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The application of turbulent plume theory in describing the dynamics of emptying filling

boxes, control volumes connected to an infinite exterior through a series of openings along

the upper and lower boundaries, has yielded novel strategies for the natural ventilation of

buildings. Making the plume laminar and having it fall through a porous medium yields a

problem of fundamental significance in its own right, insights from which may be applied

e.g. in minimizing the contamination of drinking water by geologically-sequestered CO2

or the chemicals leached from waste piles. After reviewing the theory appropriate to

rectilinear and axisymmetric plumes in porous media, we demonstrate how the model

equations may be adapted to the case of an emptying filling box. In this circumstance,

the long-time solution consists of two ambient layers, each of which has a uniform density.

The lower and upper layers are comprised of fluid that is respectively discharged by the

plume and advected into the box through the upper opening. Our theory provides an

estimate for both the height and thickness of the associated interface in terms of e.g. the

source volume and buoyancy fluxes, the outlet area and permeability and the depth-
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average solute dispersion coefficient, which is itself a function of the far-field horizontal

flow speed. Complementary laboratory experiments are provided for the case of a line

source plume and show very good agreement with model predictions. Our measurements

also indicate that the permeability, kf , of the lower opening (or fissure) decreases with

the density of the fluid being discharged, a fact that has been overlooked in some previous

studies wherein kf is assumed to depend only on the fissure geometry.

1. Introduction

The study of density-driven flow from a point or line source of positive or negative buoy-

ancy has received much attention since the seminal work of Morton, Taylor & Turner

(1956, hereafter referred to as MTT), who derived an analytical model describing turbu-

lent plumes. They developed and closed conservation of mass, momentum and buoyancy

equations for the plumes by proposing a simple yet robust expression for lateral entrain-

ment. Specifically MTT assumed that the entrainment velocity is directly proportional

to a characteristic vertical rise velocity within the plume. The MTT equations have been

demonstrated as useful in studying manifold topics including models of fires (Drysdale

2011), volcanic eruptions (Woods 1988), bubble (McDougall 1978, Wüest, Brooks & Im-

boden 1992) and hydrothermal plumes (Speer & Rona 1989), oil leakage from the deep

ocean (Adalsteinsson et al. 2011) as well as various other natural flows (Woods 2010).

For the sake of simplicity, here we will only discuss a negatively-buoyant plume with

flow downwards, although all points are equally relevant to positively-buoyant upwards

moving plumes.

By adapting MTT, Baines & Turner (1969) considered the situation where the turbu-

lent plume flows in an enclosed space, giving rise to the so-called filling box model. In this
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flow, the turbulent plume falls and results, by mass conservation, in a background return

flow in the opposite upwards direction. Assuming that the cross-sectional area occupied

by the plume is much less than the total cross-sectional area of the domain, Baines &

Turner (1969) showed that the timescales of the plume and of the background return flow

can be decoupled leading to a problem that can be analyzed theoretically in a systematic

manner. Baines & Turner’s description has been used across a number of disciplines to

study, for example, deep ocean (Killworth 1983, Wong & Griffiths 2001) and magma

chamber convection (Turner & Campbell 1986), smoke dynamics during fires in enclosed

spaces (Kaye & Hunt 2007) and overturning in industrial storage tanks (Germeles 1975).

Later, it was recognized that if the same box had openings along the lower and upper

boundary that connect to an infinite external ambient fluid, a natural flow arises due to

differences in the internal and external hydrostatic pressure distributions (Linden, Lane-

Serff & Smeed 1990). This flow leads to the ventilation of the box and is correspondingly

termed the emptying filling box. The system evolves in such a way that a steady state is

attained whereby the box is partitioned into two regions of different density, divided by

a horizontal interface. The upper region is the area into which the external fluid flows

in; its density matches that of the ambient. The lower region has a larger density, which

equals that of the plume at the elevation of the interface. One of the most interesting

aspects of the emptying filling box is that the interface height is independent of the

source buoyancy flux and only depends on the size of the upper and lower openings and

the box height. Thus if the source buoyancy flux changes, the flow naturally adjusts

along with the rate of inflow and outflow in such a way that the previous interface

height is restored, albeit after some transient. Emptying filling box models have enjoyed

significant success and have been broadly applied to describe the natural ventilation of

single enclosed spaces (Linden 1999). More generally, they have been adapted to study
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the ventilation of adjacent building zones (Flynn & Caulfield 2006, Nabi & Flynn 2014),

transient ventilation dynamics (Bower et al. 2008) and interior contaminant transport

(Bolster & Linden 2007).

As indicated by the above list of references, the bulk of effort to date in this field

has been to study high Reynolds number turbulent flows. However, there exist similar

problems of interest in the field of environmental fluid mechanics that arise at much

smaller length-scales and Reynolds numbers, namely convective flow through porous me-

dia. Here the mechanism for plume widening is fundamentally different than in the turbu-

lent case: widening is driven not by engulfment via turbulent eddies but rather molecular

or mechanical dispersion. From a purely conceptual perspective, however, many other dy-

namical features hold true. Studying emptying filling box models in porous media should

therefore give rise to qualitatively similar, though quantitatively different, behaviors from

what has been documented by Linden et al. (1990) and others. Of course, the literature

describing buoyancy-driven convection in porous media is itself vast. Many models have

been developed that include, among other effects, inertia, viscous dissipation and rota-

tion – see e.g. Nield & Kuznetsov (2013) and the many references therein. Importantly,

however, much of this literature assumes a distributed source with comparatively less

attention devoted to the discrete source problem. This represents a nontrivial omission

because discrete sources of buoyancy are commonplace in a broad number of environ-

mental scenarios. These include, for instance, (i) dissolution of dense/light non-aqueous

phase fluids (DNAPL/LNAPL) into potable groundwater, which have been shown to be

one of the most persistent and dangerous forms of contamination in groundwater sys-

tems (National Research Council 2012), (ii) leakage of geologically-sequestered CO2 from

deep saline aquifers into higher, potentially potable, water aquifers (Nordbotten, Celia

& Bachu 2004, Neufeld et al. 2011), and, (iii) leakage of contaminants from waste piles
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(Kuo & Ritchie 1999) or composting facilities (Barrington et al. 2003). In each of these

systems, engineered or naturally-occurring geologic barriers, with imperfections through

which leakage will occur, can exist to confine the flow giving rise to the emptying filling

box scenario. While realistic geometries might be quite complicated, we begin by focus-

ing on an idealized rectangular enclosure from which much valuable information can be

gleaned.

In this paper we present the equivalent MTT plume and emptying filling box models

for flow in a porous medium. In §2 we develop the theory for a line source for both an

open and an emptying filling box system. The equivalent model for an axisymmetric

source representing a discrete point source is outlined in §3. Thereafter in §4 we describe

complementary laboratory experiments designed to corroborate the predictions of §2.

