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Abstract

Integrations over the unitary group are required in many applications including the

joint eigenvalue distributions of the Wishart matrices. In this thesis, a universal

integration framework is proposed to use the character expansions for any unitary

integral with general rectangular complex matrices in the integrand. The proposed

method is applied to solve some of the well–known but not solved in general form

unitary integrals in their general forms, such as the generalized Harish–Chandra–

Itzykson–Zuber integral. These integrals have applications in quantum chromody-

namics and color–flavor transformations in physics. The unitary integral results are

used to obtain new expressions for the joint eigenvalue distributions of the semi–

correlated and full–correlated central Wishart matrices, as well as the i.i.d. and

uncorrelated noncentral Wishart matrices, in a unified approach. Compared to the

previous expressions in the literature, these new expressions are much easier to

compute and also to apply for further analysis. In addition, the joint eigenvalue

distribution of the full–correlated case is a new result in random matrix theory.

The new distribution results are employed to obtain the individual eigenvalue den-

sities of Wishart matrices, as well as the capacity of multiple–input multiple–output

(MIMO) wireless channels. The joint eigenvalue distribution of the i.i.d. case is used

to obtain the largest eigenvalue density and the bit error rate (BER) of the optimal

beamforming in finite–series expressions. When complete channel state informa-

tion is not available at the transmitter, a codebook of beamformers is used by the

transmitter and the receiver. In this thesis, a codebook design method using the ge-

netic algorithm is proposed, which reduces the design complexity and achieves large

minimum–distance codebooks. Exploiting the specific structure of these beamform-

ers, an order and bound algorithm is proposed to reduce the beamformer selection

complexity at the receiver side. By employing a geometrical approach, an approxi-

mate BER for limited feedback beamforming is derived in finite–series expressions.



Acknowledgements

This is a great opportunity to express my respect and gratitude to my supervisor,

Dr. Chintha Tellambura. The first thing that his name brings to mind is his kind

and caring personality. I would like to thank him for inspiring me all along the way,

as well as for his supervision and support during my PhD.

The financial support for my PhD has been provided mainly by the Alberta

Ingenuity Fund and iCORE and partly by NSERC.

I would like to thank Dr. Norman C. Beaulieu and Dr. Masoud Ardakani for

their kind support. As a member of the iCORE Wireless Communications Lab

(iWCL) at the University of Alberta, I would like to thank the students, postdoc-

toral fellows and administrative staff for making iWCL a friendly environment for

research, discussions, seminars and occasional conference trips. Here, I take the

opportunity to thank Sandra Abello for her caring assistance.

For this thesis, I was able to discuss with Dr. Plamen Koev on random matrix

theory, and Dr. A. B. Balantekin on character expansions of groups. I thank them

for their helpful comments.

I would like to thank Moslem Noori, Mahdi Hajiaghayi and Payam Dehghani

for their collaboration and occasional discussions, which provided helpful comments

and feedback for my research.

I would like to thank my master degree supervisor, Dr. Hamidreza Jamali, for

his kind support, as well as all my friends, with whom I had memorable times,

in particular, Mohsen Eslami, Amirmasoud Rabiei, Alireza Farhangfar, Seyed Ali

Arefifar, Mahdi Shahbakhti and Mahdi Ramezani.

And finally, my last and the biggest thank yous go to my wife for her invaluable

support and patience, and my family for their endless support from thousands of

miles away. This thesis is dedicated to my wife, mother and father.



Table of Contents

1 Introduction 1
1.1 MIMO Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 CSI available for neither transmitter nor receiver . . . . . . . 3
1.1.2 CSI available for receiver only . . . . . . . . . . . . . . . . . . 4
1.1.3 CSI available for receiver and transmitter . . . . . . . . . . . 5

1.2 Random Matrix Theory . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Character Expansions for Unitary Integrations . . . . . . . . . . . . 8
1.4 Thesis Outline and Contributions . . . . . . . . . . . . . . . . . . . . 9

2 Preliminaries 11
2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Group Representations . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Representations of GL(N, C), U(N) and character properties 14

2.2 Character Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Unitary Integration by Character Expansions . . . . . . . . . . . . . 18
2.4 Essential Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Generalization of Some Unitary Integrals and Applications 25
3.1 Generalized Unitary Integrals . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Calculation of IN,M
1 . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.2 Calculation of IN,M
2 . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.3 Calculation of IN,M
3 . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Joint Eigenvalue Distributions of Wishart Matrices . . . . . . . . . . 34
3.2.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.2 P (λ) for i.i.d. Central Wishart Matrix . . . . . . . . . . . . . 34
3.2.3 P (λ) for Semi–Correlated Central Wishart Matrix . . . . . . 35
3.2.4 P (λ) for Uncorrelated Noncentral Wishart Matrix . . . . . . 36
3.2.5 P (λ) for i.i.d. Noncentral Wishart Matrix . . . . . . . . . . . 37
3.2.6 P (λ) for Full–Correlated Central Wishart Matrix . . . . . . . 38

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Eigenvalue Density of Wishart Matrices 40
4.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 i.i.d. Central Wishart . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Semi–Correlated Central Wishart . . . . . . . . . . . . . . . . . . . . 44
4.4 Uncorrelated Noncentral Wishart . . . . . . . . . . . . . . . . . . . . 46



4.5 i.i.d. Noncentral Wishart . . . . . . . . . . . . . . . . . . . . . . . . 49
4.6 Full–Correlated Central Wishart . . . . . . . . . . . . . . . . . . . . 52
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Capacity Analysis of MIMO Systems 58
5.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 i.i.d. Rayleigh MIMO Channel . . . . . . . . . . . . . . . . . . . . . 60
5.3 Semi–Correlated Rayleigh MIMO Channel . . . . . . . . . . . . . . . 60
5.4 Uncorrelated Ricean MIMO Channel . . . . . . . . . . . . . . . . . . 61
5.5 i.i.d. Ricean MIMO Channel . . . . . . . . . . . . . . . . . . . . . . 62
5.6 Full–Correlated Rayleigh MIMO Channel . . . . . . . . . . . . . . . 64
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Design, Selection Algorithm and Performance Analysis of Limited
Feedback Transmit Beamforming 70
6.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2 Codebook Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2.1 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3 Beamformer Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.4 Performance Analysis of Optimal Transmit Beamforming . . . . . . 85

6.4.1 Exact BER Expression for PAM and QAM . . . . . . . . . . 85
6.4.2 Largest Eigenvalue Distribution of i.i.d. Central Wishart . . 86
6.4.3 BER of Optimal Transmit Beamforming . . . . . . . . . . . . 87

6.5 Performance Analysis of Limited Feedback Transmit Beamforming . 88
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7 Conclusions and Future Work 96

A Generalization of l’Hôpital Rule 99
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Chapter 1

Introduction

In 1895, Guglielmo Marconi opened the way for modern wireless communications

by transmitting the three-dot Morse code for the letter ‘S’ over a distance of three

kilometers by using electromagnetic waves. From this beginning, wireless com-

munications has been a rapidly growing segment of the communications industry,

particularly in the last decade, and has been developed into a key element of mod-

ern society. From satellite transmission, radio and television broadcasting to the

now ubiquitous multimedia internet-enabled mobile cell phones and laptops, wire-

less communications has revolutionized the way societies function. However, wireless

systems face many technical challenges in overcoming resource limitations.

Frequency bandwidth has been always a constraint in wireless communications.

Particularly after the realization of the first–generation digital cellular systems and

due to the rapid growth in digital cell phone users, as well as the demand for high–

speed wireless internet networks, bandwidth efficiency (bits/second/Hertz) became a

primary challenge in wireless systems. Similarly, reducing the power consumption,

or equivalently, increasing the battery life of mobile devices, such as cell phones,

laptops, sensors, and others is another challenge in wireless communications. On

the other hand, in his influential paper in 1948 [1], Shannon showed that in a single–

input single–output (SISO) channel with white Gaussian noise, when the channel

bandwidth is limited to B (Hertz), and the signal–to–noise power ratio (SNR) is

limited to S/N , the channel capacity (C), i.e., the maximum achievable throughput,

is limited to

C = B log
(

1 +
S

N

)
(1.1)

where C is measured in bits per second if the logarithm is taken in base 2, or nats

per second if the natural logarithm is used.

1



Since 1948, the state–of–the–art coding and modulation techniques have been

developed to reach Shannon’s fundamental limit [2]– [6]. However, due to the lim-

ited power in mobile devices and the related delay introduced by signal processing

modules, high–performance coding techniques may not always be feasible in prac-

tice. Moreover, the signal power S in (1.1) is decayed in wireless channels due to

fading and shadowing effects [7]– [9]. Hence, during the 1970s for satellite commu-

nications and, later, in the 1990s for digital cellular mobile systems, single–input

multiple–output (SIMO) systems were developed to use multiple receiver antennas

for diversity gains [10] and receiver beamforming [11]. However, even by increasing

the number of receiver antennas to Nr, the improvement in the capacity in high SNR

is approximately equal to B log(Nr), which is not adequate for high–speed wireless

networks. These facts led researchers to use multiple antennas at the transmitter

side [12].

1.1 MIMO Systems

Multiple–input multiple–output (MIMO) wireless systems deploy multiple antennas

at both the transmitter and receiver [13]. Signals are transmitted simultaneously

from transmit antennas using the same bandwidth. A MIMO wireless system with

Nt transmit antennas and Nr receive antennas, denoted by MIMO(Nt, Nr), is il-

lustrated in Figure 1.1, where the linear transformation between the transmit and

receive antennas can be modeled as

Y =
√

ρHS + N (1.2)

where Y ∈ CNr×T is the complex received matrix, S ∈ CNt×T is the complex trans-

mitted matrix, N ∈ CNr×T is the additive white noise matrix, and H ∈ CNr×Nt is

the complex channel matrix. Here, T is the number of signaling intervals used for

transmitting the matrix S. The elements of matrix S satisfy the power constraint

condition: E{S∗S} = IT , where (·)∗, E{·}, and IT denote the Hermitian (transpose

conjugate), expectation operator, and T dimensional identity matrix, respectively.

The coefficient
√

ρ ensures that the total transmit power in each channel use is ρ,

independent of the number of transmit antennas. The elements of matrix N are

independent and identically distributed (i.i.d.) complex Gaussian random variables

with zero mean and unit variance, denoted by CN (0, 1). The elements of matrix H

are the channel gains between each pair of transmit and receive antennas, and are

2
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Figure 1.1: The block diagram of MIMO(Nt, Nr) wireless system.

modeled by complex Gaussian random variables.

When the elements of matrix S are selected independently according to the input

data stream, the system is called spatial multiplexing. The first spatial multiplexing

system, called Bell Laboratories Layered Space-Time (BLAST), was implemented at

Bell Labs in 1996 by Foschini [14]. On the other hand, when the elements of matrix

S are selected based on a coding strategy, space-time codes are obtained [15]– [19].

In 1995, Telatar [20] analyzed the capacity of MIMO systems by assuming that

the channel gains are i.i.d. CN (0, 1) random variables. He found that the capacity

of a MIMO system increases linearly with the minimum number of transmit and

receive antennas
(
min(Nt, Nr)

)
. This intriguing discovery along with Foschini’s

laboratory prototype sparked the massive international research effort on MIMO

wireless systems that continues today.

The system model in (1.2) shows the fundamental role of the channel matrix

H in MIMO systems. In other words, the channel capacity directly depends on H.

Moreover, the space–time code designs and the decoding methods for such codes

depend on the availability of H for the transmitter and receiver. In general, the

MIMO literature falls into three main categories based on the availability of channel

state information (CSI) for the transmitter and receiver.

1.1.1 CSI available for neither transmitter nor receiver

In this scenario, H is not available for the transmitter and receiver. Data transmis-

sion is possible in this case if the transmit matrix S is a unitary matrix [21], [22]; i.e.,

SS∗ = INt . Some of the unitary space–time coding and decoding techniques pro-

3



posed for MIMO systems with unknown H can be found in [23]– [29]. The capacity

analysis of MIMO systems with unknown H can be found in [30]. This analysis is

only for the case in which the channel gains are i.i.d. CN (0, 1) random variables.

This paper along with the analysis in [31] reveals that MIMO capacity analysis with

unknown H requires unitary integrations for obtaining the joint pdf (probability

density function) of the received matrix elements. Such unitary integrals cannot be

solved by using the previous available mathematical tools. As a result, there are no

results in the literature on the capacity of MIMO systems with unknown H other

than the i.i.d. case.

1.1.2 CSI available for receiver only

The common practical assumption is that the channel matrix H is known to the

receiver, an assumption that is realized by using training signals [32]. In the liter-

ature, when the availability of H is not explicitly stated, it is commonly assumed

that the channel matrix in known to the receiver only. Most of the MIMO litera-

ture deals with this case. Such literature can be divided into three main categories.

In the first category, the space–time code designs are developed, e.g., orthogonal

codes [15], [17], quasi–orthogonal codes [33]– [36], and algebraic codes [37]– [41]. In

the second category, the decoding techniques for MIMO systems are considered [42]–

[47], where the focus is on solving the following NP–hard optimization problem by

using the exact or approximate solutions:

S̃ = arg min
∀S

‖Y −HS‖2 (1.3)

Here, ‖ ·‖ is the Frobenius norm [48]. The main challenge in space–time code design

is to reach the promising system capacity. This challenge usually leads to a tradeoff

between diversity and multiplexing [49]. In decoding techniques, however, the main

challenge is a tradeoff between computation complexity and performance [50].

In the third category, the capacity and performance of MIMO systems are in-

vestigated. The joint distribution of channel gains comes into account for MIMO

performance analysis (probability of detection error) [51]– [54]; e.g., the pairwise

error probability of sending the transmit matrix S in (1.2) and detecting the matrix

S̃ in (1.3) (maximum likelihood detection) is equal to

P
(
S → S̃

∣∣H
)

= Q

(√
ρ

2
‖H(S− S̃)‖2

)
(1.4)
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where

Q
(
x
)

=
1√
2π

∫ ∞

x
e−

u2

2 du (1.5)

is the Q–function.

The joint eigenvalue distribution of matrix HH∗ comes into account for MIMO

capacity analysis [55] since the capacity of the system (1.2) is equal to

C = Eλ

{
B

M∑

i=1

log
(
1 + ρλi

)}
(1.6)

where M = min{Nt, Nr}, and λ = {λ1, . . . , λM} are the M nonzero eigenvalues of

the matrix HH∗.

Due to the complexity of MIMO performance analysis, most of the results in

the literature are not exact solutions, but rather are based on the assumption of

a large number of antennas [56] and/or a high SNR regime [16]. Similarly, most

of the literature on MIMO capacity analysis relies on the large dimension (asymp-

totic) random matrix theory [57] and/or high SNR regime [58]. The exact capacity

results are limited to some special cases, and almost all of them are based on the

contributions by James [59].

1.1.3 CSI available for receiver and transmitter

In some wireless communication systems, CSI can be available at the transmitter side

as well. This information can be full CSI [60]–[62] if the transmission is bidirectional

(duplex) using the same channel, or, most commonly, partial CSI when a limited

feedback channel is available. Feedback information is usually used to select a subset

of transmit antennas [63]– [66] or to select a suitable precoder [67]– [72]. A MIMO

system with precoding is modeled by

Y =
√

ρHFS + N (1.7)

where F ∈ CNt×Mt is the complex precoder matrix, S ∈ CMt×T is the transmit

matrix, and Mt is the number of transmit antennas of the virtual channel HF.

The optimum precoder can be obtained based on the eigen–structure of the channel

matrix [60], [62]. As a result, the capacity and performance analysis of MIMO

systems with precoding requires the JDE of the matrix HH∗ as well.

The basic concepts of MIMO wireless systems were reviewed in this section,

where it was shown that the eigenvalue distribution of matrix HH∗ is a prerequisite

for the capacity and performance analysis of MIMO systems.
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1.2 Random Matrix Theory

Without a doubt, random matrix theory is the most influential part of advanced

multivariate statistical analysis, which has been deeply affected by its applications in

physics, mathematics, engineering, and other fields. Random matrix theory appears

in fields as diverse as the Riemann hypothesis, stochastic differential equations, con-

densed matter physics, statistical physics, chaotic systems, numerical linear algebra,

neural networks, multivariate statistics, information theory, signal processing, and

small–world networks [57].

The history of random matrices goes back to the late 1920s when John Wishart,

a Scottish agricultural statistician, computed the joint distribution of the elements

of matrix AAT where the elements of matrix A ∈ RN×M are i.i.d. Gaussian

random variables with zero mean [73]. In honor of Wishart, matrices of the form

HH∗ where H is a (real or complex) Gaussian random matrix are called (real or

complex) Wishart matrices in the literature. When H is a zero mean Gaussian

matrix, HH∗ is called a central Wishart matrix; otherwise, it is called noncentral.

Similarly, when other attributes are mentioned for Wishart matrices, they reflect

the original attributes of the Gaussian matrix H.

Following Wishart’s paper [73], the joint eigenvalue distribution of the central

i.i.d. Wishart matrix was derived simultaneously and independently by Fisher [74],

Hsu [75], Roy [76] and Girshick [77] in 1939. James [59] unified and developed all

previous works on the joint eigenvalue distributions of Wishart matrices by defining

the hypergeometric functions with matrix arguments. Most of the results in the

literature on Wishart matrices, e.g., the distribution of the smallest eigenvalue,

largest eigenvalue, ordered eigenvalues, a subset of eigenvalues, are based on James’s

paper.

Due to the difficulty of deriving and using the exact results, a large body of

work has been published on the asymptotic analysis of random matrices. The first

asymptotic results for large random matrices were obtained by Wigner in the 1950s

in a series of papers [78]– [81] motivated by nuclear physics. To study heavy atoms,

he proposed replacing the Schrödinger operator by a large random Hermitian matrix

(AA∗ = I), hoping that its eigenvalues would correspond to the nucleus energy

levels. Since then, research on the analysis of large dimensional random matrices

has continued to attract interest in probability, statistics, physics and engineering.
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Ref. [57] reports recent developments in the asymptotic theory of random matrices,

particulary for the analysis of MIMO wireless systems.

As mentioned earlier, James [59] defined hypergeometric functions with matrix

arguments to derive the joint eigenvalue distributions of some Wishart matrices.

These hypergeometric functions, however, have some drawbacks:

1. Hypergeometric functions with matrix arguments are defined in terms of zonal

polynomials, which are symmetric multivariate polynomials of the eigenvalues

of a symmetric matrix. Unfortunately, “the zonal polynomials are notoriously

difficult to compute” [82].

2. A close look at the papers using James’ results for other applications reveals

that hypergeometric functions with matrix arguments are not easy to use and

manipulate. In addition, the results are again obtained in terms of hypergeo-

metric functions with matrix arguments, which are difficult to compute [83].

3. By using hypergeometric functions with matrix arguments, James could derive

the joint eigenvalue distributions of noncentral and semi–correlated Wishart

matrices. A Wishart matrix is called semi–correlated if only the columns or

only the rows of matrix H are correlated. To our best knowledge, the joint

eigenvalue distribution of the full–correlated Wishart matrix has not been

reported in the literature for a rectangular matrix H [57].

4. Deriving the joint eigenvalue distribution of a random matrix requires integra-

tions over the unitary group [84]. Hence, the work by James can, in fact, be

interpreted as a method for solving integrals over the unitary group. However,

his approach to use hypergeometric functions with matrix arguments requires

the integrand (argument) matrices to be positive definite [59].

5. Since hypergeometric functions with matrix arguments are not easy to ma-

nipulate, the final expressions of the unitary integrations with James’ method

may not be convenient for understanding phenomena in physics and engineer-

ing [85].

These facts motivated researchers, particularly in physics, to find other methods for

unitary integrations.
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1.3 Character Expansions for Unitary Integrations

Integrals over the unitary group have many applications in physics, e.g., quantum

chromodynamics (QCD) [86], [87], flux line pinning in superconductors [88], scat-

tering in quantum chaos [89], color-flavor transformation [90], as well as in mathe-

matics [91] and in the theory of random matrices [92].

The character expansion method, introduced by A. B. Balantekin [86], is a pow-

erful tool for solving unitary integrals. Although the expansion of an invariant

function of a group into its characters (traces of the representation matrices) is in-

tricate in general, Balantekin first presented a combinatorial formula to write the

character expansions for the U(N) group1 [93], and later in [86], he extended the

results to more general situations than those covered in [93]. He applied character

expansions to simplify the integrations over the unitary group and, in particular, to

derive the well-known Harish-Chandra-Itzykson-Zuber integral [91], [94].

In [86], the coefficient matrices appearing in the integrand are nonzero–determinant

square matrices. However, in some applications, such as the derivation of joint eigen-

value distribution of Wishart matrices, when H is not a square matrix, the resulting

matrix in the integrand is not full rank and, therefore, is not a group member, so

that character expansions cannot be applied.

In 2003, Schlittgen and Wettig [85] generalized two useful unitary integrals for

color–flavor transformations. For the cases in which the coefficient matrices in the

integrand are rectangular, these researchers considered the possibility of taking a

limit of the final answer for the square coefficient matrices to obtain the result for

the rectangular case. However, they realized that this approach is valid only for

single unitary integrals.

Similarly, Simon, Moustakas and Marinelli [95] applied the character expansion

method to obtain the joint eigenvalue distributions of Wishart matrices. These

researchers first assumed that the matrix H is a square matrix, then followed Bal-

antekin’s approach exactly and, in the end, made some of eigenvalues to approach

zero. However, they failed to obtain the correct joint eigenvalue distributions when-

ever double unitary integrals were involved.
1U(N) denotes the group of unitary matrices with dimension N .
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1.4 Thesis Outline and Contributions

This thesis is organized as follows.

In Chapter 2, we briefly review the basic principles of the representation theory

and characters of groups, and state the character expansions and the integration

framework used by Balantekin [86]. Next, we generalize and develop essential tools

for unitary integrations. We propose a universal integration framework to use char-

acter expansions for any unitary integral with general rectangular complex matrices

in the integrand, without any specific assumptions about the matrices, e.g., to be

diagonal, real, or positive definite.

In Chapter 3, we apply the proposed integration framework to solve some of the

well–known but not solved in general form unitary integrals in their general forms,

such as the generalization of the well–known Harish–Chandra–Itzykson–Zuber inte-

gral. These integrals have applications in quantum chromodynamics and color–flavor

transformations in physics. The proposed integration method can be used to solve

other unitary integrals accordingly.

We use the results of the unitary integrals to obtain new expressions for the joint

eigenvalue distributions of the semi–correlated and full–correlated central Wishart

matrices, as well as the i.i.d. and uncorrelated noncentral Wishart matrices, all in

a unified approach. Compared to the previous expressions in the literature, these

new expressions are much easier to compute and also to apply for further analysis.

