
where the upper aid lower components u and £ are both two component spinors and are

v =[ iy } (3-24)

solutions of the coupled equations arising from (3-18). We can reduce equation (3-18) to
a Schrodinger-like equation containing effective central and spin-orbit potentials which
can be compared with the nonrelativistic optical potential {Jo86]. A bit of algebra yields

the equation
_v? -
(5 +Ve®+Veo) - Liys=Tys (3-25)

where T is the kinetic energy of the incoming proton. The Schridinger equivalent wave

function s is related to the upper component of the Dirac wave function by
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ys=s12 g (3-26)
and the effective central and spin-orbit potentials are

Vc(r)=—§—]"rﬁ-[(E—V—C)2-(m+5)2-(52-m2)

where primes denote differentiation with respect to r and we have defined the function
s(r) as |
$) = g [E- V() - C@) + m +5() ] (3-28)

The reduction of the Dirac equation results in a central potential which is quite
different from the Woods-Saxon form. The Woods-Saxon central potential simply scales
the same functional shape as the energy of the projectile changes while the effective
central potential has a more dramatic energy dependence. At low energies the potential is
close to the Woods-Saxon shape and attractive, and as the projectile energy increaszs the
strength of the potential decreases in magnitude and eventually becomes repulsive at
about 200 MeV. The center of the potential becomes more repulsive as the incident
energy is increased but there remains an attractive pocket at the nuclear surface.

The parameters of the optical potential are determined by fitting to proton-nucleus
elastic scattering data. The potentials obtained in this way [Ko85] are much deeper than
those obtained through a similar procedure based on the Schridinger equation. The real
depths are typically V, ~ 300 MeV and V ~ 400 MeV, with the scalar potential being
attractive and the vector repulsive. The real depths can vary quite a bit with proton
energy. The imaginary depths are generally around 100 MeV, with the scalar repulsive
and the vector attractive, and are weakly dependent on the incident proton energy.

Impulse approximation (IA) calculations give potential depths in qualitative
agreement with phenomenological results both relativistically and nonrelativistically. IA
calculations begin with the nucleon-nucleon t-matrix and sum over all possible nucleon-
nucleon pairs in the nucleon-nucleus interaction. The required nucleon-nucleon
amplitudes can be obtained from the phase shift analysis of Arndt et al. {Ar87 and
references therein].

The nonrelativistic IA calculations are discussed by Kerman, McManus and Thaler

[KMTS55). They use the nonrelativistic nucleon-nucleon scattering amplitude comprised
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of functions of energy and angle, multiplying combinations of Pauli matrices for the two
nucleons, and a nucleon-nucleus optical potential is calculated which is in general
agreement with the nonrelativistic phenomenology.

The relativistic impulse approximation begins with a form for the nucleon-nucleon
t-matrix [Mc83] involving functions of energy and angle, multiplying combinations of
Dirac matrices for the two nucleons. This t-matrix is constrained by the necessity that
matrix elements of the relativistic and nonrelativistic amplitudes give the same result. The
amplitudes for the relativistic t-matrix are found by fitting to the observables and/or phase
shifts of nucleon-nucleon scattering. The potential for nucleon-nucleus scattering is then
calculated using the free nucleon-nucleon t-matrix and summing over all the nucieons in
the target nucleus. The potential depths are found to be a bit larger at low energies than
Dirac phenomenology would require, and the inclusion of meson effects [Wa85] brings
the depths into agreement with the phenomenological analyses.

The phenomenology described above provides a set of potential parameters for
protons of kinetic energy T, incident on a nucleus with atomic number A. These
parametrizations are useful for calculations involving a proton at that energy and
interacting with the nucleus for which elastic scattering data exists, however elastic
scattering data is not available for all spherical nuclei for which calculations could be
done. This limitation has been addressed by S. Hama and his coworkers [Ha90] who have
simultaneously fit elastic scattering data for six different nuclei from 40Ca to 208pPb
covering the energy range 65 < T, < 1040 MeV. They allow the potential depths to
become energy dependent while the radius and diffuseness parameters are functions of
both energy and atomic number. The best description of elastic scattering observables
using the global fit potentials occurs when the potential is calculated for projectile
energies and target masses close to those for which data were included in the search.

These parametrizations have recently been extended by the Ohio State group [C092]
to include nuclei as light as 12C. We use the Ohio state global potential which has been
parametrized with dependence on both proton energy E and atomic mass A, as well as a
potential specific to 12C which has been parametrized with energy dependence only
{Ha92, C092]. Our calculations require proton-nucleus potentials for the residual nuclei
11C and 150 which are calculated from the potentials parametrized with both 12C and 1°0
data included in the global fitting.

-51-



Figure 3-2a shows the Dirac potentials given by the fit parametrized with both E and
A dependence for the elastic scattering of protons from 12C at a proton laboratory energy
of T, = 160 MeV. Figure 3-2b shows the Schrodinger equivalent potentials (SEPs)
calculated from the Dirac potentials of figure 3-2a. Note that the SEPs can vary quite a bit
from the Woods-Saxon shape of equation 3-15 because of the fairly complex functional
dependence of the SEPs on the Dirac potentials.

The potential parameters were determined by fitting to elastic scattering data such as
the data shown in figure 3-3. The differential cross section is shown in figure 3-3a while
the polarization is shown in figure 3-3b. The search included data up to 90° or a
momentum transfer of 3 fm-1, whichever was smallest, so the description of the data past
90° can be fairly poor.

Dirac based calculations have also been successful in reaction calculations. In
inelastic scattering to collective states, { p, p' ) [5088], a Dirac based DWBA model
provides a good description for smail deformations of the final nucleus while for larger
deformations coupled channel effects become important and a Dirac based coupled
channels description [Ra89] does a good job. Similarly for ( p, v ) [Lo88, Mc88, Lo92]
and ( p, 7 ) [Co82] a Dirac based calculation describes the data at forward angles while
other mechanisms become important at larger angles. In these cases treatment of the
nucleon as a Dirac particle gives improvement over treatments where the proton is
described by the Schrédinger equation, particularly for spin observables. Similarly Dirac
based DWIA calculations of proton inelastic scattering [Sh84, Do91] show a slight
preference for the relativistic calculation over the nonrelativistic. There are also Dirac
models of reactions to three particle final states such as ( p, n & ) [Co87] and ( p, 2p )
[Co89].

The wave functions which we use to describe the continuum proton are solutions of
the Dirac equation, with the energy and mass number dependent scalar and vector
potentials of Cooper et al. [Co92] included.
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Figure 3-2. Potentials for proton elastic scattering from '2C at T, = 160 MeV.
a) Dirac potentials from the E and A dependent fit of Hama et al.[Ha90],

b) the Schrodinger equivalent potentials.
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3.4 Bound State Wave Function

The wave function describing the bound neutron is also a solvtion of the Dirac
equation equation (3-18), but the potentials have no complex parts. The bound state
spinor is written as in equation (2-93). The radial Dirac equation is solved for a given set
of potential parameters, and the depth of either the scalar or the vector potential is varied
until the experimentally measured separation energy is reproduced.

A set of Woods-Saxon parameters for the binding potential for 12C is given in table
3-1. Note that these potentials are purely real since we are dealing with the bound state

wave function.

vector scalar

V(MeV) 30000 -378.63
¢ (fm) 1.0176 1.0379
a (fm) 0.5410 0.5609

Table 3-1. Woods-Saxon binding parameters for 12C from [Lo89].

The potential parameters give good results in a Dirac description of the reaction data
[Lo89] for LLB( P, ¥ }12C, and so refer to the sy, level in the ground state of 12C. The
parameters of the binding potential can vary considerably when the only constraint is that
the energy eigenvalue of the hamiltonian containing the Woods-Saxon binding potential
correspond to the measured binding energy. The results of calculations for the (p,Y)
reaction are sensitive to the choice of the bound state parameters {Lo92] and if the
relativistic one nucleon model provides a good description of the reaction mechanism it
can be used to constrain the bound state wave function.

We can also obtain a relativistic bound state wave function from a Hartree
calculation [SW86]. This self-consistent calculation provides a unique bound state for a
choice of meson masses and coupling constants determined from the bulk properties of
nuclei.

Figure 3-4 shows the momentum space bound state wave function obtained from a
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Hartree calculation for the 1py, level of 12C, as well as two bound states calculated from
Woods-Saxon parameters. The upper graph shows the Hartree bound state and the wave
function calculated with the parameters of table 3-1, while the lower graph shows the
same Hartree bound state with a wave function which has the same geometry as that of
table 3-1 but the depth of the vector potential has been set to V, = 400 MeV, and the
scalar depth searched on in order to reproduce the experimental binding energy.

Notice that the wave functions of the first graph differ very little up to a momentu'n
transfer of 1.5 fm~! and even when the potential depth is changed significantly the
requirement that the binding energy be reproduced is sufficient to keep the wave
functions close on a logarithmic scale for small momentum transfers. This is a very nice
feature since our model can explore a large range of momentum transfers via changes in
the kinematics. We can explore how well our model works at low momentum transfers
where the bound state is fairly well known, and then consider the high momentum
transfer region of the bound state wave function using a reaction model which we are

confident describes the process well at low momentum transfers.

3.5 Pion Phenomenology

The pion-nucleus interaction, unlike the nucleon-nucleus interaction, is dominated
by one inelastic channel, the formation . a delta isobar of mass m, = 1232 MeV, with
spin J=3/2 and isospin T=3/2. The formation of the delta takes place when the pion
interacts with one of the nucleons in the nucleus, so a reasonable sequence would seem to
be to try to describe the pion-nucleon interaction and then use that description to model
the pion-nucleus interaction. We will outline the development of the pion-nucleus

potential due to Stricker, McManus and Carr which arises from these considerations.

3.5.1 Pion-Nucleon Scattering

The pion has three charge states so it has isospin t = 1 while the nucleon, with two
charge states, has isospin T = 1/2. A pion-nucleon interaction can therefore proceed
through two possible channels of total isospiz T = 1/2 and T = 3/2, where we have

defined the total isospin of the pion-nucleon system in terms of the isospin operator of the
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pioni and the isospin operator of the nucleon Tas T=t+1. Figure 3-5 shows the

kinematics for pion-nucleon scattering in the center of momentum system.

Figure 3-5. Pion-nucleon scattering in the center of momentum system.

The scaitering amplitude for a spin zero, isospin t = 1 particle with a spin s = 1/2,
isospin T = 1/2 particle can be writter: in the form
f( Eemy © ) = 2( Ecypy © ) =1 h( Ee, ©) G+ 1 (3-29)
where we have defined the unit vector normal to the scattering plane by

fi=3X4 ___1 §Gx§ (3-30)
tqxq'l in®
and unit vectors are denoted by the circumflex. The differential elastic scattering cross
section for pion-nucleon scattering can then be written in terms of the Ziuplitudes g and h
as

-g-gﬂg(Ecm,@)lz-i-lh(Ecm,G))I2 (3-31)

The amplitudes g and h are expanded in terms of Legendre polynomials as

g(Eem @)= 2, P (2+1)AY,+ 2 A} _1Ps(cosO)
T 2=0

M*I-—-
(SR

(3-32)

h(Eew @)= 9, 2, PHA},-2A}_1Py(cosO)
T=L3 2=1
2

i

ol

where we have defined the partial wave scattering amplitude for the channel with isospin

T, orbital angular momentum £ and total angular momentum j = 2+ 1/2 as
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A5i=§—}3[s1‘i—11 (3-33)
and the s-matrix element for the channel is related to the phase shift by
. oT
Sps=e€xp(2idsz)
. T
=exp(2iRe[8p:]) M}
The inelasticity parameter is related to the imaginary part of the phase shift by
T
Ner=exp(~21Im[82+]) (3-35)
If there are no inelastic channels open the imaginary part of the phase shift is zero and

(3-34)

ul += 1. When there are inelastic channels the absorption parameter lies in the range zero
to one.
The operator ﬁ-; projects the two possible total isospin channels from the scattering

amplitude. We can write the projection operators for the two states as
Pi=l(i-7-1) Pa=l(2+7-1) (3-36)
2 3 2 3
Inelasticities only begin to appear in pion-nucleon scattering above the threshold for the
reaction tN—nxN, so for pion kinetic energies below approximately 170 MeV in the
laboratory frame the phase shifts are purely real.
We can define another useful matrix through its relation to the s-matrix by

_~1+qu'£¢

T
Sy 4 = =2 (3-37)
-G,
which we can invert to give the K-matrix as
sy,—1
T _ 1 Sax
Kpz= G
S.E:I:+ 1 (3_38)
=Ltangy,
q

If the phase shift is real the K-matrix is also real and the s-matrix is unitary.

When the particle kinetic energies are small the scattering amplitude is proportional
to 24 [EW88] in a channel with angular momentum £. We define scattering parameters
for the channel with quantum numbers ( T, 2, j ) through

a3 = M [q24 K}y ] (3-39)
where for s-waves ( £ = 0 ) the parameters are scattering lengths while for p-waves ( £ =
1 ) the parameters are called scattering volumes. There are two s-wave scattering lengths
denoted by a1 and a3 which correspond to the T = 1/2 and T = 3/2 isospin channels
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respectively. For p-waves we have four scattering volumes denoted as a2T. 2 .

The pion-nucleon scattering lengths have the following empirical values [EW88]
a;=( 0.173£0.003) m;' = 0.245+0.004 fm
a3 =(-0.10120.004 ) my' =—0.143%0.006 fm

ajy =(-0.081£0.002) m® =-0.229+0.006 fm?
a;3 =(-0.030+0.002) m_’ =-0.085+0.006 fm?
a3 =(-0.045£0.002) m? =-0.127 £0.006 fm’
az3=( 0.214x0.002) mf = 0.605+0.005 fm?

The parameters for d- and f-waves are also known and for d-waves they are on the order

(3-40)

of 5x10m,3 while the f-wave parameters are even less important. We neglect these
contributions in the following.
The s- and p-waves dominate at low and intermediate energies so we can expand the
scattering amplitude ( 3-29 with 3-32 ) retaining only the £ =0 and £ = | terms and write
f(Ecm,®)=bo+b1%-I+[_.coj-<iﬁ_-:t']_:(i-ﬁ' (3-41)
~i[dp+dit-t]lo-qxq
where the six coefficients are in general complex and depend on the total center of mass
energy of the system. The coefficients are related to the scattering parameters by {Er66]
bo=3(a1+22)
bi=1(as—ar)
co=-%-(a11+2a13+2a31+4a33) (3.42)
cr=g(-an~2a;3+ay +2a33 )
do=%(au —a;3+2a3 —-2a)
di =%(—au +ay3 +25¢ — 33 )
and thus have the values
bo=(—-0.010£0.003) m;' =-0.014+0.004 fm
by = (-0.091+0.002) m;' =-0.129£0.003 fm
co=( 0208+0.003) m) = 0.588+0.008 fm’
ci=( 0.175+£0002) m;’ = 0.495+0.006 fm*
do = (-0.190£0.002 ) m;” =—0.537 £0.006 fm?
dy = (-0.069 £0.002) m> =-0.195+0.006 fm?
The most important parameters for low energy pion-nucleus interactions are the spin and
isospin independent parameters by and ¢ and the isospin dependent s-wave parameter b;.

The parameters do and d; on the other hand, are connected with spin-flip processes which

(3-43)
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don't usually have an important role in the gross features of the pion-nucleus interaction.
3.5.2 Pion-Nucleus Interaction

We begin with the pion-nucleon scattering amplitude for s- and p-waves in the
center of momentum (c.m.) frame (3-41) and neglect the spin dependent term. This
scattering amplitude is transformed from the c.m. frame of the pion-nucleon system to the
c.m. frame of the pion-nucleus system ( the angle transformation ) and the nuclear density
is folded in to get the first order potential [Th76]:

26vu)=_41:[(1+e)bop(r)~9n%(v-p(r)V)+2(—‘i3£+°E—)V2p(r)] (3-44)

where € = E;/m,, is dimensionless, Ey, is the total pion energy in the pion-nucleus center of
momentum frame and the reduced energy is ®=Egz/(1+&/A) This form, first found
by Kisslinger [Ki55], is explicitly nonlocal because of the p-wave contribution to the
potential.

Second order corrections to the potential (3-44) arise from pion absorption

processes requiring two or more nucleons, such as the process shown in figure 3-6.

—-

Figure 3-6. Diagram contributing to second order corrections in the pion-nucleus
optical potential.

A phenomenological amplitude for these second order processes can be written as
(B ©)=Bo+Co§ - 4 (3-45)
and the imaginary parts of the two complex coefficients can be calculated from a model
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involving diagrams such as figure 3-6. The real parts of By and C; are not determined by
this model and are taken as the negative of their imaginary parts [Er66]. At energies
above 50 MeV the real parts are set to zero [SMC79, SMC80]. Since the amplitude
involves two nucleons the potential contains terms proportional to the square of the
nuclear density

20V =-4n[(1+ E)Bo p2(r) - Co (V PZ(Y)V AT ECO =V ?02(r)] (3-46)
Ericson and Ericson [Er66] have shown that when short range correlanon effects
between dipole scatterers are included, the p-wave part of the multiple scattering series
can be summed, with the assumption that the pion wavelength is much larger than the

average correlation length between nucleons. This results in the modification

47 cp p(r)
2

1 +§2—41r. co p(r)

4z ¢y p(l‘) —

(3-47)

where & is the average correlation length between nucleons in the nucleus. A parameter A
is defined by

=A_25 (3-48)

and A is adjusted to fit pion elastic scattering data. Going back to the language of optics
this results in a nonlinear dependence of the index of refraction on the density of
scatterers ( the Lorentz-Lorenz effect [Ja75] ).

The s-wave part of the multiple scattering series can be summed to second order to

give a modification of the pion nucleon scattering parameter bg
bo-*50=bo—(b%+2b7f)%t (3-49)
where the Fermi momentum is ke= 1.4 fm™!.

Putting these results together gives us the form of the pion-nucleus optical potential
which has been used by Stricker, McManus and Carr [SMC79]. We write their potential,
to emphasize the central plus gradient nature, as

2@ Vop(®) = gr) + v. h(r) V2% V(o) (3-50)
where the radial functicns g(r) and h(r) are:
80) =~ 4m [50) + P2 Bo p7(0) + B L Vo) + LU= vipo

(3-51)
h(z) = 4n [ L(r) c() + 33 P01
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where

() = py [ bo p(r) — €2 b1 3p(@) ]

o) = 1311‘ [ co p() — &1 89(0) ] (3-52)

L =01 +4—3’t—?\.—A—-§—lc(r) IR
The density function 8p(r) is the difference between the neutron and proton densities, If
the geometries of the densities are taken to be equal we have

3p(r) = pulD) - pp(r)
_N-Z ®
A P

g, is the charge of the incident pion, either £ 1, @ and K are the pion energy and wave

(3-53)

vector in the pion-nucleus center of momentum frame, and @; andk; are the energy and
wave vector of the pion in the laboratory frame. M is the atomic mass unit M = 931 MeV,

which we use to define the dimensionless quantities

_o
E‘GM £

e

(3-54)
We also need

—_1+€ - 1+&2 o @ .
PL=TTaA P2 1+ e/A 6] T+ A (3-55)
where A is the atomic mass number.

Stricker, McManus and Carr [SMC79] have determined parameters for six incident
pion energies: Tp, = 30, 40, 50, 116, 180 and 220 MeV. In order to obtain a smooth energy
dependence we perform a linear interpolation of the parameters provided by SMC.
Singham and Tabakin [ST81] similarly provide parameter sets for a potential of the same
form, with eight pion energies up to Ty = 180 MeV, which we also linearly interpolate to
get a smooth dependence on energy.

Laget has provided a set of parameters [La72) for a simple s-wave potential of the
form

Vopt =( Ve +1 Vi) p(r) (3-56)
where p(r) is the nuclear density normalized to the nuclear volume. The real and
imaginary depths are tabulated in 20 MeV steps to & maximum pion kinetic energy of 300
MeV. The depths are deduced from pion-nucleon and pion-deuteian cross sections, and
the potential is then used to calculate reaction and total pion-nucleus cross sections, and
are found to provide general agreement with the data. This potential is not determined

from elastic scattering angular distributions and is not expected to provide a good
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description of differential cross sections, We include it to test the effect of a poorly

determined pion wave function on our calculations.
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Figure 3-7. a) Nucleon-hole and b) A-hole intermediate states contributing to the

pion self energy.

Oset and his coworkers [Ga88, Ni92] have calculated the pion self-energy, which is
related to the optical potential by

[{w,p)=20Vep (3-57)
where o is the pion energy and p is the density of the target nucleus. The self-energy is
calculated from consideration of nucleon-hole intermediate states and A-hole intermediate
states, such as the diagrams shown in figure 3-7, which contribute in first order. The

double line in the loop of figure 3-7b) indicates the delta isobar which has been created
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through the excitation of the nucleon by interaction with a pion. Higher order terms are
also included in their calculation of the optical potential, and their model results in a
potential of the centra! plus gradient form (3-50), which we have seen before.

The Klein-Gordon equation with the pion-nucleus optical potential is

(V2 412+ 20Vop ) 9= (e~ Ve P (3-58)
If we take |1 to be the rest mass of the pion and ignore the term involving the square of the
Coulomb potential we have
[V + Kp - 207 ( Vo + Ve ) 19 =0 (3-59)
which is the equation Stricker, McManus and Carr solve. Oset solves equation (3-38)
taking Y as the pion-target reduced mass.

Figure 3-8 compares the four poientials described in a calculation of elastic
scattering of &- on !2C at an incident pion kinetic energy of T = 50 MeV. The [ urely s-
wave (local) potential of Laget give an angular distribution which doesn’t describe the
minimum at 70° or rise at backward angles, while the other potentials all describe the
general features of the data.

3.5.3 Radial Equation for the Pion

For the sake of completeness, we now derive the radial equation for the pion wave
function with the potential of equation (3-30).
We start with a Klein-Gordon equation with a potential V(r)
(V2 + B2+ VD [ e =0 (3-60)
where the potential has the Kisslinger form

V() =g + E?'. h(r) - %’- (3-61)
Recall:
o - ah(r) A o 2 -
Vh{)-V (p(f):—-a—rr-V (@) +h(®) V* o)
s (3-62)
vio19 [*
oz 2
Expand the pion wave function as
o) =4n Y, it v YO Y (k) (3-63)
LM
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The radial equation is then

1 v L{L+D) dh(r) dvi. _
[1+h()][y 2 2 = o

Now define vi(r) ----zl_L and let R%(r) = [ 1 + h(r) ], then to get rid of the first derivative of

ve 1+ [k +g() ] v+ 0 (3-64)

v, we introduce z;(r) = R(r) yL(r) to get the radial equation in the form

7 -1 L“;: D 4 f()] 21) =0 (3-65)
with
_R" 2R _K+g® )
f(r) = R + R =2 (3-66)

At this point we have an equation that looks like a Schridinger equation which we
can solve with our favorite Schrodinger equation solving algorithm. The Noumerov
method [No24], modified by Thorlacius and Cooper [TC87] is the one that we will use.
This method is discussed in detail in the Ph.D. thesis of Lotz [Lo89]. In the present case
the radial wave functions are asymptotically normalized to Klein-Gordon Coulomb wave

functions instead of the Dirac functions Lotz uses.
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4 - Results for the Reaction A(y, - p )A-1

In this chapter we explore the behaviour of our model for negative pion
photoproduction on nuclei. We first consider the effect of changes in the description of
the pion and proton wave functions, as well as the neutron bound state, on the cross
section and spin observables. Next we look at the results of cur model for kinematics
which are very close to those of the free reaction, and compare the proton polarization
and analyzing power calculated from our model with experimental data from the
elementary process. The effect of increasing the energy of the incident photon while
holding the angles of the detected particles fixed is considered, after which we fix the
photon energy and vary the angles of the detected particles. Finally we compare the
results of our model with the experimental data available to us.

