This document has been digitized by the Oil Sands Research and Information Network, University of Alberta, with permission of Alberta Environment and Sustainable Resource Development.

IN-SITU RECOVERY PROCESS FLUIDS

by

E. PEAKE M.A. MACLEAN

Kananaskis Centre for Environmental Research University of Calgary

for

RESEARCH MANAGEMENT DIVISION

Alberta Environment

RMD Report L-105

This report is made available as a public service. The Department of Environment neither approves nor disagrees with the conclusions expressed hrerein, which are the responsibility of the authors.

EXECUTIVE SUMMARY

The heavy oils produced from the Alberta oil sands contain cyclic organic compounds together with sulphur and nitrogen. Upon thermal treatment they have the potential to form carcinogenic, mutagenic, and toxic compounds. Recovery of oil by in-situ combustion processes, such as the Combination of Forward Combustion and Waterflood (COFCAW) process, may result in the formation of such biologically active compounds with generation dependent upon operating conditions.

The objective of the present research program is to evaluate produced oils and accompanying waters from in-situ combustion processes for possible biological activity. This evaluation is based on biological testing, using the Ames test for mutagenicity and the Microtox test for toxicity, and on the chemical analysis of oils and waters for the presence of known carcinogens. For comparison, oils produced by the less thermally rigorous steam injection process, as well as naturally occurring bitumen, and synthetic crude oil and other oils produced from the Athabasca and Peace River oil sands were examined.

Analysis of oils produced by in-situ combustion showed the presence of many carcinogenic and mutagenic compounds, among them the well known carcinogen benzo(a)pyrene (BaP). The BaP content of a mixture of bitumen, cracked oil, and diesel fuel produced by the COFCAW process from the Gregoire Lake pilot project contained 14 μ g/g BaP. This compares with 1.5 μ g/g in unaltered bitumen and 1 to 3 μ g/g in most crude oils. Samples obtained from the Suffield Heavy Oil project which had not undergone rigorous thermal treatment contained from 1.5 to 7.5 μ g/g benzo(a)pyrene and emulsion produced by steam injection from the Peace River Pilot project, operated by Shell Canada Resources Limited, contained 2.7 $\mu g/g$. An oil produced by dry retorting of the Athabasca oil sands contained 16 μ g/g BaP. Oils produced from combustion tube experiments with Athabasca oil sand had a similar BaP content, 2.6 and 4.2 μ g/g. Some tars and pitches, especially coal tars, may contain 10 to 100 times more BaP than crude petroleum. Refinery residuals, tars, and oils from Sarnia were found to contain 150 to

vii

1050 μ g/g. Benzo(a)pyrene is the best known of the carcinogens found in petroleum, but many other known or suspected carcinogens were found in greater quantities than BaP in the oils produced by in-situ combustion and dry retorting.

The assessment of any carcinogenic hazard associated with petroleum is difficult. Animal tests are expensive and time consuming; therefore, short term bio-assays for mutagenic properties such as the Ames test, together with chemical analysis, are employed. Positive results in the Ames test are not an absolute indicator of carcinogenic potential. Mutagenicity does not in all cases imply carcinogenicity; however, those polycyclic aromatic hydrocarbons which are carcinogenic are also mutagenic in the Ames test when appropriate enzymes are included.

Mutagenic activity was found with the Ames test in oils produced from the Gregoire Lake, Suffield, and Peace River in-situ pilot projects and in vacuum gas oil and pitch from the Peace River diluent recovery unit. The mutagenicity was less than predicted from the amount of carcinogenic aromatic compounds found by chemical analysis. The complex mixture of hydrocarbons which comprises these oils suppressed the activity of the carcinogens in the Ames test. Thus the Ames test was found to be an indicator of mutagenic activity but not a quantitative method for assessing the relative mutagenicity of oils. Synthetic crude oil produced from Athabasca bitumen displayed some mutagenic activity but, despite the presence of BaP, the bitumen itself did not.

Waters produced during in-situ recovery of oil by both steam stimulation and combustion processes were toxic to aquatic organisms as determined by the Microtox bioluminescence assay. EC_{50} values, the effective concentration of toxicant causing a 50% decrease in the light output of a photoluminescent bacteria, ranged from 0.30 to 11. The toxicity was caused partly by volatile organic compounds, primarily alkyl substituted benzenes, and partly by extractable organic compounds including phenols, organic acids, and hydrocarbons with no single class of compounds solely responsible for the observed toxicity. Wastewaters

viii

from the dry retorting process were more toxic than waters produced by in-situ combustion and contained many aromatic hydrocarbons and nitrogen compounds known to be biologically active.

The chemical analyses and limited biological testing carried out in this study detected no strong mutagenic or carcinogenic hazard associated with in-situ recovery of heavy oil by combustion and steam injection. The relative hazard is probably marginally greater than that associated with production of conventional light crude oils but far less than might be expected from coal liquefaction processes or from disposal of refinery residuals. The hazard associated with dry retorting is greater than that from in-situ recovery methods and care should be taken in the handling of both products and wastewaters from this process.

TABLE OF CONTENTS

	Page
EXECUTIVE SUMMARY	vii
LIST OF TABLES	xiii
LIST OF TABLES IN APPENDICES	xv
LIST OF FIGURES	xvii
ABSTRACT	xix
ACKNOWLEDGEMENTS	xx
1. INTRODUCTION	1
2. MATERIALS AND METHODS	6 12 12 14 15 15 16 16 16 16 20 20 22
3.RESULTS AND DISCUSSION3.1Chemical Analysis of Produced Waters and Wastewaters3.1.1Acidity3.1.2Organic Carbon Content of Produced Waters and Wastewaters3.1.3Gross Extractable Components3.1.4Detailed Chemical Analyses of SHOP Treated Waters3.1.4.1Aromatic Hydrocarbons3.1.4.2Other Components3.1.5.1Aromatic and Alipathic Hydrocarbons3.1.5.2Other Compounds3.1.6Combustion Tube Co-produced Waters3.1.7UMATAC Process Wastewaters	24 24 24 27 30 30 33 34 34 35 36 37

TABLE OF CONTENTS (Concluded)

3.2	Chemical Analysis of Produced Oils, Related Products, and Residuals	0
3.2.1	and Residuals 3 SHOP Wellhead Oils 3	
3.2.2	Gregoire Lake and Related Oils	
3.2.2		-
3.2.3	UMATAC Oils. 6 Combustion Tube Oils 7	
3.2.4	Other Oils and Residuals	
3.2.5		
3.3.	Biological Testing	
3.3.2	······································	Ø
3.3.3	Ames Test for Mutagenicity of Other Oils and	2
	Refinery Residuals	
3.3.3.1	SHOP Project Oils	
3.3.3.2		4
3.3.3.3	Peace River In-situ Project	
3.3.3.4		5
3.3.3.5		7
3.3.4	······································	8
3.3.4.1	Gregoire Lake Pilot	
3.3.4.2	SHOP Project	
3.3.4.3	UMATAC Process	
3.3.4.4	Peace River Pilot Project	
3.3.4.5	Combustion Tube Experiments	3
4.	SUMMARY AND CONCLUSIONS	7
5.	REFERENCES	0
6.	APPENDICES	7
6.1	Extractable Constituents of SHOP Treater Water	
6.2	Volatile Constituents of Gregoire Lake Produced Waters. 13	
6.3	Extractable Constituents of Combustion Tube-Produced	۲.
0.3		n
6.4	Waters	
6.5		
	in endere compensation et ander it cauted ett i tit tit tit i tit i	5
6.6	Aromatic and Nitrogen Components of UMATAC-Produced	۲
<i>c</i> 7		0
6.7	Aromatic Components of Oils Produced from Combustion Tube Experiments	0
	Tube Experiments	Э

.

LIST OF TABLES IN TEXT

Table		Page
1.	List of samples obtained for this study	8
2.	Gas chromatograph-mass spectrometer conditions for analysis of volatile compounds	18
3.	Gas chromatograph-mass spectrometer conditions for analysis of extracted compounds	19
4.	Acidity and carbon content of water samples	25
5.	Composition of organic material extracted from water samples by extract weight (g) and percentage	28
6.	Extractable aromatic compounds in SHOP treater water samples	32
7.	Carbon content and acidity of UMATAC water samples	38
8.	Polycyclic aromatic hydrocarbons in heavy oils from the SHOP project	40
9.	The benzo(a)pyrene content of heavy oils and related products	42
10.	Benzo(a)pyrene content of petroleum and related materials	44
11.	Mutagenic and carcinogenic aromatic hydrocarbons	48
12.	Mutagenic and carcinogenic nitrogen compounds	56
13.	Mutagenic activity of sulphur compounds	62
14.	Aromatic hydrocarbons in GP26 (May) oil	65
15.	Polycyclic aromatic hydrocarbons in oils from the UMATAC project and from combustion tube experiments	69
16.	The mutagenicity of aromatic hydrocarbon fractions and subfractions of heavy oils, heavy oil products, and recovered oils as determined by the Ames <u>Salmonella</u> /microsome assay	93
17.	The mutagenicity of aromatic hydrocarbon fractions and subfractions of refinery residuals from Sarnia, Ontario	96

xiii

ſ

LIST OF TABLES IN TEXT (Concluded)

Table		Page
18.	The toxicity of Gregoire Lake pilot waters as deter- mined with the Microtox system	99
19.	The toxicity of produced waters as determined with the Microtox system	101
20.	Toxicity of waters after contact with oils as determined by the Microtox test	104
21.	The acidity, organic carbon content, and toxicity of combustion tube waters as determined with the Microtox system	106

xiv

·

LIST OF TABLES IN APPENDICES

Table		Page
6.1.1	SHOP treater water extractable aromatics, 1983 January .	119
6.1.2	SHOP treater water extractable aromatics, 1983 May	122
6.1.3	SHOP treater water extractable aromatics, 1984 February.	125
6.1.4	SHOP treater water acidic components, 1983 January	129
6.1.5	SHOP treater water acidic components, 1984 February	130
6.1.6	SHOP treater water nitrogen components, 1984 February	131
6.2.1	GP20 volatiles, 1981 January (21 ppm)	133
6.2.2	GP20 volatiles, 1981 March (10 ppm)	135
6.2.3	GP21 volatiles, 1981 February (11 ppm)	136
6.2.4	GP21 volatiles, 1981 March (21 ppm)	137
6.2.5	GP21 volatiles, 1981 June (38 ppm)	138
6.2.6	GP26 volatiles, 1981 March (21 ppm)	139
6.2.7	GP26 volatiles, 1981 March (33 ppm)	141
6.2.8	GP26 volatiles, 1981 May (136 ppm)	143
6.2.9	GP31 volatiles, 1981 February (242 ppm)	144
6.2.10	GP31 volatiles, 1981 March (82 ppm)	146
6.2.11	GP19 volatiles, 1981 May (25 ppm)	148
6.2.12	GP19 volatiles, 1981 June (26 ppm)	149
6.2.13	GP26 neutrals, 1981 May	150
6.2.14	GP19 neutrals, 1981 May	152
6.2.15	GP26 acids, 1981 May	154
6.2.16	GP19 acids, 1981 May	156
6.2.17	GP26 bases, 1981 May	158
	continu	ed

xv

LIST OF TABLES IN APPENDICES (Concluded)

Table		Page
6.2.18	GP19 bases, 1981 May	159
6.3.1	Combustion tube water extractable aromatics, 1983 November	161
6.3.2	Combustion tube water nitrogen components, 1983 November	162
6.4.1	UMATAC overhead vent water extractable aromatics, 1982 October	165
6.4.2	UMATAC preheat vent water extractable aromatics, 1982 October	169
6.4.3	UMATAC overhead vent water basic components, 1982 October	172
6.5.1	SHOP base oil aromatic components	176
6.5.2	SHOP P1 oil aromatic components, 1983 January	181
6.5.3	SHOP P1 oil aromatic components, 1983 May	184
6.5.4	SHOP P3 oil aromatic components, 1983 February	188
6.5.5	SHOP P3 oil aromatic components, 1983 May	192
6.6.1	UMATAC overhead oil aromatic components, 1982 October	197
6.6.2	UMATAC overhead oil aromatic components, 1982 October	203
6.6.3	UMATAC sidedraw oil aromatic components, 1982 October	207
6.6.4	UMATAC sidedraw oil nitrogen components, 1982 October	212
6.6.5.1	UMATAC overhead oil nitrogen components, 1982 October	215
6.6.5.2	UMATAC overhead oil nitrogen components, 1982 October	217
6.7.1	Combustion tube oil 159-11, aromatic components, 1983 November	220
6.7.2	Combustion tube oil 159–14, aromatic components, 1983 November	226

xvii

LIST OF FIGURES

Figure		Page
1.	Analytical scheme for the separation and identifica- tion of organic compounds	13
2.	Single ion mass chromatogram (m.e. 252) of an aromatic fraction of GP26 oil	31
3.	Ames test data on synthetic crude oil with benzo(a)- pyrene added	75
4.	Ames test data on the neutral fraction of synthetic crude oil, with S9 enzymes	77
5.	Ames test data for the neutral fraction of synthetic crude oil, without S9 enzymes	78
6.	Ames test data for the "neutral nitrogen" components of synthetic crude oil, -S9	79
7.	Ames test data for the "neutral hydrocarbon" components of synthetic crude oil, -S9	80
8.	Ames test data for bitumen, with added benzo(a)pyrene, + S9	81
9.	Ames test data for the neutral fraction of bitumen, + S9	82
10.	Ames test data for the aromatic sub-fraction 98-67-36 of GP26 oil	84
11.	Ames test data for the aromatic sub-fraction 98-67-35 of GP26 oil	85
12.	Ames test data for the aromatic sub-fraction 98-67-34 of GP26 oil	86
13.	Ames test data for the aromatic sub-fraction 98-67-33 of GP26 oil	87
14.	Ames test data for the aromatic sub-fraction 98-67-32 of GP26 oil	89
15.	Ames test data for the aromatic sub-fraction 98-67-31 of GP26 oil	90
16.	Ames test data for the aromatic sub-fraction 98-67-30 of GP26 oil	91

ABSTRACT

Chemical analysis of oils, produced by in-situ combustion processes from the Athabasca oil sands, revealed many compounds known to be carcinogenic or mutagenic. Concentrations were low, up to 14 μ g/g of benzo(a)pyrene (BaP). This compares with up to 7.5 μ g/g BaP in soils produced by less rigorous thermal treatment from the Suffield block, 2.7 μ g/g in oils produced by steam injection from the Peace River sands, and 16 μ g/g in oils produced by the dry retorting of Athabasca sands. Some coal tars, pitches, and refinery residuals may contain more than 50 times these concentrations.

The Ames test was used as an indicator of mutagenic activity but could not be used as a quantitative means of comparing mutagenicity among oils. Activity was found in fractions of all the above oils but the activity was less than expected based upon the amounts of known carcinogens and mutagens found by chemical analysis.

Waters produced during both steam injection and in-situ combustion processes were toxic to aquatic organisms as determined by the Microtox bioluminescence assay. Toxicity was caused by dissolved aromatic hydrocarbons, phenols, organic acids, and nitrogen compounds. Waters from the dry retorting process were the most toxic of those tested.

On the basis of this limited testing, biological activity detected in oils produced by in-situ processes was slightly greater than that associated with normal crude oils but far less than might be expected from coal liquefaction products and refinery residuals.

xix

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the financial support of the Alberta Oil Sands Technology and Research Authority and the Research Management Division of Alberta Environment who jointly funded this research. The cooperation of many companies and individuals who supplied samples from their in situ pilot projects, recovery processes, and related experiments is appreciated. We thank Mr. R. Findlay and Mr. B. Urich of AMOCO Canada Petroleum Company Limited, Mr. P. Kitzan of Shell Canada Petroleum Company Limited, Mr. D. Dent of Alberta Energy Company Limited, Mr. B.M. Sankey of Imperial Oil Limited, Mr. Brian Johnson of UMATAC Industrial Processes Limited, and Dr. G. Moore of the Chemical and Petroleum Engineering Department, University of Calgary. Dr. K. Sanderson of the Biology Department, The University of Calgary, oversaw the Ames biological tests, and Dr. Bruce Ames of the University of California (Berkeley) provided mutant strains of Salmonella typhimurium. The work of the many members of the staff of the Kananaskis Centre for Environmental Research - L. Dunne, M. Strosher, K. Parker, J. Lockhart, and D. Patton, who contributed greatly to the success of this project is much appreciated. We thank the members of the University Oil Sands Research Evaluation Committee and Dr. B. Hammond of Alberta Environment for their consideration and continued support of this project, and Dr. C. Hsi of AOSTRA for facilitating this research.

ΧХ

1. INTRODUCTION

With the gradual decline of Canada's easily recoverable conventional oil reserves, industry and government are increasingly looking toward more expensive sources of energy such as conventional oil offshore and in the Arctic, as well as conventional heavy oil reserves, and heavy oil sands.

The oil sands of northern Alberta represent one of the world's largest underutilized energy reserves, estimated to be from 950 or 1350 billion barrels of heavy oil (Mossop 1980; Nicholls and Luhning 1979). Commercial production, using surface mining and hot water extraction to separate the heavy oil, began in 1967 and production from the two large plants totals about 200,000 barrels per day. Unfortunately, the present commercial techniques can be economically applied to only about 8% of the in-place reserves, those which are covered with less than 50 m of overburden. Nevertheless, over 75 billion barrels of heavy oil could be recovered using the existing technology (based on 8% of the reserves).

Further development of large scale plants, using surface mining and hot water extraction, has been restricted by financial considerations. These plants require a very large capital investment (upwards of 10 billion dollars) and take five or more years to build. Worldwide political and financial uncertainties have made such large scale, long-term investments unattractive. Thus, there is a need for alternate methods of oil recovery which require less capital investment and which will recover oil from deeply buried sands.

In situ recovery methods may meet these criteria: projects can be initiated with a relatively small initial capital investment, can be brought into production more rapidly than large hot water extraction plants, can be expanded as demand for oil increases, and can be produced from sands not accessible by surface mining. Although many in situ recovery methods have been proposed, two basic methods, with several variations, have been extensively tested in pilot projects. The two methods are steam injection and in situ combustion. In both cases, a pattern of wells is drilled and communication between wells is established by fracturing the formation. Communication

channels may be further established by injection of caustic solutions and emulsifiers. Steam is then injected, usually in a cyclic manner such as in the case of the "Huff and Puff" method where steam is injected at high pressure followed by depressurization of the formation to produce hot oil and water. In the COFCAW (Combination of Forward Combustion and Waterflood) a combustion zone is established in the formation, and water is injected to provide heat transfer and to drive the cracked and heated oil to production wells.

An alternative method is surface mining with recovery of the bitumen from the mined sands using a "dry" retorting process. Presumably a plant based on this process would be of smaller scale and consequently would require a smaller capital investment than the present hot water extraction plants.

Potential biological and environmental hazards have become major concerns in the development of large new energy technologies. Studies in the United States have focussed on the processing of coal and oil shales to produce liquid fuels. Epidemiological studies have shown an increased risk of cancer associated with these activities and fractions of the liquid fuels have produced cancer in test animals (Bridge and Henry 1928; Haagensen 1931; Heller 1930; Henry 1947; Sexton 1960). The cause of the carcinogenic activity is believed to be polycyclic aromatic hydrocarbons, heterocyclic compounds and other, as yet unidentified, compounds concentrated in the heavier fractions of the oil and residuals (Freudanthal et al. 1975; Kornreich 1976).

The opportunity for synthesis of hazardous chemicals exists whenever fossil fuels are subjected to severe conditions such as during pyrolysis, hydrogenation, or gasification. Such severe conditions exist in the combustion zone during recovery of oil from Alberta oil sands by the COFCAW process and, during dry retorting, with the Taciuk Processor in the UMATAC process. COFCAW-produced and UMATAC-produced oils may contain different types of compounds or greater amounts of some biologically active compounds than are normally found in crude oils. The composition of the produced oils varies according to the operating conditions of the process. Oils

produced by steam injection undergo a far less rigorous thermal treatment than those produced by combustion and retorting methods.

In addition to carcinogenic substances, in situ processes are likely to produce many chemical compounds which are toxic to aquatic organisms. Some of these compounds will be dispersed or dissolved in formation waters in the vicinity of the production zone and, if not confined, may contaminate other subsurface waters. Such compounds could impart an unpleasant taste and odour to drinking waters; the possible health effects of long term exposure are not well understood. Waters co-produced with the oil or wastewaters from the "dry" retorting process may also present an environmental hazard if they are not properly confined or treated. Unfortunately, even under the most carefully controlled conditions, spills occasionally occur when large volumes of fluids are handled. Similarly, spills of produced oil or synthetic oil may find their way into surface waters or eventually into groundwaters. In addition to obvious toxic effects from chemical pollutants, the possibility of the compounds producing carcinogenic, mutagenic, or teratogenic effects whose expression may be divorced in time from the exposure(s) also requires consideration (Epler et al. 1978).

No simple, reliable, and inexpensive biological test presently exists for assessing the carcinogenicity of complex mixtures of compounds such as those recovered from the Alberta oil sands by in situ methods. Animal tests are expensive, time consuming, and not practical for determining the long-term effects of chronic exposure to low concentrations of carcinogens. Short-term, in vitro, bio-assays offer a number of advantages for the initial screening of samples for carcinogenic or mutagenic activity. They are quick, relatively inexpensive, reproducible, and sensitive. However, the extrapolation of results from short-term bioassays for mutagenicity to man is in question. Short-term tests point out potential mutagenic and carcinogenic chemicals and serve to order priorities for further testing. Biological screening tests such as the Ames <u>Salmonella</u>/microsome assay (Ames et al. 1975) have demonstrated their utility: (1) as indicators of potential long-term health effects such as mutagenesis and carcinogenesis; (2) as a means to direct the fractionation and identification

of hazardous biological agents in complex mixtures; (3) as a measure of relative biological activity to be correlated with changes in process conditions; and (4) to establish priorities for further biological testing or chemical analysis (Waters 1979).

A second powerful tool is chemical analysis to quantitatively identify known carcinogenic or mutagenic compounds in complex hydrocarbon mixtures. Many hundreds of compounds, such as the well known carcinogen benzo(a)pyrene, can be identified down to the positional isomer level by this method. It is important that the specific isomers present be determined, since the biological activity of isomers of the same compound may vary greatly. Difficulties arise, however, in providing a biological interpretation of the chemical data. Of the hundreds of compounds which may be found, the carcinogenic or mutagenic properties of only a few may be known. Information is generally available only on pure chemicals and little is known about the behavior of mixtures of many carcinogenic and non-carcinogenic compounds.

A combination of biological testing and chemical analysis provides the best, although far from complete, means of assessing samples for mutagenic or carcinogenic hazard. Chemical fractionation may be required to simplify complex mixtures prior to biological testing, eliminating compounds which may be toxic to the test system and simplifying the chemical analysis.

Biological testing for acute toxicity in water systems is far better standardized than testing for mutagenesis or carcinogenesis. The 96 h fish test is widely used but is not universally applicable. For example, very few researchers have maintained constant concentrations of volatile components such as aromatic hydrocarbons for the duration of the test. Furthermore, the fish test is a measure of acute toxicity only, and there is little evidence that it is a measure of the effect of a compound on the ecosystem as a whole (Dickson 1982). The Microtox bioluminescence assay has been developed to partially overcome some of the limiting factors of the fish test. It is fast and precise, taking only a few minutes per assay, therefore minimizing loss of volatile compounds. Chemical analysis can be used to identify toxic organic compounds in the water and volatile organic compounds which may be lost during fish toxicity tests.

The objective of this research program is to evaluate produced fluids from the COFCAW in situ process and from other heavy oil recovery processes for possible toxic and carcinogenic properties. This evaluation is based on biological testing by the Microtox and Ames tests and on chemical analysis for the presence of known toxic and carcinogenic compounds.

Specific objectives of the program are:

- To identify and quantitatively measure known carcinogenic and mutagenic compounds in oils and wastewaters produced during recovery of heavy oil by in-situ combustion (COFCAW process and SHOP project) and dry retorting processes (UMATAC);
- For the purpose of comparison, to identify and quantitatively measure similar compounds in -

(a) synthetic crude oil produced by the commercial surface mining method,

(b) oil produced from the Athabasca and Peace River deposits by steam stimulation,

(c) naturally occurring heavy oil from the Athabasca sands,

(d) diesel fuel circulated downhole during heavy oil production, and

(e) refinery tars and residuals;

- To determine the mutagenic activity, based upon the Ames test, of oils produced by in-situ combustion recovery methods;
- To determine the toxicity to aquatic organisms of waters coproduced with oil from the in-situ recovery pilots and dry retorting process;
- 5. To determine the toxicity of waters after contact with cracked hydrocarbon products from the oil sands; and
- 6. To compare results obtained from in-situ pilot projects with those from the more easily monitored combustion tube experiments carried out at the University of Calgary.

2. MATERIALS AND METHODS

2.1 SAMPLE DESCRIPTION

The fluids examined were primarily from the Suffield Heavy Oil Pilot (SHOP) project located about 50 km north of Suffield, Alberta, from the UMATAC dry retorting pilot plant located in Calgary, and from the Gregoire Lake pilot project located about 40 km southeast of Fort McMurray, Alberta. The Gregoire Lake pilot was operated by Amoco Canada Petroleum Company Limited on behalf of the Alberta Oil Sands Technology and Research Authority (AOSTRA), Amoco, Petro Canada, Sun Oil Company Limited, and Shell Canada Limited. The SHOP project is operated by Alberta Energy Company Limited (AEC) on behalf of its three partners: AOSTRA, Westcoast Petroleums Limited, and Muskateer Energy Limited (a wholly owned subsidiary of Dome Petroleum Limited). The UMATAC pilot plant is a joint AOSTRA-UMATAC Industrial Processes Ltd. project.

The SHOP project is designed to evaluate in-situ combustion as a means of increasing heavy oil recovery. About 69,000,000 m³ (430,000,000 barrels) of viscous heavy oil have been found in the Suffield Military Block but only a small proportion of this can be recovered by conventional primary and secondary recovery methods. The project consists of a central injection well and four production wells located 140 m apart and 100 m from the injection well. Three observation wells are located within the square of production wells. Samples of produced oil and water were taken in 1983 and 1984.

The Gregoire Lake pilot project was designed for the extraction of deep oil from Alberta's oil sands by the COFCAW in-situ process. Initially, the project was to consist of nine injection wells and sixteen production wells with a spacing of one production well per hectare. Subsequently, the spacing of wells was modified by the addition of satellite wells located in each case about 8 m from the production wells in the direction of the injection wells. Not all wells within the pilot project produced by the COFCAW process, some produced by steam stimulation.

Communication among injection and neighbouring production wells was not always well established or defined; thus, produced waters

may have been derived directly from the COFCAW process, from a combination of the COFCAW process and steam stimulation, or from steam stimulation alone. Some original connate water may also have been produced. Diesel fuel was circulated downhole to prevent blockage with heavy bitumen. Produced oil may consist of a mixture of raw bitumen, bitumen heated by steam injection, hydrocarbons generated by in situ combustion and diesel fuel.

Fluids from the Gregoire Lake pilot project were sampled on February 19, March 19, May 14, and June 10 1981 (Table 1). A total of five wells was sampled with produced water and oil-water emulsion collected in 20 L glass containers. Smaller samples for Microtox testing, total organic carbon analysis, and analysis of volatile components were collected in 50 mL culture tubes tightly closed with teflon-lined screw caps. Not all wells were producing during each sampling period. Diesel fuel, which is circulated downhole to prevent blockages, was sampled prior to injection, and groundwater which is injected during the COFCAW operations was also sampled. Historic samples of oils and emulsions were also obtained. These included tubing samples taken from well GP26 June 10, June 24, and September 27 1980 and from well GP29 on July 12 1978.

The well designated GP26, when sampled in May, provided a good example of COFCAW-produced fluids. GP19, sampled in May and June, was produced primarily by steam stimulation. For comparison purposes, produced fluids and cracked products from the AOSTRA-Shell pilot study at Peace River were also examined as were commercial synthetic crude oil from the Athabasca oil sands, Athabasca bitumen, and conventional crude oils. Samples of produced emulsion were collected from well #44 of the Peace River pilot project on July 13 1982. Also sampled were the diluent, top oil, pitch, and vacuum gas oil from the diluent recovery unit.

Refinery residuals and tars are known to contain high concentrations of polycyclic aromatic hydrocarbons. To assist in putting the in-situ combustion results into perspective, five types of samples ranging in viscosity from gas oil to fractionator bottoms were obtained. A list of all samples is contained in Table 1.

Table 1. List of samples obtained for this study.

Samples taken from the Suffield Heavy Oil Pilot Project. ٦. Base sample - produced prior to initiation of in-situ combustion or steam injection. Sampling date - January 27 1983 - treater water - oil from treater - defoamer chemical - de-emulsifier chemical - biocide Sampling date - February 2 1983 - Well Pl oil and water - Well P2 oil and water - Well P3 oil and water - Well P4 oil and water Sampling date - May 12 1983 - treater water - treater oil - Well Pl wellhead oil - Well P2 wellhead oil - Well P3 wellhead oil - Well P4 wellhead oil Sampling date - February 29 1984 - treater water - oil from treater - Well Pl wellhead oil - Well P2 wellhead oil - Well P3 wellhead oil 2. Samples taken from the Gregoire Lake pilot study. 2.1 Water Samples GP-20 (Feb) Produced water: combination of treated water, GP-20 (Mar) raw water and stimulated water (100°C) Produced water; combination of raw water and GP-21 (Feb) GP-21 (Mar) stimulated water (100°C) COFCAW-produced water GP-21 (Jun)

8

continued...

Table 1. Continued.

```
GP-26 (Feb)
              Water produced in combustion process
GP-26 (Mar)
GP-26 (May)
              Produced waters from steam stimulation
GP-31 (Feb)
GP-31 (Jun)
              Produced waters from steam stimulation
GP-19 (May)
GP-19 (Jun)
Groundwater (Feb)
                       Groundwater used for injection of samples
2.2
         Oil Samples
GP-31 (Feb)
              Steam produced bitumen
GP-31 (Mar)
              Steam produced bitumen
GP-19 (May)
GP-19 (Jun)
GP-26 (May)
              COFCAW-produced bitumen
GP-21 (Jun)
              Steam produced bitumen
GP-26 (Jun 1980)
                  Historic sample. COFCAW-produced 80-6-10
GP-26 (Jun 1980)
                   Historic sample, COFCAW-produced 80-6-24
                   Historic sample, COFCAW-produced 80-9-27
GP-26 (Sep 1980)
GP-29 (Jul 1978)
                   Historic sample, 78-7-12
Tank sample, T. (Feb)
                        Cumulative oil sample from top of storage tank
Tank sample, M. (Feb)
                        Cumulative oil sample from middle of storage
                        tank
Tank sample, B. (Feb)
                        Cumulative oil sample from bottom of storage
                        tank
Tank sample, T. (Jun)
                        Cumulative oil sample from top of storage tank
2.3
         Diesel Fuel
Diesel fuel, A.
                   Diesel used to circulate downhole, no inhibitors
                   Diesel used to circulate downhole, inhibitors added
Diesel fuel, B.
3.
         Refinery Samples.
         November 1982
                   - steam cracker gas oil
                   - catalytic cracker heavy cycle oil
                   - catalytic cracker fractionator bottoms
                   - fluid coker heavy gas oil
```

continued...

Table 1. Continued.

4. Peace River Samples. July 1982 - oil-water emulsion - diluent - top oil - pitch - vacuum gas oil 5. UMATAC Samples. October 1982 - off gas condensate - day tank product - overhead oil - sidedraw oil - preheat steam vent oil - bottoms - scrubber settling tank underflow - preheat vent water - overhead vent water - oil sand feedstock - tailings - hydrocarbon cyclone solids - flue cyclone solids September 11 1984 - preheat vent water - overhead vent water September 26 1984 - overhead vent water (preserved) September 27 1984 - overhead vent water October 12 1984 - overhead vent water - preheat vent water October 14 1984 - overhead vent water November 8 1984 - overhead vent water (preserved) - preheat vent water (preserved)

Continued ...

Table 1. Concluded.

November 21 1984 - preheat vent water - overhead vent water 6. Combustion Tube Experiments. February 1983 oil - 159-2 - 159-6 oil - 159-11 oil - 159-13 oil - 159-14 oil October 1983 - 168-1 oil-water emulsion - 168-5 oil-water emulsion - 168-9 water - 168-12 water November 1983 - 169-6 water - 169-8 water - 169-9 water - 169-11 water - 169-13 water - 169-15 water - 169-18 water - 169-20 water 7. Other Samples. - Lloydminster heavy crude oil - Athabasca bitumen - Pembina light crude oil

The UMATAC pilot project utilizes the Taciuk Processor to separate bitumen from oil sands by retorting. The process combines retorting of bitumen from the sand with burning of the deposited coke within the same vessel. The system is described as "dry" because no water or steam is added; nevertheless, water which is normally present in mined sand is produced. Several product and wastewater streams were sampled.

2.2 EXTRACTION AND FRACTIONATION OF ORGANIC COMPOUNDS

2.2.1 Water Samples

Water samples were extracted in the 20 L bottles used for sample collection. The extraction and separation scheme is shown in Figure 1. Similar schemes have been used in this and other laboratories for the fractionation of samples prior to chemical analysis or mutagenicity testing (Rubin et al., 1976; Strosher and Peake, 1978).

The neutral and acidic organic components were extracted by first acidifying the sample to pH 2 with concentrated hydrochloric acid and then mixing for a period of 6 to 18 h with 200 mL of benzene using a magnetic stirrer. After allowing the aqueous and solvent phases to separate, the benzene and any emulsion were removed. Four to five extractions were made with 200 mL of benzene per extraction.

Following extraction of the acidic and neutral compounds, the water sample was adjusted to pH ll with sodium hydroxide, and the basic organic components were extracted with benzene. Two to three extractions were carried out in the same manner as for the acidic compounds.

The water was neutralized with hydrochloric acid and any amphoteric compounds were extracted two to three times with benzene.

Emulsions formed during the extraction process were broken by centrifugation or by freezing. The combined benzene extracts for each pH were concentrated under vacuum using a rotary evaporator at a temperature of 25⁰C.

The acidic extract was then fractionated into neutral, acidic, and asphaltene components. Acidic components were removed from the benzene extract by extraction with 5% sodium hydroxide. The remaining benzene layer containing neutral components was washed with double

Figure 1. Analytical scheme for the separation and identification of organic compounds.

distilled water and reduced to near dryness. The residue was dispersed in pentane, allowed to stand overnight, and the asphaltenes separated by filtration. Neutral components remained in the pentane supernatant.

Acidic components dissolved in the sodium hydroxide solution were recovered by adjusting the aqueous pH solution to 2 and extracting with benzene.

2.2.2 <u>Oil Samples</u>

2.2.2.1 <u>Fractionation with ion exchange resins</u>. Asphaltenes were separated from the oil by dispersing the oil in pentane and allowing the asphaltenes to precipitate overnight. The asphaltenes were filtered from the sample, washed, dried, and weighed.

Twelve to 15 g of pentane soluble oil in 150 mL of pentane was passed through 40 g of Amberlyst A26 anion exchange resin in a 1 x 100 cm water-jacketed column. This column is part of an extraction apparatus which allows unreacted material to be removed from the resin by continuous extraction with 200 mL of hot pentane. Weaker acids were removed from the anion exchange resin by continuous extraction with 200 mL of benzene. The resin was then removed from the column and stronger acids removed by soxhlet extraction with 60% benzene-40% methanol. Any remaining acids were removed by extraction with methanol saturated with carbon dioxide.

The neutral and basic components which passed through the anion exchange resin were separated on a column of Amberlyst 15 cation exchange resin. Neutral compounds passed through the resin and any unreacted material was removed by refluxing with 200 mL of pentane. Bases were removed from the cation exchange resin in four stages, refluxing with 250 mL of benzene, 250 mL of 60% benzene-40% methanol, 250 mL of 55% benzene-37% methanol-8% isopropylamine, and 250 mL methanol.

The acids, bases, and neutral components were then subjected to further fractionation or analysed directly by combined gas chromatography-mass spectrometry and their mutagenicity determined by the Ames test. 2.2.2.2 <u>Separation of nitrogen compounds on ferric chloride</u>. Neutral nitrogen compounds were separated from the neutral nitrogen fraction remaining after chromatography of oil on ion exchange resins (Jewell et al. 1972). The neutral nitrogen compounds were complexed with ferric chloride by slow percolation through a column of ferric chloride supported on clay. Unreacted material was removed from the column with 10 volumes of pentane. The "neutral nitrogen" compounds were removed by eluting with 40 volumes of 1,2-dichlorethane. The neutral nitrogen fraction was then analysed by combined gas chromatography-mass spectrometry and the mutagenicity determined by the Ames test.

2.2.2.3 Separation by acid/base extraction. As an alternative to separation on resins (2.2.2.1), oils were separated into acids, bases, and neutral components with acid/base extractions. About 1 g of oil, freed of asphaltenes, was dissolved in 150 mL of diethyl ether. Basic compounds were extracted with 100 mL of 1N hydrochloric acid and acidic compounds with 100 mL of 1N sodium hydroxide. After backwashing with ether to remove any entrained hydrocarbons, the pH of the hydrochloric acid solution was adjusted to 11 with 12N sodium hydroxide and the basic compounds extracted with diethyl ether. The sodium hydroxide extract of the oil was also backwashed to remove any dispersed oil. Weak acids were separated by adjusting the pH of the sodium hydroxide extract to 6.5 with concentrated hydrochloric acid and partitioned with diethyl ether. Strong acids were extracted with diethyl ether after adjusting the sodium hydroxide extract to pH 1.5 with concentrated hydrochloric acid. The acids and bases were analysed by gas chromatography and tested for mutagenicity with the Ames test.

2.2.3 <u>Separation of Aromatic Compounds from Oil-Water Emulsions</u>.

Oil was separated from oil-water-clay mineral emulsions by repeated extraction with cyclohexane and centrifugation. The weight of extracted oil was determined by reducing an aliquot of the cyclohexane extract to near constant weight by rotary evaporation.

Aromatic hydrocarbons and compounds of similar polarity were extracted from the cyclohexane-oil mixture by shaking vigorously with an equal volume of 90% dimethylformamide-10% water (Grimmer and

Hildebrandt 1972). The resulting emulsion was centrifuged and the cyclohexane layer removed. The aqueous emulsion was repeatedly shaken with cyclohexane and centrifuged until the emulsion was broken and an aqueous dimethylformamide (DMF) phase was recovered. The DMF, containing the aromatic hydrocarbons, was filtered to remove any oil droplets.

The above procedure was repeated three times and the DMF extracts combined. The aromatic hydrocarbons were then transferred from the DMF solution into cyclohexane by adding 5 volumes of water saturated with sodium chloride and extracting three times with cyclohexane.

After removal of most of the cyclohexane by rotary evaporator, the crude aromatic fraction was chromatographed on a 20 x 120 mm column of deactivated Woelm 101 alumina (Adamek 1972). The aromatic compounds were eluted with 400 mL of toluene, leaving more polar compounds adsorbed in the alumina. The aromatic fraction was then rechromatographed on a 1 x 20 cm column of Woelm 101 alumina activated 16 hours at 300° C. Two hundred mL of toluene was used to elute the aromatics which were collected in 29 fractions ranging from 3 to 10 mL in volume. Fractions were then examined by synchronous fluorescence spectroscopy, analysed by combined gas chromatography-mass spectrometry, and their mutagenicity determined in the Ames test.

2.3 CHEMICAL ANALYSIS OF PRODUCED WATERS

2.3.1 Total Organic Carbon (TOC)

Samples collected in 50 mL culture tubes were analysed for total organic carbon with a Dohrmann Envirotech carbon analyzer. The sample was shaken prior to analysis and therefore the TOC values represent both dissolved organic compounds and compounds associated with suspended matter. The method also gives a value for "volatile organic carbon" representing compounds boiling up to about 150^oC.

2.3.2 Volatile Organic Compounds

Volatile organic compounds were analysed by combined gas chromatography-mass spectrometry after concentration by a modified

purge and trap method (USEPA 1977). From 0.5 to 5.0 mL of sample was placed in a 13 x 100 mm culture tube and the volume brought to 5 mL by the addition of distilled water as necessary. The tube was heated to 45⁰C in a water bath and helium passed through the sample via a length of fused silica capillary tubing at the rate of 50 mL per minute. The purged hydrocarbons were trapped in a 40 x 10 mm glass column filled with Tenax GC resin. The hydrocarbons were removed from the Tenax resin by heating to about 250° C with helium flowing at 50 mL per minute and were trapped in a length of fused silica tubing at liquid nitrogen temperature. The hydrocarbons were then flashed into the injection port of a combined gas chromatograph mass spectrometer (GC-MS) and analysed. The GC-MS system used was a Finnegan model 4021 equipped with an INCOS data system, a Wanco 10 megabite disc drive, and a Perkin Elmer 9 track tape drive. Separation was achieved on a 30 m by 0.25 mm fused silica column coated with SE54 having 107 000 actual plates. The fused silica contains few active sites, thereby allowing high resolution of acids and bases as well as neutral compounds. GC-MS operating conditions are listed in Table 2. Tentative identifications of the purged hydrocarbons were based on computer comparisons with mass spectra contained in the United States Environmental Protection Agency library of 26 000 compounds.

2.3.3 Extractable Organic Compounds

Acidic, basic, and neutral organic fractions, separated from water and oil samples as described in Section 2.2, were analysed by combined gas chromatograph-mass spectrometry (GC-MS). GC-MS operating conditions are listed in Table 3. Identification of compounds was based on: (1) computer comparisons of mass spectra with those of the United States Environmental Protection Agency library; (2) gas chromatograph retention times as compared with standard compounds; and (3) published mass spectra and gas chromatographic data. Quantification was based on internal standards of deuterated anthracene, chrysene, and benzo(a)pyrene. Separate samples were fractionated for chemical analysis and biological testing, with the deuterated standards being added prior to extraction and fractionation for those samples which were to undergo chemical analysis.

<u>Gas Chromatograph</u>	
Column	30 m x 0.25 mm fused silica coated with SE54 (J. and W. Scientific)
Carrier gas	helium at 15 psi
Temperature program	15°C for 10 minutes, 15° to 70°C at 25° per minute, 70° to 180°C at 4° per minute, hold at 180°C for 30 minutes.
Injection port temperature	200°C
Transfer line temperature	200°C
Mass Spectrometer	
Ionizing voltage	50 ev
Mass range	45 to 250 amu
Scan rate	full range each 0.5 seconds
Manifold temperature	100°C
Manifold pressure	5 x 10 ⁻⁷ torr

Table 2. Gas chromatograph-mass spectrometer conditions for analysis of volatile compounds.

<u>Gas Chromatograph</u>	
Column	30 m x 0.25 mm fused silica coated with SE54 (J. and W. Scientific)
Carrier gas	Helium at 15 psi
Temperature program	40°C for 1 minute, 40 to 100°C at 40° per minute, 100 to 300°C at 4° per minute, hold at 300°C for 20 minutes.
Injection port temperature	300°C
Transfer line temperature	300°C
<u>Mass Spectrometer</u>	
Ionizing voltage	50 ev
Mass range	45 to 425 amu
Scan rate	full range once per second
Manifold temperatures	100 ⁰ C
Manifold pressure	1.1 x 10 ⁻⁶ torr

Table 3. Gas chromatograph-mass spectrometer conditions for analysis of extracted compounds.

Aromatic hydrocarbon fractions were examined by synchronous excitation-emission spectrofluorometry as well as by GC-MS. The instrument used was a Turner model 210 operated with 23 nm between the excitation and emission wavelength and scanning from an excitation of 275 to 550 nm. In this mode 2-ring aromatic compounds give emissions in the 290-330 nm range, 3 and 4-ring compounds emit from 330 to 390 nm and compounds with 5 or more rings emit at wavelengths higher than 390 nm.

2.4 BIOLOGICAL TESTING

2.4.1 <u>Microtox Toxicity Test of Waters</u>

The Microtox system was used to test the produced waters and waters contaminated with cracked oil products for toxicity to aquatic organisms. Produced water samples were tested: (1) as received; (2) after purging with helium to remove volatile organic components as described in 2.3.2; and (3) after extraction to remove acidic, basic, and neutral compounds. Waters contaminated with cracked oils were tested before and after removal of volatile compounds.

In the past, time-consuming static or flow-through bio-assays were used to monitor for toxic components in water, but the Microtox method, using luminescent bacteria and requiring small quantities of toxicant, produces results in less than one hour.

The Microtox toxicity system is a true bio-assay based on the response of live luminescent microorganisms. The reagent organism used is a marine bacterium closely resembling <u>Photobacterium phosphoreum</u>, selected because of its response to a wide spectrum of toxicants. The metabolic processes of the cells is a reflection of their state of health and is influenced by low concentrations of toxicants which cause a decrease in their light output.

This system uses the EC_{50} designation as an expression of toxicity. The EC_{50} value is the effective concentration of toxicant or effluent causing a 50% decrease in the light output of the bacteria under defined conditions of time and temperature.

Previous work compared Microtox EC₅₀ data for a series of pure compounds, including benzene, phenol and trinitrotoluene (Bulich et al. 1981; Qureshi et al. 1982; Chang et al. 1981). The data

indicate good general agreement between the Microtox bio-assay and fish bio-assay and Bulich concluded that five minute Microtox EC_{50} values were comparable with the fish 24 to 96 h data. In the same study, over 50 complex effluent samples were assayed with Microtox and simul-taneously assayed using standard fish testing procedures. Good general agreement was shown between tests but no attempt was made to account for differences in test conditions such as temperature, pH, water hardness, and other study factors.

Studies conducted by Lebsack et al. (1981) on fossil-fuel process waters and some phenolic components indicate that the correlation between the Microtox and fish bio-assay was indeed as good as the correlation between LC_{50} 's of two fish species. Therefore, the Microtox system is an efficient and fast method of determining the presence of potentially harmful components in process waters being returned to the environment. The system does have limitations, and such parameters as pH, nutrient load, and salinity can have an effect and must be considered in the final analysis.

The Microtox reagent is composed of freeze-dried cells of luminescent bacterium, commonly found in marine environments and harmless to man. Being of marine origin, these bacteria have a minimal requirement of osmotic protection provided by addition of NaCl to the test solution. The bacteria display good light stability in the presence of 2% NaCl, although salinities between 0.5% and 4% can be used, provided that all components of the test are adjusted to the same salinity.

Samples with high nutrients may stimulate growth of the bacteria, causing a light increase. This was overcome by using potassium phosphate as the blank and as a growth medium for the bacteria. Highly coloured samples may cause a non-specific reduction in bacterial light output in the normal Microtox test. A colour correction procedure has been developed which uses a special two-chambered sample cuvette to provide a measure of light adsorption due to colour of the sample.

Lyophilized luminescent bacteria were hydrated, before each test, with 1.0 mL of reconstituting solution precooled to $3.0^{\circ} \pm 1^{\circ}$ C. Five to seven pairs of cuvettes were placed in an incubator block controlled at 15° C. To one cuvette of each pair, the test cuvette, was

added 500 μ L of Microtox diluent, which is purified water containing 2% NaCl. The second cuvette of each set received 1.0 mL of an appropriate sample dilution with the exception of one cuvette which contained Microtox diluent. This cuvette served as a blank.

After the test cuvettes were cooled to 15° C, 10 µL of rehydrated bacteria was added to each of the cells and allowed to stabilize for 15 minutes. Five hundred microlitres of the sample and 500 µL of the blank solutions were transferred to the appropriate cell suspension. Initial light readings were then recorded for each cell suspension. Light readings were recorded for each cell after 5 minute and 15 minute reaction periods.

The blank was used to correct for time-dependent drift in light output. Those cuvettes which had been challenged with a toxic sample displayed a decrease in light level. Comparison of light decrease versus concentration of sample was used to determine an EC_{50} value.

2.4.2 Ames Mutagenicity Test of Fractionated Oil and Water Samples

Fractions separated from waters and oils as described in 2.2 were tested for mutagenic activity using the <u>Salmonella</u> mammalianmicrosome mutagenicity test (Ames et al. 1975).

An aliquot of the fractionated sample was reduced to incipient dryness by rotary evaporation and evaporation under a stream of nitrogen gas. The residue was weighed and dissolved in dimethylsulphoxide (DMSO). Extracts in DMSO were tested and assayed for mutagenic activity using the spot test and quantitative plate test in which the sample, bacteria, and mammalian enzymes were incorporated in an overlay of molten agar on plates containing minimal glucose agar medium (1.5% Difco Bacto-agar, 0.2% glucose, 1.05% K₂HPO₄, 0.45% KH₂PO₄, 1.0% (NH₄)₂SO₄, and 0.1% (NH₄)₂SO₄, and 0.01% MgSO₄. 7H₂O).

Bacterial strains received from Dr. Bruce Ames, University of California (Berkeley), were checked for histidine requirements, deep rough character, ampicillin resistance, uv-sensitivity, and spontaneous reversion rate prior to storage as frozen cultures $(-80^{\circ}C)$. Initial testing with strains TA98 and TA100 showed that TA98 gave the most consistant and reliable results; therefore, TA98 was selected for
routine testing of fractions. This strain detects frame-shift mutations including those which are enhanced by the presence of an Rfactor. The bacteria were grown overnight to saturation in a Penassay broth culture to which was added 0.1 mL of aqueous 0.2% ampicillin per 20 mL of broth (Parker 1979). The use of ampicillin in the growth of strains which carry the R-factor (TA98 and TA100) inhibited the growth of cells which had lost the R-factor and so ensured a near 100% R^+ cell population in the saturated culture.

Microsomal enzymes were obtained by homogenizing livers excised from rats injected 5 days previously with PCB (Aroclor 1254). Aliquots of the liver homogenate (termed S-9) were stored at -80° C until used. The optimum amount of S-9 per plate was determined with benzo(a)pyrene and sample extracts.

During routine testing, positive and negative controls were used to monitor consistency in both enzyme activity and bacterial properties.

The linear dose range was obtained by initially testing samples at a wide range of concentrations. Having determined the region of linearity (i.e., region of minimal toxicity), a narrower range of concentrations was used to determine the activity quantitatively. The slope of the line represents the mutagenic activity of the sample expressed in numbers of revertants per microlitre of extract in DMSO. From this can be calculated the number of revertants per litre of water sample or per gram of oil.

3. RESULTS AND DISCUSSION

3.1 CHEMICAL ANALYSIS OF PRODUCED WATERS AND WASTEWATERS

3.1.1 Acidity

The pH values of cooroduced waters and plant wastewaters are listed in Table 4. The most acidic samples were obtained from the combustion tube experiments with pH values as low as 1.6. Waters produced from the Gregoire Lake well GP-26 in May, during production from the combustion zone were also low, at pH 2.7, and waters produced by the UMATAC process such as the preheat vent water produced in October of 1982 were also low, at pH 2.5.

Low pH values are typical of waters produced from fire-flood operations or waters from oil sands which have undergone pyrolysis. Other Gregoire Lake water samples had pH values in the range of 6.5 to 8.7, indicative of production by steam stimulation or of mixed production rather than waters from the COFCAW process. The pH of treater waters from the SHOP project was in the range 7.8 to 8.15. These waters may not be representative of wellhead production but if this is the case, they have not been produced from the combustion zone. Water from the Peace River pilot, well 44, had a pH of 6.4.

3.1.2 Organic Carbon Content of Produced Waters and Wastewaters.

The non-volatile organic carbon content of the samples ranged greatly. For the Gregoire Lake samples, the range was from 74 ppm for a sample collected from well GP-20 in March, to 1850 ppm for a sample collected from well GP-31 in February when GP-31 was producing by steam stimulation.

Although the sample of GP-31 water was collected from the test separator, it contained quantities of suspended clay minerals with which oil was associated. Most samples had organic carbon contents of 100 to 300 ppm with the May sample from GP-26 obtained during the fire-flood operations, containing a relatively high 481 ppm.

Sample	рН	Volatile (ppm)	Carbon Organic (pp	
				volatiles)
SHOP				
Treater water	0.15			
(Jan 1983) Treater water	8.15	75	153	
(Feb 1983)	7.8	171	340	
Treater water				
(Feb 1984)	8.0			
GREGOIRE LAKE				
GP-20 (Feb 1981)	6.80	21	116	
GP-20 (Mar 1981)	7.10	10	74	
GP-21 (Feb 1981)	7.60	11	96	
GP-21 (Mar 1981)	8.65	21	103	
GP-21 (Jun 1981)	8.55	38	202	
GP-26 (Feb 1981)	5.60	21	160	
GP-26 (Mar 1981)	6.95	33	170	
GP-26 (May 1981)	2.70	136	481	
GP-31 (Feb 1981)	7.15	242	1850	
GP-31 (Mar 1981)	8.15	82	281	
GP-19 (May 1981)	6.70	25	226	
GP-19 (Jun 1981)	6.55	26	235	
PEACE RIVER				
Well 44 (Jul 1982)	6.4	59	376	
UMATAC				
Overhead vent				
(Oct 13 1982)	4.4	90	4828	
Preheat vent	2.5	22	639	
(Oct 13 1982) Scrubber tank	2.3	22	039	
(Oct 13 1982)	2.8	0	68	
-				

Table 4. Acidity and carbon content of water samples.

continued...

. .

Table 4. Concluded.

0

•

Sample	рН	Volatile Carbon (ppm)	Organic Carbon (ppm) (excluding volatiles)
Preheat vent	99999999999999999999999999999999999999	99 ya 199 ya	
(Sep 11 1984)	7.1	4	150
Overhead vent	C 0		0010
(Sep 11 1984)	5.2	77	9210
Overhead vent			4190
(Sep 26 1984) Overhead vent			4190
(Sep 27 1984)			5350
Preheat vent			3330
(Oct 12 1984)	3.2	0	1340
Overhead vent		-	
(Oct 12 1984)	4.2	260	5510
Overhead vent			
(Oct 14 1984)	3.6	1240	8510
Preheat vent			
(Nov 8 1984)	-105 KAR	15	131
Overhead vent		~~~	
(Nov 8 1984)		588	3970
Preheat vent	2 5	0	3.0.4
(Nov 21 1984) Overhead vent	3.5	0	124
(Nov 21 1984)	4.4	147	5570
COMBUSTION TUBE		,	3370
168-9 (Oct 1983)	8.1	55	1035
168-12 (Oct 1983)	8.3	110	1090
	0.0		1050
169-6 (Nov 1983)	5.2	61	1250
169-8 (Nov 1983)	4.0	41	1270
169-9 (Nov 1983)	4.1	100	1470
169-11 (Nov 1983)	2.6	295	4515
169-13 (Nov 1983)	2.2	180	3880
169-15 (Nov 1983)	1.6	47	6340
169-18 (Nov 1983)	1.7	353	5215
169-20 (Nov 1983)	1.7	227	3910

The volatile organic carbon values for the Gregoire Lake samples ranged from 10 to 242 ppm. The 242 ppm value was obtained in the February GP-31 sample which contained considerable amounts of suspended clay minerals. The volatile organic carbon content of the COFCAW-produced water GP-26 collected in May was high at 136 ppm as compared with values of from 20 to 40 ppm for most samples. The volatile organic carbon content of GP-26 (May) was 28% of the total organic carbon whereas in other samples the volatile carbon generally represented less than 20% of the total organic carbon. Thus, it appears that cracked hydrocarbons produced by the COFCAW process had been dispersed or dissolved in the waters produced from GP-26 in May.