In addition, the joint eigenvalue distribution of the full–correlated central Wishart

matrix is a new result in random matrix theory [57].

Due to the difficulty of manipulating the joint eigenvalue distribution results

derived by James [59], and also due to the nature of most applications requiring the

eigenvalue densities of large random matrices, the eigenvalue densities of Wishart

matrices have been derived asymptotically in the literature [57]. However, because

of the convenient mathematical form of the joint eigenvalue distributions derived

in Chapter 3, we employ an innovative procedure to obtain the exact marginal

eigenvalue densities of Wishart matrices in Chapter 4. Our results are in the form of

finite summations of determinants, which can be easily computed and also employed

for further analysis.

In Chapter 5, we use the results of Chapter 3 and 4 to obtain new expressions

for the capacity of MIMO channels. Although the MIMO capacity results have
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been reported in the literature (using considerably more complicated methods), the

approach presented in this thesis is significantly more simple and straightforward,

and the new expressions can be easily computed.

In Chapter 6, we use the joint eigenvalue distribution of the i.i.d. central Wishart

matrix to obtain the largest eigenvalue density and the bit error rate (BER) of the

optimal transmit beamforming in finite–series expressions. MIMO systems achieve

significant diversity and array gains by using transmit beamforming. When complete

channel information is not available at the transmitter, a codebook of beamformers

is used by both the transmitter and the receiver. For each channel realization, the

best beamformer is selected at the receiver, and its index is sent back to the trans-

mitter via a limited feedback channel. We propose a codebook design method by

using the genetic algorithm, which reduces the design complexity, and achieves large

minimum–distance codebooks. Exploiting the specific structure of these beamform-

ers, we develop an order and bound algorithm to reduce the beamformer selection

complexity at the receiver side. By employing a geometrical approach, we derive

an approximate BER of limited feedback beamforming in finite–series expressions.

Since limited feedback beamforming is a practical scenario in wireless communica-

tions, the approximate BERs are useful in the design of such systems.

Finally, in Chapter 7, we discuss the possible future work based on the contri-

butions of this thesis.
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Chapter 2

Preliminaries

In this chapter, the basic definitions from group theory and representation theory

are briefly reviewed. The properties of characters and the character expansions for

a few useful matrix expressions are presented. The original integration framework,

presented by Balantekin [86] for unitary integrals with nonzero–determinant square

coefficient matrices in the integrand, is stated and demonstrated by solving the

Harish-Chandra-Itzykson-Zuber integral. Next, we propose a universal integration

framework to use the character expansions for any unitary integral with general

rectangular complex matrices in the integrand. No specific assumptions about the

matrices, e.g., to be diagonal, real or positive definite, are made. To handle such

unitary integrals, the essential algebraic machinery is developed.

2.1 Definitions

This section will briefly introduce a few relevant definitions and important results

from group and representation theory. The interested reader may refer to several

textbooks, e.g., [96]– [98], for more details.

Definition 2.1 : Assume F is the set of complex numbers (C) or real numbers

(R). The set of all invertible N × N matrices with entries in F , under matrix

multiplication, forms a group. This group is called the general linear group of

degree (or dimension) N over F , and is denoted by GL(N,F). It is an infinite

group with the identity matrix IN as the identity element.

Definition 2.2 : The set of all N × N unitary matrices, under matrix multi-

plication, forms a group. This group is called the unitary group with degree (or

dimension) N and is denoted by U(N). Clearly, the unitary group is a subgroup of
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GL(N, C).

Definition 2.3 : If G and H are groups, those functions from G to H which

“preserve the group structure” are called homomorphisms. Equivalently, a homo-

morphism from G to H is a function φ : G → H which satisfies

φ(g1g2) = φ(g1) φ(g2) ∀ g1, g2 ∈ G.

2.1.1 Group Representations

A representation of a group G provides a way of visualizing G as a group of matrices.

To be accurate, a representation is a homomorphism from G into a group of invertible

matrices.

Definition 2.4 : Let G be a group and F be R or C. A representation of G over

F is a homomorphism φ from G to GL(N,F), for some N . N is called the degree

or dimension of φ.

Therefore, if φ is a function from G to GL(N,F), then φ is a representation if

and only if

φ(gh) = φ(g) φ(h) ∀ g, h ∈ G.

Since a representation is a homomorphism, it follows that for every representa-

tion φ : G → GL(N,F), we have

φ(1) = IN , and

φ(g−1) = φ(g)−1 ∀ g ∈ G.

Example 2.1 : Let C4 denote the cyclic group of order 4, with the following

members:

e = 1 , a = e
jπ
2 , b = ejπ , c = e

j3π
2

where we have a−1 = c , c−1 = a and b−1 = b.

Let H denote a subgroup of GL(2,R), with the following members:

I2 =
(

1 0
0 1

)
, A =

(
0 −1
1 0

)
, B =

(−1 0
0 −1

)
, C =

(
0 1

−1 0

)

where AC = I2 , CA = I2 and BB = I2.
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Now, if φ is defined as a function from C4 to H such that

φ : C4 → H ⊂ GL(2,R)

φ(1) = I2 ,

φ(a) = A ,

φ(b) = B ,

φ(c) = C ,

it is easy to verify that φ is a representation with dimension 2. ♦

Let φ : G → GL(N,F) be a representation, and let T ∈ GL(N,F). For all

A,B ∈ GL(N,F), we have

(
T−1AT

)(
T−1BT

)
= T−1

(
AB

)
T .

We can use this observation to produce a new representation ψ from φ, by simply

defining

ψ(g) = T−1φ(g)T ∀ g ∈ G.

Then for all g, h ∈ G,

ψ(gh) = T−1φ(gh)T

= T−1
(
φ(g)φ(h)

)
T

=
(
T−1φ(g)T

)(
T−1φ(h)T

)

= ψ(g) ψ(h)

and, thus, ψ is indeed a representation.

Definition 2.5 : If φ : G → GL(N,F) and ψ : G → GL(M,F) are two representa-

tions of G over F , then φ is said to be equivalent to ψ if N = M , and there exists

an invertible matrix T ∈ GL(N,F) such that

ψ(g) = T−1φ(g)T ∀ g ∈ G.

Definition 2.6 : If φ : G → GL(N,F) is a representation of G over F , then φ

is called an irreducible representation if there exists no equivalent representation

ψ : G → H ⊂ GL(N,F) for φ such that all members in H are block diagonal

matrices.
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Definition 2.7 : The trace of the representation matrices are called the characters

of the representation. If φ : G → GL(N,F) is a representation of G over F , then

the character function χφ : G → F is defined as

χφ(g) = tr{φ(g)} ∀ g ∈ G.

2.1.2 Representations of GL(N, C), U(N) and character properties

A homomorphism φ : GL(N, C) → GL(d, C) is called a d–dimensional representation

of GL(N, C).

Lemma 2.1 : The irreducible representations of GL(N, C) can be labeled by the

N–dimensional ordered sets, denoted by rN = {r1, r2, . . . , rN}, where r1 > r2 > · · · >
rN > 0 are integers [97]. H

Lemma 2.2 : The dimension drN
of the irreducible representation rN of GL(N, C)

is given by [99]

drN
=

[
N∏

i=1

(ri + N − i)!
(N − i)!

]
det

N

[
1

(ri − i + j)!

]
(2.1)

where the matrix elements inside the determinant with ri − i + j < 0 are zero. H

Throughout this thesis, det
M

[ f(i, j) ] denotes the determinant of a M × M matrix

with the (i, j)-th element given by f(i, j).

Another equivalent expression for drN
is presented in Appendix C.1, which gives

drN
=

1∏N
i=1(N − i)!

∆
N

(k) (2.2)

where ki , ri + N − i. This form of drN
is more convenient for certain unitary

integrations.

Lemma 2.3 : The character of a group element X ∈ GL(N, C) in its representation

rN is obtained by Weyl’s character formula [100]:

χrN
(X) = tr

{
X(rN )

}
=

det
N

[
x

rj+N−j
i

]

∆
N

(x)
(2.3)

where X(rN ) ∈ GL(drN
, C) denotes the representation matrix of X, x = (x1, . . . , xN )T

are the eigenvalues of matrix X, and

∆
N

(x) = ∆(x1, x2, ..., xN ) = det
N

[
xN−j

i

]
=

∏

i<j

(xi − xj) (2.4)
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is the Vandermonde determinant of vector x. H

Lemma 2.4 : Let rN and r′N be two representations of U(N). The orthogonality

relation between the unitary group matrix elements implies that [97]
∫

DUU
(rN )
ij U

(r′N )∗
kl =

1
drN

δrNr′N δik δjl (2.5)

where U
(rN )
ij denotes the (i, j)-th element of the representation matrix of U, and drN

is the dimension of the representation. Here, the integral is over all unitary matrices

U ∈ U(N), and DU denotes the standard Haar measure of U(N) [97]. H

Proposition 2.1 : Assuming A,B ∈ GL(N, C), U ∈ U(N), and rN and r′N are

two representations of GL(N, C), then
∫

DUχrN
(UA) χr′N(U∗B) =

1
drN

χrN
(AB) δrNr′N .

H

Proof: From (2.3), we have χrN
(UA) = tr

{
(UA)(rN )

}
. Since a representation is a

homomorphism, i.e., (UA)(rN ) = U(rN )A(rN ), we obtain

χrN
(UA) = tr

{
U(rN )A(rN )

}
=

N∑

k2=1

N∑

k1=1

U
(rN )

k2k1
A

(rN )

k1k2
.

Therefore, we have
∫

DUχrN
(UA)χr′N

(U∗B) =
N∑

k4=1

N∑

k3=1

N∑

k2=1

N∑

k1=1

A
(rN )

k1k2
B

(r′N )

k3k4

∫
DUU

(rN )

k2k1
U

(r′N )∗
k3k4

=
1

drN

δrNr′N

N∑

k4=1

N∑

k3=1

A
(rN )

k4k3
B

(rN )

k3k4

=
1

drN

δrNr′N tr
{
A(rN )B(rN )

}

=
1

drN

χrN
(AB) δrNr′N

where the second equality comes from Lemma 2.4. ¥

Proposition 2.2 : Assuming A,B ∈ GL(N, C), U ∈ U(N), and rN is a represen-

tation of GL(N, C), then
∫

DUχrN
(UAU∗B) =

1
drN

χrN
(A) χrN

(B) .
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H

Proof: From (2.3), we have χrN
(UAU∗B) = tr

{
(UAU∗B)(rN )

}
. Since a represen-

tation is a homomorphism, i.e., (UAU∗B)(rN ) = U(rN )A(rN )U∗(rN )B(rN ), we obtain

χrN
(UAU∗B) = tr

{
U(rN )A(rN )U∗(rN )B(rN )

}

=
N∑

k4=1

N∑

k3=1

N∑

k2=1

N∑

k1=1

U
(rN )

k4k3
A

(rN )

k3k2
U
∗(rN )

k1k2
B

(rN )

k1k4
.

Therefore, we have

∫
DUχrN

(UAU∗B) =
N∑

k4=1

N∑

k3=1

N∑

k2=1

N∑

k1=1

A
(rN )

k3k2
B

(rN )

k1k4

∫
DUU

(rN )

k4k3
U
∗(rN )

k1k2

=
1

drN

N∑

k2=1

N∑

k1=1

A
(rN )

k2k2
B

(rN )

k1k1

=
1

drN

tr
{
A(rN )

}
tr

{
B(rN )

}

=
1

drN

χrN
(A)χrN

(B)

where the second equality comes from Lemma 2.4.
¥

Remark 2.1 : Propositions 2.1 and 2.2 are the fundamental tools for applying the

character expansions for unitary integrations. In both proofs, we used the fact that

χrN
(ABC) = tr

{
(ABC)(rN )

}

= tr
{
A(rN )B(rN )C(rN )

}
(2.6)

where the second equality occurs because a representation is a homomorphism. Ap-

parently, all matrices should be square with dimension N and nonzero eigenvalues.

Now, if B ∈ CN×M and C ∈ CM×N , N > M , we can take BC as a matrix with

nonzero eigenvalues to obtain

χrN
(ABC) = tr

{
(ABC)(rN )

}

= tr
{
A(rN )(BC)(rN )

}
,

and later, we can make N−M eigenvalues of the matrix BC approach zero, without

violating the definition of homomorphism. However, in [95], the authors assume that

N = M , and that the eigenvalues of the matrix BC are nonzero. Consequently,
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the authors use the same equation as (2.6) in order to solve the integrals. Hence,

the results are mathematically legitimate only for N = M , and for N > M , the

definition of homomorphism is violated, even when N−M eigenvalues of the matrix

BC approach zero.
N

2.2 Character Expansions

In [86], Balantekin proves the following theorem:

Theorem 2.1 : Consider the power series expansion of function G(x) as

G(x) =
∞∑

n=0

An xn .

Given this series is convergent for N different values of x: {x1, x2, . . . , xN}, then we

have

N∏

i=1

G(xi) =
∑
nN

det
N

[
Ani−i+j

]
χnN

(X)

where X is a member of GL(N, C) with eigenvalues {x1, x2, . . . , xN}, nN is an ir-

reducible representation of GL(N, C), and the summation is over all irreducible

representations of GL(N, C).
H

In the following, we present a few useful character expansions obtained by using

Theorem 2.1:

1. If X ∈ GL(N, C), then the following equation holds for X:

etr{X} =
∑
rN

αrN
χrN

(X) (2.7)

where etr{X} = exp(tr{X}), the summation is over all irreducible represen-

tations of GL(N, C), and the expansion coefficient αrN
is defined as

αrN
= det

N

[
1

(ri − i + j)!

]
=

[
N∏

i=1

(N − i)!
(ri + N − i)!

]
drN

(2.8)

where drN
is the dimension of the representation rN . The matrix elements

inside the determinant with ri − i + j < 0 are zero.

17



To gain an insight into the character expansions, note that for N = 1, (2.7) is

reduced to the Taylor series of ex; i.e.,

etr{x} =
∞∑

r=0

1
r!

xr .

2. If X ∈ GL(N, C) and a ∈ C, then we have

etr{aX} =
∑
rN

βrN
χrN

(X)

where the expansion coefficient βrN
is defined as βrN

= a(r1+r2+···+rN )αrN
.

3. Assume X ∈ GL(N, C), a ∈ C and ν ∈ Z, then

det
N

[X ]ν etr{aX} =
∑
rN

β
(ν)
rN

χrN
(X)

where the expansion coefficient β
(ν)
rN

is defined as

β
(ν)
rN

= a(r1+r2+···+rN )−Nν det
N

[
1

(ri − i + j − ν)!

]
.

Interested readers can refer to [86] for the derivation procedure and more exam-

ples of character expansions.

2.3 Unitary Integration by Character Expansions

To solve unitary integrals, Balantekin [86] applied the following integration steps:

1. Expansion of the integrand by using the character expansion method.

2. Integration over unitary matrices by using the available results on the unitary

group, i.e., Propositions 2.1 and 2.2.

3. Re–summation of the expansion by using the Cauchy–Binet formula, i.e.,

Lemma B.1 in Appendix B.

He used character expansions to solve the well–known Harish-Chandra-Itzykson-

Zuber integral [94] as follows.

Example 2.2 : The Harish-Chandra-Itzykson-Zuber integral is

IN1 =
∫

DUetr{βUAU∗B} (2.9)
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where U ∈ U(N), A,B ∈ GL(N, C), and β ∈ C is a scalar. Since the matrix

UAU∗B is a member of GL(N, C), we can freely apply the character expansions to

(2.9). By absorbing β into A and using the expansion formula in (2.7), we obtain

JN
1 =

∫
DUetr{UAU∗B}

=
∑
rN

αrN

∫
DUχrN

(UAU∗B)

=
∑
rN

αrN

drN

χrN
(A) χrN

(B) (2.10)

=
∑
rN

[
N∏

i=1

(N − i)!
(ri + N − i)!

]
det

N

[
a

rj+N−j
i

]

∆
N

(a)
×

det
N

[
b
rj+N−j
i

]

∆
N

(b)
(2.11)

where (2.10) is obtained by applying Proposition 2.2, and (2.11) is the result of

substituting αrN
from (2.8) and the characters from (2.3), where the vectors a =

(a1, a2, . . . , aN )T and b = (b1, b2, . . . , bN )T represent the eigenvalues of the matrices

A and B, respectively. Thus,

JN
1 =

∏N
i=1(N − i)!

∆
N

(a)∆
N

(b)

∑

kN

det
N

[
a

kj

i

]
det

N

[
b
kj

i

] N∏

i=1

1
ki!

(2.12)

where kj = rj + N − j .

By considering the power series expansion of ez, and applying the Cauchy–Binet

formula (Lemma B.1 in Appendix B), we have

JN
1 =

∏N
i=1(N − i)!

∆
N

(a)∆
N

(b)
det

N

[
exp(aibj)

]
. (2.13)

By replacing A in JN
1 by βA or, equivalently, replacing ai by βai in (2.13) and some

factoring of β, we conclude that

IN1 =
β−

N(N−1)
2

∏N
i=1(N − i)!

∆
N

(a)∆
N

(b)
det

N

[
exp(βaibj)

]
. (2.14)

♦

In Balantekin’s approach [86], the coefficient matrices appearing in the integrand

are nonzero–determinant square matrices. However, in some applications, including

the capacity analysis of MIMO wireless systems when correlations exist between an-

tenna array gains in one side of the system, we have to solve the following generalized

integral over U(N):

I
N,M
1 =

∫
DUetr{βUABU∗C} (2.15)
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where U ∈ U(N), and A ∈ CN×M , B ∈ CM×N (N > M) and C ∈ CN×N are

general complex matrices. As a result, the matrix AB has N −M zero eigenvalues

[48]. Consequently, the resulting matrix in the integrand (i.e., UABU∗C) is not

invertible and, therefore, is not a member of GL(N, C). Thus, we cannot directly

apply character expansions to calculate (2.15).

To handle this problem, the authors in [95] propose the following integration

steps:

1. Assume momentarily N = M so that the matrix integrand is a group member.

2. Apply Balantekin’s three–step method to solve the unitary integral.

3. Find the limit of the final result when N −M eigenvalues approach zero.

Unfortunately, this integration approach is not mathematically legitimate, as we

explained in Remark 2.1. To be more specific, whenever applying the above ap-

proach violates Remark 2.1, the result of the integral is wrong.

In this thesis, we propose the following universal integration framework:

1. Take the unitary integrals in order from the largest dimension to the smallest.

2. Assume that the matrix integrand has distinct nonzero eigenvalues so that the

matrix integrand is a group member.

3. Apply the character expansion method.

4. Integrate over the corresponding unitary matrix by using the available results

on the unitary group; i.e., Propositions 2.1 and 2.2.

5. Take the limit of the result when some of the eigenvalues should be zero.

6. Repeat steps (2), (4) and (5) in the case of multiple unitary integrals.

7. Re–sum the final result by using the generalized Cauchy–Binet formula (Ap-

pendix B) where applicable.

Unlike the approach in [95], we take the limits on the eigenvalues exactly after each

integration. This approach guarantees that the unitary integrations are performed
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in the original dimensions of the unitary matrices and prevents the possible errors

due to the misuse of Propositions 2.1 and 2.2, as we explained in Remark 2.1.

To obtain the limits according to the above framework, we need additional alge-

braic results, which will be presented in the next section. The Cauchy–Binet formula

is generalized in Appendix B.

2.4 Essential Limits

Proposition 2.3 : Assume A ∈ CN×M and B ∈ CM×N are of the rank M

(M 6 N), and xi’s, i = 1, . . . , N , are the eigenvalues of the matrix AB. Then

lim
{xM+1,...,xN}→0

χrN
(AB) =





χrM
(BA) , if rM+1 = · · · = rN = 0 ;

0 , otherwise ;

where {xM+1, . . . , xN} represent the N−M zero eigenvalues of the matrix AB, and

rN and rM are irreducible representations of GL(N, C) and GL(M, C), respectively.

H

Proof: From the definition of the character of a matrix (2.3), and noting that

det
N

[
x

rj+N−j

i

]
= det

N

[
x

ri+N−i
j

]
, we can define fi(xj) = x

ri+N−i
j and apply Lemma

A.1 in Appendix A to (2.3) to obtain

lim
{xM+1,...,xN}→x0

χrN
(AB) = lim

{xM+1,...,xN}→x0

det
N

[
x

ri+N−i
j

]

∆(x1, . . . , xN )

=
det

N
[X ]

∆(x1, . . . , xM )
∏M

i=1(xi − x0)N−M
∏N−M−1

j=1 j!

where

X =
(

x
ri+N−i
j

∣∣∣
M

j=1
,

(ri + N − i)!
(ri − i + j)!

x
ri−i+j
0

∣∣∣
N

j=M+1

)

and i = 1, . . . , N generates all rows of X. Note that all entries of X with ri−i+j < 0

are zero.

As observed, all diagonal entries (i = j) of X from i, j = M + 1, . . . , N are in

the form of (ri+N−i)!
ri!

x
ri
0 . Therefore, if x0 → 0, then det

N
[X ] = 0 unless ri = 0,

i = M + 1, . . . , N . In this case,

lim
{xM+1,...,xN}→0

lim
{rM+1,...,rN}→0

χrN
(AB) =

det
N

[
QM×M 0M×(N−M)

W(N−M)×M P(N−M)×(N−M)

]

∆(x1, . . . , xM )
∏M

i=1 xN−M
i

∏N−M−1
j=1 j!
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where

Q =




x
r1+N−1
1 · · · x

r1+N−1
M

...
. . .

...
x

rM+N−M
1 · · · x

rM+N−M
M




and

P =




(N −M − 1)! · · · 0 0 0
...

. . .
...

...
...

0 · · · 2! 0 0
0 · · · 0 1! 0
0 · · · 0 0 0!




.

By column factoring of Q, we obtain

det
N

[
Q 0
W P

]
= det

M
[Q ] det

N−M
[P ]

=

[
det
M

[
x

ri+M−i
j

] M∏

i=1

xN−M
i

]
N−M−1∏

j=1

j!

independent of W. Therefore,

lim
{xM+1,...,xN}→0

lim
{rM+1,...,rN}→0

χrN
(AB) =

det
M

[
x

ri+M−i
j

]

∆(x1, . . . , xM )

= χrM
(BA)

where the last equality occurs because the nonzero eigenvalues of the matrices AB

and BA are equal [48].
¥

Proposition 2.4 : Assume rN is an irreducible representation of GL(N, C) with

dimension drN
, and αrN

is the corresponding expansion coefficient defined in (2.8).

Then

lim
{rM+1,...,rN}→0

αrN

drN

= lim
{rM+1,...,rN}→0

[
N∏

i=1

(N − i)!
(ri + N − i)!