4.1 Sensitivity to Changes in the Wave Functions

We consider first a photon incident on a 12C nucleus. The incident photon has an
energy of 380 MeV in the laboratory frame, and the direction of the photon momentum
defines the z-axis. The momenta of the photon and the pion are used to define the x-z
plane such that the pion momentum lies in the first quadrant at the spherical angle pair
(87 =120°, @ =0°). The proton is detected at an angle pair ( 8, = 20", ¢, = 180° ) so we
are considering a coplanar geometry. Having fixed the energy of the incoming particle
and the position of the detectors we have one variable, which we choose to be the proton
kinetic energy. All other quantities are then determined through energy and momentum
conservation. We are locking at an exclusive reaction so we assume that we know the
final state of the residnal nucleus. The reaction takes place on a 1py, neutron of carbon
leaving the residual !1C in its ground state with a § = 3/2 neutron hole. The separation
energy of the valence neutron is E; = 18.721 MeV [Aj85].

In figure 4-1 we consider some of the kinematic quantities relevant to this reaction
as a function of proton kinetic energy. Figure 4-1a) shows an almost linear relation

between the pion and proton energies, indicating that the energy of the recoil nucleus
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remains nearly constant. This means that the total energy of the pion-proton system is
almost constant across the kinematic range. In figure 4-1b) we see the momentum transfer
to the recoil nucleus as a function of the proton energy. The momentum transfer is very
close to zero at a proton kinetic energy of 125 MeV and has a maximum of 1.3 fm-! when
the proton kinetic energy is 50 MeV. Figure 4-1c¢) shows the energy dependence in the
phase space portion of the cross section, equation (2-113), to be quite weak, and any
structure in the cross section will be governed by the matrix element.

The variation of the cross section with the addition of distortions to the wave
functions of the final state particles is shown in figure 4-2. The dotted line shows the
calculation using plane waves for both the proton and the pion. The bound state wave
function is calculated using the Woods-Saxcn binding potential of table 3-1. The s-matrix
in this case can then be written in the form of equation (2-98) and the cross section is the
square of the Fourier transform of the bound state wave function modified by some spin
factors. The cross section goes to zero at T, = 125 MeV where the momentum transfer to
the residual nucleus is zero, as shown in figure 4-1b. This occurs because the momentum-
space wave function for the psj, bound state of carbon is zero when the momentum is
zero, as can be seen in figure 3-4. The peaks in the cross section occur at T, = 90 MeV
and T, = 160 MeV where the momentum transfer is g=0.5 fm-!. The cross section appears
to be almost symmetric in momentum transfer about the q=0 point which we expect if we
are Fourier transforming the bound state wave function.

The dot-dashed curve of figure 4-2 shows the effect of modifying the proton wave
function by a distorting potential. The potential used is the global energy and mass
dependent one of Cooper et al. {C092] discussed in chapter 3. The addition of the
potential reduces the magnitude of the peaks of the cross section by about one third and
shifts the peaks and the minimum toward smaller proton energies by 3-4 MeV. The
dashed line shows the effect of modifying the pion wave function with the distorting
potential of Oset et al. [Ga88, Ni92]. The cross section in this case is shifted toward
higher proton energy ( lower pion energy ), relative to the plane wave curve by ~ 15
MeV, and the magnitudes of the peaks are reduced by approximately twenty per cent. The
solid line has both the pion and proton described by distorted waves, and in this case the

magnitude of the cross section is reduced to about one half of that of the plane wave

-70 -



cross section *

120(y, 7" p)!C,

1.25 Y y T '

------- plane waves

----- proton distoried

----- pion distorted )
1.00 1 bothdistorted |
075 | AN P ‘

; l' % A " "t .'., LY
’ A ‘ ' \‘ A
- /’ “ -, c' \ ., ‘\
P A\ v 7 & ‘\ *
0.50 .
0.25 .
0 A L ‘..":‘ :”
50 75 100 125 150 175 200

proton kinetic energy (MeV)
* cross section = do/dQndedEp (ub/srsrtMeV)
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calculations. The competing shifts in the proton energy have the result of moving the
peaks and the minimum toward higher proton energy by ~ 10 MeV.

The effect of the addition of distortions on the polarization of the proton ( equation
(2-114) ) and the analyzing power due to linearly polarized photons ( equation (2-115) ),
is shown in figure 4-3. The dotted curves have plane waves describing both the pion and
the proton. Note that the polarization of the proton is not zero even though there are no
complex potentials in the wave equations. The polarization is nonzero due to the complex
width of the delta resonance, which is included in the denominator of the delta
propagator. When the width of the delta is set to zero the polarization is identically zero at
all proton energies in the plane wave calculations. Addition of proton distortion only
results in small changes from the plane wave results, except in the neighbourhood of the
cross section minimum at T, = 125 MeV, where both the proton polarization and
analyzing power take rather drastic dips. The pion distortion alone has virtually no effect
on the proton polarization and changes the analyzing power by less than 0.1. The
inclusion of distortions for both the pion and the proton result in a reduction of
approximately 0.1 in the proton polarization from the plane wave value for proton
energies below 130 MeV, while above this energy the results for plane wave and distorted
calculations are very close. The analyzing power results for plane wave and distorted
calculations are significantly different only in the region of the cross section minimum.
Note that the proton polarization and analyzing power, calculated using distorted waves
for the proton and pion, are both positive over the entire range of proton kinetic energies.

Figure 4-4 shows the effects of changing the pion’s distorting potential. The proton
wave function is calculated with the E and A dependent global potential. We consider the
four pion potentials discussed in chapter 3. The dotted curve is calculated using the s-
wave pion potential of Laget [La72]. The dot-dashed curve results from using the
potential of Stricker, McManus and Carr {SMC79, SMC80}, while the dashed curve
results from the potential of Singham and Tabakin [ST81]. The ST pion potential is
similar to the SMC potential because Singi:am and Tabakin began with the potential
parameters reported by SMC and made adjustments to improve the description of some
data not included in the SMC analysis. The predictions from the SMC and ST potentials

are very close to each other indicating that the modifications are not very significant here.
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Dashed line - Singham and Tabakin pion potential [ST81].
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.74 -

200



The solid curve is calculated from the pion optical potential of Oset et al. [Ga88, Ni9z],
obtained by calculating the pion self energy as shown in figure 3-9. We refer to these
potentials simply as Laget, SMC, ST and Oset.

Figure 4-5 shows the effect on the spin observables of changing the pion distorting
potentials, SMC and ST give very similar results, as they did for the cross section, while
Oset gives basically the same shape as ST and SMC but varies from them for proton
energies in the range 125 MeV to 150 MeV. Note that the minimum of the cross section
in figure 4-4 lies in the range 130 MeV to 135 MeV and this is exactly where the largest
sensitivity to the pion potential occurs. The three potentials just mentioned are all of
basically the same form, i.e. the central plus gradient form of equation (3-50). The dotted
curves of figure 4-5 show the results due to the Laget potential, which contains only the
central  s-wave ) portion of the potential. The results frorn Laget are quite close tc .n0se
of the other potentials except in the neighbourhood of the cross section minimum. It is
interesting to note that at T, = 100 MeV, where the Laget pion potential results in the
cross section being about a factor of 1.5 larger than SMC and ST and roughly 1.3 larger
than Oset, the spin observables are all in reasonable agreement. The spin observable
predictions from the different pion potentials are quite similar except in the region where
the momentum transfer becomes small. SMC and ST are similar in this region as we
would expect but Laget, Oset and ( SMC, ST ) can be distinguished in this region.

The reaction we are examining requires proton distortions which can be evaluated at
any proton kinetic energy in the allowed kinematic region. Proton-nucleus elastic
scattering data does not however exist for all nuclei at all proton kinetic energies of
interest. We are fortunate that the Ohio group have taken the existing proton-nucleus
elastic scatiering data, and searching on the data, have determined optical potentials
which are parametrized as functions of the proton kinetic energy in the range 65 MeV to 1
GeV and the atomic mass of the target nucleus in the ;ange A = 12 to A = 208 [C092].
They have also produced parameterizations particular to 12C and 160 which are functions
of incident proton kinetic energy [Sh92].

The curves of figure 4-6 are calculated with the pion distortions of Oset et al. while
the 1p5y, neutron is described by the Woods-Saxon potential of table 3-1. The dotted line
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Figure 4-6. Dependence of the cross section on changes in proton distortion.
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Dotted line - plane wave proton.
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results from describing the proton by a plane wave. The dashed line uses the E dependent
parametrization for }2C while the solid line uses the potential parametrized in both E and
A. The addition of proton distortions reduces the cross section by one third to one half of
the plane wave value, and the two different potential parameterizations result in
differences of at most ten per cent in the resulting cross section.

The change in spin observables with proton distortion is shown in figure 4-7. The
addition of proton distortion reduces the proton polarization by about 0.1 between Ty = 50
MeV and 135 MeV, while above T, = 135 MeV proton distortions have little effect in
changing the polarization from the plane wave value. The analyzing power is reduced by
roughly 0.05 for small proton energies. The results for the two proton potentials follow
each other quite closely except through the region where the momentum transfer to the
nucleus becomes small. This also occurs for the different pion potentials as shown in
figure 4-5. This amplification arises because small changes in the cross section become
large relative changes at the minimum,

The effect of variations in the bound state wave function are shown in figures 4-8
and 4-9. The dotted curve results from a Dirac-Hartree binding potential [HS86] while the
dashed and solid curves use a Woods-Saxon form for the binding potential, The dashed
curve is calculated using the Woods-Saxon parameters of table 3-1 ( WS1 ). These
parameters provide a good description of (7, p ) data [Lo89], and so the bound state wave
function calculated from these parameters refiects the high momentum transfer in that
reaction. That is to say that the bound state wave function constrained by (v, p ) data
should be better determined in the high momentum transfer region than a wave function
whose sole constraint is fitting the binding energy. The WS potential used to calculate the
solid curve uses the geometry parameters of table 3-1 but the depth of the vector potential
was changed to V, = 400.0 MeV and the scalar potential searched on to reproduce the
binding energy. This yielded a scalar depth of V, = —477.9 MeV and a potential which we
refer to as WS2. The momentum transfer to the nucleus at the first cross section peak
where T, = 100 MeV is q = 0.4 fm-1, { see figure 4-1b ), while at the other peak we have
T, = 165 MeV with g = 0.6 fm-!. We see from figure 3-4 that we are near the peak of the
momentum space bound state wave functions. The distributions of the magnitude of the
peaks of the cross sections reflects the distributions of the magnitude of the momentum
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space wave functions with the Hartree wave function having the smallest magnitude and
the wave function calculated from WS2 having the largest. The cross section calculated
with plane waves describing the pion and the proton has the same shape as the distorted
wave cross section of figure 4-8 but is roughly a factor of two larger than the distorted
wave result in this case.

The predicted polarization and analyzing power shown in figure 4-9 are extremely
close for all three binding potentials and all show the rapid change as the momentum
transfer to the nucleus passes through zero. The plane wave spin observables are the same
as the dotted curves of figure 4-3. The plane wave curves resulting from the three bound
state wave functions are indistinguishable on a graph. -

In order to explore the sensitivity of our model to the bound state wave functions at
high momentum transfer we changed the proton angle from 8, = 20° to 6, = 70° while
holding the pion angle at 6, = 120°. This changes the momentum transfer to lie in the
range 2 fm! to 3 fm! as shown in figure 4-10. In this range of momentum transfer the
momentum space wave functions of figure 3-6 become easily distinguishable. The cross
section shown in figure 4-11 is calculated using plane waves for the proton and pion. The
minima occur in the same order that the minima occur for the upper component
momentum space wave functions, but the results are modified by the presence of the
lower component of the bound state, which can be larger than the upper component wave
function in this momentum range. The distorted wave cross sections are shown in figure
4-12. The addition of distortions washes out the minima and raises the cross sections for
proton energies above 75 MeV by as much as an order of magnitude.

Spin observables calcuiated in the plane wave .:pproxisution are shown in figure 4-
13. The interesting features ( dips ) in the results occur at the minima of the respective
cross sections. The distorted wave calculations of the spin observables are shown in
figure 4-14. The dips are gone as the distorted wave cross section did not exhibit this
feature, and the curves follow each other closely.

We can change the bound state wave function by changing the separation energy,
which we do in figure 4-13. The dashed curve is the cross section calculated with a bound
state wave function determined by the Wcods-Saxon potentials of table 3-1 with the
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Figure 4-11. Sensitivity of the cross section to changes in the bound state wave
function. The kinematic conditions are EY =380 MeV., (0 = 70°, 0, = 180%)

and ( Bn = 120°, ¢ = 0°). The pion and the proton are described by plane waves.
Solid line - Woods-Saxon binding potential #1 with V_ =300 MeV.

Dashed line - Dirac-Hartree binding potential.
Dotted line - Woods-Saxon binding potential #2 with V_=400 MeV.
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proton is distorted by the global E and A dependent potential.
Dashed line - Dirac-Hartree binding potential.

Solid line - Woods-Saxon binding potential #1 with v, = 300 MeV.
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measured value of the separation energy for the 1p;,; neutron. The bound state for the
dotted curve is determined by searching on the depth of the scalar potential of the
parameter set of table 3-1 to fit a separation enersy 4 MeV less than the experimental
value, while the solid line has a bound state with a separation energy 4 MeV greater than
the experimental value. As the binding energy is increased the rms radius of the bound
state becomes smaller and the projectile has a smaller target resulting tn a smaller cross
section. An eight MeV increase in the separation energy from 14.721 MeV, reduces the
cross section by almost thirty per cent.

The spin observables calculated from our different bound state wave functions of
figure 4-15 are shown in figure 4-16. The three curves exhibit the same basic shape and
the only significant change occurs tor the proton pclarization in the area of the cross
section minimum where an eight MeV change in the separation energy can result in
noticeable differences in the proton polarization.

To summarize, we have seen that including distortions in the pion and proton wave
functions decreases the magnitude of the ¢ross section by roughly a factor of two from the
plane wave value in the cases considered. Addition of the proton distortion alone causes a
large dip in the spin observables when the momentum transfer goes through zero, but
when both pion and proton are distorted the results do not vary significantly from the
plane wave ones. The results are not very sensitive to changes in the continuum wave
function, or to different bound state wave functions; the latter is associated with the fact
that distortions of the proton and pion wash out the differences observable in the plane
wave calculation. We are most sensitive to differences in the pion optical potentials,
which are probably the least well determined ingredients in our calculations.

The wave functions which we use in the present study are all determined from other
sources: the pion and proton distorted waves are obtained through comparison with elastic
scattering data, and the bound state wave function has the experimental binding energy as
its eigenvalue in addition to providing the best description of the (¥, p ) data in the thesis
of G. Lotz. In what follows we use the E and A dependent potential for our proton
distortion and either the potential of Singham and Tabakin or the potential of Oset for our
pion distortion. The bound state is described by the Woods-Saxon parameter sct of table
3-1.
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4.2 Nearly rree Kinematics

Qur one nucleon model says that to a good approximation the pion photoproduction
reaction occurring in the nucleus actually occurs on a single nucleon with the reaction
products being ejected from the nucleus after the reaction occurs, without any significant
contribution from other reacticn mechanisms. If this picture is indeed valid we should be
able to compare the results of our calculations with results of a model tor the elementary
process somehow, if we chose kinematics such that the momentum transfer to the residual
nucleus is small.

The triple differential cross section of the DW is not directly comparable with the
differential cross section for the elementary process, but we can in principle integrate the
triple cross section over all possible proton energies and angles for a fixed pion angle to

get a cross section which we can compare with the results of the elementary process

do ds ___ 40, dE, (4-1)
dQn dQy d<Y, dE,

The only difficulty with doing this is the time required to do the numerical integration.
The energy distribution of the triple cross section at a particular proton angle pair {0, ¢ )
requires between one and two hours on a Decstation 3100 depending on the accuracy
asked for, and integration over the proton angles will require evaluation of the triple cross
section over a web of angle pairs. A very coarse web could involve five 6s with five @s at
each, so the integration would require between 25 and 50 hours of cpu time per point in
order to compare with the resuiis of the elementary process. This is not a practical
approach for us to take since to obtain reasonable accuracy would require a finer grid and
hence more computer time. Fortunately the spin observables are more directly
comparable between the free and the nuclear processes and these we will look at.

The kinematics in the two cases can never be exactly the same but we can force
enough similarity that the differences become clear. We will look at three cases
corresponding to pion angles of 45°, 90° and 135° in the center of momentum frame for
the elementary process. The kinematics of the DW calculation are set so that the lab

angles of the detected pion and proton are equal to the lab angles of the pion and proton
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resulting from the elementary process. The pion is again placed in the first quadrant of the
x-z plane, and the reaction must be coplanar to be consistent with the elementary process.
We also force the proton which has been knocked out of the nucleus to have the same
energy as the proton resulting from the elementary process. The kinernatics of the nuclear
process are now fixed and the energy of the pion, as well as the energy and direction of
the recoil nucleus, can be calculated from energy and momentum conservation.

We begin by looking at a pion center of momentum angle of 45° for the free
process. Figure 4-17 shows how the kinematic quantities change as a function of incident
photon energy. Figure 4-17a) shows the proton kinetic energy in the laboratory frame as a
function of photon lab energy, and figure 4-17c) shows the pion and proton lab angles as
a function of photon energy. These quantities are forced to be the same in the DW
calculation as they are for the elementary process. Figure 4-17b) shows the pion energy as
a function of the photon energy. The dashed line is the pion energy for the elementary
process while the solid line is the pion energy for the reaction on carbon. Thc kinetic
energy of the pion resulting from the reaction on the nucleus is 20 MeV lower than the
kinetic energy of the pion from the free process over the whole range of photon energies,
because there is less energy available since the reacting neutron is bound by 18.721 MeV.
The momentum transfer to the residual nucleus starts off at 0.16 fm-! and quickly drops
off to 0.11 fm-!, which translates to the residual nucleus having a kinetic energy of about
0.02 MeV in the lab frame. Under these conditions the proton and pion are getting almost
all the available energy in this reaction.

The triple differential cross section for these kinematics is shown in figure 4-18. The
dotted curve is the result of the plane wave (PW) calculation of equation (2-98) while the
dashed curve is the result of the distorted wave (DW) calculation of equation (2-103) with
all the distorting potentials turned off. For these kinematics the two calculations agree
quite well but start showing some small differences for photon energies larger than 500
MeV due to a slightly inadequate number of terms in the partial wave series of the DW
calculations. The solid curve is the DW calculation using the global A and E dependent
potential to distort the proton wave, and the potential of Singham and Tabakin to generate
the pion wave function.

The DW cross section calculated from the Born terms alone is shown as the dotted

S92



llc( Y, p )“Cg.s.

=

800 e

b)

oo
=
=]
—

=z

400

E=

proton kinetic encrgy (MeV)
pion kinetic energy (MeV)

[+ ]

k=1
[2e]
=

— cabon(12)
----- fre neutron

00 300 400 500 600 700 00 %00 1000 00 N0 400 500 00 00 200 900 1000
photon lab erergy (MeV) photon Lab energy (MeV)
40 ' ' y 0.6 -
2 0.15
c) 2 d)
a 0 ._;:0.14
$ — pionlabangle | F
520 [ prooa b angly 2013
Y 2
3 :
F40L 0.2
N 01l

30 e 0.10 . —
00 300 400 300 600 700 800 900 1000 WO 300 400 00 600 700 &0 %00 (000
photon lab energy (MeY) photon ab energy (MeV)

Figure 4-17. Variation in kinematic quantities for nearly free kinematics when the
pion angle in the c.m. frame is fixed at 8_ = 45°, for the negative pion

. s 12 -
photoproduction reaction '2C(vy,n” p)!'C, .

.93 .



cross section *

By p)HC,

0-20 T T T T T T T
Almost free kinematics, theta(pi) = 45 deg in the c.m.

0.15

0.10

005 | o -

SO e PW program
R DW program with no potentials
""" DW calculation
0 L L L 1 L 11 1
200 300 400 500 600 700 800 800 1000

photon lab energy (MeV)
* cross section = dedQndedEp (nb/srstMeV)

Figure 4-18. The cross section near free kinematics with the pion angle in the c.m.

frame: Bn = 45° The pion and proton angles are fixed at their free values, as is the
kinetic energy of the proton. The energy of the pion is then calculated.
Dotted line - PW program. Dashed line - DW program with all distortions turned off.

Solid line - DW calculation with the pion distorted by the potential of Singham and
Tabakin, and proton distorted by the global A and E dependent potential.
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curve of figure 4-19. The dashed curve shows the cross section calculated from the delta
diagrams alone, and the solid curve shows the cross section calculated from the sum of all
the diagrams. The cross section from the delta increases rapidly to a photon energy of 400
MeV but the total cross section changes from the cross section calculated from the Born
terms by only a few per cent. The delta diagrams begin to influence the total cross section
more for photon energies greater than 600 MeV.

The cross sections calculated for each of the contributing diagrams individually is
shown in figure 4-20. The dotted line is the cross section calculated from the seagull
diagram, and the dashed line is the cross section calculated from the s-channel delta. The
dot-dashed curve is due to the pion pole and becomes a significant contributor to the cross
section at roughly the same rate that the s-channel delta does below 450 MeV, while
above 450 MeV the pion pole is a larger contributor than the s-channel delta, and even
becomes larger than the seagull at 700 MeV. The behaviour of the triple cross section in
the region of small momentum transfer is dominated by the fact that the bound state wave
function for £ = 1 is zero when the momentum transfer is zero. This does not radically
change the relative importance of the contributing diagrams as shown in figure 4-20 from
the contribution of the various diagrams to the free cross section, although there are some
differences due to the different kinematics.

The spin observables are shown in figure 4-21, and this is where we can get a direct
comparison between the ¢lementary process and the nuclear reaction. The dot-das' &d
curve of figure 4-21a) is the polarization of the proton resulting from the free reaction.
The dotted curve, which is overlapped by the dashed curve, is the polarization calculated
from the PW expression (2-98), and the dashed curve is calculated from the DW
expression (2-103) with the distorting potentials turned off. The solid curve is the result of
the DW calculation with distorting potentials of figure 4-18 included. The free and plane-
wave-nuclear calculations are quite close, which we would expect since the polarization
of the proton arises from a complex part of the scattering amplitude, and the only
contributing complex quantity is the width of the delta. The full distorted wave
calculations include complex contributions from the distorting potentials of both the
proton and the pion and for energies beyond 400 MeV the distortions change the
polarization significantly from the free value. The polarization of the final proton in the
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Figure 4-20. Contribution of each of the diagrams of figure 2-2 in the DW
calculation of the cross section near free kinematics, with the pion angle in the

c.m. frame: 8_= 45°, as discussed for figure 4-18.

Dotted curve - seagull diagram, figure 2-2a).
Dot-dashed curve - pion pole, figure 2-2b).

Solid curve 1) - neutron pole figure 2-2d).

Short-dash long-dash curve - proton pole figure 2-2c).
Dashed curve - s-channel delta diagram figure 2-2¢).
Solid curve 2) - u-channel delta diagram figure 2-2f).
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Figure 4-21. Spin observables near free kinematics with 9Tt = 45° in the c.m. frame.