Only three water samples from the SHOP project were analysed for carbon content. Values for volatile carbon and non-volatile organic carbon fell within the range found for the Gregoire Lake samples.

The combustion tube experiments produced waters containing large amounts of dissolved or dispersed organic carbon. Non-volatile organic carbon contents ranged from 1035 to 6340 ppm and the volatile carbon from 41 to 353 ppm. These samples had been filtered through a Whatman number 1 filter paper.

The UMATAC process generated wastewaters with as much as 9210 ppm non-volatile organic carbon and up to 1240 ppm volatile carbon. These high values were found in the overhead vent condensate. The preheat vent condensate contained less organic carbon, from 124 to 1340 ppm non-volatile organic carbon and from 0 to 22 ppm volatile carbon.

3.1.3 <u>Gross Extractable Components</u>

The 20 L water samples were extracted in the glass bottles in which they were collected as described in 2.2.1. The resulting material obtained under acidic extraction conditions was further fractionated into acidic and neutral compounds, and the asphaltenes in the neutral material were determined. The results, giving a breakdown of the gross composition of the extractable organic material from the produced waters, are shown in Table 5.

Sample	Neutr	rals	Aspha	ltenes	Aci	ds	Bas	es	Amphot	erics	Total
SHOP Project	treater v	water (4 ⁻	litre s	amples)							
Feb 1983 May 1983 Feb 1984	1.60 2.07 4.32	(75.6) (80.1) (84.5)	0.42 0.44 0.73	(19.8) (17.2) (14.2)	0.087 0.052 0.049	(4.1) (2.0) (0.9)	0.005 0.017 0.019	(0.2) (0.7) (0.4)	0.006	(0.3)	2.122 2.583 5.114
GREGOIRE LAKE	<u>E Project</u>	(20 lit	re sam	ples)							
GP-20 (Feb) GP-20 (Mar)	0.92 ^a 1.05 ⁶	(84.2) ^t (99.3)	0.087	a (7.9) ^b	0.072 ^a	(6.6) ^b			^b 0.0064 0.0008	^a (0.59) ^b (0.07)	1.092 1.057
GP-21 (Feb) GP-21 (Mar) GP-21 (Jun)	0.68 0.79 ^C 15.8	(79.1) (96.3) (88.8)	0.12 1.47	(13.9) (8.26)	0.048 0.47	(5.58) (2.64)	0.0036	(0.44)		(0.84) (3.29) (0.05)	0.86 0.82 17.8
GP-26 (Feb) GP-26 (Mar) GP-26 (May)	0.23 3.98 ^c 4.41	(46.9) (98.3) (67.4)	0.0084 1.68	4 (1.71) (25.7)	0.19 0.33	(38.8) (5.05)	0.028 0.022 0.051	• •	0.032 0.044 0.073	(6.65) (1.09) (1.12)	0.48 4.05 6.54
GP-31 (Feb) GP-31 (Mar)	26.2 14.2	(69.9) (100.0)	6.86	(18.3)	4.40	(11.7)		(0.02) (0.06)	0.016 0.014	(0.04) (0.10)	37.5 14.2
GP-19 (May) GP-19 (Jun)	1.51 3.07	(65.1) (64.9)	.37 1.09	(15.9) (23.0)	.39 .55	(16.8) (11.6)			0.024 0.0090	(1.03) (0.19)	2.32 4.73
UMATAC Wastev	<u>waters</u> (4	litre s	amples	, Octobe	er 1982)					
Overhead Preheat	0.47 0.37	(13.5) (71.1)		(4.0) (4.3)	0.76 0.05	(21.9) (9.6)		(55.8) (10.0)	0.17 0.026	(5.0) (4.9)	3.47 0.52

Table 5. Composition of organic material extracted from water samples by extract weight (g) and percentage.

^a Numbers in this column indicate extract weight in grams. ^b Numbers in this column indicate percentage of total extracted material. ^c Contains asphaltenes and acids.

With one exception, the majority of the extracted material consisted of neutral compounds. The extractable material from the three SHOP samples was of similar composition with from 76 to 85% neutral compounds and 14 to 20% asphaltenes. The acids and bases represented a total of from 1.3 to 4.3% of the extractable material. The composition of the three samples taken over a one year period indicates that they were not produced from a zone which had undergone combustion.

The Gregoire Lake samples also contained mainly neutral material, 47 to 89%, and asphaltenes 2 to 25%. Large variations in the amount of neutral and asphaltene fractions are to be expected, as the samples consisted of material which was both dissolved and dispersed in the water. Some samples, notably GP-31, had large amounts of bituminous material associated with dispersed clay minerals. Samples of this type would be expected to have high asphaltene contents. In the Gregoire Lake samples acids represented from 2.6 to 39% of the extracted material. The high values indicate substantial alteration of the bitumen during in situ treatment. The amount of basic compounds also varied greatly, from 0.02 to 5.71%. Samples from the steam stimulated well GP-31 contained the smallest percentage of bases, whereas the COFCAW-produced fluids of GP-26 contained the highest percent bases. The amphoteric extract represented 0.07 to 6.6% of the extracted organic material. It is guestionable whether these were true amphoteric compounds or material which was incompletely extracted under acidic or basic conditions. The GP-26 water collected in February is believed to have undergone rigorous thermal treatment and contained large amounts of iron. The total weight of extracted material ranged greatly from 0.49 to 37.5 g per sample. These values varied from those obtained by total organic carbon analysis. Such variations are not surprising considering the non-uniform nature of the oil-water-clay mineral mixtures which were sampled.

Wastewaters from the UMATAC process varied greatly in their organic carbon content (Table 4) and in the composition of the extractable organic material (Table 5). The overhead vent waters contained large amount of acids, 22% of the extractable material in the October 1982 sample, and large amounts of bases (56%). Neutral compounds

comprised only 14%. In contrast the preheat vent waters contained 71% neutral compounds, 10% acids and 10% bases and had a much lower organic

3.1.4 Detailed Chemical Analyses of SHOP Treated Waters.

carbon content.

3.1.4.1 <u>Aromatic hydrocarbons</u>. Studies of the carcinogenic properties of fossil fuels have historically focussed on the polycyclic aromatic hydrocarbon benzo(a)pyrene, but several other polycyclic aromatic hydrocarbons are known or suspected carcinogens. Benzo(a)pyrene was the first carcinogen to be isolated; it is a potent carcinogen, and it can be distinguished by its characteristic fluorescence spectrum. Benzo(a)pyrene can best be quantitatively measured in complex mixtures of organic compounds by gas chromotography-mass spectrometry on the basis of the single ion chromatogram of the molecular ion, mass 252 (Figure 2).

Low molecular weight aromatic compounds such as benzene and its alkylated homologues (masses 78, 92, 106, 120, 134, 148) and naphthalene and its homologues of mass 128, 142, 156, 170, and 184 are of interest because of their toxicity to aquatic organisms. Concentrations of water soluble hydrocarbons as low as 10 ppb produce sublethal effects in some organisms (in Harrison et al. 1975).

The aromatic hydrocarbons from the three SHOP project treater waters were analysed by GC/MS and the results are summarized in Table 6 and given in detail in Tables 6.1.1, 6.1.2 and 6.1.3 in Appendix 1. The most abundant compounds were the alkyl sustituted naphthalenes, especially compounds of mass 156, 170, and 184 with C2, C3, or C4 alkyl substitution. Second in abundance were the sulphur containing aromatic compounds, mainly alkyl substituted compounds of mass 212, 226, and 240. Third in order of abundance were the alkyl substituted phenanthrenes. Low molecular weight compounds are partly lost during the sample extraction and fractionation procedures so that the 1550 to 2296 ppb naphthalenes detected represent the minimum concentration of these compounds in the SHOP treater water samples.

Because of their volatility, naphthalene and alkylated naphthalenes were also measured as volatile components. Pure naphthalene

Figure 2. Single ion mass chromatogram (m.e. 252) of an aromatic fraction of GP26 oil.

Compound type	Sai	mpling Date	
Molecular weight	Jan 1983	May 1983	Feb 1984
napththalenes 128, 142, 156, 170, 184	1550	2296	1716
benzothiophenes 134, 148, 162, 176, 190, 204, 218	50	380	387
biphenyls 154, 168, 182	87	224	246
fluorenes 166, 180, 194, 208	175	308	227
phenanthrenes 178, 192, 206, 220	440	869	1488
dibenzothiophenes 184, 198, 212, 226, 240	595	1506	1937
fluoranthenes, pyrenes, benzofluorenes 202, 216, 230, 244, 258	86	17	90
chrysenes, triphenylenes, benz(a)anthracenes 228, 242, 256, 270	53	16	44
benzo(ghi)fluoranthenes 226, 240, 254, 268	ND	ND	ND
benzofluoranthenes 252	2	ND	ND
benzo(e)pyrene 252	4	ND	ND
benzo(a)pyrene 252	0.5	ND	ND
perylene 252	0.2	ND	ND
alkylated compounds 266, 280	וו	ND	ND
benzo(ghi)perylene 276	0.5	ND	ND

Table 6. Extractable aromatic compounds in SHOP treater water samples (ppb).

ND - Not Determined

1.1

is soluble in water to the extent of 31.7 ppm, biphenyl to 7.0 ppm, and phenanthrene to 1.29 ppm (Mackay and Shiu 1977). The compounds are partitioned between the oil phase and the co-produced water phase in the SHOP samples; thus, their concentration in the water is more than one order of magnitude lower than for the pure compounds alone. In studies of oil-water systems by Anderson et al.(1974) a 10% South Louisiana crude oil-water solution at equilibrium had 300 ppb naphthalenes in solution and a bunker C residual oil gave 900 ppb. These values are in the range found for the January 1983 SHOP treater water.

Concentrations of the higher molecular weight compounds, mass 242 and higher, which are the most carcinogenic of the aromatic compounds, were low, in the case of benzo(a)pyrene the concentration was 0.5 ppm.

3.1.4.2 Other components. Acidic compounds were minor components of the SHOP treater waters as indicated by the dry weights in Table 5. Alkyl substituted benzoic acids and phenols were the main constituents identified, totalling 117 ppb in the January 1983 sample (Table 6.1.4, Appendix 1). The February 1984 sample also contained mainly alkyl substituted benzoic acids at 157 ppb, alkyl substituted phenols at 23 ppb, and alkyl substituted naphthenic acids at 20 ppb (Table 6.1.5, Appendix 1). Many of the more volatile acids and phenols would have been lost during sample preparation. Losses would have been greatest in samples taken to "dry weight" as in Table 5 but still would be substantial in samples prepared for GC/MS analysis, thus explaining the absence of phenol and methyl phenols.

Nitrogen containing compounds were present in very small quantities in the SHOP treater waters. Among the compounds identified in the SHOP treater water sample of February, 1984 were alkyl substituted; pyrazines, diaminobenzenes, quinolines, naphthylamines, and benzoquinolines (Table 6.1.6, Appendix 1). These compounds totalled only about 4 ppb.

3.1.5 Gregoire Lake Co-produced Waters

3.1.5.1 <u>Aromatic and aliphatic hydrocarbons</u>. Aromatic hydrocarbons were the most abundant group of organic compounds found in waters which had been co-produced with oil in the Gregoire Lake pilot study.

Samples of water from the Gregoire Lake pilot plant were collected in tightly capped vials and analysed for volatile organic compounds as described in 2.3.2. The compounds identified in each sample by the computerized library of the GC-MS are listed in the tables contained in Appendix 2. The approximate concentration of each component was calculated on the basis of the total organic carbon content of the sample and the relative abundance of each component based upon GC-MS. Regardless of the source of the sample (steam-produced or COFCAW-produced water) the volatile components were much the same: alkyl substituted benzenes, cyclohexanes and pentanes, and saturated normal or branched chain alkanes (Tables 6.2.1 to 6.2.12).

The May water sample from well GP26 (the COFCAW-produced water), contained 25 ppm toluene (methylbenzene), 29 ppm xylenes (dimethylbenzenes) and 13 ppm benzene (Table 6.2.8). (The concentrations in Appendix 2 were produced by computer and should be rounded off to two significant figures.) Aromatic compounds accounted for 65% of the volatile organic carbon or 18% of the total organic carbon. The steam-produced water, sampled in February from well GP31, also contained large amounts of low molecular weight aromatic compounds. Of the 242 ppm volatile organic carbon in this sample about 72 ppm were aromatic compounds and 24 ppm cyclopentanes and cyclohexanes (Table 6.2.9). The smaller proportion of aromatic hydrocarbons and the larger amount of cycloalkanes in the steam-produced water, as compared with the COFCAW-produced water, reflects the large amount of dispersed hydrocarbons in waters from well GP31. A second difference in samples GP26 (May) and GP31 (February) was the presence of about 3 ppm volatile sulphur compounds, thiophenes, in the COFCAW water. Aromatic sulphur compounds, benzothiophenes and dibenzothiophenes, were also found in the extractable neutral fraction of the COFCAW-produced waters from well GP26 (Table 6.2.13) but not in the steam-produced waters from GP19 (Table 6.2.14). These compounds were likely to have been in part

generated by the combustion process. The composition of the hydrocarbons in the water reflects their physical state either as dispersed oil droplets or as dissolved hydrocarbons. The low molecular weight aromatic compounds such as alkyl substituted benzenes are preferentially dissolved from the oil into the water whereas the oil droplets consist mainly of aliphatic hydrocarbons. The cyclohexanes are among the more soluble of the aliphatic hydrocarbons, which accounts for their presence in the in-situ produced waters. The concentration of dissolved hydrocarbons in the produced waters depends upon a number of factors including the mole fraction of each hydrocarbon in the oil with which the water is in contact and the solubility of individual hydrocarbons. The concentration may be altered by partition with a gas phase and by loss by evaporation to the atmosphere. Since the solubility in water of benzene and alkyl substituted aromatic compounds is relatively high (1780 ppm for benzene) as compared with cycloalkanes (55 ppm for cyclohexane) and since the Henry's constants for aromatics are much lower than for alkanes, a predominance of aromatic compounds in the waters is to be expected.

The relationship between the chemical composition of water samples and their toxicity is discussed in Section 3.2.1.

3.1.5.2 <u>Other compounds</u>. The acidic components generally represented only a small proportion of the dissolved or dispersed organic compounds in the Gregoire Lake pilot waters (Table 5). Nevertheless, the concentrations, on the basis of possible biological effects, may be significant. The COFCAW produced water GP26, produced in May of 1981 and the corresponding steam-produced water from well GP19 contained 16 500 ppb and 19 500 ppb total acids, respectively, on the basis of the dried weight of extracted material. These two samples were analysed by GC/MS and the results are contained in Appendix 2, Tables 6.2.15 and 6.2.16. The major components in both samples were phenols and benzoic acids with phenols representing about 63% of the total acids. Phenol and methyl phenols in the GP26 water totalled 3140 ppb and C2- phenols totalled 2840 ppb (Table 6.2.15). The other major components were benzoic acid and its alkylated homologues. The concentration of benzoic acid was 1010 ppm and that of C1 to C3-benzoic acids was

470 ppb. The remaining components of the acidic fraction were aliphatic acids, naphthalene carboxylic acids, alcohols, and many oxygenated compounds in low concentrations. Losses of the more volatile components undoubtedly occurred during extraction and fractionation of the acidic compounds; therefore, the values reported are minimum concentration.

Interestingly, the steam-produced GP19 water contained similar types of compounds, but in slightly lower concentrations than the COFCAW-produced waters (Table 6.2.16). The high temperatures associated with the COFCAW process were expected to generate much higher concentrations of oxygenated compounds. The GP19, May treater water contained 113 ppb phenol, 1160 ppb methyl phenols, 2770 ppb C-2 phenols, 3510 ppb C-3 phenols, and 52 ppb C-4 phenols. The total phenols, 7600 ppb, represented about 45% of the acidic fraction as compared with 63% in the COFCAW water. Alkyl substituted benzoic acids accounted for a further 2260 ppb or 14% of the GP19 acids. The remaining compounds were naphthenic acids, alcohols and other oxygenated species.

The basic constituents of the Gregoire Lake Pilot GP26, May treater water were primarily quinolines and isoquinolines (Table 6.2.17). These components totalled 870 ppb, or 34% of the 2550 ppb total basic constituents. Other components identified were benzamines, cinnolines and benzoquinolines. Many compounds detected by GC/MS in the complex basic fraction could not be identified.

The steam-produced GP19 water (May) contained about 1150 ppb basic compounds (Table 6.2.18). Many compounds were not readily identifiable by GC/MS, but of those compounds which could be identified the major constituents were alkyl substituted benzamines, pyridines, quinolines, and indoles.

3.1.6 Combustion Tube Coproduced Waters

Insufficient sample size did not allow a rigorous analysis of waters co-produced with oil from the combustion tube experiments which were carried out by The University of Calgary, Chemical and Petroleum Engineering Department. Low molecular weight aromatic compounds were identified including biphenyls, phenanthrenes, and dibenzothiophenes. Concentrations of these compounds were low, being 1 to 16 ppb (Table 6.3.1, Appendix 3). Numerous individual nitrogen compounds were found with concentrations up to 23 ppb (Table 6.3.2, Appendix 3). These included alkylated quinolines totalling 45 ppb, benzoquinolines totalling 80 ppb, and napthoquinolines totalling 10 ppb. These concentrations were low compared to waters produced by the COFCAW process.

3.1.7 UMATAC Process Wastewaters

Three types of wastewaters were obtained from the UMATAC process, overhead vent water, settling tank underflow and preheat vent water. Results of preliminary chemical analyses of samples obtained in October of 1982 are contained in Table 7. The overhead vent water and the preheat vent water showed high concentrations of dissolved organic carbon, 4910 ppm and 659 ppm, respectively. All samples had a low pH.

The overhead vent water contained many aromatic compounds, the most abundant of which are listed in Table 6.4.1 in Appendix 4. The majority of the compounds identified were naphthalenes, fluorenes, phenanthrenes, and dibenzothiophenes. Naphthalene and its Cl-to-C4 alkylated homologues totalled 1960 ppb, fluorene and methyl fluorenes 97 ppb, phenanthrene and Cl-to-C3 alkylated phenanthrenes 165 ppb, and dibenzothiophenes 99 ppb. Many of the lower molecular weight compounds such as benzene and methyl benzenes would have been lost during sample preparation as would some of the naphthalenes. These concentrations of low molecular weight aromatic compounds are of biological concern as will be discussed in Section 3.2. Also found was the carcinogen benzo(a)pyrene at a concentration of 5 ppb.

The preheat vent water contained many aromatic componds but in lower concentrations than the overhead vent waters (Table 6.4.2, Appendix 2). As with the overhead waters, the major constituents of the preheat vent waters were alkylated naphthalenes, fluorenes, dibenzothiophenes, and phenanthrenes. Benzo(a)pyrene was found in low concentrations of approximately 0.2 ppb.

The most abundant compounds identified in the overhead vent waters were found in the basic fraction of the sample. Many alkyl substituted pyridines, pyrimidines, quinolines, aminodans, and aminobiphenyls were detected (Table 6.4.3, Appendix 4). The lower molecular

Table 7. Carbon content and acidity of UMATAC water samples.

1. <u>Overhead vent water, pH 4.4</u>

Total carbon content	5070	ppm
Total organic carbon content	4910	ppm
Volatile carbon content	424	ppm

Phenols, substituted phenols, and related compounds240 ppmBases, primarily nitrogen containing compounds480 ppmNeutral compounds, primarily aromatic hydrocarbons120 ppmAmphoteric compounds45 ppm

2. <u>Settling tank underflow water, pH 2.8</u>

Total carbon content	71	ppm
Total organic carbon content	69	ppm
Volatile carbon content	1	ppm
Phenols and related compounds	1	ppm
Bases	1	ppm
Neutral compounds	1	ppm

3. Preheat vent water, pH 2.5

Total carbon content	703	ppm
Total organic carbon content	659	ppm
Volatile carbon content	22	ppm

Phenols, substituted phenols, and related compounds	19 p	pm
Bases, nitrogen containing compounds	13 p	pm
Neutral compounds, aromatic hydrocarbons	160 p	pm
Amphoteric compounds	6 p	pm

weight compounds were the most abundant with 29 000 ppb of a single methyl pyrimidine and 20 000 ppb of a dimethyl pyrimidine. Alkyl pyridines totalled 52 000 ppb, alkyl pyrimidines totalled 29 200 ppb, and alkyl quinolines totalled 15 700 ppb. Quinoline and some methylquinoline isomers are mutagenic and carcinogenic. Similarly, some aminobiphenyl and diaminobiphenyl isomers are also carcinogenic or mutagenic. These groups of compounds were present at concentrations totalling 1000 ppb.

3.2 CHEMICAL ANALYSIS OF PRODUCED OILS, RELATED PRODUCTS, AND RESIDUALS

Aromatic compounds containing three or more aromatic rings were separated from produced oils from the SHOP project, the Gregoire Lake pilot, the UMATAC pilot plant, the Peace River pilot project, and combustion tube experiments. In addition, Athabasca bitumen, fractions of the Peace River oil, and diesel fuel used in the Gregoire Lake pilot were analysed. To put the above samples into perspective the composition of refinery residuals and tars was also investigated.

The aromatic hydrocarbons were extracted from the oils with dimethylformamide. This crude aromatic extract was further purified by column chromatography and the separated aromatic hydrocarbons analysed by GC/MS.

3.2.1 SHOP Wellhead Oils

Summarized results for the SHOP wellhead oils are contained in Table 8 with more complete data in Appendix 5, Tables 6.5.1 to 6.5.5. The major aromatic components of the SHOP oils were alkylated phenanthrenes which ranged in concentration from 793 ppm in the oil from well P2 collected in January to 2379 ppm in the well P1 January sample. Other major constituents were the alkylated fluorenes and alkylated pyrenes and benzofluorenes in the mass range 202 to 286. Fluorene and alkylated fluorenes totalled from 251 to 639 ppm whereas the fluoranthene-pyrenebenzo(a)anthracene groups totalled from 123 to 514 ppm. Lesser amounts of the known mutagenic and carcinogenic compounds benzo(a)pyrene, benzo(e)pyrene, and perylene were found. The amounts of benzo(a)pyrene in the SHOP and other oils are shown in Table 9. Benzo(a)pyrene in the

		Samp1	e Desc	riptio	n and N	umber	
		1983 F	ebruar	.À		1983	May
Compound Type, Molecular Ions	Base Oil	Pl	P2	Р3	P4	РТ	Р3
fluorenes 166, 180, 194, 208, 222	639	360	265	447	496	251	434
phenanthrenes, anthracenes 178, 192, 206, 220, 234	2152	2379	793	1051	1302	1184	1738
fluoranthenes, pyrenes, benzofluorenes 202, 216, 230, 244, 258, 272, 286	380	514	282	211	123	295	419
chrysenes, triphenylenes, benz(a)anthracenes 228, 242, 256, 270, 284, 298	189	372	182	135	55	148	221
benzo(ghi)fluoranthenes 226, 240, 254, 268	ND	ND	ND	ND	ND	ND	91-01 1955
benzofluoranthenes 252	4.6	7.0	3.8	4.1	0.95	3.0	6.0
benzo(e)pyrenes 252	18	17	8.9	8.8	2.49	8.0	14
benzo(a)pyrene 252	7.5	1.9	1.7	1.6	ND	1.5	3.0
perylene 252	3.9	ND	ND	ND	ND	ND	ND
alkylated compounds 266, 280, 294	18	16	20	14	4.3	14.5	23
276, 290, 304	ND	1	2	ND	ND	1	3.0

Table 8. Polycyclic aromatic hydrocarbons in heavy oils from the SHOP project (ug/g of original oil).

ND = Not determined

•••

•

. . .

SHOP oil samples ranged in concentration from 1.5 to 7.5 ppm. This is in the range for most light to medium weight crude oils and no evidence was found in these samples of the generation of carcinogenic hydrocarbons by the SHOP in situ combustion process. It should, however, be noted that these samples likely do not represent oils from the combustion zone.

3.2.2 <u>Gregoire Lake and Related Oils</u>

Oils produced from the Gregoire Lake pilot, Athabasca bitumen, and commercial synthetic crude oil from the Fort McMurray area were also analysed for benzo(a)pyrene. These included: (1) oil from well GP26 produced by the COFCAW process; (2) oil from well GP19 produced by steam stimulation; (3) bitumen produced by a hot water extraction process; (4) Suncor synthetic crude oil; and (5) diesel fuel circulated downhole to prevent blockages.

The benzo(a)pyrene content of the COFCAW-produced oil sampled in 1981 ranged up to 14 μ g/g of oil (Table 9). The produced oil was a mixture of diesel fuel and bitumen together with combustion products; thus, the combustion products themselves likely contained much higher concentratios of benzo(a)pyrene. Tubing samples contained low concentrations of benzo(a)pyrene, the range being 2.1 to 4.2 μ g/g. Steamproduced oil from well GP19 contained 4.5 μ g of benzo(a)pyrene per gram of oil, and bitumen contained 1.5 μ g/g. No benzo(a)pyrene was detected in the diesel fuel but synthetic crude oil contained 3.9 μ g/g. The method developed for measuring the benzo(a)pyrene content of heavy oils in this project gave reproducible results. Triplicate analysis of a sample of GP26 oil gave values of 7.5, 8.1, and 8.8 μ g/g.

It has been postulated that the COFCAW process would generate polynuclear aromatic hydrocarbons from the cyclic components of the Athabasca bitumen. This was apparently true, with the benzo(a)pyrene content of the COFCAW-produced oil being at least ten times greater than that of the hot water-produced bitumen. The steam-produced oil contained three times as much benzo(a)pyrene as the bitumen. It is not known whether this was the result of thermal action from the injected stream or if there was communication to areas which had undergone fireflood tests. Interestingly, the steam-produced oil contained about the

Sample	B(a)P Content (ug/g)
DUTHERN ALBERTA PROJECT	
Treater oil, 1983 January	2.1
Well No. 1, 1983 February Well No. 2, 1983 February	1.9 1.7
Well No. 2, 1983 February Well No. 3, 1983 February	1.6
Well No. 1, 1983 May	1.5
Well No. 3, 1983 May	3.0
Base Oil	7.5
IATAC PROCESS	3.6
Day tank Overhead oil	16 2.9
	2.3
MBUSTION TUBE EXPERIMENT 159-11 heavy oil	2.6
159-14 heavy oil	4.2
ACE RIVER PROJECT Steam-produced emulsion Vacuum gas oil Top oil Pitch	2.7 1.7 0.1 1.9
FINERY PRODUCTS	754
Steam cracker tar Catalytic cracker heavy oil	154 240
Fluid coker heavy gas oil	91
Catalytic cracker fractionator bottoms	1050
EGOIRE LAKE IN-SITU PROJECT	2 6 24
Heavy oil Bitumen	7.5-14 1.5
Steam-produced oil	4.5
Tubing samples	2.1-4.2
Diesel fuel	0.1
HER OILS	0.7
Most crude oils Some asphaltic oils	3-1 1-20
Athabasca synthetic crude oil	3.9
Coal liquefaction products	2-180
Shale oil	3

Table 9. The benzo(a)pyrene content of heavy oils and related products.

. .

0

· ,

same amount of benzo(a)pyrene as the hydrotreated synthetic crude oil produced by Suncor.

Comparisons with published values for the benzo(a)pyrene content of other oils and fuels must be viewed with some reservations. Until the advent of high resolution capillary gas chromatographic columns with coupled mass spectrometry and deuterated internal standards, the quantitative analysis of benzo(a)pyrene in complex hydrocarbon mixtures was difficult. Conventional crude oils generally contain 1 to 3 μ g/g benzo(a)pyrene with some asphaltic oils containing up to 20 μ g/g and coal liquefaction products containing up to 180 μ g/g (Table 10).

If benzo(a)pyrene alone were considered as an indicator of the carcinogenic potential of the COFCAW-produced oil, it is clear that any health hazard would, on the basis of present data, be no greater than that of some asphaltic oils.

Although benzo(a)pyrene is the only carcinogen which has been widely measured in fossil fuels, several other aromatic hydrocarbons are known or suspected to be carcinogenic. Further, the potency of some carcinogens is enhanced by the presence of paraffinic and other aromatic hydrocarbons. For example, benzo(a)pyrene applied to mouse skin as a solution in n-dodecane is 1000 times more potent than a similar benzene solution.

Other carcinogens and mutagens are listed in Tables 11 to 13. Among them are the aromatic compounds: alkylsubstituted phenanthrenes and anthracenes of masses 192, 206, and 220; benz(a)anthracene and benzo(c)phenanthrene of mass 228; methylsubstituted chrysenes, benz(a)fluoranthene of mass 252; benzo(c)chrysene, benzo(g)chrysene and several dibenzanthracenes of mass 278; benzo(ghi)perylene and o-pheny-lenepyrene of mass 276; and several dibenzopyrene isomers of mass 302. Numerous compounds with the appropriate masses were found in the COFCAW and steam-produced oils and in synthetic crude oil. These compounds far exceeded benzo(a)pyrene in abundance. For example, the COFCAW oil contained 26 μ g/g benz(a)anthracene and 140 μ g/g of other aromatic hydrocarbons of mass 228. Compounds of mass 242 totalled 190 μ g/g and of mass 256 totalled 145 μ g/g. Compounds of mass 252, other than benzo(a)pyrene, totalled 43 μ g/g. Compounds of mass greater than 252 were far less abundant with mass 276 and 278 compounds accounting for only 1 μ g/g

Material	Concentration (ppm)	Source
Crude Oil		
Libia	1.3	M.R. Guerin 1977
Venezuala	1.6	M.R. Guerin 1977
Persian Gulf	0.04	M.R. Guerin 1977
Arabian	1.5	M.R. Guerin 1977
Kuwait	2.8	Coomes and Hazer 1982
South Louisiana	1.2	Coomes and Hazer 1982
Petroleum	3	Tomkins et al. 1981
Wilmington	1	Tomkins et al. 1981
Texas	20	Bingham and Barkley 1979
Asphaltic	5	Bingham and Barkley 1979
Paraho	13.6	Holland and Stafford 1981
Paraho-hydrotreated	17.7	Holland and Stafford 1981
Shale derived	3.1	M.R. Guerin 1977
Shale derived-hydrotreated	0.7	M.R. Guerin 1977
Coal derived	3	M.R. Guerin 1977
<u>Shale Oil</u>		
Raw	0.015	M.R. Guerin 1977
Processed	0.03	M.R. Guerin 1977
Tosco raw	3.7	Coomes and Hazer 1982
Tosco hydrotreated (0.25%N)	0.7	Coomes and Hazer 1982
AP-79-4 raw	2.0	Coomes and Hazer 1982

10.0

3.2

32

AP-79-3 hydrotreated (0.33%N)

Colorado raw

Certified

Table 10. Benzo(a)pyrene content of petroleum and related materials.

continued...

Coomes and Hazer 1982

R.M. Coomes 1979 Tomkins et al. 1981

Material	Concentration (ppm)	Source
Petroleum Products		
Gasoline	0.4	M.R. Guerin 1977
Heating oil, No. 2	0.03	M.R. Guerin 1977
Industrial fuel oil	1000	Bingham and Barkley 1979
Lubricating oil, new	0	Durand and Petroff 1980
Lubricating oil, used	5	Durand and Petroff 1980
Diesel fuel	0.05	M.R. Guerin 1977
Recycled Oils		
Motor oil, new	0.03	M.R. Guerin 1977
Motor oil, used	4.0	M.R. Guerin 1977
Virgin Motor Oil A	0.12	Brown et al. 1980
Virgin Motor Oil B	0.07	Brown et al. 1980
Virgin Motor Oil C	0.06	Brown et al. 1980
Used motor oil (composite)	11	Brown et al. 1980
Used railroad diesel oil	10	Brown et al. 1980
Used motor oil		
(unleaded, 4,145 Miles)	14	Brown et al. 1980
Used synthetic motor oil		
(23,000 miles)	16	Brown et al. 1980
Used gasoline automotive		
crank case oil	15	Brown et al. 1980
Used gasoline automotive		
crank case oil	13	Brown et al. 1980
Re-refiner's feedstock wast	e	
oil (Sampling Period A)	13	Brown et al. 1980

•

·

Material	Concentration (ppm)	Source
Re refiner's feedstock waste		
oil (Sampling Period B)	8.8	Brown et al. 1980
Service station waste oil		
(Station A)	5.3	Brown et al. 1980
Service station waste oil		
(Station B)	3.2	Brown et al. 1980
No. 4 Virgin residual fuel		
oil (Source A)	2.1	Brown et al. 1980
No. 5 Virgin residual fuel		
oil (Source B)	2.8	Brown et al. 1980
No. 5 Virgin residual fuel		
oil (duplicate of Source B)	3.3	Brown et al. 1980
No. 6 Virgin residual fuel		
oil (Bunker C, Source A)	26.5	Brown et al. 1980
No. 6 Virgin residual fuel		
oil (Bunker C, Source B)	35	Brown et al. 1980
Recycled distillate fuel oil	7.7	Brown et al. 1980
No. 5 recycled fuel oil		
(Company A)	8.4	Brown et al. 1980
No. 5 recycled fuel oil		
(Company B)	10.5	Brown et al. 1980
Reprocessed oil (Company C)	10.5	Brown et al. 1980
Re refined motor oil	2.1	Brown et al. 1980
Recycled liquid pyrolysis		
product from tires	161	Brown et al. 1980

Material	Concentration (ppm)	Source
Miscellaneous		
Coal	4	R.M. Coomes 1979
Coal oil	150	Tomkins et al. 1981
Coal liquid oil (SRC-11)	180	Tomkins et al. 1981
Coal tar	3000	M.R. Guerin 1977
Coal tar pitch	10000	M.R. Guerin 1977
Petroleum pitch	2000	M.R. Guerin 1977
Bitumen coal	0.001	M.R. Guerin 1977
Creasote	200	M.R. Guerin 1977
Asphalt	2.0	M.R. Guerin 1977
Asphalt	10-100	R.M. Coomes 1979
Residium (catalytically		
cracked)	4000	Bingham and Barkley 1979
Paraffinic distillate	1	Bingham and Barkley 1979

compound	Mutagenic Activity		nogenic ity Reference
-ring	er en er felste kan syn en getaar de annanzen men kan de de ker ekse skeler de se ekse er sekse en sekse en se	numerie și angle Cândrand (1997), și și de norma	
<u>-ring</u> Benzene	-	÷	DeFlora et al. 1984
<u>P-ring</u>			
Naphthalene	-	-	McCann et al. 1975
-Methylnaphthalene	(+,-)		Kimball and Munro 1981
			Kaden et al. 1979
2,6-Dimethylnaphthalene			Kaden et al. 1979
B-ring			
cenaphthene	+		Epler et al. 1979
cenaphthylene	+		Kaden et al. 1979
Inthracene	-		La Voie et al. 1983
			DeFlora et al. 1984
-Methylanthracene	-	-	La Voie et al. 1983
			Kimball and Munro 198
2-Methylanthracene	(+,-)		La Voie et al. 1979
			Kimball and Munro 198
-Methylanthracene	+		Dipple 1976
			Kaden et al. 1979
),10-Dimethylanthracene	÷	+	Kimball and Munro 1981
			La Voie et al. 1983
luorene	-	~	La Voie et al. 1979
			Kimball and Munro 1981
-Methylfluorene			La Voie et al. 1979
2-Methylfluorene			La Voie et al. 1979
3-Methylfluorene	-		a Voie et al. 1979
l-Methylfluorene			La Voie et al. 1979
)-Methylfluorene	+ ,	-	La Voie et al. 1981
			La Voie et al. 1979

Table 11. Mutagenic and carcinogenic aromatic hydrocarbons.

Compound	Mutagenic Activity	Carcinogen ic Activity Reference
1,9-Dimethylfluorene	+	- La Voie et al. 1983
		La Voie et al. 1979
2,3-Dimethylfluorene	-	La Voie et al. 1979
9,9-Dimethylfluorene	-	La Voie et al. 1979
9-Ethylfluorene	+	La Voie et al. 1979
9-n-Propylfluorene	÷	La Voie et al. 1979
9-i-Propylfluorene	-	La Voie et al. 1979
9-Phenylfluorene		La Voie et al. 1979
Phenanthrene	(+,-)	- Kimball and Munro 1981
		Nat. Acad. Sci. 1972
		La Voie et al. 1979
l-Methylphenanthrene	÷	+ La Voie et al. 1983
		Dipple 1976
2-Methylphenanthrene	(+,-)	Kaden et al. 1979
		La Voie et al. 1979
3-Methylphenanthrene		La Voie et al. 1983
4-Methylphenanthrene	_	La Voie et al. 1983
9-Methylphenanthrene	+	La Voie et al. 1983
1,4-Dimethylphenanthrene	. +	+ La Voie et al. 1983
		Dipple 1976
1,9-Dimethylphenanthrene	-	- La Voie et al. 1983
		Dipple 1976
2,7-Dimethylphenanthrene	-	La Voie et al. 1983
3,6-Dimethylphenanthrene	-	La Voie et al. 1983
4,5-Dimethylphenanthrene	-	La Voie et al. 1983
4,9-Dimethylphenanthrene		La Voie et al. 1983
4,10-Dimethylphenanthrene	+	La Voie et al. 1983
1,2,4-Trimethylphenanthrene		+ Dipple 1976

,2,3,4-Tetramethylphenanthr 2,4,5,7-Tetramethylphenanthr 3,4,5,6-Tetramethylphenanthr	ene –	ł	Dipple 1976
A 5 6-Tetramethylnhenanthr	ene –		La Voie et al. 1983
, 4, 5, 0 retraine thy iphenanthi			La Voie et al. 1983
2-Ethylphenanthrene			La Voie et al. 1983
B-Ethylphenanthrene			La Voie et al. 1983
)-Ethylphenanthrene			La Voie et al. 1983
-Propylphenanthrene	***		La Voie et al. 1983
-Isopropylphenanthrene			La Voie et al. 1983
)-Florophenanthrene	+		La Voie et al. 1983
-Chlorophenanthrene	+		La Voie et al. 1983
)-Bromophenanthrene	+		La Voie et al. 1983
l-ring			
Benz(a)anthracene	+	÷	DeFlora et al. 1984
-Methylbenz(a)anthracene	+	+	Coombs et al. 1976
2-Methylbenz(a)anthracene	+	(+,-)	Coombs et al. 1976
			Dipple 1976
3-Methylbenz(a)anthracene	+	(+,-)	Coombs et al. 1976
			Dipple 1976
I-Methylbenz(a)anthracene	+	+	Coombs et al. 1976
5-Methylbenz(a)anthracene	+	+	Coombs et al. 1976
5-Methylbenz(a)anthracene	+	+	Coombs et al. 1976
7-Methylbenz(a)anthracene	+	÷	Coombs et al. 1976
3-Methylbenz(a)anthracene	+	+	Coombs et al. 1976
}-Methylbenz(a)anthracene	+	+	Coombs et al. 1976
10-Methylbenz(a)anthracene	+	+	Coombs et al. 1976
ll-Methylbenz(a)anthracene	-fe	÷	Coombs et al. 1976
l2-Methylbenz(a)anthracene	÷	÷	Coombs et al. 1976

	utagenic Activity	Carcinog Activity	
1,12-Dimethylbenz(a)anthracene		-	Dipple 1976
4,5-Dimethylbenz(a)anthracene		+	Dipple 1976
6,7-Dimethylbenz(a)anthracene		+	Dipple 1976
6,8-Dimethylbenz(a)anthracene		+	Dipple 1976
6,12-Dimethylbenz(a)anthracene		+	Dipple 1976
7,8-Dimethylbenz(a)anthracene		+	Dipple 1976
7,11-Dimethylbenz(a)anthracene		+	Dipple 1976
7,12-Dimethylbenz(a)anthracene	+	+	Nat. Acad. Sci. 1972
			Coombs et al. 1976
8,9-Dimethylbenz(a)anthracene		+	Dipple 1976
8,12-Dimethylbenz(a)anthracene		+	Dipple 1976
9,10-Dimethylbenz(a)anthracene	+	+	Kimball and Munro 1981
			Rinkus and Legator 1979
9,11-Dimethylbenz(a)anthracene		+	Dipple 1976
4,5,10-Trimethylbenz(a)anthrace	ne	+	Dipple 1976
4,7,12-Trimethylbenz(a)anthrace	ne	+	Dipple 1976
6,7,8-Trimethylbenz(a)anthracen	e	÷	Dipple 1976
6,7,12-Trimethylbenz(a)anthrace	ne	+	Dipple 1976
6,8,12-Trimethylbenz(a)anthrace	ne	+	Dipple 1976
7,8,12-Trimethylbenz(a)anthrace	ne	+	Dipple 1976
7,9,12-Trimethylbenz(a)anthrace	ne	+	Dipple 1976
7,8,9,12-Tetramethylbenz(a)-			
anthracene	+		Dipple 1976
7,9,10,12-Tetramethylbenz(a)-			
anthracene	+		Dipple 1976
Benzo(a)fluorene		-	Nat. Acad. Sci. 1972
			La Voie et al. 1979
Benzo(b)fluorene	(+,-)	-	Nat. Acad. Sci. 1972
			La Voie et al. 1979
			Kimball and Munro 1981

•

Compound	Mutagenic Activity	Carcinoge Activity	
Benzo(c)fluorene	_		Nat. Acad. Sci. 1972
			La Voie et al. 1979
ll-Methylbenzo(a)fluorene	+		La Voie et al. 1979
			La Voie et al. 1981
ll-Methylbenzo(a)fluorene	÷	÷	La Voie et al. 1979
			La Voie et al. 1981
7-Methylbenzo(c)fluorene	÷		La Voie et al. 1979
			La Voie et al. 1981
Benzo(c)phenanthrene		÷	Nat. Acad. Sci. 1972
2-Methylbenzo(c)phenanthrene		÷	Dipple 1976
3-Methylbenzo(c)phenanthrene		+	Dipple 1976
1-Methylbenzo(c)phenanthrene		+	Dipple 1976
5-Methylbenzo(c)phenanthrene		+	Dipple 1976
5-Methylbenzo(c)phenanthrene		÷	Dipple 1976
5-Ethylbenzo(c)phenanthrene		+	Dipple 1976
Chrysene	+ .	+	Nat. Acad. Sci. 1972
			Coombs et al. 1976
l-Methylchrysene	÷		Coombs et al. 1976
2-Methylchrysene	÷	+	Kimball and Munro 1981
			Coombs et al. 1976
3-Methylchrysene	÷	+	Kimball and Munro 1981
			Coombs et al. 1976
l-Methylchrysene	+	+	Kimball and Munro
			Coombs et al. 1976
5-Methylchrysene	+	÷	Kimball and Munro 1981
			Coombs et al. 1976
-Methylchrysene	- 4	÷	Kimball and Munro 1981
U U U U U			Coombs et al. 1976

52

Compound	Mutagenic Activity	Carcinog Activity	
4,5-Dimethylchrysene		+	La Voie et al. 1983
5,6-Dimethylchrysene		÷	Dipple 1976
1,11-Dimethylchrysene	+	+	Coombs et al. 1976
Fluoranthene	+	_	Nat. Acad. Sci. 1972 Kimball and Munro 1981
Pyrene	(+,-)		McCann et al. 1975 Kimball and Munro 1981
l-Methylpyrene	• +	+	Kaden et al. 1979
Triphenylene	+		Kaden et al. 1979
l-Methyltriphenylene		-	Dipple 1976
1,4-Dimethyltriphenylene			Dipple 1976
5-ring			
Benzo(c)chrysene		+	Dipple 1976
Benzo(g)chrysene		. +	Dipple 1976
Benzo(a)pyrene	+	+	Kaden et al. 1979
2-Methylbenzo(a)pyrene		+	Dipple 1976
3-Methylbenzo(a)pyrene		+	Dipple 1976
↓-Methylbenzo(a)pyrene		+	Dipple 1976
5-Methylbenzo(a)pyrene		+	Dipple 1976
5-Methylbenzo(a)pyrene		+	Dipple 1976
7-Methylbenzo(a)pyrene		+	Dipple 1976
ll-Methylbenzo(a)pyrene		+	Dipple 1976
2-Methylbenzo(a)pyrene		+	Dipple 1976
1,5-Dimethylbenzo(a)pyrene		+	Dipple 1976
3,12-Dimethylbenzo(a)pyrene		+	Dipple 1976
3,6-Dimethylbenzo(a)pyrene		+	Dipple 1976
2,3-Dimethylbenzo(a)pyrene		+	Dipple 1976
,6-Dimethylbenzo(a)pyrene		+	Dipple 1976

53

.

, 19

Compound	Mutagenic Activity	Carcinogo Activity	
1,4-Dimethylbenzo(a)pyrene		+	Dipple 1976
l,3-Dimethylbenzo(a)pyrene		÷	Dipple 1976
l,2-Dimethylbenzo(a)pyrene		+	Dipple 1976
1,3,6-Trimethylbenzo(a)pyrene		+	Dipple 1976
Benzo(e)pyrene	+	(+,-)	Nat. Acad. Sci. 1972
			Kaden et al. 1979
Benzo(b)fluoranthene	+	+	Nat. Acad. Sci. 1972
			Kaden et al. 1979
Benzo(j)fluoranthene	ł	+	Nat. Acad. Sci. 1972
			Kaden et al. 1979
Benzo(k)fluoranthene	+		Nat. Acad. Sci. 1972
			Kaden et al. 1979
Benzo(g,h,i)fluoranthene		~**	Nat. Acad. Sci. 1972
)ibenz(a,c)anthracene	ł	+	McCann et al. 1975
)ibenz(a,j)anthracene		+	Nat. Acad. Sci. 1972
)ibenz(a,h)anthracene	+	+	McCann et al. 1975
)ibenz(de,kl)anthracene	+		DeFlora et al. 1984
2-Methyldibenz(a,h)anthracene		+	Dipple 1976
2-Methyldibenz(a,h)anthracene		+	Dipple 1976
5-Methyldibenz(a,h)anthracene		+	Dipple 1976
)ibenzo(a,g)fluorene		+	Nat. Acad. Sci. 1972
)ibenzo(a,c)fluorene		+	Nat. Acad. Sci. 1972
)ibenzo(a,h)fluorene		+	Nat. Acad. Sci. 1972
10-Methyldibenz(a,c)fluorene		÷	Dipple 1976
Cholanthrene		+	Nat. Acad. Sci. 1972
3-Methylchlanthracene	+	+	McCann et al. 1975
)ibenzo(c,g)phenanthrene			Dipple 1976
)ibenzo(b,g)phenanthrene			Dipple 1976
Perylene	÷		Kaden et al. 1979

Table 11. Concluded.

Compound	Mutagenic Activity	Carcinog Activity	
6-ring			
Benzo(r,s,t)pentaphene	+	+	Helmes et al. 1982
Benzo(g,h,i)peryelene	+	+	Kaden et al. 1979
Dibenzo(b,def)chrysene		÷	Dipple 1976
Dibenzo(def,p)chrysene		+	Dipple 1976
Dibenzo(a,l)pyrene		+	Nat. Acad. Sci. 1972
Dibenzo(a,h)pyrene		÷	Nat. Acad. Sci. 1972
Dibenzo(a,i)pyrene	÷	+	McCann et al. 1975
Dibenzo(cd,jk)pyrene	+	(+,-)	Dipple 1976
,			Kaden et al. 1979
Dibenz(b,e)fluoranthene	+		Kaden et al. 1979

+ = mutagenic or carcinogenic activity

- = no mutagenic or carcinogenic activity detected

Compound	Mutagenic Activity	Carcinogenic Activity Reference
Dimethylamine	+	Helmes et al. 1982
l-ring		
l-Nitroaniline		DeFlora et al. 1984
Aniline	-	- McCann et al. 1975
		Epler et al. 1979
2-Methylaniline		Kimball and Munro 1981
3-Methylaniline		Kimball and Munro 1981
4-Methylaniline	-	Kimball and Munro 1981
2,3-Dimethylaniline	-	Kimball and Munro 1981
2,4-Dimethylaniline		Kimball and Munro 1981
2,5-Dimethylaniline	- 1	Kimball and Munro 1981
2,6-Dimethylaniline	-	Kimball and Munro 1981
3,4-Dimethylaniline	-	Kimball and Munro 1981
2,4,6-Trimethylaniline	(+,-)	Kimball and Munro 1981
		Epler et al. 1979
Auramine	-	+ McCann et al. 1975
Pyridine	(+,-)	 Kimball and Munro 1981
		Kaden et al. 1979
Pyrrole	-	Kimball and Munro 1981
4-Aminophenol	-	- DeFlora et al. 1984
2-Aminophenol	(+,-)	- DeFlora et al. 1984
		Kimball and Munro 1981
3-Methyl-4-dimethyl-		
aminoazobenzene	÷	McCann et al. 1975
N-Methyl-4-aminobenzene	÷	+ McCann et al. 1975
Phenylhydroxylamine		Nohmi et al. 1984
2,4-Diaminotoluene	+	+ Rinkus and Legator 1979

Table 12. Mutagenic and carcinogenic nitrogen compounds.

. •

Compound	Mutagenic Activity	Carcin Activ	
<u>2-ring</u>			
l-Nitronaphthalene	-		Klopman and Rosenkranz 1984
2-Nitronaphthalene	(+,-)	÷	DeFlora et al. 1984
			Klopman and Rosenkranz 1984
1,3-Dinitronaphthalene	-		Klopman and Rosenkranz 1984
1,5-Dinitronaphthalene	-		Klopman and Rosenkranz 1984
Biphenyl		+	Kimball and Munro 1981
			Rinkus and Legator 1979
2-Aminobiphenyl	+		McCann et al. 1975
			Kimball and Munro 1981
4-Aminobiphenyl	+	+	Kimball and Munro 1981
4-Chlorobiphenyl	-		Schoeny 1982
4-Chloromethylbiphenyl	+		Ladner 1982
4-Hydroxymethylbiphenyl			Ladner 1982
2,3'-Dimethyl-4-Aminobiphenyl	+	+	McCann et al. 1975
4-4-Diaminobiphenyl(benzidine)) +	+	McCann et al. 1975
3,3'-Dimethylbenzidine		+	Rinkus and Legator 1979
3,3',5,5'-Tetramethylbenzidine) –	-	McCann et al. 1975
N,N,N',N'-Tetramethllbenzidine) -	-	McCann et al. 1975
l-Naphthylamine	+	-	McCann et al. 1975
2-Naphthylamine	+	+	McCann et al. 1975
l-Aminonaphthalene	+	+	Kimball and Munro 1981
2-Aminonaphthalene	+	+	Kimball and Munro 1981
3-Methyl-2-Naphthylamine		+	Rinkus and Legator 1979
Quinoline	+		Kimball and Munro 1981
l-Methylquinoline	+		Kimball and Munro 1981
2-Methylquinoline	-		Kaden et al. 1979
4-Methylquinoline	+		Kaden et al. 1979
7-Methylquinoline	+		Epler et al. 1979
8-Methylquinoline	+		Epler et al. 1979
			continued

*

ø

Compound	Mutagenic Activity	Carcinogo Activity	
2,6-Dimethylquinoline	_	Epler et al. 1979	
2,7-Dimethylquinoline	-	I	Kaden et al. 1979
8-Aminoquinoline	+	I	Epler et al. 1979
Isoquinoline		Seixas et al. 1982	
l-Methylisoquinoline	~~	I	Kaden et al. 1979
3-Methylisoquinoline		I	Kaden et al. 1979
Indole		- 1	Kaden et al. 1979
2-Methylindole	-	I	Kimball and Munro 1981
3-Methylindole	~~	I	Kimball and Munro 1981
2-Phenylpyridine		I	Kaden et al. 1979
4-Phenylpyridine	÷	ł	Kaden et al. 1979
Naphthoquinone		-	Tikkanen et al. 1983
<u>3-ring</u>			
5-Nitroacenaphthene	+	+	Rinkus and Legator 1979
9-Nitroanthracene	_	-	Pitts, Jr. et al. 1982
		ł	Clopman and Rosenkranz 1984
2-Nitrofluorene	÷	+ 1	McCann et al. 1975
2,7-Dinitrofluorene	+	+ +	Clopman and Rosenkranz 1984
2-Nitrophenanthrene	-	ł	Clopman and Rosenkranz 1984
3,4-Benzoquinoline	+	ł	Kaden et al. 1979
5,6-Benzoquinoline	ł	+ }	Kaden et al. 1979
7,8-Benzoquinoline	+	ł	Kaden et al. 1979
Dibenzofuran			Schoeny 1982
1-Aminophenanthrene	÷	I	Later et al. 1983
2-Aminophenanthrene	+	l	Later et al. 1983
3-Aminophenanthrene	÷	I	Later et al. 1983
4-Aminophenanthrene		I	Later et al. 1983
9-Aminophenanthrene	+	I	Later et al. 1983
lH-Benz(g)indole	~	ł	Kaden et al. 1979

58
Table 12. Continued.

Compound	Mutagenic Activity	Carcino Activi	
Acridine	+		Seixas et al. 1982
			Nat. Acad. Sci. 1972
9-Aminoacridine	+	+	Lee and Castle 1981
			McCann et al. 1975
Carbazole		-	Nat. Acad. Sci. 1972
			Kaden et al. 1979
-Methylcarbazole			La Voie et al. 1982
2-Methylcarbazole	-		La Voie et al. 1982
3-Methylcarbazole			La Voie et al. 1982
-Methylcarbazole			La Voie et al. 1982
-Methylcarbazole	+		La Voie et al. 1982
,9-Dimethylcarbazole			La Voie et al. 1982
2,9-Dimethylcarbazole	+		La Voie et al. 1982
9,9-Dimethylcarbazole	+		La Voie et al. 1982
,9-Dimethylcarbazole	+		La Voie et al. 1982
-Ethylcarbazole	+		La Voie et al. 1982
-Isopropylcarbazole			La Voie et al. 1982
-Benzylcarbazole			La Voie et al. 1982
-Phenylcarbazole	-		La Voie et al. 1982
-Hydroxymethylcarbazole	÷		La Voie et al. 1982
-Formylcarbazole			La Voie et al. 1982
-Acetylcarbazole	-		La Voie et al. 1982
-Aminoanthracene	+	+	McCann et al. 1975
-Aminoanthracene	+	+	McCann et al. 1975
-Aminoanthracene	+ ,		Lee and Castle 1981
2-Aminoflorene	+	+	McCann et al. 1975

1-Nitrofluoranthene+Klopman and Rosenkranz 19843-Nitrofluoranthene+Klopman and Rosenkranz 1984

Table 12. Continued.