]

=
∏N

i=1(N − i)!∏M
i=1(ri + N − i)!

∏N
i=M+1(N − i)!

=
∏M

i=1(N − i)!∏M
i=1(ri + N − i)!

.

¥
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Proposition 2.5 : Assume rN and rM are irreducible representations of GL(N, C)
and GL(M, C) (N > M), respectively, and αrN

and αrM
are the corresponding

expansion coefficients defined in (2.8). Then

lim
{rM+1,...,rN}→0

αrN
= αrM

.

H

Proof: From the definition of αrN
in (2.8), and noting that the matrix elements

inside the determinant with ri − i + j < 0 are zero, we have

lim
{rM+1,...,rN}→0

αrN
= lim
{rM+1,...,rN}→0

det
N

[
1

(ri − i + j)!

]

= det
N

[
QM×M TM×(N−M)

0(N−M)×M R(N−M)×(N−M)

]

= det
M

[Q ] det
N−M

[R ]

where Qij =
[
(ri − i + j)!

]−1
for i, j = 1, . . . , M , and

R =




1
0!

1
1!

1
2! · · · 1

(N−M−2)!
1

(N−M−1)!

0 1
0!

1
1! · · · 1

(N−M−3)!
1

(N−M−2)!
...

...
...

. . .
...

...
0 0 0 · · · 1

0!
1
1!

0 0 0 · · · 0 1
0!




so that det
N−M

[R ] = 1. Thus,

lim
{rM+1,...,rN}→0

αrN
= det

M
[Q ]

= αrM
.

¥

2.5 Summary

In this chapter, after a short review of basic definitions from group and repre-

sentation theory, the characters of GL(N, C) and U(N) and their properties were

presented. In particular, we derived Propositions 2.1 and 2.2 as the major tools

for using character expansions for unitary integrations. The key observation in Re-

mark 2.1 shows that Propositions 2.1 and 2.2 should be carefully applied to unitary
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integrals. Therefore, we proposed a new integration framework to avoid the possi-

ble errors due to the misuse of Propositions 2.1 and 2.2. In addition, we derived

the essential algebraic tools for our proposed integration method in Section 2.4, as

well as in Appendices A and B, to be able to solve unitary integrals with general

rectangular complex matrices in the integrand. Some of such unitary integrals are

investigated in the next chapter.
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Chapter 3

Generalization of Some Unitary
Integrals and Applications

In this chapter, our proposed integration framework in Section 2.3 is applied to

solve three well–known but not solved in general form unitary integrals in their

general forms, such as the generalization of the Harish–Chandra–Itzykson–Zuber

integral [94]. Such generalized integrals have applications in physics such as quan-

tum chromodynamics (QCD) [86], [87], flux line pinning in superconductors [88],

scattering in quantum chaos [89], and color–flavor transformation [90]. In addition,

the joint eigenvalue distributions of Wishart matrices require unitary integrals that

are special cases of these generalized integrals.

We use the results of these integrals to derive new expressions for the joint

eigenvalue distributions of the semi–correlated and full–correlated central Wishart

matrices, as well as the i.i.d. and uncorrelated noncentral Wishart matrices, in

a unified approach. The new expressions can be easily computed and also used

for further analysis, such as in the applications presented in the next chapters.

In addition, the joint eigenvalue distribution of the full–correlated central Wishart

matrix is a new result in random matrix theory [57].

3.1 Generalized Unitary Integrals

The unitary integrals that we consider in this thesis are as follows:

1. The first integral is the generalization of the Harish–Chandra–Itzykson–Zuber

integral [94]:

I
N,M
1 =

∫
DU etr{βUABU∗C} (3.1)
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where U ∈ U(N), C ∈ CN×N , β ∈ C is a complex scalar, and A ∈ CN×M

and B ∈ CM×N are general complex matrices with rank M (M 6 N). This

integral has been solved before only for special cases, where N = M and/or

A = B∗, and C is a positive definite Hermitian matrix [85].

2. The second integral is

I
N,M
2 =

∫
DV

∫
DU etr{β (UAV∗B + CVDU∗)} (3.2)

where U ∈ U(N), V ∈ U(M), A,C ∈ CN×M and B,D ∈ CM×N are general

rectangular complex matrices, and β is a complex scalar. To our best knowl-

edge, this integral was previously known only for the case of D = A∗ and

B = C∗ [59], [85], [101].

3. The third integral is

I
N,M
3 =

∫
DV

∫
DU etr{βUAV∗BVCU∗D} (3.3)

where U ∈ U(N), V ∈ U(M), B ∈ CM×M , D ∈ CN×N , A ∈ CN×M and

C ∈ CM×N are general complex matrices, and β is a complex scalar. To our

best knowledge, this integral has been solved in the literature only for the

case that N = M , A = C∗, and B and D are positive definite Hermitian

matrices [59], [95], [102].

3.1.1 Calculation of IN,M
1

To simplify the calculation of IN,M
1 , we first absorb β into C and solve the following

integral:

J
N,M
1 =

∫
DU etr{UABU∗C} . (3.4)

When M < N , the matrix AB is not a full rank matrix; i.e., AB /∈ GL(N, C).
Therefore, we cannot apply the character expansion method directly. To handle this

problem, we assume momentarily that the matrix AB has a full rank of N . Thus,

by using the expansion formula in (2.7), we obtain

J̃
N,M
1 =

∑
rN

αrN

∫
DUχrN

(UABU∗C)

=
∑
rN

αrN

drN

χrN
(AB)χrN

(C) (3.5)
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where the second equality is obtained by using Proposition 2.2. The full–rank as-

sumption allowed us to take the integration over U(N) by grouping the coefficient

matrices according to Remark 2.1. Thus, to obtain JN,M
1 , we should take the limit

of J̃N,M
1 when N −M eigenvalues of the matrix AB approach zero. That is,

J
N,M
1 = lim

{xM+1,...,xN}→0
J̃

N,M
1 (3.6)

where xi, i = 1, . . . , N , are the eigenvalues of matrix AB.

By defining

χrM
(C) =

det
N

[
y

rj+N−j
i

∣∣∣
M

j=1
, yN−j

i

∣∣∣
N

j=M+1

]

∆
N

(y)
(3.7)

where the vector y = (y1, . . . , yN )T represents the eigenvalues of matrix C, and by

applying Propositions 2.3 and 2.4 to (3.5), we obtain

J
N,M
1 = lim

{xM+1,...,xN}→0

∑
rN

αrN

drN

χrN
(AB) χrN

(C)

=
M∏

i=1

(N − i)!
∑
rM

1∏M
i=1(ri + N − i)!

χrM
(BA) χrM

(C)

=
∏M

i=1(N − i)!
∆
M

(x) ∆
N

(y)
×

∑
rM

det
M

[
x

rj+M−j
i

]
det

N

[
y

rj+N−j
i

∣∣∣
M

j=1
, yN−j

i

∣∣∣
N

j=M+1

] M∏

i=1

1
(ri + N − i)!

=
∏M

i=1(N − i)!
∆
M

(x) ∆
N

(y)
×

∑

kM

det
M

[
x

kj

i

]
det

N

[
y

kj+N−M
i

∣∣∣
M

j=1
, yN−j

i

∣∣∣
N

j=M+1

] M∏

i=1

1
(ki + N −M)!

(3.8)

where the vector x = (x1, . . . , xM )T represents the eigenvalues of the matrix BA,

and kj = rj + M − j.

By considering the power series expansion of ez, and applying the generalized

Cauchy–Binet formula (Lemma B.2 in Appendix B), we have

J
N,M
1 =

∏M
i=1(N − i)!

∆
M

(x)∆
N

(y)
∏M

i=1 xN−M
i

det
N




exp(xiyj)
∣∣∣
i=1

M

yN−i
j

∣∣∣
i=M+1

N


 . (3.9)
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Finally, by replacing C in JN,M
1 by βC or, equivalently, replacing yj by βyj in

(3.9) and some factoring of β, we conclude that

I
N,M
1 =

βM(M+1
2
−N) ∏M

i=1(N − i)!

∆
M

(x)∆
N

(y)
∏M

i=1 xN−M
i

det
N




exp(βxiyj)
∣∣∣
i=1

M

yN−i
j

∣∣∣
i=M+1

N


 . (3.10)

¥

In the case in which N 6 M , the matrix AB has a full rank of N . Therefore, one

can use (3.10) to calculate IN,M
1 by setting N = M . In other words, IN,M

1 = I
N,N
1

when N 6 M .

Example 3.1 : Although we solved IN,M
1 without assuming any specific structure

for the matrix C, it is of interest to find IN,M
1 when all eigenvalues of matrix C are

identical, or, equivalently, when yj = y , j = 1, . . . , N . In this scenario, by applying

Lemma A.1 in Appendix A, we can write

lim
{y1,...,yN}→y

det
N




exp(βxiyj)
∣∣∣
i=1

M

yN−i
j

∣∣∣
i=M+1

N




∆
N

(y)
=

det
N

[
QM×M TM×(N−M)

0(N−M)×M P(N−M)×(N−M)

]

∏N−1
j=1 j!

(3.11)

where

Q =




xN−1
1 exp(x1y) · · · xN−M

1 exp(x1y)
...

. . .
...

xN−1
M exp(xMy) · · · xN−M

M exp(xMy)




and

P=




(N−M−1)! · · · (N−M−1)(N−M−2)yN−M−3 (N−M−1)yN−M−2 yN−M−1

...
. . .

...
...

...
0 · · · 2! 2 y y2

0 · · · 0 1! y
0 · · · 0 0 1




.
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By column factoring of Q, we obtain

det
N

[
Q T
0 P

]
= det

M
[Q ] det

N−M
[P ]

= det
M

[
xM−j

i

] M∏

i=1

xN−M
i exp(xiy)

N−M−1∏

j=0

j!

= ∆
M

(x)
M∏

i=1

xN−M
i exp(xiy)

N∏

j=M+1

(N − j)! (3.12)

independent of T. By substituting (3.12) into (3.11) and (3.9), we can write

J
N,M
1 (y) , lim

{y1,...,yN}→y
J

N,M
1 = exp

(
y

M∑

i=1

xi

)
.

Finally, by replacing y with βy, we obtain

I
N,M
1 (y) , lim

{y1,...,yN}→y
I
N,M
1 = exp

(
βy

M∑

i=1

xi

)
.

This specific result justifies the calculation of IN,M
1 presented in this section

because if we take the eigenvalue decomposition of the positive definite matrix C

as C = VDV∗ where D = diag(y1, ..., yN ), for the case of equal eigenvalues for C,

directly from (3.1) we have

I
N,M
1 (y) =

∫
DU etr{βyUABU∗VINV∗}

= exp
(
βy tr{AB} ) ∫

DU

= exp

(
βy

M∑

i=1

xi

)

where IN is the identity matrix. ♦

3.1.2 Calculation of IN,M
2

To simplify the calculation of IN,M
2 , we absorb β into B and C to solve the following

integral:

J
N,M
2 =

∫
DV

∫
DU etr{UAV∗B + CVDU∗} . (3.13)

We assume that N > M and that all rectangular matrices A,B,C and D have a

full rank of M . Note that since tr{UAV∗B} = tr{BUAV∗} and tr{CVDU∗} =

tr{VDU∗C} [48], we can write

J
M,N
2 =

∫
DU

∫
DVetr{VDU∗C + BUAV∗} .
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Thus, for the case of N < M , one may use the result of (3.13) by replacing

M, N,A,B,C,D with N, M,D,C,B,A, respectively.

When N > M , both N–dimensional matrices E = AV∗B and F = CVD in

(3.13) are of the rank M and are not a member of GL(N, C). However, we assume

momentarily that both matrices E and F have a full rank of N . Thus, we can use

N–dimensional representations and character expansions to obtain

J̃
N,M
2 =

∫
DV

∫
DU etr{UE} etr{U∗F}

=
∑
rN

∑

r′N

αrN
αr′N

∫
DV

∫
DUχrN

(UE) χr′N(U∗F)

=
∑
rN

α2
rN

drN

∫
DV χrN

(EF)

=
∑
rN

α2
rN

drN

∫
DV χrN

(AV∗BCVD) (3.14)

where the second equality comes from (2.7), and the third equality is obtained by

using Proposition 2.1. Note that the full–rank assumption allowed us to take the

integration over U(N) by grouping the coefficient matrices according to Remark 2.1.

However, since A is a N ×M matrix and D is a M ×N matrix, and the character

function is the character of representation rN , the coefficient matrices in (3.14) can-

not be properly grouped according to Remark 2.1 to apply Proposition 2.2. Thus,

we cannot apply Proposition 2.2 to (3.14) unless we take the limit of J̃N,M
2 when

N −M eigenvalues of the N ×N matrix AV∗BCVD approach zero; i.e.,

J
N,M
2 = lim

{ηM+1,...,ηN}→0
J̃

N,M
2

=
∫

DV lim
{ηM+1,...,ηN}→0

∑
rN

[
αrN

drN

]
αrN

χrN
(AV∗BCVD) (3.15)

where ηi’s, i = 1, 2, . . . , N , are the eigenvalues of the matrix AV∗BCVD.

By applying Propositions 2.3, 2.4 and 2.5 to (3.15), we obtain

J
N,M
2 =

∑
rM

∏M
i=1(N − i)!∏M

i=1(ri + N − i)!
αrM

∫
DVχrM

(VDAV∗BC)

=
∑
rM

∏M
i=1(N − i)!∏M

i=1(ri + N − i)!

[
αrM

drM

]
χrM

(DA) χrM
(BC)

where the second equality is obtained by using Proposition 2.2. By applying Weyl’s
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character formula (2.3), and expansion coefficient (2.8), we have

J
N,M
2 =

∏M
i=1(N − i)!(M − i)!

∆
M

(a)∆
M

(b)

∑

kM

det
M

[
a

kj

i

]
det
M

[
b
kj

i

] M∏

i=1

1
ki! (ki + N −M)!

(3.16)

where ki , ri + M − i, and M–dimensional vectors a and b are the eigenvalues of

the matrices DA and BC, respectively.

By considering the power series expansion of the modified Bessel function as

In(2 z)
zn

=
∞∑

k=0

z2k

k! (k + n)!
, (3.17)

and by applying the Cauchy–Binet formula (Lemma B.1 in Appendix B), we obtain

J
N,M
2 =

∏M
i=1(N − i)!(M − i)!

∆
M

(a)∆
M

(b)
det
M




IN−M

(
2
√

aibj

)

(√
aibj

)N−M


 . (3.18)

Finally, by replacing B and C in J
N,M
2 (3.13) by βB and βC or, equivalently,

replacing bj in (3.18) by β2bj , and making some simplifications, we conclude that

I
N,M
2 =

βM(1−N)
∏M

i=1(N − i)!(M − i)!

∆
M

(a)∆
M

(b)
∏M

i=1 (aibi)
N−M

2

det
M

[
IN−M

(
2β

√
aibj

) ]
. (3.19)

¥

3.1.3 Calculation of IN,M
3

To simplify the calculation of IN,M
3 , we absorb β into B to solve the following

integral:

J
N,M
3 =

∫
DV

∫
DU etr{UAV∗BVCU∗D} . (3.20)

Without loss of generality, we assume that N > M , the matrices A,B and C have a

full rank of M , and the matrix D has a full rank of N . Since tr{UAV∗BVCU∗D} =

tr{VCU∗DUAV∗B}, we can write

J
M,N
3 =

∫
DU

∫
DVetr{VCU∗DUAV∗B} .

Hence, for the case in which N < M , one may use the result of (3.20) by replacing

M, N,A,B,C,D with N, M,C,D,A,B, respectively.

31



When N > M , the N–dimensional matrix E = AV∗BVC in (3.20) is not a

full rank matrix; i.e., E /∈ GL(N, C). However, we assume momentarily that the

matrix E has a full rank of N . Thus, we can use N–dimensional representations

and character expansion to obtain

J̃
N,M
3 =

∫
DV

∫
DU etr{UEU∗D}

=
∑
rN

αrN

∫
DV

∫
DUχrN

(UEU∗D)

=
∑
rN

αrN

drN

∫
DV χrN

(E)χrN
(D)

=
∑
rN

αrN

drN

χrN
(D)

∫
DV χrN

(AV∗BVC) (3.21)

where the second equality comes from (2.7), and the third equality is obtained by

using Proposition 2.2. Note that the full–rank assumption allowed us to take the

integration over U(N) by grouping the coefficient matrices according to Remark 2.1.

However, since A is a N ×M matrix and C is a M ×N matrix, and the character

function is the character of representation rN , the coefficient matrices in (3.21) can-

not be properly grouped according to Remark 2.1 to apply Proposition 2.2. Thus,

we cannot apply Proposition 2.2 to (3.21) unless we take the limit of J̃N,M
3 when

N −M eigenvalues of the N ×N matrix AV∗BVC approach zero; i.e.,

J
N,M
3 = lim

{ηM+1,...,ηN}→0
J̃

N,M
3

=
∫

DV lim
{ηM+1,...,ηN}→0

∑
rN

[
αrN

drN

]
χrN

(D) χrN
(AV∗BVC) (3.22)

where ηi’s, i = 1, 2, . . . , N , are the eigenvalues of the matrix AV∗BVC.

By applying Propositions 2.3 and 2.4 to (3.22), we obtain

J
N,M
3 =

∑
rM

∏M
i=1(N − i)!∏M

i=1(ri + N − i)!
χrM

(D)
∫

DVχrM
(VCAV∗B)

=
∑
rM

∏M
i=1(N − i)!∏M

i=1(ri + N − i)!

[
1

drM

]
χrM

(D) χrM
(CA) χrM

(B) (3.23)

where χrM
(D) is defined in (3.7), and the second equality is obtained by employing

Proposition 2.2. Substituting the characters from (2.3), χrM
(D) from (3.7), and drM
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from (2.2) into (3.23), we obtain

J
N,M
3 =

∏M
i=1(N − i)!(M − i)!
∆
M

(a)∆
M

(b)∆
N

(c)

×
∑

kM

det
M

[
a

kj

i

]
det
M

[
b
kj

i

]
det

N

[
c
kj+N−M
i

∣∣∣
M

j=1
, cN−j

i

∣∣∣
N

j=M+1

]

∆
M

(k)
∏M

i=1(ki + N −M)!

(3.24)

where ki = ri +M− i, the M–dimensional vectors a and b represent the eigenvalues

of the matrices CA and B, respectively, and the N–dimensional vector c represents

the eigenvalues of the matrix D. Although we were able to generalize the Cauchy–

Binet formula (Lemma B.2 in Appendix B) to the case of three or more determinants

in the summation, since ∆
M

(k) in (3.24) cannot be represented as a multiplication of

any function of ki’s, it seems (3.24) cannot be further simplified.

By replacing B in JN,M
3 (3.20) by βB or, equivalently, replacing bi in (3.24) by

βbi and making some simplifications, we conclude that

I
N,M
3 =

∏M
i=1(N − i)!(M − i)!

∆
M

(a) ∆
M

(b)∆
N

(c) β
M(M−1)

2

×
∑

kM

det
M

[
a

kj

i

]
det
M

[
b
kj

i

]
det

N

[
c
kj+N−M
i

∣∣∣
M

j=1
, cN−j

i

∣∣∣
N

j=M+1

]

∆
M

(k)
∏M

i=1 β−ki(ki + N −M)!
.

(3.25)

¥

Remark 3.1 : In this section, we assumed the matrix integrand is a full–rank

matrix to apply the character expansions, and took the limit of the result after the

first integration step. This approach can be interpreted as
∫

DU lim
{ηM+1,...,ηN}→0

etr{X} = lim
{ηM+1,...,ηN}→0

∫
DU etr{X} (3.26)

where ηi’s, i = 1, 2, . . . , N , are the eigenvalues of matrix X. The function etr{X}
is a bounded function; i.e.,

∣∣ etr{X} ∣∣ < ∞, even when some of the eigenvalues of

matrix X approach zero. Therefore, equation (3.26) holds for our analysis according

to the Dominated Convergence Theorem [103].
N
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3.2 Joint Eigenvalue Distributions of Wishart Matrices

As we explained in Chapter 1, matrices of the form HH∗ where H is a Gaussian

random matrix are known as Wishart matrices. Although such matrices were origi-

nally used by Wishart [73] for multivariate data analysis, they also have important

applications in physics, mathematics, and information theory and communications

for capacity and performance analysis of MIMO wireless systems.

In this section, we use the unitary integral results of the previous section to

derive the joint eigenvalue distributions of Wishart matrices for common statistical

assumptions.

Definition 3.1 : We define the N ×M , N > M , complex matrix G as the stan-

dard Gaussian random matrix when the elements of G are i.i.d. complex Gaussian

random variables with zero mean and unit variance; i.e., CN (0, 1).

3.2.1 Synopsis

Without loss of generality, we assume H is a N × M , N > M , complex random

matrix with Gaussian distribution. By assuming the singular value decomposition

of H as H = UΣV∗ where U ∈ U(N), V ∈ U(M) and Σ = diag({√λi}) ∈ RN×M
+ ,

it has been shown that [92]

P (λ) =
KN,M

M !
∆
M

(λ)2
M∏

i=1

λN−M
i

∫
DV

∫
DU p(H = UΣV∗) (3.27)

where the integrals are over all unitary matrices U and V, DU denotes the standard

Haar measure of U(N) [97], P (λ = {λ1, . . . , λM}) is the joint pdf of the nonzero

eigenvalues of matrix HH∗, p(H) is the joint pdf of the elements of H, and

K−1
N,M =

M∏

j=1

(N − j)!(M − j)! (3.28)

is a constant.

According to the joint distribution of the elements of H, we substitute the cor-

responding p(H) into (3.27) and evaluate the unitary integrals to obtain P (λ).

3.2.2 P (λ) for i.i.d. Central Wishart Matrix

We start with the most common case, where H is the standard complex Gaussian

matrix. In this case, the joint pdf of the elements in H is given by

p(H) = etr{−HH∗} . (3.29)
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The pdf normalization factor in (3.29) has been absorbed into DVDU in (3.27).

Using the singular value decomposition of H as H = UΣV∗, we have

p(H) = etr{−Σ∗Σ} = exp

(
−

M∑

i=1

λi

)
. (3.30)

Since (3.30) is independent of both unitary matrices U and V, from (3.27) we obtain

P (λ) =
KN,M

M !
∆
M

(λ)2
M∏

i=1

e−λiλN−M
i (3.31)

without any need for complicated integrations over U and V [82].