Dot-dashed curve - negative pion photoproduction on a free neutron. Other curves as
in figure 4-18. a) polarization of the final proton, and b) analyzing power due to
linearly polarized photons.
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neighbourhood of the delta resonance is nearly the same in all the calculations; the fact
that the initial neutron is bound in a nucleus, or that the proton and the pion are
interacting with a nucleus in the final state do now change the polarization of the final
proton appreciably for photon energies in the range Ey = 200 to 400 MeV.

The analyzing power due to linear photon polarization is calculated in figure 4-21b),
and the curves are labelled as for the polarization calculations. The nuclear calculations
show some shift in energy from the the free calculation for low photon energies and at
high energies the calculations all seem to converge. This is an interesting feature of the
analyzing power. The data points are from the compilation of free pion photoproduction
data of Menze, Pfeil and Wilcke [Me77]. All the calculations seem to be in reasonable
agreement with the data for photon energies in the region of the delta resonance. At
higher energies other resonances and meson exchanges must be included. We therefore do
not expect our present model to describe the data in this energy region.

The important point is that our model is consistent with the free calculations. The
free data are described reasonably well by all three calculations in the region of the delta
resonance and the free and plane wave calculations show the same behaviour at high
energies. When 6, = 45° in the center of momentum frame, and the momentum transfer is
very small, the analyzing power and the polarization of the proton are modified only
slightly when the target neutron is part of a nucleus.

We play the same game at two other center of momentum pion angles, namely 90°
and 135°. The pion and proton angles, as well as the proton energy are again fixed at the
values from the elementary process and the pion energy calculated. The pion energy in
both cases is 20 MeV less for the reaction on a nucleus than for the free reaction as can be
seen in figures 4-22b) and 4-27b). The momentum transfer to the nucleus is small in both
cases and the kinetic energy of the recoil nucleus is well below 0.1 MeV.

The cross section for nearly free kinematics at a free process angle of 6, = 90° in the
center of momentum frame is shown in figure 4-23. the PW calculation ( dotted curve )
and the DW calculation without distorting potentials ( dashed curve ) begin to diverge
above 650 MeV because of the numerical limitations of our DW program ( the calculation

needs more proton partial waves for the sums to converge ). The addition of distortions
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Figure 4-23. The cross section near free kinematics with the pion angle in the c.m.
frame: 8_= 90°. The pion and proton angles are fixed at their free values, as is the

kinetic energy of the proton, The energy of the pion is then calculated.

Dotted line - PW program. Dashed line - DW program with ail distortions turned
off. Solid line - DW calculation with the pion distorted by the potential of Singham
and Tabakin, and proton distorted by the global A and E dependent potential.
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( solid curve ) shifts the peak and the minimum toward lower photon energies by 100
MeV. At first sight the peak might be attributed to the delta isobar, however the
calculation of the DW cross section due to the Born terms alone ( dotted curve of figure
4-24) shows that they are responsible for the peak at 250 MeV. An even more detailed
consideration ( figure 4-25) shows peaks at 250 MeV in the cross sections calculated
from both the seagull diagram ( dotted curve ) and the pion pole diagram ( dot-dashed
curve ), while the s-channel delta ( dashed curve )} shows the resonance bump peaking at
about 400 MeV. In this kinematic region the amplitudes of the Born terms interfere in
such a way that the cross section calculated from the sum of all the diagrams above 400
MeV is less than the cross section calculated from either the Born terms or the delta
diagrams alone.

In figure 4-26 we look at the spin observables for a pion center of mass angle of
8, = 90°. As for the 6, = 45" calculations, the free calculation ( dot-dashed curve ) and the
PW calculation ( dotted curve ) have close to the same shape but are shifted slightly in
photon energy. The PW calculation and the DW calculation without potentials overlap
each other. Even though the cross section calculations in PW and DW diverge for photon
energies above 650 MeV, the sums are sufficiently converged for the spin observable
calculations. The inclusion of distortions for the pion and proton ( solid curve ) does not
change the proton polarization much in the delta region, but causes a significant change
away from the free calculation above 400 MeV. We show data for both the free reaction
[Me77) and the reaction on 12C [Go71]. Our free model doesn’t agree with the free data,
which isn’t surprising since there are many resonances above 400 MeV which we have
not included in the model. Also the free data agree with the nuclear data so the important
processes should be the same. Therefore the fact that our polarization calculation seems to
agree with the data above 400 MeV is purely an accident and other resonances and meson
exchanges must be included before we can claim to describe the data.

The addition of distortions in the analyzing power calculation of figure 4-26b)
damps the analyzing power from the free value through the delta region between 300
MeV to 400 MeV. All the calculations converge above 500 MeV. Note that the PW
calculation and the DW calculation without potentials diverge slightly above 800 MeV,

but are still very close.
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Figure 4-24. DW calculation of the cross section near free kinematics with the
pion angle in the c.m. frame: Bn =90°, as discussed for figure 4-23.

Dotted line - Cross section calculated from Born terms only.
Dashed line - Cross section calculated from delta diagrams only.
Solid line - Cross section calculated from all diagrams.
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Figure 4-25. Contribution of each of the diagrams of figure 2-2 in the DW
calculation of the cross section near free kinematics, with the pion angle in the

c.m. frame: 8 = 90°, as discussed for figure 4-23.

Dotted curve - seagull diagram, figure 2-2a).
Dot-dashed curve - pion pole, figure 2-2b).

Solid curve 1) - neutron pole figure 2-2d).

Short-dash long-dash curve - proton pole figure 2-2¢).
Dashed curve - s-channel delta diagram figure 2-2¢).
Solid curve 2) - u-channel delta diagram figure 2-2f).
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in figure 4-23. a) polarization of the final proton, and b) analyzing power due to
linearly polarized photons.
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The last nearly free situation we consider has 8, = 135° in the center of momentum
frame. The cross section as a function of photon energy is shown in figure 4-28. The PW
calculation ( dotted curve ) and the DW calculation without potentials ( dashed curve )
now diverge at 450 MeV. The pronounced peak in the PW calculation at 350 MeV is
shifted to 250 MeV when the pion and proton distortions are turned on ( solid curve ). We
calculate the cross section due to the Born diagrams and the delta diagrams separately in
figure 4-29. The peak is due to the Born terms ( dotted curve ), while the cross section
due to delta diagrams ( dashed curve ) is monotonically increasing, showing no resonance
peak at all. Calculation of the cross section due to the individual diagrams, as shown in
figure 4-30, shows that the seagull diagram is the dominant contributor and the other
diagrams, including the s-channel delta, have become much less important for low photon
energies than at 8, = 90°.

The spin observables are shown in figure 4-31. The free calculations and the PW
show similar behaviour except for a shift in photon energy. The PW and DW without
distorting potentials overlap each other once again, even though the differences in the
cross section calculation are large at this pion angle. The addition of pion and proton
distortions causes the proton polarization to become 0.2 to 0.3 more negative than in the
free or PW calculations. The addition of distortions in the analyzing power calculation
causes the analyzing power to become very close to zero from a value of 0.2 at 400 MeV,
but at high photon energies all the calculations converge.

In this section we have seen that a PW calculation of pion photoproduction on a
nucleus is consistent with a model for the elementary process, and agrees with the free
data reasonably well. For these kinematics the picture of the reaction taking place on a
single neutron in the nucleus with minor modifications due to binding seems to be valid.
The interaction of the final state pion and proton with the residual nucleus does not
change the polarization of the proton appreciably near the isobar region, but above 400
MeV the polarization becomes significantly more negative than the free reaction model
predicts. The analyzing powers predicted by the three calculations are very close at high
photon energies. In the delta region the three calculations yield analyzing powers which

are very similar for 8, = 45°, are shifted by about 70 MeV at 6, =90 and even have a
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Figure 4-28. The cross section near free kinematics with the pion angle in the

c.m. frame: 0= 135°. The pion and proton angles are fixed at their free values, as
is the kinetic energy of the proton. The energy of the pion is then calculated.
Dotted line - PW program, Dashed line - DW program with ..l distortions turned

off. Solid line - DW calculation with the pion distorted by the potential of Singham
and Tabakin, and proton distorted by the global A and E dependent potential.
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Figure 4-29. DW calculation of the cross section near free kinematics with the
pion angle in the ¢.m. frame: E)Tt = 135°, as discussed for figure 4-28.

Dotted line - Cross section calculated from Born terms only.
Dashed line - Cross section calculated from delta diagrams only.
Solid line - Cross section calculated from all diagrams.
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Figure 4-30. Contribution of each of the diagrams of figure 2-2 in the DW
calculation of the cross section near free kinematics, with the pion angle in the

c.m. frame: §_= 135°, as discussed for figure 4-28.

Dotted curve - seagull diagram, figure 2-2a).
Dot-dashed curve - pion pole, figure 2-2b).

Solid curve 1) - neutron pole figure 2-2d).

Short-dash long-dash curve - proton pole figure 2-2c).
Dashed curve - s-channel delta diagram figure 2-2¢).
Solid curve 2) - u-channel delta diagram figure 2-2f).
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different shape at 8, = 135°, indicating that the distortions are having a more pronounced
effect at larger pion angles.

The polarization of the final proton calculated from the DW model, when the
neutron is bound in the nucleus, is not significantly different from that of the proton
resulting from the elementary process for pion angles of O, = 45° and 0, =90" in the
region of the delta resonance. At 6, = 135" a proton polarization from the elementary
process of 0.2 is reduced to almost zero when the neutron is bound. The polarization of
the proton therefore doesn’t seem to be very interesting in this kinematic region. At
@, = 45° the analyzing power also shows only a small difference in results between
having a free or a bound neutron. At 6, = 90" however the the analyzing power at E, =
400 MeV has been reduced from 0.6 for the free neutron to 0.2 for the bound neutron, and
judging from the error bars on the data this is clearly a measurable change.

The important point is that our model is consistent with the free calculation when
the momentum transfer to the residual nucleus is small. The free data are described
reasonably well by all three calculations in the region of the deita resonance. The free and
PW calculations show very similar behaviour at all energies except for a shift in the
photon energy due to the different kinematics of the bound and free neutron. This is
exactly what we would expect because the ingredients in the two calculations are the
same except for the modification of the energy of the bound neutron through binding.
Thus our model has really incorporated the elementary process into a reaction in a
nucleus. The question of the range of validity of this model can only be answered through
comparison with experimental data, which we will do later in the chapter.

We also note that the relative importance of the various diagrams is dependent on
the kinematics considered. The seagull diagram is the dominant contributor at small
photon energies and even around the delta region, when the photon has an energy in the
range 300 MeV to 400 MeV, the seagull diagram is comparable in its contribution to the
s-channel delta when the center of momentum pion angle is 8, = 90°, as we see in figure
4-25, and remains slightly greater than the s-channel delta when the pion angle is either
8, = 45° or 135°. The pion pole diagram can also be a significant contributor, as we see in
figure 4-20 for a pion center of momentum angle of 8, = 45", where the pion pole is
actually larger than the s-channel delta everywhere except around 400 MeV. Of course
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the situation is not that simple to interpret since we do not add the cross sections
calculated from the individual diagrams, but must add the amplitudes and then calculate
the observables. The interference between the various amplitudes thus makes it difficult
to give credit to a specific process or diagram for the results obtained. The best we can do
is try to include everything essential to the process until we have a complete description,

in agreement with experiment.
4.3 Behaviour Under Kinematic Changes

We now examine the question of how the model behaves under different kinematic
conditions.In particular we vary the incident photon energy while hoiding the pion and
proton angles constant and then hold the photon energy fixed while changing the proton
and pion angles. The pion wave function is distorted through the potential of Oset while
the proton distortion is the global A and E dependent fit of Cooper et al. [Co92]. The
bound state potential is the Woods-Saxon parametrization of table 3-1. We consider a
photon incident on a 12C nucleus and the residual 11C is left in its ground state.

First we look at the effect of increasing the energy of the ircident photon while
holding the angles at which we detect the proton and the pion constant at { 8, = 20°, @, =
180°) and ( 8, = 120°, @, = 180° ). The cross sections calculated for incident photon
energies ranging from E, = 220 MeV to E, = 420 MeV in steps of 40 MeV are shown in
figures 4-32 to 4-34. The dotted line in each graph shows the cross section calculated
from the Bom terms alone while the dashed line shows the cross section calculated from
the delta diagrams only. The solid line is the cross section calcuiated from the sum of all
the diagrams included in our model. In figure 4-32a) the incident photon energy is E, =
220 MeV and the cross section from the delta diagrams alone is only a few per cent of the
cross section calculated from the Born terms. Even at this relatively low energy however,
the interference between the Born and delta diagrams causes the total cross section to be
twenty to twenty-five per cent larger than the cross section due to the Born terms alone.
At an incident photon energy of Ey= 260 MeV ( figure 4-32b) the cross section calculated

from the delta diagrams alone is still only fifteen per cent of the cross section due to the
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Figure 4-32. Born and delta diagram contributions to the cross section. The

kinematic conditions are: ( Bp =20°, ¢,= 180° ) and ( 6 = 120°, ¢ = 0°).

a) photon energy is EY =220 MeV, b) photon energy is EY =260 MeV.
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Born terms but the total cross section is about fifty per cent larger than the cross section
calculated from the Born terms alone. At Ey = 300 MeV the delta cross section is up to
one third that of the Born cross section while the total cross section is almost double that
of the Born cross section. Past this photon energy the magnitude of the cross section
calculated from the delta diagrams continues to increase relative to the Born cross section
but the magnitude of the total cross section decreases relative to the Born cross section,
until at E, = 420 MeV the delta actually makes the total cross section slightly smaller than
the cross section calculated from the Born terms alone for some proton energies. The
contribution of the delta resonance to the total cross section is most important at a photon
energy of approximately E, = 300-350 MeV, but even at 220 MeV the effect should be
detectable experimentally, |

T2 calculation of the spin observables of equations (2-114) and (2-115), the proton
polarization and analyzing power respectively, involves a numerator calculated from the
t-matrix and a denominator which gives the cross section calculated from that t-matrix.
Calculation of spin observables in this fashion does not indicate the relative importance of
the various diagrams, so we take as the denominator the total cross section calculated
from the sum of all the contributing diagrams. This provides us with an indication of the
relative importance of the terms we are trying to compare.

In figures 4-35 to 4-40 we show the polarization of the final proton and the
analyzing power for six incident photon energies covering the range E, =220 MeV to
E, =420 MeV in steps of 40 MeV. The delta terms by themselves contribute only
marginally to the polarization of the proton and the analyzing power at incident photon
energies of E, = 220 and 260 MeV, figures 4-35 and 4-36. At E, = 300 MeV ( figure 4-37
) the proton polarization calculated from the Born terms is generally slightly negative and
the addition of the delta diagrams brings the polarization to a positive value between 0.1
and 0.2. At Ey= 340, 380 and 420 MeV, figures 4-38, 4-39 and 4-40, the proton
polarization shows the most sensitivity to the addition of the delta. For these energies the
delta diagrams can contribute to a proton polarization of more than 0.3, Using the Born
terms only results in the proton polarization being generally small and negative over the
photon energy range from 220 MeV to 420 MeV, with a rapid change as the momentum

transfer to the nucleus passes through zero. The delta contribution to the polarization
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becomes very important above 300 MeV. It must be noted that the polarization calculated
from the delta diagrams or the Born terms alone is quite small and it is the interfercnce
between the Born and delta diagrams which produces the bulk of the protons polarization.
The analyzing power is also affected by the delta diagrams but the effect is not as
noticeable as for the polarization.

Now we consider the effect of changing the angles of the detected pion and proton
while fixing the incident photon energy at E, = 380 MeV.

The cross sections are largest for forward proton angles, either 20° or 40°, with
pions away from the z-axis, in the range 60° to 120°. The cross section peaks for these
angles lie in the range 0.4 to 0.7 pb/srsrtMeV. For larger proton angles the peak cross
sections diminish steadily, by roughly a factor of two for every 20° increase in the proton
angle, to 0.04 pub/srsrtMeV at 8, = 120° with 6, = 20°. In figures 4-41 to 4-46 we show
theoretical predictions for the observables in a number of cases for which the cross
sections are larger than 0.2 pb/srsrtMeV, for three forward proton angles 6, = 20°, 40°
and 60°. The cross sections are shown in figures 4-41, 4-43 and 4-45 for the pion angles
which have cross sections larger than 0.2 pb/srstMeV. When the proton angle is the most
forward at 6, = 20" the peak cross sections are larger than 0.6 pb/srsrtMeV for two pion
angles 8, = 80°, 100°. When the energy of the detected proton is in the range T, = 50
MeV to 175 MeV, where the cross section should be measurable, the momentum transfer
covers the range from q = 1 fm-! to 1.4 fm-!. The polarization of the final proton ( figure
4-42a ) is ac much a 0.5, while the analyzing power ( figure 4-42b ) goes up to 0.3. Note
that the low energy peaks are due to the vanishingly small cross section and are of no
practical consequence.

When the proton angle is increased by 20° to 8, = 40° ( figure 4-43a ), we find 2
very wide range of pion angles for which the cross section is greater than 0.2 pb/srsrtMeV.
In fact when the pion angle lies in the range 8, = 40° to 120° the peak cross sections lie
between 0.3 and 0.45 pb/srstMeV. The range of momentum transfer covered here ( figure
4-43b ) is similar to that of the previous proton angle, going from almost zero to 1.4 fm-L.
The polarization of the final proton ( figure 4-44a ) now goes up to 0.7 with most of the
values lying around 0.4 to 0.5. The analyzing power ( figure 4-44b ) is as much as 0.5
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with most of the values in the range 0.1 to 0.3.

Increasing the proton angle again to 6, = 60" we see that the range of pion angles for
which we have a cross section larger than 0.2 pb/srsrMeV has narrowed considerably so
that for pions with angles in the range 8, = 40° to 80° we have cross section peaks in the
range 0.2 to 0.3 ub/srsrMeV. Here the range of momentum transfer ( figure 4-45b ) has
narrowed slightly to lie between 0.2 and 1.3 fm-!. The final proton polarization lies in the
range 0.4 to 0.6, while the analyzing power ( figure 4-46b ) is between 0.3 and 0.6.

Here we see that we can find situations where the cross section is measurable ( cross
sections as small as 0.1 ub/srstMeV have been measured at the Tomsk synchrotron
[GS79a, AG90] ) over a fairly large range of proton and pion angles. The angles are such
that the detectors would not interfere with the beam. The range of momentum transfer
explored is from 0 fm-! to about 1.4 fm-!, a very nice complement to the high momentum
transfer reactions such as (v, p ) and ( p, & ), which look at momentum transfers of 2 fm-!
or more. The polarization of the final proton and the analyzing power due to a linearly
polarized incident photon have values up to 0.6, which should be measurable at the new
generation of high duty-factor electron accelerators. With these ne.. machines we could
perhaps even measure cross sections an order of magnitude smaller than those discussed
here expanding further the kinematic range which could be explored.

4.4 Comparison With Experimental Data

We compare the results of this model with the data available from the three
experiments which have studied negative pion photoproduction on a nucleus; two

expernnents performed at Tomsk and one at MIT.

4.4.1 The Tonsk 1979 Experiment

LV. Glavanakov and V.N. Stibunov reported a measurement of differential cross
section for the reaction 12C(y, =~ p }!'C in 1979 [GS79]. The proton and pion were
detected in a coplanar geometry with the laboratory angle pairs ( 6, = 20°, ¢p = 180° ) and

(8, = 120°, ¢, = 0°) in our coordinate system. They didn’t have sufficient energy
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resolution to discern the final state of the residual nucleus so they divided the data into
two ranges of residual nucleus excitation energy: 0-10 MeV and 10-40 MeV. The 0-10
MeV data were interpreted as corresponding to states arising from the removal of a 1psp
neutron and mostly leaving the residual nucleus in its ground state, while the 10-40 MeV
data correspond to states arising from the removal of a 1s,,, neutron from the target
nucleus, leaving a clean 1s,;, hole for the most part. The data for an incident photon
energy of E‘Y = 380 MeV were presented again by Glavanakov in 1989 [GI89]. We read
the data from figure 4 of the 1989 paper. The data from the low excitation energy case
( knockout of a p-shell neutron ) changed slightly between the two papers without any
explanation.

Figure 4-47 shows the data from [G189] in which the nucleus is { mostly ) left in the
ground state when a 1ps/; neutron is knocked out of the nucleus. The curve is the result of
our Dirac based DW calculation. The proton is distorted with the A and E dependent
potential of Cooper et al. {C092] while the pion distortion is that of Oset et al. The
calculation shows the symmetry in the momentum transfer which we would expect if we
were simply taking the Fourier transform of the bound state wave function as in the PW
calculation. The DW calculation reduces the cross section from the plane wave value by a
factor of two, as shown in figure 4-2, and shifts the minimum and maxima to higher
proton energies by 10 MeV without changing the relative size of the peaks appreciably.
The factor of three difference in the magnitude of the two peaks is not easy to understand
f-om our model. Glavanakov and Stibunov [GS79] did a nonrelativistic impulse
approximation calculation, in which proton and pion distortions were included in the
eikonal approximation and the bound states were described by harmonic oscillator wave
functions. They concluded that the strong energy dependence of the pion-nucleus and
proton-nucleus interactions is responsible for producing the asymmetry in the cross
section, an effect which is not as prominent in the present DW model.

Figure 4-48 shows the data of Glavanakov and Stibunov [GS79] for the case in
which the residual nucleus is ( mostly ) left in an excited state resulting from the removal
of a 1s,, neutron. We could not find a precise value for the separation energy of the

neutron so we used E; = 35 MeV, which corresponds to the separation energy of the 1p3/;
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neutron ( 18.721 MeV ) plus an excitation energy, to move a 1s;,, neutron to the 1p;,
level, of approximately 16 MeV. The dashed curve is the PW calculation while the solid
curve has the same proton and pion distortions that we used in figure 4-47.

Our description of the data for knockout of both the s- and p-shell neutron is not as
good as that obtained by Glavanakov and Stibunov [GS79] or by Glavanakov [GI89]. It
should be pointed out that our calculations contain no parameters which we adjust to
improve the description of the data. In particular we can not understand the asymmetry in
the cross section data for the knockout of a Ips;, neutron, The DW calculations for both
the ground state ( figure 4-47 ) and the excited state ( figure 4-438 ) also seem to be shifted
toward higher proton energies by abaut 10 MeV relative to the data, another effect that
we have no explanation for. The dependence of the cross section for the knockout of a
151, neutron on the binding energy is shown in figure 4-49. The description of the data

would be improved by using a slightly higher separation energy.

4.4.2 The Tomsk 1990 Experiment

P.S. Anan’in and L.V, Glavanakov recently reported the results of another pion
photoproduction experiment on 12C [AG90], in which the angle of the detected proton
was changed from the previous experiment to (8, = 40°, ¢, = 180" ), while the pion angle
was kept at the same value as the previous experiment, namely (8, = 120°, ¢, = 0" ) in
our coordinate system. This changes the range of momentum transfers covered in the
experiment to higher values than examined previously. Note that they did not have the
energy resolution to detect the final state of the residual nucleus so they assumed that the
11C nucleus was in its ground state, The relevant kinematic quantities are shown in figure
4-50. The momentur transfer, shown in figure 4-50b), lies in the range 0.8 fm-! to 1.6
fm-L.