Qualitative and quantitative comparisons between theory and experiment are presented

in §5. Finally §6 discusses conclusions of this work and identifies possible avenues for

future investigations.

2. Theory – line source

We begin by considering the motion of a negatively-buoyant line plume, of buoyancy

flux F0, in an unbounded porous medium. The coordinate axes are oriented as in figure

1 a, which indicates that the plume originates from an infinitesimally thin source. The

flow is assumed to be Boussinesq so that density differences may be omitted except where

they multiply gravitational acceleration. We further assume that the Rayleigh number

(defined by equation 2.15 below) is large and that the flow is Darcian (non-Darcy effects

may be included through the introduction of Dupuit-Forchheimer terms – see Lai 1991

or, for a more general treatment, Joseph, Nield & Papanicolaou 1982). Accordingly, the
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governing equations read (Turcotte & Schubert 2014)

∂u

∂x
+
∂v
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= 0 , (2.1)

1
ρ0

∂P

∂x
+
ν

k
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gρ

ρ0
, (2.2)

1
ρ0
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ν
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v = 0 , (2.3)

1
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(
u
∂S

∂x
+ v

∂S

∂y

)
= D

(
∂2S

∂x2
+
∂2S

∂y2

)
, (2.4)

ρ = ρ0(1 + βS) . (2.5)

Here P is the fluid pressure, u = (u, v) is the transport velocity, φ is the void fraction,

ν is the kinematic viscosity, S is the solute concentration, β is the solute contraction

coefficient, k is the permeability and D is a solute dispersion coefficient, which is assumed

not to vary with x or y and is described in more detail below. Moreover, ρ is the fluid

density; when, as in the far-field, the fluid does not contain any solute, ρ = ρ0. Finally,

in evaluating the permeability, we use the Rumpf & Gupte (1971) relationship such that

k =
1

5.6
d̄2φ5.5 ,

where d̄ denotes the mean diameter of the solid particles comprising the porous medium

– see also (3.2) of Acton et al. (2001). When the particle diameter is uniform, we replace

d̄ with d.

Following the discussion of Wooding (1963), Phillips (1991) and Turcotte & Schubert

(2014), self-similar solutions to (2.1-2.5) are sought that respect the following conditions:∣∣∣∣∂u∂y
∣∣∣∣� ∣∣∣∣∂v∂x

∣∣∣∣ , and
∣∣∣∣∂2S

∂y2

∣∣∣∣� ∣∣∣∣∂2S

∂x2

∣∣∣∣ . (2.6)

Physically, these assumptions constitute a boundary layer approximation; when the

plume is long and thin, changes of a dependent variable in the longitudinal direction

will, in general, be much larger than changes in the lateral direction. After some algebra,
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Figure 1. (a) Schematic of a two-dimensional Cartesian plume falling through an unbounded

porous medium. (b) An emptying filling box containing a negatively-buoyant plume in a “leaky”

porous medium. The control volume height and width are H and W , respectively, where the

control volume refers to the region enclosed by the thick solid lines.

it can be shown that the plume momentum and volume fluxes respectively satisfy

M =
F0k

ν
, (2.7)

and

Q =
(

36DφF0kxΛ2

ν

)1/3

, (2.8)

where Λ is the depth the line source extends into the page. (The latter equation is derived

in Appendix A). Thus the plume volume flux increases with depth as x1/3, which yields a

corresponding dilution of plume fluid; defining ḡ′ ≡ F0/Q as the average reduced gravity

of the plume fluid at a particular elevation we find that

ḡ′ =
(

F 2
0 ν

36DφkxΛ2

)1/3

. (2.9)

The parameter D that appears in the previous equations represents a hydrodynamic
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dispersion coefficient and is therefore the sum of two contributions, one molecular and

the other mechanical. Following the discussion of Freeze & Cherry (1979) and Fetter

(1993), we write

D = αŪ + ωDmolecular , (2.10)

where α is the dynamic dispersivity, Ū is a characteristic speed,Dmolecular is the molecular

diffusion transport coefficient and ω (< 1) is a parameter that depends on the tortuosity,

i.e. the shape of the flow-path. For the flow depicted schematically in figure 1, αŪ is

assumed to be much larger than ωDmolecular so that D ' αŪ . Implicit in this result is

the fact that it is the transverse, rather than the longitudinal, component of the dispersion

that is of interest (Houseworth 1984). Although this transverse component is often related

to a speed in the longitudinal direction, for a flow such as that studied here, which is

characterized by inflow and plume widening, we find it more appropriate to set Ū equal

to the depth-average far-field horizontal speed. In principle D can vary with x and y due

to spatial variations of velocity (Lai 1991), however our aim is to define a representative

constant value over the domain of interest. The justification for this approach plus an

explicit formula for D will be provided later; first we must define the vertical expanse

over which this depth-average speed is to be computed.

The previous analysis makes only indirect reference to lateral boundaries, however, it

is of interest to examine the draining flow that develops when the negatively-buoyant

plume is placed inside a fixed control volume, say of height H and width W . As shown

in figure 1 b, we consider a ventilated (or “leaky”) control volume so that solute-bearing

fluid may slowly drain through one or more discrete fissure(s) that appear along the

bottom boundary of the control volume.

In this preliminary investigation, attention is restricted to steady conditions whereby

dh/dt = 0 in which h is defined as in figure 1 b. When dh/dt = 0, the volume fluxes Qin,
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Q|H−h and Qout must be equal where the latter is given by

Qout =
Akf ḡ′|H−h

ν

(
h+ b

b

)
(2.11)

(c.f. equation 2.1 of Neufeld, Vella & Huppert 2009 – see also Pritchard & Hogg 2002).

Here kf and b denote, respectively, the fissure permeability and depth. Conversely A

denotes the fissure cross-sectional area. Finally ḡ′|H−h is determined from (2.9), i.e.

ḡ′|H−h =
[

F 2
0 ν

36Dφk(H − h)Λ2

]1/3

. (2.12)

Equating Q|H−h from (2.8) with Qout from (2.11) indicates that[
36DφF0k(H − h)Λ2

ν

]1/3

=
Akf

ν

(
h+ b

b

)[
F 2

0 ν

36Dφk(H − h)Λ2

]1/3

(2.13)

Rearranging this result yields a cubic polynomial equation that must be solved for the

interface height h = ξH, i.e.