3.2.3 P (λ) for Semi–Correlated Central Wishart Matrix

When only the columns or the rows of matrix H are correlated, the corresponding

Wishart matrix is called the semi–correlated Wishart matrix. Without loss of gen-

erality, we assume H = R
1
2 G where R ∈ GL(N, C) is the correlation matrix, and G

is the standard complex Gaussian matrix. In this case,

p(H) = NRetr
{−HH∗R−1

}

= NRetr
{−UΣΣ∗U∗R−1

}
(3.32)

where N−1
R = det

N
[R ]M , and the second equality comes from H = UΣV∗. Thus,

from (3.27), we have

P (λ) =
KN,M

M !
NR∆

M
(λ)2

M∏

i=1

λN−M
i

∫
DU etr

{−UΣΣ∗U∗R−1
}

. (3.33)

If N 6 M , then ΣΣ∗ and R−1 are both N ×N matrices with full rank. However,

when N > M , then the diagonal matrix ΣΣ∗ = diag{λ1, . . . , λM , 0, . . . , 0} has

N − M zero eigenvalues. Therefore, the former case is a special case of the later

case when N = M .

By employing (3.10), the joint pdf of the eigenvalues for the semi–correlated

central Wishart is calculated as follows:

P (λ) =
(−1)M(M+1

2
−N)∆

M
(λ)

∏N
j=1 yM

j

∆
N

(y)
∏M

i=1 i!
det

N




e−yjλi

∣∣∣
i=1

M

yN−i
j

∣∣∣
i=M+1

N


 (3.34)

where the vector y = (y1, . . . , yN )T represents the eigenvalues of matrix R−1.
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Accordingly, if we take H = GT
1
2 where T ∈ GL(M, C) is the correlation matrix,

we can still use (3.34) to obtain the joint eigenvalue distribution by setting M = N .

The result in (3.34) is identical to the result in [95] because we had only one

unitary integration, and the limit on the zero eigenvalues could be performed before

or after the re–summation of the expansion. However, in the following sections

where we have double unitary integrals, the results are not similar.

3.2.4 P (λ) for Uncorrelated Noncentral Wishart Matrix

In this scenario, the matrix H can be modeled as H = G + G0 where G0 ∈ CN×M

denotes the complex mean matrix, and G is the standard complex Gaussian matrix.

In this case,

p(H) = etr{−(H−G0)(H−G0)
∗}

= exp

(
−

M∑

i=1

(λi + γi)

)
etr{UΣV∗G∗

0 + G0VΣ∗U∗} (3.35)

where γ = (γ1, . . . , γM )T are the M nonzero eigenvalues of the matrix G0G
∗
0, and

the second equality comes from H = UΣV∗. Thus, from (3.27) we have

P (λ) =
KN,M

M !
∆
M

(λ)2
M∏

i=1

e−(λi+γi)λN−M
i

∫
DV

∫
DU etr{UΣV∗G∗

0 + G0VΣ∗U∗} .

(3.36)

By employing (3.19), the joint pdf of the eigenvalues for the uncorrelated non-

central Wishart matrix is obtained as follows:

P (λ) =
1

M !

∆
M

(λ )

∆
M

(γ)

M∏

i=1

[
e−(λi+γi)

(
λi

γi

)N−M
2

]
det
M

[
IN−M

(
2
√

λiγj

) ]
(3.37)

where the vector γ = (γ1, . . . , γM )T represents the nonzero eigenvalues of the matrix

G0G
∗
0.

Interested readers can refer to James’ paper [59] to realize the simplicity and

neatness of the character expansion method for unitary integrations compared to

James’ approach. The result in [59] has to be considerably manipulated to become

handy like our result in (3.37). Such manipulations can be found in [104].

Although Simon et al. [95] try to obtain (3.37) by character expansions, due

to the violation of Remark 2.1, they fail to obtain the correct joint pdf of the

eigenvalues. The result in [95, Eq. (52)] is in the form of I0

(
2
√

λiγj

)
rather than
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IN−M

(
2
√

λiγj

)
and, therefore, is incorrect. Interested readers can calculate [95,

Eq. (52)] for a MIMO system with Nt = 1 and Nr = 2. This calculation results in

a non–pdf function.

In the case where some of M nonzero eigenvalues of the matrix G0G
∗
0 are equal,

one can use Lemma A.1 or Lemma A.2 in Appendix A to obtain the appropriate

joint pdf.

3.2.5 P (λ) for i.i.d. Noncentral Wishart Matrix

The i.i.d. noncentral Wishart matrix is a special case of the uncorrelated noncentral

Wishart matrix when the mean matrix G0 is

G0 = g




1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1




N×M

where g is a complex scalar. In other words, all elements of the matrix H are i.i.d.

CN (g, 1) random variables. Therefore, γ = MN |g|2 is the only nonzero eigenvalue

of the matrix G0G
∗
0.

By denoting the eigenvalues of the matrices DA and BC in (3.18) by a = x2 =

(x2
1, . . . , x

2
M )T and b = y2 = (y2

1, . . . , y
2
M )T , respectively, we have

J
N,M
2 =

∏M
i=1(N − i)!(M − i)!

∆
M

(y2)
∏M

i=1 yN−M
i

×
det
M

[
x
−(N−M)
j IN−M

(
2yi xj

) ]

∆
M

(x2)
. (3.38)

If we assume (M − 1) zero eigenvalues for the matrix DA in (3.38) or, equiva-

lently, x1 = x and xi = 0 , i = 2, . . . , M , then by applying Lemma A.2 in Appendix

A to (3.38), we obtain

J
N,M
2 (x) , lim

{x2,...,xM}→0
J

N,M
2

=
∏M

i=1(N − i)!(M − i)!

xN+M−2∆
M

(y2)
∏M

i=1 yN−M
i

∏M−2
i=0 i!(N −M + i)!

× det
M

[
IN−M (2 yix) , yN+M−2j

i

∣∣∣
M

j=2

]
. (3.39)

¥

By employing (3.39), the joint pdf of eigenvalues for the i.i.d. noncentral Wishart
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matrix is obtained from (3.36) as follows:

P (λ) =
KN−1,M−1

M !

[
e−γ

γ
N+M

2
−1

]
∆
M

(λ)
M∏

i=1

[
λ

N−M
2

i e−λi

]

× det
M

[
IN−M

(
2
√

γλi

)
, λ

N+M
2

−j

i

∣∣∣
M

j=2

]
. (3.40)

3.2.6 P (λ) for Full–Correlated Central Wishart Matrix

When both the columns and the rows of the matrix H are correlated, the corre-

sponding Wishart matrix is called the full–correlated Wishart matrix. Hence, H

can be formulated as H = R
1
2 GT

1
2 where R ∈ GL(N, C) and T ∈ GL(M, C) are the

correlation matrices, and G is the standard complex Gaussian matrix. In this case,

p(H) = NR,T etr
{−HT−1H∗R−1

}

= NR,T etr
{−UΣV∗T−1VΣ∗U∗R−1

}
(3.41)

where N−1
R,T = det

N
[R ]M det

M
[T ]N , and the second equality comes from H = UΣV∗.

Thus, from (3.27) we have

P (λ) =
KN,M

M !
NR,T∆

M
(λ)2

M∏

i=1

λN−M
i

∫
DV

∫
DU etr

{−UΣV∗T−1VΣ∗U∗R−1
}

.

(3.42)

By employing (3.25), the joint pdf of the eigenvalues for the full–correlated

central Wishart matrix is calculated as follows:

P (λ) =
(−1)

M(M−1)
2

∏M
i=1 xN

i

∏N
j=1 yM

j

M !∆
M

(x)∆
N

(y)

×
∑

kM

∆
M

(λ) det
M

[
λ

kj+N−M

i

]
det
M

[
x

kj

i

]
det

N

[
y

kj+N−M
i

∣∣∣
M

j=1
, yN−j

i

∣∣∣
N

j=M+1

]

∆
M

(k)
∏M

i=1(−1)ki(ki + N −M)!

(3.43)

where the M–dimensional vector x represents the eigenvalues of the matrix R−1 or

T−1, whichever has the dimension M , and the N–dimensional vector y represents

the eigenvalues of the matrix R−1 or T−1, whichever has the dimension N .

The joint pdf of the eigenvalues for the full–correlated central Wishart matrix is

obtained in [102] and [95], only for M = N . In addition, (3.43) cannot be obtained

from the results in [102] or [95] by taking the limit on the zero eigenvalues. The

reason is explained in Remark 2.1.

38



In the cases where some of the eigenvalues of the matrices R−1 and/or T−1 are

equal, one can use Lemma A.1 in Appendix A to obtain the appropriate joint pdf.

Example 3.2 : One such example occurs when all eigenvalues of the matrix R−1

or T−1 are equal to one. This case is equivalent to the semi–correlated central

Wishart case.

If we define

R(kM ) , lim
{x1,...,xM}→1

det
M

[
x

kj

i

]

∆
M

(x)
,

then, by employing Lemma A.1 in Appendix A, we have

R(kM ) =
1∏M−1

j=1 j!
det
M

[
ki!

(ki −M + j)!

]

=
1∏M−1

j=1 j!
∆
M

(k) (3.44)

where the second equality is obtained by applying Lemma C.1 in Appendix C. Inter-

ested readers can apply (3.44) and the generalized Cauchy–Binet formula (Lemma

B.2 in Appendix B) to (3.43), to obtain the joint pdf of the eigenvalues for the

semi–correlated central Wishart matrix (3.34).
♦

3.3 Summary

In this chapter, we employed the integration framework proposed in Section 2.3

to solve three generalized unitary integrals. These integrals have applications in

physics [85], [86] and the derivation of the joint eigenvalue distributions of Wishart

matrices. Although the joint eigenvalue distributions of the semi–correlated central

Wishart matrix and also noncentral cases were previously derived in the literature

(by using considerably more complicated methods), this chapter demonstrates that

the character expansion method can be used to obtain those results in a few simple

steps. In addition, we were able to derive the joint eigenvalue distribution of the

full–correlated non–square central Wishart matrix, which was not reported in the

previous literature [57]. The approach presented in this chapter may be used to

solve other unitary integrals accordingly.
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Chapter 4

Eigenvalue Density of Wishart
Matrices

In some applications, instead of joint eigenvalue distribution, the general eigenvalue

density of a Wishart matrix (i.e., the distribution of a single eigenvalue without

ordering) is of interest. Such applications in physics may include mesoscopics [105],

high–energy physics [106], and econophysics [107]. Other applications may be found

in the capacity and performance analysis of MIMO wireless systems, particularly

when the channel state information is available for both the receiver and the trans-

mitter [62]. It is shown that the optimum precoder matrix F in (1.7) should at the

least diagonalize the channel matrix H [60]. Hence, the transmit signals are virtu-

ally transmitted over parallel channels configured in the eigenvalues of the channel

matrix.

Due to the nature of most applications requiring the eigenvalue densities of large

dimension random matrices, the eigenvalue density of Wishart matrices has been

derived asymptotically in the literature [57]. However, for the capacity and perfor-

mance analysis of MIMO systems with precoding, the exact eigenvalue densities are

required since the number of transmit and/or receive antennas are relatively small.

The only paper that we found on the exact (not asymptotic) eigenvalue density

of Wishart matrices is [108]. However, the unitary integration approach in this paper

is identical to the approach in [95], which is not valid [85]. Nonetheless, the step–by–

step approach in [108], from the joint eigenvalue density to the individual eigenvalue

density, is valid, and results in neat expressions that are convenient for further

analysis, particularly for the performance analysis of MIMO wireless channels with

feedback. This fact motivated us to follow the same unified approach to obtain the

eigenvalue densities of Wishart matrices.
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4.1 Synopsis

Without loss of generality, we assume H is a N × M , N > M , complex random

matrix with Gaussian distribution. Given P (λ = {λ1, . . . , λM}) is the joint pdf of

the M nonzero eigenvalues of the matrix HH∗, we define and derive the following

quantities from P (λ):

Gν(z) , E

{
M∏

i=1

(λi − z)ν

}
=

M∏

i=1

∫ ∞

0
dλi (λi − z)ν P (λ) (4.1)

D(z) , ∂Gν(z)
∂ν

∣∣∣
ν=0

= E

{
M∑

i=1

log(λi − z)

}
(4.2)

P (λ) =
1
M

lim
ε→0

D(λ− iε)−D(λ + iε)
2πi

=
1
M

E

{
M∑

i=1

u(λ− λi)

}
(4.3)

p(λ) =
dP (λ)

dλ
=

1
M

E

{
M∑

i=1

δ(λ− λi)

}
(4.4)

where u(·) is the step function, and the multiplication before the integral in (4.1)

represents the M–tuple integration. The partial differentiation in (4.2) produces a

log(λi − z) function which becomes a step function after taking the limit in (4.3)

since

lim
ε→0

Im
{

log(−y + iε)
}

= π u(y)

for real y. The factor
1
M

in (4.3) and (4.4) are introduced to make P (λ) a cdf

(cumulative density function) and p(λ) a pdf.

In the following sections, we examine the above expressions for different P (λ).

4.2 i.i.d. Central Wishart

We start with the popular case, where H is the standard complex Gaussian matrix.

Substituting P (λ) for this case from (3.31) into (4.1) results in

Gν(z) =
KN,M

M !

M∏

i=1

∫ ∞

0
dλi (λi − z)ν e−λiλN−M

i ∆
M

(λ)2 . (4.5)

By using the Leibniz formula (C.4) in Appendix C.2 to expand the Vandermonde
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determinant (2.4), we can write

∆
M

(λ)2 =
∑
a

∑

b

S(a) S(b)
M∏

i=1

λ2M−ai−bi
i .

Thus, from (4.5), we obtain

Gν(z) =
KN,M

M !

∑
a

∑

b

S(a) S(b)
M∏

i=1

∫ ∞

0
dλi (λi − z)ν e−λi λN+M−ai−bi

i

= KN,M × 1
M !

∑
a

∑

b

S(a) S(b)
M∏

i=1

∫ ∞

0
dt (t− z)ν e−t tN+M−ai−bi

= KN,M det
M

[ ∫ ∞

0
dt (t− z)ν e−t tN+M−i−j

]
(4.6)

where we use (C.5) in Appendix C.2 to obtain the determinant in (4.6). By differ-

entiation with respect to ν (Appendix C.2), we have

D(z) =
∂Gν(z)

∂ν

∣∣∣
ν=0

= KN,M

M∑

m=1

det
M

[Lm ] (4.7)

where

Lm,ij =





∫ ∞

0
dt log(t− z) e−t tN+M−i−j , if i = m ;

(N + M − i− j)! , if i 6= m.

(4.8)

Considering that each determinant in (4.7) can be expanded by using the Laplace

expansion formula [48] over the (i = m)-th row, the limit in (4.3) is absorbed into

all Lm,mj terms in (4.8). Therefore, the eigenvalue cdf becomes

P (λ) =
KN,M

M

M∑

m=1

det
M

[
L′m

]
(4.9)

where

L′m,ij =





∫ ∞

0
dt u(λ− t) e−t tN+M−i−j = γ

(
N + M − i− j + 1, λ

)
, if i = m ;

(N + M − i− j)! , if i 6= m ;

and γ
(
α, x

)
is the lower incomplete Gamma function [109].

Hence, the eigenvalue density of the i.i.d. central Wishart matrix is achieved as
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Figure 4.1: The eigenvalue density of i.i.d. central Wishart matrices with M = 3 and
N = 5, 6 and 7.

p(λ) =
dP (λ)

dλ
=
KN,M

M

M∑

m=1

det
M

[Qm ] (4.10)

where

Qm,ij =

{
e−λ λN+M−i−j , if i = m ;

(N + M − i− j)! , if i 6= m.

¥

Example 4.1 : Consider i.i.d. central Wishart matrices with M = 3 and N = 5, 6

and 7. We use computer simulations to verify our analysis in this section. Figure

4.1 depicts the p(λ) for these three cases where the solid curves are obtained from

(4.10), and the symbols are obtained from computer simulations.
♦

43



4.3 Semi–Correlated Central Wishart

Similar to the assumption in Section 3.2.3, we assume H = R
1
2 G where R ∈

GL(N, C) is the correlation matrix, and G ∈ CN (0, 1)N×M is the standard com-

plex Gaussian matrix. The joint eigenvalue distribution for the semi–correlated

central Wishart matrix is given in (3.34), which is equal to

P (λ) =
A
M !

∆
M

(λ) det
N




e−yjλi

∣∣∣
i=1

M

yN−i
j

∣∣∣
i=M+1

N


 (4.11)

where we define

A ,
(−1)M(M+1

2
−N) ∏N

j=1 yM
j

∆
N

(y)
∏M−1

i=1 i!
, (4.12)

and the vector y = (y1, . . . , yN )T represents the eigenvalues of matrix R−1. Substi-

tuting P (λ) from (4.11) into (4.1) results in

Gν(z) =
A
M !

M∏

i=1

∫ ∞

0
dλi (λi − z)ν ∆

M
(λ) det

N




e−yjλi

∣∣∣
i=1

M

yN−i
j

∣∣∣
i=M+1

N


 . (4.13)

Using the Leibniz formula (C.4) in Appendix C.2 to expand both determinants in

(4.13) gives

Gν(z) =
A
M !

∑
aM

∑

bN

S(a) S(b)
M∏

i=1

∫ ∞

0
dλi (λi − z)ν λ

M−ai
i e

−yb
i
λi

N∏

i=M+1

yN−i
bi

=
A
M !

∑
aM

∑

bN

S(a) S(b)
M∏

i=1

∫ ∞

0
dt (t− z)ν tM−ai e

−yb
i
t

N∏

i=M+1

yN−i
bi

= A
∑

bN

S(b)
M∏

i=1

∫ ∞

0
dt (t− z)ν tM−i e

−yb
i
t

N∏

i=M+1

yN−i
bi

= Adet
N




∫ ∞

0
dt (t− z)ν tM−i e−yjt

∣∣∣
i=1

M

yN−i
j

∣∣∣
i=M+1

N


 . (4.14)

By differentiation with respect to ν (Appendix C.2), we have

D(z) =
∂Gν(z)

∂ν

∣∣∣
ν=0

= A
M∑

m=1

det
N

[Lm ] (4.15)
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where

Lm,ij =





∫ ∞

0
dt log(t− z) e−yjt tM−i , if i = m 6 M ;

y
−(M−i+1)
j Γ

(
M − i + 1

)
, if i 6= m 6 M ;

yN−i
j , if i > M ;

(4.16)

and Γ
(
α
)

is the Gamma function [109]. The index m in (4.15) goes to M only since

the rest of the rows in (4.14) are independent of ν and result in zero determinants

after differentiation.

Considering that each determinant in (4.15) can be expanded by using the

Laplace expansion formula [48] over the (i = m)-th row, the limit in (4.3) is absorbed

into all Lm,mj terms in (4.16). Therefore,

P (λ) =
A
M

M∑

m=1

det
N

[
L′m

]
(4.17)

where

L′m,ij =





∫ ∞

0
dt u(λ− t) e−yjt tM−i , if i = m 6 M ;

Lm,ij , otherwise ;

=





y
−(M−i+1)
j γ(M − i + 1, λyj) , if i = m 6 M ;

Lm,ij , otherwise.

Hence, the eigenvalue density of the semi–correlated central Wishart matrix is

achieved as

p(λ) =
dP (λ)

dλ
=
A
M

M∑

m=1

det
N

[Qm ] (4.18)

where

Qm,ij =





e−λyj λM−i , if i = m 6 M ;

y
−(M−i+1)
j Γ(M − i + 1) , if i 6= m 6 M ;

yN−i
j , if i > M .

¥

Accordingly, if we take H = GT
1
2 where T ∈ CM×M is a correlation matrix, we

can still use (4.18) to obtain the eigenvalue density by setting M = N .
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Example 4.2 : Consider a MIMO system where the receive and transmit antennas

are deployed in a linear antenna array configuration. When the distance between

antennas is small in comparison to the signal wavelength (λs), the channel gains

become correlated. The elements of the correlation matrix R for this configuration

are obtained from the following expression [95]:

Rab =
∫ 180

−180

dφ√
2πδ2

exp
(

2πi(a− b)dλ sin
(

φπ

180

)
− φ2

2δ2

)
(4.19)

where δ in degrees is the angle spread measured from the vertical to the linear an-

tenna array, and dλ =
dmin

λs
is the normalized minimum distance between antennas.

Figure 4.2 illustrates the p(λ) for the semi–correlated central Wishart matrices

with N = 5, M = 3, δ = 10◦ and dλ = 0.8, 1 and 2. The curves are obtained from

(4.18), and the symbols are obtained from computer simulations. As we expected,

when dλ is small, the channel gains are more correlated, so that p(λ) is sharper

(denser) around zero. However, when dλ is large, the channel gains are uncorrelated

and, therefore, p(λ) approaches the eigenvalue density of the 5 × 3 i.i.d. central

Wishart matrix in Figure 4.1.
♦

4.4 Uncorrelated Noncentral Wishart

Similar to the assumption in Section 3.2.4, assume the matrix H is modeled as

H = G + G0 where G0 ∈ CN×M denotes the complex mean matrix, and G ∈
CN (0, 1)N×M is the standard complex Gaussian matrix. The joint eigenvalue dis-

tribution for the uncorrelated noncentral Wishart matrix is given in (3.37), which

is equal to

P (λ) =
G

M !
∆
M

(λ) det
M

[
fj(λi)

]
(4.20)

where we define

G , 1
∆
M

(γ)

M∏

i=1

e−γi

γ
N−M

2
i

(4.21)

and

fj(λi) , e−λi λ
N−M

2
i IN−M

(
2
√

λiγj

)
, (4.22)

and γ = (γ1, γ2, . . . , γM )T are the M nonzero eigenvalues of the matrix G0G
∗
0.
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Figure 4.2: The eigenvalue density of semi–correlated central Wishart matrices with
N = 5, M = 3, δ = 10◦ and dλ = 0.8, 1 and 2. The correlation factors are obtained
from (4.19).
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By substituting (4.20) into (4.1) and expanding the determinants by using the

Leibniz formula (C.4) in Appendix C.2, we can write

Gν(z) =
G

M !

M∏

i=1

∫ ∞

0
dλi (λi − z)ν ∆

M
(λ) det

M

[
fj(λi)

]

=
G

M !

M∏

i=1

∫ ∞

0
dλi (λi − z)ν

∑
a

S(a)
M∏

i=1

λ
M−ai
i

∑

b

S(b)
M∏

i=1

fbi
(λi)

= G × 1
M !

∑
a

∑

b

S(a) S(b)
M∏

i=1

∫ ∞

0
dt (t− z)ν tM−aifbi

(t)

= G det
M

[ ∫ ∞

0
dt (t− z)ν tM−ifj(t)

]

= G det
M

[ ∫ ∞

0
dt (t− z)ν e−t t

N+M
2

−i IN−M

(
2
√

γj t
)]

(4.23)

where we use (C.5) in Appendix C.2 to obtain the determinant.