~ Figure 4-51 shows data at an incident photon energy of E, = 340 23 MeV. The
dashed curve is the PW calculation, and the solid curve has the global A and E dependent
proton distortions while the pion distortions are those of Oset et al. These data have very
small error bars and the DW calculation describes the data quite well. The nonrelativistic

calculation of Glavanakov [G189] yielded a plane wave calculation a few per cent larger

-135-



1.25 Y ' T .
1.00 } Es =35 MeV
Es = 39 MeV
*5 0.75 f
]
g
£ 050 }
025 t
0 i 1 t
50 75 100 125 150 175

proton kinetic energy (MeV)
* Cross section = dcs/dQ}_chde:‘.p (ub/srsrMeV)

Figure 4-49. Dependence of the cross section on the separation energy of the
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than our PW ( dashed curve ) of figure 4-51, while his distorted wave calculation yielded
a curve roughly twenty per cent smaller than our DW calculation ( solid curve ), and
passing below all the data. The distortion of the nonrelativistic final state wave functions
is included through an optical potential in the eikonal approximation. The pion potential
is then of the s-wave form of the Laget potential, while the nonrelativistic proton potential
is a simple Woods-Saxon. These potentials do not provide a good a description of elastic
scattering as the potentials which we use in our model ( see for example figure 3-10 to
compare results for the pion potentials ).

The bulk of the data from this experiment were reported for fixed energy of the final
state pion. We show the momentum transfer as a function of proton energy for the ten
pion energies for which the data are reported in figure 4-52. The momentum transfer here
covers the range 0.55 fm-1 to 1.5 fm-l. The pion kinetic energy is fixed so the energy of
the photon must change to allow the proton energy to change. In figure 4-53 we show the
energy of the incident photon as a function of the proton kinetic energy for all the pion
energies. The pion energies are incremented in roughly 10 MeV steps and the photon
energies show parallel trajectories for all ten pion energies, covering a photon energy
range of 200 MeV to 450 MeV.

Figures 4-54 10 4-58 show the cross sections calculated for each of the ten pion
energies for which data are reported. The dashed curves are the PW calculations and the
solid curves are the DW calculations. The quality of agreement with data overall is
difficult to judge for these data due to the large error bars and the high degree of scatter in
the data points. The PW calculation for a pion kinetic energy of T, = 33.2 MeV, shown in
figure 4-54, passes through the error bars of 9 out of 13 points, while the DW calculation
passes through 7. The calculations seem to have a reasonable shape, but it is difficult to
say. The next three graphs, for pion kinetic energies of T, = 44.3 MeV, 549 MeV and
65.5 MeV, have the data roughly a factor of two above the DW calculation, and even
slightly above the plane wave calculation. Examination of figure 4-53 shows that the
momentum transfer where the data has the largest value of the cross section for these pion
energies, at a proton kinetic energy of 60 MeV, is in the range 0.6 fm-! to 0.7 fm-!. This is
the lowest momentum transfer examined in this data set.

The last six graphs have the PW calculation above most of the data while the DW
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Figure 4-52. Momentum transfer as a function of proton kinetic energy for
different pion kinetic energies corresponding to the data sets of [AG90]. The
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Figure 4-53. Incident photon energy as a function of proton kinetic energy for
different pion kinetic energies corresponding to the data sets of [AG90). The

kinematic conditions are ( ep =40° ¢, = 180° ) and ( 6 = 120°, 9 = 0°).
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Figure 4-54. Cross section versus proton kinetic energy with pion kinetic energy
held constant at a) Tu= 33.2 MeV and b) Tn-- 44.3 MeV. The kinematic conditions are
(8 = 40°, Q,= 180° ) and ( 6 = 120°% @_= 0°). Dashed curves - proton and

pion plane waves. Solid curves - pion distorted by the potential of Oset and proton
distoried by the global E and A dependent potential. The data points are from [AG90).
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Figure 4-55. Cross section versus proton kinetic energy with pion kinetic energy
held constant at a) Tu= 549 MeV and b) Tn= 65.5 MeV. The kinematic conditions are
C 40°, 9, = 180°)and (8_=120°, ¢_=0"). Dashed curves - proton and pion

plane waves. Solid curves - pion distorted by the potential of Oset and proton
distorted by the global E and A dependent potential. The data points are from [AG90).
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Figure 4-56. Cross section versus proton kinetic energy with pion kinetic energy
held constant at a) sz 76.3 MeV and b) Tn= 87.2 MeV. The kinematic conditions are
CE 40°, ¢, = 180°) and (6_=120°,¢_=0"). Dashed curves - proton and pion

plane waves. Solid curves - pion distorted by the potential of Oset and proton
distorted by the global E and A dependent potential. The data points are from [AG90].
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Figure 4-57. Cross section versus proton kinetic energy with pion kinetic energy
held constant at a) Tu= 97.7 MeV and b) Tn= 107.9 MeV. The kinematic conditions

are (0 = 40°, ¢, = 180°) and (6_= 120°, @_=0"). Dashed curves - proton and pion

plane waves. Solid curves - pion distorted by the potential of Oset and proton
distorted by the global E and A dependent potential. The data points are from [AG90].
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Figure 4-58. Cross section versus proton kinetic energy with pion kinetic energy
held fixed at a) Tn= 118.4 MeV and b) Tn= 129.5 MeV. The kinematic conditions are

( Bp = 40°, Q,= 180° ) and ( 6 = 120°, ¢ = 0° ). Dashed curves - proton and pion

plane waves. Solid curves - pion distorted by the potential of Oset and proton
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calculation passes through the data in an average sort of way which is difficult to make
conclusions about. The shapes of the curves are not unreasonable, showing a weak
maximum around a proton kinetic energy of 60 to 80 MeV which seems consistent with
the data.

The data from this experiment were compared to the mode! of Glavanakov [G189].
His plane wave impulse approximation calculation yields cross sections which are larger
than our PW calculations by a factor of about 1.8 for small pion kinetic energies, and
decreasing to be smaller than our PW calculations by a factor of (.9 for the largest pion
energy T, = 129.5 MeV. In addition his distorted wave results are larger than our DW
calculation by a factor of about 1.4 for the small pion energies, and diminish relative to
our model until his results are a factor of 0.6 smaller than ours at the largest pion energy.
The difference between plane and distorted wave results is about forty to fifty per cent
larger in the nonrelativistic analysis of Glavanakov than in our model, indicating that his
model is more sensitive to distortions of the pion and proton than ours,

Anan’in and Glavanakov have made the statement [AG90] "At a photon energy ~
300 MeV the main mechanism of production of pionsin [y +n = p + %~ ] is
photoexcitation of the A(1232) resonance.” An examination of appendix F, in which we
discuss the free reaction, shows that this is not true. The delta diagrams do not contribute
more to the cross section than the Born terms do. This behaviour is carried over to the
kinematically more complicated reaction on a nucleus, and we have not seen a situation in
negative pion photoproduction where the cross section for the reaction in currently
measurable, and the major contribution comes from the excitation of the delta.

4.4.3 The MIT Experiment

We now consider the results of the pion photoproduction experiment performed by
the group at MIT [Ph89, Ph92] on 160. They state several times in their paper [Ph92] that
they have measured an exclusive reaction, but in the same paper they state that they were
not able to resolve the grcund state and the 6.2 MeV excited state in the residual 150
nucleus.
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Figure 4-59. Kinematics for the MIT experiment.

The kinematics for the MIT experiment 160( y, == p )1°0 [Ph92] are shown in figure
4-59. The mementum directions of the photon and pion define the x-z plane. The protons
are detected in a vertical array of plastic scintillator counter telescopes located at an angle
o from the z-axis in the x-z plane and the cross section is measered as a function of the
out-of-plane-angle Bp, the angle from the x-z plane to the proton momentum.
Measurements were taken at two pion angles with several proton out-of-plane angles B
measured for the proton at each pion angle. One pion angle, 6, = 64°, corresponds to a
center of momentum pion angle of 90° in the elementary reaction, while the other pion
angle, 8, = 120°, corresponds to a center of momentum pion angle of 135° in the
elementary process. For 0, = 64 ( o, = 40° ) the pion spectrometer (Bigbite) was able to
detect pions with momenta in the range [H092)

195 MeV/ic<p, <281 MeVic at 6,=64"
which translates to a pion kinetic energy range of
100 MeV<T <174MeV at 0,=64".
The kinematically allowed proton energies from this range of pion energies then vary

slightly with the out-of-plane angle and we have the extreme values
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94 MeV 2T, 220MeV  at  0,=64", Bp=0"
92MeV2T,219MeV at 6;= 64°, B, = 40"
For the other pion angle 8, = 120° (o, = 20° ), we have similar limitations on the pion
momentum
144 MeV/c <p, <207 MeV/ic  at  Op=120°
which we translate as before to a pion kinetic energy range of
61 MeV<T,<110MeV at 6,=120"
The kinematically allowed proton energies from this range of pion energies again vary
slightly with the out-of-plane angle and we have the extreme values
134 MeV 2T, 284 MeV  at B;= 120°, B, =0
130MeV 2T, 281 MeV at ;= 120°, B, = 40°.
The proton detectors were sensitive to protons with kinetic energy in the range [Ph89]
30 M:V ST, <110 MeV
and the range of energies in which correlated p-m pairs are detectable is limited to the
overlapping energy region of the two detectors.
The bound state is described with a Woods-Saxon potential with the parameters
shown in table 4-1, obtained from the Ph.D. thesis of Lotz [Lo89].

Vector potential:  V, =367.37 MeV  1,= 1.0739 fm  a, =0.5728 fm
Scalar potential:  V=-451.13MeV r,=10734fm a;= 0.6258 fm

Table 4-1. Woods-Saxon binding potential parameters for 160

The parameters for this binding potential are determined from a search algorithm which
gives the best fit to (¥, p) data and describes the 1p,s proton. The coefficient of
fractior -l parentage of the bound state wave function was taken to be 1.0 so the 1pyy;
proton was assumed to be in an ideal shell model state, an approximation which should be
good for the doubly magic 160 nucleus. We use these parameters and adjust the depth of
the scalar potential slightly in order to reproduce the separation energy of the 1py,;
neutron E, = 15.664 MeV [Aj82], and get the scalar depth V, = —451.534 MeV. The
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proton wave function is distorted by the global A and E dependent potential of Cooper et
al. [C092] while the pion wave function is distorted by the potential of Oset et al [Ga88,
Ni92].

The triple differential cross section as a function of proton kinetic energy for four
proton out-of-plane angles, at the backward pion angle 6, = 120°, is shown in figure 4-60.
The dip in the curve for 3, = 0° (solid ) at T, = 110 MeV corresponds to the point where
the momentum transfer goes to zero as shown in figure 4-61. At this point the momentum
space wave function for the 1p,;, neutron is zero just like the 1p3/, neutron wave function
in 12C shown in figure 3-6. At Bp = 10° ( small dash - large dash curve ) the momentum
transfer over the observable region has increased to roughly 0.5 fm-1, moving toward the
peak of the bound state wave function. The cross section at this point has a bell shape
which it maintains through larger values of the out-of-plane angle, and hence momentum
transfer, while the magnitude of the peak cross section decreases by nearly a factor of ten
between B, = 10° and f, = 30",

The vertical dotted lines indicate the minimum and maximum kinetic energies of
protons detectable by the telescope array. The vertical dashed lines indicate the minimum
and maximum proton kinetic energies corresponding to the limits of pion momentum
detectable by the MIT pion spectrometer Bigbite. The overlapping range, indicated by the
arrow, is the range of proton kinetic energies over which correlated pion-proton pairs are
detectable by their apparatus. The lower limit is set by the lower limit of the pion detector
and the upper limit is defined by the upper limit of the proton array.

Figure 4-62 shows the cross section as a function of proton kinetic energy for four
proton out-of-plane angles at the forward pion angle 6 = 64°. The shoulder at T, = 40
MeV occurs because of the small-momentum behaviour of the bound state wave function,
as we have seen before. The vertical dotted lines in the figure indicate the limits of proton
momentum from the proton detector while the vertical dashed lines indicate the limits
from the pion detector. The range of detectable correlated #-p pairs is indicated by the
horizontal arrow. Here the lower limit is set by the lower limit of the proton detector
while the upper limit is defined by the upper limit of the pion spectrometer.

The momentum transfer corresponding to the cross section curves for the out-of-
plane angles of figure 4-62, is shown in figure 4-63 along with the limits imposed by the
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Figure 4-60. Cross section versus proton kinetic energy for four out-of-plane angles.
The kinematic conditions are E‘r =350 MeV., (0, = 20°, B, varies ) and

(8_= 120°, ¢ = 0°). Pion distorted by the potential of Oset and proton distorted
by the global E and A dependent potential. Curves as indicated in the legend for
out-of-plane angles: |3p =0° 10°20° 30°. Vertical dotted lines - proton detector

limits and vertical dashed lines - proton energy range determined by pion detector
limits,
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Figure 4-61. Change in momentum transfer to the nucleus as the out of plane
angle is varied. The kinematic conditions are EY =350 MeV,,

( ap =20°, ﬂp varies ) and ( G?t = 120°, @ = 0°). Curves as indicated in the

legend for out-of-plane angles: Bp =0° 10°, 20°, 30°,

Vertical dotted lines - proton detector limits and vertical dashed lines - proton
energy range determined by pion detector limits.
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Figure 4-62. Cross section versus proton kinetic energy for four out-of-plane angles.
The kinematic conditions are E‘r =350 MeV., ( @ = 40°, BP varies ) and

(8, = 64°, ¢ = 0° ). Pion distorted by the potential of Oset and proton distorted by

the global E and A dependent potential. Curves are as indicated in the legend for
proton out-of-plane angels: Bp =(0°, 10°, 20°, 30°. Vertical dotted lines - proton

detector limits and vertical dashed lines - proton energy range set by pion detector
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Figure 4-63. Change in momentum transfer to the nucleus as the out of plane
angle is varied. The kinematic conditions are E_Y =350 MeV,,

(@ = 40°, B, varies ) and (6, = 64°, @_=0°). Curves are as indicated in the

legend for proton out-of-plane angles: Bp = 0°, 10°, 20° 30°.
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energy limits defined by pion detector limits.
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detectors. The momentum transfer varies by 0.5 fm-! or less over the detectable range of
proton energies for each of the out-of-plane angles in both figure 4-61 and 4-63.

The spin observables for the out-of-plane cross sections we shown in figures 4-64
and 4-65. The polarization shown in figure 4-64a) shows a rapid change as the
momentum transfer passes through zero for the case when the proton is detected in the
plane, while the cases which are out of the plane follow each other quite closely. The
rapid change through the zero of momentum transfer is also apparent in the analyzing
power calculation of figure 4-64b). The analyzing power, unlike the polarization, does
show a fairly strong variation with the out-of-plane angle, changing by up to forty per
cent when beta changes from 0° to 30°. We see essentially the same behaviour in figure 4-
65. The polarization here doesn’t vary much with out-of-plane angle, while for proton
kinetic energies less than 50 MeV the analyzing power shows a fairly strong variation
with out-of-plane angle.

In figure 4-66 we compare the experimental data from MIT [Ph92] for the forward
pion angle 6, = 64°, with our calculations. the solid curve is the result of integrating triple
cross sections such as those shown in figure 4-63 over the allowed range of proton
energies indicated by the arrow. Similarly in figure 4-67 we compare the data at the
backward pion angle 6, = 120° with the cross sections obtained by integrating the triple
cross sections of figure 4-60 over the allowed proton kinetic energy range. The
calculation at the forward pion angle is two to three times larger than the data while for
the backward angle the calculations are in relatively better agreement with the data. At
neither pion angle does the shape of the data set agree with that of the calculation. The
data are peaked at B, = 0° and fall off with increasing B, while the calculation has peaks
at out-of-plane angles of Bp = 11°-12° around a minimum at Bp = (°, The shape of the
calculated curve is readily understandable by looking at the triple cross sections of figures
4-60 and 4-63. The integrated cross section for B, = 0° is smaller than that at Bp = 10°
because at small B, the shape of the triple cross section is strongly affected by the low
momentum behaviour of the bound state wave function.

The dotted curves of figures 4-66 and 4-67 show the cross section calculated from

the Bon terms only, while the dashed lines are the cross section calculated from the delta
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Figure 4-64. Change in spin observables as the out-of-plane angle § is varied.
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A dependent potential. Lines as for figure 4-60.
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150

Pion distorted by the potential of Oset and proton distorted by the global E and
A dependent potential. Lines as for figure 4-63.
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Figure 4-66. Cross section versus proton out-of-piane angle. The kinematic
conditions are l':'T =350 MeV., ( @ = 40°, Bp varies ) and (8 _= 64°, 9 = 0%).

Pion distorted by the potential of Oset and proton distorted by the global E and
A dependent potential. Data points are from [Ph92). Dotted line - Born terms
only. Dashed line - delta diagrams only. Solid line - sum of all diagrams.
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Figure 4-67. Cross section versus proton out-of-plane angle. The kinematic

conditions are ET =350 MeV., (o = 20°, Bp varies ) and (8_= 120°, ¢_= 0°).

Pion distorted by the potential of Oset and proton distorted by the global E and
A dependent potential, Data points are from [Ph92]. Dotted line - Bom terms
only. Dashed line - delta diagrams only. Solid line - sum of all diagrams.
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diagrams only. Note that the som «rms are the major contributors in both calculations,
but at the forward pion angle the magnitude of the delta cross section is two thirds that of
the Born cross section while the cross section calculated from: * :um of all the diagrams
i5 twice that of the Born cross section. At the backward pion angle the magnitude of the
delta cross section is slightly less than one half that of the Born cross section and the total
cross section is about 1.5 times that of the Born cross section. The delta diagrams are
larger contributors to the cross section at the forward pion angle than at the backward
angle, and the delta contribution is certainly important to obtain the final cross section but
the delta is not the most important contributor here. This result is contrary to the analysis
of Pham [Ph89], and we next examine their analysis in more detail.

The dotted curve of figurs 4-68 shows the factorized nonrelativistic distorted wave
calculation of Pham for the backward pion angle, which we read from figure 5.10 of his
thesis [Ph89]. The triple differential cross section was integrated over the momentum
acceptance of the pion detector ( see page 170 of his thesis [Ph89], or the model
calculations section of the paper [Ph92] ), corresponding to integration between the
dashed vertical lines of figure 4-60. The dashed curve of figure 4-68 shows our
calculation using the momentum limits of the pion detector. The solid curve of figure 4-
68 shows the result of our calculation when we use the integration limits as set by the
combination of detectors. This reduces the cross section by about a factor of two because
the proton detector lowers the upper limit of detectable proton energy from 130 MeV to
110 MeV as shown in figure 4-60, resulting in a significant reduction of the total cross
section.

In figure 4-69 we show Pham’s calculation for the forward pion angle, from figure
59 of his thesis. Again the integration limits are set by the pion detector only,
corresponding to integration between the vertical dashed lines of figure 4-63. The dashed
curve shows our calculations with limits set by the pion detector, whik ine solid curve
shows the calculations using the limits set by both detectors. In thiz case the reduction in
the cross section is only a few per cent because the proton detector changes the lower
limit of the detectable proton energy from 20 MeV to 30 MeV, and the cross section in
this range is quite small as can be seen in figure 4-63.

In order to gauge the importance of the delta isobar in the reaction, Pham [Ph89]
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Figure 4-68. DW calculations with different integration limits. The kinematic
conditions are E = 350 MeV.. (o = 20°, B, varies jand (0 = 120% ¢_=0°).

Pion and proton distorted waves.

Dotted line - Pham’s factorized DWIA calculation.

Dashed line - Our DW calculation with the pion distorted by the potential of
Oset, and the proton distorted by the global E and A dependent potential.
Integration limits set by pion and proton detectors. Solid line - Qur calculation
with integration limits set by the pion detector alone.
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Figure 4-69. DW calculations with different integravion limits. The kinematic
conditions are E_f: 350 MeV., ( o = 40°, Bp varies ) and (8 _= 64°, ¢ = 0°).

Pion and proton distorted waves,

Dotted line - Pham’s factorized DWIA calculation.

Dashed line - Our DW calculation with the pion distorted by the potential of
Oset and the proton distorted by the global E and A dependent potential.
Integration limits set by pion and proton detectors. Solid line - Our calculation
with integration limits set by the pion detector alone.
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calculated the cross secticn without the delta diagrams { Born terms only ), and again with
all the diagrams except the seagull. The cross section for the backward pion angle is
shown in figure 4-70. The dashed line shows the cross section calculated with the Born
diagrams only while the dotted line is the cross section calculated from the delta diagrams
only. The solid line is the cross section calculated from the sum of all the diagrams. The
cross section calculated from the sum of all the diagrams except the seagull is the dot-
dashed line. Pham noted that the calculation with no delta ( dashed ) is larger than the
calculation with no seaguil ( dot-dashed } and concluded that the seagull contribution is
the most important at this angle.

We can take a closer look at the contributions of the various diagrams by calculating
the cross section from each diagram individually, which we have done in figure 4-71. The
seagull diagram gives the largest cross section while the s-channel delta gives a cross
section about two thirds of the magnitude of the seagull. The proton pole and the pion
pole give cross sections roughly one quarter of that of the seagull, while the neutron pole
and the u-channel delta give cross sections less than ten per cent of that of the seaguil. So
it seems that the seagull contribution is the most important at this angle.

The cross section calculated for the forward pion angle are shown in figure 4-72,
and the curves are labelled as they are in figure 4-70. Here the calculation with no seagull
( dot-dashed ) is larger than the calculation with no delta ( dashed ), which led Pham to
conclude that the delta contribution is the most important at this angle. This would be true
if we only had contributions from the seagull and the delta.

Figure 4-73 shows the cross section calculated for each of the contributing diagrams
at the forward pion angle. The seagull diagram gives the largest cross section, as it did for
the backward pion angle and the s-channel delta gives a cross section which has increased
to about 75% of the seagull cross section. The cross section due to the pion pole is now
almost two-thirds of the seagull cross section, and is much more important than it was at
the backward pion angle. The other diagrams give cross sections that are about ten per
cent or less of the seagull cross section. Note that for both the forward and backward pion
angles, the cross section calculated from the Born terms alone ( dashed ) is larger than the
cross section calculated from the delta diagrams alone ( dotted ), and while the delta

contribution is larger relative to the Born contribution at the forward pion angle, the
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Figure 4-70. Cross section versus proton out-of-plane angle. The kinematic

conditions are 13Y =350 MeV., ( o = 20°, |3p varies ) and (8 _= 120°, 9 = 0°).
Pion distorted by the potential of Oset and proton distorted by the global E and

A dependent potential. Dashed Line - Born terms only. Dotted line

diagrams only. Solid line - sum of all diagrams. Dot-dashed line - all diagrams

except seagull.
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Figure 4-71. Cross section calculated from the s-matrix of the individual
diagrams. The kinematic conditions are EY =350 MeV., ( a = 20°, Bp varies )

and (8_=120°,¢_=0"). Pion distorted by the potential of Oset and proton

distorted by the global E and A dependent potential. The curves are discussed in
the text.
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Figure 4-72. Cross section versus proton out-of-plane angle. The kinematic
conditions are E_= 350 MeV., ( o = 40°, BP varies ) and (6_= 64°, @ = 0%).
Pion distorted by the potential of Oset and proton distorted by the global E and
A-dependent potential. Dashed line - Born terms only. Dotted line - delta

diagrams only. Solid line - sum of all diagrams. Dot-dashed line - all diagrams
except seagull,
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Figure 4-73. Cross section calculated from the s-matrix of the individual
diagrams.The kinematic conditions are Ev =350 MeV., (0, = 40°, Bp varies )

and (8_= 64°, ¢ = 0°). Pion distorted by the potential of Oset and proton

distorted by the global E and A dependent potential.
The curves are discussed in the text.
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statement that the delta is ‘the most important at this angle’ is not supported. The reason
the cross section calculated with no seagull diagram is larger than that calculated for no
delta at the forward pion angle, is that the pion pole diagram has become an important
contributor to the cross section and interferes with the the delta and the seagull in such a
way that the pion pole plus the delta yields a larger cross section than the pion pole plus
the seagull ( ignoring the other three diagrams ) for the forward pion angle.