•

. •

•

Compound	Mutagenic Activity	Carcinoç Activit		Reference
7-Nitrofluoranthene	÷		Klopman	and Rosenkranz 198
8-Nitrofluoranthene	· † -		Klopman	and Rosenkran ² 198
2-Nitrochrysene			Klopman	and Rosenkranz 198
5-Nitrochrysene			Klopman	and Rosenkranz 198
6-Nitrochrysene	÷		Klopman	and Rosenkranz 198
l-Nitropyrene	+	÷	Rosenkr	anz 1984
			Klopman	and Rosenkranz 198
2-Nitropyrene	÷		Klopman	and Rosenkranz 198
1,3-Dinitropyrene	÷	+	Rosenkr	anz 1984
			Klopman	and Rosenkranz 198
1,6-Dinitropyrene	+	+	Rosenkr	anz 1984
			Klopman	and Rosenkranz 198
1,8-Dinitropyrene	+	+	Rosenkr	anz 1984
			Klopman	and Rosenkranz 198
1,3,6-Trinitropyrene	÷		Klopman	and Rosenkranz 198
1,3,6,8-Tetranitropyrene	+		Klopman	and Rosenkranz 198
3-Hydroxy-1-nitropyrene	+		Ball et	al. 1984
8-Hydroxy-1-nitropyrene	+		Ball et	al. 1984
6+8-Hydroxy-l-nitropyrene	÷		Ball et	al. 1984
6-Hydroxy-l-nitropyrene	+		Ball et	al. 1984
6-Nitrobenzo(a)anthracene	-		Klopman	and Rosenkranz 198
7-Nitrobenzo(a)anthracene	-		Klopman	and Rosenkranz 198
Dimethylnitrosamine	+	+	DeFlora	et al. 1984
6-Aminochrysene	+	+	McCann	et al. 1975
Benzo(a)carbazole	+	+	Nat. Ac	ad. Sci. 1972
			Dipple	1976
Benzacridine	~	÷	Rinkus	and Legator 1979
			Kimball	and Munro 1981
7,9-Dimethylbenz(c)acridine	÷	÷	McCann	et al. 1975
7,10-Dimethylbenz(c)acridine	+	÷	Rinkus	and Legator 1979
				continued

/

Table 12. Concluded.

	Mutagenic Activity	Carcinog Activit	
1-Aminopyrene	+		Ball et al. 1984
3-Aminopyrene	+		Guerin et al. 1980
N-Acetyl-l-aminopyrene	+		Ball et al. 1984
N-Hydroxy1-N-acety1-1-aminopyre	ene +		Ball et al. 1984
3-,6-,8-Hydroxyl-			
nitropyrene (mixture)	+		Ball et al. 1984
5-ring			
l-Nitrobenzo(e)pyrene	+		Klopman and Rosenkranz 1984
3-Nitrobenzo(e)pyrene	+		Klopman and Rosenkranz 1984
6-Nitrobenzo(a)pyrene	+		Pitts, Jr. et al. 1982
3-Nitroperylene	+		Klopman and Rosenkranz 1984
3-Aminoperylene	+	÷	Guerin et al. 1980
Dibenz(a,j)acridine	+	+	McCann et al. 1975
Dibenz(a,h)acridine	+	÷	Helmes et al. 1982
Dibenz(c,h)acridine		+	Nat. Acad. Sci. 1972
Dibenzo(a,g)carbazole	+	+	Nat. Acad. Sci. 1972
			Dipple 1976
Dibenzo(c,g)carbazole	+	+	Nat. Acad. Sci. 1972
			Dipple 1976
Dibenzo(a,i)carbazole	+	÷	Nat. Acad. Sci. 1972
			Dipple 1976
7H-Benzo(a)pyrido(2,3-a)carbazo	ole	+	Dipple 1976
7H-Benzo(a)pyrido(3,2-a)carbazo	ole	+	Dipple 1976
<u>6-rings</u>			
7-Nitrobenzo(g,h,i)perylene	-		Klopman and Rosenkranz 1984

+ = mutagenic or carcinogenic activity
- = no mutagenic or carcinogenic activity detected

Compound	Mutagenic Activity	Reference
<u>B-rings</u>		
libenzothiophene		McFall et al. 1984
-Methyldibenzothiophene	-	McFall et al. 1984
2-Methyldibenzothiophene		McFall et al. 1984
-Methyldibenzothiophene	-	McFall et al. 1984
-Methyldibenzothiophene		McFall et al. 1984
laphtho(2,3-b)thiophene		Lee and Castle 1981
laphtho(2,1-b)thiophene		Lee and Castle 1981
laphtho(1,2-b)thiophene	+	Lee and Castle 1981
nthra(1,2-b)thiophene	+	Lee and Castle 1981
nthra(2,1-b)thiophene	+	Lee and Castle 1981
-rings		
Phenanthro(2,3-b)thiophene		Lee and Castle 1981
Phenanthro(3,2-b)thiophene		Lee and Castle 1981
Phenanthro(1,2-b)thiophene		Lee and Castle 1981
Phenanthro(2,1-b)thiophene	-	Lee and Castle 1981
henanthro(3,4-b)thiophene	÷	Lee and Castle 1981
Phenanthro((4,3-b)thiophene		Lee and Castle 1981
Phenanthro(9,10-b)thiophene		Lee and Castle 1981
Senzo(b)naphtho(2,1-d)thiophene	-	Lee and Castle 1981
-Methylnaphtho(2,1-d)thiophene	+	McFall et al. 1984
-Methylnaphtho(2,1-d)thiophene		McFall et al. 1984
-Methylnaphtho(2,1-d)thiophene	-	McFall et al. 1984
-Methylnaphtho(2,1-d)thiophene	-	McFall et al. 1984
-Methylnaphtho(2,1-d)thiophene		McFall et al. 1984
-Methylnaphtho(2,1-d)thiophene	÷	McFall et al. 1984
'-Methylnaphtho(2,1-d)thiophene		McFall et al. 1984
-Methylnaphtho(2,1-d)thiophene		McFall et al. 1984

Table 13. Mutagenic activity of sulphur compounds.

Table 13. Concluded.

Compound	Mutagenic Activity	Reference
9-Methylnaphtho(2,1-d)thiophene	-	McFall et al. 1984
10-Methylnaphtho(2,1-d)thiophene	-	McFall et al. 1984
Benzo(b)naphtho(2,3-d)thiophene	_	Lee and Castle 1981
l-Methylnaphtho(2,3-d)thiophene	_	McFall et al. 1984
2-Methylnaphtho(2,3-d)thiophene	-	McFall et al. 1984
3-Methylnaphtho(2,3-d)thiophene	-	McFall et al. 1984
4-Methylnaphtho(2,3-d)thiophene	+	McFall et al. 1984
6-Methylnaphtho(2,3-d)thiophene	-	McFall et al. 1984
7-Methylnaphtho(2,3-d)thiophene	-	McFall et al. 1984
B-Methylnaphtho(2,3-d)thiophene	-	McFall et al. 1984
9-Methylnaphtho(2,3-d)thiophene	-	McFall et al. 1984
10-Methylnaphtho(2,3-d)thiophene		McFall et al. 1984
11-Methylnaphtho(2,3-d)thiophene		McFall et al. 1984
Benzo(b)naphto(1,2-d)thiophene		Lee and Castle 1981
l-Methylnaphtho(1,2-d)thiophene	+	McFall et al. 1984
2-Methylnaphtho(1,2-d)thiophene		McFall et al. 1984
3-Methylnaphtho(1,2-d)thiophene	+	McFall et al. 1984
1-Methylnaphtho(1,2-d)thiophene	-	McFall et al. 1984
5-Methylnaphtho(1,2-d)thiophene	-	McFall et al. 1984
5-Methylnaphtho(1,2-d)thiophene	-	McFall et al. 1984
3-Methylnaphtho(1,2-d)thiophene	-	McFall et al. 1984
9-Methylnaphtho(1,2-d)thiophene		McFall et al. 1984
10-Methylnaphtho(1,2-d)thiophene	-	McFall et al. 1984
11-Methylnaphtho(1,2-d)thiophene	_	McFall et al. 1984

+ = mutagenic or carcinogenic activity
- = no mutagenic or carcinogenic activity

and 2 μ g/g, respectively. Although carcinogenic isomers were believed to be present among the multitude of compounds, they could not be identified with certainty. Based only on the relative abundances of these components, mutagenic activity exhibited by the aromatic portions of these oils would be caused predominantly by compounds of mass 252 or less.

The GP26 (May) sample was further separated into 29 fractions by chromatography on alumina. Each fraction was examined by synchronous fluorescence spectroscopy and fractions with similar spectra were combined. The resulting seven fractions were analysed by GC-MS and tested for mutagenicity.

The GC-MS results are summarized in Table 14.

The first aromatic fraction eluted from the column with toluene consisted mainly of alkyl substituted compounds in the mass range 178 to 234. These were primarily alkyl substituted phenanthrenes and fluorenes with up to five substituent carbon atoms. Included were compounds up to a molecular weight of 276. These higher molecular weight compounds were also highly alkyl substituted. No methyl substituted aromatic hydrocarbons of mass 242, which might indicate carcinogenic methyl chrysene isomers, were found nor were any carcinogenic or mutagenic compounds of mass 228, 252, 276, or 278.

In addition to aromatic hydrocarbons, the sample contained cyclic sulphur compounds: naphthobenzothiophenes of mass 234, methyl-naphthobenzothiophenes of mass 248, and C2-naphthobenzothiophenes of mass 262. These sulphur compounds represented about 9% of the total sample.

The cyclic sulphur compounds were the major components of the second aromatic fraction, 98-67-35. The most abundant compound was a naphthobenzothiophene, with Cl-, C2-, and C3-naphthobenzothiophenes all being major constituents. These cyclic compounds accounted for 41% of the sample. The aromatic hydrocarbons consisted of alkyl substituted fluorenes, phenanthrenes, fluoranthenes, benzofluorenes, and pyrenes. In addition, methyl substituted aromatic hydrocarbons, including methyl chrysenes, some of which may have been carcinogenic, were present as were benz(a)anthracene and chrysene, compounds which are weakly mutagenic, were also present. No carcinogenic compounds of mass 252, 276, 278, or 302 were detected.

	Fraction Number						
Compound Type/ Molecular Ions	1 (98-67-36)	2 (98-67-35)	3 (98-67-34)	4 (98-67-33)	5 (98-67-32)	6 (98-67-31)	7 (98-67-30)
fluorenes 166, 180, 194, 208, 222	11.3	7.9	2.6	ND	ND	ND	ND
phenanthrenes, anthracenes 178, 192, 206, 220, 234	39.9	19.0	- 6.2	3.1	1.5	ND	ND
fluoranthenes, pyrenes, benzofluorenes 202, 216, 230, 244, 258, 272, 286	11.7	21.7	18.9	25.6	25.9	14.8	42.5
chrysenes, triphenylenes, benz(a)anthracenes 228, 242, 256, 270, 284, 298	ND	4.3	43.3	45.4	31.4	ND	ND
benzo(ghi)fluoranthene 226	ND	0.5	ND	ND	ND	ND	ND
binaphthyl 254	ND	1.8	ND	ND	ND	ND	
benzofluoranthenes 252	ND	ND	ND	0.4	3.4	12.0	
benzo(e)pyrene 252	ND	ND	ND	2.0	4.6	ND	ND
benzo(a)pyrene 252	ND	ND	ND	1.0	2.7	ND	ND

.

•

Table 14.	Aromatic hydrocarbons in GP26 (May) oil.	(Percent composition of aromatic fraction
	based upon the molecular ion response.)	, , , , , , , , , , , , , , , , , , , ,

continued...

Table 14. Concluded.

Compound Type/ Molecular Ions	Fraction Number							
	1 (98-67-36)	2 (98-67-35)	3 · (98-67-34)	4 (98-67-33)	5 (98-67-32)	6 (98-67-31)	7 (98-67-30)	
perylene 252	ND	ND	ND	1.0	3.9	ND	ND	
alkylated compounds 266, 280, 294	ND	ND	ND	1.0	14.9	30.5	8.4	
alkylated compounds 276, 290, 304	ND	ND	ND	ND	2.0	15.0	42.3	
alkylated compounds 278, 292	ND	ND	ND	ND	0.3	10.0	6.9	
dibenzopyrene 302	ND	ND	ND	ND	0.5	ND	ND	
Sulphur Compounds								
naphthabenzothiophenes 234, 248, 262	2.6	40.6	22.1	9.9	ND	ND	ND	

ND = non-detectable

The third aromatic fraction, 98-67-34, was dominated by the occurrence of benz(a)anthracene and chrysene and the Cl-, C2-, and C3-substituted analogues. These compounds, many of which are mutagenic, constituted about 40% of the sample. Next in order of abundance were Cl- and C2-substituted fluoranthenes and pyrenes followed by the cyclic sulphur compounds of mass 234, 248, 262, and 276. No carcinogenic hydrocarbons of mass 252, 276, 278, or 302 were detected.

The fourth aromatic fraction was also dominated by the presence of benz(a)anthracene and chrysene and the Cl-, C2-, C3-substituted compounds. These represented about 45% of the sample. Next in abundance were the alkyl substituted fluoranthenes and pyrenes. Cyclic sulphur compounds were present but were far less abundant than in the previous fractions. Benzo(e)pyrene, benzo(a)pyrene, and perylene were also present. Although not as abundant as the substituted anthracenes and chrysenes, the well-known carcinogen benzo(a)pyrene, mass 252, was present to the extent of 9% of the major compound, chrysene. Also found were compounds of mass 266 indicative of methyl substituted 252 compounds. Several of these may be carcinogenic.

The major components in the fifth aromatic fraction, 98-67-32, were benzo(e)pyrene, benzo(a)pyrene, and benzofluoranthenes. Benzo(a)pyrene is carcinogenic as are some benzofluoranthene isomers. Also present were possible carcinogenic compounds of mass 242, 256, and 266. A single cyclic ketone of mass 194 was detected in small quantities in this fraction.

The sixth aromatic fraction contained many compounds of mass 252 to mass 298. These included compounds of mass 276 and 278 which may be carcinogenic. Compounds of mass 228 and 242 were not found.

The seventh aromatic fraction, 98-67-30, contained aromatic compounds of mass 244 to 316. Included were compounds of mass 266, 276, 290, 278, and 292 which may be carcinogenic. Also found were compounds of mass 302 and 316, indicative of dibenzopyrenes and methyl dibenzopyrenes, several isomers of which are carcinogenic. Although absolute comparisons cannot be made, the high molecular weight compounds found in fractions 98-67-31 and 98-67-30 were in low concentrations as compared with the abundant alkyl aromatic hydrocarbons found in earlier fractions from the alumina column.

3.2.3 <u>UMATAC 0ils</u>

Oils produced by the UMATAC retorting process have undergone rigorous thermal treatment. As a consequence they contain numerous low molecular weight aromatic hydrocarbons and aromatic sulphur compounds which are not found in untreated Athabasca bitumen. Analytical results for the UMATAC oils are summarized in Table 15 and are presented in Tables 6.6.1 to 6.6.5, Appendix 6. The extraction process used in this project to separate high molecular weight aromatic hydrocarbons from oils may result in losses of these lower molecular weight compounds. Despite these possible losses, naphthalene and its alkylated homologues in the molecular weight range of 128 to 170 were the most abundant aromatic compounds found, totalling 6232 ppm in an overhead oil sample. Next in order of abundance were benzothiophene and its alkyl substituted analogues in the molecular weight range 134 to 204, totalling 4941 ppm. The sulphur bearing aromatic compounds were generated by the cracking of the heavy Athabasca bitumen which has a sulphur content of about 5%. Alkyl substituted fluorenes were the next in abundance totalling 638 ppm. A second overhead oil sample showed a similar array of compounds but with greater losses of the lower molecular weight compounds (Table 6.6.2).

Of interest was the presence of acenapthene and acenaphthylene, two compounds which are on the US Environmental Protection Agency's list of priority pollutants. Other compounds on the priority pollutant list which were found in the UMATAC overhead vent oil were anthracene, benzo(a)anthracene, benzofluoranthenes, benzo(a)pyrene, benzo(ghi)perylene, chrysene, fluoranthene, fluorene, naphthalene, phenathrene, and pyrene. Known carcinogens and mutagens such as benzo(a)pyrene, benzo(e)pyrene, perylene, and benzofluoranthenes were present but only in small quantities of 1.2 to 3.2 ppm. These concentrations are in the range found in most crude oils.

The UMATAC sidedraw oil contained a wide array of aromatic compounds including not only hydrocarbons but also many heterocyclic sulphur and nitrogen compounds. The aromatic compounds previously identified in the overhead oil were also found in the sidedraw oil, Table 6.6.3. Major hydrocarbon constituents were: alkyl substituted

······					
UMATAC Compound Type Molecular Ions	UMATAC Overhead Oil	UMATAC Overhead Oil	UMATAC Sidedraw Oil	Combustion Tube Oil 159-11	Combustion Tube Oil 159-14
naphthalenes 128, 142, 156, 170	6232	2365	2172	479	488
benzothiophenes 134, 148, 162, 176, 190, 204	4941	3371	2079	486	514
fluorenes 166, 180, 194, 208, 222	638	535	1167	47	84
phenanthrenes, anthracenes 178, 192, 206, 220, 234	475	680	3355	519	478
dibenzothiophenes 184, 198, 212, 226, 240	593	741	4064	590	680
fluoranthenes, pyrenes benzofluorenes, 202, 216 230, 244, 258, 272, 286	67	27	1146	293	222
chrysenes, triphenylenes benzo(a)anthracene, 228, 242, 256, 270, 284, 298		ND	977	188	150
benzonaphthothiophenes 234, 248, 262, 276	63	ND	1491	306	307
benzofluoranthenes, 252	3.2	ND	24	7.5	8.1
benzo(e)pyrene 252	3.2	ND	44	2.4	9.8
benzo(a)pyrene 252	2.9	ND	32	2.6	4.2
perylene 252	1.2	ND	18	7.1	8.6
alkylated compounds 266, 280, 294	12.5	ND	14	37	29
276, 290, 304	1.1	ND	ND	ND	ND

Table 15. Polycyclic aromatic hydrocarbons in oils from the UMATAC project and from combustion tube experiments (μ g/g of original oil).

ND = not determined

naphthalenes in the molecular weight range 142 to 184, totalling 2172 ppm; alkyl substituted phenanthrenes, m.w. 178-220, totalling 3355 ppm; and alkyl fluorenes, m.w. 166-208, totalling 1167 ppm. Many higher molecular weight aromatic hydrocarbons were present in concentrations greater than normally found in crude oils. Among these were isomers known or suspected to be carcinogenic or mutagenic. Benzo(a)anthracene, a moderately active mutagen and carcinogen occurred at a concentration of 55 ppm. Chrysene, a carcinogen, and triphenylene, a mutagen, totalled 150 ppm. Numerous methyl and dimethyl benzo(a)anthracenes, chrysenes, and triphenylenes of molecular weights 242 and 256 were found. These compounds totalled 772 ppm. Although specific isomers were not identified in this study, most methyl and dimethyl benzo(a)anthracene isomers are carcinogenic (Coombs et al. 1976; Dipple 1976) as are the trimethyl benzo(a)anthracenes which have been tested to date (Dipple 1976). Methyl chrysene isomers (m.w. 242) are also carcinogens or cancer initiators (Coombs et al. 1976). Pyrene, m.w. 202, was found at a concentration of 180 ppm and fluoranthene, m.w. 202, at a concentration of 91 ppm. Both compounds and some of their alkylated homologues of molecular weights 216 and 230 are carcinogenic and fluoranthene is reported to be more active than benzo(a)pyrene (Kady et al. 1979). Also of interest are the relatively high concentrations of benzo(a)pyrene at 32 ppm and perylene at 18 ppm. Perylene is a more potent mutagen than benzo(a)pyrene (Kady et al. 1979).

The UMATAC sidedraw oil also contained numerous heteorcyclic nitrogen compounds which were formed during the retorting process. A fraction, enriched in nitrogen compounds, was obtained by the method of Lee and Castle (1981) and analysed by GC/MS. The compounds identified are listed in Table 6.6.4. The major groups of compounds were: alkylated quinolines in the molecular weight range 129 to 185, 151 ppm; alkylated carbozoles in the molecular weight range 167 to 237, 392 ppm; alkylated amino fluorenes in the molecular weight range 181 to 223, 45 ppm; alkylated benzoquinolines in the molecular weight range 195 to 221, 44 ppm; alkylated benzocinnolines in the molecular weight range 180 to 208, 77 ppm; and alkylated benzocarbazoles in the molecular weight range 231 to 245, 29 ppm. Among the compounds identified were

several known or suspected carcinogens and mutagens, some in relatively high concentrations. The mutagen 1-aminopyrene (Ball et al. 1984) was present at a concentration of 51 ppm and the carcinogen 4-aminobiphenyl (Kimball and Munro 1981) at 17 ppm. Other known carcinogens (Dipple 1976; McCann et al. 1975) identified were: aminofluorene, 4.7 ppm; 2-aminoanthracene, 2.1 ppm; 3-aminofluoranthene, 1.7 ppm; and dibenzocarbazole, 1.3 ppm. Methyl aminobiphenyls (35 ppm), dimethyl aminobiphenyls (23 ppm), methyl aminofluorenes (13 ppm), and dimethyl aminofluorenes (23 ppm) were also present. Several isomers of these compounds are carcinogenic or mutagenic (Rinkus and Legator 1979). These concentrations of nitrogen heterocyclics and aromatic hydrocarbons indicate a higher carcinogenic activity than found with most crude oils.

Sulphur containing aromatic compounds were also present in high concentrations. Alkyl substituted benzothiophenes totalled 2079 ppm and alkyl substituted dibenzothiophenes totalled 3914 ppm. These compounds are not mutagenic or carcinogenic (Lee & Castle 1981; McFall et al. 1984). Benzonaphthothiophene isomers were found in concentrations totalling 202 ppm. Alkyl benzonaphthothiophenes, some of which are mutagenic (McFall et al. 1984), were abundant with 580 ppm methyl benzonaphthothiophenes and 709 ppm of other alkylated benzonaphthothiophenes.

A sample of UMATAC overhead oil contained many of the same compounds found in the sidedraw oil but in much lower concentrations. Two fractions enriched in nitrogen compounds were obtained by the method of Schmitter (1983) using hydrochloric acid treated silica gel. The first fraction, Table 6.6.5.1, contained mainly indoles, carbazoles, and benzocarbazoles, generally in concentrations of less than 1 ppm. The second fraction, Table 6.6.5.2, contained many compounds similar to those previously found in the sidedraw oil but in lower concentrations. Apparently the UMATAC process results in biologically active compounds accumulating in the sidedraw oil. A sample of oil from the day tank contained intermediate concentrations of aromatic compounds, e.g., 16 ppm benzo(a)pyrene as compared with 2.9 ppm in an overhead oil and 32 ppm in the sidedraw oil.

3.2.4 Combustion Tube Oils

Two samples of produced oil from the combustion tube experiments being carried out by the Chemical and Petroleum Engineering Department of the University of Calgary were analyzed. Both samples were taken from near the end of experiment number 159, a "dry" combustion tube experiment in which no water was injected. The results are summarized in Table 15 and presented in detail in Appendix 7, Tables 6.7.1 and 6.7.2.

The samples 159-11 and 159-14 contained a wide range of aromatic hydrocarbons and sulphur bearing aromatic compounds. Despite probable losses of the more volatile aromatic compounds, naphthalene and its alkylated homologs totalled 479 ppm in 159-11 and 488 ppm in 159-14, and low molecular weight sulphur compounds, benzothiophene and alkylated benzothiophenes, totalled 486 ppm and 614 ppm in 159-11 and 159-14, respectively. The dibenzothiophenes were the most abundant group of compounds in both samples, 590 ppm in 159-11 and 680 ppm in 159-14. The alkylated phenanthrenes and anthracenes were the second most abundant group of compounds in both samples being 519 ppm in 159-11 and 478 ppm in 159-14. Acenaphthene and other compounds found on the EPA priority pollutant list were present. These included anthracene, benz(a)anthracene, benzofluoranthenes, benzo(a)pyrene, chrysene, fluoranthene, fluorene, naphthalene, phenanthrene, and pyrene. Benzo(e)pyrene concentrations averaged 8.6 ppm, benzo(a)pyrene averaged 3.4 ppm, benzo(b)fluoranthene averaged 7.8 ppm, and perylene averaged 7.9 ppm.

Although the concentrations of aromatic hydrocarbons and aromatic sulphur compounds were greater than those found in Athabasca bitumen, they are substantially less than those found in the UMATAC produced oils which had undergone rigorous thermal treatment. The total aromatic hydrocarbons found in the combustion tube oils averaged 1600 ppm and sulphur aromatics averaged 1490 ppm. This compares with 7490 ppm aromatic hydrocarbons and 5600 ppm aromatic sulphur compounds found in a UMATAC overhead oil, and with 8950 ppm aromatic hydrocarbons and 7600 ppm aromatic sulphur compounds found in a UMATAC sidedraw oil.

3.2.5 Other Oils and Residuals

An oil and water emulsion produced from the AOSTRA-Shell project was analysed for aromatic hydrocarbons, specifically benzo(a)pyrene. The heavy oil-water emulsion from well 44 contained 2.7 ppm benzo(a)pyrene. Because the emulsion was about 65% water, the benzo(a)pyrene content of the oil alone was 7.7 ppm. Vacuum gas oil from the diluent recovery unit contained 1.7 ppm benzo(a)pyrene, pitch from the same unit contained 1.9 ppm, and top oil contained only 0.1 ppm benzo(a)pyrene.

Refinery residuals, heavy oils, and pitches contained much higher concentrations of aromatic hydrocarbons, including benzo(a)pyrene, than were found in any in situ produced oil or UMATAC produced oil. Catalytic cracker fractionator bottoms obtained from a refinery in Sarnia, Ontario were fractionated and the aromatic fraction analysed for benzo(a)pyrene. The benzo(a)pyrene content was high at 1050 ppm. The aromatic fraction was further separated into subfractions which were analysed for benzo(a)pyrene and tested biologically (see Section 3.3.2).

Steam cracker refinery tar also contained large amounts of benzo(a)pyrene (150 μ g/g tar, or 220 μ g/g of the maltene fraction of the tar). A large percentage, 55% of the maltene fraction, was soluble in DMF and, upon column chromatography on alumina, 90% of this was found to be aromatic hydrocarbons. These aromatic hydrocarbons were further fractionated into groups of compounds by chromatography on a second alumina colunn. Each subfraction was then analysed by combined gas chromatography-mass spectrometry and the mutagenicity determined by the Ames test. The total benzo(a)pyrene content of the sample was over 150 μ g/g oil and some aromatic subfractions contained as much as 280 μ g of BaP. Catalytic cracker heavy cycle oils contained 240 ppm benzo(a)pyrene and fluid coker heavy gas oil contained 91 ppm. These oils were also fractionated and analysed for benzo(a)pyrene content prior to biological testing.

3.3 BIOLOGICAL TESTING

3.3.1 Ames Test for Mutagenicity in Athabasca Oils

The Ames test was used to indicate mutagenic activity in the aromatic fractions of produced oils, synthetic crude oil, and refinery residuals.

Much of the introductory work on the behaviour of hydrocarbons derived from the oil sands was carried out with synthetic crude oil produced by Suncor. Of concern was the possible inability of the Ames test to effectively detect mutagenic compounds when present in complex hydrocarbon mixtures. An experiment was therefore conducted to measure the effect of the neutral fraction of synthetic crude oil (separated by ion exchange chromatography) upon the mutagenic activity of the known mutagen and carcinogen benzo(a)pyrene. Various amounts of a neutral hydrocarbon fraction from synthetic crude oil were added to solutions of benzo(a)pyrene in dimethylsulphoxide. The mutagenicity of the mixtures were compared with that of benzo(a)pyrene alone, using Salmonella strain TA98 with the addition of S9 enzymes. The addition of the oil systematically reduced the number of revertant colonies--from 328 to 73 with the addition of the equivalent of 19 mg of synthetic crude oil. Unexpectedly, the addition of more than 19 mg of the DMSO extract of synthetic crude oil resulted in an increase in the number of revertants; 112 mg gave 498 colonies (Figure 3).

The initial decrease in the number of revertant colonies with increasing amounts of synthetic crude oil could not have been caused by toxicity. Cell lethality from toxicity would have been irreversible and additional samples would have resulted in even fewer colonies. The effect of the synthetic crude oil is, therefore, thought to be the suppression of the activity of mutagens by associated hydrocarbons. This suppression may be the result of physical properties of the sample and the test system or of biological properties of the <u>Salmonella</u> typhimurium.

The neutral fraction of the synthetic oil was itself mutagenic with an activity of 10 revertants per mg of original oil (Figure 4). The activity in the absence of S9 was 23 revertants per mg greater than in the presence of S9 (Figure 5). This showed that direct acting

Figure 3. Ames test on synthetic crude oil with benzo(a)pyrene added.

mutagens were present and that the S9 enzymes at least partially destroyed these mutagens. Polycyclic aromatic hydrocarbons are activated by the S9 enzymes system and, therefore, the mutagenicity of the Suncor neutral fraction was caused mainly by compounds other than polycyclic aromatic hydrocarbons.

Further fractionation of the neutral fraction into "neutral nitrogen" and "neutral hydrocarbon" fractions by ferric chloride complexing demonstrated that direct acting mutagens were not confined to a single fraction of the oil as both these fractions were mutagenic (Figures 6 and 7). Multiple tests were performed on DMSO extracts of several samples of the same synthetic crude oil. The results were reproducible within a single set of analyses on a given extract (as shown by the number of revertants obtained on 3 plots at each concentration in Figures 4 and 5) but varied greatly among extracts. For example, the results presented in Figure 3 clearly show suppression of mutagenic activity to a level below that indicated by the data presented in Figure 4. This variation may reflect differences in the physical composition of each extract, the amount of dispersed hydrocarbons as distinguished from dissolved mutagens.

The effect of bitumen upon the activity of benzo(a)pyrene was tested in a manner similar to that for the synthetic crude oil. The bitumen suppressed the activity of the benzo(a)pyrene, with increasing amounts of bitumen bringing a steady decline in sample activity (Figure 8). In contrast to the results from the synthetic crude oil, no increase in the number of revertants occurred with larger amounts of bitumen. Despite the fact that benzo(a)pyrene was present, no activity was found when the neutral fraction of the bitumen was tested on strain TA98 in the presence of S9, therefore indicating suppression of activity (Figure 9).

3.3.2 Ames Test for Mutagenicity in COFCAW-Produced Oils

The foregoing Ames test results demonstrated the need for further fractionation of samples to eliminate compounds which interfere with the Ames test.

The aromatic hydrocarbons, from the oil-water emulsion collected from well GP-26 in May, were separated and fractionated as

Figure 5. Ames test data for the neutral fraction of synthetic crude oil, without S9 enzymes.

Figure 6. Ames test data for the "neutral nitrogen" components of synthetic crude oil, -S9.

Figure 7. Ames test data for the "neutral hydrocarbon" components of synthetic crude oil, -S9.

Figure 9. Ames test data for the neutral fraction of bitumen, +S9.

described in Section 2.2.3. Fractions with similar synchronous fluorescence spectra were combined, resulting in seven fractions which were analysed by GC-MS and tested for mutagenicity.

Each fraction was tested in the presence of S9 rat liver homogenate on <u>Salmonella</u> strain TA98. Two fractions (Figures 11 and 14) showed a greater than two fold increase in the number of revertants. Five of the seven fractions showed some mutagenic activity as indicated by a good correlation between the amount of sample and the number of revertants (Figures 10 to 16).

The first fraction of aromatic hydrocarbons eluted from the alumina column exhibited a mutagenic activity of 3.4 revertants per microlitre of DMSO with a very good correlation coefficient of 0.992 (Figure 10). Each sample was dissolved in an equal quantity of DMSO: thus, mutagenic activity could be compared among samples. The sample consisted largely of alkyl substituted fluorenes and phenanthrenes. Of these compounds at least five, 1-methylphenanthrene, 2-methylphenanthrene, 9-methylphenanthrene, 9-methylfluorene, and 1,9-dimethylfluorene are active in the Salmonella typhimurium mutagenic bio-assay. The mutagenic activity of 1,9-dimethylfluorene is reported to be twice that of benzo(a)pyrene, whereas the other compounds have mutagenicities ranging from 0.3 to 0.5 times that of benzo(a)pyrene. The alkylphenathrenes and alkylfluorenes apparently were the major mutagens present. Although an estimate of the projected mutagenic activity of the sample based solely on the abundance of these compounds could not be made, their abundance was nevertheless more than sufficient to account for the observed activity.

The second aromatic hydrocarbon fraction exhibited a mutagenic activity of 2.7 revertants per microlitre of DMSO with a correlation coefficient of 0.909 (Figure 11). In addition to alkylfluorenes and alkylphenanthrenes, the second fraction contained compounds of mass 228 and 242. Several isomers of methylchrysene, methylbenz(a)anthracene, and methylbenzo(c)phenanthrene of m/e 242 are biological active. The effect of the abundant cyclic sulphur compounds, naphthabenzothiophenes, is unknown but these compounds apparently were not sufficiently toxic to negate the test.

Figure 10. Ames test data for the aromatic sub-fraction 98-67-36 of GP26 oil.

Figure 11. Ames test data for the aromatic sub-fraction 98-67-35 of GP26 oil.

Figure 12. Ames test data for the aromatic sub-fraction 98-67-34 of GP26 oil.

Figure 13. Ames test data for the aromatic sub-fraction 98-67-33 of GP26 oil.

The third fraction contained an abundance of mass 228, 242, and 256 compounds, many of which are mutagenic. The observed activity of 3.4 revertants per microlitre of DMSO with a correlation coefficient of 0.96 was in keeping with the presence of these known mutagens (Figure 12). When tested over a wider concentration range, the sample showed toxicity.

Fraction four was the most active with 6.7 revertants per microlitre and a correlation coefficient of 0.997 (Figure 13). This sample contained not only benz(a)anthracene, chrysene, and their mutagenic analogues, but also the carcinogen benzo(a)pyrene and benzofluoranthenes.

The fifth aromatic fraction contained 7 μ g of benzo(a)pyrene as determined by combined gas chromatography-mass spectrometry. The activity was far less than would be expected from the equivalent amount of benzo(a)pyrene alone. The 7 μ g of benzo(a)pyrene contained in the sample should have given in excess of 850 revertant colonies as opposed to the less than 300 colonies which were found (Figure 14). Thus, the presence of other hydrocarbons in this aromatic fraction suppressed the activity of the benzo(a)pyrene in much the same way as the activity of benzo(a)pyrene was reduced by the addition of bitumen or synthetic crude oil.

The sixth and seventh fractions from the alumina column showed slight mutagenic activity (Figures 15 and 16).

The question of whether a mixture of mutagens produces an additive effect in the Ames test has been much debated. The samples examined in this study clearly showed suppression of the activity of a mutagen caused by the presence of other hydrocarbons. This was evidenced by the decrease in mutagenic activity of benzo(a)pyrene brought about by the addition of the DMSO soluble portion of the neutral fraction of synthetic crude oil and by the less than anticipated activity of an aromatic fraction of COFCAW-produced oil which contained benzo(a)pyrene. The cause of this suppression of mutagenicity may be the physical properties of the hydrocarbon/DMSO/ aqueous system or biological properties of the <u>Salmonella</u> typhimurium. The mutagenic activity was lower than expected but larger amounts of sample did increase the number of revertants. This shows that the effect was not

Figure 14. Ames test data for the aromatic sub-fraction 98-67-32 of GP26 oil.

Figure 15. Ames test data for the aromatic sub-fraction 98-67-31 of GP26 oil.

Figure 16. Ames test data for the aromatic sub-fraction 98-67-30 of GP26 oil.

caused by cell lethality which would have resulted in a continuing decline in the number of revertant colonies with increasing amounts of sample.

In view of the above findings, comparisons of the mutagenic activity of the COFCAW-produced oil with the activity of conventional crude oil, shale oil, or coal liquefaction products must be made with caution. Some fractions of the COFCAW-produced oil had mutagenic activities as high as 7400 revertants per milligram of fractionated material. These activities are higher than those reported for crude oil and shale oil fractions but less than those reported for some coal liquefaction products. The mutagenic activities of the neutral aromatic fraction and the basic fraction were approximately equal and were about ten times greater than that of the acid fraction. These fractions represent only a small proportion of the COFCAW oil and their biological behaviour in the complex organic mixture which comprises the COFCAW oil is not presently known. Their mutagenic activity as part of the whole oil may be additive, synergistic, or antagonistic. Until further information is available on the biological activity of carcinogens in complex hydrocarbon mixtures, an accurate assessment of the COFCAW-produced oil is not possible. Indications are, however, that the activity of the COFCAW oil lies between that of conventional crude oils and coal liquefaction products.

3.3.3 Ames Test for Mutagenicity of Other Oils and Refinery Residuals

3.3.3.1 <u>SHOP Project Oils</u>. The mutagenic activity of aromatic subfractions from heavy oils produced in the SHOP project was low, ranging from 490 to 1300 revertants per gram of oil (Table 16). The most mutagenic aromatic subfraction produced 4000 revertants per mg. This compares with values as high as 7400 revertants per mg for similar fractions from the Gregoire Lake oils produced by in-situ combustion and up to 27 000 revertants per mg for vacuum bottoms from a coal liquefaction process. Mutagenic activity was found only in the presence of S9 enzymes, demonstrating that indirect acting mutagens, such as polynuclear aromatic hydrocarbons, were dominant. Only one sample, an aromatic subfraction from well P3, was mutagenic without S9

Sampling Location and Sample Number	Sample Description	BaP Content (µg/g of oil)	Revertants of frac			nts per g uced oil
and Sample Number		(μανα οι οιι)	+59	-59	+59	-59
Southern Alberta						
28-24-12	Treater oil, subfraction	0.1	920	(-)*	570	(-)
28-24-13	Treater oil, subfraction	0.0	4000	(-)	1300	(-)
28-13-6	Well P3 oil, subfraction	3.5	740	(-)	560	(-)
28-13-7	Well P3 oil, subfraction	0.7	650	140	490	70
28-5-9	Well P1 oil, subfraction	1.4	2100	(-)	600	(-)
28-9-9	Well P2 oil, subfraction	0.7	1500	(-)	670	(-)
28-17-9	Well P4 oil, subfraction	0.3	1400	(-)	570	(-)
UMATAC Process	• • • •			. ,		• •
25-3-2	Day tank oil, fraction	ND	(-)	57	(-)	6100
25-27-11	Overhead oil, subfraction	ND	2700	(-)	1700	(-)
25-27-13	Overhead oil, subfraction	ND	6000	(-)	300	(-)
Combustion Tube	,					• •
35-2-2	Produced oil, basic fracti	on ND	(-)	(-)	(-)	(-)
35-2-3	Produced oil, acid fractio		(-)	(-)	(-)	(-)
35-4-10	Produced oil, subfraction	1.9	1850	(-)	180	(-)
35-4-12	Produced oil, subfraction	0.2	740	(-)	190	(-)
Peace River						•
99-24-5	Well 44 oil, subfraction	ND	30	130	90	44(
99-24-16	Well 44 oil, subfraction	1.7	2509	400	7500	1200
99-24-30	Well 44 oil, subfraction	ND	2200	890	280	46
99-26-21	Top oil, subfraction	ND	(-)	(-)	(-)	(-)
99-28-25	Vacuum gas oil, subfractio	n ND	3500	1400	340	130
99-30-5	Pitch, subfraction	ND	90	26	100	29
99-30-11	Pitch, subfraction	ND	290	240	96	79
99-30-21	Pitch, subfraction	ND	3900	(-)	380	(-)
99-30-41	Pitch, subfraction	ND	1800	1500	29	8
99-30-71	Pitch, subfraction	ND	9400	880	160	1!
99-30-72	Pitch, subfraction	ND	1400	460	65	21
Brooks	-					
11-30-5	Recovered oil, fraction	ND	260	130	51000	25000
Grande Prairie	-					
11-34-5	Recovered oil, fraction	ND	(-)	(-)	(-)	(–

Table 16. The mutagenicity of aromatic hydrocarbon fractions and subfractions of heavy oils, heavy oil products, and recovered oils as determined by the Ames <u>Salmonella</u>/microsome assay.

* (-) no detectable mutagenic activity ND = not determined

activation and the activity was relatively low at 70 revertants per gram of oil. There was no direct relationship between benzo(a)pyrene content and mutagenic activity. The aromatic subfraction which produced the greatest number of revertants contained no detectable benzo(a)pyrene. It did, however, contain compounds of mass 228, 242, 256, and 270, indicative of alkylated benzanthracenes, chrysenes, and triphenylenes, some of which are known or suspected to be mutagenic. The lack of a correlation between benzo(a)- pyrene and mutagenicity in the Ames test would be partly caused by varying degrees of suppression of activity by differing hydrocarbon matrices. The lack of benzo(a)pyrene in the most mutagenic fraction from the SHOP project illustrates that benzo(a)pyrene alone is not a good indicator of the biological activity of a produced oil.

3.3.3.2 <u>UMATAC Process Oils</u>. Aromatic hydrocarbons were separated from a UMATAC day tank oil by dimethyl formamide extraction and column chromatography. Twenty-seven percent of the original oil was extractable with DMF and column chromatography of which 63%, or 17% of the original oil, was aromatic hydrocarbons.

The benzo(a)pyrene content of the sample was 16 μ g/g oil, a relatively high value as compared with that of normal crude oils and some heavy oils. The total aromatic hydrocarbon fraction, without further separation, was tested for biological activity with the Ames test. No activity was found in the presence of the S9 microsomal enzymes (Table 16). This is understandable in view of the suppression of the activity of mutagens in the Ames test when large amounts of non-mutagenic hydrocarbons are present. The aromatic fraction showed mutagenic activity in the absence of S9 - 56 revertants per mg of aromatic material or 6100 revertants per gram of whole oil. This activity is due to direct acting mutagens rather than the polycyclic aromatic hydrocarbons which would require microsomal enzymes to convert them into active compounds.

The overhead oil was similarly extracted with DMF and the aromatic hydrocarbons separated by column chromatography. The aromatic hydrocarbons were then further separated into subfractions on a second
alumina column. The benzo(a)pyrene content of the overhead oil was low being only 2.9 μ g/g. Two of the subfractions, when tested for mutagenicity, showed mutagenic activity in the presence of S9: 2700 and 6000 revertants per mg of aromatic material or 1700 and 300 revertants per mg of the original oil. No activity was found in the absence of S9. The finding of mutagenic activity in these two fractions was expected because they contained benzo(a)pyrene and numerous other compounds which are likely to be mutagenic or carcinogenic. The mutagenicity was not great when compared with that of the refinery residuals as shown in Table 17.

3.3.3.3 <u>Peace River In-situ Project</u>. Oil and water produced as an emulsion from the AOSTRA-Shell Peace River project, well 44, contained 2.7 μ g/g benzo(a)pyrene. Since this emulsion was about 65% water, the benzo(a)pyrene content of the oil alone was 7.7 μ g/g. Aromatic subfractions from the oil showed mutagenic activity both in the presence and absence of S9, indicating that both direct acting mutagens, and mutagens which required enzyme activation, were present. Although the mutagenicity of one aromatic subfraction was high as compared with other heavy oils (Table 16) the activity was considerably less than that of refinery residuals (Table 17).

Vacuum gas oil from the diluent recovery unit contained 1.7 μ g/g benzo(a)pyrene. In the presence of S9 an aromatic subfraction of the vacuum gas oil gave a mutagenicity of 3500 revertants per mg or 340 revertants per gram of original oil. Surprisingly, the pitch from the diluent recovery unit contained only 1.9 μ g/g benzo(a)pyrene. Aromatic subfractions of the pitch gave up to 9400 revertants per mg in the Ames test but the mutagenicity per g of pitch was low as compared with that of refinery residuals. Top oil contained only 0.1 μ g/g benzo(a)pyrene and showed no mutagenic activity.

3.3.3.4 <u>Combustion Tube Experiments</u>. A single sample of heavy oil (159-11) from the University of Calgary combustion tube experiments was examined. The benzo(a)pyrene content of the oil, 2.6 μ g/g, was similar to that of other heavy oils produced from the Athabasca oil sands but not as high as that found in the Gregoire Lake in-situ

Sampling Location and Sample Number		BaP Content (µg/g oil)	Revertants of sam		Revertants per g of sample	
			+\$9	-59	+59	-59
Catalytic Cracker	· · · · · · · · · · · · · · · · · · ·	de eren den nieten weben er den eren verdienen. Hie som ken witten vitten skrive				An stad yn a'r chofan dy'n ar dy'r a chofaran chan a gyrar yn yn yn y
25-11-8	Heavy cycle oil, subfraction		4400	(-1)	44 000	(-)
25-11-9	Heavy cycle oil, subfraction		7400	1200	29 000	4800
25-11-11	Heavy cycle oil, subfraction	38	2900	(-)	6100	(-)
25-11-13	Heavy cycle oil, subfraction	9.1	15 000	470	40 000	1100
25-11-14	Heavy cycle oil, subfraction	1.4	16 000	450	19 000	540
25-11-15	Heavy cycle oil, subfraction		15 000	(-)	40 000	(-)
25-5-2	Fractionator bottoms, fractio		(-)	609	(-)	250 000
25-6-8	Fractionator bottoms, subfrac		5700	470	5400	450
25-6-25	Fractionator bottoms, subfrac		2800	470	1400	240
25-6-28	Fractionator bottoms, subfrac	tion	6200	370	4700	280
Steam Cracker						
25-7-9	Tar, subfraction		4500	320	26 000	1900
25-7-10	Tar, subfraction		5400	310	18 000	1000
25-7-11	Tar, subfraction		6400	230	12 000	430
25-7-17	Tar, subfraction		5600	(-)	1500	(-)
25-7-20	Tar, subfraction		8000	500	1500	90
Fluid Coker						
25-15-13	Heavy gas oil, subfraction	4.7	8300	970	8200	970
25-15-14	Heavy gas oil, subfraction	0.7	32 000	300	19 000	180
25-15-15	Heavy gas oil, subfraction		2200	(-)	1300	(-)

Table 17.	The mutagenicity of aromatic hydrocarbon fractions and subfractions of refinery
	residuals from Sarnia, Ontario.

combustion products. Aromatic hydrocarbon subfractions of the combustion tube oil showed mutagenicity in the same range as other heavy oils, 1850 and 740 revertants per mg of sample or 180 and 190 revertants per gram of oil, with S9 enzyme activation. No mutagenic activity was found in the absence of S9.

Organic bases were extracted from the combustion tube oil with hydrochloric acid and acidic organic compounds with sodium hydroxide. Neither the organic acids nor the bases showed mutagenicity with or without S9 enzymes.

3.3.3.5 Refinery Residuals. Catalytic cracker fractionator bottoms obtained from a refinery at Sarnia, Ontario were fractionated and the aromatic fraction was analysed for benzo(a)pyrene by gas chromatography-mass spectrometry. The BaP content was high at 1050 μ g per gram of bottoms. Despite the high BaP content, the mutagenic activity of the whole aromatic fraction was low, 12 revertants per mg or 660 revertants per gram on a whole oil basis (Table 17). As discussed previously, mutagenic activity in the Ames test is suppressed by the presence of non-mutagenic hydrocarbons in the aromatic fraction. The aromatic fraction did show activity when tested on strain TA98 in the absence of the S9 enzymes, indicating the presence of direct acting mutagens. The activity under these conditions was 610 revertants per mg of aromatics or 33 400 revertants per g of oil. The high benzo(a)pyrene content and relatively high mutagenic activity in the absence of S9 indicates that these refinery bottoms are likely to have far greater biological activity than any of the in-situ combustion products or heavy oils recovered by in-situ methods.

Steam cracker refinery tar also contained relatively large amounts of benzo(a)pyrene, 150 μ g per gram of tar, or 220 μ g per gram of the maltene fraction of the tar. A large percentage, 55%, of the maltene fraction was soluble in DMF and, upon column chromatography on alumina, 90% of this was found to be aromatic hydrocarbons. These aromatic hydrocarbons were further fractionated into groups of compounds by chromatography on a second alumina column. Each subfraction was then analysed by combined gas chromatography-mass spectrometry and the mutagenicity determined by the Ames test. The total benzo(a)pyrene

content of the sample was over 150 μ g/g oil and some aromatic subfractions contained as much as 280 μ g of BaP. Not surprisingly, all the subfractions showed mutagenic activity, up to 8000 revertants per mg. The activity was less, however, than would be produced by a similar amount of benzo(a)pyrene alone, again illustrating the suppression of mutagenicity by non-mutagens in the Ames test.

The catalytic cracker heavy cycle oil contained even larger amounts of benzo(a)pyrene, 240 μ g/g oil, and showed the highest mutagenic activity of any of the oils tested. The activity of aromatic hydrocarbon subfractions of the oil ranged from 2900 to 16 000 revertants per mg, up to 44 000 revertants per gram of oil. The fluid coker heavy gas oil also contained substantial amounts of benzo(a)pyrene, 91 μ g/g, and displayed high mutagenic activity. One aromatic hydrocarbon subfraction gave 32 000 revertants per mg and 19 000 revertants per g of oil. In the case of both oils, most of the mutagenic activity occurred in the presence of S9 enzymes and was likely caused by polycyclic aromatic hydrocarbons. Some mutagenicity in the absence of S9 was observed, thus indicating the presence of other types of mutagens.

3.3.4 <u>Microtox Toxicity Testing of Produced Waters</u>.

3.3.4.1 <u>Gregoire Lake Pilot</u>. The Microtox system was used to test the toxicity to aquatic organisms of produced waters (1) as received, (2) after purging with helium to remove volatile organic components, and (3) after extraction to remove acidic, basic, and neutral compounds.

All samples from the Gregoire Lake Pilot project were toxic as received with EC_{50} values ranging from 0.30 to 11.4 (Table 18). Low EC_{50} values indicate the presence of significant amounts of toxic compounds whereas values over 80 indicate little or no toxic material. Among the most toxic samples were the COFCAW-produced waters, GP26 sampled in March and May, and the fluids produced by steam stimulation from well GP31. The fluids from GP31 contained large amounts of dispersed clay minerals and bitumen with a total organic carbon content of 1850 ppm. In both cases, the waters were found to be highly toxic to

	As Rec	eived	Volati	le Free	Extr	acted	Double E	xtracted
Sample	EC ₅₀ (5) ^a	EC ₅₀ (15) ^b	EC ₅₀ (5)	EC ₅₀ (15)	EC ₅₀ (5)	EC ₅₀ (15)	EC ₅₀ (5)	EC ₅₀ (15)
Gregoire Lak	<u>(e</u>						<u>, , , , , , , , , , , , , , , , , , , </u>	
GP-20 (Feb) GP-20 (Mar)	7.2 11.4	11.5 11.0	21 57	18 49	323 NE	77 NE		
GP-21 (Feb) GP-21 (Mar) GP-21 (Jun)	2.2 2.6 1.1	2.9 2.9 1.3	16 12 4.6	14 8.9 4.4	88 37 80	153 36 121		
GP-26 (Feb) GP-26 (Mar)	2.5 .84	3.2 .96	4.6 2.0	5.0 2.2	26 22	27 18	135	153
GP-26 (May) GP-26 (Jun)	.61 2.2	.74 - 2.2	2.8	- 3.0	17	16	81	81
GP-31 (Feb) GP-31 (Mar)	.30 .31	.32 .41	.39 .54	.58 1.4	33 36	35 36		
GP-19 (May) GP-19 (Jun)	2.8 1.3	3.0 1.5	17 11	16 11	61 93	64 126		
Peace River Well No. 44	0.98	1.11	0.52	0.59				

Table 18.	The toxicity (of Gregoire Lake pilot	waters as determined with	the Microtox system.
-----------	----------------	------------------------	---------------------------	----------------------

a (5) – 5 minute values ^b(15) – 15 minutes values NE = no significant effect

aquatic organisms. EC_{50} values measured after 15 minutes did not vary greatly from those measured after 5 minutes.

Purging with helium to remove volatile organic compounds reduced, but did not remove, the toxicity of the produced waters.

Among the major groups of compounds removed from the samples by purging were benzene and alkyl substituted benzenes. The toxicity of these compounds to aquatic organisms is well known; therefore, their removal from the samples should have reduced the toxicity. However, the samples after purging were still toxic with values ranging from 0.39 to 57. Samples GP26 and GP31 were still highly toxic.

Extraction of the produced waters with toluene, a total of nine times at three different pH conditions, greatly reduced the toxicity of all samples. Five of the 13 samples showed little or no toxicity after extraction. Thus, the extractable organic material in the produced waters, rather than the volatile organic compounds or inorganic constituents, was responsible for the majority of the observed toxicity.

A major group of organic compounds extracted from the waters were phenolics: phenol, alkyl substituted phenols, and alkyl substitu ted napthalenol. The COFCAW-produced water contained 0.62 μ g/mL methylphenols, 1.2 μ g/mL dimethylphenols, and 0.38 μ g/mL trimethyl phenols. As no special precautions were used to preserve the samples, some losses of phenols likely occurred and these concentrations are probably low. These compounds are highly toxic to aquatic organisms. Also found were many alkyl substituted benzoic acids, substituted aromatic hydrocarbons, benzenamines, pyridines, and quinolines. These compounds would readily account for the observed toxicity of the extractable organic materials from the produced waters.

Despite repeated extractions under acid, basic, and neutral conditions, a strong odour of phenols was apparent in some of the extracted samples. Apparently not all the phenols were totally extracted from the sample. Consequently, three samples were further extracted under acid conditions. These doubly extracted samples were then tested for toxicity. In all cases, they were non-toxic, confirming that the major cause of toxicity in the produced waters was the extractable organic compounds.

	Origi	nal	Volati	le Free	<u>After Ex</u>	traction
Sample	EC ₅₀ (5)	EC ₅₀ (15)	EC ₅₀ (5)	ec ₅₀ (15)	ec ₅₀ (5)	EC ₅₀ (15)
Treater water Southern Alberta 1983 January	0.54 1,	0.69	1.3	1.5	54	46
Treater water Southern Alberta 1983 May	0.49 1,	0.38	0.78	0.70	40	42
Peace River Well 44 water	0.98	1.11	0.52	0.59	78	63
UMATAC overhead vent water	0.12	0.12	0.27	0.30	4.0	4.7
UMATAC preheat vent condensed water	1.12	0.61	1.44	0.94	28	23
UMATAC scrubber settling tank underflow	9.8	9.3	10	12	57	82

Table 19.	The toxicity of produ	iced waters as	determined with the
	Microtox system.		

(5) – 5 minute values (15) – 15 minute values

3.3.4.2 SHOP Project. Two water samples from the Southern Alberta in-situ combustion project were biologically tested and chemically analysed by combined gas chromatography-mass spectrometry. Treater water collected in January had a pH of 8.2, a total organic carbon content of 204 ppm, and a volatile carbon content of 30 ppm. A similar sample collected in May contained 511 ppm total organic carbon and 171 ppm volatile organic carbon. Both showed toxicity to aquatic organisms by the Microtox test (Table 19). Five minute EC_{50} values were 0.54 and 0.49 indicating a high toxicity. Removal of the volatile components reduced the toxicity by about 50% but the volatile free samples were still highly toxic. Extraction of the organic compounds greatly reduced the toxicity and the organic free samples were only slightly toxic. These results indicate that organic, rather than inorganic compounds, were responsible for the toxicity. The volatile components were purged from the water samples and analysed by gas chromatography-mass spectrometry. A multitude of organic compounds was detected. Major components were alkyl substituted cyclohexanes and cyclopentanes. Also present were benzene, toluene, xylenes, trimethylbenzenes, naphthalene, dimethyl naphthalenes, and trimethyl naphthalenes. These aromatic hydrocarbons are toxic to fish and would account for the toxicity of the volatile components of the treater waters.

3.3.4.3 <u>UMATAC Process</u>. Three water samples from the UMATAC project were examined. The pH of the samples was low, ranging from 2.5 to 4.4. The organic carbon content of the overhead vent water was high, 4890 ppm, of which 90 ppm was volatile material. The other two water samples, the preheat vent condensed water and the scrubber settling tank underflow water, contained 634 ppm and 68 ppm organic carbon, respectively. The volatile organic carbon content of these samples was less than 3 ppm.