Differentiating (4.23) with respect to ν (Appendix C.2) results in

D(z) =
∂Gν(z)

∂ν

∣∣∣
ν=0

= G
M∑

m=1

det
M

[Lm ] (4.24)

where

Lm,ij =





∫ ∞

0
dt log(t− z) e−t t

N+M
2

−i IN−M

(
2
√

γj t
)

, if i = m ;

(N − i)!
(N −M)!

γ
N−M

2
j Φ

(
N − i + 1, N −M + 1; γj

)
, if i 6= m ;

and Φ
(
a, b; x

)
is the confluent hypergeometric function [109]. Taking the limit in

(4.3) by using (4.24) gives

P (λ) =
G
M

M∑

m=1

det
M

[
L′m

]
(4.25)

where

L′m,ij =





∫ λ

0
dt e−t t

N+M
2

−i IN−M

(
2
√

γj t
)

, if i = m ;

Lm,ij , otherwise.

Therefore, the eigenvalue density of the uncorrelated noncentral Wishart matrix

is derived as

p(λ) =
dP (λ)

dλ
=
G
M

M∑

m=1

det
M

[Qm ] (4.26)
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where

Qm,ij =





e−λ λ
N+M

2
−i IN−M

(
2
√

λγj

)
, if i = m ;

(N − i)!
(N −M)!

γ
N−M

2
j Φ

(
N − i + 1, N −M + 1; γj

)
, if i 6= m ;

¥

Example 4.3 : By assuming that the three nonzero eigenvalues of the matrix

G0G
∗
0 are γ = (2, 5, 7)T , the eigenvalue densities of the uncorrelated noncentral

Wishart matrices with M = 3 and N = 5, 6 and 7 can be illustrated as in Figure 4.3,

where the curves are obtained from (4.26), and the symbols are computer simulation

results. As observed in Figure 4.3, a perfect agreement exists between the analytical

results and the simulation results. ♦

4.5 i.i.d. Noncentral Wishart

The i.i.d. noncentral Wishart matrix is a special case of the uncorrelated noncen-

tral Wishart matrix when all elements of the matrix H are i.i.d. CN (g, 1) random

variables; i.e., H ∈ CN (g, 1)N×M . Therefore, γ = MN |g|2 is the only nonzero

eigenvalue of the matrix G0G
∗
0. The joint eigenvalue distribution for the i.i.d. non-

central Wishart matrix is given in (3.40), which is equal to

P (λ) =
Gγ

M !
∆
M

(λ) det
M

[
fj(λi)

]
(4.27)

where we define

Gγ , KN−1,M−1

[
e−γ

γ
N+M

2
−1

]
(4.28)

and

fj(λi) ,





e−λi λ
N−M

2
i IN−M

(
2
√

γλi

)
, if j = 1 ;

e−λi λN−j
i , if j = 2, . . . , N .

(4.29)

By substituting (4.27) into (4.1) and expanding the determinants by using the

Leibniz formula (C.4) in Appendix C.2, we follow the same procedure presented in

(4.23) to obtain

Gν(z) = Gγ det
M

[ ∫ ∞

0
dt (t− z)ν tM−ifj(t)

]
. (4.30)
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Figure 4.3: The eigenvalue density of uncorrelated noncentral Wishart matrices with
M = 3, γ = (2, 5, 7)T and N = 5, 6 and 7.
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Differentiating (4.30) with respect to ν (Appendix C.2) results in

D(z) =
∂Gν(z)

∂ν

∣∣∣
ν=0

= Gγ

M∑

m=1

det
M

[Lm ] (4.31)

where

Lm,ij =





∫ ∞

0
dt log(t− z) e−t t

N+M
2

−i IN−M

(
2
√

γ t
)

, if i = m, j = 1 ;

∫ ∞

0
dt log(t− z) e−t tN+M−i−j , if i = m, j > 1 ;

(N − i)!
(N −M)!

γ
N−M

2 Φ
(
N − i + 1, N −M + 1; γ

)
, if i 6= m, j = 1 ;

(N + M − i− j)! , if i 6= m, j > 1 .

Taking the limit in (4.3) by using (4.31) gives

P (λ) =
Gγ

M

M∑

m=1

det
M

[
L′m

]
(4.32)

where

L′m,ij =





∫ λ

0
dt e−t t

N+M
2

−i IN−M

(
2
√

γ t
)

, if i = m, j = 1 ;

γ
(
N + M − i− j + 1, λ

)
, if i = m, j > 1 ;

Lm,ij , otherwise ;

and γ
(
α, x

)
is the lower incomplete Gamma function [109].

Therefore, the eigenvalue density of the i.i.d. noncentral Wishart matrix is

obtained as

p(λ) =
dP (λ)

dλ
=
Gγ

M

M∑

m=1

det
M

[Qm ] (4.33)

where

Qm,ij =





e−λ λ
N+M

2
−i IN−M

(
2
√

γλ
)

, if i = m, j = 1 ;

e−λ λN+M−i−j , if i = m, j > 1 ;

(N − i)!
(N −M)!

γ
N−M

2 Φ
(
N − i + 1, N −M + 1; γ

)
, if i 6= m, j = 1 ;

(N + M − i− j)! , if i 6= m, j > 1 .

¥
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4.6 Full–Correlated Central Wishart

Similar to the assumption in Section 3.2.6, we assume H = R
1
2 GT

1
2 where R ∈

GL(N, C) and T ∈ GL(M, C) are the correlation matrices, and G ∈ CN (0, 1)N×M

is the standard complex Gaussian matrix. The joint eigenvalue distribution for the

full–correlated central Wishart matrix is given in (3.43), which is equal to

P (λ) =
∑

kM

B
M !∆

M
(k)

∆
M

(λ) det
M

[
λ

kj+N−M

i

]
(4.34)

where kM is a representation of GL(M, C), and the auxiliary parameter B represents

the excluded terms of (3.43) in (4.34), which are independent of λ as well.

Since ∆
M

(λ) can be written as (Appendix C.3)

∆
M

(λ) =
1

(−z)
M(M−1)

2

det
M

[(
λi

λi − z

)M−j
]

M∏

i=1

(λi − z)M−1 , (4.35)

and by applying the Leibniz formula (C.4) in Appendix C.2 to expand the determi-

nants in (4.34), we can write

Gν(z) =
∑

kM

(−z)−
M(M−1)

2 B
M !∆

M
(k)

M∏

i=1

∫ ∞

0
dλi (λi − z)ν+M−1

×
∑
a

S(a)
M∏

i=1

(
λi

λi − z

)M−ai ∑

b

S(b)
M∏

i=1

λ
kb

i
+N−M

i

=
∑

kM

(−z)−
M(M−1)

2 B
∆
M

(k)
× 1

M !

∑
a

∑

b

S(a) S(b)
M∏

i=1

∫ ∞

0
dt (t− z)ν+ai−1 t

kb
i
+N−ai

=
∑

kM

(−z)−
M(M−1)

2 B
∆
M

(k)
det
M

[ ∫ ∞

0
dt (t− z)ν+i−1 tkj+N−i

]
(4.36)

where the last equality comes from (C.5) in Appendix C.2. Performing (M − i)

times integrations by part for the integral in (4.36) results in

Gν(z) =
∑

kM

(−z)−
M(M−1)

2 B
∆
M

(k)

× det
M

[
(−1)M−i

∏M−i
l=1 (ν + i + l − 1)

× (αj + M − i)!
αj !

∫ ∞

0
dt (t− z)ν+M−1 tαj

]

(4.37)
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where αj , kj + N −M . The row and column factoring from the determinant in

(4.37) gives

Gν(z) =
∑

kM

z−
M(M−1)

2 B
∆
M

(k)
det
M

[
(αj + M − i)!

αj !

]
M∏

j=1

∫ ∞

0
dt (t− z)ν+M−1 tαj

(ν + j − 1)j−1
.

(4.38)

By following the same approach as shown in Lemma C.1 in Appendix C.1, it is easy

to show that

det
M

[
(αj + M − i)!

αj !

]
= ∆

M
(α) = ∆

M
(k + N −M) = ∆

M
(k) (4.39)

where the last equality comes from Appendix C.3. The last equality in (4.39) allows

us to cancel the term ∆
M

(k) in (4.38) and use the generalized Cauchy–Binet formula

as follows. Otherwise, the final result cannot be shown as a determinant.

Substituting B from (3.43), and (4.39) into (4.38) results in

Gν(z) =
∑

kM

z−
M(M−1)

2 B
M∏

j=1

∫ ∞

0
dt (t− z)ν+M−1 tkj+N−M

(ν + j − 1)j−1

=
(−z)−

M(M−1)
2

∏M
i=1 xN

i

∏N
j=1 yM

j

∆
M

(x)∆
N

(y)
∏M−1

i=1 (ν + i)i

×
∑

kM

det
M

[
(−xi)kj

]
det

N

[
y

kj+N−M
i

∣∣∣
M

j=1
, yN−j

i

∣∣∣
N

j=M+1

]

×
M∏

i=1

∫ ∞

0
dt (t− z)ν+M−1 tki+N−M

(ki + N −M)!

where the M–dimensional vector x represents the eigenvalues of the matrix R−1 or

T−1, whichever has the dimension M , and the N–dimensional vector y represents

the eigenvalues of the matrix R−1 or T−1, whichever has the dimension N (N > M).

Considering the fact that

∫ ∞

0
dt (t− z)ν+M−1 etx =

∞∑

k=0

[∫ ∞

0
dt (t− z)ν+M−1 tk

k!

]
xk,

and by applying the generalized Cauchy–Binet formula (Lemma B.2 in Appendix
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B), we obtain

Gν(z)=
(−1)M(N−M+1

2
) ∏M

i=1 xM
i

∏N
j=1 yM

j

z
M(M−1)

2 ∆
M

(x)∆
N

(y)
∏M−1

i=1 (ν + i)i
det

N




∫ ∞

0
dt (t− z)ν+M−1 e−xiyjt

∣∣∣
i=1

M

yN−i
j

∣∣∣
i=M+1

N




=
(−1)M(N−M+1

2
)z−

M(M−1)
2

∆
M

(x)∆
N

(y)
∏M−1

i=1 (ν + i)i
det

N




(xiyj)
M

∫ ∞

0
dt (t− z)ν+M−1 e−xiyjt

∣∣∣
i=1

M

yN+M−i
j

∣∣∣
i=M+1

N




=
X z−

M(M−1)
2

∏M−1
i=1 (ν + i)i

det
N




F
(
xiyj , ν + M, z

) ∣∣∣
i=1

M

yN+M−i
j

∣∣∣
i=M+1

N


 (4.40)

where we define

F
(
x, α, z

)
, xM

∫ ∞

0
dt (t− z)α−1 e−xt

= xM−α e−xz Γ
(
α,−xz

)
(4.41)

and

X , (−1)M(N−M+1
2

)

∆
M

(x)∆
N

(y)
(4.42)

and Γ
(
α, x

)
is the upper incomplete Gamma function [109]. For integer m,

F
(
x, m, z

)
= xM−m (m− 1)!

m−1∑

k=0

(−xz)k

k!
. (4.43)

By differentiating (4.40) with respect to ν (Appendix C.2), we have

D(z) =
∂Gν(z)

∂ν

∣∣∣
ν=0

= 1−M +
X z−

M(M−1)
2

∏M−1
i=1 ii

M∑

m=1

det
N

[Lm ] (4.44)

where

Lm,ij =





(xiyj)
M

∫ ∞

0
dt log(t− z) (t− z)M−1 e−xiyjt , if i = m 6 M ;

F
(
xiyj ,M, z

)
, if i 6= m 6 M ;

yN+M−i
j , if i > M .

The index m in (4.44) goes to M only since the rest of the rows in (4.40) are

independent of ν and result in zero determinants after differentiation.
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Taking the limit in (4.3) by using (4.44) results in

P (λ) =
Xλ−

M(M−1)
2

M
∏M−1

i=1 ii

M∑

m=1

det
N

[
L′m

]
(4.45)

where

L′m,ij =





E
(
xiyjλ , M

)
, if i = m 6 M ;

F
(
xiyj ,M, λ

)
, if i 6= m 6 M ;

yN+M−i
j , if i > M ;

and we define

E
(
x,M

)
,

∫ x

0
dt (−t)M−1 et−x

= (M − 1)!

[
−e−x +

M−1∑

m=0

(−x)m

m!

]
. (4.46)

Therefore, the eigenvalue density of the full–correlated central Wishart matrix

is obtained as

p(λ) =
dP (λ)

dλ
=
Xλ−

M(M−1)
2

−1

M
∏M−1

i=1 ii

M∑

m=1

M∑

n=1

det
N

[Qmn ] (4.47)

where

Qmn,ij =





−
[(

M(M−1)
2 + xiyjλ

)
E

(
xiyjλ, M

)
+ (−xiyjλ)M

]
, if i = n = m 6 M ;

−(M − 1)F
(
xiyj ,M − 1, λ

)
, if i = n 6= m 6 M ;

λE
(
xiyjλ,M

)
, if i = m 6= n 6 M ;

F
(
xiyj ,M, λ

)
, if i 6= m,n 6 M ;

yN+M−i
j , if i > M ;

and the functions E
(
x,M

)
and F

(
x,m, z

)
are defined in (4.46) and (4.43), re-

spectively. As before, the M–dimensional vector x represents the eigenvalues of the

matrix R−1 or T−1, whichever has the dimension M , and the N–dimensional vector

y represents the eigenvalues of the matrix R−1 or T−1, whichever has the dimension

N (N > M).

¥

Example 4.4 : To verify (4.47), we consider the MIMO wireless system presented

in Example 4.2 where we now assume both the transmitter and the receiver antennas
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Figure 4.4: The eigenvalue density of full–correlated central Wishart matrices with
N = 5, M = 3, δ = 10◦ and dλ = 0.8, 1 and 2. The correlation factors are obtained
from (4.19).
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are correlated in a linear antenna array deployment. Therefore, the correlation

matrices R and T can be obtained from (4.19).

The p(λ) for full–correlated central Wishart matrices with N = 5, M = 3,

δ = 10◦ and dλ = 0.8, 1 and 2 are presented in Figure 4.4. The curves are obtained

from (4.47), and the symbols are obtained from computer simulations. As expected,

when the channel gains are more correlated or, equivalently, when dλ is small, the

p(λ) is sharper (denser) around zero. However, when dλ is large, the p(λ) approaches

the eigenvalue density of the 5× 3 i.i.d. central Wishart matrix in Figure 4.1.
♦

4.7 Summary

Due to the nature of most applications, the eigenvalue densities of Wishart matrices

have been derived asymptotically in the literature [57]. However, for the capacity

and performance analysis of MIMO systems with precoding, the exact eigenvalue

densities are required since the number of transmit and/or receive antennas are

relatively small.

Because of the convenient mathematical form of the joint eigenvalue distributions

derived in Chapter 3, we were able to derive the exact eigenvalue densities of Wishart

matrices straightforwardly. Our results are in the form of finite summations of

determinants, which can be easily computed and also employed for further analysis.
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Chapter 5

Capacity Analysis of MIMO
Systems

The capacity of MIMO systems is commonly analyzed by using the moment gener-

ating function of the mutual information between the transmitter and receiver, for

various assumptions about the statistics of the channel matrix. The first derivative

of the MGF then yields the capacity. Moreover, the probability of outage can be

derived through a simple numerical integral [110]. The outage mutual information

for the Gaussian uncorrelated channels, obtained by using the MGF, is presented

in [111], and the capacity of MIMO systems when the channel is Ricean can be

found in [104], and in [112] and [113] when the channel is semi–correlated. Specifi-

cally, [112] deals with the case where the number of correlated antennas is less than

or equal to the number of uncorrelated antennas, and [113] with the opposite case.

All these works are based on the results derived by James [59].

Recently, the character expansion method has been used in [102] for the capacity

analysis of full–correlated MIMO channel when Nr = Nt, and in [95] for the capacity

analysis of semi–correlated, Ricean and full–correlated MIMO channels with arbi-

trary numbers of transmit and receive antennas. However, we showed in the previous

chapters that the unitary integration approach presented in [95] is mathematically

invalid when Nr 6= Nt.

In this chapter, we use the joint eigenvalue distributions derived in Chapter 3

to obtain the capacity of corresponding MIMO channels. Although the expressions

are not similar to our results, these capacity results have been derived before with

much more effort. However, the approach presented in this thesis is significantly

simple, compact, straightforward and unified.
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5.1 Synopsis

By recalling the MIMO wireless system model from (1.2) in section 1.1, and assuming

that the channel matrix H is known to the receiver only, the mutual information

between the transmitter and receiver is given by [20]

I = log
(

det
Nr

[ INr + ρHH∗ ]
)

where log(·) is the natural logarithm. By defining the MGF of I as

g(z) , E
{
ezI}

= E
{

det
Nr

[ INr + ρHH∗ ]z
}

, (5.1)

the capacity of the system is obtained by direct differentiation of g(z); i.e.,

C = E{I} = g′(0). (5.2)

Unlike (1.6), the bandwidth B is set to unity here. Thus, the capacity in (5.2) is

measured in nats per second per Hertz (nats/s/Hz).

From (5.1), it is clear that the generating function can be written simply in

terms of the eigenvalues {λi} of the matrix HH∗ as

g(z) = E

{
M∏

i=1

(1 + ρλi)
z

}

=
M∏

i=1

∫ ∞

0
dλi (1 + ρλi)

z P (λ) (5.3)

where M = min{Nt, Nr}, and P (λ={λ1, . . . , λM}) is the joint pdf of the M nonzero

eigenvalues of matrix HH∗.

Considering the fact that

(1 + ρλ)z = ρz

[
λ−

( −1
ρ

)]z

,

and comparing g(z) in (5.3) with Gν(z) in (4.1), we observe that

g(z) = ρzM Gz

( −1
ρ

)
. (5.4)

Hence, instead of substituting the corresponding P (λ) for different channel statistics

into (5.3), we use the appropriate Gν(z) from Chapter 4 to obtain the MGF of the

mutual information, g(z) and, consequently, the corresponding capacity.
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5.2 i.i.d. Rayleigh MIMO Channel

When all channel gains in H are i.i.d. CN (0, 1) random variables, the channel is

called the standard Rayleigh fading channel. Therefore, the matrix HH∗ becomes

the i.i.d. central Wishart matrix whose joint eigenvalue distribution is given in

(3.31). Substituting Gν(z) for this case from (4.6) into (5.4) results in

g(z) = ρzM KN,M det
M

[ ∫ ∞

0
dλ

(
λ−

( −1
ρ

))z

e−λ λN+M−i−j

]

= KN,M det
M

[ ∫ ∞

0
dλ (1 + ρλ)z e−λ λN+M−i−j

]
(5.5)

where N = max{Nt, Nr}, M = min{Nt, Nr} and KN,M is defined in (3.28).

Differentiating (5.5) with respect to z (Appendix C.2) gives

C = g′(0) = KN,M

M∑

m=1

det
M

[Lm ]

where

Lm,ij =





∫ ∞

0
dλ log (1 + ρλ) e−λ λN+M−i−j , if i = m ;

(N + M − i− j)! , if i 6= m .

¥

5.3 Semi–Correlated Rayleigh MIMO Channel

In this scenario, the channel matrix is assumed to be correlated at one side of the

transmission only. Without loss of generality, we assume that the channel matrix

is correlated at the receiver side. Thus, it can be modeled as H = R
1
2 G where

R ∈ GL(Nr, C) denotes the receiver correlation matrix, and G ∈ CN (0, 1)Nr×Nt

is a standard Rayleigh matrix. Therefore, the matrix HH∗ becomes the semi–

correlated central Wishart matrix whose joint eigenvalue distribution is given in

(3.34). Substituting Gν(z) for this case from (4.14) into (5.4) results in

g(z) = ρzM Adet
N




∫ ∞

0
dλ

(
λ−

( −1
ρ

))z

λM−i e−yjλ
∣∣∣
i=1

M

yN−i
j

∣∣∣
i=M+1

N




= Adet
N




∫ ∞

0
dλ (1 + ρλ)z λM−i e−yjλ

∣∣∣
i=1

M

yN−i
j

∣∣∣
i=M+1

N


 (5.6)
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where M = min(Nt, Nr), N = max(Nt, Nr), A is defined in (4.12), and the vector

y = (y1, y2, . . . , yN )T represents the eigenvalues of matrix R−1.

By differentiating (5.6) with respect to z (Appendix C.2), we have

C = g′(0) = A
M∑

m=1

det
N

[Lm ] (5.7)

where

Lm,ij =





∫ ∞

0
dλ log(1 + ρλ)λM−i e−yjλ , if i = m 6 M ;

y
−(M−i+1)
j Γ

(
M − i + 1

)
, if i 6= m 6 M ;

yN−i
j , if i > M .

The index m in (5.7) goes to M only since the rest of the rows in (5.6) are indepen-

dent of z and result in zero determinants after differentiation.

¥

5.4 Uncorrelated Ricean MIMO Channel

When the channel gains in H are complex Gaussian random variables with a nonzero

mean, the channel is called a Ricean fading channel. In the uncorrelated scenario,

the matrix H is modeled as H = G + G0 where G0 ∈ CNr×Nt denotes the complex

mean matrix, and G ∈ CN (0, 1)Nr×Nt is a standard Rayleigh matrix. Therefore,

the matrix HH∗ becomes the uncorrelated noncentral Wishart matrix whose joint

eigenvalue distribution is given in (3.37). Substituting Gν(z) for this case from

(4.23) into (5.4) results in

g(z) = ρzM G det
M

[ ∫ ∞

0
dλ

(
λ−

( −1
ρ

))z

e−λ λ
N+M

2
−i IN−M

(
2
√

γj λ
)]

= G det
M

[ ∫ ∞

0
dλ (1 + ρλ)z e−λ λ

N+M
2

−i IN−M

(
2
√

γj λ
)]

(5.8)

where N = max(Nt, Nr), M = min(Nt, Nr), the parameter G is defined in (4.21),

and γ = (γ1, γ2, . . . , γM )T are the M nonzero eigenvalues of the matrix G0G
∗
0.

Differentiating (5.8) with respect to z (Appendix C.2) gives

C = g′(0) = G
M∑

m=1

det
M

[Lm ] (5.9)
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where

Lm,ij =





∫ ∞

0
dλ log(1 + ρλ) e−λ λ

N+M
2

−i IN−M

(
2
√

γj λ
)

, if i = m ;

(N − i)!
(N −M)!

γ
N−M

2
j Φ

(
N − i + 1, N −M + 1; γj

)
, if i 6= m ;

and Φ
(
a, b; x

)
is the confluent hypergeometric function [109].