0 =
(
A

Λb

)3(
kf

k

)3

ξ3 +

[
3b
H

(
A

Λb

)3(
kf

k

)3

− 1
Ra

]
ξ2

+

[
3
(
b

H

)2(
A

Λb

)3(
kf

k

)3

+
2

Ra

]
ξ +

(
b

H

)3(
A

Λb

)3(
kf

k

)3

− 1
Ra

, (2.14)

where the Rayleigh number, Ra (� 1), is defined by

Ra =
F0kH

(36Dφ)2Λν
(2.15)

(c.f. Phillips 1991, equation 7.5.25). Note that, consistent with the related analysis of

Linden et al. (1990) for high Reynolds number single-phase fluid flow, the steady interface

height is predicted to be independent of the width, W , of the filling box. Important

differences from Linden et al. (1990) are identified below.

The above equations, and indeed the similarity solutions of (A 4), presume an ideal

source with vanishingly small volume flux at the origin, x = 0. When this assumption

cannot be justified, (2.8) must be modified by writing

Q =
[

36DφF0k(x+ x0)Λ2

ν

]1/3

, (2.16)
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where x0 is a virtual origin correction (Wooding 1963), defined as

x0 =
Q3

0ν

36DφF0kΛ2
. (2.17)

Here Q0 (> 0) is the source volume flux. In like fashion, the density of the lower layer is

determined via

ḡ′|H−h =
[

F 2
0 ν

36Dφk(H − h+ x0)Λ2

]1/3

. (2.18)

Thus the interface height is estimated not from (2.14) but rather

0 =
(
A

Λb

)3(
kf

k

)3

ξ3 +

[
3b
H

(
A

Λb

)3(
kf

k

)3

− 1
Ra

]
ξ2

+

[
3
(
b

H

)2(
A

Λb

)3(
kf

k

)3

+
2

Ra

(
1 +

x0

H

)]
ξ

+
(
b

H

)3(
A

Λb

)3(
kf

k

)3

− 1
Ra

(
1 +

x0

H

)2

. (2.19)

Because ξ must, on physical grounds, lie between 0 and 1, at least one of the terms from

(2.19) must be a negative number. We therefore require

3b
H

(
A

Λb

)3(
kf

k

)3

<
1

Ra
, (2.20)

and/or (
b

H

)3(
A

Λb

)3(
kf

k

)3

<
1

Ra

(
1 +

x0

H

)2

. (2.21)

By definition x0 ≥ 0 and b/H is typically less or much less than unity; we therefore expect

(2.21) to be satisfied before (2.20). In instances where neither inequality is satisfied, ξ = 0,

i.e. there is no accumulation of solute-bearing fluid along the bottom boundary because

the draining flow can more than accommodate all of the fluid discharged by the plume.

Solutions to (2.19) are given in figure 2, which shows the variation of ξ with A/(Λb)

and Ra for various kf/k, b/H and x0/H. In all four cases, ξ is predicted to decrease with

Ra and the non-dimensional cross-sectional area of the fissure, A/(Λb). Physically, as

source buoyancy effects become more significant, the interface height decreases because
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Figure 2. [color online] Non-dimensional lower layer depth, ξ = h/H, vs. A/(Λb) and Ra as

determined from the solution of (2.19). (a) kf/k = 1, b/H = 0.05, x0/H = 0.5; (b) kf/k = 0.25,

b/H = 0.05, x0/H = 0.5; (c) kf/k = 1, b/H = 0.5, x0/H = 0.5; and (d) kf/k = 1, b/H = 0.05,

x0/H = 2.5. Note that min[A/(Λb)] = 0.05, not 0.

of an increase in the natural ventilation rate, which allows the system to flush more

quickly. This is fundamentally different from the investigation of Linden et al. (1990)

where viscous effects are ignored so that Ra→∞. Similarly as the outlet area increases

(relative, say, to some measure of the flow resistance provided by the fissure), the system

can ventilate more efficiently resulting in smaller values for ξ. This finding is consistent

with the study of Linden et al. (1990).

In figure 2 b, we imagine a scenario in which the fissure shape is modified leading to

a fourfold decrease in the fissure permeability, kf . There is therefore a greater resistance

to flow through the fissure resulting in larger values for ξ. Conversely, in panel c, b/H
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Figure 3. Non-dimensional lower layer depth, ξ = h/H, vs. A/(Λb) for Ra = 102, 103 . . . 106

(the arrow indicates the direction of increasing Ra). Here b/H = 0.05, x0/H = 0.5 and kf/k is

determined using (2.22) with φ = 0.4 and A = πd2
f/4.

is increased from 0.05 to 0.5; the corresponding increase of hydrostatic pressure yields

larger values for Qout and smaller values for ξ. Finally, panel d considers an increase in

the source volume flux, i.e. an increase in x0, defined by (2.17). As a result of this extra

volume of solute-bearing fluid supplied to the reservoir, ξ is larger than in the small x0

case.

A limitation of the preceding analysis is that it implicitly assumes that the fissure area

and permeability are independent variables, when in fact kf can depend strongly on A.

For the case of well-developed flow through a circular fissure of diameter df , for example,

Bear (1972) equation (5.10.3) states that

kf = φ
d2

f

32
. (2.22)

Figure 3 confirms that qualitatively similar results are obtained when kf = kf (A).

The preceding analysis also provides a means of predicting the thickness, 2L, of the
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ambient interface that develops between the layer of diluted solute-bearing fluid and the

overlying layer of fresh ambient fluid. As summarized by Baines (1983), 2L is dictated by

a balance between dispersion and lateral inflow into the plume, which tend to broaden

and contract the interface, respectively. Presuming a one-dimensional problem, the time

rate of increase of the interfacial volume by broadening is expressed as

(∆Q)dispersion =
4WΛD
L

(2.23)

(c.f. equation 2.4 of Kaye et al. 2010). Conversely, (2.8) indicates that Q ∼ x1/3; therefore,

the plume will have a moderately larger volume flux at the lower boundary of the thick

interface (at x = H − h+L) as compared to at the upper boundary (at x = H − h−L).

The difference of plume volume fluxes can be estimated from

(∆Q)inflow =
(

36DφF0kΛ2

ν

)1/3 [
(H − h+ L+ x0)1/3 − (H − h− L+ x0)1/3

]
. (2.24)

Equating the expressions from (2.23) and (2.24) yields

W

9φH
= `Ra1/3

[(
1− ξ + `+

x0

H

)1/3

−
(

1− ξ − `+
x0

H

)1/3
]
, (2.25)

where ` ≡ L/H.

Figure 4 shows ` as a function of A/(Λb) and Ra for the same parameter combinations

as in figure 2. Results are shown only where ξ, defined by the physical root of (2.19),

is neither 0 or 1. Thus ` is observed to be an increasing function of the fissure area,

permeability and source volume flux and a decreasing function of Ra.