We therefore find that at the backward pion angle our calculation is close to the
data, while at the forward pion angle our calculation is a factor of two to three above the
data. We have no explanation for the discrepancy but do make two observations about the
data.

First both measurements were performed near free kinematics where the elementary
process occurring on a single bound neutron should be a good approximation. Qur model
yields triple differential cross sections with peaks of about 0.5 pb/srstMeV for both pion
angles within the range of proton energies allowed by the detectors. Integration over the
allowed range results in the integrated cross section being about twice as large for the
forward pion angle as the backward angle. The data however are twice as large for the
backward angle as for the forward. This would seem t0 imply some mechanism for the
forward angle, corresponding to a pion center of momentum angle of 90° in the free
process, which reduces the cross section relative to the DW cross section of our one
nucleon model. it might be argued that mechanisms involving the diagrams containing
propagating particles, such as non-locality and interaction in the propagators or the effects
of changing the A mass, could reduce the magnitude of the contribution of the
corresponding diagrams, but it is difficult to imagine that they could reduce the cross
section to the size of the cross section calculated from the seagull diagram alone, which is
what would be required. Alternatively, distortion effects of the proton and pion or
different prescriptions for the bound state wave function might be thought to affect the
seagull diagram as well as the other diagrams. These wave functions are obtained from
other sources, are very well determined and have no parameters which we can adjust in
order to improve the description of the data. Other reaction mechanisms would probably

increase the total cross section over that obtained from the one nucleon model, and so
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can't provide the necessary reduction.

Secondly, the cross section in the neighbourhood of zero momentum transfer must
be strongly affected by the behaviour of the momentum space bound state wave function,
an effect which is clear in our calculations but is not reflected in the data. As we have
seen, Glavanakov et al. have measured the pion photoproduction cross section from
carbon at 8, = 120° with 0, = 20° {GS79, Gi89], i.e. at the same angles as the MIT
experiment, although the Russian experiment had an incident photon energy of 380 MeV
instead of 350 MeV. Glavanakov et al. did observe the cross section becoming smail
when the momentum transfer became zero, consistent with the behaviour of our one
nucleon model. The MIT data provide no indication that the momentum dependence of
the p-shell neutron is affecting the cross section. The most noticeable etfect would come
in the backward pion angle data according to the one nucleon model, but these data have
very large error bars and conclusive statements are not possible.

We have obtained good agreement with the existing experimental data in some
cases, and in other cases the model disagrees with the data. The comparisons are not
convincing however due to the uncertainties in the data. The Tomsk data are not truly
exclusive as the final state of the residual nucleus could not be resolved, and the cross
sections contain some events in which the residual nucleus is left in an excited state.
These events were estimated to be less than twenty per cent of the total in the 1979
experiment [GS79a], and less than ten per cent in the 1990 experiment [AG90). The MIT
data are presented as exclusive data but they couldn’t resolve the ground state from the
6.2 MeV excited state, and the error bars are quite large due to the small number of events
recorded. We need high quality data, with a large number of recorded events and a well
resolved state of the final nucleus, before we can make any strong statements about the

Iimits of applicability of our model in this reaction.
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Chapter 5 - A One Nucleon Model for the Reaction A( 7+, yp)A-1

In the ( #*, Y p ) reaction, the incident positively charged ‘n interacts with a bound
neutron through some process denoted by the blob in figure 5-1. A proton and photon are
produced and are detected experimentally and the residual nucleus is left in a definite
state. We treat this reaction along the same lines as the (v, =~ p ) reaction discussed in
chapters 3 and 5. The wave functions for the initial neutron and final proton are, as
before, solutions of the Dirac equation with appropriate scalar and vector potentials; these
describe the interactions of the particles with the initial and final nuclei. The pion wave
function is a solution of the Klein-Gordon equation with an appropriate optical potential
for the pion-nucleus system. We include contributions to the interaction blob by the
diagrams shown in figure 5-2. The four diagram., 5-Za) to 5-2d), are the Born terms, and
the diagrams 5-2¢) and 5-2f) are the s-channel and u-channel A diagrams. Note that in
figure 5-2d) the photon can couple to the proton through both the electric charge and the
anomalous magnetic moment of the proton, while in figure 5-2c) the photon can only

couple to ...c neutron through the anomalous magnetic moment.

LS ¥
\\
LY
S
p
\\\
A A-1

Figure 5-1. The one nucleon model for A(®*,Yp JA-1
The lagrangian density we use is that described in chapter 3 for the pion

photoproducticn reaction. The difference between the two reactions is that we now have a

positive pion incident on the target, while the photon appears in the final state. This will
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Figure 5-2. Diagrams contributing to pion-induced photon production
on a nucleus. a-d) the Born terms, €) the s-channel A diagram, and
f) the u-channel A diagram.
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change some of the details of the calculations but the techniques are the same as we have
seen before. We will simply highlight the differences and quote the results leaving the

derivations to the interested reader.

5.1 The Reaction Amplitude

For the reaction A( n+, Yp JA-1 the initial state | i > contains a positively charged
pion and a nucleus with A nucleons, while the final state | f > contains a photon, a proton
ejected from the initial nucleus and a final nucleus with A-1 nucleons. In this one nucleon
model for (7+, ¥ p) we can write the initial and final states using creation and
annihilation operators as we did in chapter 3 for the (¥, ®~ p) reaction. We write the
initial state as {Ja71]:

i >=bi(Kr) X, (J.J5:MMplli, M d5,5 (TB) b0y, [ 01 > (5-1)
JaM3gl

where b,ﬂ(E,,) creates a positively charged pion with momentum Eﬂ while b} M, Creates a
bound nucleon with angular :nomentum Ji and projection Mg bound to the core I¢r>.
4153 g) is the coefficient of iractional parentage which we have seen in equation (2-17).

The final state is

| £ >= al(Ky) bl (Kp) | 0 > (5-2)

where a;('l'c.y) creates a photon with momentum _lEY and polarization p, b;‘,d{p) creates a
nucleon with momentum Ep and angular momentum projection s; while the state 1¢1}E'>
describes the residual nucleus with angular momentum J; and projection M;.

Using the interaction lagrangians (2-4) and (2-10), as well as the fields (2-20), (2-
21) and (2-22) we calculate the Fock space matrix elements. Then using the form of the
propagators as discussed in appendix B we can do the integration at one vertex. Finally
we do the time integration to leave a three dimensional space integral, and we have the s-

matrix in the form:

S =V ek (On) " B(Ep + By-Ep - Br) (50-71-)""
P

XY (I, JpsMs Mpll;, M; ) ¢3,4T5) 5-3)
JeMs

x § @xyl (K, %) Tt Wighy(X) Palkn, X) eikr X
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where the 4x4 matrix operator between the nucleon spinors is the sum of operators from
each of the contributing diagrams

Fiotal =2 T (5-4)
i

The I” matrices from the varnous diagrams are:

l_‘se“:guil =Yo Vs dp {(5-5)
g -k .
I-‘pmn =-2 'YO s ¥ with  k=kr-ky (5-6)
k% - m2
K+ :
[hroton = Yo £p S _mp vs Kr  with k=kp+ky (5-7

K m .
1_‘|;rm0n =- Z"p—'YO [ Ky, ép ] rn Ys Ky with k=kp+ Ky (5-8)

[Meutron = My [ k-\«, ép ] with k= kp —kn (5-9)
m
f NAfrcNA Pa + ma
Tas=—r—Y0 Y [ K ]
e e k“tp px — m% + 1mAl"A
x[gH - _'Y“YV"——('WPA ¥ PA)' PAP % 1k§ (5-10)
fina
Tay=— YNA InNA Pa +ma

3y my p —mA+imAFA

S o (FPR- Yol )~ —2—pAp1
x[k"{svp_kvtp]'ys

(5-11)

with pa = kp —Kkn
The momentum of the intermediate particle is calculated from the momeata of two of the

external particles as indicated in equations (5-5) to (5-11).

As in chapter 3, we must specify the wave functions describing the contineum and
bound nucleons as well as the initial state pion, if we wish to go further with our
calculation. We first A5 the calculation using plane waves for both the pion and the proton
and obtain an expression for the s-matrix which is straightforward to evaluate. We then
consider distorted waves for the pion -nd proton, which results in a more complicated
form for the s-matrix but in the absence of distorting potentials must yield the same
results as the plane wave calculation.
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5.2 Plane Waves

We neglect the final state interactions of the pion and proton with the final nucleus.

The pion wave function is a solution of the free Klein-Gordon equation and is simply
On(n, ) = eikn ¥ (5-12)
The positive energy solution of the free Dirac equation with spin projection s; and
momentum Ep is [BD64] written as in equation (2-91), while the bound state neutron
wave function is written in equation (2-93). We write the complex 4x4 operator I in
terms of complex 2x2 matrix operators as in equation (2-97) and some straightforward
aigebra yields for the s-matrix
Ep+m ; 1 ]¥
2B, 20n 20y

Sh =ﬁeaf’-:;(2n)"7’2 8( Ep + Ey—Eg—Eg)

X Y, (I JTp:My Mplli, M; ) 41,3,JB)
JsMp (5-13)

x | dxei@ ¥ { fp(r) <1/2,5¢ Tl Y M3 ) >

+igp® <2 sl Tl Y0, 5 >
where the momentum transfer to the nucleus is g = l_:.,r - E.,— Ep and we have defined the

2x2 mairices

ok ok
e=I +Ep+fnl"21 I“g=l"12+Ep+i] I (5-14}

This expression for the s-matrix is the same as equation (2-98), except for two small
changes. The photon and pion momenta have changed signs in the calculation of the
momentum transfer, and the pion and photon energies have changed signs in the delta
function. Both of these changes occur because the two reactions interchange the roles of
the pion and photon.

5.3 Distorted Waves

We now allow the pion to interact with the target nucleus, and the proton to interact
with the residual nucleus by introducing appropriate potentials into the wave equation
describing the motion of the particle. The proton is described by a solution of the Dirac
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equation with scalar and vector potentials as written in equation (2-100). The pion wave
function is expanded similarly as

Prlkn. X)=4n D il v () YIQ) Y (i) (5-15)
Lx Mx
In the limit that the pion potentials are zero the radial functions become exactly sphericai

Bessel functions and the pion wave function is exactly the plane wave function (5-12)
[Ja75]. The potentials describing proton and pion elastic scattering trom a nucleus are
discussed in chapter 4.

As before we choose the photon momentum to lie along the z-axis such that the
photon momentum vector is E«,: (0,0,ky). The details of the coordinate system are
shown in figure 5-3. For the case of coplanar geometry both the pion and proton momenta
lie in the first quadrant of the x-z plane so the azimuthal angles are zero. For non-coplanar
geometry we hold the pion momentum in the x-z plane and let the proton momentum
come out of the plane. The photon polarization vector has components in the x and y
directions as discussed on page 37. The photon is described by

e-ikeX =g ikyz

=VAT D iLv(2Ly+ 1)V L kyr) YO (Q)
Ly
Using these expansions for the wave functions describing the continuum particles, the

(5-16)

form (2-93) for the bound state wave function and writing the T" operator in terms of 2x2

complex matrices as in (2-97) the s-matrix can be written as
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X

Figure 5-3. Coordinate system for the reaction A( &', Yp )A-1
The z-axis is chosen along the photon momenturn and the pion
momentum lies in the first quadrant of the x-z plane.
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_ﬁ fn( EP+m
T mn E, on 0y

X Y, (I I5:Mp Mgll;, M; ) 95.3,(T)
JeMs

X Z i“’“L‘I'r(ﬂ,Y+1)”2
LILaL,

x 3 YMR,) Y (g (LodiM-s. 561, M)
M My

)2 8(E, + Ey- Eg — Ex)

x R Al T *e Lx ] (5-17)
{ i ek Ll II[MMBMqug

+ Rgg[ KKy L'TTL'Y] Ay

where the radial integrals are defined [with k = (L -J} (2T + l1)and L'=2J-L ] as
they were in chapter 3 equation (2-104), and the angular integrals are those of equation
(2-105). The differences between equations (2-103) and (5-17) are the change in sign of
the pion and photon energies in the delta function, and the change in sign of the pion and
photon angular momenta in the exponent of i. The latter change corresponds to the
change of signs of pion and photon momenta which we saw in the plane wave result (3-
13).

We calculate the energies and momenta of the final particles using the constraints
provided by conservation of energy and momentum. These are not enough to fix the
kinematics of the outgoing particles since the final state has three particles, so we set the
directions of two particles and the energy of one of the particles; the kinematics for the

reaction are then well determined.
5.4 Gauge invariance

We test for gauge invariance, as we did in section 2.5, by making the replacement
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[BD64]

Eup — Ky (5-18)
and if the calculation is gauge invariant the result will be zero. The anomalous magnetic
moment diagrams and the two diagrams due to the delta are all gauge invariant in both the
plane and distorted wave calcuiations.

The remaining diagrams have the photon coupling to a particle through the electric
charge. To check that the sum of the I" matrices for the three diagrams given in equations
(5-5), (5-6) and (5-7) is gauge invariant, make the substitution (5-18) into the sum as we
did in equation (2-110). We again find that in the plane wave approximation the
combination of the three Born terms is gauge invariant, but when the proton wave
function is a solution of an equation with potentials, the s-matrix is no longer gauge
invariant, and as before we continue on with a calculation that is gauge invariant in the

limit of vanishing potentials.
5.5 Observables for A{ tt, yp JA-1

Following section 2.6 we can obtain the expressions for the observables most easily

by writing the s-matrix in a more concise form

12 fn Ep+m 12 50 Eno
w o (B EpE,) ot By FeEe) (5-19)

x ¥ (3575:Ms Malli, M) 91,5.08) Z gt
JaMs

where Z hfl'f-' is a function of the polarization of the photon, the spin projection of the final
proton and the projection of the nuclear bound state. Z h;’f contains the radial and angular

integrals and the sums over all the angular momenta. The exact form for Z ﬁa&-‘ can be
obtained by comparing with (5-13) for the plane wave calculation or (5-17) for the
distorted wave calculation.

The cross section is then calculated through the usual procedure [BD64] of squaring
the s-matrix to get a transition probability, multiplying by the number of available final
states and dividing by the incident flux. We finally average over initial spin projections
and sum over final spin projections to get ( appendix D)
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dg =3 (475)2 ﬂ + 2 pP :qJ Jf(]B) \Z SrE..l.. 5.20
40y 4, dE, (Ep ) By Z w520

5r &
The polarization of the final proton is the same as it was in chapter 3. except for the

slight change of notation of the z-matrix, namely
el ng
m 3 zilzin

p=_g_ M (5-21)

3 zfld

seE Mg

5.6 Results for the A( rtt, v p JA-1 Reaction

There are currently no published data for this reaction. There has been an
experiment at TRIUMF to perform a measurement on 16Q, experiment 550. Data was
taken at two incident pion energies, T, = 163.7 MeV and Ty, = 218.6 MeV. At each of
these pion energies data was taken at two photon angles, each with four proton angles.

The angles and energies for which triple differential cross section data will become
available in the future are:

Tr=163.7 MeV:
0,=774" with  8,=157", 28.7°,41.7°, 54.7°
0,=1254" with 0,= 15.7°,28.7°,41.7°, 54.7°

Ty = 218.6 MeV:
0,=752"  with 6,=157,28.7,4L7, 547
0,=1235 with 6,=157,28.7,4L7, 547

where the angles are defined with respect to the pion momentum as shown in figure 5-3.
We have calculated the cross sections and proton polarizations for these kinematics and
show results for the forward photon angle in the following diagrams.

We begin witi1 the low pion energy, Ty, = 163.7 MeV, where the photon angle is 6,
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=77.4° . Figure 5-4 shows the cross sections calculated for the four proton angles. The
proton is distorted by the global A and E dependent potential while the pion potential is
that of Oset. The largest cross section occurs for the largest proton angle, corresponding
to a small momentum transfer as shown in figure 5-5. The crv  :ections calculated with
plane waves describing the pion and proton are shown in figure 5-6. The reduction in the
peak cross section when distortions are added is roughly a factor of two, as we have seen
for the reaction (7, ®- p ) which we looked at in chapter 4. The polarization of the final
proton is shown ir: figure 5-7. These curves correspond to the DW cross sections of figure
5-4. The cross section peaks occur at a proton energy of about Ty = 70 MeV, where the
proton polarization is 0.4 for all tour detected proton angles.

In figure 5-8 we show the DW cross section for the proton angle which has the
largest cross section, namely 6, = 54.7°. The dotted curve is the cross section calculated
from the Born terms only, the dashed curve is calculated from the delta diagrams and the
solid curve is the cross section when all the diagrams have been included. The cross
section calculated from the delta diagrams is two thirds of the magnitude of the Born
cross section at the peak, while the total cross section is fifty per cent larger than the Born
cross section. Figure 5-9 shows the change in the cross section when distortion effects tor
both the pion and proton are included, for the kinematics of figure 5-8. The peak cross
section is reduced by a factor of two, and the left-hand peak of the plane wave cross
section is removed completely when distortions are included. The polarization for these
kinematics is shown in figure 5-10. The dashed curve results when the pion and proton
are described by plane waves, and the solid curve has distortions included. Near the peak
of the cross section the polarization has a value of 0.6 and is very nearly the same in
either the PW or DW calculations.

The other pion energy considered is Ty, = 218.6 MeV. The photon angle is changed
slightly at this energy from the previous case to 6, = 75.2°, but the four associated proton
angles are the same as before. In figure 5-11 we show the DW differential cross sections
calculated for the four proton angles. The largest cross section is again associated with the
largest proton angle, 9, = 54.7°. The momentum transfers corresponding to the cross
section curves are shown in figure 5-12, The plane wave cross section is shown in figure
5-13. In this case the magnitude of the peak cross section is decreased by a factor of four
when the distortions are included in the pion and proton wave functions. The polarization
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Figure 5-4. Cross section as a function of proton energy for four proton angles.
The kinematic conditions are T_= 163.7 MeV with _= 77.4°. Proton is distorted

by the global E and A dependent potential, while the pion is distorted by the
potential of Oset. Dotdashed curve - Bp =15.7°, dotted curve - Bp =28.7",

dashed curve - Bp =41.7° solid curve - 9 =54.7°.
P
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Figure 5-5. Momentum trz:'sfer as a function of proton encrgy for four proton
angles. The kinematic conditions are T_= 163.7 MeV with 8, = 77.4°,
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Figure 5-6. Cross section as a function of proton energy for four proton angles.
The kinematic conditions are T_= 163.7 MeV with BT =77.4°. Proton and pion

are described by plane waves.
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of the proton for all four proton angles is shown in figure 5-14. The polarization is fairly
constant in the proton kinetic energy range 30 MeV < T, < 100 MeV, with a value of
about 0.5.

The DW cross section for a proton angle of 9, = 54.7° is shown in figure 5-15. The
dotted curve is the cross section calculated from the Born diagrams, the dashed curve is
calculated from the delta diagrams and the sum of all the diagrams yields the solid curve.
The delta cross section is fifty per cent larger than the cross section calculated from the
Born terms, and the total cross section about three times as large as the Born cross
section. This is the one case that we have seen where the delta diagrams are the dominant
contributor to the total cross section, The cross section calculated with and without
distortions for the pion and proton is shown in figure 5-16. The distortions reduce the
magnitude of the peak of the cross section by about a factor of four in this case. The
polarization of the outgoing proton is shown in figure 5-17 calculated with and without
distortions. The dashed curve results when the pion and proton are described by plane
waves, while the solid curve has potentials for both the pion and the protcn. The
polarization is not affected very strongly by inclusion of the interaction potentials, and
where the cross section is the largest the polarization is fairly constant at about 0.6.

We have had the opportunity to compare one set of preliminary data for a pion
kinetic energy of T, = 218.6 MeV, with photon and proton angles 6, = 75.2° and 6, =
28.7° [Fa93]. Our distorted wave calculation is shown as the dotted curve of figure 5-11.
The normalization of the data has not been fixed as yet, but the shape of the data is
consistent with the results of our model. We do not show a comparison as the data are not
yet finalized. The rest of the data is expected to become available for comparison in the
near future.

The cross sections for the reactions A( Y, £~ p )A-1 and A( =+, ¥ p JA~-1 are in the
neighbourhood of one microbarn/srsrMeV. These are measurable with existing machines,
but better energy resolution and higher intensity that will become available with the new
generation of electron accelerators in the near future will provide much better data. We
will then be able to clarify the question of how well we understand the mechanism of
charged pion photoproduction on nuclei.
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Chapter 6 - Conclusion

We have considered a relativistic model of nuclear pion photoproduction vsing the
photon, pion, nucleon and delta as the elementary particles in the problem. Begianing
with the model lagrangian of pion photoproduction on a free nucleon, developed by
Olsson and Osypowski [O175] and later by Blomqvist and Laget [BL76], we have
extended this to the case of production on a nucleon bound in a nucleus and treat the
nuclear dynamics according to the model recently proposed by Walecka and his
coworkers [SW86]. The pion and nucleon wave functions are solutions of relativistic
equations; the pion being described by the Klein-Gordon equation, while the nucleons are
described using the Dirac equation. These equations contain potentials through which the
particles interact with the nucleus. Thus our model remains fully relativistic, and we do
not employ a factorization approximation, as is done in the calculations by Blomgvist and
Laget [BL77], in which the cross section has the form of equation (1-2).

In carrying out the detailed calculations of the various contributions to the
amplitude, the following approximations have been made. The propagators are taken to
be the momentum space propagators multiplied by a coordinate space &-function,
removing the integration at one vertex, i.e. we have imposed a locality condition on the
nonlocal propagators. It should be pointed out that the Born terms with the photon
coupling to electric charge are not gauge invariant in the distorted wave calculation,
although they are gauge invariant when the pion and proton are described by plane waves.
The terms in which the photon couples to the anomalous magnetic moment of the
nucleon, and the delta diagrams are each separately gauge invariant for both the plane and
distorted wave calculations.

We have examined the sensitivity of the model to variations in the distorting
potentials of the pion and the proton. We have considered two types of proton potentials.
The first has been parametrized with energy dependence only, and determined
specifically for the 12C nucleus. The second has been parametrized with dependence on
projectile energy and target mass; the parameters are determined from elastic scattering
data for a wide range of proton energies and a number of target nuclei from carbon to

lead. The calculated observables are not very sensitive to the differences in the proton
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potentials.

Similarly we have considered four different pion potentials, one containing a pure s-
wave part of the pion-nucleon scattering amplitude, and three potentials of the Kisslinger
form containing s- and p-wave contributions. The s-wave only potential does not
reproduce the pion elastic scattering data, and can give significantly different results from
the potentials which include the p-wave. The three Kisslinger type potentials give similar
results for the pion elastic scattering and also produce similar results in the pion
photoproduction calculations. The inclusion of distortions in the pion and proton wave
functions reduces the magnitude of the cross section by roughly a factor of two from the
cross section calculated with pion and proton plane wave functions, the degree of
reduction depending on the particular kinematic situation considered.