¥

Example 5.1 : Consider MIMO wireless systems with Nt = 3 transmit antennas

and Nr = 3, 4 and 5 receive antennas. Assuming γ = (0.1, 0.3, 0.7)T are the three

nonzero eigenvalues of the matrix G0G
∗
0 for given systems, Figure 5.1 illustrates

the capacity of MIMO systems versus SNR (ρ) when the channel is uncorrelated

Ricean fading. The curves are plotted by using (5.9), and the symbols are computer

simulation results. As observed in Figure 5.1, a perfect agreement exists between

the analytical results and the simulation results.
♦

In the case of equal eigenvalues for the matrix G0G
∗
0, one can use Lemma A.1

in Appendix A to obtain the appropriate MGF. One such example occurs when the

MIMO channel is an i.i.d. Ricean fading channel.

5.5 i.i.d. Ricean MIMO Channel

The i.i.d. Ricean MIMO channel is a special case of the uncorrelated Ricean MIMO

channel when all elements of the channel matrix H are i.i.d. CN (g, 1) random

variables; i.e., H ∈ CN (g, 1)Nr×Nt . Therefore, γ = NrNt |g|2 is the only nonzero

eigenvalue of the matrix G0G
∗
0. As a result, the matrix HH∗ becomes the i.i.d.

noncentral Wishart matrix whose joint eigenvalue distribution is given in (3.40).

Substituting Gν(z) for this case from (4.30) into (5.4) results in

g(z) = ρzM Gγ det
M

[ ∫ ∞

0
dλ

(
λ−

( −1
ρ

))z

λM−ifj(λ)
]

= Gγ det
M

[ ∫ ∞

0
dλ (1 + ρλ)z λM−ifj(λ)

]
(5.10)

where the parameter Gγ and the function fj(λ) are defined in (4.28) and (4.29),

respectively.
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Figure 5.1: The capacity of uncorrelated Ricean MIMO channels with eigenvalues
γ = (0.1, 0.3, 0.7)T for the matrix G0G

∗
0.
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Differentiating (5.10) with respect to z (Appendix C.2) gives

C = g′(0) = Gγ

M∑

m=1

det
M

[Lm ] (5.11)

where

Lm,ij =





∫ ∞

0
dλ log(1 + ρλ) e−λ λ

N+M
2

−i IN−M

(
2
√

γ λ
)

, if i = m, j = 1 ;

∫ ∞

0
dλ log(1 + ρλ) e−λ λN+M−i−j , if i = m, j > 1 ;

(N − i)!
(N −M)!

γ
N−M

2 Φ
(
N − i + 1, N −M + 1; γ

)
, if i 6= m, j = 1 ;

(N + M − i− j)! , if i 6= m, j > 1 .

¥

Example 5.2 : Consider MIMO wireless systems with Nt = 3 transmit antennas

and Nr = 3, 4 and 5 receive antennas. Assuming that the SNR is fixed at ρ = 10dB,

Figure 5.2 shows the capacity of MIMO systems when the channel is i.i.d. Ricean

fading where all elements of the channel matrix have CN (g, 1) distribution. In this

figure, the curves are obtained by using (5.11), and the symbols are from computer

simulations.
♦

5.6 Full–Correlated Rayleigh MIMO Channel

In this scenario, the channel matrix is assumed to be correlated at both sides of the

communication link. Thus, it can be modeled as H = R
1
2 GT

1
2 where R ∈ GL(Nr, C)

and T ∈ GL(Nt, C) denote the receiver and the transmitter correlation matrices,

respectively, and G ∈ CN (0, 1)Nr×Nt is a standard Rayleigh matrix. Therefore,

the matrix HH∗ becomes the full–correlated central Wishart matrix whose joint

eigenvalue distribution is given in (3.43). Substituting Gν(z) for this case from

(4.40) into (5.4) results in

g(z) = ρzM
X

(
−1
ρ

)− M(M−1)
2

∏M−1
i=1 (z + i)i

det
N




F

(
xiyj , z + M,

−1
ρ

)∣∣∣
i=1

M

yN+M−i
j

∣∣∣
i=M+1

N




64



0 1 2 3 4 5
8

9

10

11

12

13

14

15

16

g

C
ap

ac
ity

 [
na

ts
]

MIMO(3,5)
MIMO(3,4)
MIMO(3,3)

Figure 5.2: The capacity of i.i.d. Ricean MIMO channels at SNR=10dB with CN (g, 1)
distribution.
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where M = min(Nt, Nr), N = max(Nt, Nr), and the parameter X and the function

F
(
x, α, z

)
are defined in (4.42) and (4.41), respectively. The M–dimensional vector

x represents the eigenvalues of the matrix R−1 or T−1, whichever has the dimension

M , and the N–dimensional vector y represents the eigenvalues of the matrix R−1

or T−1, whichever has the dimension N (N > M).

Considering the fact that

F

(
x, α,

−1
ρ

)
= ρM−α F

(
x

ρ
, α,−1

)
,

we have

g(z) =
Y∏M−1

i=1 (z + i)i
det

N




F

(
xiyj

ρ
, z + M,−1

)∣∣∣
i=1

M

yN+M−i
j

∣∣∣
i=M+1

N


 (5.12)

where we define

Y , (−1)M(N−M) ρ
M(M−1)

2

∆
M

(x)∆
N

(y)
. (5.13)

In the event of equal elements in x and/or y, one can use Lemma A.1 in Appendix

A to obtain the appropriate MGF. The semi–correlated and i.i.d. Rayleigh fading

channels are two such examples where in the first case x = 1, and in the second

case x = 1 and y = 1.

Differentiating (5.12) with respect to z (Appendix C.2) results in

C = g′(0) = 1−M +
Y∏M−1

i=1 ii

M∑

m=1

det
N

[Lm ] (5.14)

where

Lm,ij =





ρ

(
xi yj

ρ

)M ∫ ∞

0
dλ log(1 + ρλ) (1 + ρλ)M−1 e−λxiyj , if i = m 6 M ;

F

(
xi yj

ρ
,M,−1

)
, if i 6= m 6 M ;

yN+M−i
j , if i > M .

The index m in (5.14) goes up to M since the rest of the rows in (5.12) are inde-

pendent of z and result in zero determinants after differentiation.

¥
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Figure 5.3: The capacity of full–correlated Rayleigh MIMO channels with dλ = 2 and
δ = 10◦.

Example 5.3 : Consider MIMO systems with Nt = 3 transmit antennas and

Nr = 3, 4 and 5 receive antennas where similar to the Example 4.2, both the trans-

mitter and the receiver antennas are correlated in a linear antenna array deployment.

Therefore, the correlation matrices R and T can be obtained from (4.19).

Figure 5.3 shows the capacity of MIMO systems versus SNR (ρ) when the channel

is full–correlated Rayleigh fading. The results in Figure 5.3 are obtained by assuming

dλ = 2 and δ = 10◦ in (4.19).

Figure 5.4 shows the capacity of MIMO systems at ρ = 10dB when the channel is

full–correlated Rayleigh fading. In this figure, the results are obtained by assuming

δ = 10◦ in (4.19).

In both figures, the solid curves are from (5.14), and the symbols are obtained

by computer simulations. As observed in both figures, the analytical results and

simulation results are in perfect accord.
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Figure 5.4: The capacity of full–correlated Rayleigh MIMO channels at SNR=10dB
with δ = 10◦.
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5.7 Summary

In this chapter, we used the results derived in Chapter 4 to obtain the capacity

of MIMO channels. Compared to the previous approaches in the literature, the

approach presented in this thesis is exceptionally simple, compact and straightfor-

ward. Interested readers can compare the capacity derivation in this thesis with the

derivations in [20], [104], and [112]– [114] to observe the differences. For instance,

the authors of [104], [112] and [113] manipulate the joint eigenvalue distributions

of Wishart matrices, derived by James [59], to obtain similar determinant–form ex-

pressions as in this thesis and, then, use them for the capacity analysis of MIMO

channels.

The character expansion method provides new insights into the way we can ob-

tain the eigenvalue distributions of Wishart matrices and, consequently, the capacity

of MIMO wireless channels.
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Chapter 6

Design, Selection Algorithm and
Performance Analysis of
Limited Feedback Transmit
Beamforming

Popular MIMO techniques commonly assume the availability of channel state in-

formation at the receiver, but not at the transmitter. However, in a slow fading

environment, complete [60]– [62] or partial CSI [67]– [71] may be available at the

transmitter. CSI at the transmitter may be exploited in two ways: antenna subset

selection [63]– [66] and precoding. The optimum precoder matrix can be obtained

based on the eigenvalue structure of the channel matrix [60].

In transmit beamforming, the optimal beamformer selects the subchannel cor-

responding to the largest singular value of the channel matrix by weighting the

transmit signal with the corresponding eigenvector [115]. Transmit beamforming

can achieve full diversity and array gain with a simple receiver structure. However,

the bandwidth limits on the feedback channel [116] restrict the availability of full

CSI at the transmitter. Hence, limited feedback beamforming techniques are of

interest.

In limited feedback beamforming, the transmitter and receiver share a codebook

of beamformers. Codebook design can be based on either vector quantization and

the Lloyd algorithm [67], [117]– [119] or the maximization of the minimum distance

between each pair of beamformers in the codebook [68], [70], [71]. The simulation

results show that the codebooks obtained by both methods perform identically in

Rayleigh fading channels [120], [121]. The design complexity of these methods is

large when the size of the codebook is large.
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The authors in [70] map the design problem into the Grassmannian line packing

(GLP) problem [122], and use the unitary structure presented in [24] for codebook

design. This structure, which was originally proposed for differential unitary space–

time modulation, consists of a diagonal matrix and a rectangular sub–matrix of

the Discrete Fourier Transform matrix. The diagonal terms are points on the unit

circle in the complex plane where their angles are defined by integers that should be

optimized offline. These angles are the only parameters that should be saved at the

transmitter and receiver. Therefore, the implementation of the codebooks based on

GLP needs small resources (memory), whereas in other design methods, the whole

codebook should be saved at the transmitter and receiver.

This thesis uses the same unitary structure as in [24], [70] and [71]. In these

papers, the optimum rotation matrix is obtained via an exhaustive search for small

dimensions (number of antennas and/or codebook size), and a random search for

large dimensions. We propose to use the genetic algorithm [123] to find the opti-

mum parameters. For this purpose, the design parameters are relaxed from positive

integers [71] to positive real values. The simulation results show that the genetic

codebooks not only achieve a larger minimum distance than those of [71], but also

reduce the optimization complexity.

In limited feedback beamforming, the receiver selects the best beamformer for

each realization of the channel by exhaustive search over the codebook. However,

by exploiting the specific structure of the GLP codebooks, we present an order and

bound algorithm to reduce the receiver’s search complexity. In this algorithm, the

beamformers of the codebook are ordered based on their vicinity to the optimal

beamformer. The original beamformer selection, which is a maximization problem,

is converted to a minimization problem, allowing the use of bounding techniques.

Metric Bounding is the basic scheme used by minimization algorithms such as sphere

decoders [44] to avoid unnecessary computations.

The performance of optimal transmit beamforming has been analyzed in the

literature. In [124], the cdf and pdf of the largest singular value of the channel

matrix, presented in the form of generalized hypergeometric functions, are used to

calculate the outage probability in a system with optimal transmit beamforming.

The expressions in [125] are in the form of infinite series of averaged BER over the

distribution of the largest eigenvalue of the i.i.d. central Wishart matrix, which

itself is in the form of a hypergeometric function with matrix arguments. This fact
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motivates another representation for the pdf of the largest eigenvalue of the i.i.d.

central Wishart matrix. We use the joint eigenvalue distribution of the i.i.d. central

Wishart, derived in section 3.2.2, to obtain the pdf of the largest eigenvalue in a

finite series expression, which is appropriate for the BER analysis of the optimal

and limited feedback transmit beamforming.

The performance analysis of limited feedback beamforming is complicated for

general MIMO systems. However, for multiple–input single–output (MISO) sys-

tems, the outage probability of transmit beamforming has been studied in [68], the

symbol error rate with transmit correlation in [126], and a lower bound on the sym-

bol error rate in [120]. In [127], a framework using high–resolution quantization

theory is proposed for distortion analysis of MIMO systems with feedback, where

the distortion function is the capacity loss in a MISO system with limited feed-

back. Similarly, the authors in [121], use the SNR loss and outage capacity for

distortion analysis of MIMO systems with limited feedback beamforming. In this

thesis, however, by assuming a large–size codebook as in [127] and [121] (high–

resolution analysis), we analyze the BER of limited feedback MIMO beamforming.

By employing a geometrical approach, we derive an approximate BER of limited

feedback MIMO beamforming in closed–form. The simulation results show that the

approximate BER is comparatively tight even for small–size codebooks.

6.1 System Model

Recalling the MIMO(Nt, Nr) wireless system from (1.7), and setting T = 1, we

model the linear transformation between the transmit and receive antennas in a

transmit beamforming scenario as

y =
√

ρ Hfs + n (6.1)

where the vector y ∈ CNr is the complex received vector, s ∈ C is the transmitted

signal, f ∈ CNt is the beamformer vector, n ∈ CN (0, 1)Nr is the additive noise vector,

H ∈ CN (0, 1)Nr×Nt is the standard Rayleigh channel matrix, and ρ is the total

transmit power at each signaling interval. Entries of H and n are independent and

identically distributed. For each transmission, according to the input information, s

is selected from a signal constellation (e.g., PAM or QAM) with unit average energy.

The transmit signal is weighted and parallelized by the beamformer f to be sent over

Nt transmit antennas. To ensure that the transmit power on each signaling interval
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Figure 6.1: The block diagram of a MIMO system with limited feedback transmit
beamforming.

is ρ, the beamformer vector should satisfy the power constraint: |f∗f | = 1 where |x|
denotes the absolute value of x.

To obtain the equivalent SISO system model of the transmit beamforming, we

combine the received signals by multiplying (6.1) with w∗. The optimum com-

biner vector w, which maximizes the received SNR for each transmitted symbol, is

w = Hf [13]. Therefore, the equivalent SISO model of the transmit beamforming is

ŝ =
√

ρ ‖Hf‖2 s + n̂ (6.2)

where n̂ is the additive white noise with CN (
0, ‖Hf‖2

)
distribution. Based on (6.2),

the received SNR (γ) for each transmitted symbol is γ = ρ ‖Hf‖2.

Considering the ordered singular value decomposition (SVD) of the channel ma-

trix as H = UΣV∗ where U ∈ U(Nr), V ∈ U(Nt), and Σ ∈ RNr×Nt
>0 is a diagonal

matrix with decreasing order, i.e., σi > σi+1 , i = 1, 2, ...,M , we have:

‖Hf‖2 = ‖ΣV∗f‖2

= σ2
1 |v∗1f |2 +

m∑

i=2

σ2
i |v∗i f |2 (6.3)

where M = min{Nt, Nr}, and vi , i = 1, ..., Nt , is the i-th right eigenvector of

the channel matrix corresponding to the i-th largest singular value. The optimal

beamformer (which maximizes the received SNR) is fopt = v1, and, consequently,

γopt = ρ σ2
1. Optimal beamforming is applicable in very slow fading environments,
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or when the system uses the time division duplex (TDD) technique for transmission,

where the transmitter and receiver use the same bandwidth.

However, in limited feedback systems where fopt is not available at the transmit-

ter, we use a pre–designed set (codebook) F of L = 2Nb beamformers (Fig. 6.1),

where Nb is the number of feedback bits. For a given H, the only feedback param-

eter is I, which is the index of fI ∈ F that maximizes ‖Hfk‖2, for all fk ∈ F .

The following issues are investigated in this chapter:

• How should the codebook F be designed?

• How should the appropriate beamformer fI be selected from F for each real-

ization of the channel?

• How well will a given codebook F with L beamformers perform?

6.2 Codebook Design

In suboptimal beamforming, a vector f is used instead of the optimal vector v1 so

that the received SNR per symbol is related to ‖Hf‖2. Thus, it is convenient to

define the following distortion minimization problem [71] as a figure of merit for

codebook F :

EH

{
min
f∈F

(‖Hv1‖2 − ‖Hf‖2
)}

. (6.4)

It is shown in [71] that the minimization in (6.4) leads to the maximization of

the chordal distance between any pairs of precoders in F . The chordal distance

between fi and fj is defined as

dc(fi, fj) , 1√
2
‖fif∗i − fjf∗j ‖

=
√

1− λ2(f∗i fj)

=
√

1− |f∗i fj |2

, sin(θij) (6.5)

where 0 6 i 6= j < L, and θij denotes the angle between pair vectors (fi, fj) ∈ F .

The optimum codebook is the one with the maximum θmin defined as
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θmin , min
∀fi 6=fj∈F

arcsin
(√

1− |f∗i fj |2
)

(6.6)

6 arcsin

(√
L

L− 1
× Nt − 1

Nt

)
(6.7)

where the inequality (6.7) is called the Welch bound [128] or Rankin bound [122]

for L > Nt.

Finding a codebook (a pack) F of L vectors in Nt–dimensional complex space

with maximum possible θmin (6.6), is called the Grassmannian line packing problem

in applied mathematics and information theory [70], [122]. For arbitrary L and

Nt, line packings that achieve equality in (6.7) are often impossible to design. The

most practical method for generating packings is to use the unitary matrix structure

proposed in [24] for non–coherent space–time modulation. Similar to the codebook

structure proposed in [24], which can be easily implemented and yields codebooks

with large minimum distances, the codebook F in [70] is constructed as follows:

F =
{
fk

∣∣∣ fk =
1√
Nt

[
ej 2π

L
ku1 , ej 2π

L
ku2 , . . . , ej 2π

L
kuNt

]T
, k = 0, . . . , L− 1

}

where 0 6 ui < L are the integer design parameters and should be optimized as

follows

u = arg max
{ui}

min
16k<L

dc(f0, fk)

where u =
[
u1, u2, . . . , uNt

]T .

In previous works [24], [71], the design parameters, {ui}, are restricted to in-

tegers. Exhaustive computer search or random search for their optimum values is

employed since analytical determination of the optimum appears impossible. More-

over, because the computational complexity increases exponentially with dimensions

(Nt and L), it is impossible to find the optimum parameters for large dimensions

with exhaustive search.

To overcome these problems, we propose to employ the genetic algorithm [123].

Although it does not guarantee the global optimality, we find that genetic solutions

have larger θmin than the optimum values from exhaustive search for integers {ui}.
This seemingly contradictory result is obtained by relaxing the design parameters to

be real rather than integer numbers; i.e., the codebook F is constructed as follows:

F =
{
fk

∣∣∣ fk =
1√
Nt

[
ejkα1 , ejkα2 , . . . , ejkαNt

]T
, k = 0, . . . , L− 1

}
(6.8)
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where 0 6 αi < 2π are the design parameters and should be optimized as follows:

α = arg max
{αi}

min
16k<L

dc(f0, fk) (6.9)

where α =
[
α1, α2, . . . , αNt

]T . This relaxation increases the search space of the

design parameters, thereby improving the chance to obtain codebooks with larger

θmin.

6.2.1 Genetic Algorithm

Genetic algorithms are adaptive heuristic search algorithms based on the evolution-

ary ideas of natural selection and genetics, where an intelligent exploitation of a

random search is used to solve optimization problems. This algorithm exploits his-

torical information to direct the search into the region of better performance within

the search space. A genetic algorithm simulates the survival of the fittest among

individuals over consecutive generations for solving a problem. In our problem, the

fitness of a solution is determined by θmin (6.6). Each generation consists of a pop-

ulation of bit (gene) strings that are analogous to the chromosome of the DNA.

Each individual represents a point in the search space and a possible solution. By

assuming Ng bits (genes) for each αi in (6.9), we define a string of Ng ×Nt bits for

each solution (individual in the population). The individuals in the population are

first generated randomly and then are made to go through a process of evolution.

A fitness score (θmin) is assigned to each solution, representing the ability of an

individual to compete. Individuals with higher fitness scores are selected as parents

for the next generation with higher probability.

In a basic genetic algorithm, the next generation is composed of three types of

children as follows:

• Elite Children: Children in the current generation are selected for the next

generation based on their fitness values. Since the selection rule here is proba-

bilistic not deterministic, fitter solutions (larger θmin) are typically more likely

to be selected.

• Crossover Children: These children are created by combining pairs of par-

ents in the current population. Generally, the crossover operation recombines

selected solutions (parents) by swapping parts of them for producing diver-

gent solutions to explore the search space. Many crossover techniques exist
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Figure 6.3: Scattered crossover.

to produce a child of a pair parents. However, all of them are surprisingly

simple to implement, involving random number generation and some partial

string exchange. Fig. 6.2 and Fig. 6.3 illustrate two different techniques used

in crossover generation. Scattered crossover is a popular technique used for

crossover generation. This method first creates a random binary vector with

the same size of parents. Then if the i-th bit is 0, the corresponding gene is

selected from the first parent; otherwise, it is selected from the second parent.

Ultimately, all selected genes are combined to form the child.

• Mutation Children: The algorithm generates mutation children by randomly

changing the bits of individual parent in the current population. This process

can be done by adding a random vector from a Gaussian distribution to the

parent. The aim of mutation in the algorithm is to avoid local optima by pre-

venting the population from becoming too similar to each other, thus slowing

or even stopping the evolution.

As a result, new mutated members along with new crossed–over members and

the rest of those selected from the previous population form the new generation. The

genetic algorithm terminates when there is no improvement in the objective function
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Table 6.1: The θmin (in degrees) of beamformers obtained by genetic algorithm and
exhaustive search, and their corresponding Welch bounds.

Nt Nb L θmin(exhaustive) θmin(genetic) θmin(Welch)
4 3 8 60.00 64.67 81.78
4 4 16 54.43 57.32 78.46
4 5 32 45.00 47.68 76.95
4 6 64 37.12 38.93 76.22
4 7 128 29.92 31.33 75.87
6 3 8 72.06 75.76 87.27
6 4 16 64.18 67.27 83.62
6 5 32 61.87 64.11 81.96
6 6 64 55.92 57.65 81.17
6 7 128 50.75 51.97 80.78

for a specific number of successive iterations. Interested readers are referred to

[123] and [129] for sophisticated genetic algorithms and more information about the

algorithm such as robustness, marginal and large dimensional behavior, comparisons

with and benefits over other optimization techniques.

Table 6.1 shows the θmin obtained by using the exhaustive search and by using

the genetic algorithm. For comparison, the Welch bound for θmin is also included.

Our simulations show that using Ng = 8 bits for each αi is enough to obtain the re-

sults in Table 6.1. The genetic solutions not only have a larger θmin than those from

exhaustive search, but also are obtained much faster due to the computational com-

plexity of exhaustive search in large dimensions (Nt and L). Genetic optimization

can also be used for other applications such as “precoder design for multiplexing”

and “code design for differential unitary space–time modulation” [28].