Equation (2.25) admits two asymptotic limits of interest, namely (1− ξ + x0/H)� `

and (1−ξ+x0/H)� `, in which case the interface is respectively thin and thick relative

to the lower layer depth. In the former circumstance, (2.25) indicates that

` ∼ 1

Ra1/6

(
1− ξ +

x0

H

)1/3

√
W

6φH
. (2.26)

Note that ` scales with W , the reservoir width, as ` ∼
√
W and with the Rayleigh number
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Figure 4. [color online] Non-dimensional half-thickness of the thick interface, ` = L/H,

vs. A/(Λb) and Ra as determined from the solution of (2.25). Parameter values are the same as

in figure 2. Also W/H = 1 and φ = 0.4.

as ` ∼ Ra−1/6. Moreover, ` increases, albeit relatively slowly, with 1 − ξ, the vertical

distance between the source and the interface. Interestingly, precisely the opposite trend

is noted in the turbulent plume case studied by Baines (1983) and Kaye et al. (2010).

Using the present notation, (2.7) of Kaye et al. (2010) indicates that ` ∼ (1 − ξ)−1/3.

Because 1 − ξ increases with the fissure area, this difference is reflected also in the fact

that ` is an increasing function of A/(Λb) according to figure 4 whereas figure 2 of Kaye

et al. (2010) shows that ` decreases as the area for outflow is increased. The reason for

this difference of behavior is ultimately related to the variation of the plume volume flux

with the vertical coordinate. When Q ∝ xn and n < 1 (n > 1), ` will be a increasing

(decreasing) function of 1−ξ and A. The ostensibly trivial case n = 1 in fact corresponds
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to the opposite asymptotic limit for which (1− ξ + x0/H)� `. Here

` ∼ 1

Ra1/4

(
W

18φH

)3/4

. (2.27)

The interface thickness is then independent of ξ and also the source volume flux i.e. x0/H

though still dependent on Ra. A comparable result applies also for turbulent plumes –

see (2.8) of Kaye et al. (2010).

Implicit in the above calculations is the fact that, in the absence of plume inflow,

` varies as
√
Dt where t is time. This result allows us to estimate the approximate

timescale, tss, over which the interface reaches its steady state thickness, which may

be quite long, particularly if the box width is large in some suitable non-dimensional

measure. Normalizing tss by H2/D, it can be shown that

τ ≡ tss

H2/D
=

1

Ra1/3

(
1− ξ +

x0

H

)2/3 W

24φH
, (2.28)

and

τ ≡ tss

H2/D
=

1
108
√

Ra

(
W

2φH

)3/2

, (2.29)

for the asymptotic limits given by (2.26) and (2.27), respectively.

Finally, it is necessary to return to the evaluation of D, which appears only vicariously

in figures 2, 3 and 4. As noted following (2.10), we select as the characteristic speed the

depth-average far-field value for v. Employing (A 13), this average speed is given by

|vff,avg| =
1
3

(
9DφF0k

2Λν

)1/3

× 1
H

∫ H+x0

x0

1
x2/3

dx , (2.30)

where the subscript ff indicates the far-field. Further applying (2.17) yields, after some

straightforward algebra, the following nonlinear equation to be solved for the solute

dispersion coefficient:

D2/3 =
d

H

(
9φF0k

2Λν

)1/3
[(

H +
Q3

0ν

36DφF0kΛ2

)1/3

−
(

Q3
0ν

36DφF0kΛ2

)1/3
]
. (2.31)

Consistent with many analyses of porous media flow (e.g. Wooding 1963, Riaz et al. 2006,
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Szulczewski et al. 2013, Turcotte & Schubert 2014), we assume a constant value for the

dispersion coefficient, D. Doing so allows us to exploit the self-similar solutions presented

in Appendices A and B and draws attention to the average effect of dispersion while

ignoring its spatial variability. By contrast the far-field horizontal flow speed, whose

depth-average value appears in (2.30), decreases by a factor of (1 + H/x0)2/3 between

x = x0 and x = H+x0. Note, however, that the vertical variation of vff is most significant

for small x/H. This is also the region where the boundary layer approximation is most

suspect. If the top 20% of the control volume is ignored, vff decreases by less than a factor

of 3, suggesting that the variation in D is also relatively modest. As we will reinforce

in §5, the assumption D = constant therefore provides sufficient physics to capture the

details of the bulk flow.

3. Theory – axisymmetric source

The results of §2 can be readily extended to the case of a (negatively-buoyant) axisym-

metric plume issuing from a point source. From the analysis of Appendix B, we find that

the plume volume flux is in this case given by

Q = 8πDφx . (3.1)

In contrast to (2.8), Q varies linearly with x and does not depend on the permeability

or kinematic viscosity. The volume flux is also independent of the buoyancy flux: when

the plume fluid is very dense, the plume will fall rapidly and remain relatively thin

as compared to a less dense plume that falls more slowly (Turcotte & Schubert 2014).

Because Q depends on both the vertical velocity and the cross-sectional area of the plume,

there is a balance between competing effects that renders the volume flux insensitive to

the magnitude of F0, provided of course that the source buoyancy flux is large enough

for high-Ra number convection to be established in the first place.
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Whereas (3.1) describes an ideal plume such that Q→ 0 as x→ 0, it is again helpful to

consider a non-ideal plume with finite source volume flux, Q0 > 0. Thus (3.1) is replaced

with

Q = 8πDφ(x+ x0) , where x0 =
Q0

8πDφ
. (3.2)

Using (3.2) it is straightforward to derive the analogue of (2.9), which reads

ḡ′ =
F0

8πDφ(x+ x0)
. (3.3)

By extension,

ḡ′|H−h =
F0

8πDφ(H − h+ x0)
. (3.4)

When (2.11) and (3.2) are combined, the following (implicit) expression for the non-

dimensional interface thickness, ξ, is obtained:

0 =
1

Ra
ξ2−

[
b

H

(
kf

k

)(
A

b2

)
+

2
Ra

(
1 +

x0

H

)]
ξ−
(
b

H

)2(
kf

k

)(
A

b2

)
+

1
Ra

(
1 +

x0

H

)2

.

(3.5)

Here the Rayleigh number is now defined as

Ra =
F0k

(8πDφ)2ν
. (3.6)

As compared to the right-hand side of (2.19), that of (3.5) is a quadratic, not a cubic,

polynomial. Note, moreover, that each term from (3.5) is proportional to k−1. Conse-

quently, and in contrast to the data of figure 2, ξ is not expected to vary with the

permeability of the reservoir.

