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Abstract : g

o

Seismic radiation from microseismic events during a steam flood of an oil sand has
been obscrved These observations may provide useful information if an adequate method

for the calculauon of synthetic setsmograms can be found Matnx methods combined with

‘ \FOUI'ICI' transform techmques may be such a method.

Displacement and stress, dtrected in the vertical’ d1rect10n ire the only six seismic
quantmes contlnuous across boundanes in a horizontally layered elastic structure. The
Founer transforms, with respect to honzontal coordinates and time, of thesé.- $ix quantities
satisfy first-order ordinary differential equations. If these duantities are grouped into a

- vector, these differential equations can be expressed in matrix form, and the stress-
q P A He S

displacement vector can be decomposed into components due to upward and downward

| travelling waves. . Zero stress at the free surface, as well as a zero amplitude for upward

travelling waves at the the bottom of the stack of layers, ate sufficient conditigns to allow
simultancous solution of these six differential equations including source contributions by

. the propagator matrix method. In this way, the transform of displacement and stress can be

v

determined for any depth.

A buned microseismic point source of arbitrary source mechanism can be represented

. as a selsrmc moment tensor times s;faual derivatives of the Dirac delta functlon Volume

~ sources can be expressed as a sum of such point sources

N

The calculatlon of the six by six propagator matnx mvolves substantial algebra but -

‘can be calculated usmg computer software that allows symbolu‘ dlfferentlanon and

algebraic mampulauon

To avoid foldmg of tbe tlme domam seismogram upon 1tself a suxtably small -

samplmg interval in frequency must be chosen. For realtstlc geologlc models usmg

frequency and wavenumber bandwxdths apphcable to setsmology, the necessity of
choosing a small frequency sampling mter_val causes the calculauon of the transform of the,
displacement-stress vector to become computauonally very strenuous. Consequently, very
large amounts of computer time are necessary for the calculauon of 3 dimensional
setsmograms usmg the propagator matnx method. '

e .. i .o - . . ’ R s
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. Chaptgr I

Introductiofi )

A tar sand is a consolidated or unconsolidated rock that contains bitumen or other
heavy petroleum that can not be produced by conventional means due to high specific
gravity and viscosity at reservoir conditions [Chilingarian and Yen, 1978]. Anoil shale is -
a ﬁne -grained sedimeéntary rock that yields oil upon heating [Selly, 1985]. In tar sands, oil
occurs in a free form in the pores of host rock, but in oil shales, the oil is contained within
the complex structure of kerogen ( a dlssemmated .organic compound) from which it must
be distilled. -~

Vast quantities of hydrocarbons are stored in both tar sand and oil shale deposits.
Substantial dlfﬁculty is encountered in attcmptmg to produce oil from tar sand déposits.

-~ This difficulty arises from the very viscous, stlcky nature of the heavy oil. Due to the

substanually increased structural 1ntegr1ty of the shale matrix, asrwell as the need to distill

the oil from the oil shale, the dlfﬁculty in producing oil from oil shales i is of an order of

magnitude more challenging than that enceuntered in oil production from oil sand deposits.

_ Approximately ninety percent of the world s known tar sands occur in Canada and
Venezuela. The major deposits are the Peace RIVCI' ‘Wabasca, Athabasca, and Cold Lake
deposits of central Alberta (919 billion barrels of heavy oil), the reserves on Melville
Island; NWT, and the Orinoco tar belt, Venezuela (700 billion barrels) [Burger, 1978].
The Melville Island sands are not well studied, but may rate as the third largest tar sand
after Athabasca and Orinoco [Phizackerley and Scott, 1978]. The heavy oil in these
deposits amounts to nearly 2 trillion barrels of oil, and that is nearly as much heavy oil as
the world's total discovered medium and light gravity oil in place [Demaison, 1977).
These deposits are becoming increasingly important as the world's known conventional
reserves continue to be used up faster than new reserves are being discovered.

At the conditions present in the geologic formations where tar sands are found, the
crude bitumen in the tar sand has very high vis'cosity and is practically immobile. At
reservoir conditions (formanon temperature = 13 °C), the heavy oil in. the Athabasca-and
Peace River deposits has viscosities of the order of several million cent1p01se while the
heavy oil at Cold Lake has viscosities of the order of 10° centipoise [Flock and Lee, 1977].

' The oil of the Orinoco tar belt has viscosities that are gcncral-ly lower than those found in
Albertan tar sands, and some oil is even producable by primary means and thus strictly
speaking does not qualify,as a tar sand [Chilingarian ana = 1978]. digh viscosity is
responsible for the extraordinary difficulties encountcrec . producing oil from tar sand -

- deposits.  However, the viscosity of these tar sands decreases exponentially as the

' temperature is raised above formation temperature: at 200°C, viscosity of Athabasca oil has
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dropped to approximately 10 cp [Flock and Lee, 1977]. Itis this pmpcny of oil sand that
allows the thermal recovery techniques used to produce heavy oil to work.

The most popular thermal recovery techniques mvolve the i mjccuon of steam or hot
water into the oil sand formations to elevate the temperature and thus rcduce viscosity and™
allow production by conventional methods. It is desirable to be able to observe what
happens to the steam front as it propagates through the formation. A reliable method for
such observations could lead to improved oil extraction techmqucs as well as mom‘s\fﬁciem
field operations. -

Prior to steam flpodmg, it is common to fracture the oil sand reservoir by mjcctmg
water or a gel compound at high pressure. This fracturing might produce observable
seismic emissions, and it is 'expec‘ged that useful information about the geometry of the
fracture can be derived from the observation of such seismic energy. The determination of
the locaticn and propagation direction of the propagating fracture is difficult, but very
desirable. It ‘5 hoped, that the seismic observation of the fractuﬁng process will yicid
valuable hints on the location of the leading edge of the induced fracture.

These two procedures provide two separate seismic sources: (1) the seismic .
emissions resulting) from the initial hydraulic fracturing of the formation, and (2) the micro-
fracturing induced as the propagating hot steam front meets the cold, brittle formation,
Passive'seismic monitoring of emissions from hydraulic fracturing and steam fiooding has
potential as a realistic method to-gain information about the formation and the steam ﬂood
as thermal recovery operatlons proceed.

GLISP

In the fall of 1986, members of the Selsmologlcal Laboratory at the University of
Alberta were involved in an expenmental test of the ab hypotheses. A passive
monitoring of the Gregoire Lake In-Situ Pilot (GLISP) ste flooding was conducted.
GLISP is located in the Athabasca Oil Sands apprdximately 40 km south of Fort
‘McMurray (figure 1.1).. A seismic project consisting of a passive monitoring of
microseismic emissions during a.hydraulic fracture and subsequent steam flood was
conducted. The objective of the project was to determine the value of such observations in
the monitoring of the perf mance of such pilots and the data gathered provided the
motivation for“mehthcoreti;al s.udy of this thesis. » s ,

The first phase of the 2xperiment consisted of a continiious seismic mOnitoring of the
GLISP field whilg wells 114 and H5 (figure 1.2) were being fractured. The array of
geophones deployed during this phase is shown #in flgure 1.2. The results of this
monitoring was a noigy dataset severely contaminated byv fracture pump noise, with no
ob .ious events of discretsracture observed.

The second phase consisted of a different, smaller array of gcophoncs (figure 1.3)
that were operated in an event detection mode while wells H3, H4, and H5 were being

Tt
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steamed. During this phase, considerable seismic emissions were detected during the first
four days of ﬁooding, but there were few events observed after this time. No seismic
events were detected which could be attributed to the steaming in the H4 or H5 'wells. The |
- majority of the events were locgted near the H3 well. ' The hypocentres of these events lie in
a, northeast/southwest trending line which éorresponds‘ roughly with the locatioh of a
known channel [Pullin et al, 1987]. The depths of the epicentres are not known accurately
enough to make a comparison to channel depth-meaningful. , e
The purpose of this thesis is to investigate a matrix method of modelling 3—
dimensional seismic wave propagation from an internal rruc‘gpselsrmc source in layered
media such as that found in the Alberta oil sands. If the observed seismic radiatigp results -
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from fracturing, the results from these matrix methods wili-correspond to the motions

observed at the surface above the tar s~1d. The comiparison of these synthetic results to

obscrvéd data should lead to. better understanding of the source mechamsms and

_understanding the source should lead to a better understandmg of the processes occurrin g
‘within the tar sand as steamn is injected.

~ Oil Sand Deposits ' y
: : : 1 . .

_ ~ For the purpose of this thesis, no distinctior shall be made between oil sands and tar

“sands. Qil sands are deposits of crude oil, that are commealy but not necessarily found in
porous sands, and that have APL weights of 15° AZI or hezvier, and thus are not
recoverable at an economic rate by conventional productivn methods. The API weight is
related to the specific gravity by the.formula: API gravity = 141.5/y, - 131.5, where Yo 18
* specific gravity : . “0° F [Macrides, 1987; Selly, 1985; Demaison, 1977].: "
The origin of tar sands has long been a topic of debate among geologists. It has been

~suggested that they are locally generated "immature oil", however there has not been a

satisfactory solution proposed to the problem of expelling such highly viscods and sticky
material from source rocks and then emplacing it in sam@oirs. ,

The presently accepted concept, resulting from significant advances in organic
geochemistry, is that tar deposits are the result of water washing and bacterial degradation
of in-place light and medium gravity crude oils. Water washing removes the more water
soluble light hydrocarbons, while bacterial degradation preferentially removes the normal
paraffins, resultmg in an increase in density and sulfur content [Bally et al, 1973;
Demdlson 1977].

All of the world's major oil sand deposits occur in 51m11ar geologtc settmgs
' Common to all deposits are moderately rich source beds widespread over large areas,
excellent gathering and focused drainage systems into paleo-deltas, very long migration
distances, and the predommance of regional stratrgraphlc factors in both the size and sites
of accumulations chmalson 1977].

In situ densities of oil sand have been observed to be as high as 2.25 gm/cc, with 2. 1
gm/cc typical. This corresponds to a void ratio of ~ 0.40, where the void ratio of a uniform
subangular sand is expected to be 2 0.50. Oil sands are also known to exhibit shear
- strengths unexpectedly high for an unconsolidated sand, while demonstrating very low
tensile strength. The matrix of oil sand consists of over 90% quartz, with minor amounts
of feldspar, muscovite, chert and clay minerals. The explanation of oil sand's compactness
and high shear strength lies in the internal arrangement of the sand grams

Grains in a common sand experience only tangential grain-to- -grain contacts whereas
grams in oil sand exhibit mainly "long" and "concavo-convex" contacts (figure 1.4). This
structure is ajso known as interpenetrative or "locked" structure, and it is responsible for

both the low void ratio< and high shear strengths observed in oil sands [Harris and

4 \\/'
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Sobkowicz, 1977].
-

Sutured Contacts

Concavo - Convex
Contact

g Long Contact
| & | Point Contact

N . : - .
gﬂ Floating Grains

Figure 1.4 Types of grain contacts
(modified from Harris and Sobkowicz, 1977)

The Geology of the Athabasca Oil Sands

~ The Athabasca oil sands occupy an area of north-eastern Alberta over 320 km long

. and 150 km across. Wlthm this area, the McMurray Formation contains an estimated 625
billion barrels of oil, makmg it the world's largest known single hydrocarbon deposit.