Various prescriptions for the bound state potentials have also been considered.
Negative pion photoproduction is not very sensitive to the changes in the bound state
wave function resulting from the use of different potentials. At low momentum transfers
the bound state wave function is well determined by the requirement that the eigenenergy
of the wave function reproduces the experimentally measured separation energy. The
observables calculated using different bound state wave functions then show only slight
differences since the bound state wave functions are very similar. The differences in the
bound state wave functions become apparent at higher momentum transfer as in the 1pyp
level of 12C shown in figure 4-6. In the region of momentum transfer between 2 fm-1 and
3 fm~! the momentum space wave functions have minima which are clearly different. We
would naively expect that the calculated observables show differences reflecting the
differences in the wave functions, and this is indeed the case when the pion and proton are
described by plane waves. When the distortions are included in the pion and proton wave
functions the calculated observables differ only slightly because the calculation is no
longer a simple Fourier transform of the bound state wave function. The end result is that
changes in the bound state wave function have little effect on the calculated observables
in the cases we have studied.

The increasing contribution of the delta diagrams is clear as the energy of the
incident photon is gradually increased towards the delta region, as would be expected.

The calculated cross section is largest in the region where the momentum transfer to the
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residual nucleus is small. The magnitude of the cross section falls fairly quickly with
momentum transfer, but there is a wide kinematic range over which the cross section is
greater than 0.1 ub/srstMeV and the momentum transfer is greater than 1 fm-!. These
cross sections should be comfortably measurable at the new electron beam facilities.

The most important ingredient in this model for negative pion photoproduction
seems to be the reaction mechanism, i.e. the six diagrams of figure 2-2, through which the
initial state photon and neutron interact and produce the pion and proton detected in the
final state. In principle the treatment of intermediate states requires that the full finite-
range integration be performed, and that the propagating particle be allowed to interact
with the medium. These requirements are however very difficult to implement. As a first
step we have performed a local approximation in which the propagator is taken to be the
momentum space propagator multiplying a coordinate space &-function. This
approximation is not as severe as it might first appear, since the seagull diagram of figure
2-2a) is evaluated exactly, and fortunately it is the largest single contributor in many of
the calculations which we have considered. The other important terms are the s-channel
delta diagram and the pion pole, and the full nonlocal calculation must be done for these
diagrams. A group from Ohio University {Li92] have recently reported a nonrelativistic
momentum Space calculation of pion photoproduction on a nucleus, They find that the
nonlocal effects of their calculation are small in most cases considered, and we would not
expect to find any significant change from this result.

As we have seen, the set of diagrams comprised of the seagull, the pion pole and the
proton pole are gauge invariant only when the pion and proton wave functions are taken
to be plane waves, Inclusion of distorting potentials leads to loss of the invariance for this
set of diagrams. The other diagrams which we have included ( anomalous magnetic
moment coupling and A(1232) poles ) are each separately gauge invariant whether the
pion and proton wave functions are plane or distorted waves. We are not aware of a
method of restoring the gauge invariance without sacrificing the potentials which do such
a good job of describing elastic scattering data.

We have considered pion photoproduction on '2C for kinematics very close to those
of the free reaction, ¥ + n = m- + p. The angles of the proton and pion as well as the
kinetic energy of the proton were held at the values given by the elementary process, and

the corresponding pion energy was then calculated. This results in a situation where the
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momentum transfer to the residual nucleus is very small ( less than 0.1 fm-1 ). The
calculated analyzing power due to linearly polarized photons is almost the same
regardless of whether the reaction takes place on a free neutron or a 1py;; neutron bound
in the 12C nucleus, in the situation where the momentum transfer to the residual nucleus is
very small. We found that the calculated results are in agreement with analyzing power
data measured for the free reaction. Measurements of analyzing power for pion
photoproduction on a nucleus would probably not be of great interest in this region as the
results do not change much from the free case.

There are two important points brought out by this study. The first is that the
diagrams proceeding through the formation of an intermediate A(1232) are not the
dominant contributors to charged pion photoproduction in the region of the delta
resonance. The Born terms are generally the major contributors to the reaction cross
section; the delta contributions are somewhat less, even in the resonance region. The
degree of contribution depends on the kinematics of the reaction, but we have found no
instance, in which the cross section is of measurable magnitude, in which the cross
section calculated from the delta diagrams is larger than that calculated from the Born
terms alone. Secondly this reaction is not sensitive to the details of the nuclear structure
input. At first this lack of sensitivity may seem unfortunate as we appear to limit the
usefulness of the reaction for nuclear structure studies, but this in fact may be a blessing
in disguise. Pion photoproduction on a nucleus is only sensitive to the reaction
mechanism, and a nonlocal calculation with the inclusion of interaction between the
propagating particles should be an excellent laboratory for studying the effects of the
nuclear medium on the propagating particles. The Ohio group have in fact noted the point
that the calculated results are very sensitive to changes in the mass of the isobar. This
indicates that a delta-nucleus potential could have a sizeable effect on the results.

Comparisons with the few existing measurements have been carried out. The data
from Tomsk, both 1979 [GS79)] and 1990 {AG90), are not exclusive, i.e. the resolution of
the experiment was such that the final state of the nucleus was unknown and in the
analysis of the data a ground state was assumed for the residual nucleus. Even so we did
obtain reasonable agreement with some of the data. The knockout of the 1s; state of 12C
[GS79] was quite well described by our model, but we could not reproduce the
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asymmetry between the two peaks apparent in the cross section for knockout of the 1p;,
neutron. In addition we obtained excellent agreement with the data for a photon energy of
E, = 340 + 23 MeV [AG90], while we agreed in some regions with the data for constant
outgoing pion energy, and we were below the data by more .. . 4 factor of two in other
regions. The MIT experiment [Ph89, Ph92], although claiming to be the first exclusive
coincidence measurement of pion photoproduction on a nucieus, could not resolve the
ground state of the final nucleus from the excited state at 6.2 MeV, so0 their results are not
exclusive either. We obtained a reasonable description of the MIT data for the backward
pion angle, and for the forward pion angle the caiculation was a factor of two to three
above the data.

A measurement of the related reaction (m*, Yp ) has been made at TRIUMF
(experiment 550 ). We have calculated observables for the kinematics at which the
TRIUMF data were taken. In one case the delta diagrams are the major contributors to the
calculated cross section, indicating that this reaction may be more sensitive to the
interaction of the propagating delta with the nuclear medium. We have had the
opportunity to compare one preliminary set of data with the results of our model, and the
shape of the data agrees with the predicted shape. The normalization of the data has not
yet been finalized so we cannot make any other statements regarding agreement in the
comparison. We look forward to the completion of the data analysis for this experiment.

The present model may be extended to include a proper treatment of nonlocality as
well as interactions of the propagating particle. The pion pole diagram can possibly be
evaluated using a numerical technique developed by Cooper and Maxwell [Co89). The
nucleon poles generally contribute to a smaller degree than the pion pole but should be
evaluated properly as a step toward the evaluation of the finite-range integrals involved in
the delta diagrams. The model can also be extended to higher energies by including
diagrams involving other nucleon excited statss i.e. high mass nucleons and deltas, as
well as the interactions of heavier mesons. _—

The current model can also be extended to the (Y, 7~ ) reaction. In this case the final
state proton remains bound in the residual nucleus. If the resulting proton bound state can
be described as a good shell model state, the calculation for vy, 7~ ) will be numerically
simpler than our calculation for (y, =~ p ) since the sum over the proton partial waves
required in the latter is removed.
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Note that (v, p ) and (7, ® ) are both high momenium transfer reactions, and both
have difficulties with agreement between experiment and data in some kinematic regions.
The diagrams contributing to our pion photoproduction model also contribute to these
other reactions, but in the reaction we have considered e ha. . .e freedom to examine
the low momentum transfer region allowing us to verify our understanding the basic
mechanism. We seek a description of photon induced reactions within a consistent
framework, namely that involving a Dirac equation description of the nucleons involved
in the reaction. This Dirac formalism has provided a better description of ( y, p ) data than
nonrelativistic models, but agreement breaks down at high momentum transfers where
correlation effects, meson exchange diagrams and delta excitations may become
important.

High duty factor electron beam facilities will allow good quality data for the
reaction (7, =~ p ) to be obtained in the near future. The data which currently exist are
insufficient because of the large error bars and the scatter present in the data. We need
high statistics, high precision data, where the final state of the nucleus is known in order
to test the validity of our model over a range of momentum transfers, and to understand

the reaction mechanism when interactions are included for the propagating particles.

- 201 -



[AG90]
[Ah75]
[Ah85]
[Aj82]
[Aj85]
[An76]
[Ar72]

[Ar74]
(Ar77]

[Ar81]
[Ar87]

[Ar90]

[AS72]

[BD64]

[BD65]

[Be68]
{Be89]

[BL77]
[Bo8&0]

References

P.S. Anan'in and 1.V. Glavanakov, Sov. I. Nucl. Phys. 52 (1990) 205.

J. Ahrens et al., Nuclear Physics A251 (1975) 479.

J. Ahrens, Nuclear Physics A446 (1985) 229.

F. Ajzenberg-Selove, Nucl. Phys. A375 (1982) 1.

F. Ajzenberg-Selove, Nucl. Phys. A433 (1985) 1.

P.S. Anan’in, 1.V. Glavanakov and V.N. Stibunov, JETP Lett. 23 (1976) 269.
P.E. Argan, G. Audit, N. De Botton, J.M. Laget, J. Martin, C. Schuhl

and G. Thamas, Phys. Rev. Lett. 29 (1972) 1191.

H. Arenhdvel, Nucl. Phys. A247 (1975) 473.

P.E. Argan, G. Audit, A. Bloch, J.L. Faure, J.M. Laget, J. Martin, G. Thamas
and C. Schuhl, Nucl. Phys. A296 (1977) 373.

J. Arends et al., Physics Letters 98B (1981) 423.

R.A. Amdt, John S. Hyslop ITI and L. David Roper, Phys. Rev. D35

(1987) 128.

R.A. Amdt, Zhujun Li. L.D. Roper and R.L. Workman, Phys. Rev. Lett. 65
(1990) 157.

Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical
Functions, Dover (1972).

1.D. Bjorken and S.D. Drell, Relativistic Quantym Mechanics, McGraw-
Hill Book Company (1964).

J.D. Bjorken and S.D. Drell, Relativistic Quantum Fields, McGraw-

Hill Book Company (1965).

F.A. Berends, A. Donnachie and D.H. Weaver, Nucl. Phys. B4 (1968) 1.

M. Benmerrouche, R.M. Davidson and Nimai C. Mukhopadhyay,

Phys. Rev. C39 (1989) 2339.

L. Blomgvist and J.M. Laget, Nuclear Physics A280 (1977) 405.

N.N. Bogoliubov and D.V. Shirkov, Introduction to the Theory of Quantized
Fields, John Wiley and Sons (1980).

[BW75] G.E. Brownand W. Weise, Physics Reports €22 (1975) 281.

-202 -



[Ca66] R.S.Caswell and L.C. Maximon, National Bureau of Standards Technical
Note 409 (Nov. 15 1966).

[Ch57] G.F. Chew, M.L. Goldberger, F.E. Low and Y. Nambu, Phys. Rev. 106
(1957) 134.

[Ch83] C. Choller et al., Physics Letters 127B (1983) 331.

{Co82] E.D. Cooper and H.S. Sherif, Phys. Rev. €25 (1982) 3024.

[Co87] E.D. Cooper, K.H. Hicks and B.K. Jennings, Nucl. Phys. A470 (1987) 523.

[Co89] E.D. Cooper and O.V. Maxwell, Nucl. Phys. A493 (1989) 468.

[Co92] E.D. Cooper, S. Hama, B.C.Clark and R.L. Mercer, Global Dirac
Phenomenology for Proton-Nucleus Elastic Scattering, preprnt.

[De66] V. Devanathan, Nuclear Physics 87 (1966) 477-480.

[Do91] E. Donoghue et al., Phys. Rev. C43 (1991) 213.

[EK80] I.M. Eisenberg and D.S. Koltun, Theory of Meson Interactions with Nuclei,
John Wiley and Sons (1980).

[Er66] M. Ericson and T.E.O. Ericson, Annals of Physics 36 (1966) 323.

[EWS88] T.Ericson and W. Weise, Pions and Nuglei, Clarendon Press (1988).

[Fa57] U. Fano, Rev. Mod. Phys. 29 (1957) 74.

[Fa91]  Farzin Farzanpay, University of Oregon, private communication.

[Fa93] Farzin Farzanpay, University of Oregon, private communication.

[Fe72] R.P. Feynman, Photon-Hadron Interactions,W.A. Benjamin (1972).

[FM84] S. Frullani and J. Mougey, Advances in Nuclear Physics, vol. 14 (1984} 1.

[Ga88] C. Garcia-Recio, E. Oset and L.L. Salcedo, Phys. Rev. C37 (1988) 194.

[Gan88] V.B. Ganenko etal., JETP Lett. 47 (1988) 519.

[GI80] LV.Glavanakcv, Sov. J. Nucl. Phys. 31 (1980) 181.

[G182] 1.V. Glavanakov, Sov. J. Nucl. Phys. 35 (1982) 509.

[G189] LV. Glavanakov, Sov. J. Nucl. Phys. 49 (1989) 38.

[Go71] N.V. Goncharov, A.L Derebchinskii, A.A. Zybalov, 0.G. Konovalov,
S.G. Tonapetyan and V.M. Khvorostyan, JETP 33 (1971) 843.

[Go80] H. Goldstein, Classical Mechanics 2nd ed., Addison-Wesley Publishing
Company (1980).

[Go92]) Research Summaries of the 1992 Gordon Conference on Photonuclear
Reactions, Tilton, New Hampshire, Printed courtesy of The Saskatchewan

-203 -



{GS79a]
[GS790b]
[GW64]

[Ha%0]

[Ha91]
[Ha92]
[Hac92]
[Hay92]
[Ho63]

[H092]
[HS86]
[Eu90]
[Ja70}
[Ja71]

[Ja75]

[7a90]
[Jo86]
[J088]
[Ka88]
(Ki55]
[Ki85]

[KI91]

Accelerator Laboratory, Aug. 10-14 (1992).
LV. Glavanakov and V.N. Stibunov, Sov. J. Nucl. Phys. 30 (1979) 465.
LV. Glavanakov and V.N, Stibunov, Sov. J. Nucl. Phys. 29 (1979) 746.
M.L. Goldberger and K.M. Watson, Collision Theory. John Wiley and Sons
Inc. (1964).
S. Hama, B.C. Clark, E.D. Cooper, H.S. Sherif and R.L. Mercer, Phys. Rev.
C41 (1990) 2737.
S. Hama, Ohio State University, private communication {1991).

Hama, Ohio State University, private communication (1992).

Evan Hackett, University of Alberta, private communication (1992).

Evans Hayward, private communication.

P.E. Hodgson, The Optical Model of Elastic Scattgring, Oxford at the
Clarendon Press (1963).

Z. Hoibraten, private communication (1992).

C.J. Horowitz and B.D. Serot, Nucl. Phys. A368 (1986) 503.

P.K.A. de Witt Huberts, Journal of Physics (516 (1950) 507-544,

D.F. Jackson, Nuclear Reactions, Methuen and Co. Ltd (1970).

D.F. Jackson in Advances in Nuclear Physics, Volume 4 ( M. Baranger and
E. Vogt editors ), Plenum Press (1971).

1.D. Jackson, Classical Flectrodynamics, 27 ed., John Wiley and Sons
(1975).

J. Jaki et al., Phys. Lett. B238 (1990) 36.

J.I. Johansson, M.Sc. Thesis, University of Alberta, unpublished (1986).
J.I. Johansson, E.D. Cooper and H.S. Sherif, Nucl. Phys. A476 (1988) 663.
AN. Kamal and M. Araki, Phys. Rev. C38 (1988) 1335.

L.S. Kisslinger, Phys. Rev. 98 (1955) 761.

P. Kitching, W.J. McDonald, Th.A.J. Maris and C.A.Z. Vasconcellos,
Advances in Nuclear Physics, Vol. 15 (1985) 43.

R.A.M. Klomp, V.G.J. Stoks and J.J. de Swart, Phys. Rev. C44 (1991} 1258.

[KMT59] A.K. Kerman, H. McManus and R.M. Thaler, Annals of Physics,

8 (1959) 551.

-204 -



[KoB85]

[Ko89}

[La72]
[La81]
[Le81}

[Li92]

[Lo88]
{Lo89]
[Lo92}
[Ma58]
(Mag9]
[Mc83]

[Mc88]

{Me77]

[MS84]

[Ni69]

[Ni92]

[No24]

[0175]
[Pa92]

A.M. Kobos, E.D. Cooper, J.L Johansson and H.S. Sherif, Nucl. Phys. A445
(1985) 605.

S. Kowalski in the Proceedings of the 1989 IEEE Particle Accelerator
Conference; accelerator science and technology, Chicago, I1.,

Mar. 20-23 (1989) 1.

1.M. Laget, Nuclear Physics A194 (1972) 81.

J.M. Laget, Physics Reports 69 (1981) 1-84.

A. Leprétre, H. Beil, R. Bergere, P. Carlos, J. Fagot, A. DeMiniac and

A. Veyssiére, Nuclear Physics A367 (1981} 237.

Xiao-Dong Li, L.E. Wright and C. Bennhold, preprint submitted to

Phys. Rev. C (1992).

G. Lotz and H.S. Sherif, Phys. Lett. B210 (1988) 45.

G. Lotz, Ph.D. Thesis, University of Alberta, unpublished (1989).

G.M. Lotz and H.S. Sherif, Nucl. Phys. A537 (1992) 285-302.

F. Mandl, Proc. Phys. Soc. (London) 71 (1958) 177.

R. Machleidt, Advances in Nuclear Physics, Volume 19 (1989).

J.A. McNeil, L. Ray and S.J. Wallace, Phys. Rev. C27 (1983) 2123.

J.A. McNeil, J.R. Shepard and S.J. Wallace, Phys. Rev. Lett. 50 (1983) 1439.
J.P. McDermott, E. Rost, J.R. Shepard and C.Y. Cheung, Phys. Rev. Lett.
61, 814 (1988).

D. Menze, W. Pfeil and R. Wilcke, ZAED Compilation of Pion
Photoproduction Data, Physikalisches Institute der Universitét Bonn,
Germany (1977).

F, Mandl and G. Shaw, Quantum Field Theory, John Wiley and Sons (1984).
K. Nishijima, Fields and Particles, W.A. Benjamin Inc. (1969).

J. Nieves, E. Oset and C. Garcia-Recio, preprint A Theoretical Approach to
Pionic Atoms and the Problem of the Anomalies (1992).

B.V. Noumerov, Monthly Notices of the Royal Astronomical Society

84 (1924) 180 and 592.

M.G. Olsson and E.T. Osypowski, Nucl. Phys. B87 (1975) 399.

Particle Data Group, Review of Particle Properties, Phys. Rev.

D45 (1992) 1.

-205-



{Ph89] L.D. Pham, Ph.D. Thesis, Massachussetts Institute of Technology,
unpublished (1989).

[Ph92}] L.D.Pham et al., Phys. Rev. C46 (1992) 621.

[Ra891 J. Raynal, H.S, Sherif, A M. Kobos, E.D. Coopera: L Johansson,
Phys. Lett. B218 (1989) 403.

[Ri%0]  B.G. Ritchie et al., Phys. Rev, C41 (1990) 1668.

[RS41} W. Rarita and J. Schwinger, Phys. Rev. 60 (1941) 61.

[Se90] K.K. Seth et al., Phys. Rev. C41 (1990) 2800.

[Sh84]  J.R. Shepard, E. Rost and J. Piekarewicz, Phys. Rev. C30 (1984) 1604.

[SMC79] K. Stricker, H. McManus and J.A. Carr, Phys. Rev. C19 (1979) 929.

[SMC80] K. Stricker, J.A. Carr and H. McManus, Phys. Rev. C22 (1980) 2043.

{So84] R.J. Sobie et al., Phys. Rev. C30 (1984) 1612.

[ST81] M.K. Singham and F. Tabakin, Annals of Physics 135 (1981} 71.

[SV68] Hirotaka Sugawara and Frank Von Hippel, Phys. Rev. 172 (1968) 1764.

[SW86] B.D. Serot and J.D. Walecka, Advances in Nuclear Physics, Volume 16,
Plenum Press (1986).

[TaB4] L. Taitor and L.E. Wright, Phys. Rev. C30 (1984) 989.

[TC87] A.E. Thorlacius and E.D. Cooper, Journal of Computational Physics,
72 (1987) 70.

[Th76] M. Theis, Phys. Lett. 63B (1976) 43.

[Um56] H. Umezawa, Quantum Field Theory, North-Holland Publishing Company,
(1956).

[Wa69] R.L. Walker, Phys. Rev. 182 (1969) 1729.

[WaB5] S.J. Wallace in the Proceedings of the LAMPF Workshop on Dirac
Approaches to Nuclear Physics, Proceedings No. LA-10438-C, (1985) 87.

{ZaR8] R.N. Zare, Angular Momgntum, John Wiiey and Sons (1988).

- 206 -



Appendix A - Isospin Considerations

A.1 Field Operators

In writing a lagrangian which involves the interaction of different types of particles,
we need to find a representation of the field operators invoiving creation and annihilation
operators of the various particles. For our case we need to be sure that the creation and
destruction of electric charge occurs in a way that holds the total charge before the
interaction equal to the total charge after the interaction. This type of conserved quantity
arises from an invariance of the lagrangian density of the system under phase changes of
the particles. In this appendix we combine the work of Bjorken and Drell [BD65] witil
that of Serot and Walecka [SW86] to obtain an unambiguous description of field
operators which are consistent with charge conservation. '

The lagrangian density for a system of interacting pions and nucleons is

T =y (id-m)y+1 (30 -30-mie-9)+ Tuwn (A1)

where the interaction lagrangian commonly takes one of two forms

pseudoscalar : —iggV 'yﬁ . 5 1 (A-2a)
pseudovector : - %:—: VYsT- 80y (A-2b)

n
while the pion (isovector) is described by a triplet of real pseudoscalar fields

The nucleon field is an isospino. containing both the proton and neutron fields y =[$P]

Eﬁ = (¢1, 2, P3). The charged states of the picu will be expressed in terms of the three
pseudoscalar fields and will be the states that are zctually used in the rest of this work.
First we consider one of the simplest transiormations available to us, to clarify the
effect of the invariance of the lagrangian. Perform a global infinitesimal phase
transformation on the nucleon spinor, while leaving the pion unchanged, by
W(x) = y'(x) = e @ y(x) = yx) +ioyx)
Pix) = G0 = Pifx)
where o is an infinitesimal constant. We are changing the phase of the proton and neutron

(A-3)

fields by the same amount. The lagrangian density (A-1) is readily shown to be invariant

under this transformation by simple substitution, since the derivative operators have no
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effect on the rotation parameter o The variation in the lagrangian is then

55 =98 sy +—L_5@.)
dy a@uy) (A-4)
CICAY)
where we have used the Euler-Lagrange equations
" 08 9% _ (A-5)
(o) oy

to rewrite the variation of the lagrangian density as a four dimensional divergence. We
now have the divergence of a quantity being zero, i.e. o' ju = 0, so the invariance of our
lagrangian under a phase transformation leads to a conserved current, a result known as
Noether's theorem [MS§4]. We define the conserved current, BH, for this transformation
by
a

d(@uy)
We calculate this conserved current explicitly from the infinitesimal variation in the field

and the derivative of the lagrangian with respect to the gradient of the field

o Bt = oy (A-6)

L .=
=i w(x) (A-7)
()
The conserved current associated with a global phase transformation of the baryon fields

is then

oy =10 y(x)

BH=y vy (A-8)
By integrating the zeroth component of this conserved current over all space we get a

“charge" that is a constant of the motion, in this case the baryon number

B= [ BO%x) dx
(A-9)
= J [ (%) wp(x) + Wi () %(x)] &x
which is just the number of protons and neutrons minus the number of antiprotons and
antineutrons. We see that the fact that our lagrangian is invariant under a change of phase
of the baryon ( proton and neutron ) fields forces us to have a constant baryon number.