Prior to testing for toxicity with the Microtox bioluminescence system, the pH of the samples was adjusted to near seven with sodium hydroxide. The overhead vent water and the preheat vent condensated water were both highly toxic with EC₅₀ five minute values of 0.12 and 1.12 (Table 19). The overhead vent water showed the most toxicity of any of the produced or waste waters tested with the Microtox system. The scrubber settling tank water was somewhat less toxic with a five minute EC_{50} value of 9.8. Some of the toxicity was due to volatile organic compounds but the majority was caused by extractable organic compounds. The overhead vent water was still highly toxic after extraction of the organic compounds. This toxicity may be caused by inorganic compounds or incomplete extraction of the large amount of organic materials originally present.

3.3.4.4 <u>Peace River Pilot Project</u>. Water separated from the oil-water emulsion produced by well 44 of the Peace River Pilot project had a pH of 6.4 and an organic carbon content of 376 ppm of which 59 ppm was volatile organic carbon. As was the case with other waters co-produced with heavy oil from in-situ recovery processes, the water from well 44 was highly toxic in the Microtox bioluminescence assay (Table 19) as indicated by the five minute EC_{50} value of 1.0. Purging with helium did little to alter the toxicity of the sample, indicating that volatile organic compounds were not a major contributor to toxicity.

In the event that produced hydrocarbons were to come in contact with surface waters, it might be expected that some toxicity would be imparted to the waters. Water was contacted with various amounts of top oil, vacuum gas oil, and diluent from the Peace River process. EC_{50} five minute values ranged from 0.4 when 50 mL of diluent was in contact with 1 litre of water for 24 hours, to 31 when 0.5 mL of vacuum gas oil was contacted with 1 litre of water (Table 20). The toxicity roughly followed the concentration of organic carbon in the contaminated water. The most toxic sample which had been in contact with diluent contained 97 µg/g total organic carbon, whereas the least toxic contained 4 µg/g total organic carbon. Purging the water with air, after removal of the liquid hydrocarbon phase, reduced the toxicity of the waters by about 25%.

3.3.4.5 <u>Combustion Tube Experiments</u>. A series of 10 water samples from a "wet" combustion tube experiment were analysed for total organic carbon and volatile organic carbon, and were tested for toxicity using

	m! ail	TOC	NOC			Volati	le Free
Sample	mL oil per L wate	TOC er (ppm)	VOC (ppm)	EC ₅₀ (5)	EC ₅₀ (15)	EC ₅₀ (5)	EC ₅₀ (15)
<u>Peace Rive</u>	r						
Vacuum gas	oil 0.5	3.55	0.99	31.3	29.3	28.8	25.3
	1.0	4.60	0.53	10.9	10.1	15.1	13.4
	5.0	6.17	1.13	10.3	10.0	13.3	13.3
	10.0	8.32	1.68	6.2	5.6	5.8	4.3
	50.0	22.66	1.04	2.2	2.5	2.8	13.3
Top Oil	0.5	9.47	7.14	9.7	12.5	33.9	42.3
•	1.0	20.33	13.76	8.6	9.4	17.9	21.9
	5.0	45.77	22.46	2.4	2.8	4.8	5.7
	10.0	59.81	14.56	1.7	1.7	2.9	3.5
	50.0	158.2	15.20	0.64	0.69	0.66	0.69
Diluent	0.5	6.36	2.15	7.1	6.9	8.8	8.8
	1.0	9.88	2.93	4.1	3.9	5.7	5.5
	5.0	31.68	6.91	1.8	1.8	2.2	2.3
	10.0	45.44	5.18	1.0	0.92	0.95	0.86
	50.0	97.46	7.82	0.37	0.37	0.41	0.39

Table 20. Toxicity of waters after contact with oils as determined by the Microtox test.

the Microtox system (Table 21). The total organic carbon content (TOC) of the 10 samples ranged from 1030 to 6390 ppm with the waters produced earlier in the experiment having the lowest total organic carbon content. Volatile organic carbon (VOC) ranged from 40 to 350 ppm with waters produced later in the experiment having the highest volatile organic carbon and the lowest pH, 1.6. $EC_{50}(5)$ and $EC_{15}(15)$ values were lowest, indicating the highest toxicity, for samples with high total organic carbon and low pH. (The pH was adjusted to 7 prior to toxicity testing.) The lowest EC_{50} value of 0.42 was in the same range as waters produced from the Gregoire Lake and SHOP pilot projects. These waters were far less toxic than UMATAC overhead vent waters but nevertheless showed a high toxicity to aquatic organisms.

C] -		Volatile	Total	As R	<u>eceived</u>	<u>Volati</u>	<u>le Free</u>
Sample	рН	H Organic Carbon (ppm)	Organic Carbon (ppm)	EC ₅₀ (5) ^a	EC ₅₀ (15) ^b	EC ₅₀ (5)	EC ₅₀ (15)
168-9	7.5*	55	1034	0.82	0.73	1.52	1.59
168-12	7.5*	112	1200	0.65	0.58	1.15	1.00
168-6	5.2	60.6	1308	4.6	4.2	6.3	4.1
169-8	4.0	41	1313	5.7	4.5	7.5	6.5
169-9	4.1	100	1570	9.7	9.4	13.3	12.0
169-11	2.6	296	4811	1.7	1.2	1.5	1.2
169-13	2.2	180	4057	1.7	1.2	2.0	1.3
169-15	1.6	47	6389	0.78	0.38	1.6	0.82
169-18	1.7	353	5566	0.57	0.42	0.74	0.56
169-20	1.7	227	4137	0.75	0.46	0.94	0.89

Table 21. The acidity, organic carbon content, and toxicity of combustion tube waters as determined with the Microtox system.

a (5) - 5 minutes values

b (15) - 15 minutes values

* pH determined using indication sticks.

All samples were shaken filtered, and pH adjusted to 7 before toxicity determinations. Carbon content was determined on a settled filtered sample.

pH readings were taken using a micro-electrode.

4. SUMMARY AND CONCLUSIONS

The objective of this project was to assess possible environmental hazards and human health risks arising from toxic and carcinogenic materials during recovery of heavy oil by in-situ methods. The more specific objectives were: (1) to chemically identify hazardous constituents of produced fluids; (2) to biologically test their toxicity and mutagenicity; (3) to relate their formation to production conditions; and, (4) to evaluate possible hazards in comparison with those of conventional and other synthetic fuels.

It should be noted that present methods of chemical analysis and short-term biological tests, such as applied in this study, are at best only indicators of potential human health risks or environmental hazards. They are not definitive, but do allow comparisons to be made of chemical composition and biological properties of oils and waters from conventional production and synthetic oil processes.

The results of the study are as follows:

- 1. Chemical analysis revealed the presence of known carcinogens and mutagens in oils produced by in-situ combustion from Gregoire Lake and from Suffield pilot projects. Unaltered Athabasca bitumen, unaltered Suffield heavy oil, commercially produced "synthetic" crude oil from the Athabasca oil sands, conventional crude oils, and heavy oil produced by steam injection from the Athabasca and Peace river oil sands, and from Suffield, all contained benzo(a)pyrene and other known carcinogens and mutagens.
- 2. The concentrations of benzo(a)pyrene in the oils produced by in-situ combustion and steam injection were in the same concentration range as those of conventional crude oils and heavy oils, 1 to 20 ppm, and far less than those found in refinery residuals, 90 to 1050 ppm, or reported in some fuel oils and coal tars, up to 10 000 ppm.

- 3. Oils from the UMATAC dry retorting process contained higher concentrations of benzo(a)pyrene, up to 32 ppm, than found in oils produced by in-situ combustion or steam injection, 0.9 to 14 ppm. Furthermore, the oils from the dry retorting process contained relatively high concentrations of nitrogen containing aromatic compounds, some of which are known or suspected to be carcinogenic or mutagenic.
- 4. The mutagenicity of oils produced by in-situ combustion, as indicated by the Ames test conducted on chemically separated fractions of the oils, was similar to that of oils produced by steam injection and well below the activity of refinery bottoms, tars, and pitches.
- 5. Waters co-produced with oil from in-situ recovery pilot plants contained many low molecular weight aromatic compounds, phenols, and nitrogen compounds in concentrations toxic to aquatic organisms.
- 6. Waters produced from the Gregoire Lake Pilot Study, the Suffield Heavy Oil Project, and the Peace River Project were all toxic to aquatic organisms in the Microtox system. Waters were judged to be "strongly" toxic, requiring dilutions of 10 to 300 times, to bring them into the non-toxic range. Some of the toxicity was caused by volatile organic compounds but the majority was caused by extractable organic compounds, primarily alkylated phenols and naphthalenes.
- 7. Waters from the UMATAC dry retorting process contained high concentrations of nitrogen compounds such as pyridines, pyrimidines, aminoindans, and quinolines. These waters were three times more toxic than any water from in-situ combustion pilot projects tested during this study.

The chemical analyses and limited biological testing carried out in this study detected no potential for a strong carcinogenic hazard associated with in-situ recovery of heavy oil by combustion and steam injection methods. The relative hazard is probably marginally greater than that associated with production of conventional light crude oils but far less than might be expected from coal liquefaction processes or from the disposal of refinery residuals. The hazard associated with dry retorting is greater than that from in-situ recovery methods and care should be taken in the handling of both products and wastewaters from this process.

The presence of many low molecular weight aromatic hydrocarbons, nitrogen compounds, and phenols in waters from in-situ pilot plants and the dry retorting process is of environmental concern. Not only are these compounds toxic in low concentrations to aquatic organisms, but they impart taste and odour to drinking water. Should waters from the combustion zone contaminate groundwater aquifers or surface waters, dilutions of 10 to 900 times would be required to reduce toxicity to aquatic organisms and dilutions of 3000 times or more would be required to reduce taste and odour effects.

5. **REFERENCES**

- Adamek, E.G. 1972. An efficient separation of B(a)P from B(k)F and their fluorescence determination in air samples. ACS National Conference. New York. 14 pp.
- Adams, E.A., E.J. Lavoie, and D. Hoffmann. 1983. Mutagenicity and metabolism of Azaphenanthrenes. <u>In</u>: M. Cooke and A.J. Dennis, eds. Polynuclear Aromatic Hydrocarbons: Formation, Metabolism and Measurement. Columbus, Ohio:Battelle Press. pp. 73-84.
- Ames, B.N., J. McCann, and E. Yamasaki. 1975. Methods for detecting carcinogens and mutagens with the Salmonella/mammalianmicrosome mutagenicity test. Mutation Research 31: 347-364.
- Anderson, J.W., J.M. Negg, B.A. Cox, H.E. Tatem, and G.M. Hightower. 1974. Characteristics of dispersions and water-soluble extracts of crude and refined oils and their toxicity to estuarine Crustaceans and fish. Marine Biology 27: 75-88.
- Ball, L.M., M.J. Kohan, L.D. Claxton, and J. Lewtas. 1984. Mutagenicity of derivatives and metabolites of 1-nitropyrene: activation by rat liver S9 and bacterial enzymes. Mutation Research 138: 113-125.
- Bingham, E. and W. Barkley. 1979. Bioassay of complex mixtures derived from fossil fuels. Environmental Health Perspectives 30: 157-163.
- Bridge, J.C. and S.A. Henry. 1928. Industrial cancers. <u>In</u>: Report of the International Conference on Cancer. 1928 July 17-20. London. New York:William Wood and Company. pp. 258-268.
- Brown, J.M., S.A. Wise, and W.E. May. 1980. Determination of Benzo(a)pyrene in recycled oils by a sequential HPLC method. Journal of Environmental Science and Health A15(6): 613-623.
- Bulich, A.A., M.W. Greene, and D.L. Isenberg. 1980. The reliability of the bacterial luminescence assay for the determination of toxicity of pure compounds and complex effluents. Aquatic Toxicity and Hazard Assessment: Fourth Conference, ASTM STP 737, D.R. Branson and K.L. Dickson, eds. American Society for Testing and Materials, pp. 338-347.
- Chang, J.C., P.B. Taylor, and F.R. Leach. 1981. Use of the Microtox assay system for environmental samples. Bulletin of Environmental Contamination and Toxicology 26: 150-156.
- Colmsjö, A., A. Rannug, and U. Rannug. 1984. Some chloro derivatives of polynuclear aromatic hydrocarbons are potent mutagens in <u>Salmonella typhimurium</u>. Mutation Research 135: 21-29.

- Coombes, R.M. and K.A. Hazer. 1982. Comparison of the carcinogenic potential of crude oil and shale oil. <u>In</u>: H.N. MacFarland, C.E. Holdsworth, J.A. MacGregor, R.W. Call, and M.L. Kane, eds. The Toxicology of Petroleum Hydrocarbons, Symposium Proceedings. American Petroleum Institute. 1982 May, Washington, D.C. pp. 208-224.
- Coombs, M.M., C. Dixon, and A. Kissonerghis. 1976. Evaluation of the mutagenicity of compounds of known carcinogenicity, belonging to the benz(a)anthracene, chrysene, and cyclopenta(a)phenanthrene series, using Ames's test. Cancer Research 36: 4525-4529.
- Coomes, R.M. 1976. Health effects of oil shale processing. Quarterly of the Colorado School of Mines 71(4): 101-123.
- DeFlora, S., P. Zanacchi, A. Camoirano, C. Bennicelli, and G.S. Badolati. 1984. Genotoxic activity and potency of 135 compounds in the Ames reversion test and in a bacterial DNA-repair test. Mutation Research 133: 161-198.
- Dickson, K.L. 1982. Research needs in aquatic toxicology and hazard assessment: a sojorner's perspective. Proceedings of the Fifth Annual Symposium on Aquatic Toxicology, American Society for Testing Materials. 1980 October 7-8; Philadelphia, Pennsylvania; ASTMP766: 9-14.
- Dipple, A. 1976. Polynuclear aromatic carcinogens. <u>In</u>: C.E. Searle, ed. Chemical Carinogens, ACS Monograph 173. Washington, D.C.: American Chemical Society. pp. 245-314.
- Durand, J.P. and N. Petroff. 1979. Determination of benzo(a)pyrene and other polyaromatic hydrocarbons in petroleum oils by direct liquid chromatography. Chromatographia 12,497: 85-95.
- Epler, J.L., J.A. Young, A.A. Hardigree, T.K. Rao, M.R. Guerin, I.B. Rubin, C.-H. Ho, and B.R. Clark. 1978. Analytical and biological analyses of test materials from the synthetic fuel technologies. I. Mutagenicity of crude oils determined by the <u>Salmonella typhimurium</u>/Microsomal Activation System. Mutation Research 57: 265-276.
- Epler, J.L., F.W. Larimer, T.K. Rao, C.E. Nix, and T. Ho. 1978. Energy-related pollutants in the environment: use of short-term tests for mutagenicity in the isolation and identification of biohazards. Environmental Health Perspectives 27: 11-20.
- Epler, J.L., T.K. Tao, and M.R. Guerin. 1979. Evaluation of feasibility of mutagenic testing of shale oil products and effluents. Environmental Health Perspectives 30: 179-184.

- Freudenthal, R.I., G.A. Lutz, and R.I. Mitchell. 1975. Carcinogenic potential of coal and coal conversion products. Columbus, Ohio:Battelle Columbus Laboratories.
- Guerin, M.R. 1977. Energy sources of polycyclic aromatic hydrocarbons. Oak Ridge, Tennessee:Oak Ridge National Laboratory. 78 pp.
- Guerin, M.R., C.-H. Ho, T.K. Rao, B.R. Clark, and J.L. Epler. 1980. Polycyclic aromatic primary amines as determinant chemical mutagens in petroleum substitutes. Environmental Research 23: 42-53.
- Grimmer, G. and A. Hildebrandt. 1972. Concentration and estimation of 14 polycyclic aromatic hydrocarbons at low levels in high protein foods, oils and fats. Journal of Associated Official Analytical Chemistry 55: 631.
- Haagensen, C.D. 1931. Occupational neoplastic disease. American Journal of Cancer 15: 641-703.
- Harrison, W., M.A. Winnik, P.T.Y. Kwong, and D. Mackay. 1975. Disappearance of aromatic and aliphatic components from small sea-surface slicks. Environmental Sciences and Technology 9(3): 231-234.
- Heller, I. 1930. Occupational cancers. Journal of Medical Hygiene 12: 169-197.
- Helmes, C.T., D.L. Atkinson, J. Jaffer, C.C. Sigman, and K.L. Thompson. 1982. Evaluation and classification of the potential carcinogenicity of organic air pollutants. Journal of Environmental Science and Health Al7(3): 321-389.
- Henry, S.A. 1947. Occupational cutaneous cancer attributable to certain chemicals in industry. British Medical Bulletin 4: 389-401.
- Holland, L.M. and C.G. Stafford. 1981. The Los Alamos integrated oil shale health and environmental program: A status report. LA-8665-SR. Los Alamos, New Mexico:Los Alamos Scientific Laboratory, University of California.
- Jewell, D.M., J.H. Weber, J.W. Bunger, H. Plancher, and D.R. Latham. 1972. Ion-exchange, coordination, and adsorption chromatographic separation of heavy-end petroleum distillates. Analytical Chemistry 44: 1391-1395.
- Kaden, D.A., R.A. Hites, and W.G. Thilly. 1979. Mutagenicity of soot and associated polycyclic aromatic hydrocarbons to <u>Salmonella typhimurium</u>. Cancer Research 39: 4152-4159.

- Kimball, R.F. and N.B. Munro. 1981. A critical review of the mutagenic and other genotoxic effects of coal liquefaction. Report OPNL-5721. Oak Ridge, Tennessee:Oak Ridge National Laboratory. pp. 199.
- Klopman, G. and H.S. Rosenkranz. 1984. Structural requirements for the mutagenicity of environmental nitroarenes. Mutation Research 126: 227-238.
- Kornreich, M.R. 1976. Coal conversion processes: potential carcinogenic risk. MTR-7155, Baileys Crossroads, VA: Mitre Corporation. Technical Report. pp. 4-14 to 4-16.
- Ladner, A. 1982. 4-Chloromethylbiphenyl (4CMB), benzyl chrloride (BC) and 4-hydroxymethylbiphenyl (4HMB): Reverse mutation tests with <u>Salmonella typhimurium</u>. Mutation Research 100: 27-31.
- Later, D.W., R.A. Pelroy, D.D. Mahlum, C.W. Wright, M.L. Lee, W.C. Weimer, and B.W. Wilson. 1983. Identification and comparative genotoxicity of polycyclic aromatic hydrocarbons and related nitrogen-containing heteratomic species in products from coal liquefaction processes. <u>In</u>: M. Cooke and A.J. Dennis, eds. Polynuclear Aromatic Hydrocarbons: Formation, Metabolism and Measurement. Columbus, Ohio: Battelle Press. pp. 771-783.
- LaVoie, E., L. Tulley, V. Bedenko, and D. Hoffmann. 1979. Mutagenicity, tumor initiating activity, and metabolism of tricyclic polynuclear aromatic hydrocarbons. <u>In</u>: A. Bjorseth and A.J. Dennis, eds. Polynuclear Aromatic Hydrocarbons: Chemistry and Biological Effects. Columbus, Ohio: Battelle Press. pp. 1041-1057.
- LaVoie, E.J., L. Tulley-Freiler, V. Bedenko, Z. Girach, and D. Höffman. 1981. Comparative studies on the tumor initiating activity and metabolism of methylfluorenes and methylbenzofluorenes. <u>In</u>: M. Cooke and A.J. Dennis, eds. Polynuclear Aromatic Hydrocarbons: Chemical Analyses and Biological Fate. Columbus, Ohio:Battelle Press. pp. 417-427.
- LaVoie, E.J., G. Briggs, V. Bedenko, and D. Hoffmann. 1982. Mutagenicity of substituted carbazoles in <u>Salmonella</u> <u>typhimurium</u>. Mutation Research 101: 141-150.
- LaVoie, E.J., L. Tulley-Freiler, V. Bedenko, and D. Hoffmann. 1983. Mutagenicity of substituted phenanthrenes in <u>Salmonella</u> <u>typhimurium.</u> Mutation Research 116: 91-102.
- LaVoie, E.J., D.T. Coleman, R.L. Tonne, and D. Hoffman. 1983. Mutagenicity, tumor initiating activity and metabolism of methylated anthracenes. <u>In</u>: M. Cooke and A.J. Dennis (eds.) Polynuclear Aromatic Hydrocarbons: Formation, Metabolism and Measurement. Columbus, Ohio: Battelle Press. pp. 785-798.

- Lebsack, M.E., A.D. Anderson, G.M. DeGraeve, and H.L. Bergman. 1981. Comparison of bacterial luminescence and fish bioassay results for fossil-fuel process waters and phenolic compounds. Proceedings of the Fourth Annual Symposium on Aquatic Toxicology, American Society for Testing Materials. 1979; Chicago, Illinois; pp. 348-256.
- Lee, M.L. and R.N. Castle. 1980. Identification of sulfur heterocycles in coal liquids and shale oils. Report DOE/EV/10237-2, U.S. Department of Energy, Office of Health and Environmental Research.
- Levin, W., A.W. Wood, R.L. Chang, S. Kumar, H. Yagi, D.M. Jerina, R.E. Lehr, and A.H. Conney. 1983. Tumor-initiating activity of benz(c)acridine and twelve of its derivatives on mouse skin. Cancer Research 43: 4625-4628.
- Mackay, D. and W.Y. Shiu. 1977. Aqueous solubility of polynuclear aromatic hydrocarbons. Journal of Chemical and Engineering Data 22(4): 399-402.
- McCann, J., E. Choi, E. Yamasaki, and B.N. Ames. 1975. Detection of carcinogens and mutagens in the <u>Salmonella</u>/microsome test: Assay of 300 chemicals. Proceedings of National Academy of Science U.S.A. 72(12): 5135-5139.
- McFall, T., G.M. Booth, M.L. Lee, Y. Tominaga, R. Pratap, M. Tedjamulia, and R.N. Castle. 1984. Mutagenic activity of methyl-substituted tri- and tetracyclic aromatic sulfur heterocycles. Mutation Research 135: 97-103.
- Mossop, G.D. 1980. Geology of the Athabasca oil sands. Nature 207: 145-152.
- National Academy of Science. 1972. Particulate polycyclic organic matter. Washington, D.C. 361 pp.
- Neis, J.M., P.J.L. van Gemert, H.M.J. Roelofs, R.P. Bos, and P.Th. Henderson. 1984. Mutagenicity of benzidine and 4-aminobiphenyl after metabolic activation with isolated hepatocytes and liver 9000 x <u>g</u> supernatant from rat, hamster and guinea pig. Mutation Research 129: 13-18.
- Nicholls, J.H. and R.W. Luhning. 1978. Heavy oil sand in-situ pilot plants in Alberta (past and present). <u>In</u>: D.A. Redford and A.G. Winestock, eds. The Oil Sands of Canada-Venezuela. Special Volume 17. Montreal: Canadian Institute of Mining and Metallurgy. pp. 527-538.
- Nohmi, T., K. Yoshikawa, M. Nakadate, R. Miyata, and M. Ishidate,Jr. 1984. Mutations in <u>Salmonella</u> <u>typhimurium</u> and inactivation of <u>Bacillus</u> <u>subtilis</u> transforming DNA induced by phenylhydroxylamine derivatives. Mutation Research 136: 159-168.

- Parker, K.R. 1979. PAH's in automotive lubricants. Calgary, Alberta: The University of Calgary. 165 pp. M.Sc. Thesis,
- Pitts, J.N., Jr., D.M. Kokensgard, W. Harger, T.S. Fisher, V. Mejia, J.J. Schuler, G.M. Scorziell, and Y.A. Katzenstein. 1982. Mutagens in diesel exhaust particulate. Identification and direct activities of 6-nitrobenzo(a)pyrene, 9-nitroanthracene, 1-nitropyrene, and 5H-phenanthro(4,5-bcd)pyran-5-one. Mutation Research 103: 241-249.
- Qureshi, A.A., K.W. Flood, S.R. Thompson, S.M. Janhurst, C.S. Inniss, and D.A. Rokosh. 1981. Comparison of a luminescent bacterial test with other bioassays for determining toxicity of pure compounds and complex effluents. Aquatic Toxicity and Hazard Assessment: Fifth Conference, ASTM STP 766. J.G. Pearson, R.B. Foster, and W.E. Bishop, eds. American Society for Testing and Materials. pp. 179-195.
- Rinkus, S.J. and M.S. Legator. 1979. Chemical characterization of 465 known or suspected carcinogens and their correlation with mutagenic activity in the <u>Salmonella</u> <u>typhimurium</u> system. Cancer Research 39: 3289-3318.
- Rosenkranz, H.S. 1984. Mutagenic and carcinogenic nitroarenes in diesel emissions: Risk identification. Mutation Research 140: 1-6.
- Rubin, I.B., M.R. Guerin, A.A. Haridgree, and J.L. Epler. 1976. Fractionation of synthetic crude oils from coal for biological testing. Environmental Research 12: 358-365.
- Schmitter, J-M., I. Ignatiadis, P. Arpino, and G. Guiochon. 1983. Selective isolation of nitrogen bases from petroleum. Analytical Chemistry 55: 1685-1688.
- Schoeny, R. 1982. Mutagenicity testing of chlorinated biphenyls and chlorinated dibenzofurans. Mutation Research 101: 45-56.
- Seixas, G.M., B.M. Andon, P.G. Hollingshead, and W.G. Thilly. 1982. The aza-arenes as mutagens for <u>Salmonella</u> <u>typhimurium</u>. Mutation Research 102: 201-212.
- Sexton, R.J. 1960. The hazards to health in the hydrogenation of coal. Vol. IV: The control program and clinical effects. Archives of Environmental Health 1: 208-231.
- Slaga, T.J., R.P. Iyer, W. Lyga, A. Secrist III, G.H. Daub, and R.G. Harvey. 1979. Comparison of the skin tumor-initiating activities of dihydrodios, diol-epoxides, and methylated derivatives of various polycyclic aromatic hydrocarbons. <u>In</u>: A. Bjorseth and A.J. Dennis, eds. Polynuclear Aromatic Hydrocarbons: Chemistry and Biological Effects. Columbus, Ohio:Battelle Press. pp. 753-769,

- Strosher, M.T. and E. Peake. 1978. Characterization of organic constitutents in waters and wastewaters of the Athabasca oil sands mining area. Prep. for Alberta Environment, Alberta Oil Sands Environmental Research Program. Report 20. Edmonton, Alberta. 71 pp.
- Tikkanen, L., T. Matsushima, S. Natori, and K. Yoshirhira. 1983. Mutagenicity of natural naphthoquinones and benzoquinones in the <u>Salmonella</u>/microsome test. Mutation Research 124: 25-34.
- Tomkins, B.A., R.R. Regan, J.E. Caton, and W.H. Griest. 1981. Liquid chromatographic determination of benzo(a)pyrene in natural, synthetic, and refined crudes. Analytical Chemistry 53: 1213-1217.
- United States Environmental Protection Agency. 1977. Sampling and analysis procedures for screening of industrial effluents for priority pollutants. USEPA Effluent Guidelines Division, Washington, D.C.
- Waters, M.D. 1979. A phased approach to the bioscreening of emissions and effluents from energy technologies. Proceedings of the Symposium on Potential Health and Environmental Effects of Synthetic Fossil Fuel Technologies, 1978 September 25-28. Oak Ridge, Tennessee. pp. 143-152.

6. <u>APPENDICES</u>

- 6.1 Extractable constituents of SHOP treater water.
- 6.2 Volatile constituents of Gregoire Lake-produced waters.
- 6.3 Extractable constituents of combustion tube-produced waters.
- 6.4 Extractable constituents of UMATAC wastewaters.
- 6.5 Aromatic components of SHOP produced oil.
- 6.6 Aromatic and nitrogen components of UMATAC produced oil.
- 6.7 Aromatic components of oils produced from combustion tube experiments.

APPENDIX 6.1

Extractable constituents of SHOP treater water.

Scan	M.W.	Compound	ppb	Scan	M.W.	Compound	ppl
747	128	Naphthalene	9	1351	176	C ₃ -Benzothiophene	7
951	148	C ₅ -Benzene	1	1368		C ₃ -Benzothiophene	4
972	142	2-Methylnaphthalene	83	1381	170	C ₃ -Naphthalene	45
976	148	C ₁ -Benzothiophene	2	1397	168	Dibenzofuran	27
1004	148	C ₁ -Benzothiophene	1	1410	176	C ₃ -Benzothiophene	78
1006	142	l-Methylnaphthalene	43	1413	170	C ₃ -Naphthalene	20
1148	154	Biphenyl	17	1429		C ₃ -Naphthalene	70
1159	162	C ₂ -Benzothiophene	10	1443		C ₃ -Benzothiophene	26
1172		C ₂ -Naphthalene	18	1457		C ₃ -Naphthalene	115
1178		C ₂ -Naphthalene	9	1476		C ₃ -Benzothiophene	3
1191		C ₂ -Benzothiophene	8	1481		C ₄ -Naphthalene	1
1192		C ₂ -Benzothiophene	119	1515		C ₃ -Naphthalene	16
1207		C ₂ -Benzothiophene	4	1516	166	Fluorene	26
1220		C ₂ -Naphthalene	163	1518	190	C ₄ -Benzothiophene	4
1223		C ₂ -Benzothiophene	10	1528		C ₃ -Naphthalene	37
1226		C ₂ -Naphthalene	87	1544		C ₂ -Biphenyl	5
1235		C ₂ -Benzothiophene	9	1554	190	E	21
1256		C ₂ -Naphthalene	108	1557	180	C ₂ -Fluorene	4
1285		C ₂ -Naphthalene	49	1560		C ₂ -Biphenyl	4
1292		C ₃ -Naphthalene	5	1570		C ₄ -Benzothiophene	8
1331		C ₃ -Benzothiophene	2	1584		C ₄ -Naphthalene	15
1336	154	Dihydroacenaphthylene	4	1587		C _l -Dibenzofuran	14
1346	170	C ₃ -Naphthalene	. 11	1594	184	C ₄ -Naphthalene	11

Table 6.1.1 SHOP treater water extractable aromatics, 1983 January.

continued...

Scan	M.W.	Compound	ppb	Scan	M.W.	Compound	ppb
1603	190	C ₄ -Benzothiophene	7	1792	204	C ₅ -Benzothiophene	3
1609		C ₁ -Dibenzofuran	12	1801	184	Dibenzothiophene	60
1605	184	C ₄ -Naphthalene	9	1846	178	Phenanthrene	74
1620	190	C ₄ -Benzothiophene	4	1930	194	C ₂ -Fluorene	8
1625	182	1	5	1965	198	C ₁ -Dibenzothiophene	94
1628	190	4	3	1997	198	C ₁ -Dibenzothiophene	63
1634	204	C ₅ -Benzothiophene	4	2030	198	C ₁ -Dibenzothiophene	58
1640	184	C ₄ -Naphthalene	20	2030	192	C ₁ -Phenanthrene/C ₁ -Anthracene	25
1663	190	1	5	2038		C ₁ -Phenanthrene/C ₁ -Anthracene	27
1675	184	C ₄ -Naphthalene	21	2067		C ₁ -Phenanthrene/C ₁ -Anthracene	52
678		C ₅ -Benzothiophene	3	2074		C ₁ -Phenanthrene/C ₁ -Anthracene	29
688	204	C ₅ -Benzothiophene	6	2110		C ₂ -Dibenzothiophene	13
1693	190	C ₄ -Benzothiophene	7	2121	212	C ₂ -Dibenzothiophene	31
702	184	C ₄ -Naphthalene	27	2144	212	C ₂ -Dibenzothiophene	23
1702	204	C ₅ -Benzothiophene	4	2177		C ₂ -Phenanthrene/C ₂ -Anthracene	2
1711	204	•	6	2204		C_2 -Phenanthrene/ C_2 -Anthracene	12
1714	190	C ₄ -Benzothiophene	3	2228		C ₂ -Phenanthrene/C ₂ -Anthracene	4
1717	204	C ₅ -Benzothiophene	3	2253		C ₂ -Phenanthrene/C ₂ -Anthracene	22
1719	180	C ₁ -Fluorene	5	2260		C ₂ -Phenanthrene/C ₂ -Anthracene	17
728	180	C ₁ -Fluorene	20	2260		C ₃ -Dibenzothiophene	12
745	204	•	4	2269		C ₂ -Phenanthrene/C ₂ -Anthracene	5
746	180	C ₁ -Fluorene	6	2275		C ₂ -Phenanthrene/C ₂ -Anthracene	11
778		C _A -Naphthalene	12	2294		C ₃ -Dibenzothiophene	23

Table 6.1.1. continued.

continued...

Table 6.1.1. Concluded.

Scan	M.W.	Compound	ppb
2325	226	Benzo(ghi)flouranthene	21
2340	226	C ₂ -Dibenzothiophene	18
2358	226	C ₃ -Dibenzothiophene	13
2364	226	C ₃ -Dibenzothiophene	16
2386	226	C ₃ -Dibenzothiophene	16
2436	220	C ₃ -Phenanthrene/C ₃ -Anthracene	12
2519	220	C ₃ -Phenanthrene/C ₃ -Anthracene	17
2616	234	C_4 -Phenanthrene/ C_4 -Anthracene	5
2653	234	C_{A} -Phenanthrene/ C_{A} -Anthracene	17
2702	234	Benzonaphthothiophene	13
2735	234	C ₄ -Phenanthrene/C ₄ -Anthracene	6
2805	228	Chrysene + Triphenylene	10

Scan	M.W.	Compound	ppb	Scan	M.W.	Compound	ppb
498	154	1,1'-Biphenyl	37	790	166	Fluorene	48
509	162	C ₂ -Benzo(b)thiophene	20	797	176	C ₃ -Benzo(b)thiophene	10
531		C ₂ -Naphthalene	242	799	170	C ₃ -Naphthalene	72
532	162	C ₂ -Benzo(b)thiophene	13	818	184	C ₄ -Naphthalene	41
551	156	C ₂ -Naphthalene	304	819	168	C _l -Biphenyl	20
556	156	C ₂ -Naphthalene	177	820	190	C ₄ -Benzo(b)thiophene	43
563	162	C ₂ -Benzo(b)thiophene	15	835	190	C ₄ -Benzo(b)thiophene	18
578	156	C ₂ -Naphthalene	125	846	184	C ₄ -Naphthalene	38
583	156	C ₂ -Naphthalene	69	851	182	C _l -Dibenzofuran	27
600	156	C ₂ -Naphthalene	90	854	184	C ₄ -Naphthalane	28
660	168	C ₁ -Biphenyl	11	861	184	C ₄ -Naphthalene	26
673	170	C ₃ -Naphthalene	92	864	190	C ₄ -Benzo(b)thiophene	16
674	176	C ₃ -Benzo(b)thiophene	37	865	182	C ₂ -Biphenyl	50
682	170	C ₃ -Naphthalene	28	865	184	C ₄ -Naphthalene	25
689	168	Dibenzofuran	45	870	182	C _l -Dibenzofuran	18
698	176	C ₃ -Benzo(b)thiophene	80	879	190	C ₄ -Benzo(b)thiophene	9
700	170	C ₃ -Naphthalene	37	897	184	C ₄ -Naphthalene	40
706	170	C ₃ -Naphthalene	106	919	190	C ₄ -Benzo(b)thiophene	10
713	170	C ₃ -Naphthalene	160	929	184	C ₄ -Naphthalene	57
724		C ₃ -Benzo(b)thiophene	55	940	204	C ₅ -Benzo(b)thiophene	8
737	170	C ₃ -Naphthalene	140	946	190	C ₄ -Benzo(b)thiophene	12
741	170	C ₃ -Naphthalene	95	951	204	C ₅ -Benzo(b)thiophene	5
763		C ₃ -Naphthalene	106	954	184	C ₄ -Naphthalene	46
766		C ₃ -Naphthalene	81	9 59		C ₅ -Benzo(b)thiophene	12
788		C ₃ -Naphthalene	27	961	184	C ₄ -Naphthalene	24

Table 6.1.2. SHOP treater water extractable aromatics, 1983 May.

Table 6.1.2. Continued.

Scan	M.W.	Compound	ррЬ	Scan	M.W.	Compound	ppb
966	180	C ₁ -Fluorene	15	1275	192	C ₁ -Phenanthrene/C ₁ -Anthracene	70
967	204	C ₅ -Benzo(b)thiophene	7	1303		C ₁ -Phenanthrene/C ₁ -Anthracene	116
970	180	1-Methylfluorene	13	1307	210	• •	11
979	180	2-Methylfluorene	52	1308	208	C ₃ -Fluorene	9
98 9	196	C ₃ -Biphenyl	19	1310	192	1-Methylphenanthrene	75
993	204	C ₅ -Benzo(b)thiophene	10	1325	208	C ₃ -Fluorene	4
996	180	C ₁ -Fluorene	13	1328	208	C ₃ -Fluorene	7
1000	184	C ₄ -Naphthalene	18	1337	208	C ₃ -Fluorene	12
1022	182	C ₂ -Biphenyl	14	1345	208	C ₃ -Fluorene	10
1026	184	C ₄ -Naphthalene	27	1345	212	C2-Dibenzothiophene	28
1035	196	•	21	1356	212	C ₂ -Dibenzothiophene	74
1049	184	Dibenzothiophene	129	1362	208	C ₃ -Fluorene	3
1090	178	Phenanthrene	168	1364		C ₃ -Fluorene	4
1126	194	C ₂ -Fluorene	7	1375	208	C ₃ -Fluorene	10
1150	194	C ₂ -Fluorene	17	1378	212	C ₂ -Dibenzothiophene	54
1158	194	-	21	1388	212	C ₂ -Dibenzothiophene	135
1162	194	C ₂ -Fluorene	12	1395	212	C ₂ -Dibenzothiophene	14
1170	194	-	25	1402		C ₃ -Fluorene	6
1191	194	-	12	1417	212	C ₂ -Dibenzothiophene	51
1203	198	C ₁ -Dibenzothiophene	226	1422	208	C ₃ -Fluorene	8
1212	210	C ₄ -Biphenyl	13	1423	212	C2-Dibenzothiophene	99
1220	210	C ₄ -Biphenyl	12	1432	206	C ₂ -Phenanthrene/C ₂ -Anthracene	25
1225	196	C ₃ -Biphenyl	16	1444		C ₂ -Dibenzothiophene	49
1235	198	C ₁ -Dibenzothiophene	158	1447	206	C ₂ -Phenanthrene/C ₂ -Anthracene	25
1267		C ₁ -Phenanthrene	60	1450		C ₂ -Dibenzothiophene	22
1269	198	C ₁ -Dibenzothiophene	154	1472	206	C ₂ -Phenanthrene/C ₂ -Anthracene	98

Table 6.1.2. Concluded.

Scan	M.W.	Compound	ppb
1481	206	C ₂ -Phenanthrene/C ₂ -Anthracene	46
1490	206	C_2 -Phenanthrene/ C_2 -Anthracene	35
1490	226	C ₃ -Dibenzothiophene	26
1506	206	C ₃ -Phenanthrene/C ₂ -Anthracene	26
1524	226	C ₃ -Dibenzothiophene	51
1557	226	C ₃ -Dibenzothiophene	48
1570	226	C ₃ -Dibenzothiophene	37
1575	202	Pyrene	11
1589	226	C ₃ -Dibenzothiophene	23
1594	226	C ₃ -Dibenzothiophene	36
1603	220	C ₃ -Phenanthrene/C ₃ -Anthracene	11
1612	240	C ₄ -Dibenzothiophene	5
1617	226	C ₃ -Dibenzothiophene	31
1631	220	C ₃ -Phenanthrene/C ₃ -Anthracene	17
1631	240	C ₄ -Dibenzothiophene	10
1643	220	C ₃ -Phenanthrene/C ₃ -Anthracene	34
1643	226	C ₃ -Dibenzothiophene	10
1652	240	C_4 -Dibenzothiophene	6
1654	226	C ₃ -Dibenzothiophene	9
1659	220	C ₃ -Phenanthrene/C ₃ -Anthracene	7
1666	220	C ₃ -Phenanthrene/C ₃ -Anthracene	18
1684	240	C_{A} -Dibenzothiophene	12
1694	240	C_4 -Dibenzothiophene	5
1709	240	C ₄ -Dibenzothiophene	4
1716	216	Benzo(a)fluorene	2
1749	220	C ₃ -Phenanthrene/C ₃ -Anthracene	22

Scan M.W.		Compound	ppb	
1776	216	C _l -Pyrene	4	
1845	234	$C_{\underline{a}}$ -Phenanthrene/ $C_{\underline{a}}$ -Anthracene	4	
1932		C_{A} -Phenanthrene/ C_{A} -Anthracene	12	
2032	228	Chrysene/Triphenylene	10	
2178	242	C _l -Chrysene/C _l -Triphenylene	6	

Scan	M.W.	Compound	ppb	Scan	M.W.	Compound	ррb
505	156	C ₂ -Naphthalene	170	779	184	C ₄ -Naphthalene	14
509	156	C ₂ -Naphthalene	110	789	184	C ₄ -Naphthalene	51
530	156	C ₂ -Naphthalene	72	794	182	C ₂ -Biphenyl	25
535	156	C ₂ -Naphthalene	43	797	184	C ₄ -Naphthalene	31
551	156	C ₂ -Naphthalene	51	804	184	C ₄ -Naphthalene	31
622	170	C ₃ -Naphthalene	86	806	190	C ₄ -Benzo(b)thiophene	21
629		C ₃ -Naphthalene	21	808		C ₄ -Naphthalene	31
637	168	C ₁ -Biphenyl	21	813		C ₂ -Biphenyl	12
644	176	C ₃ -Benzo(b)thiophene	83	827		C ₄ -Naphthalene	32
647		C ₃ -Naphthalene	41	831		$C_{\mathbf{A}}$ -Benzo(b)thiophene	9.3
653		C ₃ -Naphthalene	110	839	184	C ₄ -Naphthalene	53
659		C ₃ -Naphthalene	150	846		C ₄ -Naphthalene	8.4
671		C ₃ -Benzo(b)thiophene	50	871		C ₄ -Naphthalene	54
683		C ₃ -Naphthalene	210	881		C ₅ -Benzo(b)thiophene	22
710		C ₃ -Naphthalene	160	895		C ₄ -Naphthalene	55
733		Fluorene	27	901		C ₅ -Benzo(b)thiophene	24
733	190	C ₄ -Benzo(b)thiophene	14	9 02		C ₄ -Naphthalene	28
742		C ₃ -Naphthalene	64	907		C ₁ -Fluorene	18
762		C ₄ -Naphthalene	49	919		C ₁ -Fluorene	33
764		C ₄ -Benzo(b)thiophene	65	929		C ₃ -Biphenyl	23
770		C ₃ -Naphthalene	18	933		C ₅ -Benzo(b)thiophene	16
772		C ₄ -Naphthalene	18	962		C ₂ -Biphenyl	11
778	190	•	25	966		C ₃ -Biphenyl	11
		7		971		C ₆ -Benzo(b)thiophene	10

Table 6.1.3. SHOP treater water extractable aromatics, 1984 February.

continued...

Scan	M.W.	Compound	ppb	Scan	Μ.W.	Compound	ppb
974	196	C ₃ -Biphenyl	25	1195	198	C _l -Dibenzothiophene	2.2
987	184	Dibenzothiophene	84	1203		C ₁ -Phenanthrene	44
987	196	C ₃ -Biphenyl	16	1204	198	C ₁ -Dibenzothiophene	180
996		C ₃ -Biphenyl	13	1211	192	C ₁ -Phenanthrene	56
1004	218	C ₆ -Benzo(b)thiophene	12	1238	192	C ₁ -Phenanthrene	96
1009		C ₃ -Biphenyl	24	1242	210	C ₄ -Biphenyl	15
1009		C ₆ -Benzo(b)thiophene	5.9	1243		C ₃ -Fluorene	3.2
1023		C ₆ -Benzo(b)thiophene	7.4	1246	192	C ₁ -Phenanthrene	61
1027	178	Phenanthrene	120	1274	208	C ₃ -Fluorene	3.2
1028	218	C ₆ -Benzo(b)thiophene	9.6	1280		C ₃ -Fluorene	6.2
1068		C ₆ -Benzo(b)thiophene	13	1280	212	C ₂ -Dibenzothiophene	29
1087		C ₂ -Fluorene	12	1290	212	C2-Dibenzothiophene	87
1095		C ₂ -Fluorene	20	1300		C ₃ -Fluorene	2.1
1100		C ₂ -Fluorene	4.1	1302		C ₂ -Dibenzothiophene	5.0
1107		C ₂ -Fluorene	18	1311	208	C ₃ -Fluorene	6.2
1127		C ₂ -Fluorene	6.8	1313		C ₃ -Fluorene	60
1139	198	C ₁ -Dibenzothiophene	230	1323	212	C ₂ -Dibenzothiophene	200
1148	210	C ₄ -Biphenyl	20	1323	208	C ₃ -Fluorene	0.74
1161		C ₃ -Biphenyl	20	1327		C ₃ -Fluorene	1.3
1171		C ₃ -Biphenyl	8.4	1337		C ₃ -Fluorene	3.1
1171		C _l -Dibenzothiophene	160	1346		C ₂ -Dibenzothiophene	9.6
1184		C ₃ -Biphenyl	13	1347		C ₄ -Biphenyl	10
1189		C ₄ -Biphenyl	8.4	1356		C ₂ -Dibenzothiophene	210

Table 6.1.3. Continued.

continued...

126

.

Table 6.1.3. Continued.

Scan	M.W.	Compound	ррЬ	Scan	M.W.	Compound	ppb
1357	208	C ₃ -Fluorene	3.4	1568	240	C ₄ -Dibenzothiophene	23
1367		C ₂ -Phenanthrene	17	1576	226	C ₃ -Dibenzothiophene	16
1371		C ₂ -Phenanthrene	1.9	1577	220	C ₃ -Phenanthrene	58
1379	212	C ₂ -Dibenzothiophene	63	1581	240	C _A -Dibenzothiophene	14
1382		C ₂ -Phenanthrene	5.5	1586	240	-	14
1384	212	C ₂ -Dibenzothiophene	26	1587	226	7	9.7
1388		C ₂ -Phenanthrene	3.0	1593	220	C ₃ -Phenanthrene	7.1
1407		C ₂ -Phenanthrene	100	1600	220	5	29
1417		C ₂ -Phenanthrene	46	1602	226	C ₃ -Dibenzothiophene	3.0
1424		C ₃ -Dibenzothiophene	42	1617	240	C_{4} -Dibenzothiophene	22
1425		C ₂ -Phenanthrene	34	1621	240	C _A -Dibenzothiophene	21
1434		C ₂ -Phenanthrene	2.5	1638	220	C ₃ -Phenanthrene	4.9
1440		C ₂ -Phenanthrene	9.0	1648	240	C_4 -Dibenzothiophene	2.9
1459		C ₃ -Dibenzothiophene	88	1648	216	C ₁ -Pyrene	5.2
1481		C ₂ -Phenanthrene	3.3	1680	240	C ₄ -Dibenzothiophene	2.9
1491		C ₃ -Dibenzothiophene	81	1681	220	C ₃ -Phenanthrene	26
1504	226	C ₃ -Dibenzothiophene	75	1690	254	C ₅ -Dibenzothiophene	11
1516		C ₃ -Dibenzothiophene	2.7	1706	216	Benzo(a)fluorene	4.9
1523		C ₃ -Dibenzothiophene	37	1707	254	C ₅ -Dibenzothiophene	21
1528		C ₃ -Dibenzothiophene	85	1717	240	C _A -Dibenzothiophene	3.3
1537		C ₃ -Phenanthrene	4.4	1722	240	C ₄ -Dibenzothiophene	3.7
1541		C ₃ -Phenanthrene	3.2	1739	240	C ₄ -Dibenzothiophene	6.6
1551		C ₃ -Dibenzothiophene	60	1740	234	•	3.2
1565		C ₃ -Phenanthrene	36	1744	234	C _A -Phenanthrene	1.9

¥

Tab1	e 6.1	1.3.	Concluded.	
------	-------	------	------------	--

Scan	M.W.	Compound	ppb	Scan	M.W.	Compound	ppb
1778	234	C ₄ -Phenanthrene	9.2	2143	262	C ₆ -Phenanthrene/C ₆ -Anthracene	15
1778	254	C ₅ -Dibenzothiophene	8.1	2151		C ₆ -Phenanthrene/C ₆ -Anthracene	8.1
1805		C ₂ -Pyrene/C ₁ -Benzofluorene	1.1	2158		C ₆ -Phenanthrene/C ₆ -Anthracene	7.7
1810		C ₂ -Pyrene/C ₁ -Benzfluorene	2.7	2173		C ₆ -Phenanthrene/C ₆ -Anthracene	21
1812	234	C_{4} -Phenanthrene	3.2	2182		C ₆ -Phenanthrene/C ₆ -Anthracene	34
1815		C ₂ -Pyrene/C ₁ -Benzfluorene	4.5	2187	262	•	23
1835		C ₂ -Pyrene/C ₁ -Benzfluorene	4.4	2196	262	C ₆ -Phenanthrene/C ₆ -Anthracene	18
1842		C ₂ -Pyrene/C ₁ -Benzfluorene	3.2	2202		C ₆ -Phenanthrene/C ₆ -Anthracene	8.1
1860		C_{a} -Phenanthrene	23	2211		C ₆ -Phenanthrene/C ₆ -Anthracene	54
1893		C_{A} -Phenanthrene	11	2222		C ₆ -Phenanthrene/C ₆ -Anthracene	3.9
1894	230	C ₂ -Pyrene/C ₁ -Benzfluorene	5.2	2233		C ₆ -Phenanthrene/C ₆ -Anthracene	19
1960	228	Chrysene/Triphenylene	35	2250		C ₂ -Chrysene/C ₂ -Triphenylene	7.2
1983	244	C ₃ -Pyrene/C ₂ -Benzfluorene	7.4	2274		C ₂ -Chrysene/C ₂ -Triphenylene	6.1
1994		C ₅ -Phenanthrene	28	2313	276		29
2003	244	C ₃ -Pyrene/C ₂ -Benzfluorene	37	2317	276	C ₇ -Phenanthrene/C ₇ -Anthracene	20
2022	248	C ₅ -Phenanthrene	45	2326		C ₇ -Phenanthrene/C ₇ -Anthracene	9.0
2037	248	C ₅ -Phenanthrene	רו	2340	276	C ₇ -Phenanthrene/C ₇ -Anthracene	95
2041		C ₃ -Pyrene/C ₂ -Benzfluorene	8.9	2354	276	C ₇ -Phenanthrene/C ₇ -Anthracene	27
2046		C ₅ -Phenanthrene	10	2354		C2-Chrysene/C2-Triphenylene	9.8
2058		C ₅ -Phenanthrene	69	2364		C ₇ -Phenanthrene/C ₇ -Anthracene	15
2078		C ₃ -Pyrene/C ₂ -Benzfluorene	6.7	2386	276		31
2085		C ₅ -Phenanthrene	21			· · ·	
2108		C _l -Chrysene/C _l -Triphenylene	21				
2121		C _l -Chrysene/C _l -Triphenylene	6.5				

Scan	M.W.	Compound	ppb	Scan	M.W.	Compound	ppb
356	136	C ₃ -Phenol	0.26	1051	206	C ₈ -Phenol, or C ₆ -Benzoic acid	4.9
369	136	C ₃ -Phenol	0.56	1096	206	C ₈ -Phenol, or C ₆ -Benzoic acid	5.4
391	136	C ₃ -Phenol	0.43	1116	206	C ₈ -Phenol, or C ₆ -Benzoic acid	3.2
405	136	C ₃ -Phenol	1.4	1137	206	C ₈ -Phenol, or C ₆ -Benzoic acid	2.2
431	150	C ₄ -Phenol	7.7	1173	220	C ₉ -Phenol, or C ₇ -Benzoic acid	3.3
460	150	C ₄ -Phenol	0.72	1288	220	C ₇ -Benzoic acid	4.0
461	136	C ₃ -Phenol	1.8	1289	234	C ₁₀ -Phenol, or C ₈ -Benzoic acid	2.8
500	150	C ₄ -Phenol	0.51	1299		C ₉ -Phenol, or C ₇ -Benzoic acid	6.2
506	150	C ₂ -Benzoic acid	0.66	1311	204	C ₉ -Benzene	7.0
524	150	C ₄ -Phenol	0.67	1329	234	C ₈ -Benzoic acid	0.76
559		C ₄ -Phenol	0.35	1336	220	C ₉ -Phenol, or C ₇ -Benzoic acid	3.3
576	150	C ₂ -Benzoic acid	1.9	1433	234	C ₁₀ -Phenol, or C ₈ -Benzoic acid	1.9
598	150	C ₄ -Phenol	0.61	1483	234	C ₁₀ -Phenol, or C ₈ -Benzoic acid	12
618	150	C ₂ -Benzoic acid	2.8	1809	228	C ₃ -Dihydroxybiphenyl	3.9
682	164	C ₃ -Benzoic acid	3.5			~	
721	164	C ₃ -Benzoic acid	2.9				
739		C ₄ -Phenol	0.66				
743	150	C ₂ -Benzoic acid	0.63				
770	164	C ₃ -Benzoic acid	7.5				
913	192	C ₅ -Benzoic acid	5.0				
940	192	C ₇ -Phenol, or C ₅ -Benzoic acid	8.2				
979	192	C ₇ -Phenol, or C ₅ -Benzoic acid	3.0				
1045		C ₇ -Phenol	5.4				

Table 6.1.4. SHOP treater water acidic components, 1983 January.

.

Scan	M.W.	Compound	ppb	Scan	M.W.	Compound	ppb
328	136	C ₃ -Phenol	0.66	1076	186	C _l -Naphthalene carboxylic acid	0.39
342		C ₁ -Benzoic acid	1.3	1085	186	C ₁ -Naphthalene carboxylic acid	1.0
358	150	C ₄ -Phenol	2.0	1104	186	C _l -Naphthalene carboxylic acid	0.78
365	150	C ₄ -Phenol	0.84	1118	186	C _l -Naphthalene carboxylic acid	2.0
370	136	C ₁ -Benzoic acid	68	1140	186	C ₁ -Naphthalene carboxylic acid	0.58
372	150	C ₄ -Phenol	2.6	1145	158	C _l -Naphthalenol	0.96
392		C ₄ -Phenol	2.3	1239	200	C ₂ -Naphthalene carboxylic acid	0.66
423		C ₂ -Benzoic acid	1.2	1253	200	C_2 -Naphthalene carboxylic acid	0.59
454		C ₅ -Phenol	2.1	1265		C ₂ -Naphthalene carboxylic acid	0.48
462		C ₂ -Benzoic acid	22	1273	200	C ₂ -Naphthalene carboxylic acid	0.36
468		C ₂ -Benzoic acid	6.6	1294		C ₂ -Naphthalene carboxylic acid	0.66
484		C ₂ -Benzoic acid	36	1372		C ₃ -Naphthalene carboxylic acid	0.37
554		C ₂ -Benzoic acid	19			~	
589		C ₅ -Phenol	5.4				n.
637		C ₃ -Benzoic acid	2.0				
641		C ₄ -Dihyroxyphenol	3.7				
649		C ₅ -Phenol	1.5				
700		C ₆ -Phenol	5.0				
718		C ₁ -Fluorenol	0.43				
926	172	Naphthalene carboxylic acid	5.9				
956	172	Naphthalene carboxylic acid	1.2				
963	192	C ₅ -Benzoic acid	1.3				
1066		C _l -Naphthalene carboxylic acid	3.9				

Table 6.1.5. SHOP treater water acidic components, 1984 February.