The heavy oil of the Athabasca oil sands, as well as the Peace River, Wabasca and

Cold Lake oil sands, is contained within the Lower Cretaceous Manville Group. The

Manville Group is composed of the Grand Rapids, Clearwater, and McMurray Formations
and lies unconformably on Devonian aged carbonate rocks of the Winterburn, Woodbend,
or Beaverhill Lake Formations and is unconformably overlaid by marine sediments of the

mid-Cretaceous Period [James and Oliver, 1977; Carrigy, 1959). The sedimentary rocks

6



of the Cretaceous Period were derived from clastic materials originating in the Canadian
Shield lying east of Alberta and from the building Cordillera to the west. The sedimentary
material was transported from these two source regions to the Western Canadian
Sedimentary Basin by fluvial processes where they. were laid down in continerital deltaic
and marine environments [Macrides, 1987].

. Essentially all of the heavy oil of the Athabaéca Oil Sands occurs within the
~ McMurray Formatioh. The thickness of the McMurray is related to relief on the mid-
- Creticeous unconformity, with maximum values of about 90 metres. The McMurray
Formation consists of predominantly quartz sands, but is complexly interbedded with a
sequence of sandstones, siltstones, mudstones, and thin coals. An overall fining upward
trend reflects the gradual transition from a fluvial to a deltaic sedimentary environment.
The overlying Clearwater Formation consists céﬁaud_stones and siltstones deposited during
a widespread transgression of the Cretaceous horeal sea. It attains thicknesses of up to 70
m. At the base of this formation, a cherty, glauconitic, fine-grained sandstone called the
Wabiskaw Member may be locally present. Approximately 5% of the Athabasca Oil Sands
are contained within the Wabiskaw Member . The Grand Rapids Formation consists of
fine to medium-grained feldspathic sandstones, ‘taminated sequences of siltstone and

sandstone, and thin coals, and is about 105 metres thick [James and Oliver, 1977;
Dusseault, 1977]. ‘

Using well logs from wells H-4 and HO-7 (fig. 1. 2) a seismic model for- the GLISP
location was generated. These seismic parameters and their geologic 1nterpretat10n are
shown in figure 1.5. , ‘ ”

The Steam Flood A

Steam 'floodihg is applic’able to low energy, high viscosity oil deposits. Low energy
refers to reservoir conditions where even if the viscosity of in-situ oil is reduced by heating
of the reservoir, there may not be enough drive provided by reservoir-pressure, gravity,
solution gas drive, etc. to produce present oil. In this case a steam flood is necessary,
where the steam not only heats the heavy oil, but also provides the energy to drive the oil
out of the formation [Faroug Ali, 1974]. _

In a steam flood, there are often several injector wells surrounding a central producer
well. In the case of GLISP, there were three injector wells about one producer well. High
temperature steam is injected at high pressure (near lithostatic pressure) into the injector
wells and the softened oMl is produced from the central producer well.
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Figure 1.5 Geology of thc GLISP site, and the seismic parameters used .
im modellmg its response.
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'Fr_écfiuring in an Oil Sand

It has been established that oil sands display 51gn1ﬂcant shear strength. As previously -
mentloned ‘this is a consequence of the nature of the grain contacts, and does not contradict
the observation of near zero tensile strength. The question of whether, due to the inherent
weak structure of oil sand, the pre-steam flood "fracturing" ag:tually causes seismically
observable radiation might reasonably be asked. It also remains to be demonstrated _
whether or not a steam flood can generate the required shear stresses to cause fracturing
and thus generate observable seismic emissions.

Oil sand reservoirs are high porosity sandstones. They have httlc Or no grain-to-grain
cohesion, near zero tensilg strength, and show considerable dilatancy and non- -linear
behavior when subjected to changes in stress. Oil sand does not fail by brittle fracturc '
General dilatancy of ~ 60 80 % of pre-yield strain is followed by furthcr dllatancy
confined to a narrow shear band [Dusseault and Rothenburg, 1988]. <
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Experimental and field evidence indicate that Alberta oil sands are in a state of stress,
and upon the injection of high pressure steam into the formation, failure by fracture is
expected [Settari and Raisbeck, 1981]. Dusseault and Rothenburg [1988] contend that
- during hydraulic fractudng“, where injection pressure exceeds maximum principle stress
' (05), shg:ar bands ‘will develop in adVance\of fractures. Also, it is stated that steam

injection (0.90; < injection pressure < 0,) of low permeability or weak reservoirs will lead
to shear slip along planes inclined to principle stress directions.

The point at which a material under stress fractures is dependent on confining
pressure rock composition, temperature, etc. It is most convenient to analyze the
conditions necessary for fracture using a Mohr stress dJagram in 2 dimensions. Figure 1.6

\shows a dlaggam of shear stress (T) versus normal stress (o). The semi- cucle (one half of
the Mohr circle) indicates stress conditions within the rock: For a plane making an angle of

o with ¢, (minor pﬁncipal stress) T = 1/2(0,—065)cos(2a) and ¢ = 1/2(c 1+03) + 1/2(6,~
O,)sin(2a). The diagonal line labelled "Mohr fallure envelope" represents criteria for |
failure, and is dependent on rock camposition and temperature. Whenever a point on the /
Mohr circle intersects the Mohr failure envelope, failure occurs on the two planes 1nclmed/
at angles of tato o,. The max1mum shear stress occurs at o = 45°, but failure occurs at
some angle less than this dependmg on the materiakand the stress state.

Mohr failure envelope

Mo_l_lr circle

o, _ q
Figure 1.6 A Mohr stress diagram

By injecting high pressure steam into an oil sand, the internal pore pressure is raised,

and this in turn counteracts the external prcséure and reduces the effective normal stress G.
If this is unaccompanied by thermal or chemical processes of significance it corresponds to

- moving the Mohr circle left toward the failure envelope. Once the steam injection has
produced a sufﬂcwntly large porc pressure, the circle contacts the fallure envelope at some
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point, and fracture occurs. It i 1sn 't at all obv1ous that this fracturing occurs mstantancously.
as this conceptual model presumes no pre fracture creep, and no history dependence of the
fracture criteria. ‘ \

- Using Griffith crack theory for a penny- shaped crack in an elastic medium, Sneddon
[1951} demonstrates that shear stress is geherated in the neighborhood of such a crack. In
a 2-dimensional vertical cut through a 3-dimensional medium containing a horizontal crack .
there are lines of maximum shear stress above and below the fracture plane at 45° to thi:
plane near the edge of the fracture. The maximum shear stress is found just outside the
leading edge of the crack. Two mechanisms could be involved in propagating such a
crack. Simple parting under ; pressure is the stapdard explanation (this requires the injection

pressure to exceed lithostatic pressure), but a coalescence of shear failures j Just ahead of the -

crack tip is also possible. Despite the fact that any fracturing of an oil sand can not be
considered to have occurred in an elastic medium, the Griffith crack model may prov1de a
reasonable first order description of the pre-steam flood fracturing,

Early in the steam flood monitoring at GLISP, numerous good events locatable to th=
GLISP site were observed, and shear failure in oil sand seems the most likely source.
Conyennonal wisdom states that during a steam flood, any fracturmg induced would be
contro}}ed bl the in situ stress field. In the Gregoire Lake area, the minor principal stress
d.u‘t:t;\non 1s vertical to depths below the bottom of McMurray Formation. No heavy oil is
four}d\bedow the McMurray in the Athabasca Oil Sands. Fractures are known to form
normaj. to\the minor principal stress direction, and hence horizontal fracture planes, or

fracture planes 1nclmed a few degrees to the horizontal, are expected in Athabasca Oil .

Sands at Gregoire Lake [Dusseault, 1977; Settari and Raisbeck, 1981]. *
Anisotropy within the-tar sand can be expected to markedly effect the propagation of

~ the steam induced fracture, but Shell Canada Resources Ltd. was able to induce and

propagate horizontal fractures in the McMurray formation at a depth of 60 m [Settari and

- Raisbeck, 1981]. If one accepts the doubtful premise that the insitu stress field still

dominates in the altered conditions within a steam ffood, then it would follow that any
fracturmg mduced by steam flooding oil sands in the Gregoire Lake area will propagaze in

nearly honzontal fracture planes. This may be a reasonable assumption, at least initially, asl

although heatmg significantly reduces the strength of oil sand, the time necessary to initia
and propagate fractures is small relanve to the time necessary to heat an appreciable fradtion
of the formation [Settari and Raisbeck, 1981]. Iti is difficult to predict the angle of planes

- of shear failure that would form (funng fallure of oil sand under steaming or hydraulxc
fractufing. Theory will be developed for an arbm'ary source description, but tested only for

the simple case of slip on a horizontal plane so that physical symmetries will be rcadlly
observable in simulation results. :

10
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Chapter 2

- Excitation of a Layered Structure by Microseismicity

.Formulation
4 , . .

My aim 15 to calculate the particle displacement at the surface of a medium that
consists of n homogeneous layers over an infinite half—space due to a point sourcr/_\
described by a moment tensor located inside the layer stack. . :

Two relationships are sufficient to describe the pro#)agation of plane seismic waves in
an elastic homogeneous, isotropic medium: (1) the equi!,i‘brium equation:

\
a2ui )
G = P;t'z" +.g = (2.1)
~and (2) a statement of Hooke's law: 4
= lSu + p.(u + uj.i) (2.2)

where A and p are Lames constants, G;; is stress in thc i-direction on the j- -plane; u is
dxspldcement and 81] is the kronecker delta g; is the body force equwalent of a point
source function at { = (x,,y,,z,).