Solutions of (3.5) are presented in figure 5 where, consistent with figure 2, we consider

two different values for each of kf/k, b/H and x0/H. The variation of ξ with these

parameters is qualitatively similar to that observed in the line source case. Thus figure 5

shows that ξ is a decreasing function of Ra and the non-dimensional fissure area, which

is here denoted by A/b2.
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Figure 5. [color online] Non-dimensional lower layer depth, ξ = h/H, vs. A/b2 and Ra as

determined from the solution of (3.5). (a) kf/k = 1, b/H = 0.05, x0/H = 0.5; (b) kf/k = 0.25,

b/H = 0.05, x0/H = 0.5; (c) kf/k = 1, b/H = 0.25, x0/H = 0.5; and (d) kf/k = 1, b/H = 0.05,

x0/H = 2.5. Note that min[A/(Λb)] = 0.05, not 0.

We turn finally to the evaluation of the interface thickness, 2L and find a result that

is qualitatively quite different from (2.25). Because the plume volume flux varies linearly

with x,

(∆Q)inflow = 16πDφL . (3.7)

Conversely,

(∆Q)dispersion =
4ArD

L
, (3.8)

where Ar is the reservoir cross-sectional area. Equating these expressions yields

` =
1

2H

√
Ar

πφ
. (3.9)
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As expected from our discussion of (2.26), ` does not depend on any of the virtual

origin correction, the distance from the source to the interface or the fissure area. The

interface thickness is moreover independent of the buoyancy flux and the solute dispersion

coefficient. The former observation stems from the fact that Q likewise does not vary with

F0. The latter stems from the fact that by increasing D, both the plume volume flux and

the rate of interfacial broadening also increase. In fact, because D appears as a linear

term in both (3.7) and (3.8), these competing effects exactly balance one another.

When the reservoir cross-section is rectangular and circular, respectively, (3.9) may be

further simplified as follows

`rectangular =
1

2H

√
WΛ
πφ

, `circular =
R

2H
√
φ
. (3.10)

These results reinforce the fact that ` now depends only on the void fraction and reservoir

geometry. Note finally that the respective times required for the thick interface to spread

to the values prescribed by (3.10) are approximated by

τrectangular =
W

16πφH
, τcircular =

1
16φ

(
R

H

)2

. (3.11)

4. Laboratory experiments

Verification of the above predictions by laboratory experiment proved nontrivial. In

the point source case, it was difficult to reconcile the large volume of porous medium

required with the small source volume flux. Solute- i.e. NaCl-bearing fluid was found to

become diluted so readily with fresh ambient fluid that one could not estimate h with

adequate confidence. Consequently, the present discussion is restricted to the case of a

rectilinear source, mimicking the discussion of §2.

Experiments were conducted in a clear acrylic box with internal dimensions 7.6 cm deep

× 32.5 cm wide × 40.6 cm tall (figure 6). This box was filled to a depth of approximately
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Figure 6. Experimental schematic showing the direction of flow from the overhead reservoir

to the descending plume inside the acrylic box.

33.5 cm with Potters Industries A Series Premium glass beads, which had a nominal

diameter of 3 mm. In the analysis to follow, we assume that φ = 0.4 (Happel & Brenner

1991). To assist in measuring interface heights, a ruler was affixed to one side of the tank

using double-sided adhesive tape. The bottom boundary of the acrylic box contained

eight equidistant vents, each 2.54 cm in diameter, into which solid or one-hole stoppers

could be inserted. A similar array of vents was located along the top of the front and

back sides of the acrylic box; hole centers were positioned 3.81 cm apart, 2.54 cm from the

top edge and approximately 3-4 cm above the bead interface. Finally, a hole of diameter

2.22 cm was drilled through the center of the top plate. Through this hole flowed dyed

saline fluid inside of plastic tubing and a vertical copper conduit sleeve. The saline fluid

was discharged through a nozzle, which we describe below.



Buoyant convection from a discrete source in a leaky porous medium 21

Saline fluid was dyed with Procion MX Cold Water dye and was supplied from a 65 L

overhead plastic reservoir. In the prototypical experiment, this fluid flowed, in sequence,

through a ball valve, flowmeter and needle valve. The latter was used to set the plume

source volume flux, whose value was Q0 = 0.1 mL/s. Although a constant level was not

maintained in the plastic reservoir, the free surface fell very slowly owing to the small

outflux and relatively large cross-sectional area of the reservoir (59 cm × 42 cm). For long

experiments, the needle valve was progressively opened by hand to maintain a constant

value for Q0.

Once inside the acrylic box, the saline fluid was discharged through a specially-built

line source nozzle that spanned the box depth and which was located a vertical distance of

approximately 1.5 cm below the bead interface. As described by Roes (2014), the internal

structure of the nozzle was designed so that the flow remained relatively uniform along

its length, even for small rates of discharge. The nozzle slit was 0.4 cm in width and

was flared so as to reduce the importance of momentum as saline fluid flowed into the

porous medium. Although the slit width is comparable to the bead diameter, (i) the

plume radius will be shown to increase nontrivially with x (see e.g. figure 8 a below),

and, (ii) it was impractical to run experiments having a smaller bead diameter because

this would very substantially curtail the widening of the plume.

The acrylic box was suspended inside a much larger galvanized steel tank, whose volu-

metric capacity was approximately 2.2 m3. The steel tank had a square cross-section and

stood approximately 1.81 m tall; for ease of flow visualization, each tank face contained a

viewing window measuring 0.55 m by 1.80 m. Mimicking the flow described by the label

Qin in figure 1 b, fresh water from the tank flowed into the acrylic box through four of

the 2.54 cm diameter vents located at the top of the box. Conversely, dense fluid drained

through a series of much smaller openings along the bottom of the box. There was thus
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a continual exchange between the fluid inside the acrylic box and that inside the steel

tank. Note that in order to observe nontrivial values for h, the fissure cross-sectional

area, A, had to be smaller even than the cross-sectional area associated with standard

one-hole stoppers. As such, a series of eight acrylonitrile butadiene styrene (ABS) plastic

inserts were manufactured using a Object Eden350V 3D printer. The inserts were fit

inside existing one hole stoppers and had a length and inner diameter of b = 2.0 cm and

df = 0.14 cm, respectively. As many as eight and as few as two inserts were used during

a given experiment. Any vents that did not contain a stopper fitted with an insert were

instead plugged with a solid stopper, which did not admit any outflow of dense fluid.

Before running an experiment, the steel tank was filled to capacity with tap water and

left to sit overnight. The water inside the tank therefore reached thermal equilibrium with

the surrounding air. Concurrently, the acrylic box was suspended inside the steel tank

so that its top surface sat approximately 5 cm below the eventual free surface. Special

precautions were taken to minimize the volume of air that became trapped inside the

pore space of the acrylic box (Roes 2014).