•

. . .

•
Scan	M.W.	Compound	ppb	Scan	M.W.	Compound	ppt
288	136	C ₄ -Pyrazine	0.10	1023	213	C ₆ -Quinoline	0.10
309	150	C ₃ -Diaminobenzene or C ₅ -Pyrazine	0.15	1050	213	C ₆ -Quinoline	0.30
315	136	C ₄ -Pyrazine	0.35	1055	213	C ₅ -Naphthylamine	0.58
335	150	C_3 -Diaminobenzene or C_5-Pyrazine	0.23	1072	213	C ₆ -Quinoline	0.10
359	135	C ₄ -Pyridine	0.10	1084	213	C ₆ -Quinoline	0.10
395	164	C ₄ -Diaminobenzene or C ₆ -Pyrazine	0.10	1093	213	C ₆ -Quinoline	0.21
425	136	C_2 -Diaminobenzene or C_4 -Pyrazine	0.10	1125	227	C ₇ -Quinoline	0.26
463	164	C_4 -Diaminobenzene or C_6 -Pyrazine	0.10	1157	227	C ₇ -Quinoline	0.10
694	177	C ₆ -Aniline or C ₇ -Pyridine	0.17	1337	207	C ₁ -Aminophenanthrene/	
709	185	C ₄ -Quinoline	0.10			C _l -Aminoanthracene	0.32
723	185	C ₄ -Quinoline	0.12	1350	207	C ₂ -Benzoquinoline	0.12
784	199	C ₅ -Quinoline	0.10	1495	221	C ₃ -Benzoquinoline	0.13
824	199	C ₅ -Quinoline	0.21	1509	221	C ₃ -Benzoquinoline	0.10
840	199	C ₅ -Quinoline	0.11	1521	221	C ₃ -Benzoquinoline	. 0.13
861	199	C ₅ -Quinoline	0.10	1544	221	C ₃ -Benzoquinoline	0.10
878	199	C ₅ -Quinoline	0.11	1615	221	C ₃ -Benzoquinoline	0.10
908	199	C ₅ -Quinoline	0.10			-	
934	199	C ₅ -Quinoline	0.10				
959	199	C ₅ -Quinoline	0.10				
964	199	C ₅ -Quinoline	0.10				
976	213	C ₆ -Quinoline	0.22				
979	213	C ₅ -Naphthylamine	0.10				
9 87		C ₆ -Quinoline	0.10				
1014	213	C ₆ -Quinoline	0.10				

Table 6.1.6. SHOP treater water nitrogen components, 1984 February.

A P P E N D I X 6.2

Volatile constituents of Gregoire Lake produced waters.

. .

۰

Scan	M.W.	Compound	ppm ^a	Scan	M.W	Compound	ppm ^a
239			0.560	1038	106	l,4-dimethyl benzene	0.870
248			0.081	1071	128	nonane	1.484
281			0.097	1085			0.172
315	88	2-methyl-2-butanol	0.032	1094	126	l-ethyl-4-methyl cyclohexane	0.030
338	78	benzene	0.234	1125	124	1-methy1-octohydro pentalene	0.585
350			0.032	1152	120	(l-methylethyl)benzene	0.136
362	98	1,3-dimethyl cyclopentane	0.023	1166	126	propyl cyclohexane	0.453
371	98	1,2-dimethyl cyclopentane	0.087	1186	142	3-methyl nonane	0.613
386		, , ,	0.068	1211	142	3-ethyl-2-methyl heptane	0.691
427	98	methyl cyclohexane	0.206	1224	124	cyclopropyl cyclohexane	0.107
451	98	ethyl cyclopentane	0.036	1240	140	diethyl cyclohexane	0.036
463	112	1,2,4-trimethyl cyclopentane	0.052	1258	140	3,7-dimethyl-l-octene	0.470
481	112	1,2,3-trimethyl cyclopentane	0.067	1288	120	1-ethy1-3-methy1 benzene	0.391
520	112	1,1,2-trimethyl cyclopentane	0.019	1296			0.123
536	92	methyl benzene	0.849	1313	120	1,2,3-trimethyl benzene	0.124
554	112	1,2-dimethyl cyclohexane	0.076	1323		· · · ·	0.276
590	112	1,1-dimethyl cyclohexane	0.018	1333			0.044
600	112	1-ethy1-3-methy1 cyclopentane	0.014	1353	120	<pre>l-ethyl-4-methyl benzene</pre>	0.064
613	112	1-ethy1-2-methy1 cyclopentane	0.059	1361			0.097
634	112	1,4-dimethyl cyclohexane	0.101	1369	140	(2-methylpropyl)cyclohexane	0.222
659	114	octane	0.250	1389	140	4-ethy1-3-octene	0.014
675	112	dimethyl cyclohexane	0.047	1405	120	1,3,5-trimethyl benzene	0.396
699	126	(2-methylpropyl)cyclopentane	0.011	1427	120	decane	0.577
739	116	5-methy1-1-hexano1	0.009	1456			0.012
801		-	0.033	1476			0.015
807	112	dimethyl cyclohexane	0.028	1481			0.010
818	128	2,6-dimethyl heptane	0.177	1511	156	4-methyl decane	0.255
825	112	ethyl cyclohexane	0.323	1526			0.012
835	126	1,1,3-trimethyl cyclohexane	0.605	1543	140	butyl cyclohexane	0.057
851	126	l-ethyl-l-methyl: cyclohexane	0.173	1552			0.005
882	126	1,3,5-trimethyl cyclohexane	0.283	1570			0.038
907	128	2,3-dimethyl heptane	0.128	1587	154	5-methyl-l-decene	0.019
924	106	ethyl benzene	0.111	1632	138	decahydro naphthalene	0.010
939	128	2,4-dimethyl heptane	0.134	1641			0.019
957	106	1,3-dimethyl benzene	1.391	1669			0.042
966	128	3-methyl octane	0.448	1692			0.013
989	126	1,1,3-trimethyl cyclohexane	0.101	1713			0.051
1015			0.590				continued

Table 6.2.1. GP20 volatiles, 1981 January (21 ppm).

4

continued...

. X

133

.

Table 6.2.1. Concluded.

 $(x_{i},y_{i}) \in \mathcal{F}$

Scan	M.W.	Compound	ppm ^a	Scan	M.W	Compound	ppm ^a
1750 1768 1811 1854 1878 1918 2124	156	undecane	0.009 0.012 0.111 0.010 0.013 0.041 0.004	3093 3154 3158 3168 3224 3330 3234	156	1,7-dimethylnaphthalene	0.003 0.010 0.007 0.006 0.005 0.003 0.003
2137 2172 2210 2222 2249 2277 2315 2365 2379 2423 2436 2440 2444 2470	166 128	2,6-dimethyl-decahydro naphthalene naphthalene		3280 3290			0.002 0.008
2508 2523 2549 2574 2593	146	6-methyl-1,2,3,4-tetrahydro naphthalene	0.026 0.029 0.022 0.008 0.007				
2633 2700 2726 2731 2804 2821 2900 2924 2949 2989 3034	142 142	l-methyl naphthalene 2-methyl naphthalene	0.407 0.209 0.002 0.003 0.003 0.019 0.007 0.008 0.010 0.003 0.152 0.067				
3044 3089	198 156	tetradecane l,2-dimethyl naphthalene	0.004				

^aApproximate concentration based on a total volatile carbon content of 21 ppm.

<u>Scan</u>	M.W.	Compound	ppma	Scan	M.W	Compound	ppm ^a
240	56	2-butene	0.009	904	106	1,4-dimethyl benzene	0.930
253			0.025	923		· ·	0.076
270			0.016	929	128	nonane	0.106
283	86	3-methyl pentane	0.016	937			0.031
301		• •	0.015	946			0.066
328	78	benzene	0.658	1000	124	1-methyl octahydro pentalene	0.162
346			0.014	1048			0.175
352	98	1,3-dimethyl cyclopentane	0.037	1082	142	3-methyl nonane	0.124
362			0.046	1114			0.354
387			0.014	1146			0.013
395	98	methyl cyclohexane	0.018	1168	140	2,2,5,5-tetramethy1-3-hexane	0.408
412	98	ethyl cyclopentane	0.007	1213	120	1-ethy1-3-methy1 benzene	0.520
421	112	1,2,4-trimethylcylopentane	0.024	1240	120	1,2,3-trimethyl benzene	0.336
434	112	1,2,3-trimethyl cyclopentane	0.035	1292	120	1-ethy1-4-methy1 benzene	0.153
468	128	4-ethyl-2-methyl hexane	0.042	1313			0.033
477	92	methyl benzene	0.204	1356	120	1,3,5-trimethyl benzene	0.830
486	128	3-ethyl-2-methyl hexane	0.048	1386	142	decane	0.133
498	112	1,3-dimethyl cyclohexane	0.095	1480	120	1,2,4-trimethyl benzene	0.201
517	112	1,1-dimethyl cyclohexane	0.007	1516			0.011
522	112	1-ethy1-3-methy1 cyclopentane	0.009	1563			0.020
532	112	1-ethy1-2-methy1 cyclopentane	0.027	1611	138	decahydro naphthalene	0.013
548	112	1,4-dimethyl cyclohexane	0.037	1657		- ·	0.015
556	114	octane	0.106	1704			0.019
570	112	dimethyl cyclohexane	0.018	1817	156	5-methyl decane	0.021
602		• •	0.010	1926	152	2-methyl decahydro naphthalene	0.010
653	128	2,6-dimethyl heptane	0.045	2043	134	1,2,3,5-tetramethyl benzene	0.027
668	112	ethyl cyclohexane	0.034	2119		· · · ·	0.002
681	126	1,1,3-trimethyl cyclohexane	0.279	2144			0.001
705			0.025	2151			0.002
733			0.065	2157			0.002
745	126	1,3,5-trimethyl cyclohexane	0.105	2189	128	naphthalene	0.012
775	128	2,3-dimethyl heptane	0.053	2198		•	0.015
800	106	ethyl benzene	0.083	2223			0.003
821		.	0.045	2228		·	0.001
845	106	1,3-dimethyl benzene	0.516	2244			0.014
855	126	2-ethyl-l,l-dimethyl cyclopentane	0.183	2298			0.009
872	126	1,1,2-trimethyl cyclohexane	0.073	2337			0.006
889	126	1-ethy1-2-methy1 cyclohexane	0.148	2492			0.002
		· · ·					

Table 6.2.2. GP 20 volatiles, 1981 March (10 ppm).

Scan	M.W.	Compound	ppm ^a	Scan	M.W	Compound	ppm ^a
241			0.111	853			0.033
245			0.248	871	124	l-methyl-octahydro pentalene	0.339
285	88	2-methy1-2-butanol	0.069	894	• • •		0.140
299	78	benzene	1.103	926	142	3-methyl nonane	0.134
317	98	1,2-dimethyl cyclopentane	0.126	960	• • •	e meengr nenane	0.511
324	100	heptane	0.083	1000	140	diethyl cyclohexane	0.019
349	98	methyl cyclohexane	0.336	1024	140	2,2,5,5-tetramethy1-3-hexane	0.371
361	98	ethyl cyclopentane	0.043	1084			0.030
367	112	1,2,4-trimethyl cyclopentane	0.083	1105	140	5-methyl nonene	0.054
377	112	1,2,3-trimethyl cyclopentane	0.079	1121		- -	0.063
400	128	4-ethyl-2-methyl hexane	0.113	1135	140	4-decene	0.043
408	92	methyl benzene	0.533	1161			0.034
424	112	1,2-dimethyl cyclohexane	0.288	1197			0.022
440			0.032	1210			0.006
447	112	1-ethyl-2-methyl cyclopentane	0.057	1238	120	1,2,4-trimethyl benzene	0.238
462		· conj · c moonj · cjoropontane	0.397	1276		,,,	0.055
475	112	1,3-dimethyl cyclohexane	0.043	1386			0.140
497		igo almeengi egotononana	0.015	1424			0.012
513			0.010	1475	154	2-propyl octene	0.034
530	128	2,4-dimethyl heptane	0.076	1537	134	1-pheny1-1-propanone	0.014
545	112	ethyl cyclohexane	0.178	1541			0.011
554	126	1,1,3-trimethyl cyclohexane	0.680	1583			0.022
569	.20	·,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.088	1635			0.040
588			0.114	1764	156	2,5-dimethyl nonane	0.057
598	126	1,3,5-trimethyl cyclohexane	0.200	2122		, ,	0.003
614	128	2,3-dimethyl heptane	0.086	2151			0.002
644	128	2,6-dimethyl heptane	0.069	2155			0.001
654	110	octahydro pentalene	0.006	2222			0.004
668	106	ethyl benzene	0.348	2229			0.003
678	126	butyl cyclopentane	0.115	2236			0.001
708	126	1,1,2-trimethyl cyclohexane	0.083	2283			0.005
725		· ; · ; <u>· · · · · · · · · · · · · · · ·</u>	0.031	2311			0.003
734	126	l-ethyl-l-methyl cyclohexane	0.084	2537			0.002
753	124	bicycle-3-3-2-nonane	0.045	2672			0.009
764	106	1,3-dimethyl benzene	0.054	2687			0.006
802		, - · · · · · · ·	0.148	2985			0.002
825	126	<pre>l-ethyl-2-methyl cyclohexane</pre>	0.056	2992			0.001
841	126	1-ethy1-4-methy1 cyclohexane	0.006	3089			0.010

Table 6.2.3. GP21 volatiles, 1981 February (11 ppm).

^aApproximate concentration based on a total volatile carbon content of 11 ppm.

Scan	M.W.	Compound	ppm ^a	Scan	M.W	Compound	ppm ^a
235			0.381	1004	124	bicyclo-3-3-l-nonane	0.109
248	74	2-methyl-2-propanol	3.806	1014			0.072
311			0.182	1042			0.057
316	70	2-methyl-2-butene	0.284	1046			0.058
. 327	78	benzene	1.284	1056			0.105
338	98	1,1-dimethyl cyclopentane	0.144	1074			0.179
350		· · · · · · ·	0.027	1113			0.064
357	98	1,2-dimethyl cyclopentane	0.107	1123			0.035
371	100	heptane	0.049	1150	140	2,2,5,5-tetramethyl-3-hexene	0.092
381			0.031	1163			0.091
396			0.072	1178	1		0.066
411	112	1-ethy1-1-methy1 cyclopentane	0.299	1202	142	3-ethyl-2-methyl heptane	0.358
445	112	1,2,3-trimethyl(, ,)cyclopentane	0.055	1251			0.825
462	112	1,2,3-trimethyl(, ,)cyclopentane	0.093	1269			0.105
500	112	1,1,2-trimethyl cyclopentane	0.061	1312			0.119
516	92	methyl benzene	0.298	1323			0.009
529	126	1,1,3,4-tetramethyl cyclopentane	0.086	1331			0.054
542	112	1,2-dimethyl cyclohexane	0.142	1352			0.087
566	112	l,l-dimethyl cyclohexane	0.055	1388			0.028
586	110	1 4 dimethal and because	0.066	1598			0.069
605	112	1,4-dimethyl cyclohexane	0.080 0.092	1726 1732			0.023
618			0.092	2055	134	l-methyl-2-(l-methylethyl)benzene	0.137
633 650			0.049	2055	154	I-methyi-z-(I-methyiethyi)benzene	0.012
675	116	4-methy1-1-hexanol	0.030	2229			0.012
734	110	4-methy r-r-nexanor	0.026	2259			0.005
750	126	1,1,3,3-tetramethyl cyclopentane	0.043	2271			0.028
766	120	1,1,5,5-cell and thy 1 eye topentane	0.032	2305			0.010
787	126	1,1,3-trimethyl cyclohexane	0.884	2555			0.020
828	120	ryryd or meenyr dydronaxune	0.113	2666			0.046
855			0.158	2679			0.010
861	126	1,3,5-trimethyl cyclohexane	0.138	2683			0.029
884	128	2,3-dimethyl heptane	0.108	3448			0.011
897			0.029				
913			0.049				
939	126	1,2,3-trimethyl cyclohexane	0.231				
965	126	l,1,2-trimethyl cyclohexane	0.295				
979			0.110				

Table 6.2.4. GP21 volatiles, 1981 March (21 ppm).

 a Approximate concentrations based on a volatile carbon content of 21 ppm

137

Table 6.2.5.	GP21	volatiles,	1981	June	(38 ppm).
--------------	------	------------	------	------	---------	----

Scan	M.W.	Compound	ppma	Scan	M.W	Compound	and the second	 ppma
244			0.486	1237				0.476
269	58	oxetane	3.162	1326	120	1,2,3-trimethyl	benzene	0.095
328	70		0.058	1333				0.105
361	78	benzene	1.837	2505				0.045
384	98	1,3-dimethyl-cis-cyclopentane	0.477					
401 433	100 98	heptane methyl cyclohexane	0.156 1.272					
433	112	1,2,4-trimethyl cyclopentane	0.090					
401	112	1,2,3-trimethyl cyclopentane	0.218					
532	92	methyl benzene	3.540					
542	52	meeny r benzene	1.612					
597	128	2-methyl cyclohexanemethanol	0.039					
608	70	ethenyl oxirane	0.373					
616			0.333					
703	128	2,2,5-trimethyl hexane	0.073					
721	112	ethyl cyclohexane	0.370					
733	126	1,1,3-trimethyl cyclohexane	1.578					
787	126	1,1,3-trimethyl cyclohexane	1.236					
800	128	2,3-dimethyl heptane	0.376					
820	106	ethyl benzene	0.919					
835	106	1,3-dimethyl benzene	5.882					
859	126	1,2,4-trimethyl cyclohexane	0.254					
878			0.153					
889	100		0.098					
904	106	1,4-dimethyl benzene	4.621					
933	104		0.265					
971	124	octahydro-cis-lH-indene	0.991					
1002 1022	126 142	l-ethyl-2-methyl cyclohexane 2,2,5,5-tetramethyl hexane	0.627 0.373					
1022	142	4-(1-methylethyl)heptane	1.105					
1042	140	2,7-dimethyl-l-octene	0.970			a		
1101	140	2,7-4 methy1-1-0000me	0.031					
1125			0.163					
1129			0.118					
1140	120	2,4-dimethy1-2,3-heptadiene-5-yne	0.392					
1144			0.482					
1175			0.294					
1231	120	(l-methylethyl)benzene	0.705					

^aApproximate concentrations based on a volatile carbon content of 38 ppm.

Scan	M.W.	Compound	ppma	Scan	M.W	Compound p	opma
245			0.594	1348	134	(2-methylpropyl)benzene	0.018
272			0.161	1361	134	(1-methylpropyl)benzene	0.037
286	84	2-methyl-l-pentene	0.003	1379			0.021
307	78	benzene	0.200	1417	120	1,2,4-trimethyl benzene	1.260
325			0.039	1452	140	butyl cyclohexane	0.086
333			0.041	1473	118	1-etheny1-2-methy1 benzene	0.104
359	98	methyl cyclohexane	0.022	1488		5 5	0.054
379			0.010	1517			0.009
411	128	4-ethyl-2-methyl hexane	0.020	1554	138	decahydro naphthalene	0.110
419	92	methyl benzene	0.848	1579	134	l-ethyl-3,5-dimethyl benzene	0.014
435	112	1,2-dimethyl cyclohexane	0.078	1601	156	isooctane	0.028
459	128	2,3,4-trimethyl hexane	0.016	1615	134	l-methyl-4-propyl benzene	0.009
541	128	2,4-dimethyl heptane	0.028	1631			0.023
556	112	ethyl cyclohexane	0.109	1669	134	<pre>(1,1-dimethylethyl)benzene</pre>	0.025
564	126	1,1,3-trimethyl cyclohexane	0.038	1694			0.020
582			0.008	1705	132	2-butenyl benzene	0.052
600			0.017	1766	156	undecane	0.251
610	126	1,3,5-trimethyl cyclohexane	0.056	1787			0.010
626	128	2,3-dimethyl heptane	0.030	1809	152	2-methyl-decahydro naphthalene	0.028
649	106	ethyl benzene	0.347	1841	134	1,2,3,5-tetramethyl benzene	0.032
686	106	l,3-dimethyl benzene	1.159	1860	134	1,2,4,5-tetramethyl benzene	0.028
782	126	3,4,4-trimethy1-2-hexene	0.199	1885	170	4-methyl undecane	0.058
828	106	1,4-dimethyl benzene	0.875	1918			0.013
845	106	1,2-dimethyl benzene	0.069	1943	132	1-methy1-2-(2-propeny1)benzene	0.013
864	128	nonane	0.865	2005	134	2-ethyl-l,4-dimethyl benzene	0.178
879	126	l-ethyl-2-methyl cyclohexane	0.032	2044	132	1,2,3,4,-tetrahydro naphthalene	0.052
932	124	l-methyl-octahydro pentalene	0.221	2106	148	(1-1-dimethylpropyl)benzene	0.012
963	120	(l-methylethyl)benzene	0.079	2118			0.014
980	126	propyl cyclohexane	0.117	2146	128	naphthalene	0.223
1008	142	3-methyl nonane	0.179	2172			0.007
1037			0.234	2185	148	diethylmethyl benzene	0.004
1099	120	propyl benzene	0.334	2194			0.003
1144	120	1-ethy1-3-methy1 benzene	1.101	2215			0.053
1174	120	1,2,3-trimethyl benzene	0.566	2237			0.006
1222	120	<pre>1-ethyl-4-methyl benzene</pre>	0.336	2261	148	2,4-dimethyl-l-(l-methylethyl)benzene	0.003
1247			0.055	2273	184	2,6-dimethyl undecane	0.025
1293	120	1,3,5-trimethyl benzene	2.683	2297	148	<pre>(1,1-dimethyl ethyl)methyl benzene</pre>	0.005
1317	142	decane	0.558	2306			0.007

Table 6.2.6. GP26 volatiles, 1981 February (21 ppm).

continued...

,

Table 6.2.6. Concluded.

Scan M.W. (Compound	ppm ^a	Scan	M.W	Compound	ppm ^a
2310		0.006				
2329		0.004				
2372		0.008				
2380		0.011				
2403		0.003				
2422		0.003				
2439		0.010				
2453		0.001				
2471		0.006				
2498		0.004				
2505		0.003				
2531		0.014				
2552		0.009				
2604		0.002				
2627		0.001				
2653		0.064				
2666		0.012				
2673		0.032				
2725		0.006				
2742		0.001				
2972		0.007				
3077		0.007				

^aApproximate concentration based on a total volatile carbon content of 21 ppm.

Table 6.2.7. GP26 volatiles, 1981 March (33 ppm).

Scan	M.W.	Compound	ppm ^a	Scan	M.W	Compound	pm ^a
254			4.046	1150	120	(l-methylethyl)benzene	0.122
288			0.852	1163	126	propyl cyclohexane	0.315
299			0.181	1183	142	3-methyl nonane	0.444
303			0.272	1209			0.635
321			0.028	1258			0.398
332	78	benzene	1.028	1288	120	l-ethyl-3-methyl benzene	0.286
340			0.230	1326			0.279
357			0.317	1363			0.113
369	86	3-pentanone	0.401	1373	140	2-methy1-4-nonene	0.130
383			0.167	1411	120	1,3,5-trimethyl benzene	0.266
401	98	methyl cyclohexane	0.152	1433	142	decane	0.138
422			0.057	1462			0.013
433	112	1,2,4-trimethyl cylopentane	0.027	1518	156	4-methyl decane	0.118
441	100	4-methy1-2-pentanone	0.028	1555	140	butyl cylohexane	0.026
453	112	1,2,3-trimethyl cyclopentane	0.048	1562			0.006
477	100	3-methyl-2-pentanone	0.073	1579			0.029
520	92	methyl benzene	1.922	1598	154	5-methyl-l-decene	0.011
553	112	1,2-dimethyl cyclohexane	0.090	1645	138	decahydro naphthalene	0.015
595			0.050	1682			0.025
611	100	2-hexanone	0.141	1727			0.057
631	112	1,3-dimethyl cyclohexane	0.095	1936			0.029
644	114	octane	0.133	2141			0.006
676			0.135	2156			0.010
792	128	2,2,5-trimethyl hexane	0.036	2178			0.015
813	112	ethyl cyclohexane	0.082	2230			0.013
834	126	1,1,3-trimethyl cyclohexane	0.222	2241			0.002
863			0.060	2265			0.003
885	126	1,3,5-trimethyl cyclohexane	0.314	2269			0.002
902	128	2,3-dimethyl heptane	0.073	2299			0.001
919	106	ethyl benzene	0.606	2306			0.002
935		- -	0.013	2334			0.021
954	106	1,3-dimethyl benzene	4.512	2390			0.004
976	112	ethyl triophene	0.026	2447			0.007
1010	126	<pre>1-ethy1-2-methy1 cyclohexane</pre>	0.177	2458			0.006
1035	106	1,4-dimethyl benzene	2.410	2490			0.011
1063	128	nonane	0.812	2508			0.003
1077			0.089	2513			0.002
1122	124	l-methyl octahydro pentalene	0.418	2568			0.013

Table 6.2.7. Concluded.

Scan M.W.	Compound	ppm ^a	Scan M.W	Compound	ppm ^a
2580		0.002			
2653		0.003			
2658		0.002			
2664		0.002			
2739		0.003			
2828		0.002			

^aApproximate concentration based on a total volatile carbon content of 33 ppm.

Table 6.2.8. GP26 volatiles, 1981 (136 ppm).

	0.051
228 46 oxybis methane 0.362 2178	
254 58 oxetane 26.289 2184	0.121
300 72 3-methoxy-1-propene 5.096 2250	0.051
365 78 benzene 12.765 2265	0.028
407 1.479 2269	0.023
424 3.968 2278 146 2,2'-bi-1,3-dioxolane	0.056
518 100 2-hexanone 0.635 3223	0.926
527 0.398 3336	0.104
555 72 2-methyl butane 0.518 3398	0.044
596 92 methyl benzene 25.213 3412	0.052
642 98 3-methyl thiophene 1.670 3419	0.074
693 100 4-methy1-2-pentanone 0.899 3455	0.092
740 0.521 3465	0.032
0.187 3474	0.092
965 102 2-methyl-tetrahydro thiophene 0.910 3502	0.238
983 0.099 3784	0.152
988 0.306	
1061 106 ethyl benzene 3.772	
1123 106 1,3-dimethyl benzene 18.515	
0.321	
1321 106 1,4-dimethyl benzene 9.999	
0.307	
1465 0.076	
1471 116 2,5-dimethyl-tetrahydro thiophene 0.157	
1476 0.060	
0.172	
1523 120 (1-methylethyl)benzene 0.824	
1654 120 propyl benzene 0.529	
1685 120 1-ethyl-3-methyl benzene 2.945	
1711 120 1,2,3-trimethyl benzene 1.601	
1756 120 1-ethyl-4-methyl benzene 1.521	
1814 120 1,3,5-trimethyl benzene 7.657	
1830 120 1,2,4-trimethyl benzene 0.596	
1855 0.118	
1930 120 1-ethyl-2,methyl benzene 1.587	
0.084	
2169 134 diethyl benzene 0.027	
2173 120 2-methyl benzaldehyde 0.026	

^aApproximate concentration based on a total volatile carbon content of 136 ppm.

Scan	M.W.	Compound	ppma	Scan	M.W	Compound	ppma
262			1.157	1072	124	l-methyl-octahydro pentalene	0.694
268			0.616	1117	120	propyl benzene	2.418
277		,	0.060	1156	120	1-ethyl-3-methyl benzene	6.983
288	72	2-buten-1-ol	0.672	1186	120	1,2,3-trimethyl benzene	4.481
302			0.311	1232	120	l-ethyl-4-methyl benzene	2.585
308	88	2-methyl-2-butanol	0.285	1252		5 C	0.550
323	78	benzene	3.059	1262			0.230
341	98	1,2-dimethyl cyclopentane	2.455	1303	120	1,3,5-trimethyl benzene	14.262
349	100	heptane	1.290	1323	142	decane	2.129
375	98	methylcyclohexane	4.808	1353	134	(2-methylpropyl)benzene	0.245
387	98	ethyl cyclopentane	0.533	1368	134	(1-methylpropyl)benzene	0.256
393	112	1,2,4-trimethy1 cyclopentane	0.711	1383			0.066
403	112	1,2,3-trimethyl cyclopentane	0.935	1423	120	1,2,4-trimethyl benzene	5.955
427	130	2-ethyl-4-methyl pentanol	0.604	1457	140	butyl cyclohexane	0.599
435	92	methyl benzene	6.389	1478	118	<pre>l-ethenyl-2-methyl benzene</pre>	0.439
452	112	1,2-dimethyl cyclohexane	3.131	1493			0.275
466	112	1,1-dimethyl cyclohexane	0.300	1552	134	l-methyl-4-propyl benzene	0.991
475	112	4-octene	0.557	1567	134	l-methyl-2-propyl benzene	0.161
489	112	l,4-dimethyl cyclohexane	2.977	1584	134	4-ethyl-1,2-dimethyl benzene	0.275
503			1.331	1606			0.125
558			0.184	1620	134	methyl benzencacetaldehyde	0.146
573	112	ethyl cyclohexane	1.957	1635			0.104
581	126	1,1,3-trimethy1 cyclohexane	5.875	1673	134	<pre>(1,1-dimethyl ethyl) benzene</pre>	0.550
626	126	1,3,5-trimethyl cyclohexane	0.558	1706	134	2-ethyl-1,4-dimethyl benzene	0.729
639			0.437	1770	156	undecane	2.241
666			0.441	1791	152	l-pentyl cyclohexene	0.098
732			35.131	1813		2-methyl-decahydro naphthalene	0.162
818			0.065	1843	134	1,2,3,5-tetramethyl benzene	0.355
824			0.090	1863	134	1,2,4,5-tetramethyl benzene	0.434
864	106	l,3-dimethyl benzene	19.973	1888			0.379
883	128	nonane	4.221	1921			0.155
900	126	l-ethyl-2-methyl cyclohexane	0.772	1942	3.0.4		0.091
958	124	2-methyl-octahydro pentalene	4.671	2007	134	2-ethyl-1,4-dimethyl benzene	0.787
989	120	(l-methylethyl)benzene	1.361	2034	170	2-methyl undecane	0.050
1003	126	propyl cyclohexane	0.881	2084			0.113
1007	126	(l-methylethyl)cyclohexane	0.693	2106			0.031
1028	142	2,6-dimethyl octane	0.937	2120			0.022
1061	142	3-ethyl-2-methyl heptane	1.159	2126			0.048

Table 6.2.9. Concluded.

0150				Scan	M.W	ppm ^a
2153	168	l-methyl-2-pentyl cyclohexane	0.438			
2172			0.096			
2196			0.013			
2219	170	dodecane	1.643			
2277	184	2,6-dimethyl undecane	0.591			
2311		, ,	0.093			
2387			0.054			
2400			0.131			
2445			0.086			
2475			0.074			
2496			0.058			
2509			0.023			
2532			0.455			
2554			0.085			
2602			0.035			
2638	142	l-methyl naphthalene	0.825			
2643	142	2-methyl naphthalene	1.402			
2668		5 1	0.020			
2712	1,4-0	lihydro-1,4-methano naphthalene	0.901			
2726	142	methyl naphthalene	0.438			
2744		•	0.017			
2722			0.121			
2785		•	0.005			
2843			0.084			
2922			0.071			
2946			0.012			
2950			0.015			
2974			0.294			
3011			0.015			
3071			0.591			
3114	156	2,7-dimethyl naphthalene	0.192			
3175			0.193			
3181			0.141			
3262			0.024			
3267			0.037			
3320			0.067			
3472			0.036			

aApproximate concentrations based on a volatile carbon content of 242 ppm.

145

т

·····

Table 6.2.10. GP31 volatiles, 1981 March (82 ppm).

Scan	M.W.	Compound	ppma	Scan	M.W	Compound	ppma
268			0.833	1241	140	5-decene	0.449
277			0.576	1281	120	1,3,5-trimethyl benzene	5.570
308			0.327	1296	142	decane	1.829
328			0.095	1310			0.047
343	89	2-methyl-2-butanol	0.143	1316	134	(2-methylpropyl)benzene	0.041
361	78	benzene	1.444	1325	134	(l-methylpropyl)benzene	0.129
391	98	1,2-dimethyl cyclopentane	0.718	1337			0.062
406	100	heptane	0.389	1366	120	l,2,4-trimethyl benzene	2.999
445	98	methyl cyclohexane	1.352	1391			0.939
467			0.051	1405	118	l-ethenyl-2-methyl benzene	0.341
479	112	1,2,4-trimethyl cyclopentane	0.167	1417			0.194
496	112	1,2,3-trimethyl cyclopentene	0.252	1439			0.035
550	92	methyl benzene	2.968	1465	138	decahydro naphthalene	0.661
580	112	1,4-dimethyl cyclohexane	0.603	1473	134	l-methyl-3-propyl benzene	0.134
639	112	1,3-dimethyl cyclohexane	0.589	1478			0.177
661	114	octane	1.039	1484	134	4-ethyl-1,2-dimethyl benzene	0.312
799	112	ethyl cyclohexane	2.061	1492	142	3,3,5-trimethyl heptane	0.126
839	126	1-ethy1-4-methy1 cyclohexane	0.083	1502	156	isooctane	0.274
862	126	1,3,5-trimethyl cyclohexane	0.994	1514	134	l-methyl-4-propyl benzene	0.097
889	106	ethyl benzene	1.089	1526			0.130
915	106	1,3-dimethyl benzene	7.966	1538			0.046
935	126	1,1,2-trimethyl cyclohexane	0.180	1554			0.210
955	126	1-ethy1-2-methyl cyclohexane	0.896	1583	134	4-ethyl-1,2-dimethyl benzene	0.476
977	106	1,4-dimethyl benzene	5.810	1600	134	l-methyl-3-propyl benzene	0.044
999	128	nonane	1.830	1636	156	undecane	1.922
1009			0.245	1666	152	2-methyl-decahydro naphthalene	0.084
1040	124	l-methyl-octahydro pentalene	1.161	1673			0.030
1062	120	(l-methylethyl)benzene	0.509	1695	134	1,2,3,5-tetramethyl benzene	0.160
1074	126	propyl cyclohexane	0.537	1707	134	1,2,4,5-tetramethyl benzene	0.088
1090	142	2,6-dimethyl octane	0.644	1726		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.144
1110			0.974	1733	170	4-methyl undecane	0.116
1131			0.064	1758		-	0.118
1147	120	propyl benzene	1.153	1781			0.104
1162			0.023	1832	134	2-ethyl-l,4-dimethyl benzene	0.248
1176	120	l-ethyl-3-methyl benzene	2.995	1839			0.078
1197	120	1,2,3-trimethyl benzene	2.092	1846			0.096
1210	126	1-ethyl-4-methyl cyclohexane	0.110	1878	170	2-methyl undecane	0.179
1227	120	l-ethyl-4-methyl benzene	1.141	1904		-	0.093

146

Table 6.2.10. Concluded.

Scan	M.W.	Compound	р	pm ^a	Scan	M.W	Compound	ppm
1930	166	1,6-dimethyl-decahydro	naphthalene	0.071	2919			0.0
1964		, , , , , , , , , , , , , , , , , , , ,		0.151	2931			0.0
2023	170	dodecane		0.869	3084			0.0
2079	184	2,6-dimethyl undecane		0.418	3203			0.0
2102			(0.054				
2136				0.027				
2142				0.009				
2153				0.035				
2170				0.007				
2174				0.018				
2186			i i	0.068				
2216				0.023				
2221				0.011				
2250				0.122				
2262				0.016				
2280				0.057				
2315			1	0.481				
23 26				0.055				
2340				0.007				
2357				0.007				
2377				0.032				
2385				0.005				
2389 2408				0.002 0.046				
2408	184	tridecane		0.130				
2420	104	tridecalle		0.038				
2480				0.038				
2498				0.040				
2519				0.008				
2523				0.010				
2552				0.013				
2569				0.053				
2594			4	0.009				
2629			1	0.031				
2696			1	0.007				
2714				0.007				
2768			1	0.018				
2772			1	0.023				

^aApproximate concentration based on a total volatile carbon content of 82 ppm.

Table 6.2.11.	GP19	volatiles,	1981	May	(25	ppm)	
---------------	------	------------	------	-----	-----	------	--

9

•

A set of the set of

Scan	M.W.	Compound	ppm ^a	Scan	M.W	Compound	ppma
269	46	oxybis methane	0.117	2318			0.019
281	56	2-methy1-1-propene	0.043	3303			0.259
300	58	oxetane	2.939	3482			0.011
312	74	2-methy1-2-propano1	0.528	3491			0.009
363			0.815	3502			0.007
394	84	methyl cyclopentane	0.027	3507			0.003
412	88	2-methy1-2-butano1	0.192	3511			0.002
445	78	benzene	4.231	3561			0.010
499			0.085				
523			0.127				
541	100	3,3-dimethy1-2-butanone	0.059				
568	98	methyl cyclohexane	0.109				
639	94	dimethyl disulfide	0.085				
713	92	methyl benzene	4.036				
1284	106	ethyl benzene	0.526				
1359	106	1,3-dimethyl benzene	2.977				
1430			0.082				
1486	106	1,4-dimethyl benzene	4.805				
1533			0.036				
1620	120	(l-methylethyl)benzene	0.226				
1744			0.105				
1776	120	l-ethyl-3-methyl benzene	0.317				
1802	120	1,2,3-trimethyl benzene	0.193				
1847	120	1-ethy1-4-methy1 benzene	0.162				
1904	120	1,3,5-trimethyl benzene	1.022				
2022	120	1,2,4-trimethyl benzene	0.486				
2124			0.016				
2137	138	hexfluoro ethane	0.023				
2142			0.013				
2202			0.006				
2207	134	diethyl benzene	0.008				
2213		0	0.004				
2230			0.010				
2242			0.010				
2292			0.006				
2313			0.004				

^aApproximate concentration based on a total volatile carbon content of 25 ppm.

Scan	M.W.	Compound	ppm ^a	Scan	M.W	Compound	ppm ^a
228			1.240				
241	84	methyl cyclopentane	0.144				
265	78	benzene	5.743				
422			0.221				
426			0.158				
433			0.039				
437	84	cyclopentanone	0.088				
519			2.836				
593			2.019				
780			0.307				
785			0.122				
789			0.282				
909			0.223				
913			0.187				
923			0.102				
1503	120	l-ethyl-3-methyl benzene	0.170				
1508		• •	0.088				
1518	120	l-ethyl-4-methyl benzene	0.431				
1580		с ,	0.086				
1666			0.673				
1670			0.440				
1683	120	l,3,5-trimethyl benzene	0.189				
1811			0.105				
1817			0.110				
1822	120	1,2,4-trimethyl benzene	0.228				
1834			0.064				
1838	138	hexfluoro ethane	0.157				
2494			0.071				
2502			0.025				
2539			0.072				
2548			0.056				
3275			0.924				
3420			0.062				

Table 6.2.12. GP19 volatiles, 1981 June (26 ppm).

.....

^aApproximate concentration based on a total volatile carbon content of 26 ppm.

Table 6.2.13. GP26 neutrals, 1981 May.

...

Scan	M.W.	Compound	Relative amount ^a	Scan	M.W		Relative amount ^a
246	78	sulfinylbis methane	24.290	909			22.818
357	120	l(l-propynyl) cyclohexane	15.230	935	168		7.737
372	156	undecane	18.733	941			7.021
426			5.961	952	212	pentadecane	93.373
436	134	1,2,3,5-tetramethyl benzene	21.130	970	170	2(l-methylethyl) napthalene	19.402
451	366	0.0 dimette l'desetedus menteslines (5.288	977			4.617
467	166	2,3-dimethyl-decahydro napthalene () 7.452	999	170	1 6 7 thimsthyl handthalana	15.012 15.817
478	128	napthalene	80.086	1009	170	1,6,7-trimethyl naphthalene	15.017
489	134	2-methyl-3-phenyl oxirane	20.261 14.433	1016 1031	170	2,3,6-trimethyl naphgthalene	18.934
496	170 148	<pre>dodecane 1,3-dimethyl-5-(1-methyl ethyl)benze</pre>		1031			29.343
502 517	148	ethyl benzaldehyde	12.064	1043	170	1,3,6-trimethyl naphthalene	25.329
517	168	cyclododecane	14.470	1050	226	5-propyl tridecane	10.669
537 548	100	cyc fododecalle	14.470	1074	170	trimethyl napthalene	18.878
548	146	2,3-dihydro-4,7-dimethyl-IH-indene	8.560	1097	170	et nicenyr napenarche	3.612
563	140	2,3-a myaro-4,7-a meeny r-in- maene	6.871	1110			17.628
576			30.951	1128	226	hexadecane	95.830
604	146	2,3-dihydro-1,6-dimethyl-IH-indene	5.658	1138	220	nexudectarie	13.254
617	184	tridecane	54.243	1174			10.327
627	142	2-methyl naphthalene	73.559	1185			8.182
653	142	1-methyl naphthalene	54.906	1212			49.820
691		i meeny i napronarene	21.611	1224		,	20.087
701			5.576	1236			6.664
716	198	2-methyl tridecane	16.142	1248			10.887
727			11.601	1262	184	1-methy1-7(1-methylethy1)naphthalene	6.329
737	198	2,5-dimethyl dodecane	19.236	1302	240	heptadecane	78.321
760		, ,	9.207	1310	268	2,6,10,14-tetramethyl pentodacane	48.262
766			6.078	1322	180	9-methy1-9H-fluorene	8.356
779	198	tetradecane	100.000	1357			5.369
801	156	l,7-dimethyl naphthalene	45.086	1375			21.616
814	162	2,5-dimethyl-benzo-B-thiophene	7.047	1388			7.404
826	156	1,2-dimethyl naphthalene	42.593	1401	184	dibenzothiophene	20.091
831	156	l,5-dimethyl naphthalene	31.089	1419			6.842
838	162	ethyl-benzo-B-thiophene	9.029	1448	178	phenanthrene	13.861
861			43.033	1468	254	octadecane	60.012
876			11.043	1482	296	2,6,10,14-tetramethyl heptadecane	31.622
883			47.846	1538	100	· · · · · · · · · ·	8.946
891			12.075	1568	198	4-methyl dibenzothiophene	10.992
897			9.955	1616			7.165

150

Table 6.2.13. Concluded.

Scan	M.W.		Relative amount ^a	Scan	M.W	Compound	Relative amounta
1629	268	nonadecane	47.778	2294			4.881
1643	192	3-methyl phenanthrene	10.397	2345	338	tetracosane	5.896
1727	212	4,9-dimethyl-naphtho-2,3-B-thiophen	e 5.873	2394			2.477
1752			11.610	2399			1.395
1784	282	eicosane	24.377	2406			3.611
1850	206	2,5-dimethyl phenanthrene	5.907	2443			3.935
1933	296	heneicosane	17.041	2475	352	pentacosane	4.152
2076	310	docosane	10.299	2541			8.535
2108			4.918	2597			2.766
2142	324	2,3,5-trimethyl phenanthrene	6.060	2665			1.957
2153		5	0.559	2669			0.668
2158			1.527	2716			2.326
2178			4.717	2858			1.788
2214	324	tricosane	8.198	2907			1.978
2221			5.322	2979			2,945
2233			1.633	3123			5.558
2238	234	tetramethyl phenthrene	0.493	3213			4.304
2259			4.311	3320			1.777

aRelative amount of each component based on GC-MS peak areas; most abundant compound = 100.00.

Table 6.2.14. GP19 neutrals, 1981 May.

Scan	M.W.	R	elative amount ^a	Scan	M.W.	Compound	Relative amount ^a
308	120	l-ethyl-3-methyl benzene	7.701	781	154	l-l'-biphenyl	3.456
319	120	1-ethyl-2-methyl benzene	3.230	807	198	tetradecane	91.537
328	120	1,2,4-trimethyl benzene	22.409	829	156	1,7-dimethyl naphthalene	42.355
348	120	1,3,5-trimethyl benzene	13.531	854	156	1,8-dimethyl naphthalene	47.299
359	118	1-etheny1-2-methy1 benzene	4.623	860	156	1,5-dimethyl naphthalene	31.011
370	134	1,4-diethyl benzene	11.951	885	156	1,3-dimethyl naphthalene	38.749
389	134	1-(methylphenyl) ethanone	5.218	910			55.046
400	156	undecane	28.506	923	212	3-ethyl tridecane	6.176
415	134	2-ethyl-1,4-dimethyl benzene	3.489	934		÷;	7.813
424	134	1-ethy1-3,5-dimethy1 bezene	5.278	940			2.717
429	134	1,2,3,5-tetramethyl benzene	6.473	960	154	1,2-dihydro acenaphthylene	7.607
439	124	cyclopropyl cyclohexane	5.826	964			5.255
452		5 1 15 5	10.395	981	212	pentadecane	99.425
463	134	1,2,4,5-tetramethyl benzene	31.663	996	170	2-(l-methylethyl) naphthalene	21.194
476	132	1,2,3,4-tetrahydro naphthalene	11.696	1032	170	1,6,7-trimethyl naphthalene	16.296
495			4.718	1041	170	2,3,6-trimethyl naphthalene	16.028
507	170	2-methyl undecane	100.000	1068			37 . 935
516	146	2,3-dihydro-1,1-dimethy1-1H-indene	12.780	1088	226	2-methyl pentadecane	7.193
523	170	dodecane	18.385	1099			12.253
528	148	2,4-dimethyl-l-(l-methylethyl) benzene		1136			11.534
540	146	1,2,3,4-tetrahydro-2-methyl naphthalen	e 4.131	1157	226	hexadecane	94.344
544			7.480	1164			15.511
562	140	2-methylpropyl cyclohexane	13.060	1198	184	l-(l-l-dimethylethyl) naphthalene	2.327
575	158	2-propy1-1-heptanol	8.147	1239			42.163
583	146	2,3-dihydro-4,7-dimethyl indene	8.644	1250	224	decyl-cyclohexane	9.997
590	184	2-methyl dodecane	6.882	1261			4.384
603			33.260	1274	254	2-methyl hepladecane	6.427
629	146	2,3-dihydro-1,6-dimethyl indene	4.529	1285	184	1-methyl-7-(1-methylethyl) naphthale	ene 2.1/4
649	184	tridecane	71.446	1318			3.040
658	142	2-methyl naphthalene	80.928	1331	240	heptadecane	74.671
682	142	l-methyl naphthalene	65.002	1340	268	2,6,10,14-tetramethyl pentadecane	46.389
697	160	2,3-dihydro-1,1,5-trimethyl indene	5.899	1347	180	9-methy1-9H-fluorene	3.183
714		·	17.231	1382			2.342
726	160	6-ethyl-1,2,3,4-tetrahydro naphthalene	3.650	1399			10.898
733	_		3.173	1412			5.122
742	198	2-methyl tridecane	10.442	1425	222	1,1'-(1,4-butanediy1)bis-cyclohexane	8.081
753			7.124	1430	254	2-methyl heptadecane	5.129
763			22.803	1443			3.430

Table	6.2.14.	Concluded.
iubic	0.2.11.	Concruce

.

Scan	M.W.	Compound	Relative amounta	Scan	M.W	Compound	Relative amount ^a
1472	178	phenanthrene	5.475	2146			1.740
1496	254	octadecone	56.907	2158			0.600
1509	296	2,6,10,14-tetramethyl heptadecane	33.695	2172			0.427
1559			4.667	2201			1.124
1592			4.839	2236	324	tricosane	8.317
1605			2.933	2258			1.160
1640			4.126	2279			1.248
1655	268	nonadecane	37.943	2314			1.562
1668	192	3-methyl phenanthrene	4.000	2347			0.515
1749			2.060	2368	338	tetracosane	3.544
1756			1.860	2465			0.931
1780			2.084	2496	352	pentacosane	1.010
1809	282	eicosane	22.111	2563			1.241
1875	256	sulfur (S ₈)	9.623	2807			0.590
1919			2.844	2820			0.488
1956			13.170	2878			0.353
2099	296	heneicosane	9.611	2892			0.318
2115	256	docosane	0.418	2969			0.355
2127			1.068	2999			0.742
2133			0.365	3020			0.578
				3071			0.385

aRelative amount of each component based on GC-MS peak areas; most abundant compound = 100.00.

Table	6.2.	15.	GP26	acids,	1981	May.
		T O •	a. L0	acialy	TO 0 T	

1.W. Compound	ppb	Scan		Compound	
					ppb
94 Phenol	483	690	134	Propenyl Phenol	446
16 C ₈ -acid	15	701	150	C _A -Phenol	44
	91	731	150		515
÷	1080	763	148	Methylpropenyl phenol	441
•	1575	777	136	C ₁ -Benzoic acid	106
•	394	789	148	C ₂ -Benzoic acid	149
-	558	804	148	Methylpropenyl phenol	100
<u>f</u>	1812	870	148	Methylpropenyl phenol	253
	79	87 9	150	C ₂ -Benzoic acid	33
-	1438	899		L .	92
-	147	937			175
•	355	949		6	67
•	41	959		5	115
•	369	970			28
•	456	993		<u>6</u>	42
	404	1003			65
22 Benzoic acid	1006	1010	170	Biphenylol	62
36 C ₂ -Phenol	130	1036	144	Naphthalenol	164
	74	1043	162	C ₂ -Benzofuranone	44
	224	1055			69
÷	31	1086		•	83
5	47	1112	162	C ₂ -Benzofuranone	72
•	118				19
	16 C_8 -acid 16 C_8 -acid 18 C_1 -Phenol 19 C_1 -Phenol 20 C_2 -Phenol 21 C_2 -Phenol 22 C_2 -Phenol 23 C_2 -Phenol 24 C_3 -Phenol 25 C_3 -Phenol 26 C_3 -Phenol 27 C_3 -Phenol 28 C_3 -Phenol 29 C_3 -Phenol 20 C_3 -Phenol 20 C_3 -Phenol 20 C_3 -Phenol 21 C_3 -Phenol 22 C_3 -Phenol 23 C_3 -Phenol 24 C_3 -Phenol 25 C_3 -Phenol	16 C_8 -acid 15 16 C_8 -acid 91 08 C_1 -Phenol 1080 08 C_1 -Phenol 1575 22 C_2 -Phenol 394 22 C_2 -Phenol 394 22 C_2 -Phenol 1812 22 C_2 -Phenol 1438 36 C_3 -Phenol 147 36 C_3 -Phenol 355 36 C_3 -Phenol 369 36 C_3 -Phenol 404 22 Benzoic acid 1006 36 C_3 -Phenol 130 36 C_3 -Phenol 74 36 C_3 -Phenol 74 36 C_3 -Phenol 224	16 C_8 -acid1570116 C_8 -acid9173108 C_1 -Phenol108076308 C_1 -Phenol157577722 C_2 -Phenol39478922 C_2 -Phenol55880422 C_2 -Phenol181287022 C_2 -Phenol181287022 C_2 -Phenol181287022 C_2 -Phenol181287023 C_3 -Phenol14793736 C_3 -Phenol14793736 C_3 -Phenol35594936 C_3 -Phenol4195936 C_3 -Phenol45699336 C_3 -Phenol30997036 C_3 -Phenol130103636 C_3 -Phenol130103636 C_3 -Phenol74104336 C_3 -Phenol224105536 C_3 -Phenol21108637Phenol21108638 C_3 -Phenol471112	16 C_8 -acid1570115016 C_8 -acid9173115008 C_1 -Phenol108076314808 C_1 -Phenol157577713622 C_2 -Phenol39478914822 C_2 -Phenol39478914822 C_2 -Phenol181287014822 C_2 -Phenol181287014822 C_2 -Phenol181287014822 C_2 -Phenol143889915036 C_3 -Phenol143889915036 C_3 -Phenol14793716236 C_3 -Phenol36997015036 C_3 -Phenol36997015036 C_3 -Phenol36997015036 C_3 -Phenol36997015036 C_3 -Phenol36997015036 C_3 -Phenol130103614436 C_3 -Phenol130103614436 C_3 -Phenol130103614436 C_3 -Phenol224105515036 C_3 -Phenol224105515036 C_3 -Phenol31108619036 C_3 -Phenol471112162	16 C_8 -acid 15 701 150 C_4 -Phenol 16 C_8 -acid 91 731 150 C_4 -Phenol 108 C_1 -Phenol 1080 763 148 Methylpropenyl phenol 108 C_1 -Phenol 1575 777 136 C_1 -Benzoic acid 122 C_2 -Phenol 394 789 148 C_2 -Benzoic acid 122 C_2 -Phenol 394 789 148 Methylpropenyl phenol 122 C_2 -Phenol 1812 870 148 Methylpropenyl phenol 122 C_2 -Phenol 1812 870 148 Methylpropenyl phenol 122 C_2 -Phenol 79 879 150 C_2 -Benzoic acid 336 C_3 -Phenol 147 937 162 C_2 -Benzoic acid 346 C_3 -Phenol 369 970 150 C_2 -Benzoic acid 356 949 150 C_2 -Benzoic acid 360 366 C_3 -Phenol 369 970 150 C_2 -Benzoic acid 366<

154

Table 6.2.15. Concluded.

.

Scan	M.W.	Compound	ppb
1195	158	C _l -Naphthalenol	80
1208	158	C _l -Naphthalenol	62
1244	158	C ₁ -Naphthalenol	165
1271	162	C ₂ -Dihydroindeneol	56
1296	164	C ₃ -Benzoic acid	18
1422	172	Naphthalenecarboxylic acid	72
1522	184	Phenylmethyl Phenol	27
1568	186	C ₃ -Naphthol	64
1596	184	Methoxyl Biphenyl	61

Table 6.2.16. GP19 acids, 1981 May.

•

Scan	M.W.	Compound	ppb	Scan	M.W.	Compound	ppb
305	116	Pentanoic acid	44	659	136	C ₃ -Phenol	88
314	94	Pheno1	113	6 88		C ₃ -Phenol	384
333	116	Hexanoic acid	× 296	747	136	C ₁ -Benzoic acid	41
364	108	C ₁ -Phenol	638	773	150	C ₂ -Benzoic acid	189
382	108	C ₁ -Phenol	523	807	148	C ₄ -Phenol	52
389	144	C ₂ -Heptanol	22	854	150	C ₂ -Benzoic acid	6 48
413	122	C ₂ -Phenol	561	874	150	C ₂ -Benzoic acid	170
433	130	Heptanoic acid	482	903	150	C ₂ -Benzoic acid	270
438	122	C ₂ -Phenol	202	931	170	Cyclohexanebutanoic acid	59
456	122	C ₂ -Phenol	1340	945	150	C ₂ -Benzoic acid	127
488	122	C ₂ -Phenol	403	968	150	C ₂ -Benzoic acid	183
496	136	C ₃ -Phenol	130	973	150	C ₂ -Benzoic acid	32
508	122	C ₂ -Phenol	262	988	164	C ₃ -Benzoic acid	54
521		C ₃ -Phenol	159	1009	176	C ₂ -Benzofurandione	92
549	136	C ₃ -Phenol	390	1040	164	C ₃ -Phenol	381
564		C ₃ -Phenol	605	1057	164	C ₃ -Benzoic acid	52
569	136	C ₃ -Phenol	447	1072	190	Dichlobenzoic acid	74
577	144	÷	317	1082	164	C ₃ -Benzoic acid	70
597	136	C ₃ -Phenol	396	1095	164	C ₃ -Benzoic acid	48
610		C ₃ -Phenol	337	1112	164	C ₃ -Benzoic acid	39
616		C ₃ -Phenol	202	1129		Hydroxypropenyl benzaldehyde	162
625		C ₃ -Phenol	209	1143	190	Dichlobenzoic acid	59
		5		1180	164	C ₃ -Benzoic acid	237

continued...