For slip on a planar fault surface Z the body force equwalent for a point source at
posmon € and umc t, can be expressed as ‘

gP(C’t) = —ff [ui(c’ts)]ciquvj i 5(X‘C )dz »
5 dxq

» ‘ Y

A

= -Mp(t) 58; d(x-C) (2.3)
q | ‘ =,
- where x = (x, ¥,2), 6(x - §) = 8(x-x,)8(y-y)8(z-2,), 8 is the Dirac delta function, X, is the
postion of the source;, [u;] indicates dlsplaccment across the fault plane fromZ_to X, Cijpg”
are elastic constants satisfying” Tij = Cijpq€pq With T and e denoting stress and strain tensors
Tespectively, v is unit normal to the surface element dX pointing fronfZ_ to Z,,and Mpq is :

the pgth component of the source moment tensor [Aki and Richards, 1980, equations
G. 5) and (3.23)].



The Fourier Domain

Throughout the problem, I will be working in coordinates Fourier transformed with
respect to the x- and y- coordinate directions and with respect to time. This Fourier
transform has’ the form

-

f(w,p,q,2) = ff kfv(t,x',y,z)\‘ev-_—l (px +qy - @) dq dp dw (2.4)

where p and q are horizontal wavenumbers, and ‘® is angular frequency.
I will nG% define the vector f

[ u(z) ]
v(z)

w(z)
f(z) = O'XZ(Z) B C)

S,,(2)

0,,2)

5 i ;.
where u, v, and W are displacements in the x-, y-, and,z- directions. The six components
of f are the only quantities that are continuous across a boundary in a horizontally stratified
elastic earth model. As I will be working cxcluswely in the Fourier domain, I will often

in the Fourier domain, f(t, X ,y,2) = f(z), where f(z) depends on x, y, and t only vix

factore' & (PXT Y-t Thus, derivatives with respect to transformed variables take an
especially simple form. For example: S ] ‘ &

write f(w,p,q,z) as f(z) where the dependence on @, p, and q xs/xmphcd For plane . wgrs

oo

9 o V-1
a;f(t,x,y,z)e pde=f‘{7pf(t,p,y,z) ~ 2.5)
~ Consequently, for plane waves in the transformed domain, equations (2:1) and (2.2) .
can be combined in a form that relates the displacement-stress vector f to first-order = =
derivatives, with r?spept to z only, of f. I formulate this as ‘



df(z) |, . .
iz + Apf(z) +s : | | 1\\/__

6=AL

_where s is a 6 x 1 vector contsisting of the p, q, and ® Fourier transform of the g;'s from
~(2.1). This leads to a relation of the form: '

M@ _ ) + 2@) | (2.6)
dz : . ' .
where a
5] 0]
g, 0
. e 0
BA=AL o | T |-,
. 0 -g,
. 0] | %
and A = -AL Ag. : (

The Propagator Matrix {

Aki and Richards (1980) define a propagator matrix P(z,zo) as

z . g
Pz) = 1+ (ALt + [aQ) [acpatas, « .~ @n
.. J ! . |

9 0

If for the moment, I%glect the source term, I can write (2.6) as

= AQI@) Y 8)

df(2)
az

The propagator satisfies equation (2.8)

.a% P(zz9) = AR P(z,zg). - (2.9)



An important prc;per;y vof_bt,’he‘ propagator matrix is:”

f(z) = sz,zo) f(z,).

If f-is known-at some depth 2y, this vector can thus be propagated to any depth z with the

matrix P(z,z,) v1a equation (2.9).
If there exists a stack of layers i=1, 2, ... ; n each of which hasatopatz =z, I can
propagate the vector f from some level Z, (say the top of layer 1) to a-depth z by:

\

P(z,zo) f(zo)

f(2)

i

P(z,zn_l) P(zn_'l,z\;l_z)..’;P(z‘zi,zl) P(zl,_zo)f(z'()) _

where z is in the nth layer. .

This approach can also be modlﬁed to deal with source effects. A soluuon of (2: 6) s

'g1ven by

(@) = [PeDEOE + Pazizy = o
Z - o

[Aki and Richards, 1980]. .

For the case of a homogeneous layer, A(z)1s . _onstant mdcpcndcnt of depth z within

~ the layer, and P takes on the pamcularly simple form:

R - (@zg)A : '
- Pzz) =e = - ) ' (2.13)
. . _
(see Aki and Richards, 1980 for details). v e

The exponential of a mamx (z-zg)A, that may or may not have dlsnnct eigenvalues, is
defined in general by : ‘

. . Z ’
KLY % ¢ dz ' (2.14)
, ZKV—— c Z1- (z-zO)A R .

\A
Ry

where the contour C must enclose a‘.ll of the eigenvalues of A [Geortzel and Tralli, 1960].
If I make a substitution for the complex variable Z: '

(2.10) -

o Q.11



. } ]\
‘ | | | 1S

X = Z/(z-zy)
" I can write equation (2.14) as

. (2_70): . e(i-—Z&X {
e, = =P —— dX - (2.15)
2n{-1J¢ X-1-A

The Cayley — Hamilton Theorem

The Cayley.-’-\‘\Hamilton theorem is a theorem of advanced linear algebra that provides
an alternate and possibly superior method of calculating the propagator matrix. This
discussion.is included for completeness sake only, as I did not become aware of it and its-

" value until after [ had calculated P by (2.14).
The Cayley - Hamilton thebrcm states that any matrix satisfies its own characteristic

equation. That is, if A is an eigenvalue of a matrix A of order n, then the characteristic
equation is ‘

| R
. = A=A v n T +rag=0

and
F(A)= A"+a,_ A" '+, . +a,d=0

where I is the identity matrix. If A is dcgenératé, but semi-simple (has nilinearly
independent eigenvectors), this can be shortened to ‘

[}
i

- 8 N
F(A)=Y a;A'=0
i=0

where s is the number of distinct eigenvalues. I wish to calculate the exponential of my

" matrix A ' o v '

,/ v eA-= z -é- .
0l

—
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_/

= *-1\4

s

However, my matrlx A is semi-simple, apd has 4 distinct eigenvalues, and thereforc it
follows from the Oalyley -Hamilton theorem that every power of A greater than 3 can be

_‘expressed in terms of lower powers of A. and thus I can write

A ‘ 3
e =Cp+Ci1A+...+ Cc;A

It can be shown that there is a unique solution for the coefficients C;» and their calculation
only involves 1nvert1ng a 4 by 4 non-singular matrix [Deif, 1982].

REDUCE2
- . . TN
The anglytical derivation of the propagator matrix for an arbitrary isotropic medéum
using (2.11) and (2.15) leads to substantial algebra. REDUCE2 [Hearn, 1982] is a LISP-
based computer language that allows symbolic algebraic manipulation and dlffcrcnnanon I

used REDUCE?2 to do the algebraic computatlons necessary to determmc the matrices A
and P . xd

Substitutions

Substitutions simplify the algebra, and make many quantities dimensionless. The |
- substitutions I made, as expressed for REDUCE2 where the quantity on the ri ight-hand sxde

of the arrow is substituted for that on the left-hand side, are:
p2 +q2 = k2
A=olp-2u n=p%p

where k is horizontal wave slowness.

b

The Eigenvalues of A

Solving equatlons (2.1) and (2.2) simultaneously using REDUCE2, I progyced the
matrix A. A isa 6 x 6 matrix and has 4 distinct eigenvalues: %

A . Ed .
/ 2 2 ~
A= Ki- o /o ' : ,
g 2 2

16
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In

Here, as elsewhere in this thesis, the eigenvalues are ordered from largest to smallest.

Also, for tiie remainder of this thesis, z shall be considcred to decrease downward. )‘1 and
A represent the vertical wavenumber of up- and down- going P-waves, while )@\, and

A4 Ag represent the vertitfnl w,avenu_mber of up- and down-going S-waves respectively.

-~ --Ayand}, are repeated duc 0 the degeneracy of the S-waves: SH and SV waves have the

same velocity in an'isotropic medium.

Z,

ZO=O

Figure 2.1 Definition of the layer stack. z, = surface; z; = top of
half-space; z is tﬁ? depth of the source, but does not necessarily
;ndicate a change in medium properties. -

The next step is to calculate the propagator matrix using equaﬁon (2.15). The,inv'ersc
of (X1- A) can only be singular at the eigenvalues of A. Thus, the contour integral in
equation (2.15) amounts to calculating the residues at A, A,, A,,and A: A, and A arf

simple poles, while A, and A are poles of order 2.4 .

17



Decomposing the vector f

- £

In the absence of sources (g = 0), the dxfferentlal equation (2.6) can be solved by a
different method for homogeneous media. In'this case, a solution to this equation is:

+

A (z-z_)) :
f=ve® ™ . (2.16)

where z ¢ is arvarbitrary reference level, v, is an exgenvector of A, and A is the associated

elgenvalue with no summation over a. As no generallty is lost, I will always take the

bottom of our stack as reference level (z,.;=0). A is a 6x6 matrix, and I can find 6

eigenvalues and 6 linearly independent eigenvectors (o = 1,...,6). Thus, f can be
expressed as:

f = Fw (2.17)

where w is a vector of constants weighting the columns of F since the eigenvectors of A

are nonunique to within an arbltrary constant. It follows from (2.16) that the matrix F can

be decomposed as

) F=[V1, Vo, ey V6]

/ \

= EA ' . . (2.18)
where A; 2 A;,,, and the v,'s are ordered accordingly. Therefore I can write

\-1b

f=EA (2.19)



<

»

where wTand w+ are 3- -component vectors that can be 1nterpreted as the amplitudes of the
up- and down- going waves. Given the.above decomposition and my definition of the
Fourier transform (2.4), it can be observed that f propagates via the factor

-1 AZ — . .. .
c:y/_l (px+ay + “ 1t follows from this, that real positive real eigenvalues correspond

to upgoing waves, and negative real to downgoing, since z is decreasing downwards and
the phase of a propagating wave must be a constant. Imaginary eigenvalues can be
interpreted as upward and downward attenuating waves.

The Eigenvector Matrix

1Y
o

I can generate the vector f from the P-wave potential ¢ =e

[ 2 2
up-going waves, where 1, = @ oo — k asitis known that the displacement arising

from ¢ is given by

1 + + - ot
V-1 (px +qy +nz )for

u=Vo ' (2.20)

¢ venerated in this way forms the first column of the matrix E to within a scalar multiplf;,
vk his acceptable because E is non-unique to within a scalar multiple. The multiple of

[+ sixth column of E can be-formed by the same procedure for down-going waves (1, =
—TN,)- The middle four columns of E can be generated by constructirig f from S-wave
potentials

m(px+qy+nﬁz—m)

Yy = (q{-p, 0)e (2.51)

Vo= (O 0, l) V’_(px+qy+naz—ux)

v

where u due to \y is given by

(2.22)

19

u=Vxy - _ (2.23)1

[ 2 2 ‘ _ : o
andng="Y ® /B -k’ [Aki and Richards, 1980, problem 5.8]. I produced these S-wave

potentials essentially by inspection given that V ¢ v =0, Vv X Wy =0 and ugy = (u,v,0).
This is acceptable given our freedom of a scalar multiple. The resulting eigenvector matrix
is
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Ve Vim,  Yla Ve Vi Yo

V-tq Yoty Voip V-ip  V-ian, Vg

. 2
Vin. V-1« 0 0 Yk Yo,
E =
. 2 ¥ . 2
~2ipn upk -np —Kqng Hang -k My 2upn o
2 2 : 22
—2uqng Ha(k - . HpMp —Hpfp Ha(k - p 2uqn o
. . 2
- 2 2 2 —-AW 1
A - 2um, 2ukmp 0 0 —2uk Mg ; = 24N g
o ’ o

(2.24)

This matrix was venﬁcd to be a eigenvector matrix of A by checking that E- TAE = A,
where A isa diagonal matrix of the eigenvalues of A.