Although other methods are proposed in the literature for codebook design, par-

ticularly based on vector quantization (VQ) and Lloyd algorithm [67], [117]– [119],

simulation results show that the codebooks obtained by other methods perform the

same as GLP codebooks in the Rayleigh fading channel [120], [121], and that the

design complexity of all previous methods is large when the size of the codebook

is high. However, codebook design using the structure proposed in (6.8) and by

exploiting the genetic algorithm has the following benefits:

• Genetic solutions have larger θmin.

• The genetic algorithm reduces the design complexity effectively, especially in
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large dimensions.

• The only parameters that should be saved at the transmitter and receiver are
{
α1, α2, ..., αNt

}
. Therefore, this method is easy to implement, while in other

methods, the whole codebook should be saved at the transmitter and receiver.

• The structure proposed in (6.8) allows us to propose an algorithm that works

faster than the exhaustive search to reduce the beamformer selection complex-

ity at the receiver side. This algorithm is presented in the next section.

6.3 Beamformer Selection

For every realization of the channel matrix H, the best beamformer fI ∈ F is

selected, and only the index I is fed back to the transmitter for beamforming the

transmit signals by fI. Since the received SNR for each symbol is γ = ρ ‖HfI‖2, I

should be selected from the following optimization problem:

I = arg max
06k<L

‖Hfk‖2 (6.10)

where fk is defined in (6.8).

The maximization problem in (6.10) is simply an exhaustive search over all

members of F , which can be computationally complex for large dimensions (L, Nt

and also Nr). Moreover, the beamformers in F should be stored at the receiver

and transmitter, which needs a dedicated memory, specially for large dimensions.

Therefore, it is expedient to find an intelligent algorithm to solve (6.10) efficiently,

with reasonable memory, particularly when the structure of the beamformers is

known (6.8).

According to the Rayleigh–Ritz inequality [48],

‖Ha‖2 6 σ2
max(H) =⇒ σ2

max(H)− ‖Ha‖2 > 0

when ‖a‖2 = 1. Thus, the maximization problem (6.10) can be changed to the

following minimization problem:

I = arg min
06k<L

σ2
max(H)− ‖Hfk‖2

= arg min
06k<L

σ2
max(H)f∗k I∗Nt

INt
fk − f∗kH∗Hfk

= arg min
06k<L

f∗kGfk
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where G = λmax(H∗H)INt
−H∗H.

By Cholesky decomposition of G as G = R∗R where R is an upper triangular

matrix, we have

I = arg min
06k<L

‖Rfk‖2 . (6.11)

Due to the upper triangularity of R and by expanding ‖Rfk‖2 to its scalar form

‖Rfk‖2 =
1∑

q=Nt

∣∣∣∣∣
Nt∑
t=q

rq,t fk,t

∣∣∣∣∣

2

, (6.12)

it can be seen that (6.12) consists of an outer sum of non–negative real terms, where

the computational load of each term is increased when the index of the outer sum

(q) is decreased. Thus, if we know that ‖RfI‖2 6 B where B is a bound, we can

compare the outer sum value in (6.12), index by index, to the bound B, and if

it is greater than the bound, the rest of the computations (for the given fk) are

discarded. By this bounding technique, the computational complexity of (6.11) is

reduced efficiently.

Clearly, the bound B plays a critical role in the complexity reduction. Initially, B
is set to infinity for the first fk; i.e., f0, but for the rest of fk’s, k = 1, 2, . . . , L−1, B is

set to the minimum ‖Rfk‖2 obtained thus far during the algorithm. Consequently,

it is expedient to run the proposed algorithm in a rational ordering for k (not simply

k from 0 to L− 1) so that the probability of obtaining as small B as possible in the

primary k’s is as high as possible.

We resort to the geometry of Nt–dimensional vectors in F . We define fk0
as

the reference vector (for any arbitrary 0 6 k0 < L), and the reference set Θ =

{θ0, θ1, . . . , θL−1} where

θi , arcsin
(√

1− |f∗k0
fi|2

)

is the angle between the pair of vectors (fk0
, fi). For a realization of the channel

matrix H, we compute

θH , arcsin
(√

1− |f∗k0
v1|2

)

where v1 is the right eigenvector corresponding to the largest singular value of H.

Then, an ordered set K of the angle indexes in Θ is constructed based on their

vicinity to θH, or, equivalently,

K = Index {Sort { |Θ− θH| } } (6.13)
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where Index{|θk − θH|} = k, and the operator Sort{·} sorts its argument set from

minimum to maximum. Thus, the search for the minimum in (6.11) is re–ordered

as follows:

I = arg min
k∈K

‖Rfk‖2. (6.14)

Therefore, for a given codebook, the angle set Θ is calculated and stored at the

receiver. For a given channel matrix H, θH is computed, and the ordered set K
(6.13) is constructed. Then, the minimization in (6.14) is executed with respect to

the structure of ‖Rfk‖2 (6.12) and the bound B. This algorithm is referred to as the

order and bound algorithm. Algorithm 1 presents the semi–code of the algorithm

where f0 is adopted as the reference vector.

Example 6.1 : In this example, we verify the computational performance of the

order and bound algorithm proposed for beamformer selection at the receiver side.

Figure 6.4 shows the average flops (floating point operations) of beamformer selec-

tion with exhaustive search and with the order and bound algorithm. By exploiting

the proposed ordering and bounding method, the beamformer selection complexity

is reduced by 68% for Nb = 7, and 80% for Nb = 12, in a MIMO system with

Nt = 4 transmit antennas and Nr = 5 receive antennas. The flops of the order and

bound algorithm include the flops consumed by the singular value decomposition

and Cholesky decomposition. Since the complexity order of both decompositions is

O(N3
t ), for small–size codebooks, specifically Nb = 3 in Figure 6.4, the order and

bound algorithm is more complex than the exhaustive search.

The complexity of exhaustive search depends mainly on the number of receive

antennas, Nr, and the codebook size, L, while the complexity of the order and

bound algorithm depends mainly on the number of transmit antennas, Nt, and

codebook size, L, and is almost independent of the number of receive antennas,

Nr. Therefore, due to the dependency of the order and bound algorithm to SVD

and Cholesky decomposition with O(N3
t ) order of complexity, when the number of

transmit antennas is larger than the number of receive antennas, the complexity of

the proposed algorithm exceeds the complexity of exhaustive search (Figure 6.5).

Clearly, this issue depends on the codebook size since the sensitivity of exhaustive

search to the codebook size is significant.
♦
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Algorithm 1 : The order and bound algorithm

Data : H, Θ, f0
Result: I

[U,Σ,V] ← svd(H) ;

λmax ← max{ diag(Σ) }2 ;

v1 ← V(:, 1) ;

θH ← arcsin
(√

1− | f∗0v1 |2
)

;

K ← Index {Sort { |Θ− θH| }} ;

R ← chol(λmaxINt
−H∗H) ;

L ← size(Θ) ;

N ← size(R) ;

B ← ∞ ;

d0 = |R(N,N) |2;
for i = 1 : L , do

k ← K(i) ;

fk ← fk
0 ;

d ← d0 ;

for q = N − 1 : −1 : 1 , do

d ← d + |R(q, q : N) fk(q : N) |2 ;

if d > B then

break;

else
if q == 1 then

B ← d ;

I← k ;
end

end
end

end
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Figure 6.4: Average flops of beamformer selection with the exhaustive search and the
order and bound algorithm for MIMO(4,5) versus codebook size.
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Figure 6.5: Average flops of beamformer selection with the exhaustive search and the
order and bound algorithm for MIMO system with Nr = 5 receive antennas and Nb = 7
bits of feedback versus the number of transmit antennas.
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6.4 Performance Analysis of Optimal Transmit Beam-
forming

In order to perform the BER analysis of limited feedback beamforming, we first

present the exact BER of optimal transmit beamforming. Although the performance

of optimal transmit beamforming has been analyzed in the literature, the expressions

are infinite series and, therefore, are not suitable for our BER analysis of the limited

feedback transmit beamforming presented in section 6.5.

Since in optimal beamforming, the right eigenvector corresponding to the largest

singular value of the channel matrix (v1) is used for beamforming, by substituting

(6.3) into (6.2), the system model for optimal beamforming becomes

ŝ =
√

ρ σ2
1 s + n̂ (6.15)

where n̂ is the additive white noise sample with CN (
0, σ2

1

)
distribution.

6.4.1 Exact BER Expression for PAM and QAM

Assume the transmitted signal s in (6.15) is selected from a I×J rectangular QAM

constellation with unit average energy and a Gray code mapping [130]. I and J

denote the number of in-phase and quadrature amplitudes, respectively. We define

PI|σ2
1
(k) =

(1−2−k)I−1∑

i=0

βI(k, i) Q

(√
η(i)σ2

1

)
(6.16)

where

βI(k, i) =
2 (−1)

b i 2k−1

I
c

I

(
2k−1 −

⌊
i 2k−1

I
+

1
2

⌋)
, (6.17)

η(i) =
6 (2i + 1)2ρ
I2 + J2 − 2

, (6.18)

Q
(
x
)

is the Q–function defined in (1.5), and bxc denotes the largest integer to x.

Now the average BER of the I×J rectangular QAM conditioned on σ2
1 is expressed

as [131]

Pb|σ2
1

=
1

log2(I × J)




log2 I∑

k=1

PI|σ2
1
(k) +

log2 J∑

l=1

PJ |σ2
1
(l)


 . (6.19)

Note that (6.19) reduces to the BER of BPSK for I = 2 and J = 1, I–array PAM

for J = 1, and M–array square QAM for I = J =
√

M . Thus, the exact BER is
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obtained by averaging (6.19) over the distribution of σ2
1. Interested readers can refer

to [131] for more details on the derivation of (6.16) and (6.19).

6.4.2 Largest Eigenvalue Distribution of i.i.d. Central Wishart

The singular values of H correspond to the nonzero eigenvalues of the matrix HH∗

by λi = σ2
i , i = 1, . . . ,M . Therefore, λ1 = λmax(HH∗) and σ2

1 have the same

distribution. When the elements of H are i.i.d. CN (0, 1) random variables, the

matrix HH∗ becomes a central Wishart matrix, whose joint ordered eigenvalue

distribution can be simply obtained from (3.31) as

P (λ) = KN,M ∆
M

(λ)2
M∏

i=1

e−λiλN−M
i (6.20)

where KN,M is defined in (3.28), and λ1 > λ2 > · · · > λM . By integrating (6.20)

over λ2, . . . , λM , the pdf of λ1 is expressed as

fλ1
(λ1) = KN,M e−λ1λN−M

1

∫ λ1

0
dλ2 e−λ2λN−M

2 (λ1 − λ2)
2

∫ λ2

0
dλ3 . . .

×
∫ λM−1

0
dλM e−λM λN−M

M

M−1∏

i=1

(λi − λM )2 . (6.21)

The calculation of (6.21) is a complicated process for general N and M , and

although it is available in the form of a hypergeometric function with matrix argu-

ments (e.g., [132]), this form is not computationally useful, especially for the BER

analysis of the limited feedback transmit beamforming presented in section 6.5.

However, in MIMO systems where N and M are relatively small numbers, (6.21)

can be easily calculated.

Example 6.2 : Assuming M = 1, the pdf of λ1 is obtained from (6.21) as

fλ1
(λ1) =

1
Γ(N)

e−λ1λN−1
1

which is a central Chi–square distribution with N degrees of freedom. ♦

Example 6.3 : For M = 2, from (6.21), we have

fλ1
(λ1) =

1
Γ(N)Γ(N − 1)

e−λ1λN−2
1

∫ λ1

0
dλ2 e−λ2λN−2

2 (λ2
1 − 2λ1λ2 + λ2

2) .

Since ∫ x

0
dt

1
Γ(N)

tN−1 e−t = 1− e−x
N−1∑

i=0

xi

i!
,
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and by some manipulations, we obtain

fλ1
(λ1) = e−λ1

{
λN−2

1

Γ(N)

[
N(N − 1)− 2(N − 1)λ1 + λ2

1

]}

+ e−2λ1

{
− λN−2

1

Γ(N)

[
N(N − 1) + (N − 1)(N − 2)λ1

+
N∑

n=2

(
N(N − 1)
n(n− 1)

− 2
(N − 1)
(n− 1)

+ 1
)

λn
1

n!

]}
.

♦

In general, it is easy to verify [82] that the pdf of λ1 can be represented by

fλ1
(λ1) =

M∑

m=1

e−mλ1 Gm

(
λ1

)
(6.22)

where

Gm

(
λ1

)
=

Dm∑

j=0

am,j λj
1 (6.23)

denotes the corresponding polynomial coefficient of e−mλ1 , Dm is the degree of

Gm

(
λ1

)
, and the coefficients {am,j} can be tabulated by simple integrations.

Example 6.4 : For M = 3 and N = 4, we have

G1

(
λ1

)
= 6λ1 − 8λ2

1 +
9
2

λ3
1 − λ4

1 +
1
12

λ5
1 ,

G2

(
λ1

)
= −12λ1 + 4λ2

1 + λ3
1 − λ4

1 −
1
12

λ5
1 −

1
12

λ6
1 ,

G3

(
λ1

)
= 6λ1 + 4λ2

1 +
1
2

λ3
1 .

♦

6.4.3 BER of Optimal Transmit Beamforming

From (6.16) and (6.19), it is clear that to find Pb = E
{
Pb|λ1

}
, we need to calculate

PI(k) = E
{
PI|λ1

(k)
}

or, equivalently,

PI(k) =
(1−2−k)I−1∑

i=0

βI(k, i) E
{

Q
(√

η(i)λ1

)}
.
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Therefore, by considering the distribution of λ1 (6.22) and (6.23), we obtain

PI(k) =
(1−2−k)I−1∑

i=0

βI(k, i)
M∑

m=1

Dm∑

j=0

am,j

∫ ∞

0
dλλj

1 e−mλ1 Q
(√

η(i)λ1

)
. (6.24)

It has been shown [130] that
∫ ∞

0
dxmL xL−1 e−mx Q

(√
αx

)
= φ

(
L, m,α

)

where

φ
(
L,m, α

)
= Γ(L)

[
1− µ

2

]L L−1∑

r=0

(
L− 1 + r

r

)[
1 + µ

2

]r

(6.25)

and

µ =
√

α

2m + α
.

Hence, from (6.24) and (6.25), we achieve

PI(k) =
(1−2−k)I−1∑

i=0

βI(k, i)
M∑

m=1

Dm∑

j=0

am,j

mj+1
φ
(
j + 1,m, η(i)

)
. (6.26)

Consequently, the average BER of the I × J rectangular QAM signal transmitted

through the system model in (6.15) is expressed as

Pb =
1

log2(I × J)




log2 I∑

k=1

PI(k) +
log2 J∑

l=1

PJ(l)


 . (6.27)

Example 6.5 : Figure 6.6 shows the BER performance of the optimal beamforming

for MIMO systems with Nt = 4 transmit antennas and Nr = 1, 2 and 3 receive

antennas. The transmit signal is selected from a 16–QAM constellation. In this

figure, the solid lines are the results from (6.27), and the symbols are from computer

simulations1, which verify our analytical results.
♦

6.5 Performance Analysis of Limited Feedback Trans-
mit Beamforming

The performance analysis of limited feedback beamforming has been studied in [126]

for MISO systems with transmit antenna correlations. The analysis involves an

L−tuple integration with infinite limits, which is computationally difficult even for
1Semi–analytic simulations.
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Figure 6.6: BER of optimal transmit beamforming.
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a small L (codebook size). On the other hand, a geometric approach has been

proposed in [68] for the outage probability analysis, and used in [120] for a lower

bound on the symbol error rate of transmit beamforming, both for MISO systems.

By using high–resolution quantization theory, the capacity loss in a MISO system

with limited feedback has been derived in [127]. Similarly, the SNR loss and outage

capacity of MIMO systems with limited feedback beamforming have been approxi-

mated in [121]. In this section, however, without distortion analysis, we analyze the

BER of limited feedback transmit beamforming for general MIMO systems.

Assume that codebook F with L beamformers is obtained by maximizing the

minimum distance (6.6), where each vector in F represents a point on the Nt–

dimensional complex unit hypersphere. For a large–size codebook, the vector points

are uniformly distributed over the surface of the unit hypersphere. On the other

hand, the optimal beamformer v1 uniformly rotates on the surface of the unit hy-

persphere when the channel gains are i.i.d. distributed. Therefore, for a large–size

codebook, we have

lim
L→∞

|v∗1fI| = 1 , lim
L→∞

|v∗i fI| = 0 , i = 2, . . . , Nt (6.28)

where fI is selected from (6.10), and vi is the right eigenvector corresponding to the

i-th largest singular value of the channel. Considering (6.28) and that σ1 > σ2 >
· · · > σM , we assume the following approximation to simplify the analysis:

M∑

i=2

σ2
i |v∗i fI|2 ≈ 0 (6.29)

With this approximation, from (6.2) and (6.3) the equivalent channel model for

limited feedback transmit beamforming will be

ŝ =
√

ρ λ1(1−X) s + n̂ (6.30)

where

X , 1− |v∗1fI|2 = d2
c(v1, fI) , (6.31)

n̂ ∈ CN (0, λ1(1 − X)), and λ1 = λmax(HH∗). Assuming the transmitted signal s

in (6.30) is selected from a I × J rectangular QAM constellation with unit average

energy and a Gray code mapping, the average BER of the system conditioned on

λ1 and X is expressed as

Pb|λ1, X =
1

log2(I × J)




log2 I∑

k=1

PI|λ1, X(k) +
log2 J∑

l=1

PJ |λ1, X(l)


 (6.32)
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where

PI|λ1, X(k) =
(1−2−k)I−1∑

i=0

βI(k, i) Q
(√

η(i)λ1(1−X)
)

, (6.33)

and βI(k, i) and η(i) are defined in (6.17) and (6.18), respectively. Since the eigen-

values and eigenvectors of the central Wishart matrix are independent [82], λ1 and

X are independent for the i.i.d. channel matrix. Thus, we first average PI|λ1, X(k)

over λ1 by using the distribution of λ1 presented in (6.22) to obtain

PI|X(k) =
(1−2−k)I−1∑

i=0

βI(k, i)
M∑

m=1

Dm∑

j=0

am,j

mj+1
φ
(
j + 1,m, (1−X)η(i)

)
(6.34)

where φ
(
j + 1,m, (1 − X)η(i)

)
, defined in (6.25), should be averaged over the

distribution of X.

To obtain the distribution of X, we use the geometrical method presented in [68].

For each vector fk ∈ F , a spherical cap is defined on the surface of the hypersphere

Sk(x) =
{
v1 | d2

c(v1, fk) 6 x
}

where 0 6 x 6 1. By defining A{Sk(x)} as the area of

the cap Sk(x), it has been shown [68] that

A{Sk(x)} =
2πNtxNt−1

(Nt − 1)!
. (6.35)

Equation (6.35) shows that the surface of the unit hypersphere grows exponentially

with Nt. Therefore, when Nt is increased, L should be increased accordingly so that

the limits in (6.28) and the approximation in (6.29) hold tightly.

According to the definition of X in (6.31), we have

FX(x) = Pr
{ [

d2
c(v1, f0) 6 x

]
or

[
d2

c(v1, f1) 6 x
]

or · · · or
[
d2

c(v1, fL−1) 6 x
]}

where FX(x) denotes the cdf of X. When the channel matrix entries are i.i.d., the

optimal vector v1 is uniformly distributed on the surface of the unit hypersphere.

Therefore, we have

FX(x) =
A

{
∪L−1

k=0 Sk(x)
}

A {Sk(1)}
where ∪L−1

k=0 Sk(x) denotes the union of the regions {Sk(x)} , k = 0, . . . , L− 1. Using

(6.35) and the fact that

A
{
∪L−1

k=0 Sk(x)
}

6
L−1∑

k=0

A {Sk(x)},
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we obtain

FX(x) 6
∑L−1

k=0 A {Sk(x)}
A {Sk(1)} = LxNt−1. (6.36)

Finally, by taking into account that FX(x) 6 1, the following approximate cdf and

pdf for X can be defined:

FX(x) ≈





L xNt−1 , 0 6 x 6 X0

1 , x > X0

(6.37)

fX(x) = L (Nt − 1)xNt−2 , 0 6 x 6 X0 (6.38)

where X0 =
(

1
L

) 1
Nt−1

.

Now, by using the pdf of X (6.38), we can calculate the average of PI|X(k) over

the distribution of X. By defining

φL

(
N,m, α

)
= Γ(N)

N−1∑

r=0

(
N − 1 + r

r

)
L(Nt − 1)

2N+r

×
∫ X0

0
dxxNt−2

[
1 + µ(x)

]r[
1− µ(x)

]N
(6.39)

where

µ(x) =

√
α(1− x)

2m + α(1− x)
,

we conclude that

PI(k, L) =
(1−2−k)I−1∑

i=0

βI(k, i)
M∑

m=1

Dm∑

j=0

am,j

mj+1
φL

(
j + 1,m, η(i)

)
, (6.40)

and consequently, the approximate BER of a MIMO system with L beamformers is

expressed as

Pb(L) ≈
1

log2(I × J)




log2 I∑

k=1

PI(k, L) +
log2 J∑

l=1

PJ(l, L)


 . (6.41)

The accuracy of this approximate BER is verified in the following example.

Example 6.6 : The approximate BER of MIMO(4,2) and MIMO(4,3) systems

with L = 8, 32 and 128 beamformers is illustrated for 4–QAM and 16–QAM con-

stellations in Figures 6.7 and 6.8, respectively. In these figures, SNR represents ρ

in system model (6.1). For comparison, the exact simulated2 BER and the BER of
2Semi–analytic simulations.
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Figure 6.7: BER of MIMO(4,2) system obtained from simulation and closed-form
approximation for 4–QAM and 16–QAM signalings. Pair curves from left to right are
for Nb = 7, 5 and 3 feedback bits, respectively.

the optimal transmit beamforming are included. GLP codebooks have been used

for the simulations. Although our approximate analysis was for large–size code-

books, the simulation results show that the approximate BER expression in (6.41)

is satisfactorily tight, even for small–size codebooks.