Table 6.2.16. Concluded.

Scan	M.W.	Compound	ppb
1210	162	Ethenyl benzenacetic acid	162
1264	178	C ₄ -Benzoic acid	97
1365	130	Isooctanol	337
1395	176	Tetrahydronaphthenecarboxylic acid	83
1405	172	Naphthalenecarboxylic acid	155
1477	172	Naphthalenecarboxylic acid	372
1539	184	Methoxybiphenyl	68
1556	184	Methoxybiphenyl	32
1560	186	C ₃ -Naphthol	30
1635	186	C ₃ -Naphthol	356
1742	182	Biphenylacarboxaldehyde	69
1765	182	Biphenylcarboxyaldehyde	44
2114	168	Dibenzofuran	24

Table 6.2.17. GP26 bases, 1981 May.

Scan	M.W.	Compound	ppb	Scan	M.W.	Compound	ppb
266	107	Ethylpyridine	17	1009	171	Propylquinoline	12
283	122	Methylphenyl hydrazine	12	1016	157	Ethyl isoquinoline	8
291	93	Methylpyridine	9	1060	171	Trimethylquinoline	25
356	107	Methylbenzamine	66	1082	159	Trimethylindole	6
526	133	Tetrahydroquinoline	28	1142	169	Biphenylamine	47
548	129	Isoquinoline	77	1205	183	Methylphenylbenzamine	19
579	129	Quinoline	72	1235	172	Methylethylcinnoline	27
611	147	Tetrahydromethylisoquinoline	55	1248	172	Methylethylcinnoline	19
650	143	Methylquinoline	126	1504	179	Benzoquinoline/acridine/phenanthridine/	
662	143	Methylquinoline	33			fluorenimine	17
667	143	Methylisoquinoline	8	1597	179	Benzoquinoline/acridine/phenanthridine/	
705	143	Methylisoquinoline	14			fluorenimine	11
728	143	Methylquinoline	41	1617	163	Pentamethyl benzamine	5
737	143	Methylquinoline	41	1671	193	Methylbenzoquinoline	17
759	157	Dimethylquinoline	71				
776	143	Methylquinoline	112				
793	157	Dimethylquinoline	, 72				
843	157	Dimethylquinoline	24				
868	157	Dimethylquinoline	22				
902	157	Ethylquinoline	57				
937	157	Ethylquinoline	31				
946	171	Propylquinoline	8				
994	171	Trimethylquinoline	26				

Table 6.2.18. GP19 bases, 1981 May.

Scan	M.W.	Compound	ppb	Scan	M.W.	Compound	ppb
300	93	Benzamine	6	721	143	Methylquinoline	9
306	121	Trimethylpyridine	4	744	147	Tetrahydronaphthalenamine	. 3
368	107	Methylbenzamine	46	777	131	Methylindole	8
372	107	Methylbenzamine	31	802	157	Dimethylquinoline	6
448	121	Methylethylpyridine	14	867	157	Dimethylquinoline	9
461	121	Ethylbenzamine	60	887	175	Dimethylethylindole	5
468	121	Methylethylpyridine	82	896	145	Dimethylindole	5
497	121	Methylethylpyridine	15	9 28	175	Dimethylethylindole	. 3
503	121	Methylethylpyridine	42	941	145	Dimethylindole	3
555	129	Isoquinoline	27	1305	175	Dihydrodimethylethylindole	3
563	135	Ethylbenzenemethanamine	6	1638	180	Benzocinnoline	16
578	135	Ethylbenzenemethanamine	27	1675	181	Fluorenamine	5
587	135	Ethylbenzenemethanamine	34	1737	167	Carbazole	16
605	147	Dihydrodimethylindole	5				
623	135	Ethylbenzemethanamine	22				
635	135	Ethylbenzemethanamine	41				
653	143	Methylquinoline	10				
666	143	Methylquinoline	6				
671	161	Trimethyldihydroindole	2				
683	143	Methylquinoline	5				
703	143	Methylquinoline	6				
711	133	Tetrahydroquinoline	12				

APPENDIX 6.3

Extractable constituents of combustion tube produced waters.

Scan	M.W.	Compound	ppb
457	154	l,l'-Biphenyl	1.1
559	168	C _l -Biphenyl	0.85
579	168	C _l -Biphenyl	1.9
1035	178	Phenanthrene	3.0
1246	192	C ₁ -Phenanthrene	5.8
1363	212	C ₂ -Dibenzothiophene	5.7
1414	206	C ₂ -Phenanthrene	12
1423	206	C ₂ -Phenanthrene	4.2
1446	206	C ₂ -Phenanthrene	2.2
1511	226	C ₃ -Dibenzothiophene	6.1
1572	220	C ₃ -Phenanthrene	1.8
1585	220	C ₃ -Phenanthrene	16
1594	226	C ₃ -Dibenzothiophene	3.0
1607	220	C ₃ -Phenanthrene	3.3
1788	234	C_4 -Phenanthrene	3.5

Table 6.3.1. Combustion tube water extractable aromatics, 1983 November.

ţ.....

Scan	M.W.	Compound	ppb	Scan	M.W.	Compound	ррЪ
306	129	Quinoline or Isoquinoline	1.5	1159	227	C ₇ -Quinoline	14
431	143	C _l -Quinoline	0.48	1176		C ₇ -Quinoline	1.8
433	147	C ₁ -Aminoindan	2.4	1192	227	C ₇ -Quinoline	1.1
557	157	C ₂ -Quinoline	1.3	1202	227	C ₇ -Quinoline	6.5
635		C ₂ -Aminonaphthalene	1.6	1210		C ₇ -Quinoline	1.2
730	184	Diaminobiphenyl	1.0	1220	227	C ₇ -Quinoline	0.91
745	184	Diaminobiphenyl	0.80	1233		C ₂ -Aminofluorene	4.7
764	173	C _A -Indole	1.2	1259	241		0.45
808	199	$\vec{C_a}$ -Aminonapthalene	0.41	1276	241	C ₈ -Quinoline	1.0
849		C_{4} -Aminonapthalene	0.93	1288		C ₁ -Benzoquinoline	0.61
868		C ₃ -Cinnoline	0.74	1324	207	C ₂ -Benzoquinoline	0.77
901		C ₅ -Aminonaphthalene	1.1	1386	207	C ₂ -Benzoquinoline	23
944		C ₃ -Quinoline	1.6	1397	207	C ₂ -Benzoquinoline	4.0
966		C ₄ -Indole	0.57	1491	221	C ₃ -Benzoquinoline	2.7
994		C_5^- Quinoline or C_4^- Aminonaphthalene	1.5	1499		C ₃ -Benzoquinoline	1.1
1003	213		1.9	1504		C ₂ -Aminofluorene	0.84
1006	198	C ₁ -Diaminobiphenyl	2.8	1520	221	C ₃ -Benzoquinoline	1.1
1038		C ₆ -Aminonaphthalene	1.2	1525		C ₂ -Aminofluorene	2.1
1057	179	Benzo(h)quinoline	0.75	1534		C ₃ -Benzoquinoline	6.4
1086	213	C ₆ -Quinoline	8.2	1549		C ₃ -Benzoquinoline	3.3
1089		C ₂ -Diaminobiphenyl	8.2	1564		C ₃ -Benzoquinoline	6.9
1106		C ₆ -Quinoline	1.7	1582		C ₃ -Benzoquinoline	14
1110	179	Benzo(f)quinoline/Phenanthridine	1.1	1599		C ₃ -Benzoquinoline	1.2
1127	213	C ₆ -Quinoline	2.6				continued

Table 6.3.2. Combustion tube water nitrogen components, 1983 November.

continued...

162

• 7

Table 6.3.2. Concluded.

Scan	M.W.	Compound	ppb
1659	221	C ₃ -Benzoquinoline	2.1
693	235	C ₄ -Benzoquinoline	1.8
1701	235	C ₄ -Benzoquinoline	0.62
1712	235	C ₄ -Benzoquinoline	1.5
722	235	C ₄ -Benzoquinoline	0.53
728	235	C ₄ -Benzoquinoline	0.98
1735	235	C ₄ -Benzoquinoline	0.70
1746	235	C ₄ -Benzoquinoline	2.3
772	235	C ₄ -Benzoquinoline	1.6
859	235	C ₄ -Benzoquinoline	0.38
2015	244	C ₁ -Naphthoquinoline	1.3
2032	244	C _l -Naphthoquinoline	0.71
2041	244	C _l -Naphthoquinoline	0.58
2053	244	C _l -Naphthoquinoline	2.2
186	258	C ₂ -Naphthoquinoline	0.64
2193	258	C ₂ -Naphthoquinoline	1.6
207	258	C ₂ -Naphthoquinoline	1.1
2222	258	C ₂ -Naphthoquinoline	0.84
355	272	C ₃ -Naphthoquinoline	0.76
365	272	C ₃ -Naphthoquinoline	0.60

APPENDIX 6.4

Extractable constituents of UMATAC wastewaters.

Scan	M,	/W Compound	ppb	Scan	Μ,	/W Compound	ppb
668	130	Methylindene	18	1215	156	C ₂ -Naphthalene	268
680	130	Methylindene	35	1217	162	C ₂ -Benzothiophene	30
735	128	Naphthalene	163	1220	156	C ₂ -Naphthalene	174
754	134	Benzothiophene	96	1228	162	C ₂ -Benzothiophene	55
868	144	C ₂ -Indene	8	1249	156	C ₂ -Naphthalene	103
892	144	C ₂ -Indene	14	1254	156	C ₂ -Naphthalene	48
897	144	C ₂ -Indene	15	1277	156	C ₂ -Naphthalene	69
908	144	C ₂ -Indene	38	1329	154	Acenaphthene	38
936	144	C ₂ -Indene	6	1342	176	C ₃ -Benzothiophene	21
949	148	Methylbenzothiophene	37	1343	168	C ₁ -Biphenyl	17
957	144	C ₂ -Indene	13	1344	170	C ₃ -Naphthalene	11
965	142	2-Methylnaphthalene	354	1359	168	C ₁ -Biphenyl	8
982	148	Methylbenzothiophene	44	1361	176	C ₃ -Benzothiophene	34
996	148	Methylbenzothiophene	127	1374	176	C ₃ -Benzothiophene	50
999	142	l-Methylnaphthalene	259	1383	176	C ₃ -Benzothiophene	44
1140	154	Biphenyl	20	1385	168	C ₁ -Biphenyl	8
1151	162	C ₂ -Benzothiophene	56	1390	168	C _l -Biphenyl	6
1164	156	C ₂ -Naphthalene	51	1402	176	C ₃ -Benzothiophene	60
1167	162	C ₂ -Benzothiophene	40	1413	170	C ₃ -Naphthalene	68
1188	156	C ₂ -Naphthalene.	239	1436	176	C ₃ -Benzothiophene	46
1188	162	C ₂ -Benzothiophene	94	1454	176	C ₃ -Benzothiophene	12
1201	162	C ₂ -Benzothiophene	118	1508	166	Fluorene	37
1210	162	C ₂ -Benzothiophene	20	1524	190	C ₄ -Benzothiophene	21

Table 6.4.1. UMATAC overhead vent water extractable aromatics, 1982 October.

Scan	M,	/W Compound	ppb	Scan	M	/W Compound	ppt	
1530	184	C ₄ -Naphthalene	12	1740	182	C ₂ -Acenaphthene	1	
1530	168	C ₁ -Acenaphthene	16	1750	182	C ₂ -Acenaphthene		
1535	168	C ₁ -Acenaphthene	11	1755	182	C_2 -Acenaphthene		
1538	182	C ₂ -Biphenyl	7	1760	182	C_2 -Acenaphthene](
1542	168	C ₁ -Acenaphthene	32	1793	184	Dibenzothiophene	30	
1548	190	C ₄ -Benzothiophene	42	1802	182	C ₂ -Acenaphthene	;	
1554	182	C ₂ -Biphenyl	5	1838	178	Phenanthrene	64	
1555	168	C ₁ -Acenaphthene	17	1853	178	Anthracene	;	
1577	184	C ₄ -Naphthalene	9	1901	194	C ₂ -Fluorene	12	
1581	182	C ₂ -Biphenyl	14	1910	194	C ₂ -Fluorene	10	
1596	190	C ₄ -Benzothiophene	13	1914	194	C ₂ -Fluorene	:	
1598	184	C ₄ -Naphthalene	6	1922	194	C ₂ -Fluorene	1	
1602	182	C ₂ -Biphenyl	17	1943	194	C ₂ -Fluorene	10	
1621	190	C ₄ -Benzothiophene	11	1955	198	C ₁ -Dibenzothiophene	20	
1633	184	C ₄ -Naphthalene	27	1988	198	C ₁ -Dibenzothiophene	2	
1657	190	C ₄ -Benzothiophene	11	2021	192	C ₁ -Phenanthrene/		
1668	184	C ₄ -Naphthalene	22			C ₁ -Anthracene	12	
1685	190	C ₄ -Benzothiophene	12	2022	198	C _l -Dibenzothiophene	15	
1695	184	C ₄ -Naphthalene	21	2028	192	C ₁ -Phenanthrene/		
1708	190	C ₄ -Benzothiophene	11			C ₁ -Anthracene	2	
1711	180	C ₁ -Fluorene	27	2042	192	C ₁ -Phenanthrene/		
1721	180	C ₁ -Fluorene	24			C ₁ -Anthracene	2	
1733	182	C ₂ -Acenaphthene	10			2		
		L					continued	

Table 6.4.1. Continued.

• • • •

166
Table 6.4.1. Continued.

Scan	M/W	Compound	ppb	Scan	M/W	Compound	ppb
2058	192	C _l -Phenanthrene/		2282	226	C ₃ -Dibenzothiophene	8
		C ₁ -Anthracene	21	2312	226	C ₃ -Dibenzothiophene	6
2064	192	C ₁ -Phenanthrene/		2328	226	C ₃ -Dibenzothiophene	6
		C ₁ -Anthracene	15	2332	202	Pyrene	7
2111	212	C ₂ -Dibenzothiophene	8	2346	226	C ₃ -Dibenzothiophene	5
2134	212	C ₂ -Dibenzothiophene	6	2352	226	C ₃ -Dibenzothiophene	5
2144	212	C ₂ -Dibenzothiophene	12	2361	220	C ₃ -Phenanthrene/	
2180	212	C ₂ -Dibenzothiophene	25			C ₃ -Anthracene	3
2190	206	C ₂ -Phenanthrene/		2374	226	C ₃ -Dibenzothiophene	6
		C ₂ -Anthracene	5	2389	220	C ₃ -Phenanthrene.	
2201	212	C ₂ -Dibenzothiophene	10			C ₃ -Anthracene	6
2204	206	C ₂ -Phenanthrene/		2401	220	C ₃ -Phenanthrene/	
		C ₂ -Anthracene	5			C ₃ -Anthracene	8
2229	206	C ₂ -Phenanthrene/		2424	220	C ₃ -Phenanthrene/	
		C ₂ -Anthracene	10			C ₃ -Anthracene	5
2230	212	C ₂ -Dibenzothiophene	4	2474	216	Benzo(a)fluorene	3
2238	206	C ₂ -Phenanthrene/		2500	216	Benzo(b)fluorene	3
		C ₂ -Anthracene	. 10	2532	216	C ₁ -Pyrene	2
2247	206	C ₂ -Phenanthrene/		2542	216	C ₁ -Pyrene	1
		C ₂ -Anthracene	7	2660	230	C ₂ -Pyrene/C ₂ -Fluoranthene/	
2261	202	Fluoranthene	4			C ₁ -Benzofluorene	3
2262	206	C ₂ -Phenanthrene/		2689	234	Benzonaphthothiophene	0.
		C ₂ -Anthracene	6				
		L.				(continued

Table	6.4.1.	Concluded.
i un i c	0.7.1.	concluded.

Scan	M/W	Compound	ppb
2702	230	C ₂ -Pyrene/C ₂ -Fluoranthene/	
		C ₁ -Benzofluorene	2
2722	234	Benzonaphthothiophene	0.3
2736	230	C ₂ -Pyrene/C ₂ -Fluoranthene/	
		C ₁ -Benzofluorene	4
2779	228	Benzo(a)anthracene	3
2791	228	Chrysene/Triphenylene	17
2824	248	C _l -Benzonaphthothiophene	0.3
2852	248	C ₁ -Benzonaphthothiophene	0.4
2884	248	C ₁ -Benzonaphthothiophene	0.5
2938	242	C ₁ -Benzo(a)anthracene/	
		Cl-Chrysene/Cl-Triphenylene	1.5
2949	242	C ₁ -Benzo(a)anthracene/	
		C ₁ -Chrysene/C ₁ -Triphenylene	0.7
2981	242	C ₁ -Benzo(a)anthracene/	
		C ₁ -Chrysene/C ₁ -Triphenylene	0.5
3147	252	Benzofluoranthene	20
3242	252	Benzo(a)pyrene	5
3268	252	Perylene	3
3566	276	Benzo(ghi)perylene	12
3617	278	Dibenzoanthracene	18

.

Scan	M/W	Compound	ppb	Scan	M∕W	Compound	ppb
718	128	Naphthalene	1.7	1329	154	Acenaphthene	0.8
738	134	Benzothiophene	2.8	1340	176	C ₃ -Benzothiophene	1.2
941	148	C _l -Benzothiophene	1.8	1356	176	C ₃ -Benzothiophene	2.2
957	142	2-Methylnaphthalene	4.0	1363	170	C ₃ -Naphthalene	0.5
9 58	148	C ₁ -Benzothiophene	2.8	1374	176	C ₃ -Benzothiophene	3.8
975	148	C ₁ -Benzothiophene	1.6	1374	170	C ₃ -Naphthalene	0.5
9 88	148	C ₁ -Benzothiophene	6.6	1402	176	C ₃ -Benzothiophene	4.0
990	142	l-Methylnaphthalene	3.4	1413	170	C ₃ -Naphthalene	1.5
1136	154	Biphenyl	0.3	1422	170	C ₃ -Naphthalene	1.4
1148	162	C ₂ -Benzothiophene	2.9	1435	176	C ₃ -Benzothiophene	2.3
1160	156	C ₂ -Naphthalene	0.6	1450	176	C ₃ -Benzothiophene	7.2
1163	162	C ₂ -Benzothiophene	1.4	1481	170	C ₃ -Naphthalene	1.4
1180	162	C ₂ -Benzothiophene	4.7	1509	166	Fluorene	0.8
1181	156	C ₂ -Naphthalene	2.2	1517	190	C ₄ -Benzothiophene	1.1
1 197	162	C ₂ -Benzothiophene	7.1	1521	184	C ₄ -Naphthalene	4.1
1209	156	C ₂ -Naphthalene	2.9	1524	190	C ₄ -Benzothiophene	1.4
1212	162	C ₂ -Benzothiophene	1.2	1530	168	C ₁ -Biphenyl	0.7
1215	156	C ₂ -Naphthalene	3.0	1533	184	C ₄ -Naphthalene	1.2
1224	162	C ₂ -Benzothiophene	1.7	1543	168	C ₁ -Biphenyl	- 0.7
1245	156	C ₂ -Naphthalene	1.3	1547	190	C ₄ -Benzothiophene	3.2
1252	156	C ₂ -Naphthalene	0.5	1551	181	C ₁ -Fluorene	0.5
1262	170	C ₃ -Naphthalene	0.5	1555	168	C _l -Biphenyl	0.4
1274	156	C ₂ -Naphthalene	0.8	1596	190	C ₄ -Benzothiophene	1.8

Table 6.4.2. UMATAC preheat vent water extractable aromatics, 1982 October.

Scan	M/W	Compound	ppb	Scan	M/W	Compound	ppb
1610	184	C ₄ -Naphthalene	2.5	2287	226	C ₃ -Dibenzothiophene	1.5
1623	190	C _A -Benzothiophene	1.0	2307	220	C ₃ -Phenanthrene	1.0
1634	184	C ₄ -Naphthalene	1.8	2334	226	C ₃ -Dibenzothiophene	2.6
1640	184	C _A -Naphthalene	4.2	2337	202	Pyrene	0.7
1658	184	C _A -Naphthalene	3.3	2359	226	C ₃ -Dibenzothiophene	1.8
1658	190	C _d -Benzothiophene	1.1	2408	220	C ₃ -Phenanthrene	3.1
1670	184	C _d -Naphthalene	1.6	2514	220	C ₃ -Phenanthrene	2.1
1687	190	C _A -Benzothiophene	1.2	2539	216	C ₁ -Pyrene	0.8
1708	190	C _A -Benzothiophene	1.0	2697	234	Benzonaphthothiophene	1.0
1734	190	G ₅ -Naphthalene	2.7	2729	234	Benzonaphthothiophene	0.8
1795	184	Dibenzothiophene	4.1	2786	228	Benzo(a)anthracene	0.7
1840	178	Phenanthrene	2.0	2798	228	Chrysene/Triphenylene	4.1
1947	194	C ₂ -Fluorene	1.3	2830	248	C ₁ -Benzonaphthothiophene	0.7
1959	198	C _l -Dibenzothiophene	5.4	2858	248	C ₁ -Benzonaphthothiophene	1.0
2025	192	C ₁ -Phenanthrene	0.7	2893	248	C ₁ -Benzonaphthothiophene	1.2
2033	192	C ₁ -Phenanthrene	1.6	2920	248	C ₁ -Benzonaphthothiophene	0.6
2062	192	C ₁ -Phenanthrene	2.4	2944	242	C _l -Chrysene/C _l -Triphenylene/	
2068	192	CPhenanthrene	1.6			C ₁ -Benzo(a)anthracene	3.5
2115	212	C ₂ -Dibenzothiophene	1.3	2956	242	C ₁ -Chrysene/C ₁ -Triphenylene/	
2182	212	C ₂ -Dibenzothiophene	4.7			C ₁ -Benzo(a)anthracene	1.7
2235	206	C ₂ -Phenanthrene	4.1	2971	242	/-Chrysene/C _l -Triphenylene/	
2243	206	C ₂ -Phenanthrene	2.1			C ₁ -Benzo(a)anthracene	1.3
2252	206	C ₂ -Phenanthrene	1.5	2978	262	C ₂ -Benzonaphthothiophene	0.6

Table 6.4.2. Continued.

continued...

.

Table 6.4.2. Concluded.

Scan	M/W	Compound	ppb
2988	242	C _l -Chrysene/C _l -Triphenylene/	
		C ₁ -Benzo(a)anthracene	1.0
3084	256	C ₂ -Chrysene/C ₂ -Triphenylene/	
		C2-Benzo(a)anthracene	1.9
3109	256	C ₂ -Chrysene/C ₂ -Triphenylene/	
		C ₂ -Benzo(a)anthracene	2.3
3122	256	C ₂ -Chrysene/C ₂ -Triphenylene/	
		C ₂ -Benzo(a)anthracene	0.9
3138	256	C2-Chrysene/C2-Triphenylene/	
		C ₂ -Benzo(a)anthracene	2.1
3155	252	Benzofluoranthenes	0.9
3190	256	C ₂ -Chrysene/C ₂ -Triphenylene/	
		C ₂ -Benzo(a)anthracene	1.2
3235	252	Benzo(e)pyrene	1.0
3250	252	Benzo(a)pyrene	0.4
3277	252	Perylene	0.5

ι.

Scan	M.W.	Compound	ppb	Scan	M.W.	Compound	ppb
246	107	C ₂ -Pyridine or C ₁ -Aniline	3,400	534	108	C ₂ -Pyrimidine	20,000
263	107	C_2 -Pyridine or C_1 -Aniline	970	545	135	C ₄ -Pyridine	2,400
283	107	C_2 -Pyridine or C_1 -Aniline	98	547	121	C ₃ -Pyridine	1,500
293	121	C ₃ -Pyridine	720	552	135	C ₄ -Pyridine	1,300
327	107	C ₂ -Pyridine	110	561		C_{A} -Pyridine	320
333	94	C ₁ -Pyrimidine	29,000	577	135	C ₄ -Pyridine	170
337	107	C ₂ -Pyridine	530	586		C ₄ -Pyridine	1,200
356	121	C ₃ -Pyridine	5,200	606		C_4^{-} -Pyridine	210
366	107	C ₂ -Pyridine	1,600	621		C ₄ -Pyridine	940
376	121	C ₃ -Pyridine	2,300	625		C_{A} -Pyridine	700
388	121	C ₃ -Pyridine	2,800	630		C_{a} -Pyridine	430
400	121	C ₃ -Pyridine	660	654		$\vec{C_a}$ -Pyridine	6,500
406		C ₃ -Pyridine	290	658		C ₃ -Pyridine	1,100
411		C ₃ -Pyridine	1,300	670		C_{a} -Pyridine	1,800
423		C ₃ -Pyridine	200	680		C ₃ -Pyridine	2,100
459		C ₂ -Pyridine	460	684		C ₃ -Pyrimidine	920
468		C ₃ -Pyridine	1,400	727	133	Aminoindan	650
482	108	C ₂ -Pyrimidine	5,500	735	122	C ₃ -Pyrimidine	790
494	108	C ₂ -Pyrimidine	920	742		C ₃ -Pyrimidine	330
499	121	C ₃ -Pyridine	2,800	750		C ₃ -Pyrimidine	230
504	135	C ₄ -Pyridine	4,100	766		C ₅ -Pyridine	1,200
512	135	C_{A} -Pyridine	730	770		C ₆ -Pyridine	970
526		C ₃ -Pyridine	520	790		C ₃ -Pyrimidine	530
532	121	C ₃ -Pyridine	320	793		C ₅ -Pyridine	1.200

Table 6.4.3. UMATAC overhead vent water basic components, 1982 October.

Scan	M.W.	Compound	ррь	Scan	M.W.	Compound	ppb
810	133	Aminoindan	360	1259	157	C ₂ -Quinoline	4,200
815	133	Aminoindan	710	1272	157	E	820
818	149	C ₅ -Pyridine	2,500	1291	161	C ₂ -Aminoindan	790
826	135	C ₄ -Pyridine	1,500	1336	175	C ₃ -Aminoindan	740
844	129	Quinoline	660	1384	171	C ₃ -Quinoline	530
868	147	C _l -Aminoindan	550	1388	177	C ₇ -Pyridine	1,300
890	129	Isoquinoline	660	1405	171	C ₃ -Quinoline	350
9 08	133	Aminoindan	350	1464	171	C ₃ -Quinoline	1,200
936	147	C _l -Aminoindan	1,100	1469	171	C ₃ -Quinoline	1,500
977	147	C _l -Aminoindan	1,600	1481	171	C ₃ -Quinoline	380
9 93	143	C _l -Quinoline or C _l -Isoquinoline	1,700	1538	191	C ₈ -Pyridine or C ₇ -Aniline	350
994		C ₁ -Aminoindan	480	1554	184	Diaminobiphenyl	48
1007		•	500	1574	185	C ₄ -Quinoline	93
1030		C _l -Quinoline	420	1586	171	C ₃ -Quinoline	560
1033		C ₂ -Aminoindan	420	1599	191	C ₈ -Pyridine	360
1055		C ₁ -Quinoline	960	1613	184	Diaminiobiphenyl	120
1072		C ₁ -Aminoindan	750	1614	185	C ₄ -Quinoline	99
1097	161	C ₂ -Aminoindan	530	1616	191	C ₈ -Pyridine	190
1128	143	C _l -Quinoline	880	1624	169	Aminobiphenyl	170
1139	161	C ₂ -Aminoindan	890	1628	185	C ₄ -Quinoline	110
1 184		C ₂ -Quinoline or C ₂ -Isoquinoline	1,200	1667	185	C ₄ -Quinoline	150
1188		C ₆ -Pyridine	780	1710	205	C ₉ -Pyridine	46
1216		C ₂ -Aminoindan	1,500	1721	185	C ₄ -Quinoline	140
1217	157	C ₂ -Quinoline	830	1733	183	C ₁ -Aminobiphenyl	66

Scan	M.W.	Compound	ppb
1763	205	C _g -Pyridine	50
1794	198	C ₁ -Diaminobiphenyl	12
1814	183	C ₁ -Aminobiphenyl	58
1856	199	C ₅ -Quinoline	4
1871	199	C ₅ -Quinoline	8
1874	179	Acridine	12
1879	183	C _l -Aminobiphenyl	42
1893	195	C ₁ -Aminofluorene	30
1911	179	Benzo(f)quinoline	5
1916	197	C ₂ -Aminobiphenyl	21
1922	197	C ₂ -Aminobiphenyl	19
1953	198	C _l -Diaminobiphenyl	10
2002	197	C ₂ -Aminobiphenyl	25

Table 6.4.3. Concluded.

APPENDIX 6.5

Aromatic components of SHOP-produced oil.

Scan	M/W	Compound	ppb	Scan	M/W	Compound	ppb
701	166	Fluorene	64	1219	208	C ₃ -Fluorene	5.0
875	180	C _l -Fluorene	35	1225	208	C ₃ -Fluorene	18
885	180	C ₁ -Fluorene	58	1229	208	C ₃ -Fluorene	14
901	180	C ₁ -Fluorene	15	1238	208	C ₃ -Fluorene	31
993	178	Phenanthrene/Anthracene	193	1245	208	C ₃ -Fluorene	20
1022	194	C ₂ -Fluorene	1.5	1255	208	C ₃ -Fluorene	7.9
1028	194	C ₂ -Fluorene	8.7	1263	208	C ₃ -Fluorene	16
1052	194	C ₂ -Fluorene	21	1276	208	C ₃ -Fluorene	39
1059	194	C ₂ -Fluorene	33	1289	208	C ₃ -Fluorene	40
1072	194	C ₂ -Fluorene	29	1302	208	C ₃ -Fluorene	22
1092	194	C ₂ -Fluorene	20	1307	206	C ₂ -Phenanthrene/	
1117	194	C ₂ -Fluorene	11			C ₂ -Anthracene	20
1168	208	C ₃ -Fluorene	7.3	1311	208	C ₃ -Fluorene	8.1
1170	192	C ₁ -Phenanthrene/		1323	208	C ₃ -Fluorene	35
		C ₁ -Anthracene	70	1331	206	C ₂ -Phenanthrene/	
1176	192	C ₁ -Phenanthrene/				C ₂ -Anthracene	108
		C ₁ -Anthracene	82	1342	208	C ₃ -Fluorene	9.6
1196	208	C ₃ -Fluorene	6.1	1346	206	C ₂ -Phenanthrene/	
1204	192	C ₁ -Phenanthrene/				C ₂ -Anthracene	63
		C ₁ -Anthracene	124	1348	208	C ₃ -Fluorene	5.8
1208	208	C ₃ -Fluorene	30	1352	206	C ₂ -Phenanthrene/	
1211	192	C ₁ -Phenanthrene/				C ₂ -Anthracene	44
		C ₁ -Anthracene	84	1373	206	C ₂ -Phenanthrene/	
		-				C ₂ -Anthracene	350

Table 6.5.1. SHOP base oil aromatic components.

continued...

176

Table 6.5.1. Continued.

Scan	M/W	Compound	ppb	Scan	M/W	Compound	ppb
1376	226	C ₃ -Dibenzothiophene	24	1481	220	C ₃ -Phenanthrene/	
1381	206	C ₂ -Phenanthrene/				C ₂ -Anthracene	7.9
		C ₂ -Anthracene	154	1487	226	C ₃ -Dibenzothiophene	83
1389	226	C ₃ -Dibenzothiophene	71	1493	226	C ₃ -Dibenzothiophene	98
1390	206	C ₂ -Phenanthrene/		1502	220	C ₃ -Phenanthrene/	
		C ₂ -Anthracene	127			C ₃ -Anthracene	67
1398	206	C ₂ -Phenanthrene/		1511	240	C ₄ -Dibenzothiophene	17
		C ₂ -Anthracene	30	1515	226	C ₃ -Dibenzothiophene	102
1404	206	C ₂ -Phenanthrene/		1526	226	C ₃ -Dibenzothiophene	9.3
		C ₂ -Anthracene	79	1530	220	C ₃ -Phenanthrene/	
1413	226	C ₃ -Dibenzothiophene	5.3			C ₃ -Anthracene	92
1422	206	C ₃ -Dibenzothiophene	42	1541	226	C ₃ -Dibenzothiophene	34
1423	226	C ₃ -Dibenzothiophene	140	1543	220	C ₃ -Phenanthrene/	
1440	226	C ₃ -Dibenzothiophene	14.7			C ₃ -Anthracene	118
1444	206	C ₂ -Phenanthrene/		1551	226	C ₃ -Dibenzothiophene	47
		C ₂ -Anthracene	40	1558	220	C ₃ -Phenanthrene/	
1449	208	C ₃ -Fluorene	28			C ₃ -Anthracene	32
1452	220	C ₃ -Phenanthrene/		1565	220	C ₃ -Phenanthrene/	
		C ₃ -Anthracene	8.4			C ₃ -Anthracene	73
1455	226	C ₃ -Dibenzothiophene	136	1568	226	C ₃ -Dibenzothiophene	16
1469	226	C ₃ -Dibenzothiophene	98	1577	220	C ₃ -Phenanthrene/	
1472	202	Pyrene/Fluoranthene	39			C ₃ -Anthracene	18
1475	220	C ₃ -Phenanthrene/		1582	220	C ₃ -Phenanthrene/	
		C ₃ -Anthracene	5.1			C ₃ -Anthracene	15

•

Table 6.5.1. Continued.

Scan	M/W	Compound	ppb
1584	240	C ₄ -Dibenzothiophene	31
1592	240	4 C ₄ -Dibenzothiophene	15
1593	220	C ₃ -Phenanthrene/	
		C ₃ -Anthracene	12
1603	220	C ₃ -Phenanthrene/	
		C ₃ -Anthracene	21
1607	240	C ₄ -Dibenzothiophene	11
1614	216	-Pyrene/C _l -Fluoranthene/	
		Benzofluorene	28
1620	240	C ₄ -Dibenzothiophene	8.
1628	220	C ₃ -Phenanthrene/	
		C ₃ -Anthracene	17
1631	240	C ₄ -Dibenzothiophene	11
1642	216	C ₁ -Pyrene/C ₁ -Fluoranthene/	
		Benzofluorene	22
1647	220	C ₃ -Phenanthrene/	
		C ₃ -Anthracene	98
1663	240	C ₄ -Dibenzothiophene	10
1672	216	C _l -Pyrene/C _l -Fluoranthene/	
		Benzofluorene	30
1681	216	C _l -Pyrene/C _l -Fluoranthene/	
		Benzofluorene	19
1685	240	C ₄ -Dibenzothiophene	12

Scan	M/W	Compound	ppb
1000	240		10
1689	240	C ₄ -Dibenzothiophene	12
1707	240	C ₄ -Dibenzothiophene	20
1732	240	C ₄ -Dibenzothiophene	10
1733	216	C _l -Pyrene/C _l -Fluoranthene/	
		Benzofluorene	3.
1747	240	C ₄ -Dibenzothiophene	9.
1774	230	C ₂ -Pyrene/C ₂ -Fluoranthene/	
		C _l -Benzofluorene	9.
1783	230	C ₂ -Pyrene/C ₂ -Fluoranthene/	
		C _l -Benzofluorene	22
1802	230	C ₂ -Pyrene/C ₃ -Fluoranthene/	
		C _l -Benzofluorene	12
1809	230	C ₂ -Pyrene/C ₂ -Fluoranthene/	
		C _l -Benzofluorene	11
1825	230	C ₂ -Pyrene/C ₂ -Fluoranthene/	
		C _l -Benzofluorene	9,
1834	230	C ₂ -Pyrene/C ₂ -Fluoranthene/	
		C _l -Benzofluorene	7.
1842	230	C ₂ -Pyrene/C ₂ -Fluoranthene/	
		C ₁ -Benzofluorene	6.
1863	230	C ₂ -Pyrene/C ₂ -Fluoranthene/	
		C ₁ -Benzofluorene	19
1872	230	C ₂ -Pyrene/C ₂ -Fluoranthene/	
		C _l -Benzofluorene	15

178

Table 6.5.1. Continued.

.

Scan	M/W	Compound	ррЬ	Scan	M/W	Compound	ppb
1880	230	C ₂ -Pyrene/C ₂ -Fluoranthene/		2045	244	C ₃ -Pyrene/C ₃ -Fluoranthene/	
		C ₁ -Benzofluorene	3.0			C ₂ -Benzofluorene	9.1
1898	244	C ₃ -Pyrene/C ₃ -Fluoranthene/		2053	244	C ₃ -Pyrene/C ₃ -Fluoranthene/	
		C ₂ -Benzofluorene	2.3			C ₂ -Benzofluorene	2.7
1929	228	Chrysene/Triphenylene	51	2076	242	C ₁ -Chrysene/C ₁ -Triphenylene	25
1932	244	C ₃ -Pyrene/C ₃ -Fluoranthene/		2078	258	C ₄ -Pyrene/C ₄ -Fluoranthene/	
		C ₂ -Benzofluorene	3.8			C ₃ -Benzofluorene	3.4
1941	244	C ₃ -Pyrene/C ₃ -Fluoranthene/		2089	242	C ₁ -Chrysene/C ₁ -Triphenylene	10
		C ₂ -Benzofluorene	4.2	2097	258	C ₄ -Pyrene/C ₄ -Fluoranthene/	
1951	244	C ₃ -Pyrene/C ₃ -Fluoranthene/				C ₄ -Benzofluorene	2.5
		C ₂ -Benzofluorene	5.0	2104	258	C ₄ -Pyrene/C ₄ -Fluoranthene/	
1962	244	C ₃ -Pyrene/C ₃ -Fluoranthene/				C ₄ -Benzofluorene	9.9
		C ₂ -Benzofluorene	3.9	2120	242	C ₁ -Chrysene/C ₁ -Triphenylene	8.2
1971	244	C ₃ -Pyrene/C ₃ -Fluoranthene/		2138	258	C ₄ -Pyrene/C ₄ -Fluoranthene/	
	-	C ₂ -Benzofluorene	20			C ₃ -Benzofluorene	2.0
1994	244	C ₃ -Pyrene/C ₃ -Fluoranthene/		2148	258	C ₄ -Pyrene/C ₄ -Fluoranthene/	
		C ₂ -Benzofluorene	4.4			C ₃ -Benzofluorene	8.8
2007	244	C ₃ -Pyrene/C ₃ -Fluoranthene/		2174	258	C ₄ -Pyrene/C ₄ -Fluoranthene/	
		C ₂ -Benzofluorene	9.5			C ₃ -Benzofluorene	4.3
2019	244	C ₃ -Pyrene/C ₃ -Fluoranthene/		2182	258	C ₄ -Pyrene/C ₄ -Fluoranthene/	
		C ₂ -Benzofluorene	5.6			C ₃ -Benzofluorene	3.7
2026	244	C ₃ -Pyrene/C ₃ -Fluoranthene/		2218	256	C ₂ -Chrysene/C ₂ -Triphenylene	13.7
		C ₂ -Benzofluorene	5.1	2242	256	C ₂ -Chrysene/C ₂ -Triphenylene	14
		-		2255	256	C ₂ -Chrysene/C ₂ -Triphenylene	5.8

•

Table 6.5.1. Concluded.

Scan	M/W	Compound	ppb
2264	256	C Churrens (C Twishanulans	c -
	256	C ₂ -Chrysene/C ₂ -Triphenylene	5.7
2271	256	C ₂ -Chrysene/C ₂ -Triphenylene	8.6
2283	256	C ₂ -Chrysene/C ₂ -Triphenylene	3.4
2289	252	Benzofluoranthene	4.6
2323	256	C ₂ -Chrysene/C ₂ -Triphenylene	13
2335	258	C ₄ -Pyrene/C ₄ -Fluoranthene/	
		C ₃ -Benzofluorene	14
2355	270	C ₃ -Chrysene/C ₃ -Triphenylene	4.3
2367	252	Benzo(e)pyrene	18
2381	252	Benzo(a)pyrene	7.5
2388	270	C ₃ -Chrysene/C ₃ -Triphenylene	2.4
2397	270	C ₃ -Chrysene/C ₃ -Triphenylene	6.2
2411	252	Perylene	3.9
2466	270	C ₃ -Chrysene/C ₃ -Triphenylene	4.3
2497	270	C ₃ -Chrysene/C ₃ -Triphenylene	7.9
2505	266	C ₁ -Benzofluoranthene/Benzo(e)-	
		pyrene/Benzo(a)pyrene/Perylene	3.
2525	284	C ₄ -Chrysene/C ₄ -Triphenylene	1.5
2540	266	C _l -Benzofluoranthene/Benzo(e)-	
		pyrene/Benzo(a)pyrene/Perylene	4.9
2549	266	C ₁ -Benzofluoranthene/Benzo(e)-	
		pyrene/Benzo(a)pyrene/Perylene	2.7
2620	284	C ₄ -Chrysene/C ₄ -Triphenylene	1.4

Scan	M/W	Compound	ppb
2626	280	C _ Ronzofluoranthono/Ronzo(a)	<u> </u>
2020	200	C ₂ -Benzofluoranthene/Benzo(e)- pyrene/Benzo(a)pyrene/Perylene	2.5
2630	280	C ₂ -Benzofluoranthene/Benzo(e)-	
		pyrene/Benzo(a)pyrene/Perylene	1.4
2653	284	C ₄ -Chrysene/C ₄ -Triphenylene	3.0
2671	280	C2-Benzofluoranthene/Benzo(e)-	
		pyrene/Benzo(a)pyrene/Perylene	2.8
2681	280	C ₂ -Benzofluoranthene/Benzo(e)-	
		pyrene/Benzo(a)pyrene/Perylene	1.1

.

Scan	MW	Compound	ppm
1468	166	Fluorene	61
1669	180	C _l -Fluorene	34
1678	180	C _l -Fluorene	61
1696	180	C _l -Fluorene	14
1794	178	Phenanthrene/Anthracene	229
1859	194	C ₂ -Fluorene	.16
1867	194	C ₂ -Fluorene	31
1879	194	C ₂ -Fluorene	27
1900	194	C ₂ -Fluorene	20
1926	194	C ₂ -Fluorene	8
1978	192	C _l -Phenanthrene/C _l -Anthracene	83
1986	192	C ₁ -Phenanthrene/C ₁ -Anthracene	98
2014	192	C ₁ -Phenanthrene/C ₁ -Anthracene	156
2022	192	C ₁ -Phenanthrene/C ₁ -Anthracene	103
2052	208	C ₃ -Fluorene	24
2068	208	C ₃ -Fluorene	20
2089	208	C ₃ -Fluorene	27
2011	192	C ₁ -Phenanthrene/C ₁ -Anthracene	156
2117	208	C ₃ -Fluorene	17
2122	206	C ₂ -Phenanthrene/C ₂ -Anthracene	19
2136	208	C ₂ -Phenanthrene/C ₂ -Anthracene	34
2146	206	C ₂ -Phenanthrene/C ₂ -Anthracene	66
2151	206	C ₂ -Phenanthrene/C ₂ -Anthracene	37

,

Scan	MW	Compound	ppr
2162	206	C ₂ -Phenanthrene/C ₂ -Anthracene	64
2187	206	C ₂ -Phenanthrene/C ₂ -Anthracene	334
2191	226	C ₃ -Dibenzothiophene	21
2196	206	C ₂ -Phenanthrene/C ₂ -Anthracene	164
2204	206	C ₂ -Phenanthrene/C ₂ -Anthracene	122
2204	226	C ₃ -Dibenzothiophene	66
2219	206	C ₂ -Phenanthrene/C ₂ -Anthracene	80
2239	226	C ₂ -Dibenzothiophene	144
2257	226	C ₂ -Dibenzothiophene	12
2260	206	C ₂ -Phenanthrene/C ₂ -Anthracene	45
2271	226	C ₂ -Dibenzothiophene	187
2285	226	C ₂ -Dibenzothiophene	119
2288	202	Pyrene/Fluoranthrene	56
2304	226	C ₂ -Dibenzothiophene	123
2310	226	C ₂ -Dibenzothiophene	137
2319	220	C ₃ -Phenanthrene/C ₃ -Anthracene	98
2328	240	C ₃ -Dibenzothiophene	18
2332	226	C ₂ -Dibenzothiophene	149
2343	226	C ₂ -Dibenzothiophene	15
2347	220	C ₃ -Phenanthrene/C ₃ -Anthracene	132
2348	240	C ₃ -Dibenzothiophene	31
2358	226	C ₂ -Dibenzothiophene	45
2360	220	C ₃ -Phenanthrene/C ₃ -Anthracene	175

Scan	MW	Compound	ppm
2368	240	C ₃ -Dibenzothiophene	25
2386	226	C ₂ -Dibenzothiophene	22
2392	226	C ₂ -Dibenzothiophene	11
2402	240	C ₃ -Dibenzothiophene	39
2410	240	C ₃ -Dibenzothiophene	15
2412	220	C ₃ -Phenanthrene/C ₃ -Anthracene	18
2432	216	C ₁ -Pyrene/C ₁ -Fluoranthene/	
		Benzofluorene	51
2439	240	C ₃ -Dibenzothiophene	13
2449	240	C ₃ -Dibenzothiophene	15
2459	216	C ₁ -Pyrene/C ₁ -Fluoranthene/	
		Benzofluorene	38
2465	220	C ₃ -Phenanthrene/C ₃ -Anthracene	166
2482	240	C ₃ -Dibenzothiophene	17
2490	216	C ₁ -Pyrene/C ₁ -Fluoranthene/	
		Benzofluorene	57
2504	240	C ₃ -Dibenzothiophene	28
2527	240	C ₃ -Dibenzothiophene	31
2552	216	C ₁ -Pyrene/C ₁ -Fluoranthene/	
		Benzofluorene	6
2594	230	C ₂ -Pyrene/C ₂ -Fluoranthene/	
		C ₁ -Benzofluorene	16
2603	230	C ₂ -Pyrene/C ₂ -Fluoranthene/	
		C ₁ -Benzofluorene	45

Table 6.5.2. Continued.

Scan	MW	Compound	ppm
2621	230	C ₂ -Pyrene/C ₃ -Fluoranthene/	
		C ₁ -Benzofluorene	25
2628	230	C ₂ -Pyrene/C ₃ -Fluoranthene/	
		C ₁ -Benzofluorene	21
2644	230	C ₁ -Pyrene/C ₃ -Fluoranthene/	
		C ₁ -Benzofluorene	19
2654	230	C ₁ -Pyrene/C ₃ -Fluoranthene/	
		C ₁ -Benzofluorene	17
2682	230	C ₁ -Pyrene/C ₃ -Fluoranthene/	
	×.	C _l -Benzofluorene	39
2692	230	C ₁ -Pyrene/C ₃ -Fluoranthene/	
		C _l -Benzofluorene	32
2750	228	Chrysene/Triphenylene	102
2792	244	C ₃ -Pyrene/C ₃ -Fluoranthene/	
		C ₂ -Benzofluorene	41
2828	244	C ₃ -Pyrene/C ₃ -Fluoranthene/	
		C ₂ -Benzofluorene	21
2806	244	C ₃ -Pyrene/C ₃ -Fluoranthene/	
		C ₂ -Benzofluorene	30
2899	242	C ₁ -Chrysene/C ₁ -Triphenylene/	
		C ₁ -Benz(a)anthracene	62
2909	242	C1-Chrysene/C1-Triphenylene/	
		C ₁ -Benz(a)anthracene	26

Table 6.5.2. Concluded.

Scan	MW	Compound	ppm
2925	242	C _l -Chrysene/C _l -Triphenylene/	
		C ₁ -Benz(a)anthracene	19
2941	242	C _l -Chrysene/C _l -Triphenylene/	
		C ₁ -Benz(a)anthracene	19
3038	256	C ₂ -Chrysene/C ₂ -Triphenylene/	
		C ₂ -Benz(a)anthracene	23
3052	256	C ₂ -Chrysene/C ₂ -Triphenylene/	
		C ₂ -Benz(a)anthracene	5
2063	256	C ₂ -Chrysene/C ₂ -Triphenylene/	
		C ₂ -Benz(a)anthracene	19
2076	256	C ₂ -Chrysene/C ₂ -Triphenylene/	
		C ₂ -Benz(a)anthracene	8
2086	256	C ₂ -Chrysene/C ₂ -Triphenylene/	
		C ₂ -Benz(a)anthracene	9
2092	256	C ₂ -Chrysene/C ₂ -Triphenylene/	
		C ₂ -Benz(a)anthracene	13
3105	256	C ₂ -Chrysene/C ₂ -Triphenylene/	
		C ₂ -Benz(a)anthracene	5
3111	252	Benzofluoranthene	7
3144	256	C ₂ -Chrysene/C ₂ -Triphenylene/	
		C ₂ -Benz(a)anthracene	20
3171	270	C ₃ -Chrysene/C ₃ -Triphenylene/	
		C ₃ -Benz(a)anthracene	3

Scan	MW	Compound	ppm
3176	270	C ₃ -Chrysene/C ₃ -Triphenylene/	
		C ₃ -Benz(a)anthracene	4
3190	252	Benzo(e)pyrene	17
3208	252	Benzo(a)pyrene	1.9
3211	270	C ₃ -Chrysene/C ₃ -Triphenylene/	
		C ₃ -Benz(a)anthracene	6
3218	270	C ₃ -Chrysene/C ₃ -Triphenylene/	
		C ₃ -Benz(a)anthracene	9
3241	270	C ₃ -Chrysene/C ₃ -Triphenylene/	
		C ₃ -Benz(a)anthracene	4
3289	270	C ₃ -Chrysene/C ₃ -Triphenylene/	
		C ₃ -Benz(a)anthracene	5
3318	270	C ₃ -Chrysene/C ₃ -Triphenylene/	
		C ₃ -Benz(a)anthracene	11
3320	266	C _l -Benzopyrene/C _l -Benzo-	
		fluoranthene	2
3327	266	C _l -Benzopyrene/C _l -Benzo-	
		fluoranthene	4
3362	266	C ₁ -Benzopyrene/C ₁ -Benzo-	
		fluoranthene	6
3371	266	C _l -Benzopyrene/C _l -Benzo-	
		fluoranthene	4

.

Scan	M.W.	Compound	ppm	Scan	M.W.	Compound	ppm
700	166	Fluorene	47	1308	206	C ₂ -Phenanthrene/C ₂ -Anthracene	11
875	180	C ₁ -Fluorene	23	1323	208	C ₃ -Fluorene	22
885	180	C ₁ -Fluorene	41	1332	206	C ₂ -Phenanthrene/C ₂ -Anthracene	61
901	180	C ₁ -Fluorene	9	1342	208	C ₃ -Fluorene	6
993	178	Phenanthrene	15	1347	206	C ₂ -Phenanthrene/C ₂ -Anthracene	35
1028	194	C ₂ -Fluorene	6	1352	206	C ₂ -Phenanthrene/C ₂ -Anthracene	26
1052	194	C ₂ -Fluorene	12	1373	206	C ₂ -Phenanthrene/C ₂ -Anthracene	197
1060	194	C ₂ -Fluorene	21	1376	226	C ₃ -Dibenzothiophene	11
1072	194	C ₂ -Fluorene	17	1381	206	C ₂ -Phenanthrene/C ₂ -Anthracene	90
1092	194	C ₂ -Fluorene	12	1389	206	C ₂ -Phenanthrene/C ₂ -Anthracene	75
1117	194	C ₂ -Fluorene	5	1398	206	C ₂ -Phenanthrene/C ₂ -Anthracene	18
1169	192	C ₁ -Phenanthrene/C ₁ -Anthracene	57	1404	206	C ₂ -Phenanthrene/C ₂ -Anthracene	46
1176	192	C ₁ -Phenanthrene/C ₁ -Anthracene	66	1413	226	C ₂ -Dibenzothiophene	
1204	192	C ₁ -Phenanthrene/C ₁ -Anthracene	9	1421	206	C ₂ -Phenanthrene/C ₂ -Anthracene	25
1208	208	C ₃ -Fluorene	12	1423	226	C ₃ -Dibenzothiophene	65
1211	192	C ₁ -Phenanthrene/C ₁ -Anthracene	6	1444	206	C ₂ -Phenanthrene/C ₂ -Anthracene	26
1227	208	C ₁ -Phenanthrene/C ₁ -Anthracene	12	1449	208	C ₃ -Fluorene	18
1239	208	C ₁ -Phenanthrene/C ₁ -Anthracene	13	1452	220	C ₃ -Phenanthrene/C ₃ -Anthracene	6
1245	208	C ₁ -Phenanthrene/C ₁ -Anthracene	9	1452	226	C ₃ -Dibenzothiophene	64
1276	208	C ₁ -Phenanthrene/C ₁ -Anthracene	16	1468	226	C ₃ -Dibenzothiophene	46
1289	208	C ₁ -Phenanthrene/C ₁ -Anthracene	20	1472	202	Pyrene	27
1302	208	C ₁ -Phenanthrene/C ₁ -Anthracene	10	1473	206	C ₂ -Phenanthrene/C ₂ -Anthracene	8

Table 6.5.3. SHOP P1 oil aromatic components, 1983 May.

continued...

184

Table 6.5.3. Continued.

Scan	M.W.	Compound	ppm
1487	226	C ₃ -Dibenzothiophene	42
1493	226	C ₃ -Dibenzothiophene	52
1502	220	C ₃ -Phenanthrene/C ₃ -Anthracene	38
1510	240	C ₄ -Dibenzothiophene	6
1514	226	C ₃ -Dibenzothiophene	58
1529	220	C ₃ -Phenanthrene/C ₃ -Anthracene	50
1540	226	C ₃ -Dibenzothiophene	19
1543	220	C ₃ -Phenanthrene/C ₃ -Anthracene	65
1549	226	C ₃ -Dibenzothiophene	25
1557	220	C ₃ -Phenanthrene/C ₃ -Anthracene	17
1564	220	C ₃ -Phenanthrene/C ₃ -Anthracene	42
1568	226	C ₃ -Dibenzothiophene	10
1576	220	C ₃ -Phenanthrene/C ₃ -Anthracene	8
1581	220	C ₃ -Phenanthrene/C ₃ -Anthracene	10
1583	240	C ₄ -Dibenzothiophene	12
1592	220	C ₃ -Phenanthrene/C ₃ -Anthracene	7
1602	220	C ₃ -Phenanthrene/C ₃ -Anthracene	13
1606	240	C ₄ -Dibenzothiophene	4
1613	216	C _l -Pyrene/C _l -Fluoranthrene/	
		Benzofluorene	24
1620	240	C ₄ -Dibenzothiophene	3
1627	220	C ₃ -Phenanthrene/C ₃ -Anthracene	11

Scan	M.W.	Compound	ppm
1639	216	C _l -Pyrene/C _l -Fluoranthene/	
		Benzofluorene	17
1647	220	C ₃ -Phenanthrene/C ₃ -Anthracene	66
1662	240	C ₄ -Dibenzothiophene	5
1671	216	C1-Pyrene/C1-Fluoranthene/	
		Benzofluorene	25
1680	216	C _l -Pyrene/C _l -Fluoranthene/	
		Benzofluorene	18
1687	240	C ₄ -Dibenzothiophene	12
1746	240	C ₄ -Dibenzothiophene	7
1773	230	C ₂ -Pyrene/C ₂ -Fluoranthene/	
		C ₁ -Benzofluorene	7
1782	230	C ₂ -Pyrene/C ₂ -Fluoranthene/	
		C _l -Benzofluorene	19
1801	230	C ₂ -Pyrene/C ₂ -Fluoranthene/	
		C ₁ -Benzofluorene	11
1824	230	C ₂ -Pyrene/C ₂ -Fluoranthene/	
		C _l -Benzofluorene	9
1824	230	C ₂ -Pyrene/C ₂ -Fluoranthene/	
		C _l -Benzofluorene	7
1832	230	C ₂ -Pyrene/C ₂ -Fluoranthene/	
		C _l -Benzofluorene	6

Table	6.5.3.	Continued.