I define the bottom of thexstack of layers to be z;=0, and-the surface to be the top of
the n'th layer at z,, (see figure 2.1);.also, the source is at z, with z_ is an infinitesimal

distance below z, and z, is an infinitesimal distance above z, It follows that (2.12) can be
writen as ‘

f(z)=P(z,z)f(z) + A

=f(z)+A ~ L (2.25)

™
!

since P(z,,z.) = 1, where A is the contribution due to the source as z increases from z_ to
z, and is defineg by equation (2. 12). It follows that I can write '

f(z,) = P(z,,z,) f(z,)
=P(z,,z,) P(z_0) f(0) + P(z,,z,) A
= P(z,,0) E(0) w(0) + G (2.26)



since P(zh,z+)P(z_,O) = P(z,,0), f(0) = E(0)A(0)w(0) from (2.19), and A(0) =1. I am |

justified in using an eigenvector decomposition of f at z = 0 as there are no sources in the

infinite half-space.
If the vector f is grouped into two 3-component vectors of displacement (u) and

stfess (0), equation (2.12) can be expressed as

. . g
: S z=2

Also, it is known that at the surface (z=z,) the stress must vanish (6=0), and at the bottom

of the stack of layers (z=0) there is no up-going energy only down-going (w'=0), and
therefore I can replace (2.22) by

0 z=z, z2=0

u 0
l: :] = P(z,0) E(0) [W‘L:l + G(2) ' (2.28)
This represents 6 equations in 6 unknowns (the three components of w¥, and the
three components of u), and hence a unique solution exists for the transform of the surface
displacement u(z,) arising from g.
If the matrices are expressed in terms of 3 by 3 submatnces equanon (2.23) can be
wnttcn as

fz) < | 1@ P 112,,0) P12, 0) [[E1 (O ErO ][ 0 |, |G@
o 0. _PZI(Zn’O) P22(Zn10)_ _EZI(O) EZZ(O) Wl(O) G2(Z)

rPl l(zn’o) P12(va0)— FE[Z(O) l G I(Z)
= 0
~ . _le(Zn,O) Pn(zn,O)~ -EZZ(O)]W ( )f G 12) (2.29).
and Lhereforé I can write 4
Tu@y] | P 1zpOE A0) + P, Az, 0E,40) ] G,@|
= \ » 0
[ 0 ] [le(zmmEn(O)+Pzz<zn,0)Ezz<0) ]w ©+ 6| @30
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u |u -
= P(z,.z,) + G(2) (2.27)
o)



The Source Term

J

T assume irﬁtially that the source function described by (2.3).is delta-like:
gi(x,t) = —Miﬂt) ag— 8(x-xs) = _Mij 8([-[5) ;— 5(x—x5)
X X;

where t is the time of the source, X, = (x,, ¥,, z;) and is the position of the source. No -
generality will be lost if [ take the time of the source as origin of our time scale (t; = 0), and
Xs = (0, 0, zy). Therefore, fori =1, 2, 3, the Fourier transform of the source function is

gi(Z) = ﬁ pMiIS(Z_Zs) +bﬁ inzs(Z‘—Zs) - Mn% S(Z-ZS)]

*
v

= g: 8(2-25) + gi“ % 5(2325) (2.3D

An expression for the source term G follows directly from (2.12), (2.21), and (2.26):
G(2) =P(z,z)A

= P(z,,2) f P(.0g0)dl

=P(z,z,) f P(z,.0)g 5(L-2)dl + P(z,2.,) f ) P(ZVC)g“S%S(C-zS)dC

LR ]

= P(zn,z+)P(z+,z$)g P(Zn,ZQ 3 P(ZwC)

§=Zl

Where g is a 6-vector, and is defined in terms of g (i=1,2,3) by (2.6). Since z4 1S just
above the fault, the layer from z4 to z, can be assumed homogeneous and thus using
(2.13), P(z,,£) can be expressed as a simplé cxponen;ial of (z, ~ C)Ag, where A8 isthe A
matrix in the layer immediately above the source. Therefore (2.32) simplifies to

LR J

. ._ * _a__ Afz,-0) |
G(@) =P(zp,z)g +P(zn,zs)-ac [e é L:z'g ) (2.33)»

g (2.32) -



. . e A (z,-2). . . . .
Since z4 is only infinitesimally larger than z, e * (2.~ 2) 1s just the identity matrix
and hence the following exrression for G is produced

G() = P(z,2)g + P(z,z) Ay - (2.34)

The Transform of the Surface Displacement

It follows immediately from (2.25) that:
l -1 :
W (0) = = [P31(z0 0)E 1 0) + P2z, 0E20)]  Go2) (2.35)

And finally, combining (2.25) and (2.29), I get an expression for the surface displacement
involving only the source term, eigenvalue, eigenvector, and propagator matrices:

uz,) = - [P1 1ZWO)E | £0) + Plz(zn,O)Eu(O)] [PZl(zn,O)EIZ(O) + Pn<z,,,0)1322(0)]'1 G4(2)
| -+ G @2)
(2.36)

)
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~ Chapter 3

¥ a

= Numerical Implementation of the Propagator Matrix

The next step in the process of producing synthetic seismograms is to implement
equation (2.36) on a digital computer.

Calculating the Matrices A, E, and. P

I already have analytical expressions for the matrices A(2), E(2), and P(z,z), and 1
need only to supply the quantities that describe the medium as function of depth z: that is, -
given sefsmic wave velocities a(z) and B(z), density p(z), I can specify A, E, and P as a
function of temporal and spatal frequencies , p, and q. To complete the evaluation of the

non source term in (2.36), I aeed only to specify z,, the depth from the top of the semi-
infinite halfspace to the top of the stack of layers.

Evaluation of the Source Term

Since I have specified the time of source as origin time (tg = 0), the calculation of the
source term G in (2.36) requires only the depth of the source (.0, 0, z;) and the source
moment tensor M. Given these two quantities, G is easily calculated by simple matrix
algebra as specified in (2.34).

Verification of Results

Aki and Richards [1984] define tpeir f vector slightly differently than I did. Their
definition is as follows: ~ :



multiplicative factor of ¥'~1 in the third and sixth rows of f as compared to our f. If one
examines equations (2.6) and (2.9), it is obvious that the effect of this to multiply the third

and sixth columns of our A and P matrices by /-1 » and to multiply the third and sixth

rows our A and P matrices by V1 as compared to their matrices. These two together

mean that the 3-3 and 6-6 components have a net multiplicative factor of 1.

Aki and Richards give the matrix A, E, and P for the cases of P-SV waves, #nd for -

SH waves only. By setting one of my wavenumbers to zero, I in effect decompose my
solution into the limiting cases of P-SV and SH waves. For example by setting q=0, I
constrain my results to the x-z plane, and cantompare the non-zero elements of my

- matrices directly with the published results of Aki and Richards. My results for A and P.

were numerically compared for these limiting cases for &wnge of w, p, and q's [ am
considering. They were consistent to better than four significarit figures. I tested E by

ensuring that it sansﬁed the equanon E-1AE = A, where A is a diagonal matrix of the
eigenvalues of A. o

The Discrete Fourier Transform

The inverse Fourier Transform u(w,p,q) is defined as :

u(t,x,y) =_1_§fff U(m,p:aﬁ e—ﬁ(px +qy - ux)dq dp de 3.1
: 8n o .

A

Richards, 1980]. I can write (3.1) as

where p and q are horizontal wave numbers, and .is angular frequency [Ak1 ary

' Yo ¢ p_x+ - fr)
u(t,x .y)——fff uf,p,qye " 2w 2 dq dp df (3.2)

where f = /2% and is frequency in Hertz. If I let p = p/2n and q q/2n (3.2) can be
rewritten as . &

u(t,x,y)=fff 'u(f.E,a)ez“’/_(P‘*qy fl’dqdpdf .(3.3)

Clama T ol a2 ae -3 _ 1 e .- . . . s + ~
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frequencies and wavenumbers, and it is therefore reasonable to replace (3. 3) by a band-
limited-approximation '

P N, o
u(t,x,y) =f f f u(f,p,q) e 2nV-1(px + qy Mdq-dp df (3.4)
F/2 ~ -/\ .

and approximating these integrals by sums

N .
. ! ~ ~ 2 f
u(t,X;yy) = Z Z Z u(f,pq)e UG+ ay,- DATAPAE (3.5)
L) M) (N1
2 2 2

Here I have used Simpson's rule to approximéte the triple integral, where the

integrals are broken up into L, M, and N rectangles with the height measured at the
midpoint of each rectangle. In this way, there are an equal number of sample points of the
function on each side of zero p, q, and f, and thus the transformed result must be real if
expected symmetry is present (see below for a discussion of symmetry).

If L, M, and N are odd, then there will be an odd number of integer valued ], m, and

‘n's (eg. if N =5, thenn =-2,-1,0, 1, 2) where |, m, andn—Ocorrespond to f, p, and q

= O respectively. If however, L, M, and N are even, then there will be an even number of

non-integer values of 1, m, and n'(eg if N=8, then n=-7/2, -5/2, ..., 5/2, 7/2) (see figure
3.1). In this later case, 1, m, and i are never equal to zero, and thus the zero or DC level of
our function is not sampled. Since the propagator matrix is singular for f = 0 , I will
always use only odd values of L.