Two types of experimental runs were conducted. In the former, termed “draining flow”

experiments, the descending plume of figure 1 was absent. Rather, the acrylic box was

filled from the bottom and with negligible mixing with dyed saline fluid of prescribed

density. All the while, this same fluid drained from the bottom of the acrylic box. Al-

though there were eight open inserts through which dense fluid drained, the rate of filling

exceeded the rate of draining. The interface therefore rose as a function of time, t. Once

it reached a height of approximately 31 cm, the ball valve was closed ceasing the inlet

flow. The time rate of descent of the interface was then recorded by collecting regularly-

spaced digital images of the acrylic box and its contents. For this purpose, we used a

Canon Rebel EOS T2i 18.0 megapixel camera with an 18-55 mm IS II zoom lens. To
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minimize parallax effects, the camera lens was positioned 90 cm in front of the steel tank;

backlighting using an overhead projector was applied for purposes of illumination. From

the experimental data so collected, we could estimate kf as a function of the density of

the fluid flowing through the fissure – see figure 7 below.

The more prototypical experiment was of emptying filling box variety. Here, the ini-

tial condition again consisted of a porous medium saturated with fresh water. Now,

however, the acrylic box was filled from the top and so produced a descending plume

(figure 1). Upon reaching the bottom of the box, discharged plume fluid spread lat-

erally then collected in an expanding layer. The terminal height of this dense lower

layer was dictated by the balance between the fluid supplied by the plume and that

discharged from the bottom of the box through the inserts, which numbered two, three,

four, six or eight. Three values for the density of the source fluid were considered, namely

ρs = 1.0114 g/cm3, 1.0402 g/cm3 and 1.0700 g/cm3. These corresponded to respective

ḡ′0 values of 12.5 cm/s2, 42.0 cm/s2 and 71.5 cm/s2 where ḡ′0 ≡ ḡ′(x = 0) is the reduced

gravity of the fluid in the plastic reservoir. In all cases, and also with the draining flow

experiments described previously, densities were measured using an Anton Paar DMA 38

densitometer. This device was accurate to ±0.00005 g/cm3. Experiments were typically

run in sequence where the fissure cross-sectional area, A, was progressively decreased.

After changing the bottom boundary condition e.g. by replacing two of the stoppers con-

taining inserts with two solid stoppers, approximately 45 minutes was required in order

for a new steady state, consisting of a deeper lower layer, to be realized. At this point,

images were recorded using the same optical set-up as described above.

Whether considering draining flow or emptying filling box experiments, estimates for h

were derived from laboratory images using the same three-step post-processing algorithm

(Roes 2014). Images were first resized and cropped so as to remove both regions outside
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of the acrylic box and, if appropriate, the center region occupied by the descending

plume. Next, the initial reference state was subtracted from each image in a particular

experimental run. Changes to the depth of the dyed lower layer were therefore highlighted

and a false-color image was produced. An initial estimate for the interface height, ĥ, was

obtained by binning pixels into 10×10 boxes, computing the row-wise average of the

boxes then determining the elevation where the change of intensity achieved a maximum

value. To improve upon this estimate, we focused more specifically on those data that fell

within ±150 pixel units of the the pixel assigned to ĥ, a vertical span of approximately

13-14 cm. Row-by-row, intensity values were again averaged and a polynomial curve was

fit through the resulting data. After calculating the vertical derivative of this curve, we

assigned our experimental estimate for h based on the extremum of the derivative (Kaye

& Hunt 2004). Results were verified by overlaying the experimental estimate for h on top

of the appropriate laboratory image; excellent agreement was noted in all cases.

5. Results and discussion

5.1. Experimental determination of kf/φ

Appendix C presents a means by which measured data from the draining flow experiments

may be used to estimate the value of kf/φ. On this basis, we found that kf/φ is a

decreasing function of the fluid density, approaching the well-developed flow prediction

of d2
f/32 only for sufficiently large ḡ′ (figure 7). We are unaware of any comparable

analyses suggesting that kf cannot be determined strictly from the fissure geometry.

There are, however, several examples from the literature describing similitude laboratory

experiments of naturally-ventilated buildings where the discharge coefficient, CD, varies

with the difference of density between the interior and exterior space – see e.g. Holford

& Hunt (2001). Additionally there is theoretical evidence that effective permeabilities
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Figure 7. Variation of kf/φ with ḡ′ as measured using the techniques summarized in §4. The

theoretical prediction is based on (2.22) i.e. (5.10.3) of Bear (1972) and assumes well-developed

outflow.

in porous media systems with more than one permeability may assume values that are

influenced by buoyancy effects (Welty & Gelhar 1991, Bolster et al. 2011).

Figure 7 also includes a third-order polynomial best fit to the measured data, the

dimensional equation of which reads

kf

φ
= −2.11×10−9 s6

cm
(ḡ′)3 +3.73×10−7 s4 (ḡ′)2−2.35×10−5 cm s2 ḡ′+1.20×10−3 cm2 .

(5.1)

From this empirical result and equations such as (2.18), which predict the reduced gravity

of the dense lower layer as a function of F0, φ, k, etc., one can estimate the particular

value for kf to be applied for a prescribed emptying filling box flow. This information

is required in order to compare measured interface heights with analogue predictions, as

we do in the following subsection.
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5.2. Comparison with theory

Figure 8 displays a series of experimental images in which ḡ′0 = 71.5 cm/s2, Q0 =

0.1 mL/s, b/H = 6.25× 10−2 and the normalized fissure cross-sectional area is decreased

in equal steps from 9.35 × 10−2 to 2.34 × 10−2. Consistent with analytical predictions,

reducing A/(Λb) leads to a corresponding increase of interface height. The impact of the

source reduced gravity is examined in figure 9 in which ξ = h/H is shown as a function

of A/(Λb) for three different values of ḡ′0. Notably, ḡ′0 exhibits only a small influence:

in adjusting the source reduced gravity by a factor of more than five, the corresponding

variation of ξ is typically less than the length of the canonical error bar indicated in panel

c (c.f. Linden et al. 1990). Also shown in figure 9 are two sets of theoretical curves. In

the case of the solid curves, we determine the solute dispersion coefficient, D, from the

solution of (2.31). Conversely in the case of the dashed curves, mechanical dispersion is

ignored and D = Dmolecular = 2.5× 10−5 cm2/s (Linden 1999). The dashed curves show

the correct qualitative behavior, i.e. they predict the interface height to decrease with

the fissure cross-sectional area (and, to a lesser extent, ḡ′0). However, they significantly

under-predict the magnitude of ξ. Much more satisfactory agreement between theory

and experiment is realized in the case of the solid curves. Interestingly, the solid curves

predict ξ to increase, albeit quite modestly, with ḡ′0 for moderate and large A/(Λ b). An-

alytically, this is due to the fact that by increasing ḡ′0, both the source buoyancy flux,

F0, and D also increase. Because the Rayleigh number is proportional to F0/D
2 (see

equation 2.15), Ra decreases as the source reduced gravity increases from 12.5 cm/s2 to