Now consider a transformation which changes the phase of only the charged

- 208 -



particles and has no effect on the neutral particles in the system. We make an

infinitesimal rotation in isospin space of the form

10(T+13)/2

yix) = yix) =¢ Wix) = wix) + ig-’- (1+73)y(x)

. (A-10)
() = wix) =0 P

(x) = mi(x) +10 T3 (%)

where 6 is a real infinitesimal constant and T, is the third Pauli matrix for isospin 1/2. T,
is the 3x3 matrix which gives the third component of isospin for an isospin one, and has
the components T, = diag( I, 0, -1 ) with the off-diagonal elements all equal to zero. The
charged pion field has components

T.(x)
To(x)
m(x)

The charged field components are written in terms of the components of the real field as
1
T+ X) = X) 5 X
1(x) ﬂ_[tm( )7 0200 ]

To(X) = @3(x)
so the real field undergoes the transformation equivalent to that of the charged field

X = (A-11)

(A-12)

¢i(x) = @i(x) = i(x) - [6X ¢ J; (A-13)
where we have 0 = (0,0, 9).
The lagrangian density (A-1) is invariant under this transformation which leads us to

a conserved current j* which we write as
oL oL
8([)1

a(ap‘lf) a(ap.(Pi)
To calculate j*(x) we collect the necessary pieces, the variations of the fields and the

0 40) =-

oy

(A-14)

derivatives of the lagrangian with respect to the gradient of the fields, as we did before

=2 (1+1) w00 det=—(0 x 9]

.= ads
=iy y* = 9" ¢i(x)
a(ap‘ipi) PS
where we have used the pseudoscalar interaction term in the lagrangian. Combining these

(A-15)

pieces gives the conserved electromagnetic current ,with the pseudoscalar interaction, as

0 =900 14 L (1 +5) v + 9500 - [6 xc0) (A-16)
Integrating the zeroth component of the electromagnetic current gives us the total charge
( actually the number of charges ) of the system as a conserved quantity, which we can

write as a sum of nucleon and pion charges.
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Q=fd3x{%WT(1+13)W+<P@2—(P2¢1}=Q~:+Qn (A-17)

where the dot over the real field denotes the derivative with respect to time.

The nucleon charge is just the net charge of protons and antiprotons

QN=fd3x\|I;r,l|lp (A-18)
To calculate the nucleon charge we expand the Dirac field in terms of creation and

annihilation operators as

1
(2n}

Using (A-19) and its hermitian conjugate in the expression for the nucleon charge (A-18)

12 - , - o
W) = ng: Ck () { b uslk) &5 + diK) vi(k) ¥ ) (A-19)

recalling the anti-commutation relations for the creation and annihilation operators for a

fermion

{ bs(i(.)» bz(l—é) } = 6s,s' 5? -K'

K
I . ) (A-20)
{ def®), ') } = 8, ¢ S k-K')
gives after a bit of algebra

Qv=), ] ¢k { b (K) bs(k) - df(K) ds(k) ) + f FkE0) (A2l

To get rid of the infinite term use a normal ordered operator for the charge :Qn in which
creation operators are placed to the left of annihilation operators and fermion operators

change sign when their order is changed

: bs(K) bl (K) : = - bI(K) by(k) (A-22)

k
k

The nucleon charge is then

Q= f ¢k { bi(K) bk) - di(k) dyk) } (A-23)

which is in units of the quantum of electric charge. The actual charge of the system is
then obtained by multiplying by a unit of charge with a sign which we must choose by
deciding on the charge of the particle which our creation operators will create. We fix the

charges of all the nucleons and pions that are created by setting

q=e>0 (A-24)
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so that b;r(i;) creates a proton of spin s, momentum K and charge ¢ ( a proton ), while

dI(E) creates an antiproton with spin s, momentum K and charge —e. There is no
ambiguity left in the charges of the pion fields.

The normal ordered pion charge operator is

an[ Bx: (Q1P2-9201): (A-25)

The 8 component of the scalar field is written in terms of creation and annihilation

operators as

¢i(x) _(2_)3—‘EJ % { %K) eK* + a.:f (k) eikx } (A-26)

Use this in the pion charge operator and recall that for bosons there is no sign change

when normal ordering and on performing the required algebra the charge due to mesons is
Qn=- if o3k { af (&) a(k) — aj ) 1) ) (A-27)

This is difficult to interpret in terms of the creation of charged states so we make the

following definitions

a(k) = [al(k) +iay(K) ]
. (A-28)
b(k) = [al(k)—naz(k)]

so the pion charge operator is then
Q= f ¢’k { b'(K) b(K) - a'(k) a(k) ) (A-29)

and we have that bT@) creates a pion with momentum K and charge e, while aT(l_E) creates

a pion with momentum K and charge —e. We write the field for the positively charged

pion to be consistent with the action of the nucleon spinor on a positive charge so

3 . .

+ _ 1 dk .70 Likex =, -ikex )

r (X)= 3/2]{2‘”“{& (k)e" "+b(k)e } (A-30)
(2m)

i.e. ®*(x destroys a positively charged particle in the initial state. The negative and

neutral pion fields are written similarly as

T (x)= 13‘, J ¢k {a(E)c‘ik"‘-i-bT(K)eik"‘}

(2rm) 2] 2u (A-31)
n'(x)=—— —dJL{as(k)e‘ *rai(K)e ™t}
emy*? ] 120
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Now, just for fun, consider the effects of an isospin rotation that affects all the fields
so we have the transformations

Yo = yx) =e'" Py = w) + i 70 W(x)

-

i3 (32

o0 = g =¢' T ) = ix) +1 T - © gi(x)
where © = (@, ©,, ©3) are real infinitesimal constants and the 7; are the Pauli matrices
for isospin. Use the adjoint representation of the spin one SU(2) generators so the matrix
elements of the T; are (T; ) =-i€,;, and the rotated pion field can be written as

0i(x) = ) - O X500 (A-33)

The lagrangian is invariant under the transformation of the fields so we define the

conserved isovector current T+ as we have defined our other currents before by

9-'1"“:{ ik Sy oL S(pi] (A-34)

a(ap,\lf) a(ap.q)l)

to calculate T" we collect the necessary pieces in the usual fashion to get the conserved

isovector current as { with the pseudoscalar interaction )
T“:,)lﬁ'y“%\ua-_cﬁxaurp (A-35)
Using the baryon current B* and the third component of the isovector current T we can

write the conserved electromagnetic current as

. - _H—
]”=%—B”+T§=%\f¥”(1+1:3)\|;+[(pxa (p]g (A-36)
which is just what we had for the electromagnetic current before.

A.2 The T = 1/2 to T = 3/2 Isospin Transition Operator

The isospin matrix elements of a system in which we have pions and nucleons
interacting to form deltas are of the form [SV68]

<%,u|'_l.“-al%,v> (A-37)

where the nucleon isospinor has two components to describe the proton and the neutron

which we can write as

=L Ls=]1 =1L_1 =[0] A-38
Ip> 12,2> [0] in> |2, 7751 (A-38)
and the four charge states of the delta can be described by a four component spinor in
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isospin space as

>= A= >=|

T

0

0

= A-30
>=10 (A-39)

1
The charge states of the pion are written in terms of the three components of an

o — 13
fA >—12,

(Y
w2
rofw

fon I o Y e I ]

uncharged scalar field

9=(01, 92, 03) (A-40)
as
‘Pfl=v—]'f—(¢1-i(P2)
cpi=—1/—17—<cp1+i<p2) (A-41)
o} = 03

We want to calculate the matrix elements of the T,. These matrices must 4x2 objects
in order to connect the delta and nucleon spinors as we have written them above.

Expand the dot product of the pion field and the isospin transition matrices is terms
of the charge states of the pion field as

T o= 1T ¢]"
Y

=T-n +Tre*+T0n’
where we have written the transition matrices as the components of a spherical tensor of

(A-42)

rank one
Tl—"—'—'l I +iT
1 @( 1t1 2)

T, =1/_1_7-('r1 ~iTy) (A-43)
Ti=Ts

and the matrix which raises the isospin projection of the nucleon by one unit is T* =~ T}
while the operator which lowers the isospin projection by one unitis T~ = T;I and finally

we have the operator TO = T? which does not change the projection of isospin of the

nucleon. The charge states of the pion are related to the components of the spherical

tensor by
nt= (p[l
n0 =g} (A-44)
T =-gf

The matrix elements of the spherical components of T are written in terms of its
reduced matrix element using the Wigner-Eckart theorem
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T, =<2 uiTl L,
=<5 H l12 V> (A-45)
321112 )<3_u T! "_1_>
U YV 2 2
What happens for ¥ = 1? The action of T} on the nucleon is to raise the isospin by one

= (P

unit and the projection by one unit so we have

T{|%.v>=t%,v+1> (A-46)
and for v = 1/2 we get the state of greatest weight | %’ %>. From Equation (A-45) we then

have the reduced matrix element as
3yminls= -
<2IITI12> 2 (A-47)
With the rev..ced matrix element in hand we can calculate the elements of the T matrices

using the Wigner-Eckart theorem. First we evaluate the components of the spherical
matrices

T|.lw=:"' (__)3.’2—;1 32 1 112
-+ 1 v
=08, 312 Ov, 12 + %—Sp, 12 Ov,_172 (A-48)
1 0
_10 143
¢ 0
0 0
similarly we have the other two matrices as
0 0 0 0
T—l = 0 0 TO = yA 1 0 A-49
WULINT 0 w \/-g_ 0 1 (A-49)
0 1 0 o

We calculate the vector components from these spherical components by inverting
equations (A-43) to get the isospin transition matrices to be

-1 0 ] 1 0 0 0
1| O-IA3 il 0 13 T,=121 9] (A-50
T=Zl w3 o L=ml T o =Y50p 1| A9
0 1 0 1 0 0

We can check this method by calculating the matrix elements of the spin 1/2 to spin
1/2 isospin matrices
Y - Y -
Ty, =<1 wIT{12,v> (A-51)
using the reduced matrix element

lyrils = -
<2u'r ||2> Y6 (A-52)

This yields the Pauli isospin matrices as it should.
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Appendix B - Approximating Propagators

In the present calculations the final state interactions are taken into account. This
necessitates that the integrals over space be done numerically. We also have the added
complexity of three particles in the final state which means a large increase in the time
required to do partial wave sums. There is nothing we can do about the number of
particles in the final state but perhaps we can make some ( reasonable? ) approximations
to reduce the number of integrations we need to do. In the following we are interested in
what happens when doing space integrations and thus shall not include spin in the
discussion.

Consider the reaction 1 + 2 = 3 + 4 in which two scalar particles interact through

the exchange of a different scalar particle as shown in figure B-1.

N
N\

Figure B-1. Two scalar particles interact through the exchange of

4

a different scalar particle.

The s-matrix for this diagram is proportional ro an eight dimensional coordinate space
integral

Sti=A f dxdly 93(x) 9200 0(x) 9'(5) B35) @1(y) (B-1)

where A contains all the constants that we don't want to deal with now. Compare (B-1) to
the s-matrix for the pion pole contribution (2-48), which involves nucleon spinors and a
contraction over pion fields,

The contraction of the scalar field is related to the Feynman propagator, which

can be written as a four dimensional integral over the momentum of the intermediate
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particle [BD65]

) 0'(y) = i Ap(a-y)

)
=i | gy ety -2
(2m)* ki-m? +ie
Particle 1 is going to be an exact plane wave ( the photon ) so its wave function is
1(y) =eikr-y (B-3)
Assume for the moment that particle 3 is a plane wave as well
9s(y) = e-iky (B-4)
which allows us to do the integration over y
f dyeiy(e-kitks) = (2m) 8%(k - ky + k3 ) (B-5)

and yields the condition for conservation of 4-momentum at the vertex where k = k, -k,

is the momentum of the exchanged particle.

Using the 3-function we can now do the integration over momentum to give
Si=——dIA 1 4% gi(x) @a(x) eix Giks) (B-6)
(k1-k3)? — m2
Note that if we take plane waves for particles 2 and 4 and do the integration over x to get

a &-function between the initial and final momenta
] d*x eix-kag-ix-kag-ix-(ki-ka) = (27)% 8" (kg ~ ky - ky + k3 ) (B-7)

This is the statement of energy and momentum conservation between the initial and final
states, which is in 4-momentum language k, +k, =k, +k,.

If we now consider a propagator of the form

L 8'-y) (B-8)
(ki~k3)? - m?
in the s-matrix (B-1) we get exactly the same result as we did using the propagator of (B-
2)

Ap(x-y) =

_HALTY s -k k) (B-9)
(ki k3 ? - 2

If the propagator has gradients acting on it we have

Sg =

3y Ap(x-y) =—L— | dtic e Cy) (B-10)
(2r)* k? -m? +ig

and following through the same steps as above we get
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2y Aptx—y) = Kkl ket (B-11)
(k1—k3)? - m2

and this is actually a form we will use.
Now consider the reaction 1 + 2 — 3 + 4 in which two scalar particles collide and
turn into a fermion which then decays into two scalar particles as shown in figure B-2 (a

supersymmetric type of thing )

I 3
2 4
Figure B-2.
The s-matrix for this diagram is
Sk = A[ d¥xdty @a(x) @3(x) W) W) @5(y) 01(y) (B-12)

where the contraction is now over fermion fields and is [BD65]
W(x) W(y) = i Sp(x-y)

=i fgep Bt oipxoy)
(2n)4 p?-m?2+ie

We are going to be able to do one of the integrals only if both of particles I and 2

(B-13)

or both of 3 and 4 are plane waves. If we compare with the s-matrix for the neutron pole
(3-53) we see that particles 1 and 2 are the photon and the bound state neutron. A bound
state isn't very close to a plane wave so assume that particles 3 and 4 are plane waves and

we can do the integration over x as
jd"x e-ix- (k-ks-ke) = () 54(k—k3 -k4) (B-14)

so the momentum of the propagating particle is the sum of the outgoing momenta, as we

expect. Using this 3-function we can do the integration over momentum to give

Sq=iA ﬁkﬁ [ d*y Qa(y) i (y) ey (ks+ked (B-15)
3+kg)? —

and if we take plane waves for particles 1 and 2 we get the 3-function which gives 4-

momentum conservation, as it must.
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If we take the propagator to be

Se(x-y) = K+tk+m §'x-y) (B-16)
(ksHea)? — m2
we get exactly the same result for the s-matrix therefore this is what we are going to do.

The form which we take for the propagators does not change the plane wave
results at all. To evaluate these diagrams in which we will describe the nucleons and the
pion by distorted waves we assume, for the s-channel diagrams, that both of the
outgoing particles have momentum distributions that are strongly peaked near the plane
wave value. For the u- and t-channel diagrams we assume that the particle connected to
the photon vertex has most of its momentum components near the plane wave value,

The contractions that we will use are then:

dn*(x) Ay (y) = i (ki —k3 )"(kl—ki )M 54(x-y)
o (k)" s (B-17)
with kl _’k'\( and k3—ikn
Yp(X) Yp(y) =i_‘£l_‘“_3;ﬂ, 5 (x-y)
(ki—k3)* — m} (B-18;

with k) —=kyand k3 —kp

Va(x) Ga(y) = Kt ha vy o0 oy
E— (k3+kq)? - mj (B-19)
— . +m 4
M0 B =i ——FATE _pgu Typp L gt ) -2 gl | c-y)
pa—m3 +imals ma 3mz
with pa=k3+k4=kn+kp

(B-20)
- . +m, 4
0B =i ——BAEDA g Lypp L (g - ) 2 phe 1 8%-)

"_""# P& — m +imal maA 3myg
with pa=k) -ks=ky-kp
(B-21)

For the A propagators we use the one frequently found in the literature {Be89] but we

have modified the denominator to include the width of the A, I'y. The delta propagator is
discussed in more detail in section 3.2.4.
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Appendix C - Angular Integrals

The angular integrals that we evaluate are not difficult in that the generalized
spherical harmonics can be expanded in terms of spherical harmonics and spin functions
to give an integral over four spherical harmonics, which can be evaluated by coupling
three of the spherical harmonics together into a single spherical harmonic and some
Clebsch-Gordan coefficients. The integral is then expressed in terms of sums over
Clebsch-Gordan coefficients ( or equivalently Wigner 3-j symbols ). The only problem
with doing this is that, for our reaction, there are partial wave sums over three particles
and the time 0 do these sums is prohibitive. We need forms for the integrals which are as
fast as possible to evaluate, so we use spherical tensor techniques to express the angular
integrals in terms of 6-j and 9-j symbols which we can then manipulate to get something
reasonably fast. The book on angular momentum theory by Zare {Za88] is very helpful in
this area.

We want to calculate angular integrals of the form
K K 1 .
M Mg I\L/i" ] J Yty T Yty YIN@) YOQ) dQ (C-1)

where T is a complex 2x2 matrix which can be written in terms of the 2x2 unit matrix, 1,
and the usual Pauli spin matrices as
r=Cct+D-c

C-2
=Cl+), (D] o] ©2
v

and we have written the scalar product as a sum of spherical tensors of rank one. The

components of an ordinary Cartesian vector A= ( Ay, Ay, A3) can be used to form a

spherical tensor of the first rank by writing

AI——TZ:(AI-HAz)
A; =E(A‘_iA2) | (C-3)
Al =A;
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This spherical tensor transforms under rotations just the way the spherical harmonics do.
and if you calculate the spherical tensor of rank one associated with the position vector
you will get a spherical tensor proportional to the spherical harmonic of rank one

Ip' 2[ ]112 Yf,ll

The integral (C-1) can then be written in terms of angular integrals which transform
under rotations as a scalar and a spherical tensor of rank one

k kg Lz } [KKBL’: } _-y-YT[KKBLn ] .
M Mg My 75 )7 C S| M vy M, +§()D1 T mmpm, 7] €
where the scalar and tensor angular integrals are

T x
S[ ;;,Es ;Z:t I-'r] =J Y s Yooy, YIAQ) YO(Q) dQ

T 4
TY[ 11541:13 It;;Lq] =J Y My o Y M, YHRQ) YQ) dQ

The spherical harmonics associated with the photon and pion in both integrals can

(C-3)

be coupled to a single spherical harmonic by using

M T, T Lil,AY Ly Ly A My _
v @) Y@ =™ M 2ZA(0‘ 20 2, YR @ ©9)

where the quantities in brackets are the ngner 3-j symbols which are nonzero only if the

three angular momentum projections obey the condition M, = M, + M, ( the sum of the

three projections must be zero in the 3-j symbol ). We have also defined L=(2L+1)12,

The Wigner 3-j coefficient is related to the perhaps more familiar Clebsch-Gordan
coefficient by

Lily A ) u-Le+Mai ! M. My A :
(Mle-MA = > AAT (Ly, Ly My, Mz 1A, My ) (C-7)

Qur scalar and tensor integrals can then be written as
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K g Lup |o MLl ALWLYA) Loy A
S[MMBMuLY] = W%A(ooo Me 0 Mg |

1.
M M M -
Is =[ Yrias Yigirzls Ya () di

Ly o o (LnlgA) L Ly A
"_ZA(O 0 0)( My 0 -Mja )IT

(C-8)

K kB Ln
T*[MM MnLY

A

i
J RIS, 01 fyL.;uzJB YAAQ) dQ

and we can concentrate on the integrals Ig and It.

First we work on Ig because it's the simple looking one. Ig is the matrix element of a
spherical harmonic of rank A between spherical basis wave functions formed by coupling
spherical harmonics to spin wave functions, and we can write it as

Is=<L, 1/2, ], MIYMs1Lg, 1/2, 55, Mp > (C-9)
We can separate the dependence on angular momentum projections from the dependence

on the reduced matrix element by using the Wigner-Eckart theorem

_(_y1-M J A lg A 5
Is=(-) (_MMAMB )<L, 172, T0Y* I Ls, 172, Tg > (C-10)

The reduced matrix element contains an integration over spherical harmonics and a

matrix element between spin states acting on the unit operaior, which is one. We then get

L Jelg+AsL+12-Ma2 [ T A I ){ L I 12 vA
Is=(- T <LIY llLp> (C-11
s=0) [ vt 1515 5> (C-11)

The last thing that we need for this is the reduced matrix element of the spherical
harmonic of rank A

A -1 (3ATE (LLBA )
<LIY lLg> ﬁ,ﬁ() ALLp 000 (C-12)

using (C-12) in (C-11), along with the fact that an odd permutation of the columns of a 34
symbol results in a phase factor involving the sum of the angular momenta, allows us to
write

_al2-M_1 2fT 35 (LLBA)(J Is A) LJ12 } 13
5= AL Bl o P | MMMl Tp1sa | C

This expression can be simplified further by noticing that the product of a 3-j symbol with
all projections equal to zero and a related 6-j symbol with one of the entries equal to 172
can be simplified to a single 3-j symbol [Ma58] as

-221-



LLpAN LI o8, Lrlarar 1 T A) e
lo's 0){ nipa |- (Lley 5+ O ](1/2-1/20) (©14)

so that Ig becomes
o de2-M 1 2571 L+La+A I I A)(J J A)
Is={( = AJIgi[1+( -
s=¢) Mgl e ](1/2_1/20 M Mg Ma (C-13)
and the scalar angular integral is

~ A A

S[ K kg Lg I_,Y]=(_)ZJ+1IZ-M+M,:M

MMBMn 41':
x2(2A+1):21—[1+(-)L+'~“A] (C-16)
A
X(J JBA)(JJB Al LelyAl Laly A
21720 \-MMpMall 0 0 o)l Mg 0 -Ma

The tensor angular integral I can be evaluated in the same way as the scalar
integral but first we have to couple o“l' and Y“j{*‘ into a spherical tensor operator using the
standard angular momentum coupling

ol V@) = (A1 X, (Me E( Y )T“c"c (C-17)
CMc a Y —Mc
so we have Iy written in terms of a spherical tensor operator and spherical basis states as

we had for Ig

="'y (-)M"é( AlC J <L, /2,7, M1 T | Lg, 1/2, Jp, Mg > (C-18)
CMc Ma ¥ -Mc

The dependence of the matrix element on the projections of angular momentum can be

separated from the matrix element by again using the Wigner-Eckart theorem

<L, 1/2,3, MITNe| Lp, 1/2, J5, Mg >
-M M; Mg
The reduced matrix element can be written in terms of the reduced matrix elements of the

(C-19)
<L, 1/2, TN T¢I Lg, 1/2,Jp >

spherical tensors of which it is comprised, and a Wigner 9-j symbol
<L, 1/2, JITC N Lg, 1/2, Ip >

!

~hA L LB A (CHZO)
=CJJg<LIYAllLg><1/2 Il gl 1/2>{ 1/21/21
J g C

where the reduced matrix element of the spherical harmonic has crossed our path before

in (C-12) and the reduced matrix element of the Pauli spinor is
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<12 1ctli12>=Y6 (C-21)
Putting these together and using the symmetry relations of the Wigner 3-j symbols to

write

] CIlty (] Ig C -
(—MMCMB)“(M—MB —Mc) 22

along with the facts that L + L + A must be even and Mp =M + M allow us to write It

as

= _J+LB+MBAAAA T Ll'-‘st*
It \/%() ALJLBJB(O 0)

0
(C-23)
LLg A
J Jg C B
xS (c+y[ A1 C ( B ) 121721
CMe (M”MC MMM Y 3 C

where the sum over Mc covers all possible values of the projection of C so we are free to
make the replacement Mg = — M without changing the result. This sum can be verified
by expanding the original expression for integral Iy into its component spin wave
functions, Pauli matrices and spherical harmonics. Computing this integral explicitly in
this form results in a sum of 3-j coefficients, six of which can be combined into the 9-j
symbol above.