It is somewhat unusual to use non-integer values for the indexes of our summations,
but below, following a transformation of our indices, 1, m, and n are constrained to be
integers regardless of the chglce of L, M, and N (see (3. 6))
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[ set the temporal sampling interval in the untransformed domain (At) to be the inverse
of the maximum frequency in our sum:

At = 1/F
| - | L-1 L-1 L1 _ L1
[ also define f; = iAf = iF/L, forl—-—z—,-—2—+ 1, ... ; 0, .. ,—2—-1, 5
Similarly, "
Ax = 1/P Ay = 1/Q
form =-(M-1)/2, ..., M-1)2 forn =—-(N-1)/2, ... , (N-1)/2
And hence (3.5) becomes . -
| R SR IF mP nQ F( "”‘““Q’ISF
: n 2n —— - — .
LESOEID YD WD FICE S O F NIMN
(LD M) (N1
2 2 2
~ A~ L1 M-l N-1 ~ ~
- QPF LLF - MLP . N1,Q ZABTC ﬂ-ﬂ)
NML 'ih[(l 7o '2)M('2)N]e
1=0 m=0 n=0 °

L-1). M-1 N-1
nﬁ[(L)+(M) ( )]

(3.6)

The last term im (3.6) is phase correction that is a result of approximating the
‘integrals (3.4) by short sequénces. Obviously, it has a norm of 1.

A straight forward im'ple_mentation of (3.6) would require L2¥*M2*N2 operations;
however, utilizing a Fast Fourier Transform algorithm (3.6) can be done in NNlog(NN)
operations, where NN = L*M*N. This famounts to a substantial computational savings for

even moderately large L, M, and N.. 'L'he IMSL routine FFT3D computes - .
e

QM‘\IEI e e




utilizing a FFT algorithm. The cﬁlculation of (3.6) was done using FFT3D (3.7), and thus

u must be ordered properly (ie. as | goes 0 — L1, f, goes -F/2 — F/2) before calling

FFT3D, and the appropriate scaling and phase shift factors be ‘applied to the summed
values.

Expression (2.4) relates the surface displacement to its transform:
u(w,p,q) = J"”lu(t,x,y) e‘/j ®x +qy - @y dq dp dw . ‘ C(2.4)

If u(t,x,y) is real, the following observation of symmetry can be made:

“u(-0,-p,-q) = j”u(t,x,y) ol 'dq dp df

= u*(p,q,m) . (3.8)

where * indicates complex conjugate.

If axis in transform space (o, P, and q) is considered each to be of two sections, one

section relating to positive frequency or wavenumber and the other to negative frequency or

wavenumber, eight cubes in wpq - space are defined. If one examines the equations that
define the propagator matrix, and hence u, it can be seen that only second brde/r denvauvcs

with respect to t exist, and thus only factors of w? appear in-u, since u depends'\n t only

(f—l ot)

via the factor e . This means that u is symmemc about =0 {ie. u(u) p.q) = u(* |
®,p,q)}. Using the above two symmetry relanons we need only calculate two of the eight

cubes to completely define u(w,p qQ):

U((DvP,Q)' = u('(’)yp,Q) = U*(my'p"q) = u*('(l)r'P»'Q)'
uw(®,-p,q) = u(-0,-p,q) = u*(w,p,-q) = u*(-a,p,-q)

‘Transformation to the Time - Space Domain

The above calculanons are done in the frequency domam fora spccxﬁcd f, p, and q.

Since our source is a spike in time and space, it-must contain contributions from all
temporal and spatial frequencies. However. in practice the ohserved seismaoram ic limited

2%



Since we are dealing with a digitally sampled analogue' wdveform, we need to address
the phenomenon of aliasing We need a minimum of two samples per cycle to define any
: gwep swaveform. Normally, one samples a waveform in the time domain and then
trahsforms to the frequency domain. In this situation, the largest frequency that can be

15
1.0
o.‘s -
0.0 4

-0.5 4

Figure 3.2 A plotof a 1 Hz and a 4 Hz sine waves sampled (squares) at S Hz

>

represented is given by one over .twiee the sampling interval in time; this is called the

Nyquist frequency: fN=’2'L. If thereexists energy at frequencies abo&e'the Nyquist
- At - " -

frequency, this energy will be "folded bzick" into the range 0 — fy and t..us will distort
results. Figure 3.2 demonstrates that with a sampling interval of 0.2 sec (fy = 2.5 Hz), no

- distinction can be made between a 1 Hz and a 4 Hz'wave. Asa consequence, any energy at .-

4 Hz, will be. aliased and show up as energy at 1 Hz. The common solution to this
problem is to filter the analogue signal to ensure that no energy exxsts above fy.

A 2 msec sampling interval in time was used durmg ‘the seismic monitoring at
GLISP. This corresponds to a Nyquist frequency. of, 250 Hz. At GLISP, the seismic

signal was fitered with a low pass filter with a cut oﬁ’ of ut 120 Hz before digitizing, B

and therefore there is not a problem of temporal allasmg

In a direct analogy to temporal aliasing, one must also consider spatial aliasing.
Con51denng the situation of seismometers in a horizontal plane detecting horizontally
travelling energy, waves with a wave]ength léss than twice the seismometer spacing will
not be resolved, and their energy will be ahase&back into the range of wavelengths that can
be resolved. _.}‘? :



At GLISP, the seismometers are in matenal which has a compressional wave velocity
() of ~ 2000 m/s. The smallest seismometer spacing in the E/W direction used at GLISP
was 32 m (see figure 1.2). This means that we cannot resolve cncrgy horizontally
propagating in this direction that has wavelengths less than 64 m. This in turty implies that

waves with frequencxes > ~ 30 Hz will be spatially- aliased d (since velocity = frequency x
wavelength). -For example, spatial aliasing will map energy at' ~ 35 Hz to ~ 25 Hz, and -

thus the observed energy at 25 Hz includes energy from E/W horizontally travelling waves
with frequencies of 25, 35 and 85 Hz (assuming no energy above 90 Hz). Similiarly,

givena shear wave velocity B ~ I/N3 & ~ 1150 my/s, Shear waves with frequencies above ~

20 Hz will experience spatlal aliasing. The spectrd of waves detected at GLISP show -

significant energy below 30 ‘Hz, and ‘since the eismometers are insensitive to these
frequencies, spatial aliasing at GLISP is suspected. L

Given that vertically incident waves have an infinite apparent wavelength, and are
thus not subject to spatial aliasing, the above discussion represents a worst case scenario.
Since at GLISP the source is buried a depth of the order of twice the array size directly

beneath the seismometer array, there will have to be excitation of surface/interfaca waves -

before spatial aliasing will become a problem
In our case, we are in effect sampling in the frequency domain and transformmg to
 the time domain. We will model this by calculating u(p,q,f) for a finite number of f, p, and

30

q's (L, M, and N respectively) with sampling intervals chosen considering these numbers 4

and the physical dimensions of our. model. For example, we need a maximum frequency
~of 100 Hz to agree with the experiment we are trying to model, and therefore,

fNyq = -—t- = 90 HZ
and |
‘ 1 1 180
Af = —_— = —— = —
_ T t L
and thus .

F = LAf = 180 = 2fy,,

In (3. 6), we sum from -F/2 to F/2 whxch corresponds to frequencxes from -fyyyq to fNyq

For p and q, it is the smallest spatial sampling interval that indicates what frequencies
~can bgresolved. The smiallest seismometer spacing is 32 metres in the x-direction (E-W)
and 24 metres in the y-direction (N-S). The shortest wavelength observable is 2 x
seismometer spacing, and therefore, '

9=l -1
2Ax 64 T2Ay 48

a
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Using the conjugate symmetry relations, the matrix u(f,p,q) will be filled up, and
then utilizing the inverse discrete Fourier Transform, u(t,x,y,0) will be calculated.

The effect of a wave with a band-limited frequency content was modelled By defining
a zero amplitude for frequencies 0-30 Hz and 90-120 Hz. This amounts to padding u with
zeros before inverse Fourier transforming. : ’ '



o Chapter 4

Results

' The theory developed in Chapters in 2 and 3 was implemented on a digital computer
(see appendix 2 for code). The first thing to be noted, is that when calculating all quadrants
of the transform of u (u(w,p,q)), the symmetry predicted by (3.8) is absent. As a
consequence, when all of u is calculated explicitly with no enforced symmetry, the
displacement in the time-space domain (u(t,x,y)) is complex.

For my first synthetic calculations, I chose a simple earth model cdnsisting of a single
400 metre thick layer with seismic velocmes o = 2000 mys, B = 1‘1‘() m/s, and with a
density of 2100 kg/m3 over a half-space with o = 2600 m/s, B =1800 m/s, and p = 2400
kg/m? The seicmic moment tensor is for slip on a horizontal plane, and thus the only non-
zero terms in M are M3 = M;; = 1010 N m = seismic moment. The source is burried at a
depth of 375 metres.

The velocity of ground motion above micrbSéismically active area is of the order of
10-6 m/s for a 10 Hz wave [Aki and Richards, 1980, p. 497]. An earthquake source takes
the form of step function. Since I have specified my source as delta-like, I have given the
derivative of an earthquake source, so instead of calculating surface displacement, [ am .
calculating surface velocity.

The seismic moment is given by My = [t x average slip x fault area, where |l is shc
modulus [Aki and Richards, 1980]. Microseismic faultmg with a's"p of 1 cm and a faui.
area of 1 m? is reasonable guess for fracturing at GLISP. Given th: +he source is the top
layer, the seismic moment of this source is: Mg ~ 107 N m. - I have specified a seismic
moment of 1019, and thus velocities of the order of 103 are expected from my calculations.

I calculated u for 40 @'s (20 of these are zeros corresponding to frequencies =30 - 30
Hz, 90 - 120« Hz, and =90 - —-120 Hz), 20 p's, and 20 q's, and inverse Fourier
transformed via (3.6). The}(o s were evenly spaced between —120 and 120 Hz, the p's
were evenly spaced between —1/2Ax5/21t and 1/2Axy/2r, and the q's were evenly spaced
bétween —1/2AyJ/2n and 1/2Ayy/2n (where Ax, and Ay, are the minimum seismometer
spacings indthe east-west and north-south directions respectively). The nymbers of
frequénciesba.lculatcd was essentially an arbitrary decision, but the cost of computer time
was a factor. Since uis symmetric with respect to m, u only had to be calculated for lO
frequencies (10 frequencies are determined by symmetry and the other twenty are zero).

In the discussion on the discrete i inverse Fourier transform in chapter 3, I define At =

1/F, Ax = 1/P = 1/(Axg)/(27), and Ay = I/Q = l/(Ays)/(Zn) Thcrcforc the total time
represented in a seismic trace will be the number of samples in a trace (40) ;1mc§ the inverse

4
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of the total frequency bandwidth (240 Hz), Wthh is 0.17 sec. Slrmharly, since dx; is
32m, the maximum x value is 4021 m.