Scan	M.W.	Compound	ppm	Scan	M.W.	Compound
1841	230	C ₂ -Pyrene/C ₂ -Fluoranthene/		1993	244	C ₃ -Pyrene/C ₃ -Fluor
		C ₁ -Benzofluorene	5			C ₂ -Benzofluorene
1862	230	C2-Pyrene/C2-Fluoranthene/		2007	244	C ₃ -Pyrene/C ₃ -Fluor
		C ₁ -Benzofluorene	16			C ₂ -Benzofluorene
1871	230	C2-Pyrene/C2-Fluoranthene/		2020	244	C3-Pyrene/C3-Fluor
		C ₁ -Benzofluorene	13			C2-Benzofluorene
1879	230	C ₂ -Pyrene/C ₂ -Fluoranthene/		2026	244	C ₃ -Pyrene/C ₃ -Fluor
		C ₁ -Benzofluorene	4			C ₂ -Benzofluorene
1897	244	C ₃ -Pyrene/C ₃ -Fluoranthene/		2045	244	C ₃ -Pyrene/C ₃ -Fluor
		C ₂ -Benzofluorene	2			C ₂ -Benzofluorene
1922	240	C ₄ -Dibenzothiophene		2053	244	C ₃ -Pyrene/C ₃ -Fluora
1929	228	Chrysene/Triphenylene	42			C ₂ -Benzofluorene
1931	244	C ₃ -Pyrene/C ₃ -Fluoranthene/		2062	244	C ₃ -Pyrene/C ₃ -Fluora
		C2-Benzofluorene	3	2076	242	C ₁ -Chrysene/C ₁ -Tri
1940	244	C ₃ -Pyrene/C ₃ -Fluoranthene/		2088	242	C1-Chrysene/C1-Tri
		C ₂ -Benzofluorene	3	2103	242	C1-Chrysene/C1-Tri
1950	244	C ₃ -Pyrene/C ₃ -Fluoranthene/		2107	258	C4-Pyrene/C4-Fluora
		C ₂ -Benzofluorene	3			C ₃ -Benzofluorene
1962	244	C ₃ -Pyrene/C ₃ -Fluoranthene/		2120	242	CChrysene/CTrip
		C ₂ -Benzofluorene	4	2148	258	C ₄ -Pyrene/C ₄ -Fluora
1971	244	C ₃ -Pyrene/C ₃ -Fluoranthene/				C ₃ -Benzofluorene
		C ₂ -Benzofluorene	15	2175	258	C ₄ -Pyrene/C ₄ -Fluor
		_				C ₃ -Benzofluorene

Scan	M.W.	Compound	ррт
1993	244	C ₃ -Pyrene/C ₃ -Fluoranthene/	
		C ₂ -Benzofluorene	4
2007	244	C ₃ -Pyrene/C ₃ -Fluoranthene/	
		C2-Benzofluorene	8
2020	244	C ₃ -Pyrene/C ₃ -Fluoranthene/	
		C ₂ -Benzofluorene	5
2026	244	C ₃ -Pyrene/C ₃ -Fluoranthene/	
		C2-Benzofluorene	5
2045	244	C ₃ -Pyrene/C ₃ -Fluoranthene/	
		C2-Benzofluorene	7
2053	244	C ₃ -Pyrene/C ₃ -Fluoranthene/	
		C ₂ -Benzofluorene	3
2062	244	C ₃ -Pyrene/C ₃ -Fluoranthene	4
2076	242	C _l -Chrysene/C _l -Triphenylene	25
2088	242	C ₁ -Chrysene/C ₁ -Triphenylene	10
2103	242	C ₁ -Chrysene/C ₁ -Triphenylene	7
2107	258	C ₄ -Pyrene/C ₄ -Fluoranthene/	
		C ₃ -Benzofluorene	7
2120	242	C ₁ -Chrysene/C ₁ -Triphenylene	8
2148	258	C ₄ -Pyrene/C ₄ -Fluoranthene/	
		C ₃ -Benzofluorene	4
2175	258	C ₄ -Pyrene/C ₄ -Fluoranthene/	
		C ₃ -Benzofluorene	2

Table 6.5.3. Concluded.

Scan	M.W.	Compound	ppm
2183	258	C ₄ -Pyrene/C ₄ -Fluoranthene/	
		C ₃ -Benzofluorene	2
2218	256	C ₂ -Chrysene/C ₂ -Triphenylene	9
2242	256	C2-Chrysene/C2-Triphenylene	8
2255	256	C2-Chrysene/C2-Triphenylene	4
2265	256	C ₂ -Chrysene/C ₂ -Triphenylene	3
2271	256	C ₂ -Chrysene/C ₂ -Triphenylene	6
2284	256	C2-Chrysene/C2-Triphenylene	2
2289	252	Benzofluoranthene	3
2324	256	C ₂ -Chrysene/C ₂ -Triphenylene	8
2336	258	C ₄ -Pyrene/C ₄ -Fluoranthene/	
		C ₃ -Benzofluorene	7
2357	270	C ₃ -Chrysene/C ₃ -Triphenylene	2
2368	252	Benzo(e)pyrene	8
2384	252	Benzo(a)pyrene	1.9
2390	270	C ₃ -Chrysene/C ₃ -Triphenylene	3
2397	270	C ₃ -Chrysene/C ₃ -Triphenylene	4
2419	270	C ₃ -Chrysene/C ₃ -Triphenylene	2
2437	266	C ₁ -Benzofluoranthene/C ₁ -	
		Benzopyrene	1.6
2468	270	C ₃ -Chrysene/C ₃ -Triphenylene	2
2498	270	C ₃ -Chrysene/C ₃ -Triphenylene	4
2499	266	C ₁ -Benzofluoranthene/C ₁ -	
		Benzopyrene	1.4

Scan	M.W.	Compound	ppm
2505	266	C ₁ -Benzofluoranthene/C ₁ -	
		Benzopyrene	2
2527	284	C ₄ -Chrysene/C ₄ -Triphenylene	1
2541	266	C ₁ -Benzofluoranthene/	
		C ₁ -Benzopyrene	3
2550	266	C _l -Benzofluoranthene/	
		C ₁ -Benzopyrene	2
2628	280	C ₂ -Benzofluoranthene/	
		C ₂ -Benzopyrene	1.2
2633	280	C ₂ -Benzofluoranthene/	
		C ₂ -Benzopyrene	1.0
2655	284	C ₄ -Chrysene/C ₄ -Triphenylene	2
2673	280	C2-Benzofluoranthene/	
		C ₂ -Benzopyrene	1.6
2680	280	C ₂ -Benzofluoranthene/	
		C ₂ -Benzopyrene	0.7
2777	276	Benzo(ghi)perylene	0.9

Scan	M.W.	Compound	ppm	Scan	M.W.	Compound	ppm
698	166	Fluorene	86	1273	208	C ₃ -Fluorene	13
873	180	C ₁ -Fluorene	56	1286	208	C ₃ -Fluorene	15
882	180	C ₁ -Fluorene	56	1299	208	C ₃ -Fluorene	8
898	180	C ₁ -Fluorene	14	1305	206	C ₂ -Phenanthrene/C ₂ -Anthracene	7
990	178	Phenanthrene	196	1319	208	C ₃ -Fluorene	13
1026	194	C ₂ -Fluorene	9	1329	206	C ₂ -Phenanthrene/C ₂ -Anthracene	39
1050	194	C ₂ -Fluorene	24	1340	208	C ₃ -Fluorene	4
1058	194	C ₂ -Fluorene	21	1344	206	C ₂ -Phenanthrene/C ₂ -Anthracene	25
1062		C ₂ -Fluorene	14	1350	206	C ₂ -Phenanthrene/C ₂ -Anthracene	20
1069	194	C ₂ -Fluorene	25	1368	208	C ₃ -Fluorene	4
1089	194	C ₂ -Fluorene	19	1370	206	C ₂ -Phenanthrene/C ₂ -Anthracene	119
1114	194	C ₂ -Fluorene	8	1373	225	C ₃ -Dibenzothiophene	25
1166	192	C ₁ -Phenanthrene/C ₁ -Anthracene	72	1395	206	C ₂ -Phenanthrene/C ₂ -Anthracene	10
1173		C ₁ -Phenanthrene/C ₁ -Anthracene	80	1401	206	C ₂ -Phenanthrene/C ₂ -Anthracene	28
1 1 9 1		C ₁ -Phenanthrene/C ₁ -Anthracene	15	1419		C_2 -Phenanthrene/ C_2 -Anthracene	16
1200		C ₁ -Phenanthrene/C ₁ -Anthracene	139	1420	226	C2-Dibenzothiophene	48
1205		C ₃ -Fluorene	9	1438	226	C ₃ -Dibenzothiophene	6
1208		C ₁ -Phenanthrene/C ₁ -Anthracene	89	1441	206	C ₂ -Phenanthrene/C ₂ -Anthracene	16
1226		C ₃ -Fluorene	12	1447		C ₃ -Fluorene	12
1236		C ₃ -Fluorene	9	1449		C ₃ -Phenanthrene/C ₃ -Anthracene	5
1242		C ₃ -Fluorene	7	1452		C ₃ -Dibenzothiophene	51
1261		C ₃ -Fluorene	5	1465		C ₃ -Dibenzothiophene	37

Table 6.5.4. SHOP P3 oil aromatic components, 1983 February.

continued...

188

Table 6.5.4. Continued.

Scan	M.W.	Compound	ppm
1466	208	C ₃ -Fluorene	4
1470	202	Pyrene/Fluoranthene	15
1471	220	C ₃ -Phenanthrene/C ₃ -Anthracene	4
1478	220	C ₃ -Phenanthrene/C ₃ -Anthracene	3
1484	226	C ₃ -Dibenzothiophene	33
1490	226	C ₃ -Dibenzothiophene	38
1500	220	C ₃ -Phenanthrene	27
1507	240	C ₄ -Dibenzothiophene	6
1512	226	C ₃ -Dibenzothiophene	42
1523	226	C ₃ -Dibenzothiophene	5
1527	240	C ₄ -Dibenzothiophene	-9
1539	220	C ₃ -Phenanthrene/C ₃ -Anthracene	48
1547	226	C ₃ -Benzothiophene	14
1555	220	C ₃ -Phenanthrene/C ₃ -Anthracene	13
1562	220	C ₃ -Phenanthrene/C ₃ -Anthracene	29
1565	226	C ₃ -Benzothiophene	6
1574	220	C ₃ -Phenanthrene/C ₃ -Anthracene	6
1579	220	C ₃ -Phenanthrene/C ₃ -Anthracene	7
1580	240	C ₄ -Dibenzothiophene	13
1588	240	C ₄ -Dibenzothiophene	5
1591	220	C ₃ -Phenanthrene/C ₃ -Anthracene	5
1600	220	C ₃ -Phenanthrene/C ₃ -Anthracene	5

Scan	M.W.	Compound	ppm
1604	240	C ₄ -Dibenzothiophene	4
1611	216	C1-Pyrene/C1-Fluoranthene/	
		Benzofluorene	16
1625	220	C ₃ -Phenanthrene/C ₃ -Anthracene	8
1628	240	C ₄ -Dibenzothiophene	5
1638	216	C ₁ -Pyrene/C ₁ -Fluoranthene/	
		Benzofluorene	11
1644	220	C ₃ -Phenanthrene/C ₃ -Anthracene	47
1660	240	C ₄ -Dibenzothiophene	5
1669	216	C1-Pyrene/C1-Fluoranthene/	
		Benzofluorene	17
1679	216	C _l -Pyrene/C _l -Fluoranthene/	
		Benzofluorene	12
1682	240	C ₄ -Dibenzothiophene	5
1686	240	C ₄ -Dibenzothiophene	6
1705	240	C ₄ -Dibenzothiophene	9
1730	240	C ₄ -Dibenzothiophene	. 4
1745	240	C ₄ -Dibenzothiophene	5
1771	230	C ₂ -Pyrene/C ₂ -Fluoranthene/	
		C ₁ -Benzofluorene	5
1780	230	C ₂ -Pyrene/C ₂ -Fluoranthene/	
		C ₁ -Benzofluorene	16

.

Table 6.5.4. Continued.

can	M.W.	Compound	ppm
799	230	C ₂ -Pyrene/C ₂ -Fluoranthene/	
		C ₁ -Benzofluorene	8
807	230	C ₂ -Pyrene/C ₂ -Fluoranthene/	
		C ₁ -Benzofluorene	б
821	230	C ₂ -Pyrene/C ₂ -Fluoranthene/	
		C _l -Benzofluorene	5
831	230	C ₂ -Pyrene/C ₂ -Fluoranthene/	
		C _l -Benzofluorene	5
840	230	C ₂ -Pyrene/C ₂ -Fluoranthene/	
		C _l -Benzofluorene	4
860	230	C ₂ -Pyrene/C ₂ -Fluoranthene/	
		C _l -Benzofluorene	16
870	230	C ₂ -Pyrene/C ₂ -Fluoranthene/	
		C ₁ -Benzofluorene	10
878	230	C2-Pyrene/C2-Fluoranthene/	
		C _l -Benzofluorene	2
896	244	C ₃ -Pyrene/C ₃ -Fluoranthene/	
		C ₂ -Benzofluorene	2
927	228	Chrysene/Triphenylene	34
930	244	C ₃ -Pyrene/C ₃ -Fluoranthene/	
		C ₂ -Benzofluorene	3

9

Scan	M.W.	Compound	ppm
1939	244	C ₃ -Pyrene/C ₃ -Fluoranthene/	
		C ₂ -Benzofluorene	3
1949	244	C ₃ -Pyrene/C ₃ -Fluoranthene/	
		C ₂ -Benzofluorene	3
1961	244	C ₃ -Pyrene/C ₃ -Fluoranthene/	
		C ₂ -Benzofluorene	4
1969	244	C ₃ -Pyrene/C ₃ -Fluoranthene/	
		C2-Benzofluorene	19
1992	244	C ₃ -Pyrene/C ₃ -Fluoranthene/	
		C2-Benzofluorene	7
2005	244	C ₃ -Pyrene/C ₃ -Fluoranthene/	
		C2-Benzofluorene	8
2007	244	C ₃ -Pyrene/C ₃ -Fluoranthene/	
		C ₂ -Benzofluorene	4
2018	244	C ₃ -Pyrene/C ₃ -Fluoranthene/	
		C ₂ -Benzofluorene	7
2024	244	C ₃ -Pyrene/C ₃ -Fluoranthene/	
		C ₂ -Benzofluorene	5
2044	244	C ₃ -Pyrene/C ₃ -Fluoranthene/	
		C ₂ -Benzofluorene	6
2061	244	C ₃ -Pyrene/C ₃ -Fluoranthene/	
		C ₂ -Benzofluorene	4

continued...

Table 6.5.4. Concluded.

,

Scan	M.W.	Compound	ppm
2075	242		03
2075	242	C ₁ -Chrysene/C ₁ -Triphenylene	21
2087	242	C _l -Chrysene/C _l -Triphenylene	10
2102	242	C _l -Chrysene/C _l -Triphenylene	6
2118	242	C _l -Chrysene/C _l -Triphenylene	7
2216	256	C ₂ -Chrysene/C ₂ -Triphenylene	9
2240	256	C ₂ -Chrysene/C ₂ -Triphenylene	9
2253	256	C ₂ -Chrysene/C ₂ -Triphenylene	3
2269	256	C ₂ -Chrysene/C ₂ -Triphenylene	6
2282	256	C ₂ -Chrysene/C ₂ -Triphenylene	2
2288	252	Benzofluoranthene	4.1
2322	256	C ₂ -Chrysene/C ₂ -Triphenylene	9
2354	270	C ₃ -Chrysene/C ₃ -Triphenylene	2
2367	252	Benzo(e)pyrene	8.8
2380	270	C ₃ -Chrysene/C ₃ -Triphenylene	2
2383	252	Benzo(a)pyrene	1.6
2387	270	C ₃ -Chrysene/C ₃ -Triphenylene	2
2396	270	C ₃ -Chrysene/C ₃ -Triphenylene	4
2434	266	C ₁ -Benzofluoranthene/	
		C ₁ -Benzopyrene	3
2465	270	C ₃ -Chrysene/C ₃ -Triphenylene	3

Scan	M.W.	Compound	ppm
2496	270	C ₃ -Chrysene/C ₃ -Triphenylene	6
2503	266	C ₁ -Benzofluoranthene/	
		C ₁ -Benzopyrene	3
2538	266	C ₁ -Benzofluoranthene/	
		C _l -Benzopyrene	5
2547	266	C _l -Benzofluoranthene	
		C _l -Benzopyrene	3

. _____

à

Scan	M,	/W Compound	ppb	Scan	M,	/W Compound	ppb
704	166	Fluorene	67·	1288	208	C ₃ -Fluorene	25
876	180	C ₁ -Fluorene	32	1301	208	C ₃ -Fluorene	13
886	180	C ₁ -Fluorene	60	1306	206	C ₂ -Phenanthrene/C ₂ -Anthracene	14
990	180	C ₁ -Fluorene	13	1321	208	C ₃ -Fluorene	28
993	178	Phenanthrene	247	1330	206	C ₂ -Phenanthrene/C ₂ -Anthracene	79
1028	194	C ₂ -Fluorene	8	1340	208	C ₃ -Fluorene	7
1052	194	C ₂ -Fluorene	16	1345	206	C ₂ -Phenanthrene/C ₂ -Anthracene	47
1059	194	C ₂ -Fluorene	16	1350	206	C ₂ -Phenanthrene/C ₂ -Anthracene	33
1064	194	C ₂ -Fluorene	10	1372	206	C ₂ -Phenanthrene/C ₂ -Anthracene	254
1072	194	C ₂ -Fluorene	25	1375	226	C ₃ -Dibenzothiophene	13
1092	194	C ₂ -Fluorene	17	1379	206	C ₂ -Phenanthrene/C ₂ -Anthracene	119
1116	194	C ₂ -Fluorene	7	1387	226	C ₃ -Dibenzothiophene	38
1168	192	C ₁ -Phenanthrene/C ₁ -Anthracene	82	1396	206	C ₂ -Phenanthrene/C ₂ -Anthracene	26
1175	192	C ₁ -Phenanthrene/C ₁ -Anthracene	94	1402	206	C ₂ -Phenanthrene/C ₂ -Anthracene	56
1203	192	C ₁ -Phenanthrene/C ₁ -Anthracene	148	1421	226	C ₃ -Dibenzothiophene	85
1207	208	C ₃ -Fluorene	16	1439	226	C ₃ -Dibenzothiophene	8
1210	192	C ₁ -Phenanthrene/C ₁ -Anthracene	99	1442	206	C ₂ -Phenanthrene/C ₂ -Anthracene	33
1225	208	C ₃ -Fluorene	16	1453	226	C ₃ -Dibenzothiophene	81
1237	208	C ₃ -Fluorene	15	1466	226	C ₃ -Dibenzothiophene	58
1243	208	C ₃ -Fluorene	11	1470	202	Pyrene	36
1253	208	C ₃ -Fluorene	5	1472	206	C ₂ -Phenanthrene/C ₂ -Anthracene	36
1262	208	C ₃ -Fluorene	6	1479	220	C ₃ -Phenanthrene/C ₃ -Anthracene	8
1275	208	C ₃ -Fluorene	21			5 5	

Table 6.5.5. SHOP P3 oil aromatic components, 1983 May.

5 • J. J. J.

continued...

192

Table 6.5.5. Continued.

۲.

Scan	M/	W Compound	ppb
1485	226	C ₃ -Dibenzothiophene	55
1491	226	C ₃ -Dibenzothiophene	60
1500	220	S C ₃ -Phenanthrene/C ₃ -Anthracene	46
1508	240	C ₄ -Dibenzothiophene	7
1513	226	C ₃ -Dibenzothiophene	71
1523	226	C ₃ -Dibenzothiophene	6
1529	240	C ₄ -Dibenzothiophene	12
1531	220	C ₃ -Phenanthrene/C ₃ -Anthracene	65
1538	226	C ₃ -Dibenzothiophene	26
1541	220	C ₃ -Phenanthrene/C ₃ -Anthracene	84
1549	226	C ₃ -Dibenzothiophene	33
1556	220	C ₃ -Phenanthrene/C ₃ -Anthracene	21
1560	240	C ₄ -Dibenzothiophene	6
1562	220	C ₃ -Phenanthrene/C ₃ -Anthracene	55
1566	226	C ₃ -Dibenzothiophene	13
1572	226	C ₃ -Dibenzothiophene	5
1574	220	C ₃ -Phenanthrene/C ₃ -Anthracene	12
1580	220	C ₃ -Phenanthrene/C ₃ -Anthracene	12
1589	240	C ₄ -Dibenzothiophene	6
1591	220	C ₃ -Phenanthrene/C ₃ -Anthracene	12
1600	220	C ₃ -Phenanthrene/C ₃ -Anthracene	17
1605	220	C ₃ -Phenanthrene/C ₃ -Anthracene	5
1610	220	C ₃ -Phenanthrene/C ₃ -Anthracene	11

Scan	M/	W Compound	ppb
1612	216	C _l -Pyrene/C _l -Fluoranthene	31
1618	240	C _A -Dibenzothiophene	4
1626	220	G ₃ -Phenanthrene/C ₃ -Anthracene	13
1638	216	C ₁ -Pyrene/C ₁ -Fluoranthene	22
1660	240	C ₄ -Dibenzothiophene	6
1669	216	C ₁ -Pyrene/C ₁ -Fluoranthene	32
1679	216	C ₁ -Pyrene/C ₁ -Fluoranthene	20
1682	240	C ₄ -Dibenzothiophene	14
1698	240	C ₄ -Dibenzothiophene	2
1705	240	C ₄ -Dibenzothiophene	11
1731	240	C ₄ -Dibenzothiophene	10
1745	240	C ₄ -Dibenzothiophene	8
1771	230	C ₂ -Pyrene/C ₂ -Fluoranthene	10
1780	230	C ₂ -Pyrene/C ₂ -Fluoranthene	24
1799	230	C ₂ -Pyrene/C ₂ -Fluoranthene	13
1807	230	C ₂ -Pyrene/C ₂ -Fluoranthene	11
1822	230	C ₂ -Pyrene/C ₂ -Fluoranthene	10
1831	230	C ₂ -Pyrene/C ₂ -Fluoranthene	8
1839	230	C ₂ -Pyrene/C ₂ -Fluoranthene	7
1859	230	C ₂ -Pyrene/C ₂ -Fluoranthene	21
1869	230	C ₂ -Pyrene/C ₂ -Fluoranthene	17
1878	230	C ₂ -Pyrene/C ₂ -Fluoranthene	4

Scan	M,	/W Compound	ppb	Scan	M,	/W Compound	ppb
1915	228	Benzo(a)anthracene	3	2113	268	C ₆ -Dibenzothiophene	2
1926	228	Chrysene/Triphenylene	61	2118	242	C _l -Chrysene/C _l -Triphenylene	12
1930	244	C ₃ -Pyrene/C ₃ -Fluoranthene	4	2131	268	C ₆ -Dibenzothiophene	2
1938	244	C ₃ -Pyrene/C ₃ -Fluoranthene	4	2136	258	C ₄ -Pyrene/C ₄ -Fluoranthene	2
1949	244	C ₃ -Pyrene/C ₃ -Fluoranthene	5	2145	258	C ₄ -Pyrene/C ₄ -Fluoranthene	7
1960	244	C ₃ -Pyrene/C ₃ -Fluoranthene	6	2149	268	C ₆ -Dibenzothiophene	6
1969	244	C ₃ -Pyrene/C ₃ -Fluoranthene	25	2166	268	C ₆ -Dibenzothiophene	2
1992	244	C ₃ -Pyrene/C ₃ -Fluoranthene	6	2172	258	C ₄ -Pyrene/C ₄ -Fluoranthene	3
2005	244	C ₃ -Pyrene/C ₃ -Fluoranthene	12	2181	258	C ₄ -Pyrene/C ₄ -Fluoranthene	3
2017	244	C ₃ -Pyrene/C ₃ -Fluoranthene	б	2215	256	C ₂ -Chrysene/C ₂ -Triphenylene	13
2020	254	C ₅ -Dibenzothiophene	5	2239	256	C ₂ -Chrysene/C ₂ -Triphenylene	14
2024	244	C ₃ -Pyrene/C ₃ -Fluoranthene	10	2252	256	C ₂ -Chrysene/C ₂ -Triphenylene	5
2043	244	C ₃ -Pyrene/C ₃ -Fluoranthene	9	2268	256	C ₂ -Chrysene/C ₂ -Triphenylene	9
2045	268	C ₆ -Dibenzothiophene	2	2281	256	C ₂ -Chrysene/C ₂ -Triphenylene	4
2051	244	C ₃ -Pyrene/C ₃ -Fluoranthene	3	2286	252	Benzofluoranthene	6
2060	244	C ₃ -Pyrene/C ₃ -Fluoranthene	3	2320	256	C ₂ -Chrysene/C ₂ -Triphenylene	4
2062	268	C ₆ -Dibenzothiophene	2	2333	258	C ₄ -Pyrene/C ₄ -Fluoranthene	13
2066	244	C ₃ -Pyrene/C ₃ -Fluoranthene	2	2347	270	C ₃ -Chrysene/C ₃ -Triphenylene	2
2074	242	C _l -Chrysene/C _l -Triphenylene	36	2352	258	C ₄ -Pyrene/C ₄ -Fluoranthene	2
2086	242	C ₁ -Chrysene/C ₁ -Triphenylene	15	2354	270	C ₃ -Chrysene/C ₃ -Triphenylene	2
2101	242	C ₁ -Chrysene/C ₁ -Triphenylene	10	2365	252	Benzo(e)pyrene	14
2104	258	C ₄ -Pyrene/C ₄ -Fluoranthene	5	2380	252	Benzo(a)pyrene	3
2111	258	C ₄ -Pyrene/C ₄ -Fluoranthene	3	2386	270	C ₃ -Chrysene/C ₃ -Triphenylene	5

Table 6.5.5. Continued.

Table 6.5.5. Concluded.

ppb	/W Compound	Scan M/W Compour	
7	C ₃ -Chrysene/C ₃ -Triphenylene	270	2395
5	C ₃ -Chrysene/C ₃ -Triphenylene	270	2416
	C ₁ -Benzofluoranthene/C ₁ -	266	2434
2	Benzopyrene/C _l -Perylene		
3	C ₃ -Chrysene/C ₃ -Triphenylene	270	2457
4	C ₃ -Chrysene/C ₃ -Triphenylene	270	2465
8	C ₃ -Chrysene/C ₃ -Triphenylene	270	2495
	C ₁ -Benzofluoranthene/C ₁ -	266	2503
4	Benzopyrene/C _l -Perylene		
	C _l -Benzofluoranthene/C _l -	266	2538
6	Benzopyrene/C _l -Perylene		
	C _l -Benzofluoranthene/C _l -	266	2547
3	Benzopyrene/C _l -Perylene		
2	C ₄ -Chrysene/C ₄ -Triphenylene	284	2616
	C2-Benzofluoranthene/C2-	280	2622
3	Benzopyrene/C ₂ -Perylene		
4	C ₄ -Chrysene/C ₄ -Triphenylene	284	2651
	C ₂ -Benzofluoranthene/C ₂ -	280	2670
4	Benzopyrene/C2-Perylene		
	C2-Benzofluoranthene/C2-	280	2680
1	Benzopyrene/C ₂ -Perylene		
3	Benzo(ghi)perylene	276	2773

APPENDIX 6.6

Aromatic and nitrogen components of UMATAC-produced oil.

can	M.W.	Compound	ppm	Scan	M.W.	Compound	ppm
319	128	Naphthalene	581	692	154	Acenaphthene	126
325	134	Benzothiophene	287	698	176	C ₃ -Benzothiophene	81
425	148	C _l -Benzothiophene	137	700	170	C ₃ -Naphthalene	23
437		C ₁ -Naphthalene	835	714		C ₃ -Naphthalene	56
437		C ₁ -Benzothiophene	293	714		C ₃ -Benzothiophene	149
444		C ₁ -Benzothiophene	156	727		C ₃ -Naphthalene	99
456		C ₁ -Benzothiophene	421	729		C ₃ -Benzothiophene	262
458		C ₁ -Naphthalene	681	735		C ₃ -Benzothiophene	198
554		C ₂ -Benzothiophene	224	736		C ₃ -Naphthalene	238
563		C ₂ -Naphthalene	176	743		C ₃ -Naphthalene	32
564		C ₂ -Benzothiophene	116	752		C ₃ -Benzothiophene	287
582		C ₂ -Naphthalene	417	754		C ₃ -Naphthalene	89
583		C ₂ -Benzothiophene	345	759		C ₃ -Naphthalene	173
593		C ₂ -Benzothiophene	474	764		C ₃ -Benzothiophene	34
604		C ₂ -Naphthalene	711	766		C ₃ -Naphthalene	206
606		C ₂ -Benzothiophene	162	780		C ₃ -Naphthalene	64
608		C ₂ -Naphthalene	278	780		C ₃ -Benzothiophene	49
613		C ₂ -Benzothiophene	202	788		C ₃ -Benzothiophene	22
615		, Biphenyl	56	791		C ₃ -Naphthalene	241
629	156	C ₂ -Naphthalene	332	794		C ₃ -Benzothiophene	49
633		C ₂ -Naphthalene	82	795		C ₃ -Naphthalene	142
641		Acenaphthylene	101	805		C ₃ -Benzothiophene	47
651	156	C ₂ -Naphthalene	227	817		C ₄ -Benzothiophene	.42

Table 6.6.1. UMATAC overhead oil aromatic components, 1982 October.

continued...

X

Scan	M.W.	Compound	ppm	Scan	M.W.	Compound	ppm
820	170	C ₃ -Naphthalene	272	992	204	C ₅ -Benzothiophene	17
833	176	C ₃ -Benzothiophene	38	994	190	C ₄ -Benzothiophene	14
840	170	C ₃ -Naphthalene	48	996	180	C ₁ -Fluorene	7
843	190	C ₄ -Benzothiophene	44	1001	190	C ₄ -Benzothiophene	30
845	166	Fluorene	119	1013	190	C ₄ -Benzothiophene	36
852	176	C ₃ -Benzothiophene	71	1016	180	C ₁ -Fluorene	15
854		C ₃ -Naphthalene	172	1028	180	C ₁ -Fluorene	73
854		C_{a} -Benzothiophene	97	1039		C ₁ -Fluorene	45
861		C_{a}^{\dagger} -Benzothiophene	36	1049	204	C ₅ -Benzothiophene	17
865		C ₁ -Acenaphthene/C ₁ -Biphenyl	64	1056		C ₁ -Fluorene	60
874		C _a -Benzothiophene	144	1065		C ₅ -Benzothiophene	14
875		C ₁ -Acenaphthene/C ₁ -Biphenyl	118	1090		C ₁ -Fluorene	37
881		C ₁ -Fluorene	29	1094	204	C ₅ -Benzothiophene	12
883		C ₃ -Naphthalene	57	1105		C ₅ -Benzothiophene	11
886		رع-Acenaphthene/C ₁ -Biphenyl	60	1108	184	Dibenzothiophene	104
888		C ₄ -Benzothiophene	39	1150	178	Phenanthrene	125
897		C ₄ -Benzothiophene	37	1151	204	C ₅ -Benzothiophene	12
907		C _d -Benzothiophene	43	1164	178	Anthracene	50
916		C ₄ -Benzothiophene	55	1188	194	C ₂ -Fluorene	15
941		C ₄ -Benzothiophene	52	1206		C ₂ -Fluorene	27
956		C _a -Benzothiophene	28	1215		C ₂ -Fluorene	20
973		4 C ₄ -Benzothiophene	40	1221		C ₂ -Fluorene	15
984		4 C ₅ -Benzothiophene	17	1229		C ₂ -Fluorene	17

Table 6.6.1. Continued.

Table 6.6.1. Continued.

Scan	M.W.	Compound	ppm	Scan	M.W.	Compound	ppm
1250	194	C ₂ -Fluorene	27	1457	208	C ₃ -Fluorene	9
1263	198	C ₁ -Dibenzothiophene	74	1463	206	C ₂ -Phenanthrene/C ₂ -Anthracene	7
1264	194	C ₂ -Fluorene	11	1466	212	C ₂ -Dibenzothiophene	12
1273	194	C ₂ -Fluorene	26	1479	208	C ₃ -Fluorene	11
1276	198	C ₁ -Dibenzothiophene	14	1480	212	C ₂ -Dibenzothiophene	61
1295	198	C ₁ -Dibenzothiophene	58	1488	206	C ₂ -Phenanthrene/C ₂ -Anthracene	14
1306		C ₁ -Dibenzothiophene	21	1499		C ₂ -Dibenzothiophene	19
1318		C ₁ -Dibenzothiophene	21	1502		C ₂ -Phenanthrene/C ₂ -Anthracene	12
1326		CPhenanthrene/C ₁ -Anthracene	28	1518		C ₂ -Phenanthrene/C ₂ -Anthracene	12
1328		C ₁ -Dibenzothiophene	53	1529		C ₂ -Phenanthrene/C ₂ -Anthracene	39
1346		C ₁ -Phenanthrene/C ₁ -Anthracene	28			C ₂ -Dibenzothiophene	11
1363		C ₃ -Fluorene	10	1537		C ₂ -Phenanthrene/C ₂ -Anthracene	25
1369		C ₁ -Phenanthrene/C ₁ -Anthracene	38	1545		C2-Phenanthrene/C2-Anthracene	13
1384		C ₃ -Fluorene	וו	1554		C ₂ -Phenanthrene/C ₂ -Anthracene	7
1393		C ₃ -Fluorene	8	1560		C ₂ -Phenanthrene/C ₂ -Anthracene	7
1400		C ₃ -Fluorene	12	1561		Fluoranthene	8
1412		C ₂ -Dibenzothiophene	24	1578	206	C ₂ -Phenanthrene/C ₂ -Anthracene	7
1420		C ₃ -Fluorene	13	1578		C ₃ -Dibenzothiophene	18
1432		C ₃ -Fluorene	13	1600		C ₂ -Phenanthrene/C ₂ -Anthracene	6
1433		C ₂ -Dibenzothiophene	21	1608		C ₃ -Dibenzothiophene	13
1440		C ₂ -Dibenzothiophene	16	1624		C ₃ -Dibenzothiophene	13
1445		C ₂ -Dibenzothiophene	18	1631		Pyrene	12
1446		C ₃ -Fluorene	8	1656	220	C ₃ -Phenanthrene/C ₃ -Anthracene	12

Table 6.6.1. Continued.

Scan	M.W.	Compound	ppm	Scan	M.W.	Compound	ppm
1671	226	C ₃ -Dibenzothiophene	12	2000	230	C ₂ -Pyrene, C ₂ -Fluoranthene/	
1683	220	C ₃ -Phenanthrene/C ₃ -Anthracene	9			C ₁ -Benzofluorene	2.1
1697	220	C ₃ -Phenanthrene/C ₃ -Anthracene	13	2010	230	Benzonaphthothiophene	3.3
1707	226	C ₃ -Dibenzothiophene	10	2076	228	Benzo(a)anthracene	4.2
1719	220	C ₃ -Phenanthrene/C ₃ -Anthracene	10	2087	244	C ₃ -Pyrene/C ₃ -Fluoranthene/	
1757		C ₃ -Phenanthrene/C ₃ -Anthracene	5			C ₂ -Benzofluorene	1.2
1770	216	Benzo(a)fluorene	5	2089	228	Chrysene/Triphenylene	9.6
1798	216	Benzo(b)fluorene	5	2106	244	C ₃ -Pyrene/C ₃ -Fluoranthene/	
1802	220	C ₃ -Penanthrene/C ₃ -Anthracene	8			C ₂ -Benzofluorene	2.1
1830	216	C ₁ -Pyrene	5	2120	248	C ₁ -Benzonaphthothiophene	4.6
1837	216	C ₁ -Pyrene	3.5	2129	244	C ₃ -Pyrene/C ₃ -Fluoranthene/	
1938	230	C ₂ -Pyrene, C ₂ -Fluoranthene/				C ₂ -Benzofluorene	3.1
		C ₁ -Benzofluorene	4.3	2148	248	C ₁ -Benzonaphthothiophene	6.8
1958	230	C ₂ -Pyrene, C ₂ -Fluoranthene/		2166	244	C ₃ -Pyrene/C ₃ -Fluoranthene/	
		C ₁ -Benzofluorene	3.6			C ₂ -Benzofluorene	1.7
1967	230	C ₂ -Pyrene, C ₂ -Fluoranthene/		2178	244	C ₃ -Pyrene/C ₃ -Fluoranthene/	
		C ₁ -Benzofluorene	1.3			C ₂ -Benzofluorene	2.4
1982	230	C ₂ -Pyrene, C ₂ -Fluoranthene/		2184	248	C ₁ -Benzonaphthothiophene	10.6
		C ₁ -Benzofluorene	1.8			C ₃ -Pyrene/C ₃ -Fluoranthene/	
1986	234	Benzonaphthothiophene	6.9			C ₂ -Benzofluorene	3.2
1991	230	C ₂ -Pyrene, C ₂ -Fluoranthene/		2209	248	C ₁ -Benzonaphthothiophene	6.2
		C ₁ -Benzofluorene	1.7	2221		C ₁ -Benzo(a)anthracene/C ₁ -Chrysene/	
		,				C _l -Triphenylene	1.9

Table 6.6.1. Continued.

Scan	M.W.	Compound	ppm	Scan	M.W.	Compound	ppm
2234	242	C _l -Benzo(a)anthracene/C _l -Chrysene/		2461	256	C ₂ -Benzo(a)anthracene/C ₂ -Triphenylene/	
		C _l -Triphenylene	3.9			C ₂ -Chrysene	1.8
2246	242	C _l -Benzo(a)anthracene/C _l -Chrysene/		2482	256	C ₂ -Benzo(a)anthracene/C ₂ -Triphenylene/	
		C _l -Triphenylene	4.7			C ₂ -Chrysene	1.5
2262	242	C _l -Benzo(a)anthracene/C _l -Chrysene/		2513	270	C ₃ -Benzo(a)anthracene/C ₃ -Chrysene/	
		C _l -Triphenylene	2.7			C ₃ -Triphenylene	1.8
2268	262	C ₂ -Benzohaphthothiophene	6.2	2529	252	Benzo(e)pyrene	3.2
2278	242	CBenzo(a)anthracene/C ₁ -Chrysene/		2537	270	C ₃ -Benzo(a)anthracene/C ₃ -Triphenylene/	
		C ₁ -Triphenylene	5.0			C ₃ -Chrysene	1.3
2398	256	C ₂ -Benzo(a)anthracene/C ₂ -Triphenylene/		2543	252	Benzo(a)pyrene	2.9
		C ₂ -Chrysene	3.9	2544	270	C ₃ -Benzo(a)anthracene/C ₃ -Triphenylene/	
2300	262	C ₂ -Benzonaphthothiophene	3.0			C ₃ -Chrysene	1.3
2309	262	C ₂ -Benzonaphthothiophene	2.3	2555	270	C ₃ -Benzo(a)anthracene/C ₃ -Triphenylene/	
2315	262	C ₂ -Benzonaphthothiophene	2.3			C ₃ -Chrysene	2.0
2334	262	C ₂ -Benzonaphthothiophene	7.0	2571	252	Perylene	1.2
2359		C ₂ -Benzonaphthothiophene	3.7	2594	266	C ₁ -Benzo(a)pyrene/C ₁ -Benzofluranthenes/	
2412	256	C ₂ -Benzo(a)anthracene/C ₂ -Triphenylene/				C ₁ -Benzo(e)pyrene/C ₁ -Perylene	1.3
		C ₂ -Chrysene	1.8	2618	270	C ₃ -Benzo(a)anthracene/C ₃ -Triphenylene/	
2423	256	C ₂ -Benzo(a)anthracene/C ₂ -Triphenylene/				C ₃ -Chrysene	2.0
		C ₂ -Chrysene	1.5	2633	266	C ₁ -Benzo(a)pyrene/C ₁ -Benzoflurathenes/	
2429	256	C ₂ -Benzo(a)anthracene/C ₂ -Triphenylene/				C ₁ -Benzo(e)pyrene/C ₁ -Perylene	1.8
		C ₂ -Chrysene	2.1	2657	270	C ₃ -Benzo(a)anthracene/C ₃ -Triphenylene/	
2448	252	Benzofluoranthenes	3.2			C ₃ -Chrysene	1.4

Table 6.6.1. Conclude

Scan	M.W.	Compound	ppm	Scan	Μ.₩.	Compound	ppm
2658		C _l -Benzo(a)pyrene/C _l -Benzo(e)pyrene/		2772	280	C ₂ -Benzo(a)pyrene/C ₂ -Benzo(e)pyrene/	
		C _l -Benzofluoranthenes/C _l -Perylene	1.0			C ₂ -Benzofluoranthenes/C ₂ -Perylene	1.0
2665	266	C1-Benzo(a)pyrene/C1-Benzo(e)pyrene/		2780	280	C2-Benzo(a)pyrene/C2-Benzo(e)pyrene/	
		C ₁ -Benzofluoranthenes/C ₁ -Perylene	1.1			C ₂ -Benzofluoranthenes/C ₂ -Perylene	1.7
2701		C ₁ -Benzo(a)pyrene/C ₁ -Benzo(e)pyrene/		2831	280	C ₂ -Benzo(a)pyrene/C ₂ -Benzo(e)pyrene/	
		C ₁ -Benzofluoranthenes/C ₁ -Perylene	1.6			C ₂ -Benzofluoranthenes/C ₂ -Perylene	1.3
2710		C ₁ -Benzo(a)pyrene/C ₁ -Benzo(e)pyrene/		2841	280	C ₂ -Benzo(a)pyrene/C ₂ -Benzo(e)pyrene/	
		C ₁ -Benzofluoranthenes/C ₁ -Perylene	1.1			C ₂ -Benzofluoranthenes/C ₂ -Perylene	0.6
		1 1		2934	276	Z Benzo(ghi)perylene	1.1
can	M.W.	Compound	ppm	Scan	M.W.	Compound	ррл
-----	------	------------------------------------	-----	------	------	--	-----
08	134	Benzo(b)thiophene	5.8	564	162	C ₂ -Benzo(b)thiophene	46
69	144	C _l -Dihydronaphthalene	68	565		C ₂ -Naphthalene	230
74	144	•	80	567		C ₂ -Benzo(b)thiophene	77
01	144	•	23	570		C ₂ -Naphthalene	170
07	142	•	260	577		C ₂ -Benzo(b)thiophene	140
08	148	C _l -Benzo(b)thiophene	100	592		C ₂ -Naphthalene	120
17	148	•	45	597		C ₂ -Naphthalene	45
25	148	C ₁ -Benzo(b)thiophene	150	614		C ₂ -Naphthalene	81
26	142	l-Methylnaphthalene	210	631		C ₂ -Benzo(b)thiophene	21
71	158	C ₂ -Dihydronaphthalene	22	662		C ₁ -Biphenyl	0.1
89	158	E	18	664		C ₃ -Benzo(b)thiophene	66
94	158		27	677		C ₃ -Benzo(b)thiophene	130
04	158	C ₂ -Dihydronaphthalene	47	689		C ₃ -Naphthalene	59
11	154	l,l'-Biphenyl	56	690		C ₃ -Benzo(b)thiophene	180
22	162	C ₂ -Benzo(b)thiophene	120	696		C ₃ -Benzo(b)thiophene	200
30		C ₂ -Naphthalene	59	714		C ₃ -Benzo(b)thiophene	220
31		C ₂ -Benzo(b)thiophene	63	721		C ₃ -Naphthalene	70
34		C ₂ -Dihydronaphthalene	39	727		C ₃ -Benzo(b)thiophene	29
35		C ₂ -Benzo(b)thiophene	26	728		C ₃ -Naphthalene	100
35		C ₂ -Naphthalene	28	740		C ₃ -Benzo(b)thiophene	170
37		C ₂ -Dihydronaphthalene	50	746		C _l -Biphenyl	18
45		C ₂ -Naphthalene	180	753		C ₃ -Naphthalene	110
46		C ₂ -Benzo(b)thiophene	210	757		C ₃ -Naphthalene	77
56		C ₂ -Benzo(b)thiophene	300	769		5 C ₃ -Benzo(b)thiophene	41

Table 6.6.2. UMATAC overhead oil aromatic components, 1982 October.

continued...

¥

Scan	M.W.	Compound	ppm	Scan	M.W.	Compound
780	190	C ₄ -Benzo(b)thiophene	21	921	190	C ₄ -Benzo(b)thiophene
782		C ₃ -Naphthalene	170	937	190	C ₄ -Benzo(b)thiophene
797	176	C ₃ -Benzo(b)thiophene	32	947	184	C ₄ -Naphthalene
804	170	C ₃ -Naphthalene	28	949	204	C ₅ -Benzo(b)thiophene
806		Fluorene	110	958	204	C ₅ -Benzo(b)thiophene
813	176	C ₃ -Benzo(b)thiophene	67	964	190	C ₄ -Benzo(b)thiophene
816	170	C ₃ -Naphthalene	80	972	184	C ₄ -Naphthalene
816	190	C ₄ -Benzo(b)thiophene	80	976	204	C ₅ -Benzo(b)thiophene
825	190	C ₄ -Benzo(b)thiophene	34	979	184	C ₄ -Naphthalene
829	168	C ₁ -Biphenyl	63	984	190	C ₅ -Benzo(b)thiophene
835	168	C _l -Biphenyl	110	986	180	C ₁ -Fluorene
837	190	C ₄ -Benzo(b)thiophene	90	9 89	180	l-Methylfluorene
841	190	C ₄ -Benzo(b)thiophene	47	999	180	2-Methylfluorene
843	170	C ₃ -Naphthalene	31	1004	184	C ₄ -Naphthalene
847		C ₁ -Biphenyl	49	1017	194	C ₂ -Fluorene
852	190	C ₄ -Benzo(b)thiophene	35	1019	184	C ₄ -Naphthalene
862	190	C ₄ -Benzo(b)thiophene	35	1026	182	C ₂ -Biphenyl
869	182	C ₂ -Biphenyl	39	1031	182	C ₂ -Biphenyl
871	190	C ₄ -Benzo(b)thiophene	47	1041	182	C ₂ -Biphenyl
878	184	C ₄ -Naphthalene	18	1045	184	C ₄ -Naphthalene
881		C ₄ -Benzo(b)thiophene	54	1051	182	C ₂ -Biphenyl
905		C_4 -Benzo(b)thiophene	40	1068	184	Dibenzothiophene
908		C_4 -Benzo(b)thiophene	23	1075	182	C ₂ -Biphenyl
914		C ₄ -Naphthalene	45	1110	178	Phenanthrene

Table 6.6.2. Continued.

continued...

ррт

• :

Table 6.6.2. Continued.

.

Scan	M.W.	Compound	ppm	Scan	M.W.	Compound	ppm
1114	204	C ₅ -Benzo(b)thiophene	15	1365	208	C ₃ -Fluorene	22
1125	178	Anthracene	52	1365		C ₂ -Dibenzothiophene	11
1169	194	C ₂ -Fluorene	41	1376		C ₂ -Dibenzothiophene	34
1177		C ₂ -Fluorene	34	1388	222	C ₄ -Fluorene	3.6
1182		C ₂ -Fluorene	20	1395		C ₃ -Fluorene	17
1189		C ₂ -Fluorene	38	1397	212	C ₂ -Dibenzothiophene	24
1 1 97		C ₂ -Fluorene	12	1405	212	C ₂ -Dibenzothiophene	24
1204	208	C ₃ -Fluorene	11	1409	212	C ₂ -Dibenzothiophene	25
1211		C ₂ -Fluorene	51	1416	212	C ₂ -Dibenzothiophene	11
1224		C ₁ -Dibenzothiophene	100	1422	208	C ₃ -Fluorene	10
1235		C ₂ -Fluorene	25	1431		C ₂ -Dibenzothiophene	17
1238	198	L	22	1443	212	C2-Dibenzothiophene	91
1255	198	C ₁ -Dibenzothiophene	77	1443	208	C ₃ -Fluorene	18
1267	198	C ₁ -Dibenzothiophene	40	1453	206	C ₂ -Phenanthrene/C ₂ -Anthracene	14
1280	198	C ₁ -Dibenzothiophene	19	1464		C ₂ -Dibenzothiophene	35
1287		C ₁ -Phenanthrene/C ₁ -Anthracene	43	1467	206	C ₂ -Phenanthrene/C ₂ -Anthracene	13
1289		C ₁ -Dibenzothiophene	78	1471	212	C ₂ -Dibenzothiophene	13
1295		C ₁ -Phenathrene/C ₁ -Anthracene	73	1473	206	C ₂ -Phenanthrene/C ₂ -Anthracene	8.2
1309		C ₁ -Phenathrene/C ₁ -Anthracene	29	1484	206	C_2 -Phenanthrene/ C_2 -Anthracene	16
1324		C ₁ -Phenathrene/C ₁ -Anthracene	80	1493	206	C_2 -Phenanthrene/ C_2 -Anthracene	56
1327		C ₃ -Fluorene	19	1502	206	C ₂ -Phenanthrene/C ₂ -Anthracene	35
1331	192	l-Methylphenanthrene	52	1510	206	C ₂ -Phenanthrene/C ₂ -Anthracene	22
1348	208	C ₃ -Fluorene	23	1520		C ₂ -Phenanthrene/C ₂ -Anthracene	8.5
1358		C ₃ -Fluorene	14	1525	202	Fluoranthene	7.8

Table 6.6.2. Concluded.

Scan	M.W.	Compound	ppm
1526	206	C ₂ -Phenanthrene/C ₂ -Anthracene	9.7
1597	202	Pyrene	15
1625	220	C ₃ -Phenanthrene/C ₃ -Anthracene	3.3
1652	220	C_3 -Phenanthrene/ C_3 -Anthracene	11
1664	220	C_3 -Phenanthrene/ C_3 -Anthracene	17
1687	220	C ₃ -Phenanthrene/C ₃ -Anthracene	7.2
1798	216	C ₁ -Pyrene/C ₁ -Fluoranthene	2.5
1807	216	C ₁ -Pyrene/C ₁ -Fluoranthene	1.4

Scan	M.W.	Compound	ppm	Scan	M.W.	Compound	ppm
328	142	C ₁ -Dihydronaphthalene	83	590	154	Acenaphthene	67
350		C ₁ -Benzo(b)thiophene	26	609	176	C ₃ -Benzo(b)thiophene	74
357	142	2-Methylnaphthalene	290	620		C ₃ -Naphthalene	57
358	148	C _l -Benzo(b)thiophene	57	620	176	C ₃ -Benzo(b)thiophene	110
366		C ₁ -Benzo(b)thiophene	28	626	176	C ₃ -Benzo(b)thiophene	130
373	148	C ₁ -Benzo(b)thiophene	83	642	176	C ₃ -Benzo(b)thiophene	150
374	142	l-Methylnaphthalene	235	652	170	C ₃ -Naphthalene	58
416	158	C ₂ -Dihydronaphthalene	22	657		C ₃ -Naphthalene	100
453	154	Biphenyl	19	668		C ₃ -Benzo(b)thiophene	110
462	162	C ₂ -Benzo(b)thiophene	59	680		C ₃ -Naphthalene	150
470		C ₂ -Naphthalene	69	708		C ₃ -Naphthalene	140
471		C ₂ -Benzo(b)thiophene	44	732	166	Fluorene	94
477	158	-	38	740	176	C ₃ -Benzo(b)thiophene	57
484	156	C ₂ -Naphthalene	120	741	170	C ₃ -Naphthalene	79
485		C ₂ -Benzo(b)thiophene	110	742	190	C ₄ -Benzo(b)thiophene	87
495	162	C ₂ -Benzo(b)thiophene	140	754	168	Propenylnaphthalene	. 69
503	156	C ₂ -Naphthalene	160	760	168	Propenylnaphthalene	100
505	162	C ₂ -Benzo(b)thiophene	62	762	190	C ₄ -Benzo(b)thiophene	190
507	156	C ₂ -Naphthalene	130	771	168	Propenylnaphthalene	60
513	162	C ₂ -Benzo(b)thiophene	67	786	190	C ₄ -Benzo(b)thiophene	41
516	154	Dihydroethenonaphthalene	22	794	190	C ₄ -Benzo(b)thiophene	45
528	156	C ₂ -Naphthalene	120	803	190	C ₄ -Benzo(b)thiophene	75
545		C ₃ -Dihydronaphthalene	11	858	190	C ₄ -Benzo(b)thiophene	50
549		C ₂ -Napthalene	60	868	184	C ₄ -Naphthalene	57

Table 6.6.3. UMATAC sidedraw oil aromatic components, 1982 October.

continued...

Table	6.6.3.	Continued.

Scan	M.W.	Compound	ppm	Scan	M.W.	Compound	ppm
878	204	C ₅ -Benzo(b)thiophene	51	1086	194	C ₂ -Fluorene	59
884		C_{A} -Benzo(b)thiophene	54	1094	194	C ₂ -Fluorene	87
892	184	C ₄ -Naphthalene	65	1104		C_{4} -Biphenyl/ C_{4} -Acenaphthene	54
898	204	C ₅ -Benzo(b)thiophene	100	1106	194	C ₂ -Fluorene	69
904	190	C_{A} -Benzo(b)thiophene	79	1127		C ₂ -Fluorene	81
908	180	C ₁ -Fluorene	94	1127		C ₃ -Fluorene	40
917	180	C _l -Fluorene	78	1135	196	C ₃ -Biphenyl/C ₃ -Acenaphthene	47
933		C ₁ -Fluorene	84	1139	198	C ₁ -Dibenzothiophene	180
934	182	C ₂ -Bipheny1/C ₂ -Acenaphthene	63	1152	194	C ₂ -Fluorene	68
949		$\tilde{C_2}$ -Bipheny1/ $\tilde{C_2}$ -Acenaphthene	34	1162	196	C ₃ -Bipheny1/C ₃ -Acenaphthene	65
959		$C_2 - Bipheny1/C_2 - Acenaphthene$	50	1170	196	C ₃ -Biphenyl/C ₃ -Acenaphthene	56
962	184	C ₄ -Naphthalene	53	1170	198	C ₁ -Dibenzothiophene	130
967	182	C ₂ -Biphenyl/C ₂ -Acenaphthene	10	1183	198	C ₁ -Dibenzothiophene	46
973	196	C_3 -Biphenyl/ C_3 -Acenaphthene	. 59	1196	198	C ₁ -Dibenzothiophene	44
9 84	184	Dibenzothiophene	150	1201	196	C ₃ -Biphenyl/C ₃ -Acenaphthene	51
991	182	C ₂ -Bipheny1/C ₂ -Acenaphthene	50	1203	192	C ₁ -Phenanthrene/C ₁ -Anthracene	100
1007	196	C ₃ -Bipheny1/C ₃ -Acenaphthene	64	1204		C ₁ -Dibenzothiophene	160
1020		C ₃ -Bipheny1/C ₃ -Acenaphthene	39	1211	192	CPhenanthrene/C ₁ -Anthracene	170
1026	178	Phenanthrene	200	1219		C ₄ -Bipheny1/C ₄ -Acenaphthene	55
1032	204	C ₅ -Benzo(b)thiophene	55	1224		C ₁ -Phenanthrene/C ₁ -Anthracene	78
1037		C ₃ -Bipheny1/C ₃ -Acenaphthene	32	1239		CPhenanthrene/CAnthracene	200
1041	178	Anthracene	71	1243		C ₃ -Fluorene	72
1043	210	C ₄ -Biphenyl/C ₄ -Acenaphthene	41	1245		C ₁ -Phenanthrene/C ₁ -Anthracene	140
1075		C ₃ -Bipheny1/C ₃ -Acenaphthene	33	1264		C ₃ -Fluorene	75

Table 6.6.3. Continued.