42.0 cm/s2 to 71.5 cm/s2. (Counterbalancing this effect, note that the relative influence of

the source volume flux, as measured by x0/H, likewise decreases with increasing ḡ′0.) We

defer a more detailed investigation of this prediction to future investigations for several

reasons: (i) the variation of ξtheory with ḡ′0 is, as noted above, minor whereas the trend of
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Figure 8. [color] The laboratory analogue of figure 1 b. As reported in text, all images share

the same values for ḡ′0, Q0 and b/H, however, A/(Λb) decreases from 9.35× 10−2 to 2.34× 10−2

in increments of 2.34× 10−2 in moving from the upper left to the upper right to the lower left

to the lower right image. The yellow ruler that appears on the right-hand side in each panel is

used in the measurement of h.
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the experimental data is not definitive, and, (ii) the resolution may entail the introduc-

tion of an empirical parameter (c.f. Lai 1991) for which more sophisticated laboratory

experiments, outside of the scope of the present inquiry, are necessary.

The open circles of figure 9 reappear as the horizontal dotted lines of figure 10, which

shows the variation of the row-average false-color pixel intensity as a function of the

normalized vertical coordinate, x/H. (The pixel intensity is here measured in arbitrary

units; with reference to figure 8, recall that experimental images are cropped so that

they exclude the vertical strip containing the descending plume). Figure 10 exploits a

fact evident from figure 8, i.e. that the plume fluid is dyed so that pixel intensity may, in a

false-color image, be used as an approximate surrogate for salt content. Instances where

the intensity gradient seems to indicate the unstable scenario of heavy fluid overlying

light fluid are due to spurious light reflections in the laboratory.

Of particular relevance in figure 10 is the inclusion of a pair of dashed lines derived

from the numerical solution of (2.25); these indicate the upper and lower bounds associ-

ated with the interface given the value for h derived from the image processing routine

summarized at the end of §4. Although the true interface thickness may be over- and

under-estimated, respectively, in panels c and k/l, the general level of agreement between

the prediction of (2.25) and the corresponding experimental profile is good. Most notably,

(2.25) predicts ` to increase with A/(Λb) (i.e. to decrease with ξ), a trend that is clearly

supported by the experimental data.

6. Conclusions

By combining the self-similar solution describing 2D-rectilinear or 2D-axisymmetric

plume flow in a homogeneous porous medium with a draining law that prescribes the

volume flux through a fissure as a function of the fissure area and the density of the
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Figure 9. Non-dimensional interface height vs. fissure area. Analytical solutions are obtained

by solving (2.19) using (5.1) supplemented by (2.18). The solid curves show the solution as-

suming D is given by (2.31) so that Ra = 7.36 × 103, x0/H = 0.0144 (ḡ′0 = 12.5 cm/s2);

Ra = 4.88×103, x0/H = 2.06×10−3 (ḡ′0 = 42.0 cm/s2); and Ra = 4.39×103, x0/H = 8.76×10−4

(ḡ′0 = 71.5 cm/s2), respectively, in panels a, b and c. The dashed curves show the solution as-

suming diffusion by purely molecular processes. In all cases, b/H = 6.25×10−2. A representative

error bar is indicated in panel c, whose experimental data points correspond to the laboratory

images of figure 8.
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draining fluid, it is possible to estimate the interface height, h, for the emptying filling

box flow illustrated schematically in figure 1 b. Solutions are obtained by solving either

a cubic or quadratic polynomial equation (i.e. equation 2.19 or 3.5, respectively) where,

in either case, (i) the density of the draining fluid is assumed to match that of the plume

at the position of the interface, and, (ii) the source volume flux, Q0, is assumed to be

finite. Critical to the success of our analysis, predictions from which are presented in

figures 2, 3 and 5, is choosing the appropriate value for the solute dispersion coefficient,

D. In the present context, it is assumed that transport by mechanical processes exceeds

transport by molecular processes and that the appropriate characteristic velocity scale

to apply in (2.10) corresponds to a transverse, not a longitudinal, speed. Thus the depth-

average value of D is given by the solution of (2.31). Applying this result along with the

information summarized in figure 7, which describes the flow resistance of the fissure as

a function of the draining fluid density, one realizes positive agreement between theo-

retical predictions and analogue experimental measurements – see figure 9. In the latter

circumstance, we restrict attention to the case of a line source but consider, as described

in §4, multiple values for the source reduced gravity, ḡ′0, and fissure area, A.

The analysis of §2 and §3 also provides a means of estimating the interface thickness,

2L. Here the broadening influence of dispersion is counterbalanced against inflow into

the plume yielding (2.25) and (3.10) for rectilinear and axisymmetric cases, respectively.

A surprising, and as yet experimentally unverified, prediction associated with the latter

equation is that it does not depend on the magnitude of D. This fact is related to the

details of the self-similar solution given by (3.1) according to which the plume volume flux

is predicted to vary linearly with D and the vertical coordinate x, but to be independent

of the source buoyancy flux, F0.

Fortunately, it is less cumbersome to verify, experimentally, the predictions of (2.25).
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The associated comparison between theory and experiment is presented in figure 10 in

which the row-average false-color pixel intensity associated with each of the measurements

summarized in figure 9 is presented. On the basis of this comparison, we find there to be

generally positive agreement between (2.25) and the analogue experimental data.

Relative to real geological or environmental flows, the present study is idealized in a

number of respects. It considers a homogeneous porous medium only whereas, in actu-

ality, vertical and even horizontal variations of the porosity, φ, and permeability, k, are

not unlikely. Future research will consider these additional complications and will also

seek to elucidate the time-dependent approach towards the steady state described, for

example, by (2.13).
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Appendix A. Line source – analytical details

The momentum equations (2.2) and (2.3) can be combined to eliminate the fluid

pressure, i.e.

ν

k

(
∂u

∂y
− ∂v

∂x

)
=

g

ρ0

∂ρ

∂y
. (A 1)
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We now apply the boundary layer approximation (2.6) and introduce a stream-function

ψ, defined so that

u =
∂ψ

∂y
, v = −∂ψ

∂x
.

Equation (2.1) is then automatically satisfied whereas (A 1) and (2.4) become, respec-

tively,

∂2ψ

∂y2
=
gβk

ν

∂S

∂y
, (A 2)

and

∂ψ

∂y

∂S

∂x
− ∂ψ

∂x

∂S

∂y
= Dφ

∂2S

∂y2
. (A 3)

We look for a self-similar solution to (A 2) and (A 3) of the form

ψ = Ax1/3f(η) , S =
B

x1/3
f ′(η) , (A 4)

where the prime indicates differentiation with respect to η, which is itself defined by

η =
y

x2/3

[
F0k

(Dφ)2Λν

]1/3

(c.f. Wooding 1963, equation 20 c). The constants A and B are determined shortly.