/ The real and imaginary components of a E-W section of the above calculation are
plotted in figures 4.1 and 4.2. The produced seismograms are oscillatory with no distinct

arrivals. The amplitudc}m'é of the order of 10~ m/s for minimum and maximum x, and of

the order of 10~5 m/s for intermediate values of x. Traces for y = 0 have amplitudes of -

zero. These results are unexpected and cleary non- physxcal They indicate a need to
recxarmnc the Lheory

. Investigation of Possible Singularities Encountered in Inverse Fourier
Transforming '

The following material is based on chaper 6 of Aki and Richards [1980]. In these
examples I consider the acoustic or SH problem only. The full elastic problem introduces
only algrebraic, not fundamental, complexity.

~iot
Given a point source in an infinite homogeneous space with time dependence €
(where i is V-1), a solution to the inhomogeneous wave equation is given by

_ 1 -iexRre—1) -,
o(x,t) = R € . . (4.1)

where R? = x2\+ y2 + 22, and ¢ is wave velocity. Using Fourier transform techniques to
express this spherical wave as a sum of plane waves, the Weyl integral is obtained

- 1 aioRe = L i(px +ay - nzl) o o
. —eloRlc = e Ty - _
R 2 f f in P | (4.2)
34
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i
where N = '\/u) /02_— p2- q2. This amounts to essentially the same integral I am
calculating numerically over horizontal wavenumbers p and q. It is obviously singular for

[ 2
=V w /(p2_ + qz) B there is a zero wave amplitude as Izl — oo, T} must be constrained

such that Imm < 0. However, for the range of ®, p, and g's I am considering, and given
- the seismic velocities of interest, N} is always real, and the positive square root is taken, and
thus any singular points are avoided.

Transformmg (4.2) to cylindrical coordinates, the Sommerfeld mtegral is produced
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in

R r (4.3)

0

- 2 ) :
where k. =V x2+ y2 =Y o /c2— kf » and Jg is the zero order Bessel function.

Equation (4.3) represents a decompostion of a sperical wave into a sum of cylindrical
waves instead of plane waves.

By making the substitution k; = wp, where p is the ray parameter, (4.4) is obtained.

oo

‘Ilicinlcz o %Jo(copr) e—im&zldp

0

(4.4)

where & =T/ and is i times the vertical wave slowness. Just as it was required that Im n
2 0, here the choice Im § > 0 must be made. For application of complex analysis, one

desires that the integrand of (4.4) be analytic. To this end, it is required that & be a single-
valued function of p. By dividing the complex p-plane into two Riemann sheets

corresponding to Im § >0 and Im § < 0, a branch cut Im & = 0 joining these two sheets is
defined. & is single-valued and analytic on each of these sheets. Given Im €£=0,it

follows that (c™2 ~ p?) is real and non-negative. Thus

c2—'(Re p)? + (Im p)2 - 2i(Re p)(Im p) 2 0,

Allowing ¢ to be complex (corresponding to an attenuating medium), with Im ¢ small and

positive, it follows that

Im (c2) - 2(Re p)(Im p) = 0
and thus
(Re p)Im p) =¢

where € — 0 for a perfectly elastic medium. And thus the branch cut is a hyperbola in the
p-plane. Additionally, since Re(c™2 — p2) > 0, it follows that
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(Im p)? 2 (Re p)? - Re(c7?)

and the branch cuts are limited to those shown schematically in figure 4.3. These branch
cuts must be avoided in the evaluation of the integral (4.4).

Imp 4 ™

“epmmmens  [ntegration Path

o vmer  Branch Cuts

te

y Re 12

-1lc

Figure 4.3 Branch cuts and contour path in the complex p-plane

3y

When one considers even sunple situations consisting of a few homogeneousgierrs_/
the complexity of the problem increases dramatically. and very intricate paths of inte on
are required. I refer the reader to sections ¢ 2 and 6.3 of Aki and Richards [1980] for more
details. . g

The important observation to relate to the above discussion, is that I am not free to
choose the sign of the 1's in my calculations. The signs in E are constrained by assigning
to ez the interpretation of either upward and downward travelling waves (real 1) or
upward and downward attenuating waves (imaginary n)‘ P was calculated by finding
residues. at +11 and +'nB, and thus the signs of the n's are %termmcd by pole locations.
But, more 1mportantly, by numerically calculating band- lm?ued approx1mat10ns to the
- integrations, I have avoided the complicating regions (-1/c < Rep < 1/c). By av01dmg
these regions, I have also neglectéd the contributions of some types of waves (eg. surface
waves).



Computational Difficulties ¥ the Evaluation of the Source Contribution’

Since singularities encountered in inverse Fourier transforming are not the cause of
my unsatisfactory results, the evaluation of the source term may be a possible source of
trouble. :

First of all, [ am Specifying a source that is band-limited in frequency. And thus the
frequency spectrum of my source is a boxcar, and when I inverse FFT a sinc(t) behavior is
produced. An oscillatory seismogram is to be expected from an oscxllatory source. The
synthetics in figures 4.1 and 4.2 were recomputed for a non-band-limited frequency band
Frequencies from 0 to 90 Hz were summed. Some results from this calculation are shown

in figures 4.4 and 4.5. Although these results have much of the same unexpected-

characteristics as figures 4.1 and 4.2, they are much less oscillatory in time. Thcy also
- have similar amplitudes. :
Additionally, I have specified the source function as a derivative of a delia function.
When I inverse FFT with respect to wavenumbers p and q, I am attempting to numerically
integrate an integral having a form }

f ipe'™" dx | (4.5)

00

(see (2.31)). For (4.5) to be integrable, ip ’must be square i'ntegrable [Sneddon, 1951].
Since ip is in fact not square integrable, (4.5) is divergent. I accepted a band-limiteﬂ
approximation. On close inspection of this calculation, it is clear that this was hot wise:

- Py _p

—00

o P .
fipelpxdxﬁlim ipe Tdx . o (4.6)
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e,

e 2 |
= lim ~ ©0s(Px) + = sin(Px) 4.7)

P—)°° X

“Equation (4.7) represents an oscillatory function for non-zero P. This function begins to
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oscillate very rapidly as P gets large. As x — 0, it approaches the derivative of a delta

function; that is, approaching from postive x it goes to +e, and approaching from negative
X it goes to —oo, ‘

- Reformulating the Source

The problem stems from an inability to take the Fourier transform of the derivative

with respect to x, of the delta function d(x) ( and of d/dy of 8(y)). A feasible solution
might be to approximate the delta function by a function of the form

_Ixl

&n=Aeé 4.7)

where A and a are constants > 0. Given (4.7), I can write

ee oo’ 0
d(x)dx = Ae *dx + Ae

~2Aa - (4.8)

[Hodgman et al, 1959]. And, if the constants are chosen such t_Hat A = 1/(2a), then

[

&

f‘&mu:i . (4.9)

—o0



as required for the Dirac delta function. It follows from.(4.7) that the x

-derivative of the
delta funqtion is

d :aéc ;, x20
3 X0 = P o (4.10)
;C i x‘<0 .

) 0 ..
oo - x x
d L A+ .0 -A T,
f 3;5(?(? dx = ¢ dx + ‘ITC

—oco

- 0

il

¢

. | 2A | @y’

", M

(

and thﬁg@f@re t?}ngouner transform of (4.10) is convergent. Choosing a determines thc
L

. », -.v,v'v:igith,r;;‘ ?@(\) rwev delta functlon that is how far from x = 0 does 8(x) have a sxgmﬁcant

~’ e
;.usmg a deﬁnmon for 8(x) and 8(y) given by (4.7) is change the source
from a point source to one which occﬁlplcs a finite area in the x-y plane and this will make
some slight modification to the expression of my source.
I now specify my source as

3 -
i

)

LT
gi(x,t) = —Milg aBe b H(z—~z)d(1)
IxE iyl
M, . a——Ac * Be ® 8(z-z0)d(1)
5 o
~Mi3s-Ae * Be ° 8(z-zp)8(1) (4.12)
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by
x iyl ' )
Ae 2 Be b §(z-2zd(t)|e' P Y “’”dt dy dx =

- )
X x
= —Ml15(z—zo) %e“elpxdx— %e"elp‘xdx dy

o 0

A i a ipx ipx

= —M,15(Z‘7-0) " e [e e |dx}dy
0

A SR

= — M;, 8(z-zp) e “sin(px)dx|dy -
il 0. a
0.
'A 2 . <yl
. ’ —£1 P
= - MiIS(Z—Zo) ; 5 p 2 Be b eqydy "‘/
a +p’|
e A | | | o
= 4 M 3(z-29)| o _2p ik _2q - (4.13)
| a "+p7] b "+q . Coot

[Hodgman et al, 1959]. The transform of the _s;cond term in (442) is found in a similiar
way, and thus g;* in (2.31) is now given by

>

P .
*_ {A_ P : qQ - _ p B ¢ '
gi = 4 M a 2 2 B -2 2+4M" 2 2|l b .2 2| (4.14)
a +p b "+q a +p |l b "+gq

. TN
with g;** unchanged from (2.31).
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Using the modjﬁed source described above with a = b = 10, I produced synthetic
seismograms. The gectigns that correspond to the ones shown in figures 4.1 and 4.2 are
shown in figunes 4.6‘?’and 4.7. The same sections for a = b = 0.1 are shown in figures 4.8
and 4.9. Figurés@.ﬁ@nd 4.8 and figures 4.7 and 4.9 are seen to be virtually identical
when overlain. Again, amplitudes are not significantly changed, and other differences do
not appear significant.. )

Anotlier ‘Source Formulation

A possible problem with the above source formulation is that the derivative of the

delta function defined by (4.7) does not exist at 0. This can be avoided by an alternate
“description of the source:

2 2

&(x)=Ae X ' (4.15)

where A@nd a are constants > 0. Given (4.15), I can write

=2Aa? S : (4.16)

[Gradstein and Rizhik, 0152,2@ And, if now the constants are chosen such that A = 1 /(2a2),
- then (4.9) is still satisfied’. 1 follows from (4. 15) that the x-derivative of the delta function
is

d A <’

; l
I now specify my source as <
2 2 22 2 2
gi(x,t) = M, -2-‘;1)( e Be? P Ce™ S22y
a , .
2 2 > 2 2 2 2
-x/a 2B y ey /b Ce™ fc S(z-29)

+M;, Ae N ‘
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_ 2/ 2 . 2/b2 lz/ 2 a
-Mj3 Ae” " Be U Ce T == 8(z-29 (4.18)

a NE ‘_v‘:pé "}.‘L

y v
where A=1/(2a2), B=1/(2b2), and C=1/(2¢c2). The Fourier transform of the first term in

(4.18) is given by

biis

M.

1

]

a

2 .
2A" BCD
= Mi 1 ——2—— S(Z—ZO)

L » a .