For small–size codebooks, the approximation made in (6.29) is not tight, and,

consequently, the effective SNR used in the equivalent system model (6.30) is less

than the actual SNR used by the system. Therefore, we expect the approximate BER

curves for small L to be an upper bound for the curves obtained by simulations. On

the other hand, for large–size codebooks, the approximation in (6.29) is tight enough,

but since we used an upper bound approximation for FX(x), going from (6.36) to

(6.37), the effective SNR used in the equivalent system model (6.30) is larger than

the actual SNR used by the system. Therefore, we expect the approximate BER

curves for large L to be a lower bound for the curves obtained by simulations. These
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behaviors are clearly observable in Figures 6.7 and 6.8.
♦

6.6 Summary

In this chapter, the genetic GLP beamformer codebooks were developed. The design

parameters were relaxed from positive integers to positive real values (angles). The

examples showed that the genetic GLP codebooks achieve a larger minimum distance

than those of [70], and reduce the optimization complexity. Although this approach

was applied for single user scenario, it can be applied for multiuser case as well.

In single user case, the aim is to maximize the received SNR, which leads to the

maximization of minimum chordal distance of the codebook. However, in multiuser

case, the transmitter should select the beamformer that maximizes the throughput

of whole system (not just a single user). As a result, the cost function that should

be defined for genetic algorithm is changed.

By exploiting the specific structure of the GLP codebooks, the order and bound

algorithm was proposed to reduce the beamformer selection complexity at the re-

ceiver. This algorithm used bounding techniques to avoid unnecessary computa-

tions.

By employing the joint eigenvalue distribution of the i.i.d. central Wishart,

the distribution of the largest eigenvalue was derived and used to obtain the exact

closed–form expression of the BER performance for the optimal beamforming in

finite summations for PAM and QAM constellations. The resulting expression was

used to simplify the BER analysis of limited feedback transmit beamforming. By

assuming a large–size codebook (high–resolution analysis) and employing a geomet-

rical approach, an approximate BER performance for limited feedback beamforming

was derived. The examples showed that the approximate BER is satisfactorily tight,

even for small–size codebooks.

95



Chapter 7

Conclusions and Future Work

For the exact capacity and performance analysis of MIMO wireless systems, the

eigenvalue distributions of Wishart random matrices are required for different chan-

nel models. Deriving the joint eigenvalue distributions leads to unitary integrals,

which play an important role in other applications, particularly in physics. Bal-

antekin [86] introduced the character expansions of the unitary group and used

this technique to simplify the integrations over the unitary group when the coeffi-

cient matrices appearing in the integrand are nonzero–determinant square matrices.

However, due to the nature of some applications, including the joint eigenvalue dis-

tribution of Wishart matrices, the resulting matrix in the integrand is not always

full rank or, equivalently, a group member to apply the character expansions.

On the other hand, the simplicity of Balantekin’s approach, as well as the con-

venient mathematical form of the unitary integral results for further analysis, moti-

vated researchers to generalize the method for rectangular complex matrices in the

integrand. However, the only paper that actually claims to do the generalization [95]

fails to obtain correct results, even for the previously known unitary integrals, be-

cause the authors simply follow Balantekin’s approach by assuming N = M , and in

the end, they take the limit of the final result.

In this thesis, we showed that there is a difference between assuming N = M ,

and assuming the matrix integrand is full rank. As explained in Remark 2.1, the

coefficient matrices in the integrand should be properly grouped, and Propositions

2.1 and 2.2 should be carefully applied to unitary integrals. Hence, we proposed

a universal integration framework to use the character expansions for any unitary

integral with general rectangular complex matrices in the integrand, which prevents

the possible errors due to misusing Propositions 2.1 and 2.2.

96



We employed our proposed integration framework to solve three generalized

unitary integrals. These integrals have been solved before only for special cases,

by using considerably more complicated methods [85]. We used the results of the

unitary integrals to obtain the joint eigenvalue distributions of Wishart matrices

for common statistical assumptions. Due to the convenient mathematical form

of the joint eigenvalue distributions derived in this thesis, we derived the exact

eigenvalue densities of Wishart matrices in a unified approach. Our results are in the

form of finite summations of determinants, which can be easily calculated and also

used for further analysis, such as the capacity and performance analysis of MIMO

systems with precoding. Accordingly, we showed that by using the joint eigenvalue

distributions derived in this thesis, the MIMO capacity derivation is significantly

simplified in comparison to the previous derivations in the literature.

Finally, as another application of the eigenvalue distributions, we used a more

appropriate pdf expression for the distribution of the largest eigenvalue to obtain the

exact closed–form expression of the BER performance for the optimal beamforming

in finite summations for PAM and QAM constellations. The resulting expression

was used to derive an approximate BER performance for limited feedback transmit

beamforming in finite–series expressions.

We included some applications of the joint eigenvalue distributions derived in

this thesis, but they have other applications as well. By using our results, the distri-

butions of a subset of eigenvalues, the largest eigenvalue and the smallest eigenvalue

of the Wishart matrices can be derived much more easily than the available ones in

the literature.

According to our investigations, and also based on the comments we received

from the reviewers of our publication [133], there are more applications in physics

involving unitary integrals, which can be developed if those integrals can be solved.

On the other hand, we considered only the most practical channel models in this

thesis. However, other channel models can be considered such as the semi–correlated

and full–correlated Ricean channels; the i.i.d., semi–correlated and full–correlated

Hoyt channels; and the i.i.d., semi–correlated and full–correlated Ricean–Hoyt chan-

nels. (In Hoyt fading, the real and imaginary parts of the complex Gaussian channel

gains have zero means but different variances.) For our analysis in this thesis, we

considered the core standard Gaussian matrix G with identical distribution for its

elements. However, in some applications, including the capacity analysis of co-
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operative MIMO networks, the elements of the channel matrix are not identically

distributed.

According to our best knowledge, the above cases are not considered in the liter-

ature because the corresponding joint eigenvalue distributions lead to complicated

multiple unitary integrals that cannot currently be solved, even by the character ex-

pansion method. To be more specific, such unitary integrals require a more general

form of Lemma 2.4, which represents the orthogonality relation between the unitary

matrix elements. The generalization of Lemma 2.4, however, requires a deep knowl-

edge of the representation theory of unitary group and could be subject for future

research.
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Appendix A

Generalization of l’Hôpital Rule

A.1

Lemma A.1 : If we define

R(x1, . . . , xN ) =
det

N

[
fi(xj)

]

∆(x1, . . . , xN )

where i, j = 1, . . . , N , then

lim
{xM+1,...,xN}→x0

R(x1, . . . , xN ) =
det

N
[F ]

∆(x1, . . . , xM )
∏M

i=1(xi − x0)N−M
∏N−M−1

j=1 j!

where

F =
[
fi(xj)

∣∣∣
M

j=1
, f

(N−j)
i (x0)

∣∣∣
N

j=M+1

]
,

i = 1, 2, . . . , N generates all rows of F, and f (k) denotes the k-th derivative of the

function f .

H

Proof: If only xN approaches to x0, we can define

A(1) =
det

N

[
fi(xj)

∣∣∣
N−1

j=1
, fi(x0)

]

∆(x1, . . . , xN−1)
∏N−1

i=1 (xi − x0)
(A.1)

=
det

N

[
fi(xj)

∣∣∣
N−2

j=1
, fi(xN−1), fi(x0)

]

∆(x1, . . . , xN−2)
∏N−2

i=1 (xi − x0)
∏N−2

i=1 (xi − xN−1) (xN−1 − x0)
. (A.2)

Now if xN−1 approaches x0, A(1) will have a first–order ambiguity since the deter-

minant in the numerator and the denominator will both go to zero. By using the
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Laplacian determinant expansion over the (N − 1)-th column and taking only the

parts in (A.2) which cause the ambiguity, we can write

lim
xN−1→x0

det
N

[
fi(xj)

∣∣∣
N−2

j=1
, fi(xN−1), fi(x0)

]

(xN−1 − x0)

= lim
xN−1→x0

∑N
i=1(−1)i+N−1 mi,N−1 fi(xN−1)

(xN−1 − x0)

=
N∑

i=1

(−1)i+N−1 mi,N−1 f ′i(x0)

= det
N

[
fi(xj)

∣∣∣
N−2

j=1
, f ′i(x0), fi(x0)

]
(A.3)

where mi,j is the determinant of the matrix obtained by eliminating the i-th row and

j-th column of the argument matrix in the numerator. Here, the second equality is

obtained by using l’Hôpital rule. Therefore, from (A.2) and (A.3), we obtain

A(2) = lim
xN−1→x0

A(1)

=
det

N

[
fi(xj)

∣∣∣
N−2

j=1
, f ′i(x0), fi(x0)

]

∆(x1, . . . , xN−2)
∏N−2

i=1 (xi − x0)2

=
det

N

[
fi(xj)

∣∣∣
N−3

j=1
, fi(xN−2), f

′
i(x0), fi(x0)

]

∆(x1, . . . , xN−3)
∏N−3

i=1 (xi − x0)2
∏N−3

i=1 (xi − xN−2) (xN−2 − x0)2
.

Now if xN−2 approaches to x0, A(2) will have a second–order ambiguity since the

determinant in the numerator and the denominator will both go to zero if l’Hôpital

rule is applied once. By applying l’Hôpital rule twice, we have

A(3) = lim
xN−2→x0

A(2)

=
det

N

[
fi(xj)

∣∣∣
N−3

j=1
, f

(2)
i (x0), f

(1)
i (x0), fi(x0)

]

∆(x1, . . . , xN−3)
∏N−3

i=1 (xi − x0)3 2!
.

By repeating the above procedure, Lemma A.1 is proved.
¥
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A.2

Let us define

Φ(x1, . . . , xN ) =
det

N

[
x−L

j IL(αi xj)
]

∆(x2
1, . . . , x

2
N )

(A.4)

where IL(·) denotes the modified Bessel function. If only xN approaches zero in

(A.4), we can define

Φ(1)(x1, . . . , xN−1) = lim
xN→0

Φ(x1, . . . , xN )

=
det

N

[ [
x−L

j IL(αi xj)
]N−1

j=1
, lim
xN→0

IL(αi xN )

xL
N

]

∆(x2
1, . . . , x

2
N−1)

∏N−1
j=1 x2

j

(A.5)

where a L order of ambiguity exists in the limit. By applying the l’Hôpital rule L

times, we can write

lim
xN→0

IL(αi xN )
xL

N

=
αL

i

L!
I

(L)
L (0)

=
αL

i

L! 2L

(
L

0

)
(A.6)

where I
(k)
L (·) denotes the k-th derivative of the Bessel function. Here, the second

equality comes from the facts that [134]

I
(k)
L (z) =

1
2k

k∑

i=0

(
k

i

)
IL−k+2i(z), (A.7)

IL 6=0(0) = 0 and I0(0) = 1. By substituting (A.6) into (A.5), we have

Φ(x1, . . . , xN−1) =

(
L
0

)

L! 2L
×

det
N

[ [
x−L−2

j IL(αi xj)
]N−1

j=1
, αL

i

]

∆(x2
1, . . . , x

2
N−1)

. (A.8)

Now if xN−1 approaches zero in (A.8), we have

Φ(2)(x1, . . . , xN−2)= lim
xN−1→0

Φ(1)(x1, . . . , xN−1)

=

(
L
0

)

L! 2L
×

det
N

[ [
x−L−2

j IL(αi xj)
]N−2

j=1
, lim

xN−1→0

IL(αi xN−1)

xL+2
N−1

, αL
i

]

∆(x2
1, . . . , x

2
N−2)

∏N−2
j=1 x2

j

(A.9)
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where the limit has a L+2 order of ambiguity. By applying the l’Hôpital rule L+2

times, we can write

lim
xN−1→0

IL(αi xN−1)

xL+2
N−1

=
αL+2

i

(L + 2)!
I

(L+2)
L (0)

=
αL+2

i

(L + 2)! 2L+2

(
L + 2

1

)
. (A.10)

Therefore,

Φ(2)(x1, . . . , xN−2)=

(
L
0

)(
L+2

1

)

L!(L + 2)! 2L2L+2
×

det
N

[ [
x−L−4

j IL(αi xj)
]N−2

j=1
, αL+2

i , αL
i

]

∆(x2
1, . . . , x

2
N−2)

.

(A.11)

Finally, by induction, we can conclude the following lemma:

Lemma A.2 : If

Φ(x1, . . . , xN ) =
det

N

[
x−L

j IL(αi xj)
]

∆(x2
1, . . . , x

2
N )

,

then

Φ(P )(x1, . . . , xN−P ) = lim
{xN−P+1,...,xN}→0

Φ(x1, . . . , xN )

= 2−P (L+P−1)
P−1∏

i=0

[
1

i!(L + i)!

]

×
det

N

[
IL(αi xj)

∣∣∣
N−P

j=1
, α

L+2(N−j)
i

∣∣∣
N

j=N−P+1

]

∆(x2
1, . . . , x

2
N−P )

∏N−P
j=1 xL+2P

j

.

(A.12)
H
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Appendix B

Generalization of Cauchy–Binet
Formula

For square matrices, the following lemma has been proved in [96] as the Cauchy–

Binet formula:

Lemma B.1 : Given vectors x and y with dimension N , and a power series

expansion f(z) =
∑∞

i=0 aiz
i convergent for |z| < ξ, then if

∣∣∣xiyj

∣∣∣ < ξ for all 1 6
i, j 6 N , one can write

∑

kN>0

det
N

[
x

kj

i

]
det

N

[
y

kj

i

] N∏

i=1

aki
= det

N

[
f(xiyj)

]
(B.1)

where kN is an irreducible representation of GL(N, C).

H

If only xN approaches zero in (B.1), then det
N

[
x

kj

i

]
goes to zero except when

kN = 0 and kN−1 > 0. Thus, for xN = 0 and kN = 0 we have

a0

∑

kN−1>0

det
N−1

[
x

kj

i

]
det

N

[
y

kj

i

∣∣∣
N−1

j=1
, 1

] N−1∏

i=1

aki
= det

N


 f(xiyj)

∣∣∣
i=1

N−1

a0


 (B.2)

or, equivalently,

∑

kN−1>0

det
N−1

[
x

kj

i

]
det

N

[
y

kj

i

∣∣∣
N−1

j=1
, 1

] N−1∏

i=1

aki
= det

N


 f(xiyj)

∣∣∣
i=1

N−1

1


 . (B.3)
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If we define k′N−1 = kN−1− 1, then k′N−1 will be an irreducible representation since

now k′N−1 > 0. Therefore,

∑

k′N−1>0

det
N−1

[
x

k′j+1

i

]
det

N

[
y

k′j+1

i

∣∣∣
N−1

j=1
, 1

] N−1∏

i=1

ak′i+1 =

N−1∏

i=1

xi

∑

k′N−1>0

det
N−1

[
x

k′j
i

]
det

N

[
y

k′j+1

i

∣∣∣
N−1

j=1
, 1

] N−1∏

i=1

ak′i+1 . (B.4)

From (B.3) and (B.4), and by replacing k′N−1 with kN−1, we obtain

∑

kN−1>0

det
N−1

[
x

kj

i

]
det

N

[
y

kj+1
i

∣∣∣
N−1

j=1
, 1

] N−1∏

i=1

aki+1 =
1∏N−1

i=1 xi

det
N


 f(xiyj)

∣∣∣
i=1

N−1

1


 .

(B.5)

Now if we set xN−1 = 0, then det
N−1

[
x

kj

i

]
goes to zero except when kN−1 = 0 and

kN−2 > 0. By repeating the same procedure as described above, we have

a1

N−2∏

i=1

xi

∑

kN−2>0

det
N−2

[
x

kj

i

]
det

N

[
y

kj+2
i

∣∣∣
N−2

j=1
, yi , 1

] N−2∏

i=1

aki+2

= lim
xN−1→0

det
N




f(xiyj)
∣∣∣
i=1

N−2

f(xN−1yj)

1




xN−1

∏N−2
i=1 xi

(B.6)

where a first–order ambiguity exists in the right–hand side of (B.6) since both the

numerator and denominator go to zero when xN−1 → 0 . By using the Laplacian

determinant expansion (A.3) and applying the l’Hôpital rule once, we attain

lim
xN−1→0

det
N




f(xiyj)
∣∣∣
i=1

N−2

f(xN−1yj)

1




xN−1

∏N−2
i=1 xi

= lim
xN−1→0

∑N
j=1(−1)N−1+j mN−1,j f(xN−1yj)

xN−1

∏N−2
i=1 xi

= lim
xN−1→0

∑N
j=1(−1)N−1+j mN−1,j yj f (1)(xN−1yj)∏N−2

i=1 xi

=
a1

∑N
j=1(−1)N−1+j mN−1,j yj∏N−2

i=1 xi
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=

a1 det
N




f(xiyj)
∣∣∣
i=1

N−2

yj

1




∏N−2
i=1 xi

(B.7)

where mi,j is the determinant of the matrix obtained by crossing out the i-th row

and j-th column of the argument matrix, and f (k) denotes the k-th derivative of the

function f . Note that since f(z) =
∑∞

i=0 aiz
i, thus f (k)(0) = k! ak.

By substituting (B.7) into (B.6), we have

∑

kN−2>0

det
N−2

[
x

kj

i

]
det

N

[
y

kj+2
i

∣∣∣
N−2

j=1
, yi , 1

] N−2∏

i=1

aki+2 =

det
N




f(xiyj)
∣∣∣
i=1

N−2

yj

1




∏N−2
i=1 x2

i

. (B.8)

By following the above procedure when xN−2 is set to zero, we have a second–

order ambiguity on the right–hand side of (B.8) so that we need to perform the

l’Hôpital rule twice. Since f (2)(0) = 2! a2 , the 2! coefficient that appears in the

numerator will be eliminated by the 2! coefficient generated in the denominator

after derivations. Similarly, the factor a2 will be omitted by the one that appears

in the left–hand side of (B.8). Consequently,

∑

kN−3>0

det
N−3

[
x

kj

i

]
det

N

[
y

kj+3
i

∣∣∣
N−3

j=1
, y2

i , yi , 1
] N−3∏

i=1

aki+3 =

det
N




f(xiyj)
∣∣∣
i=1

N−3

y2
j

yj

1




∏N−3
i=1 x3

i

.

(B.9)

By induction, we conclude the following lemma:

Lemma B.2 : (Generalized Cauchy–Binet Formula) Given vectors x and y with

dimensions M and N (M 6 N), respectively, and a power series expansion f(z) =
∑∞

i=0 aiz
i convergent for |z| < ξ, then if

∣∣∣xiyj

∣∣∣ < ξ for all 1 6 i 6 M and 1 6 j 6 N ,
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one can write

∑

kM>0

det
M

[
x

kj

i

]
det

N

[
y

kj+N−M
i

∣∣∣
M

j=1
, yN−j

i

∣∣∣
N

j=M+1

] M∏

i=1

aki+N−M

=
1∏M

i=1 xN−M
i

det
N




f(xiyj)
∣∣∣
i=1

M

yN−i
j

∣∣∣
i=M+1

N


 (B.10)

where kM is an irreducible representation of GL(M, C).
H
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Appendix C

Auxiliary Expressions

C.1

Lemma C.1 : Assuming k = (k1, . . . , kN )T is a vector of N non-negative integers,

we have

det
N

[
ki!

(ki −N + j)!

]
= ∆

N
(k) (C.1)

where the matrix elements with (ki −N + j) < 0 are zero.

H

Proof: From (C.1), we have

det
N

[
ki!

(ki −N + j)!

]
= det

N
[ ki(ki − 1) · · · (ki −N + 2), . . . , ki(ki − 1), ki, 1 ]

= det
N

[ ki(ki − 1) · · · (ki −N + j + 1) ]

= det
N

[
kN−j

i + P(N − j − 1, ki)
]

(C.2)

where P(n, x) denotes a polynomial of x with degree n. From (C.2), it is clear that

if we start from the (N − 2)-th column, we can omit the term P(N − j − 1, ki) in

the j-th column, by a linear combination of the columns (j +1), . . . , N , without any

change in the determinant value. Consequently,

det
N

[
ki!

(ki −N + j)!

]
= det

N

[
kN−j

i

]
= ∆

N
(k) . (C.3)
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By applying Lemma C.1 into (2.1) we have

drN
=

1∏N
i=1(N − i)!

det
N

[
(ri + N − i)!

(ri + N − i−N + j)!

]

=
1∏N

i=1(N − i)!
det

N

[
ki!

(ki −N + j)!

]

=
1∏N

i=1(N − i)!
∆
N

(k)

where ki , ri + N − i.

C.2 Leibniz Formula for Determinants

The Leibniz formula for the determinant expansion [48] is as follows:

det
M

[
Xij

]
=

∑
a

S(a)
M∏

i=1

Xiai
(C.4)

=
1

M !

∑
a

∑

b

S(a) S(b)
M∏

i=1

Xaibi
(C.5)

where the vector a = (a1, a2, . . . , aM )T is a permutation of integers (1, 2, . . . ,M),

S(a) = +1 if the permutation is even, S(a) = −1 if the permutation is odd, and the

summation is over all possible permutations.

From (C.4), we have

∂

∂z
det
M

[
Xij

]
=

∑
a

S(a)
∂

∂z

M∏

i=1

Xiai

=
∑
a

S(a)
M∑

m=1

∂

∂z
Xmam

M∏

i=1,i6=m

Xiai

=
M∑

m=1

∑
a

S(a)
∂

∂z
Xmam

M∏

i=1,i6=m

Xiai

=
M∑

m=1

det
M

[
Xm,ij

]

where

Xm,ij ,





∂

∂z
Xij , if i = m ;

Xij , otherwise.
(C.6)
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C.3

From the definition of the Vandermonde determinant in (2.4), note that

∆
N

(λ) =
∏

i<j

(λi − λj)

=
∏

i<j

(
(λi − z)− (λj − z)

)

= ∆
N

(λ− z) (C.7)

and

∆
N

(λ) =
∏

i<j

(λi − λj)

=
∏

i<j

1
z

(zλi − zλj)

=
1

z
N(N−1)

2

∏

i<j

(zλi − zλj)

=
1

z
N(N−1)

2

∆
N

(zλ) (C.8)

where z is a constant. Moreover,

∆
N

(λ) =
∏

i<j

(λi − λj)

=
∏

i<j

λiλj

( −1
λi

− −1
λj

)

= ∆
N

( −1
λ

) N∏

i=1

λN−1
i . (C.9)

Therefore,

∆
N

(λ) = ∆
N

(λ− z)

= ∆
N

( −1
λ− z

) N∏

i=1

(λi − z)N−1

= ∆
N

( −1
λ− z

− 1
z

) N∏

i=1

(λi − z)N−1

= ∆
N

( −λ

z(λ− z)

) N∏

i=1

(λi − z)N−1

=
1

(−z)
N(N−1)

2

∆
N

(
λ

λ− z

) N∏

i=1

(λi − z)N−1 . (C.10)
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Consequently, by setting z = −1, we have

∆
N

(λ) = ∆
N

(
λ

λ + 1

) N∏

i=1

(λi + 1)N−1 . (C.11)
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