ø

Scan	M.W.	Compound	ppm	Scan	M.W.	
1280	212	C ₂ -Dibenzothiophene	49	1439	206	C ₂ -Phenanth
1282	208	C ₃ -Fluorene	60	1439	212	C ₂ -Dibenzot
1291	212	C ₂ -Dibenzothiophene	130	1458	206	C ₂ -Phenanth
1311	208	C ₃ -Fluorene	65	1459	226	C ₃ -Dibenzot
1313	212	C ₂ -Dibenzothiophene	98	1479	206	C ₂ -Phenanth
1324	212	C ₂ -Dibenzothiophene	190	1488	226	C ₃ -Dibenzot
1337	208	C ₃ -Fluorene	50	1504	226	C ₃ -Dibenzot
1345	212	C ₂ -Dibenzothiophene	71	1508	202	Pyrene
1347	210	C ₄ -Bipheny1/C ₄ -Acenaphthene	62	1523	226	C ₃ -Dibenzot
1356	212	C ₂ -Dibenzothiophene	390	1530	226	C ₃ -Dibenzot
1358	208	C ₃ -Fluorene	91	1537	220	C ₃ -Phenanth
1367	206	C ₂ -Phenanthrene/C ₂ -Anthracene	75	1545	226	C ₃ -Dibenzot
1376	212	C ₂ -Dibenzothiophene	150	1551	226	C ₃ -Dibenzot
1382	206	C ₂ -Phenanthrene/C ₂ -Anthracene	64	1566	220	C ₃ -Phenanth
1384	212	C ₂ -Dibenzothiophene	66	1578	220	C ₃ -Phenanth
1387	206	C ₂ -Phenanthrene/C ₂ -Anthracene	35	1587	226	C ₃ -Dibenzot
1399	206	C ₂ -Phenanthrene/C ₂ -Anthracene	76	1600	220	C ₃ -Phenanth
1407	206	C ₂ -Phenanthrene/C ₂ -Anthracene	270	1606	226	C ₃ -Dibenzot
1408	212	C ₂ -Dibenzothiophene	91	1621	240	C ₄ -Dibenzot
1416	206	C ₂ -Phenanthrene/C ₂ -Anthracene	190	1628	240	C ₄ -Dibenzot
1424	206	C ₂ -Phenanthrene/C ₂ -Anthracene	110	1638	220	C ₃ -Phenanth
1424	226	C ₃ -Dibenzothiophene	77	1648	220	C ₃ -Phenanth
1434	206	5	45	1649	216	Benzo(a)flu
1438	202	Fluoranthene	91	1677	216	Benzo(b)flu

Scan	M.W.	Compound	ppm
1439	206	C ₂ -Phenanthrene/C ₂ -Anthracene	70
1439	212	C ₂ -Dibenzothiophene	94
1458	206	C ₂ -Phenanthrene/C ₂ -Anthracene	87
1459	226	C ₃ -Dibenzothiophene	220
1479	206	C ₂ -Phenanthrene/C ₂ -Anthracene	79
1488	226	C ₃ -Dibenzothiophene	230
1504	226	C ₃ -Dibenzothiophene	220
1508	202	Pyrene	180
1523	226	C ₃ -Dibenzothiophene	140
1530	226	C ₃ -Dibenzothiophene	170
1537	220	C ₃ -Phenanthrene/C ₃ -Anthracene	140
1545	226	C ₃ -Dibenzothiophene	110
1551	226	C ₃ -Dibenzothiophene	120
1566	220	C ₃ -Phenanthrene/C ₃ -Anthracene	190
1578	220	C ₃ -Phenanthrene/C ₃ -Anthracene	280
1587	226	C ₃ -Dibenzothiophene	150
1600	220	C ₃ -Phenanthrene/C ₃ -Anthracene	200
1606	226	C ₃ -Dibenzothiophene	81
1621	240	C ₄ -Dibenzothiophene	95
1628	240	C ₄ -Dibenzothiophene	80
1638	220	C ₃ -Phenanthrene/C ₃ -Anthracene	100
1648	220	C ₃ -Phenanthrene/C ₃ -Anthracene	91
1649	216	Benzo(a)fluorene	79
1677	216	Benzo(b)fluorene	110

-

continued...

. .

X

Scan	M.W.	Compound	ppm
1682	220	C ₃ -Phenanthrene/C ₃ -Anthracene	200
1698	240	C ₄ -Dibenzothiophene	94
1708	216	C ₁ -Pyrene	130
1709	218	C _l -Dihydropyrene	230
1717	216	C ₁ -Pyrene	82
1721	240	C ₄ -Dibenzothiophene	140
1742	240	C ₄ -Dibenzothiophene	98
1748	234	C ₄ -Phenanthrene	94
1756	232	C ₂ -Dihydropyrene	100
1769	216	C ₁ -Pyrene	30
1769	232	C ₂ -Dihydropyrene	130
1813	230	C2-Pyrene/C2-Fluoranthene/	
		C _l -Benzfluorene	55
1818	230	C ₂ -Pyrene/C ₂ -Fluoranthene/	
		C ₁ -Benzfluorene	46
1838	230	C ₂ -Pyrene/C ₂ -Fluoranthene/	
		C _l -Benzfluorene	56
1860	230	C ₂ -Pyrene/C ₂ -Fluoranthene/	
		C _l -Benzfluorene	46
1864	234	Benzonaphthothiophene	130
1896	234	Benzonaphthothiophene	72
1908	230	C ₂ -Pyrene	66
1954	228	Benzo(a)anthracene	55
1964	246	C ₃ -Dihydropyrene	84

Table 6.6.3. Continued.

Scan	M.W.	Compound	ppm
1966	228	Chrysene/Triphenylene	150
1976	244	C ₃ -Pyrene/C ₃ -Fluoranthene/	
		C ₂ -Benzfluorene	19
1997	248	C ₁ -Benzonaphthothiophene	120
2012	244	C ₃ -Pyrene/C ₃ -Fluoranthene/	
		C ₂ -Benzfluorene	130
2025	248	C ₁ -Benzonaphthothiophene	140
2032	244	C ₃ -Pyrene/C ₃ -Fluoranthene/	
		C ₂ -Benzfluorene	36
2060	248	C ₁ -Benzonaphthothiophene	220
2085	248	C ₁ -Benzonaphthothiophene	100
2095	242	C ₁ -Benzanthracene	10
2100	242	C ₁ -Benzanthracene	11
2112	242	C ₁ -Benzanthracene/C ₁ -Chrysene/	
		C _l -Triphenylene	130
2124	242	C ₁ -Benzanthracene/C ₁ -Chrysene/	
		C _l -Triphenylene	75
2140	242	Cj-Benzanthracene/Cj-Chrysene/	
		C ₁ -Triphenylene	35
2145	262	C ₂ -Benzonaphthothiophene	110
2146	242	Cj-Benzanthracene/Cj-Chrysene	
		C _l -Triphenylene	16
2156	242	C ₁ -Benzanthracene/C ₁ -Chrysene/	
		C _l -Triphenylene	51

Table 6.6.3. Concluded.

Scan	M.W.	Compound	ppm
2180	242	C _l -Chrysene/C _l -Triphenylene	12
2190	262	C ₂ -Benzonaphthothiophene	190
2213	262	C ₂ -Benzonaphthothiophene	180
2251	256	C ₂ -Benzanthracene/C ₂ -Chrysene	
		C ₂ -Triphenylene	59
2264	256	C ₂ -Benzanthracene/C ₂ -Chrysene/	
		C ₂ -Triphenylene	16
2275	256	C ₂ -Benzanthracene/C ₂ -Chrysene/	
		C ₂ -Triphenylene	54
2290	256	C ₂ -Benzanthracene/C ₂ -Chrysene/	
		C ₂ -Triphenylene	27
2298	256	C2-Benzanthracene/C2-Chrysene/	
		C ₂ -Triphenylene	25
2305	256	C ₂ -Benzanthracene/C ₂ -Chrysene/	
		C ₂ -Triphenylene	39
2315	276	C ₃ -Benzonaphthothiophene	99
2318	256	C ₂ -Chrysene/C ₂ -Triphenylene	14
2322	252	Benzo(b)fluoranthene	24
2336	256	C ₂ -Chrysene/C ₂ -Triphenylene	28
2340	276	C ₃ -Benzonaphthothiophene	130
2358	256	C ₂ -Chrysene/C ₂ -Triphenylene	26
2382	270	C ₃ -Benzanthracene/C ₃ -Chrysene/	
		C ₃ -Triphenylene	8.
		-	

.

Scan	M.W.	Compound	ppm
2389	270	C ₃ -Benzanthracene/C ₃ -Chrysene/	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		C ₃ -Triphenylene	17
2397	270	C ₃ -Benzanthracene/C ₃ -Chrysene/	
		C ₃ -Triphenylene	12
2400	5		
2406	270	C ₃ -Benzanthracene/C ₃ -Chrysene/	
		C ₃ -Triphenylene	8.8
2409	266	C ₁ -Benzofluoranthene/	
		C ₁ -Benzo(e)pyrene	14
2412	270	C ₃ -Chrysene/C ₃ -Triphenylene	16
2415	252	Benzo(a)pyrene	32
2420	270	C ₃ -Chrysene/C ₃ -Triphenylene	25
2430	270	C ₃ -Chrysene/C ₃ -Triphenylene	38
2442	252	Perylene	18
2452	270	C ₃ -Chrysene/C ₃ -Triphenylene	18

Scan	M.W.	Compound	ppm	Scan	M.W.	Compound	ppm
457	135	C ₃ -Aniline	6.8	881	173	C ₄ -Indole	2.9
495	143	?	7.3	891	185	C ₄ -Quinoline	7.1
521	135	C ₃ -Aniline	28	908	185	C ₄ -Quinoline	2.8
531	157	C _l -Naphthylamine	1.9	919	173	C ₄ -Indole	3.7
552	157	C _l -Naphthylamine	2.0	957	185	C ₄ -Quinoline	4.2
583	157	C ₂ -Quinoline or C ₁ -Naphthylamine	26	962	185	C ₄ -Quinoline	4.3
594	157	C ₂ -Quinoline or C ₁ -Naphthylamine	2.3	973	173	C ₄ -Indole	2.5
601	157	C ₂ -Quinoline or C ₁ -Naphthylamine	2.0	978	185	C ₄ -Quinoline	9.0
620	143	C _l -Quinoline or Naphthylamine	2.4	985	173	C ₄ -Indole	2.8
647	145	C ₂ -Indole	5.5	997	185	C ₄ -Quinoline	2.0
653	157	tany .	10	1030	185	C ₄ -Quinoline	4.8
655	145	C ₂ -Indole	3.9	1034	185	C ₄ -Quinoline	4.2
681	171	C ₃ -Quinoline	8.3	1056	169	4-Aminobiphenyl	17
698	144	C ₁ -Cinnoline	13	1066	183	C _l -Aminobiphenyl	9.6
714	157	C ₂ -Quinoline	3.6	1086	18 1	Aminofluorene	4.7
749	171	-	23	1128	183	C _l -Aminobiphenyl	4.3
753	171	C ₃ -Quinoline	19	1135	183	C ₁ -Aminobiphenyl	8.1
754	159	C ₃ -Indole	2.7	1139	195	C _l -Aminofluorene	9.6
758	159	C ₃ -Indole	2.3	1160	179	Benzo(f)quinoline	3.1
768	159	C ₃ -Indole	5.4	1182	195	C _l -Aminofluorene	3.4
805		C ₃ -Indole	6.5	1185	167	Carbazole	13
841	185	C ₄ -Quinoline	5.0	1245	197	C ₂ -Aminobiphenyl	9.6
849	158	C ₂ -Cinnoline	5.4	1274	180	Benzo(c)cinnoline	28
856	171	C ₃ -Quinoline	11	1301	181	C ₁ -Carbazole	23

Table 6.6.4. UMATAC sidedraw oil nitrogen components, 1982 October.

12.2

÷

Table 6.6.4. Continued.

Scan	M.W.	Compound	ppm	Scan	M.W.	Compound	ppm
1310	197	C ₂ -Aminobiphenyl	13	1528	194	C _l -Benzo(c)cinnoline	4.8
323	209	C ₂ -Aminofluorene	4.6	1549	209	C ₃ -Carbazole	21
1340	193	C ₁ -Benzoquinoline	3.2	1564	207	5	3.3
348	181	C ₁ -Carbazole	7.6	1570	209	C ₃ -Carbazole	31
1355	181	C _l -Carbazole	8.9	1585		C ₃ -Benzoquinoline	3.7
1373	209	C ₂ -Aminofluorene	6.3	1601		C ₃ -Benzoquinoline	4.2
375	181	C ₁ -Carbazole	16	1615		C ₃ -Benzoquinoline	3.9
1380	181	2-Aminofluorene	6.6	1619	221	C ₃ -Benzoquinoline	0.78
391	195	C ₂ -Carbazole	18	1623	208	C ₂ -Benzo(c)cinnoline	5.2
426	207	C ₁ -Aminophenanthrene/		1634		C ₃ -Benzoquinoline	5.7
		C ₁ -Aminoanthracene	12	1644	209	C ₃ -Carbazole	23
448	194	C ₁ -Benzo(c)cinnoline	6.8	1648	223	C ₃ -Aminofluorene	4.2
458	195	C ₂ -Carbazole	12	1664	223	C ₄ -Carbazole	12
458	194	C ₁ -Benzo(c)cinnoline	16	1666	221	C ₃ -Benzoquinoline	2.7
462	209	C ₂ -Aminofluorene	5.7	1674	221	C ₃ -Benzoquinoline	2.4
1463	195	C ₂ -Carbazole	10	1679	208	C ₂ -Benzo(c)cinnoline	2.7
469	195	E	12	1685	221	C ₃ -Benzoquinoline	2.3
1484	195		17	1692	221	C ₃ -Benzoquinoline	1.5
1488	195	C ₂ -Carbazole	14	1700	223	C ₄ -Carbazole	8.2
1509	194	C ₁ -Benzo(c)cinnoline	5.1	1710	223	C ₄ -Carbazole	23
1512	207	C ₂ -Benzoquinoline	5.2	1719	193	2-Aminoanthracene	2.1
1514	194	C ₁ -Benzo(c)cinnoline	3.5	1727	217	Aminopyrene/Aminofluoranthene	3.1
1519		C ₁ -Benzo(c)cinnoline	5.3	1742	223	C ₄ -Carbazole	15
1520		C ₂ -Carbazole	20	1754	221	C ₃ -Benzoquinoline	2.0

continued...

1

.

Table 6.6.4. Concluded.

Scan	M.W.	Compound	ppm
1759	223	C ₄ -Carbazole	10
1774	223	C ₄ -Carbazole	26
1781	223	C ₄ -Carbazole	18
1818	223	C ₄ -Carbazole	6.3
1824	237	C ₅ -Carbazole	6.7
1830	223	C ₄ -Carbazole	7.3
1864	237	C ₅ -Carbazole	12
1906	237	C ₅ -Carbazole	15
1976	237	C ₅ -Carbazole	9.8
2110	231	C _l -Benzocarbazole	3.8
2114	217	3-Aminofluoranthene	1.7
2161	217	1-Aminopyrene	51
2247	245	C ₂ -Benzocarbazole	4.5
2272	245	C ₂ -Benzocarbazole	8.3
2294	245	C ₂ -Benzocarbazole	4.4
2349	245	C ₂ -Benzocarbazole	7.5
2877	267	Dibenzocarbazole	1.3

Scan	M.W.	Compound	ppm	Scan	M.W.	Compound	ррт
364	117	Indole	1.2	1541	209	C ₃ -Carbazole	0.26
448	131	C _l -Indole	0.41	1547	209	C ₃ -Carbazole	0.32
474	131	C _l -Indole	0.43	1561	209	•	0.60
482	131	C _l -Indole	0.48	1567	209	C ₃ -Carbazole	0.35
573	131	C _l -Indole	0.28	1572		C ₃ -Carbazole	0.28
576	145	C ₂ -Indole	0.70	1580		C ₃ -Carbazole	0.65
610	145	C ₂ -Indole	0.66	1597		C ₃ -Carbazole	0.76
640	145	C ₂ -Indole	0.33	1617		C ₄ -Carbazole	0.43
142	167	Carbazole	2.9	1622	223	•	0.15
257	181	C _l -Carbazole	4.1	1634	223	C ₄ -Carbazole	0.22
303	181	C _l -Carbazole	0.92	1652		C ₄ -Carbazole	0.42
311	181	C ₁ -Carbazole	0.90	1663	223	•	0.93
327	181	C _l -Carbazole	1.3	1694	223	•	0.29
346	195	C ₂ -Carbazole	2.6	1709	237	•	0.16
367	195	C ₂ -Carbazole	0.46	1711	223	5	0.25
412	195	C ₂ -Carbazole	1.1	1727	223	C ₄ -Carbazole	0.57
417	195	C ₂ -Carbazole	0.91	1733		C ₄ -Carbazole	0.35
423	195	-	1.0	1737	237	•	0.086
437	195	C ₂ -Carbazole	1.4	1745	237	C ₅ -Carbazole	0.14
442	195	E	1.1	1752	237	5	0.092
445	209	C ₃ -Carbazole	1.0	1775	237	5	0.20
474	195	C ₂ -Carbazole	0.61	1845	251	C ₆ -Carbazole	0.044
502	209	C ₃ -Carbazole	1.6	1847	251	-	0.034
524	209	C ₃ -Carbazole	1.9	1858	237	-	0.29
		5		1895	251	C ₆ -Carbazole	0.028

Table 6.6.5.1. UMATAC overhead oil nitrogen components, 1982 October.

continued...

.

Scan	M.W.	Compound	ppm
1905	251	C ₆ -Carbazole	0.029
1927	237	C ₅ -Carbazole	0.091
1934	251	C ₆ -Carbazole	0.021
1964	251	C ₆ -Carbazole	0.028
2173	231	C ₁ -Benzocarbazole	0.036
2244	245	C ₂ -Benzocarbazole	0.048
2357	25 9	C ₃ -Benzocarbazole	0.067
2364	259	C ₃ -Benzocarbazole	0.069
2434	259	C ₃ -Benzocarbazole	0.046

Table 6.6.5.1. Concluded.

Scan	M.W.	Compound	ppm	Scan	M.W.	Compound	ppm
592	157	C ₁ -Naphthylamine/C ₂ -Quinoline	0.050	942	185	C ₄ -Quinoline	0.14
617	157	C ₁ -Naphthylamine/C ₂ -Quinoline	0.087	978	185	C ₄ -Quinoline	0.71
6 70	157	C ₁ -Naphthylamine/C ₂ -Quinoline	0.16	982	185	C ₄ -Quinoline	0.12
698		C ₂ -Naphthylamine/C ₃ -Quinoline	0.41	985	199	C ₄ -Naphthylamine/C ₅ -Quinoline	0.14
711		C ₂ -Naphthylamine/C ₃ -Quinoline	0.083	999	199		0.58
733		C ₂ -Cinnoline	0.28	1030	172	C ₃ -Cinnoline	0.23
756		C ₂ -Naphthylamine/C ₃ -Quinoline	0.094	1032	183	C ₁ -Aminobiphenyl	0.15
766		C ₂ -Naphthylamine/C ₃ -Quinoline	0.16	1034	199	C ₄ -Naphthylamine/C ₅ -Quinoline	0.32
781		C ₂ -Naphthylamine/C ₃ -Quinoline	0.23	1041		C ₁ -Diaminobiphenyl	0.29
786		C ₂ -Naphthylamine/C ₃ -Quinoline	0.057	1046		C ₄ -Naphthylamine/C ₅ -Quinoline	0.15
798		C ₂ -Naphthylamine/C ₃ -Quinoline	0.078	1057		C ₂ -Aminobiphenyl	0.17
809		C ₂ -Naphthylamine/C ₃ -Quinoline	0.14	1066		C ₄ -Naphthylamine/C ₅ -Quinoline	0.55
828		2-Aminobiphenyl	0.71	1078		C ₁ -Diaminobiphenyl	0.22
853	171	C ₂ -Naphthylamine/C ₃ -Quinoline	0.095	1079	169	4-Aminobiphenyl	8.9
861	185	C ₂ -Naphthylamine/C ₃ -Quinoline	0.78	1109	183	C ₁ -Aminobiphenyl	0.095
875	171	2 3	0.13	1120	199	C ₄ -Naphthylamine/C ₅ -Quinoline	0.14
877	184	1,1-Diphenylhydrazine	0.38	1128	179	Benzoquinoline	0.14
880	185	C ₃ -Naphthylamine	0.27	1137	185	C ₄ -Quinoline	0.27
886	183	C ₁ -Aminobiphenyl	0.14	1142	199	C ₄ -Naphthylamine	0.70
897	184	Diaminobiphenyl	0.30	1149	179	Acridine	0.033
912	185	C ₄ -Quinoline	1.0	1158	183	C ₁ -Aminobiphenyl	0.20
915	185	C ₃ -Quinoline	0.60	1173	198	C ₂ -Aminobiphenyl	0.38
927	185	C ₄ -Quinoline	0.14	1181	179	Phenanthridine/Benzo(f)quinoline	0.61
938	172	r -	0.24	1193	197	C ₂ -Aminobiphenyl	0.15

Table 6.6.5.2. UMATAC overhead oil nitrogen components, 1982 October.

Scan	М.W.	Compound	ppm
1198	199	C ₅ -Quinoline	0.17
1236	194	Unknown	0.14
1240	211	C ₃ -Aminobiphenyl	0.23
1268	197	C ₂ -Aminobiphenyl	0.36
1289	211	C ₃ -Aminobiphenyl	0.15
1298	180	Benzo(c)cinnoline	2.1
1315	193	C _l -Benzoquinoline	0.12
1316	211	C ₃ -Aminobiphenyl	0.14
1342	194	C _l -Benzo(c)cinnoline	0.29
1345	211	C ₃ -Aminobiphenyl	0.24
1358	211	C ₃ -Aminobiphenyl	0.080
1363	193	C ₁ -Benzoquinoline	0.14
1395	194	C ₁ -Benzo(c)cinnoline	0.67
1406	181	2-Aminofluorene	0.24
1450	207	C ₂ -Benzoquinoline	0.093
1464	211	C ₃ -Aminobiphenyl	0.059
1471	194	C _l -Benzo(c)cinnoline	0.37
1482	194	C ₁ -Benzo(c)cinnoline	0.42
1566	208	C ₂ -Benzo(c)cinnoline	0.046
1568	208	C ₂ -Benzo(c)cinnoline	0.050
1573	208	C ₂ -Benzo(c)cinnoline	0.087
1575	208	C ₂ -Benzo(c)cinnoline	0.062
2140	217	2 3-Aminofluoranthene	0.16
2189	217	Aminopyrene/Aminofluoranthene	18.0

Table 6.6.5.2. Concluded.

APPENDIX 6.7

Aromatic components of oils produced from combustion tube experiments.

Scan	៣.₩.	Compound	ppm	Scan	m.w.	Compound	ppm
424	142	2-Methylnaphthalene	43.3	717	176	C ₃ -Benzothiophene	23.2
425	148	C ₁ -Benzothiophene	14.8	719		C ₃ -Naphthalene	11.0
434	148	C ₁ -Benzothiophene	8.8	725		C ₃ -Benzothiophene	8.0
443	148	C ₁ -Benzothiophene	39.9	736	176	C ₃ -Benzothiophene	46.1
444	142	l-Methylnaphthalene	36.0	743	170	C ₃ -Naphthalene	15.4
542	162	C ₂ -Benzothiophene	26.2	751	170	C ₃ -Naphthalene	25.1
549	156	C ₂ -Naphthalene	8.8	763	176	C ₃ -Benzothiophene	32.3
551	162	C ₂ -Benzothiophene	17.2	775		C ₃ -Naphthalene	21.6
564	156	C ₂ -Naphthalene	36.1	778	176	C ₃ -Benzothiophene	9.0
566	162	C ₂ -Benzothiophene	49.2	779	170	C ₃ -Naphthalene	16.0
576	162	C ₂ -Benzothiophene	64.5	802	176	C ₃ -Benzothiophene	7.9
586	156	C ₂ -Naphthalene	42.2	804	170	C ₃ -Naphthalene	37.6
588	162	C ₂ -Benzothiophene	30.2	818		C ₃ -Benzothiophene	9.4
590	156	C ₂ -Naphthalene	48.6	829	166	Fluorene	12.2
597	162	C ₂ -Benzothiophene	24.2	836	176	C ₃ -Benzothiophene	10.4
613	156	C ₂ -Naphthalene	19.9	838		C ₃ -Naphthalene	27.8
618	156	C ₂ -Naphthalene	11.5	851	168	C ₁ -Biphenyl	7.6
636	156	C ₂ -Naphthalene	13.6	857	184	C ₄ -Naphthalene	8.0
679	154	Acenaphthalene	8.3	858		C ₁ -Biphenyl	12.4
684	176	C ₃ -Benzothiophene	14.1	891	182	C ₂ -Biphenyl	7.8
699		C ₃ -Benzothiophene	23.2	910		C ₂ -Biphenyl	8.7
711		C ₃ -Naphthalene	11.8	968		C ₄ -Naphthalene	9.5
712		C ₃ -Benzothiophene	36.8	994		C _A -Naphthalene	8.5

Table 6.7.1. Combustion tube oil 159-11, aromatic components, 1983 November.

continued...

Table 6.7.1. Continued.

Scan	m.w.	Compound	ppm	Scan	m.w.	Compound	ppm
1010	180	C ₁ -Fluorene	10.0	1477	206	C ₂ -Phenanthrene/C ₂ -Anthracene	15.1
1020		C ₁ -Fluorene	9.7	1487		C ₂ -Dibenzothiophene	13.0
1037		C ₁ -Fluorene	9.4	1492	206	C ₂ -Phenanthrene/C ₂ -Anthracene	10.5
1066		C ₄ -Naphthalene	7.3	1496		C ₂ -Phenanthrene/C ₂ -Anthracene	10.7
1090	184	, Dibenzothiophene	35.1	1498		C ₂ -Phenanthrene/C ₂ -Anthracene	7.4
1131	184	C ₄ -Naphthalene	10.4	1510		C ₂ -Dibenzothiophene	9.9
1132	178	Phenanthrene	43.1	1510	206	C ₂ -Phenanthrene/C ₂ -Anthracene	8.2
1147	178	Anthracene	12.2	1518		C ₂ -Phenanthrene/C ₂ -Anthracene	44.9
1246	198	C _l -Dibenzothiophene	30.8	1520		C ₂ -Dibenzothiophene	13.9
1279		C ₁ -Dibenzothiophene	21.9	1527		C ₂ -Phenanthrene/C ₂ -Anthracene	26.3
1290	198	C ₁ -Dibenzothiophene	18.0	1535	206	C ₂ -Phenanthrene/C ₂ -Anthracene	15.3
1311	192	C ₁ -Phenanthrene	19.4	1537	212	C ₂ -Dibenzothiophene	10.9
1312	198	C ₁ -Dibenzothiophene	26.6	1545	206	C ₂ -Phenanthrene/C ₂ -Anthracene	7.7
1319	192	C ₁ -Phenanthrene/C ₁ -Anthracene	34.2	1545		C ₂ -Dibenzothiophene	1.5
1332		C ₁ -Phenanthrene/C ₁ -Anthracene	10.4	1552	202	Fluoranthene	18.1
1348		C ₁ -Phenanthrene/C ₁ -Anthracene	39.2	1569	206	C ₂ -Phenanthrene/C ₂ -Anthracene	7.8
1352		C ₁ -Dibenzothiophene	8.3	1571		C ₃ -Dibenzothiophene	14.4
1355	192	C ₁ -Phenanthrene/C ₁ -Anthracene	18.1	1592	206	C ₂ -Phenanthrene/C ₂ -Anthracene	7.8
1400		C ₂ -Dibenzothiophene	13.7	1600		C ₃ -Dibenzothiophene	16.0
1422		C ₂ -Dibenzothiophene	9.4	1618		C ₃ -Dibenzothiophene	28.4
1428		C ₂ -Dibenzothiophene	8.1	1623		Pyrene	30.2
1433		C ₂ -Dibenzothiophene	17.9	1628	220	C ₃ -Phenanthrene/C ₃ -Anthracene	4.9
1467	212	C ₂ -Dibenzothiophene	67.6			continu	od

Scan	m.w.	Compound	ppm	Scan	m.₩.	Compound	ppm
1635	226	C ₃ -Dibenzothiophene	12.7	1803	234	C ₄ -Phenanthrene/C ₄ -Anthracene	5.0
1639		C ₃ -Phenanthrene/C ₃ -Anthracene	4.3	1813		C ₄ -Dibenzothiophene	6.8
1643		C ₃ -Dibenzothiophene	13.1	1816	234	C ₄ -Phenanthrene/C ₄ -Anthracene	9.3
1650	220	C ₃ -Phenanthrene/C ₃ -Anthracene	6.8	1826	216	C _l -Pyrene/C _l -Fluoranthene	26.8
1654		C ₃ -Phenanthrene/C ₃ -Anthracene	8.6	1831	234	C ₄ -Phenanthrene/C ₄ -Anthracene	7.0
1659		C ₃ -Dibenzothiophene	2.2	1835	216	C ₁ -Pyrene/C ₁ -Fluoranthene	17.2
1665	226	C ₃ -Dibenzothiophene	12.3	1837	240	C ₄ -Dibenzothiophene	23.7
1675	226	C ₃ -Dibenzothiophene	8.8	1841	234	C ₄ -Phenanthrene/C ₄ -Anthracene	5.6
1682		C ₃ -Phenanthrene/C ₃ -Anthracene	21.5	1860	234	C ₄ -Phenanthrene/C ₄ -Anthracene	9.3
1691		C ₃ -Phenanthrene/C ₃ -Anthracene	52.1	1877	234	C ₄ -Phenanthrene/C ₄ -Anthracene	9.2
1692		C ₃ -Dibenzothiophene	23.5	1885	234	C ₄ -Phenanthrene/C ₄ -Anthracene	7.7
1702		C ₃ -Dibenzothiophene	23.5	1895	234	Benzonaphthothiophene	24.4
1707		C ₃ -Phenanthrene/C ₃ -Anthracene	8.0	1902	240	C ₄ -Dibenzothiophene	7.3
1714		C ₃ -Phenanthrene/C ₃ -Anthracene	20.2	1930	230	C ₂ -Pyrene/C ₂ -Fluoranthene/	
1720		C ₃ -Dibenzothiophene	10.3			C ₁ -Benzofluorene	10.2
1725		C ₁ -Pyrene/C ₁ -Fluoranthene	5.9	1932	234	Benzonaphthothiophene	14.7
1753		C ₃ -Phenanthrene/C ₃ -Anthracene	6.2	1937	230	C ₂ -Pyrene/C ₂ -Fluoranthene/	
1761		C ₁ -Pyrene/C ₁ -Fluoranthene	14.8			C ₁ -Benzofluorene	3.9
1763		C ₃ -Phenanthrene/C ₃ -Anthracene	10.1	1957	230	C ₂ -Pyrene/C ₂ -Fluoranthene/	
1779		C ₃ -Phenanthrene/C ₃ -Anthracene	9.6			C ₁ -Benzofluorene	16.9
1794	216	Benzo(a)fluorene	14.9	1980	230	C ₂ -Pyrene/C ₂ -Fluoranthene/	
1799	220	C ₃ -Phenanthrene/C ₃ -Anthracene	15.0			C ₁ -Benzofluorene	9.9
		5 5		1981	230	C ₂ -Pyrene/C ₂ -Fluoranthene/	
						C ₁ -Benzofluorene	2.1

Table 6.7.1. Continued.

Table 6.7.1. Continued.

Scan	m.w.	Compound	ppm	Scan	m.w.	Compound	ppm
1989	230	C ₂ -Pyrene/C ₂ -Fluoranthene/		2162	248	C ₁ -Benzonaphthothiophene	10.8
		C _l -Benzofluorene	10.2	2164	244	C ₃ -Pyrene/C ₃ -Fluoranthene/	
1998	230	C2-Pyrene/C2-Fluoranthene/				C ₂ -Benzofluorene	13.3
		C ₁ -Benzofluorene	6.1	2176	244	C ₃ -Pyrene/C ₃ -Fluoranthene/	
2019	230	C2-Pyrene/C2-Fluoranthene/				C2-Benzofluorene	6.6
		C ₁ -Benzothiophene	16.6	2184	248	C _l -Benzonaphthothiophene	32.4
2028	230	C2-Pyrene/C2-Fluoranthene/		2203	244	C ₃ -Pyrene/C ₃ -Fluoranthene/	
		C ₁ -Benzofluorene	13.8			C2-Benzofluorene	8.3
2078	240	C ₄ -Dibenzothiophene	21.8	2207	248	C ₁ -Benzonaphthothiophene	22.2
2074	228	Benzo(a)anthracene	2.0	2220		C ₃ -Pyrene/C ₃ -Fluoranthene/	
2085	228	Chrysene/Triphenylene	26.8			C ₂ -Benzofluorene	5.9
2087	244	C ₃ -Pyrene/C ₃ -Fluoranthene/		2233	242	C ₁ -Benzo(a)anthracene/C ₁ -Chrysene/	
		C ₂ -Benzofluorene	4.5			C ₁ -Triphenylene	27.8
2104	244	C ₃ -Pyrene/C ₃ -Fluoranthene/		2245	242	C ₁ -Benzo(a)anthracene/C ₁ -Chrysene/	
		C ₂ -Benzofluorene	4.1			C ₁ -Triphenylene	8.4
2118	248	C ₁ -Benzonaphthothiophene	11.1	2260	242	C ₁ -Benzo(a)anthracene/C ₁ -Chrysene/	
2127	244	C ₃ -Pyrene/C ₃ -Fluoranthene/				C ₁ -Triphenylene	9.6
		C ₂ -Benzofluorene	9.5	2267	242	C ₁ -Benzo(a)anthracene/C ₁ -Chrysene/	
2133	244	C ₃ -Pyrene/C ₃ -Fluoranthene/				C _l -Triphenylene	1.9
		C ₂ -Benzofluorene	5.9	2267	262	C ₂ -Benzonaphthothiophene	11.2
2147	248	C ₁ -Benzonaphthothiophene	17.0	1176		C ₂ -Benzonaphthothiophene	4.3
2149	244	C ₃ -Pyrene/C ₃ -Fluoranthene/		2278		C ₁ -Benzo(a)anthracene/C ₁ -Chrysene/	
		C ₂ -Benzofluorene	6.9			C _l -Triphenylene	2.8

Scan	m.₩.	Compound	ppm	Scan	m.w.	Compound	ppm
2283	262	C ₂ -Benzonaphthothiophene	4.9	2471	276	C ₃ -Benzonaphthothiophene	24.5
2299		C ₂ -Benzonaphthothiophene	9.2	2481		C ₃ -Benzonaphthothiophene	8.0
2309		C ₂ -Benzonaphthothiophene	8.2	2493	276	C ₃ -Benzonaphthothiophene	3.3
2315	262	C ₂ -Benzonaphthothiophene	12.2	2503	276	C ₃ -Benzonaphthothiophene	5.4
2338		C ₂ -Benzonaphthothiophene	28.4	2505	270	C ₃ -Benzo(a)anthracene/C ₃ -Chrysene/	
2352		C ₂ -Benzonaphthothiophene	3.7			C ₃ -Triphenylene	2.6
2359		C ₂ -Benzonaphthothiophene	7.1	2513	276	C ₃ -Benzonaphthothiophene	7.3
2370		C ₂ -Benzonaphthothiophene	6.6	2513		C ₃ -Benzo(a)anthracene/C ₃ -Chrysene/	
2374		C ₂ -Benzo(a)anthracene/C ₃ -Chrysene/				C ₃ -Triphenylene	3.1
		C ₂ -Triphenylene	16.1	2520	290	C ₄ -Benzonaphthothiophene	5.1
2399	256	C ₂ -Benzoa)anthracene/C ₂ -Chrysene/		2521	270	C ₃ -Benzo(a)anthracene/C ₃ -Chrysene/	
		C ₂ -Triphenylene	19.9			C ₃ -Triphenylene	2.4
2413	256	C ₂ -Benzo(a)anthraceneeC ₂ -Chrysene/		. 2528	252	Benzo(e)pyrene	8.1
		C ₂ -Triphenylene	7.0	2531	270	C ₃ -Benzo(a)anthracene/C ₃ -Chrysene/	
2416	276	C_3 -Benzonaphthothiophene	10.4			C ₃ -Triphenylene	2.6
2421	256	C ₂ -Benzo(a)anthracene/C ₂ -Chrysene/		2536	276	C ₃ -Benzonaphthothiophene	4.6
		C ₂ -Triphenylene	4.6	2543	290	C_4 -Benzonaphthothiophene	3.9
2428	256	C ₂ -Benzo(a)anthracene/C ₂ -Chrysene/		2543	252	Benzo(a)pyrene	2.6
		C ₂ -Triphenylene	5.8	2546	270	C ₃ -Benzo(a)anthracene/C ₃ -Chrysene/	
2440	276	C ₃ -Benzonaphthothiophene	14.4			C ₃ -Triphenylene	5.3
2442		C ₂ -Benzo(a)anthracene/C ₂ -Chrysene/		2554	270	C ₃ -Benzo(a)anthracene/C ₃ -Chrysene/	
		C ₂ -Triphenylene	3.9			C ₃ -Triphenylene	8.1
2447	252	Benzofluoranthene	7.5	2570	252	Perylene	7.1

Table 6.7.1. Continued.

Table 6.7.1. Concluded.

Scan	m.w.	Compound	ppm	Scan	m.w.	Compound	ppm
2571	290	C_4 -Benzonaphthothiophene	6.0	2773	290	C ₄ -Benzonaphthothiophene	4.3
2577		C ₃ -Benzo(a)anthracene/C ₃ -Chrysene/		2783	280	C ₂ -Benzofluoranthene/Benzo(e)-	
		C ₃ -Triphenylene	6.9			pyrene/Benzo(a)pyrene/Perylene	3.5
2594	266	C ₁ -Benzo(a)anthracene/Benzo(e)-		2788	280	C ₂ -Benzofluoranthene/Benzo(e)-	
		pyrene/Benzo(a)pyrene/Perylene	4.7			_ pyrene/Benzo(a)pyrene/Perylene	1.4
2617	270	C ₃ -Benzo(a)anthracene/C ₃ -Chrysene/		2822	280	C ₂ -Benzofluoranthene/Benzo(e)-	
		C ₃ -Triphenylene	3.3			_ pyrene/Benzo(a)pyrene/Perylene	1.2
2624	266	C ₁ -Benzofluoranthene/Benzo(e)-		2829	280	C ₂ -Benzofluoranthene/Benzo(e)-	
		pyrene/Benzo(a)-pyrene/Perylene	3.1			pyrene/Benzo(a)pyrene/Perylene	3.0
2625	270	C ₃ -Benzo(a)anthracene/C ₃ -Chrysene/		2839	280	C ₂ -Benzofluoranthene/Benzo(e)-	
		C ₃ -Triphenylene	4.7			pyrene/Benzo(a)pyrene/Perylene	1.6
2641	290	C ₄ -Benzonaphthothiophene	4.6				
2656		C ₃ -Benzo(a)anthracene/C ₃ -Chrysene/					
		C ₃ -Triphenylene	5.5				
2657	266	C ₁ -Benzofluoranthene/Benzo(e)-					
		pyrene/Benzo(a)pyrene/Perylene	2.5				
2664	266	C ₁ -Benzofluoranthene/Benzo(e)-					
		pyrene/Benzo(a)pyrene/Perylene	3.1				
2700	266	C _l -Benzofluoranthene/Benzo(e)-					
		pyrene/Benzo(a)pyrene/Perylene	5.3				
2708	266	C _l -Benzofluoranthene/Benzo(e)-					
		pyrene/Benzo(a)pyrene/Perylene	2.6				
2736	280	C ₂ -Benzofluoranthene/Benzo(e)-					
		pyrene/Benzo(a)pyrene/Perylene	4.5				

Scan	M.W.	Compound	ppm	Scan	M.W.	Compound	ppm
256	128	Naphthalene	38	578	176	C ₃ -Methylbenzothiophene	19
261	134	Benzothiophene	28	591		C ₃ -Methylnaphthalene	13
336	148	2-Methylbenzothiophene	18	592		C ₃ -Methylbenzothiophene	34
343	142	2-Methylnaphthalene	59	597		C ₃ -Methylbenzothiophene	30
344	148	C _l -Methylbenzothiophene	29	598		C ₃ -Methylnaphthalene	7.
250	148	C ₁ -Methylbenzothiophene	14	613		C ₃ -Methylbenzothiophene	45
359	148	C _l -Methylbenzothiophene	57	615		C ₃ -Methylnaphthalene	6.
360	142	l-Methylnaphthalene	47	620		C ₃ -Methylnaphthalene	13
429	162	C ₂ -Methylbenzothiophene	3.8	627		C ₃ -Methylnaphthalene	21
440	162	C ₂ -Methylbenzothiophene	31	638		C ₃ -Methylbenzothiophene	30
447	156	C ₂ -Methylnaphthalene	13	648		C ₃ -Methylnaphthalene	32
449		C ₂ -Methylbenzothiophene	17	651		C ₃ -Methylbenzothiophene	9.
463		C ₂ -Methylbenzothiophene	53	662		C ₃ -Methylbenzothiophene	7.
463	156	-	33	672		C ₃ -Methylbenzothiophene	6.
473	162	C ₂ -Methylbenzothiophene	72	675		C ₃ -Methylnaphthalene	30
482		C ₂ -Methylbenzothiophene	27	687		C ₃ -Methylbenzothiophene	· 7.
485		C ₂ -Methylnaphthalene	83	696	166	Fluorene	9.
489		C ₂ -Methylbenzothiophene	25	705	176	C ₃ -Methylbenzothiophene	9.
503	156	-	27	707		C ₃ -Methylbenzothiophene	24
522		C ₂ -Methylnaphthalene	11	723	168	Propenylnaphthalene	11
536		C ₂ -Methylbenzothiophene	6.5	735	168	C _l -Biphenyl	5.
558	154	2 Dehydroacenaphthylene	6.1	754	182	C ₂ -Biphenyl	5.
565	176	C ₃ -Methylbenzothiophene	11	763	184	C ₄ -Methylnaphthalene	6.
565	176	C ₃ -Methylbenzothiophene		763	184	C ₄ -MethyInaphthalene	contin

Table 6.7.2. Combustion tube oil 159-14, aromatic components, 1983 November.

Table 6.7.2. Continued.

Scan	M.W.	Compound	ppm	Scan	M.W.	Compound	ppm
773	182	C ₁ -Biphenyl	6.9	1060	194	C ₂ -Fluorene	4.3
787		C _a -Methylnaphthalene	4.8	1069	194	C ₂ -Fluorene	6.2
798		C ₄ -Methylnaphthalene	8.1	1083	196	C ₃ -Biphenyl/C ₃ -Acenaphthene	5.0
829	184	C ₄ -Methylnaphthalene	8.1	1087		C ₂ -Fluorene	6.8
853	184	C ₄ -Methylnaphthalene	6.7	1100	198	C ₁ -Dibenzothiophene	29
859	184	C ₄ -Methylnaphthalene	4.8	1112	198	C ₁ -Dibenzothiophene	3.5
869	180	C ₁ -Fluorene	7.5	1113	198	C ₁ -Dibenzothiophene	5.5
880	180	C ₁ -Fluorene	7.8	1119	196	C ₃ -Biphenyl/C ₃ -Acenaphthene	4.8
896	180	C _l -Fluorene	4.2	1130		C ₁ -Dibenzothiophene	19
897	180	C ₁ -Fluorene		1142	198	C ₁ -Dibenzothiophene	14
899	184	C ₄ -Methylnaphthalene	4.5	1154	198	C ₁ -Dibenzothiophene	9.3
9 20	182	C ₂ -Bipheny1/C ₂ -Acenaphthene	4.6	1156	196	C ₃ -Biphenyl/C ₃ -Acenaphthene	5.7
926		C ₃ -Bipheny1/C ₃ -Acenaphthene	3.9	1165	198	C ₁ -Dibenzothiophene	27
928	182	C_2 -Biphenyl/ C_2 -Acenaphthene	4.5	1165		C ₁ -Dibenzothiophene	27
932		C ₃ -Bipheny1/C ₃ -Acenaphthene	3.5	1173	192	C ₁ -Phenanthrene/C ₁ -Anthracene	. 33
934	196	C ₃ -Bipheny1/C ₃ -Acenaphthene	6.6	1177		C ₃ -Bipheny1/C ₃ -Acenaphthene	3.0
946	184	Dibenzothiophene	29	1184		C ₁ -Phenanthrene/C ₁ -Anthracene	14
952	182	C ₂ -Bipheny1/C ₂ -Acenaphthene	5.1	1201	192	C ₁ -Phenanthrene/C ₁ -Anthracene	37
9 88	178	Phenanthrene	33	1204		C ₁ -Dibenzothiophene	6.8
1003	178	Anthracene	13.2	1206	192	C ₁ -Phenanthrene/C ₁ -Anthracene	16
1036	208	C ₃ -Fluorene	5.3	1249		C ₂ -Dibenzothiophene	20
046	194	C ₂ -Fluorene	5.4	1271		C ₂ -Dibenzothiophene	15
1055	194	C ₂ -Fluorene	4.4	1282	212	C ₂ -Dibenzothiophene	33

continued...

Scan	M.W.	Compound	ppm	Scan	M.W.	Compound	ppm
1318	212	C ₂ -Dibenzothiophene	84	1511	226	C ₃ -Dibenzothiophene	16
1330		C ₂ -Phenanthrene/C ₂ -Anthracene	6.5	1521		C ₃ -Dibenzothiophene	6.8
1337		C ₂ -Dibenzothiophene	21	1524		C ₃ -Phenanthrene/C ₃ -Anthracene	
1342	206	C ₂ -Phenanthrene/C ₂ -Anthracene	9.7	1528		C ₃ -Phenanthrene/C ₃ -Anthracene	27
1345		C ₂ -Dibenzothiophene	13	1542		C ₃ -Phenanthrene/C ₃ -Anthracene	
1348	206	C ₂ -Phenanthrene/C ₂ -Anthracene	7.8	1543		C ₃ -Phenanthrene/C ₃ -Anthracene	56
1359		C ₂ -Dibenzothiophene	7.4	1550		C ₃ -Dibenzothiophene	45
1370	206	C ₂ -Phenanthrene/C ₂ -Anthracene	48	1558	240	C_{A} -Dibenzothiophene	4.5
1371	206	C ₂ -Phenanthrene/C ₂ -Anthracene	5.2	1562	220	C ₃ -Phenanthrene/C ₃ -Anthracene	34
1378		C ₂ -Phenanthrene/C ₂ -Anthracene	27	1568		C ₃ -Dibenzothiophene	18
1383		C ₃ -Dibenzothiophene	8.6	1575	216	C _l -Pyrene/C _l -Fluoranthene	6.0
1387	206	C ₂ -Phenanthrene/C ₂ -Anthracene	19	1579		C ₃ -Phenanthrene/C ₃ -Anthracene	8.9
1394		C ₂ -Phenanthrene/C ₂ -Anthracene	6.2	1589		C _A -Dibenzothiophene	13
1400	212	C ₂ -Dibenzothiophene	18	1591	220	C ₃ -Phenanthrene/C ₃ -Anthracene	6.9
1402	202	Fluoranthene	15	1599		C ₃ -Phenanthrene/C ₃ -Anthracene	9.1
1417	206	C ₂ -Phenanthrene/C ₂ -Anthracene	9.4	1604	240	÷ ÷	8,9
1419		C ₃ -Dibenzothiophene	22	1611	220	C ₃ -Phenanthrene/ .	
1439		C ₂ -Phenanthrene/C ₂ -Anthracene	12			C ₃ -Anthracene	12.3
1445		C ₃ -Fluorene	23	1626	220	5	9.2
1465		C ₃ -Dibenzothiophene	28	1641	216	Benzo(b)fluorene	14
1471	202	Pyrene	30	1647	220	C ₃ -Phenanthrene/C ₃ -Anthracene	18
1490	226	C ₃ -Dibenzothiophene	20	1658	240	C ₄ -Dibenzothiophene	9.6
1507		C ₃ -Dibenzothiophene	14	1675		C ₁ -Pyrene/C ₁ -Fluoranthene	27

Table 6.7.2. Continued.

Table 6.7.2. Continued.

Scan	M.W.	Compound	ppm	Scan	M.W.	Compound	ppm	
1682	216	Benzo(a)fluorene	15	1930	228	Chrysene/Triphenylene	27	
1685	240	C ₄ -Dibenzothiophene	22	1946	244	C ₃ -Pyrene/C ₃ -Fluoranthene/		
1700	254	C ₅ -Dibenzothiophene	5.2			C ₂ -Benzofluorene	5.8	
1706	240	C ₄ -Dibenzothiophene	9.8	1961	248	C ₁ -Benzonaphthothiophene	14	
1714	254	C ₅ -Dibenzothiophene	5.1	1975	244	C ₃ -Pyrene/C ₃ -Fluoranthene/		
1723	240	C ₄ -Dibenzothiophene	10.1			C2-Benzofluorene	19	
1804	230	C ₂ -Pyrene/C ₂ -Fluoranthene/		1979	254	C ₅ -Dibenzothiophene	4.9	
		C ₁ -Benzofluorene	15	1987	248	C ₁ -Benzonaphthothiophene	23	
1826	230	C ₂ -Pyrene/C ₂ -Fluoranthene/		1994	244	C ₃ -Pyrene/C ₃ -Fluoranthene/		
		C _l -Benzofluorene	8.6			C ₂ -Benzofluorene	5.2	
1829	234	Benzonaphthothiophene	12	2008	244	C ₃ -Pyrene/C ₃ -Fluoranthene/		
1835	230	C ₂ -Pyrene/C ₂ -Fluoranthene/				C ₂ -Benzofluorene	13	
		C _l -Benzofluorene	9.9	2016	254	C ₅ -Dibenzothiophene	7.6	
1843	230	C ₂ -Pyrene/C ₂ -Fluoranthene/		2019	268	C ₆ -Dibenzothiophene	4.0	
		C ₁ -Benzofluorene	6.4	2027	248	C ₁ -Benzonaphthothiophene	32	
1858	234	Benzonaphthiophene	13	2044	244	C ₃ -Pyrene/C ₃ -Fluoranthene/		
1863	230	C ₁ -Pyrene/C ₂ -Fluoranthene/				C ₂ -Benzofluorene	17	
		C _l -Benzofluorene	18	2051	248	C ₁ -Benzonaphthothiophene	22	
1872	230	C ₁ -Pyrene/C ₂ -Fluoranthene/		2076	242	C _l -Chrysene/C _l -Triphenylene	33	
		C ₁ -Benzofluorene	19	2088		C ₁ -Chrysene/C ₁ -Triphenylene	8.1	
1885	254	C ₅ -Dibenzothiophene	6.5	2089	242	C ₁ -Chrysene/C ₁ -Triphenylene	3.6	
1909	254	C ₅ -Dibenzothiophene	5.3	2094	268	C ₆ -Dibenzothiophene	3.8	
1920	240	C ₄ -Dibenzothiophene		2101	242	C ₁ -Chrysene/C ₁ -Triphenylene	12	

.

•

Scan	M.W.	Compound	ppm	Scan	M.W.	Compound	ppm
2106	262	C ₂ -Benzonaphthothiophene	14	2379	276	C ₃ -Benzonaphthothiophene	15
2121	242	C ₁ -Chrysene/C ₁ -Triphenylene	3.9	2384	252	Benzo(a)pyrene	4.2
2124		C ₂ -Benzonaphthothiophene	10	2395	270	C ₃ -Chrysene/C ₃ -Triphenylene	9.3
2138	262	C_2 -Benzonaphthothiophene	9	2410	252	Perylene	8.6
2157	262	C ₂ -Benzonaphthothiophene	22	2492	270	C ₃ -Chrysene/C ₃ -Triphenylene	4.8
2182	262	C ₂ -Benzonaphthothiophene	28	2500		C ₁ -Benzofluoranthene/	
2187	256	C ₂ -Chrysene/C ₂ -Triphenylene	3.6			C _l -Benzo(e)pyrene/	
2215	256	C2-Chrysene/C2-Triphenylene	17			C ₁ -Benzo(e)pyrene/C ₁ -Perylene	7.3
2239	256	C2-Chrysene/C2-Triphenylene	19	2537	266	C ₁ -Benzofluoranthene/	
2253	256	C2-Chrysene/C2-Triphenylene	7.6			C _l -Benzo(e)pyrene/	
2257	276	C ₃ -Benzonaphthothiophene	9			C _l -Benzo(a)pyrene/C _l -Perylene	7.1
2261	256	C2-Chrysene/C2-Triphenylene	6.1	2605	290	C ₄ -Benzonaphthothiophene	9.8
2268	256	C2-Chrysene/C2-Triphenylene	5.1	2617	280	C ₂ -Benzofluoranthene/	
2270	256	C2-Chrysene/C2-Triphenylene	5.2			C2-Benzo(e)pyrene/	
2280	276	C ₃ -Benzonaphthothiophene	17			C ₂ -Benzo(a)pyrene/C ₁ -Perylene	6.4
2292	252	Benzo(b)fluorenthene	8.1	2665	280	C ₂ -Benzofluoranthene/	
2310	276	C ₃ -Benzonaphthothiophene	34			C ₂ -Benzo(e)pyrene/	
2320	256	C ₂ -Chrysene/C ₂ -Triphenylene	12			C ₂ -Benzo(a)pyrene/C ₁ -Perylene	8.0
2329		C ₃ -Benzonaphthothiophene	4.2			•	
2352	276	C ₃ -Benzonaphthothiophene	13				
2355	290	C ₄ -Benzonaphthothiophene	5.6				
2369	252	Benzo(e)pyrene	9.8				
2376	276	C_3 -Benzonaphthothiophene	15				

230

This material is provided under educational reproduction permissions included in Alberta Environment and Sustainable Resource Development's Copyright and Disclosure Statement, see terms at http://www.environment.alberta.ca/copyright.html. This Statement requires the following identification:

"The source of the materials is Alberta Environment and Sustainable Resource Development <u>http://www.environment.gov.ab.ca/</u>. The use of these materials by the end user is done without any affiliation with or endorsement by the Government of Alberta. Reliance upon the end user's use of these materials is at the risk of the end user.