=iM;, A> BCDabep ©

2A -x
Mil —TXC
a

242 BCD
| ————&(
2

a)2 2/4 N o . z/ 2 2/b2 . )\“‘
- [o] —X —-— o
z-zg)|VE ce xe /% e /P PR gy dy

2/ 2 2/bz —12/c2 i(px + .
“Be” " Ce 8(z—zp)fe" P TV m)dt-dy dx

~o0

2 o° 2 2 2 2 . : ® a2
Mi &Eﬂ &z—zo)ff xe /a e’ o el(pxﬂy) f e fe [ops((ot) - isin((nt)] dt|dx dy
a <

2, 07 22 = 2 2
-wc/4 b/4 - i
Vn ce C/H*\ln be? /]f xe X /® &% gx

—o0

32 sy bzqz;- o) . -
e ¥z-zg) (4.19)

[Gradstein and Rizhik, 1971, p 494, 509]. The mméfdmis of the second and third terms
" in (4.18) are found in a similiar ways, and thus g;* in (2.31) is ow given by

‘gi=iM;, A> BCDabepr

: 22 22 2 2
32 _a@api+bq +co)

3/2 2
iM;, AB"CDabcqn ¢

VA + b+ o)
- a + cw
e proa +

(4.20)

and g;** in (2.31) is given by

/2 22 22 212
~1/4(ap +bq +c o)

LR 3 .
g; = -M,; ABCDabert ¢ (4.21)

R



Using the modified source described above w.na=b=c =1, | again produced
synthetic seismograms. The sections that correspond to the ones shown in figures 4.1 and
- 4.2 are shown in figures 4.10 and 4.11. Maximum amplitudes are of the order of 102,
which is now within reasonable agreement with the amplitudes I predicted at the beginning

of this’ chapter Also, only the trace directly above the source (x = y 0) is zero. This is to ‘

be expected for a horizontal shearing source: Other differences do not appear significant.
To demonstrate any effect the choice of earth model h on the %ﬁlts “the
recalculated the sections corresponding to figures 4.10 and 4.1 1 u%mg a earth model closer

to that representing GLISP. Model 2 consisted of a 225 metre thxck layet (a 2000 mys, B

= 1150 m/s, p = 2100 gm/cm3), with the source at 200 metres depth gver a half-space.

with o = 2600 m/s, B = 1800 m/s, and p = 2400 gm/cm3. Thc resulting sections are
shown in figures 4.12 and 4.13 and show no important deviations from those in figures
4.10 and 4.11.

Enforcing a Real f

Of all the quantities in (2.36), only E does notrave the symmetry necessary to

transform to a real quantity. After examining (2
been specified as propagating down out the stack of layers is complex. Obviously we must
somehow constrain this wave to have a real amplitude in the space-time domain.-

I have a vector f

f(x,y,z,t) = fff EAwe '(P*+ &~ dq dw (4.22)

that satisfies the Ba'sic éq_uations (2.1) and (2.2). It follows that the real part of f also
satisfies (2.1) and (2.2). And therefore I can write

Re f(x,y,z,t) = —;—[f(x,y,z,t) + f*(x,y,z,t)]

= %fff m[EAwe—i(px FA T OD L kA ke PR u)]dp dq dw (4.23)

), this implies that the wave that has-
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and thus
h(p,q,z,®) = f f f Re [f(x,y.z.0]e ®* * 9Y ™ “Yix dy dt
=%f/f‘° fff “.EAWcil(p'-P)x#_—(q'-q)y—(w'—w)l)J+ E‘"‘A"'w *cl[(p+p)x+(q+q)y_(m+w)‘)]dpdqdm dxdydt
4.24) 4
but rccoghizin g vthat ‘
. (4.25)
v H . “ |
~ and letting w*(-p,—q.,-c\o) = w(p,q,m), I can write
T ) ___[ *(-p.-q.- " -
v,"i‘:w . & ' '

Equatmm (4 26) shows that replacmg E(p q,0) by E(p,q,w)+E*(-p,-q,») (E is symmetric
with respec& to (1)) wxll producc a dlsplacement stress vector h(x,y,0,t) that is real and
sansﬁes e%uanons (2.1)and (2.2). '

I ?cplaccd the eigenvector matrix by the above expression, and generated synthetics
using the source given by (4.21) and (4.22). The expected symmetry of u(p,q,®) is now
present, and thus the amount of computations prior to Fourier transforming can be reduced
by a.factor of four using symmetry relations as described in chapter 3. A typical section is
given in ﬁgure 4.14. The amplitudes are real and.of the order of 10-2 m/s, with the trace at -
- x =y =0 anull race. The traces are bcgmmrig to look more impulse-like and less
oscillatory, but there is significant energy before the first arrival is expected.

To demonstrate the effect of. thc number frequescies and wave. numbers summed
over, ﬁgure 4.14 was rccomputed for twice as many @'s, p's, and q's. The range of
frequencies and wavenumbers was the same, so the sampling intervals were halved. The
result is shown in figure 4.15. This section contains wavetrains that have at least the

AAAAAAAAAAA £ omnlm il L fa | DR L VA »\AA A | L A A T
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arrivals are expected at 0.14 and 0.25 seconds respectively. An amval is seen at 0. 25 sec, ="

but not at 0.14 sec, but a strong compressional arrival would not be ex‘péctcd from a shear

source. The impulses at 0.25 and ~ 0.2 sec can be seen on traces 3 ar\cj 4 as well, and

treating these as arrivals, and apparent velocity of > 12000 mys is calculate'ﬁ f e aC

and thus an mterpretatlon of a first arrival or refractlon is 1mpo>sxble i s )
An obvicus thing to try would be to increase the range of the frcqucnc”xcs zmd ‘

wavenumbers summed over. This causes difficulty howeveg, because for p's and q's even :-—ﬁ"f l

slightly larger than the values I have used to model GLISP, singularities are encountered.

These singularities correspond to the existence of surface waves. As discussed previously,

these singularities make inverse Fourier transforming very difficult, an&as a consequence,

the 1nvé§se transforming would have to be done in a complex planc with great care taken to

avoid all poles and branch cuts

Sampling in the Fourier Domain

o L4

[ have an analytic expression for u(p q.f). I define the ampiitude of u to be zero for f
< 30 Hz or > 90 Hz. I then sample the spectrum at frequencies scparated by Af, which is®
equivalent to multiplying by an infinite Dirac comb with an 1mpulsc separation of Af, and -
then I'inverse Fourier transform. This is equivalent to convolviny u(t) with a Dirac comb
with an impulse separation of 1/Af, This causes the u(t) to repeat in time every 1/Af
seconds [Kanasewich, 1981]. If the length of u(t).is longer th\n\uéf then multiples of
u(t) will be folded back upon u(t) in the range 0 to I/Af
For figure 4.15, Af = 240 Hz/80 = 3 Hz and thus u(t) rcpeals every 0.33 sec. The
direct shear wave is not expected until 0. 25 sec so the trace duration is obviously longer
than 0.25 sec, and clearly I have a problem. The first arrival is expected to be the direct P-
wave, which arrives at 0.14 sec, and energy arriving before this can now, be attributed to
folding of multiple copies of u(t) back upon itself it the primary range of t. Interference of
'this folded energy is probably disguising the true P arrival. :
The sampling in P 18 Ap P‘/NP where P is the total range of p's being summed, and
- NP is the number of p's bemg summed In an analogy to sampling in time and the Nyquist
frequency, the Nyquist distance is given by 1/(2Ap) = NP/(2P). Since X,, = NPAx =
NP/P, the Nyquist distance is at the midpoint of the distance axis in figure 4.15. Again in
an analogy to the time-frequency situation, just as frequencies above the Nyquist frequency
_are interpreted as being negative frequencies, I can interpret distances above the Nyquist )
distance as being negative distances, and thus I can fold the second half of figure 4. 15 ino
the negative distance axis (see figure 4.16). . ,
The very same argument can be applied to time axis. The samplmg interval in = ~__
ﬁ%quency is Af = F/NF, and thus the Nyquist time is given by 1/(2Af) = NF/(2F). The

B
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total time along the time axis is 1/Af, and thus the Nyquist time is half way along the time
axis, and times after this can be mapped into negative.times. Since my source is at time
Z€ro, no energy can an"i/\:c/_g_tgthe surfacofgbquyc this time, and any energy existing in the
trace before zero time js'due to.multiples of u(t) being folded upon itself,

To avoid the prbblgm of folding multiples of u(t) back onto itself, the sampling
interval in frequency (Af) must be chosen small enough so that the period at which u(1)
repeats (1/Af) is longer than the time period from t = 0.0 to end of non-zero values of u(t).
The calculation of u for 40 w's, and 20 p's and q's that was necessary to produce the
results in figure 4.15 took ~ 6 minutes of CPU time on the Amdahl mainfraime at the
University of Alberta. ‘To do the calculation properly for a reasonable bandwidth of

frequencies and wavenumbers, a very large amount of computing time would be required.



. Chapter 5

-

Conclusions

The analytic expression for the full six by six seismological propagator matrix derived
here is original work. Computer code for the calculation of this propagator matrix has been
written and is given 1n Appcndlx 2. This is code is exact, but is inefficient and’
consequently is comp ngll);gcxpcnswe It is expected that the effort required- for
" numerical computaucm bmlfd +¢ased by algebraic simplification of the expression for the
propagator matrix (?ms i$a dwf"ﬁcult task on REDUCE?2, but may be easier on other
algebraic manipulators) dnd by the implementation of a interpolation’scheme that would
interpolate between calculated values of the propagator and thus reduce the number of times
that the propagator has to be calculated explicitly.

I specified a point source in terms of the seismic moment tensor times the derivative
of the Dirac delta function. This allows for an arbitrary orientation of ar%é} source
mechanism whether it be shearing or explosive, and once integrated in space and time it -
allows for sources of finite size. The source must actually be specified in terms of
approximations of Dirac delta functions rather than true delta functions as the derivative of
the Dirac delta function is not square integrable and thus does not have a Fourier transform '
I suggest that an approximation in terms of Gaussian functions is appropriate because the
condition of unit impulse can easily be’ conservcd constants describing the source can be
chosen con51dcr1ng physical sxgmﬁcancc, and the source can be made- arbitrarily close to a
delta function constrained only °by the numerical limits of the digital computer used. ‘The
fault planc are# for mlcrosexsmaE :sources is thought to be of the order of 1 m2, the
. constants of the Gaussians cah be chiosen ‘so that the specified source has dimensions of
order of 1 m2. Having a source description with finite area does not contradict a point
source description, because as observed seismic radiation h avelengths of the order of
100 m, and thus a source dimension of 1 m is still effectively a point source. .