We had managed to rewrite a 3-j and the 6-j from Ig as a single 3-j symbol by using
(C-14), now the 9-j symbol in It can be written as a sum over three 6-j symbols. By doing
some appropriate massaging we can reduce the number of angular momentum sums that
have to be done and so increase the speed with which T} is calculated.

The 9-j can be rearranged and is expanded in terms of 6-js as

ALLsg \ 2K Lg1/27
-V 2K+1<A1CHL1/2] }{B B}C-24

(131/121112 %() ( Nkl ik LKA €
A sum over one angular momentum of two 3-js and a 6-j can be rewriiten as a product of
a phase and two 3-js [Za88]

Jo Ta J6 V(s T1 Js )| T132T3
e (20 + 1) I
sz M;My-Mg |1 MsM; Mg J4J51¢ (C-25)
:(—)JI+12—13+14+15—M1-M4( Jl I2 Lk )(14 Is 13)
M; My -M3 J\M4M; M3

and with the symmetry properties of the 3-j and 6-j symbols
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(A 1C )z(__)A+1+C A 1 C

Ma Y M My -y -M
A Y Mc A—Y —Mc (C-26)
{ A 1c:}= JBA.K}
we can write the sum over C as
A 1C\T IsC AlC
EE(ZC-FI)( )(
M Mc|IM -Mg Mc/l J Jg K
¢ Ay e T (C-27)
z(_)1+2.la+A+Mg+'y( s A KK) 1J K
MB MA M —YM My
Putting these results together with (C-14) gives the tensor angular integral as
Ay ™ Lx -1 AL+ Y+ M T T T
T{Mk@Mﬁ4 mV§<? 1 Ly
Lzl A A
xY (2A+ 1)L 14+ Lrlavagl 7 Lr Ly (C-28)
A 2 0 0 0f{ Mz 0-M,

X2(2K+1) JBAK)JBA K( 1J K )l L1/721] }
K

-1/201/2 \Mp Ma M| —-yM Mk 1 K172
Note that there are lots of constraints on the angular momenta which are summed over so
the actual number of terms that need to be evaluated is quite small. The projections of A
and K are determined by the input projections:

i) Ma=M,

ii) Mg =-(Mp+Mgz)

=vy-M

In addition A and K are constrained so:

i) L+Lg+A=even

i) Lg+Ly+ A=even

fii) |Lp-Lyl SASLyp+L,

iv) 1Jg-At<K <Jg+A

v) 1J-11€K£J+1

vi) IL-1/21<K S L+1/2

The expression (C-28) for the tensor integral is two to three times faster to calculate

than the equivalent expression involving the 9-j symbol explicitly, with the subroutines
for 3-, 6- and 9-j coefficients that we have [Ca66), and a similar saving in time is gained

by using (C-16) for the scalar integral instead of the expression involving the 6-j symbol.
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Appendix D - Observables

D.1 Cross Section

We have obtained expressions for the plane wave and distorted wave s-matrices for
the charged pion photoproduction reaction on a nucleus A(Y, 1 p)A-1 in chapter 3.
These s-matrices must be related to the quantities that are actuaily measured
experimentally. This we now proceed to do.

Begin with the compact form for the s-matrix for the (¥, #t p) reaction as written
inegn. (3-112)

se=1Zec fr( Eptm yin g "E.—E
v o B, OB Ee) (D-1)

S (Js Jas Mg Ma 1%, My) £3,308) Ze by,
Jag Mg

Now square Sg; to form a transition probability

f2 . Ep+m
|sﬁ|2=;”; e? (EPE,;E,,)[B(EP““E" Ey-Ep)1?

Z (T, Ig; Mg Mg 15, Mi) (Jg, Jgs Ms Mg 13, M) (D-2)
Jp Mg Iz Mp

' *
95308 93,308 Ze ey [ Ze )
Following Bjorken and Drell [BD64] we consider transitions in a time interval T. We can

then identify the square of the delta function as

[8(Ep +Ex—Ey~Ep)]?=:L-8(Ep + Ex By~ Ep) (D-3)
Divide the transition probability by T to get the transition rate ( transition probability per
unit time ) to a definite final state where the outgoing particles have momenta Pr and Py,
and multiply by the number of final states d® prd® py to get the transition rate to a group of
final states with momenta in the range P to Pn+dpy and Pp to Pp+dpp due to the
interaction of a photon with one target nucleus. The differential cross section is the

transition rate into this group of final states for one scattering center and unit incident flux

do=136" 1 g3 ap, D-4)

T T ine
The incident flux for delta-function normalization is
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Jige = —= (D-5)
The velocity of the photon is v, = ¢ = | while the velocity of the target nucleus is v =
pa/E,. The relative velocity of the incident particles v =' ™~ -Val, is for collinear
beams the number of particles passing through a unit area per unit time. In the lab frame

Va= 0 so Vet = 1 while in the center of momentum frame
ipAI

Vel = 1 + =~ {D-6)
Ea
The incident flux in the lab frame is then simply
Sine = —— (D-7)
(2x)?

Sum over the phase space ( i.e. integrate over the momenta of the outgoing particles )
1862 1 g 4
j T Jpo O PP

—ge2 S 3 (g Im Mg M 1T, My) (Jg, gt Mg M 15, M)
2 S
My 15 Ms Js M (D-8)

X 45,308) 93.1Tp)

xj éMB[ZﬁMB] (EEPE:E)S(E +En—Ey- EB)d3Pnd3Pp

Use the relativistic energy momentum relation E2 = p2 + m? to rewrite the momentum
integrals as integrals over energy since we have p2dp = pEdE and then do one of the
energy integrals using the delta function to get

J ZE,MB [ZF,MB] (EE';_EE%) &( Ep + Ex—-Ey— Ep) d3pﬂ daPp
(D-9)

F:Mn[ &Mn] (EPE:m)pandQndedEp

The target is unpolarized and the polarization of the proton isn't measured so
average the initial spin projections and sum over the final spin projections so the cross

section is

=11 1868 1 35 g3 D-10
do 2(21i+1)M§J T T PP (b1

G5t
where the factor of 1/2 comes from averaging over the two possible photon polarization

states.
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The sums over the initial and final nuclear projections act on the two Clebsch-
Gordan coefficients in equation (D-8) and recalling the completeness relation for the
Clebsch-Gordan coefficients allows us to write

3 (Jg Jp: Mg, Mp 1, Mi) (Jg, Jg; M Mg 1 i, Mi)
M; M (D-11)

_@itD g s

(2Jg + 1) Jp Jg “Mp Ms

and when we put these results together the cross section is

do =42 % f‘rl: (E +m ) Pr Pp z th Jr(Jf) \Z sl’\rflnlz (D-12)
dQy dQ, dE, m2 By
St E_,
Introduce the dimensionless forms of the coupling constants o = e2/47 and B = f;2/4w and

include all the factors of hi and ¢ so the cross section for the (+y, 7 p) reaction is

do  _ 4(43)21 op (EP'*'mC ) Pac Do 3111;(113) 2%
42y dQp GEp mich | By P 2 ToTg+l
s;F,
(D-13)

The scattering wave functions that we have used are all normalized to delta functions so
the spherical Bessel functions from these states are dimensionless. The radial functions
from the bound state have dimensions of T -¥2, so the function IZ‘;’sl.fhl2 has dimensions of
length cubed. That length is in fermis and if the energies and masses are in MeV while the
momenta are in MeV/c and with fic in MeV-fm the cross section will have units of
fm2/(sr2MeV).

D.Z Polarization

In order to calculate the polarization of the outgoing proton we need to describe the
spin state of the proton. The easiest way to do this is through the density matrix [Fa57].

We define the density matrix so that the cross section is
do=Trp

=Z Pnn

where the index n refers to the set of angular momentum projections { &, 1, Mp }. The

(D-14)

density matrix then has six indices and comparing with equation (D-13) allows us to yrite

the density matrix in terms of the z-matrix as
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" ' *
Pe thaney = A Ze [ 2255 (D-15)
A is a constant involving phase space and spin factors. We define the density matrix of
the final state proton by taking traces over the initial photon and bound state projections
to get
Porcion = 2 PEE MaMy (D-16)
S Mg
The expectation value of the spin operator ( polarization ) is then given by
I‘;=<‘&’>:Tr(pproton E)
Tr Pproton
In order to check that we have a consistent formalism we consider a system of spin

(D-17)

1/2 particles whose polarization we are free to manipulate. We calculate the expectation
value of the z-component of the spin by

_Tr(po,)
<GZ>—-TP"—
Tr([Pn P12 [ 1 0])
P21 P22 0 -1 (D-18)
Pt + P22
_ P —P22
P11+ P2z
and we see that we must have

-

P1i Pinin (D-19)

P22 = Puinan
so that the polarization will be —1 when the system is prepared with 100% of the protons

having the z-component of their spin in the negative z direction ( spin down ).

The polarization in the y-direction for the reaction ( 7y, %~ p ) is then

Tr(poy)
<Gy>=—;.f;;'b—y-

Im Y, Zen [Zimts) (D-20)
§ Ms

Trp
where we have reintroduced the z-matrix of equation (D-15).

=-2
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D.3 Asymmetry ( or Analysing Power )

The asymmetry for photons polarized either parallel or perpendicular to the

scattering plane is written as

do 11— doy
do, +doy
where do, , is the differential cross section with the incident photon polarization

A= (D-21)
perpendicular ( parallel ) to the scattering plane.

In terms of the formalism of chapter 3 ( see equation (3-102) and above ) doy has §
=050 the pi ' polarization vector is along the x-axis, in the scattering ( x - z ) plane,
E.t';:o = (1,0,0) and do, has & = n/2 so the polarization vector is perpendicular to the
scattering plane E.g:mcg =(0,L0)

Note that we have adopted the definition of A given by Menze, Pfeil and Wilke
[Me77], but the negative of this definition is also used [Ga88].



Appendix E - Time Ordering With Derivative Coupling

Consider the interaction of two fermions through the exchange of a scalar field with

derivative coupling. The s-matrix in second order is proportional to the integral

Soc[d“xd‘*yle{ Vnvdokivwydoel i (E-1)

We have an ambiguity here when we exnand the time ordered product in terms of normal
products and contractions. We have the freedom to first integrate by parts to move the
derivative operators off the scalar fields. Then we can do the time ordering to get the
propagator for the scalar field and finally shift the derivative operators back to the
propagator. Alternatively we can do the time ordering of the fields with the derivatives
where they are. The first is known as Wick time ordering and the second is Dyson time
ordering [Bo80].

The s-matrix can be expanded in a series in powers of either the interaction
lagrangian or the hamiltonian [Ni69] as

o0

s=1+ % & f d*xs -+ % Twl Binc(x1) <+ Bint(¥a) ]

n=1

o (E-2)
=1+ 2, (Lnlg—f d4xy -+ d¥%g Tpl Fin(X1)++ Hine(xn) ]

n=1
where Ty and T, refer to the Wick and Dyson time ordering products respectively. When
the interaction lagrangian does not contain the time derivative of any fields the interaction
hamiltonian is simply the negative of the interaction lagrangian
Higt =— Bine (E-3)
and the two time orderings are equivalent. Tiic difference in orderings enters when the
lagrangian contains time derivatives. Consider the vacuum expectation value of the fields

with derivatives
<0!T[ox)dyp(y)110> (E-4)
The Wick time ordering is defined to have the derivatives acting on the Feynman
propagator for the fields
<01 Twl & o(x) 3y0() 110>= 83y <0 ! T[ ¢(x) 9(y) 110>
. v (E-5)
=idkdy Ap(x-y)
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while the Dyson time ordering keeps the derivatives on the fields as
<01 Tp[ 3 p(x) dye(y) 110> =8(x0 - o) <013 9(0) 3y9(y) 10>
+6(y0 —x0) <013y0(y) % x) 10>
= <01 Tw[ %0 W o) 110° 80808 (x-y)
(E-6)
In our calculations we use the expansion of the s-matrix in terms of the interaction

lagrangian (E-2) with the Wick time ordering (E-5).
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Appendix ¥ - Free Process y+n —* T +p

In this appendix we discuss a lagrangian mode] of pion photoproduction on a free
neutron. The lagrangian has been examined previously by Olsson and Osypowski [O175]
and Blomgvist and Laget {BL77]. The nonrelativistic amplitude for pion photoproduction,
which has been derived by Blomqvist and Laget from the relativistic amplitude, is
presented.

F.1 Elementary Pion Photoproductiony+ N —* 1+ N

The details of the lagrangian model are discussed in chapter 3, where we derive the
s-matrix for the photoproduction of a negatively charged pion from a nucleus. The details
of that calculation are applicable to this { simpler ) calculation, and so we refer the reader
desiring more details to chapter 3. Here we give some results without filling in the details.

We start with the lagrangian for a system of pions and nucleons with a pseudovector
interaction term, and using the minimal substitution to introduce interactions with photons
results in the non-delta interaction terms:

£nNN=—rfl—’:r\I_JYs [t dn - +1.dn +13dn0 ]y

= KpUN — KolN — -
‘I”'YNN=—C\IIA1-ZT3 Y- quN WGPVF}.LV 1';':3‘”._ nzuNw.o.p,vav 1213‘”
£m=i§-A“[7t*’apn‘+au1t“1t+—1t“au1t+-a#n+1r] (F-1)

Lot =§23A,LAPl frtnt +wm- 1t}
LN =—iC%WTsA[T+n*—Ln- Ty
where the unit of charge is positive (e > 0 ). The magnitudes of the anomalous magnetic

moments for the proton and neutron are k, = 1.79 and k,, = ~1.91. The interaction terms

involving the propagation of a A isobar are [Ka88, O175]

f —t] = - — —
Brva =i (Wa T 30w + (T - 340) W )

(F-2)
, f —
Lyna = 1e3£‘-$ {Vi T3V sFuvy + WT;‘Y“'YS Fuv i }

where the 4x2 isospin matrices T which connect the isospin T=1/2 nucleon with the

isospin T=3/2 isobar are
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Figure F-1. Diagrams contributing to the elementary pion photoproduction

process Y + n =+ m + p. a) to d) are the Born terms, €) and f) are the s- and
u-channel A diagrams.
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The initial neutron and final proton are described by 4-component Dirac spincis
[BD64]. The neutron has spin projection v while the proton has spin projection p. The

total s-matrix for the reaction ¥+ n --> 1t~ + p can then be written as

S =17 4% 202 8 (ks + iy~ Ky~ k) L ({22 ) LEn 1) g1

Ep Er ExEy
- g (F-4)
X<2,u|[ﬂ,Ep+mJme L 12,v>
ok,
Ep + my

where the total 4x4 operator acting on the nucleon spinors is the sum of the operators

from all of the diagrams we consider I'igat 22 ;. The sum extends over the diagrams
i
included in our model, which are shown in figure F-1. We write these vertex operators in

terms of the four momenta of the particles and the Dirac gamma matrices as 4x4

dimensicnless matrices:
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lmseagull =Yos ip

k
I-‘!31011'_""2 % Yo Vs K kzk-y—kn
kz—mﬂ
I‘;-;rctlcm =70ép K+m2 s Kx k =kp —ky
SN Iy T K+m 4 g k=k, -k
rJ;olon 4mp70[ '}’aép}kz_m%% T p ¥
_ _Kn E+m =
rﬁeul.ron—4mp7075knk2*m%[k1,ép] k=kg+kp
fNAfNA +m
I“A-s=_73f:; Yo pa .A K pa = kp + kn E-5)
wln - pi —mj +imala

X[ g“"—ﬂ“?”————(u“pa Y"PA)- PAPA]

X [kyevp -k £ 15

fyna fana Pa +my
Tau=—r——"0 s [ KT gyp - 1 pa=kp—k

_ Ll 1 _ 2
X[ g -3y SmA('Y“PA YVPA) 3]“[%1),31:/_\]1«,t

The s-matrix for the reaction ¥y + p --> &+ + n is obtained in the same way with similar
results.

We can write the s-matrix of equation (F-4) in a more concise form as:

- (Ep + Ep +my
Sﬁ=1(_2-cf—“(21t)284(kn+k-,—-kp—kn)L( P ETPE);,,:E,m )y z), @6

where Zg is a function of the polarization of the initial photon, the spin projection of the

final proton | and the projection of the initial neutron v, and is exactly the matrix element
of the vertex operators between the initial and final state Dirac spinors.
The cross section in the center of momentum frame is then obtained in the usual

way {BD64] as
g XPUEP ) (Byrmg) (Bormy) g

dQy m2c4 Ep En By P (F-7)
X L I AG
{ky | Erl uv
(”“ﬁ (“"E:) o
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where o, is the fine structure constant ¢. = 1/ 137 and B = 0.079. The factor

1Ko !,

1+ —'i) is
Eq

the relative velocity of the photon and the neutron in the center of momentum frame, and '

the phase space integration in the calculation of the cross .  ‘on yields a factor of
( 1+ %‘-) We show angular distributions for the differential cross section and analyzing
P

power for photon energies of E, = 250, 300, 350 and 400 MeV in figures F-2 to F-5. The
analyzing power is due to a linearly polarized photon, with the polarization either in the
scattering plane or perpendicular to the scattering plane. The data are from the
compilation of pion photoproduction data of Menze, Pfeil and Wilcke [Me77]. AtEy =
250 MeV the calculations and data agree quite well, but the calculation of differential
cross section is slightly above the data at the largest angles. When we increase the photon
energy to E, = 300 MeV (figure F-3) the shape of the cross section is reproduced
although the calculation is slightly below the data for angles up to 100 degrees. The
calculation does not reproduce the bump in the analyzing power data for angles larger
than 90°, but the calculation is in agreement with the smaller angle data. For a photon
energy of E, = 350 MeV, as shown in figure F-4, the calculated cross section is above the
data for angles larger than 60°. The calculated analyzing power is smaller than the data
for angles larger than 60°, but larger than the two data points at smaller angles. The last
angular distribution we consider is figure F-5, where the photon energy is E, = 400 MeV.
The calculated differential cross section is once again larger than the data for angles
greater than 60°. The calculated analyzing power is below all but one data point at 60°.
The total cross section is obtained by integrating the differential cross sections over
all angles, and is shown as a function of the total energy in the center of momentum frame
in figure F-6. The data are from [Me77]. The solid line shows the cross section calculated
with all the diagrams of figure F-1 included. The peak is shifted to higher energies
relative to the data by 15 to 20 MeV, and the calculation remains above the data for center
of momentum energies past the peak. We have given the delta a mass of 1232 MeV and a
constant width of 120 MeV [Pa92]. The data can be reproduced by changing the mass of
the delta and giving the width of the delta an energy dependence, as has been done by
Walker [Wa69]. The parametrization is fairly arbitrary as the behaviour of the tail of the

resonance is not well understood [Fe72], and so we will proceed with a constant width for

- 236 -



differential cross section *

analyzing power

30

25

20 1

18

10

0.6

0.5

0.4

0.3

02 }

0.1

Y+n o T +p

T T Y T T T T T

---------- Born diagrams
----- deita diagrams
all diagrams

¢  data from [Me77]

* differential cross section = do/d€2, ( ubarns/sr )
b)
O Bom diagrams 4
R E delta diagrams
: ali diagrams
; ®  data from [Me77]
P TS Lk Aeduliiniuie bl T - T - - -~ - -
0 20 40 60 80 100 120 140 160 180

pion c.m. angle (deg)
Figure F-2. Observables as a function of pion c.m. angle for negative pion
photoproduction on a free neutron. The photon lab energy is E, =250 MeV.

The mass of the A is 1232 MeV, and its width is 120 MeV. a) differential
cross section, b) analyzing power due to linearly polarized photons.
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Figure F-3. Observables as a function of pion c.m. angle for negative pion
photoproduction on a free neutron. The photon lab energy is E, = 300 MeV.

The mass of the A is 1232 MeV, and its width is 120 MeV. a) differential
cross section, b) analyzing power due to linearly polarized photons.
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Figure F-4, Observables as a function of pion c.m. angle for negative pion
photoproduction on a free neutron. The photon lab energy is E, = 350 MeV.

The mass of the A is 1232 MeV, and its width is 120 MeV. a) differential
crogs section, b) analyzing power due to linearly polarized photons.
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Figure F-5. Observables as a function of pion c.m. angle for negative pion
photoproduction on a free neutron. The photon lab energy is E, = 400 MeV.

The mass of the A is 1232 MeV, and its width is 120 MeV. a) differential
cross section, b) analyzing power due to linearly polarized photons.
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Figure F-6. Total cross section as a function of total center of mass energy.
The mass of the A is 1232 MeV, and its width is 120 MeV.

Dotted curve - Born diagrams only, dashed curve - delta diagrams,
solid curve - all diagrams included.
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the delta. The agreement of our simple model with the experimental data is not excellent,
but improvement will require the introduction of parameters whose behaviour in the

nuclear medium is not clear so we will restrict ourselves to the model of the delta we have
examined.

F.2 The Pion Photoproduction Operator of Blomqyvist and Laget

Starting from the lagrangian model of Olsson and Osypowski [0175], Blomgvist
and Laget [BL77] developed a nonrelativistic operator for elementary pion
photoproduction which they intended for use in nuclear physics applications.

Blomgqvist and Laget [BL77] use the t-matrix for the pion photoproduction reaction,
which is related to the s-matrix that we have written in equation F-4 through
Sg =85 ~ i (2m)* 8" (kp + kn~ky —ky) Ts (F-8)
The form of the t-matrix in the relativistic calculation can be found by comparing
equations (F-4) and (F-8). The pion photoproduction operator of Blomqvist and Laget is
obtained by taking a nonrelativistic limit.  They include the Born terms a)-d) of figure
F-1 as well as the s-channel delta diagram figure F-1e). The amplitudes for the various
diagrams are written in momentum spa.c and the nonrelativistic limit taken in the
following way:

i) in the vertex operators, baryon wave functions and the numerator of the propagators,
terms of order p/m are saved where p is any momentum and m is the mass of the
nucleon

ii) treat the denominator of the propagator in a relativistic way to avoid possible
cancellations between terms of order p/m of higher so the full matrix element is valid
to order (p/m)?

iii) use the relativistic expression for the phase space factor

iv) use relativistic kinematics.

The t-matrix for the Bomn terms can then be written as:
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where the intermediate 4-momentum in the s—channel is ps kg +kp while in the u-

(F-9)

+ Hyp

+ Ha

channel we have the momentum of the propagating particle as py =k, — ky. Note that the

propagating particles are off shell so that pd # E, = (3 + m2 )2, and the same is true for
the s-channel. The t-matrix for the s-channel delta diagram can be written as

Té=—£z fina fana 1
p3 - mi+imAI"
Luish (& pa-—kn)] (F-10)

[e Sx(k,, mp kn)]lz,v>
The S; are 4x2 matrices which connect spin 1/2 and spin 3/2 [SV68, Ar74] just as the
isospin matrices of appendix A connect isospin 1/2 with isospin 3/2.
This operator has been used in a momentum space calculation of the (¥, % } reaction

[Ta84], as well as DWIA calculations for the reaction (v, =~ p ) [GS79a, GS79b, Ph89,
Ph92].
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