Applying (A 4) in (A 2) allows us, after some algebra, to write B in terms of A, i.e.

B =
Aν

gβk

[
F0k

(Dφ)2Λν

]1/3

. (A 5)

Meanwhile, applying (A 4) in (A 3) yields, after some further simplifications,(
DφF0k

Λν

)1/3

f ′′′ + 1
3A(ff ′)′ = 0 . (A 6)

This result motivates us to define A as

A =
(
DφF0k

Λν

)1/3

⇒ B =
1
gβ

(
F 2

0 ν

Λ2Dφk

)1/3

, (A 7)

where (A 5) has been applied. Integrating (A 6) recognizing that f ′ must vanish in the

far-field where S = 0 yields

f ′ = 1
6 (c2 − f2) , (A 8)
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which has as its solution

f = c tanh
(

1
6cη
)
. (A 9)

The constant of integration, c, is determined by recalling that the buoyancy flux is

independent of the vertical coordinate, x, provided the ambient is unstratified. In math-

ematical terms,

F0 = Λ
∫ ∞
−∞

ug′ dy , (A 10)

where the integrand is evaluated at arbitrary x. Here the reduced gravity is defined by

g′ = g

(
ρ− ρ0

ρ0

)
= gβS ,

the latter equality following from the (linear) equation of state (2.5). Applying this def-

inition in (A 10) and recalling that u = ∂ψ/∂y yields, after some helpful cancellation

of terms, c = (9/2)1/3. With the solution (A 9) now unambiguously specified, both the

plume volume flux and the velocity components u and v can be straightforwardly deter-

mined. In the former instance, note that

Q = Λ
∫ ∞
−∞

udy = Λ[ψ]∞−∞ , (A 11)

where ψ is given in terms of f by (A 4 a). Using the previous results yields (2.8) from

which (2.9) follows. In the latter instance, the vertical and horizontal velocities are given

by (c.f. Wooding 1963 equations 20 a, b)

u =
(

9
2x

)1/3

AC sech2

(
Cy

x2/3

)
, (A 12)

v =
(

9
2

)1/3

A

[
2Cy
3x4/3

sech2

(
Cy

x2/3

)
− 1

3x2/3
tanh

(
Cy

x2/3

)]
, (A 13)

respectively, where A is defined by (A 7) and

C =
1
6

(
9
2

)1/3 [
F0k

(Dφ)2Λν

]1/3

. (A 14)
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Appendix B. Point source – analytical details

Whereas Appendix A considers a plume issuing from a line source, we now study

the axisymmetric flow associated with a point source. Following Phillips (1991), it is

expedient to introduce a Stokes stream-function, ψs, defined as

ur = −1
r

∂ψs

∂x
, u =

1
r

∂ψs

∂r
,

where r and ur denote, respectively, the radial coordinate and velocity. Equations (A 2)

and (A 3) are then expressed as

∂

∂r

(
1
r

∂ψs

∂r

)
=
gβk

ν

∂S

∂r
, (B 1)

and

1
r

∂ψs

∂r

∂S

∂x
− 1
r

∂ψs

∂x

∂S

∂r
=
Dφ

r

∂

∂r

(
r
∂S

∂r

)
, (B 2)

respectively. Just as before, a self-similar solution is sought, now of the form

ψs = ǍxF(η) S =
B̌

x
G(η) , (B 3)

where

η =
r

Dφx
·
√
F0k

2πν

(c.f. equations 7.5.24 and 7.5.25 of Phillips 1991). Applying these results in (B 1) yields

G =
1
η
F ′ , (B 4)

provided B̌ is defined so that

B̌ =
F0Ǎ

2πgβ(Dφ)2
. (B 5)

Meanwhile, (B 2) can be reduced to

−F ′(Gη)′ − G′(F − F ′η) =
Dφ

Ǎ
(G′η)′ , (B 6)
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which motivates us to set Ǎ = Dφ. Having done so, analytical solutions of (B 4) and

(B 6) may be straightforwardly derived whereby

ψs =
3Dφxη2

8 + 3
4η

2
, S =

3F0

8πgβDφx
(
1 + 3

32η
2
)2 . (B 7)

Consistent with the discussion of Appendix A, the numerical values of the parameters in

the previous expressions are determined by requiring that the buoyancy flux, defined as

F = 2π
∫ ∞

0

ug′ rdrdθ , (B 8)

is independent of the vertical coordinate, i.e. F = F0 for all x.

On the basis of the above calculations, it can be shown that

ur = −3Dφη2

r

[
3
4η

2 − 8(
3
4η

2 + 8
)2
]
. (B 9)

The far-field value of the radial speed therefore reads

|ur,ff | =
4Dφ
r

. (B 10)

The remarkable simplicity of (B 10) has the following important consequence (Phillips

1991): the rate of change of the plume volume flux with x must, by mass balance, satisfy

dQ
dx

= lim
r→∞

2πr|ur| . (B 11)

However, r|ur,ff | = 4Dφ so that the plume volume flux is given by the concise expression

Q = 8πDφx. This formula can, of course, also be derived from Q = 2π
∫∞

0
u rdr.

Appendix C. Experimental determination of kf/φ – details

Equation (2.11) prescribes the rate at which fluid drains from the lower layer as a

function of the fissure area, permeability, reduced gravity, etc. In the absence of replen-

ishment (i.e. when the plume of figure 1 b is absent), the interface height will steadily
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Figure 11. Interface height vs. time for four draining flow experiments where the legend entries

indicate the values of ḡ′ and, in all cases, A = 0.123 cm2. The slopes of the curves give the

corresponding data points in figure 7.

decrease. By simple mass balance

−ΛWφ
dh
dt

=
Akf ḡ

′

ν

(
h+ b

b

)
. (C 1)

Separating variables and integrating treating h0 as the initial value for h, it can be shown

that

ln
(
h0 + b

h+ b

)
=

Akf ḡ
′

νbΛWφ
· t . (C 2)

According to (C 2) a plot of ln[(h0 + b)/(h+ b)] vs. time, or its non-dimensional analogue

Aḡ′t/(Wν), ought to yield a straight line from whose slope kf/φ can be measured. Figure

11 shows such a plot from which the linear dependence of ln[(h0 +b)/(h+b)] and t can be

confirmed, at least for ln[(h0 + b)/(h+ b)] <∼ 1. Beyond this value, i.e. for h <∼ 10 cm, the

details of the draining flow may become more complicated than anticipated by (2.11).
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Accordingly, when estimating kf/φ from data such as are presented in figure 11, we

restrict attention to the interval 0 ≤ ln[(h0 + b)/(h+ b)] ≤ 1.
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