1 encountered numerical difficulties in computing the inverse Fourier transform.
These difficulties are a consequence of the periodic nature of the untransformed result. If I

sample u(f) with a sampling interval Af, the untransformed u(t) will be repeated every 1/Af.
If the signal u(t) has non-zéro amplitudes for times greater than 1/Af, then this energy will -
show-up in the primary range of times from 0 to 1/Af. The true signal u(t) is of course
analogue and transient. The thduced pcnodxcny is purely an artifact of sampling u(f), and
thus if enérgy is being folded into the primary range of times, the signal u(t) will show .
" non-physical effects that are due solely to sampling in the frequency domam

The problemis that given the frequency spectrum of a signal u(f), “there is no way to

determine a priori the length of u(t) (when I say the length of u(t), I mean the time T for
_ N .
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which u is zero for all times t 2 T). Therefore, the appropriate choice of Af can only be
verified by comparison of different u(t)'s produced with different Af's. Once Af has been
chosen small enough, further reductions in its size will not effect u(t). '

Given sufficieqt computer resources, the next step in process of modellmg GLISP
sexsmograms by the method I have shown would be to choose Af so that 1/Af is greater
than the length of the expected seismic wavetrain. Thl{}ngth will depend on the seismic
model and types of waves present. The observed wavetrains during steaming at GLISP
~ were of the order of 1 sec, and thus a Af of 1 Hz might be required (the smallest Af I uscd
“was 3 Hz, and this was not decreased due to limitations in computer time). Once this " 1s

done, one should be able to make reasonablc comparisons betwcen the calculatcd
seismograms and the ones observed at GLISP. :

Following this, one should modifysthe location and description of the source until the _

correlatlon between observed and calculated seismograms is maximized. .
To'i xmprove the resemblance of the two sets of seismograms, spatial aliasing would

have to be considered in the calculated seismograms. It is thought probable that significant

spatial aliasing occurred in the seismometer array during the monitoring at GLISP. For this
" reason, waves with wavelengths and wavenumbers outside the ranges I considered are
- contributing to observed ground displacements. The amplitudes of these waves would
have to be calculated, and the calculation of the synthetic seismograms would have to be
modified to consider the aliasing of these waves. Again, modelling parameters could be
changed and the synthetic seismograms recomputed. The effects on the computed
seismograms, when compared to the observed seismograms, will dictate whether the
changed parameters do a better or worse job of modelling GLISP.
The-effect of widening the bandwijdths of frcquency and wavenumber is that types of
“waves other than the ones I have cdnsidered are encountered. This complicates the
problem, because now singularities are\encountered during the calculation of the surface
displacement. To avoid these singularities, one must compute the Fourier integrals in‘a
complex plane in the presence of poles and branch cuts. Complex contour paths must be
followed to avoid these complicating points and lines. It i$ presently unclear how the use
of a Fast Fourier Transform can be preserved in this situation.

‘The lengthening of bandwidths is only necessitated by thc prcscncc of spatially

aliased waves. Intelligent comparisons can probably be made between observed and
calculated seismograms without conmderm‘g aliased waves in the calculated seismograms.

I have solved the problem for an arbitrary number of laycrs, makmg no assumptions
- about density or seismic velocity within the layers. Also, the source may be buried at any
point within the stack of layers. However, to simplify the problem, I have assumed the
layered earth model to be isotropic, and a natural follow-up of this work would be to
reformulate the equations in order to consider an earth consisting of a stack of layered

anisotropic material, a more realistic model pa}ticularly for the shallow sediments found in.

' . ~
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was greater than initially anticipated, the objcq ive of this thesis is unchangcd and is the |
" modelling of observations made at GLISP. The desue to model the observations: made at -

Although the mathematical complexity th?/\"-vas necessary for this theoretical work

GLISP is motivated by a desire to gain a better un\ erstanding of the mechamsm gcomeny co “
nds now, little is understood about the f :
direction and the mechanism by which the 1nduce‘ fracture propagatcs a8 wcll @s the -

overall shape of the induced fracture. A solid un erstanding of a reahsue methdd for
modelling the observations made at GLISP shouyld, at least provide 1n51ght mto the "

and location of the propagating team front. Asi it st

fracturing mechanism and the location of the steam front tip. \

Finally, I comment that the procedure used for the calculauon of the propagator can, j=-

easily be followed for a generalized situation. That is, given a layered media of - any linear.

form that can be described by a constitutive equation of the form of (2.1) the propagator
matrix can be derived in the manner I have demonstrated. For example a two phase
saturated oil sand where one phase is the sand matrix that obeys the elastic equatipns I have

specified, and a_ second phase consisting of bitumen that is subject to visco-elastic’ ‘
"‘ﬁxanon can be cons}dered by adding D'Arcy’s equation, a lmear‘ :

behavior. Th“{

n, o)

constitutive cqfih‘imri and the continuity equation for fluid flow to the original six.
equations. The continuity equation is needed to ehmmate the fluid flow velocxty in terms of- - -

fluid content and fluid pressure.

L
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Appendix 1

b ; “",-Com'pu‘tations with REDUCE2

- P | .
~For REDUCE?, I formulated the three relations (i =_1, 2, 3) represented by equation
(2.1) as: ‘ :

do,,(2) do,,(z2) do, 5(2) 2
0= Ix + dy - + I + pw u(z) (ALD)
do,(z) do,«(z) do,.(2) 2
0= é,f( + ;;( t o+ PO V(2) _ (A1.2)
do,4(z) do,4(z) dos4(z) 2 . _
0=—g—+ d; t—g  tPOv(@ (A1.3)
J

where the property ;=0 has been used. I have neglected the source contributions g
since they have coefficients of 1 and the source vector is easily found via (2.6). Fori =1
2,3 ,and j =1, equation (2.2) was represented as:

]

- 0=0,,@- u[dgiz) + d—%g} | (Al.4)
0=0,2) - u[dfi(zz) + ——dziz)] | (ALS)
=0y, - 4 L2, dffy” * d\g;(zz)] - 2“{%22)} AL

N

) | .
where, since I am working in the transformed domain, the specified derivatives with
respect to x and y are very simple

| ad;f=*/:pf
d
Ef=GQf

where f is any eligible function (ie. u(z), v(z), w(z), or 6(z)). By“making the substitutions
(A1.7) - (A1.9):



P A S I A N

dx dy dz dx

o1 = 1 2 + 42

o, @= ;\{du(z) + dv(z) +dw(z)] o du(z)

du(z) N dvi(z) de(z)} 2 dv(z) .

2D =N *dy T dy

(AL.7)

(A1.8)

(A1.9)

also as defined by equation (2.1). I now have six equations whose only unknowns are the

~ 6 components of f, and the first derivative, with respect to z, of the components of f.

U}lng REDU@EZ, I can determine the coe_fﬁcients of f(z) and df(z)/dz and thus form

the following equation:

df(z)
dz

0= Al + AL

12 and so the matrix A I look for is:

A = —AL AR‘

'..—."T'\yh'ere the source term is given by (2.6)

2 i gl —b 'O
g, 0
al| & 0
v gv(z) . —AL ol |-
| 0 -g,
01 78]

The result is simplified by enfofcing some substitutions:
A = p(o? -2 h = pp?

p2+g? = K2

(A1.10)

(2.11)

(2.6) (again)

-

The next step was to calculate the propagator rﬁm’x via equation .‘(2.15). Since X1 - A

can only be singular at the eigenvalues of A, I need only calculate the residuesof X1 — A



at the four distinct eigenvalues of A:
¢

P(z,zp) = g 2oA

(z-z4 X

21:«/—%9(1—

dX

27“/_21t*/—2R65

e(z~zo)A e(z-zo)A C(Z‘Z&A (z-29A :
= | Re » Ay |+Re » Ay |+ Re > Ay |+ Re c v g
X-A X-A X-A X-A

(Al1.12)

since A, and A5, and A, and A, are 1dent1cal due to the degeneracy of shear waves in an
isotropic medium.

Let us define a 6 x 6 matrix ¥

. (Al1.13)

It is known that ‘¥’ is singular only at the eigenvalues of A. It follows, that I can express

each component of ¥ (¥, ) as a ratio of some analytic complex function ¢ and a
polynomial of the elgenvalues of A’

. q)lm(x)

[x ‘_7‘1]["“x2][xf13][x-i4][x—ls][x- M] (A1.14)

After making the followivng substitutions

«

\P]m(x) =

68
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I can write
W) = — S 91 - ——  (ALIS)
[x= =g ][4 =g [ x = V=T mg | [+ /T |
Thé rpsidues of a function of this form are easily calculated: |
(Res)), = Res [\le(x)]x:ﬁnu
= Res . : JINEY _ S _
x—Fna .[x+«/.:na}[x—w/j—_lnﬁ: [xf«/:nﬁ] X=V:na
3 f¢lm(%) 1
| e e g T |
=®, 0|y, N L (AL.16)

[Churchill and Brown, 1984].

After making the substitution x=4-1 My + €, for each component of ¥ (¥ ) I can
. write '

lim [e ‘P('e)lm] =

£—0

Vs

= lim \ € 91af®) ,
. [(*/—1— N +e )-«/—-T na] [(w/T Nte )+w/-_1_ na] [(w/_f N He )-«/In 42 [(«/_1_ N te )+'\/I Ul B]z

O~
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- 01fE) i
—0 ' 20 2
‘ [(ana+e)+@3a][<ﬁna+e)fmﬂ} [ W ingre)+47n)
= (Dlm(x) x=ﬁna
=Resp, I : AALIT) ¢

(A1.17) demonstrates that the numerical calculation of the residue of the first simple

=1 N+ E into e¥ and then letting € = 0.

“ One possible method of calc
analogous to that demonstrated for Ole. I start by first writing

Y

((Resy),;, = Res[¥),00] vy,

= Res L 1) .
oV ey e |
_d DX . -
S e e N =N AP
BT W | L)

[Churchill and Brown, 1984]. In principle, I should be able to find the residue of this
second order pole by following a procedure similar to that followed for the simple pole:

I .
m_]_ ) -

. T2
< lim —|¢ ‘P(e),
£—0 dg .

Fave pole residues follows a dcvelopmcnl'



\

. ' ,
wmdl € 010
= i _—
e—0 d ~ 12 12
0 (\/_nﬁ+£)-«/-—n {(«/_r1 +E)+"v/_“ ”(‘v mﬁ e)—w/-lnB] {(a/?nﬁw)-m/jnﬁ
d ]l . 0,6
= h 1l — -
o EﬁOdE I ’ . 2
‘ _ l:('\/_nﬁﬂs) ‘\/_n JL()/—nB+e)+\/—n ]{(“/'—1—713+8)+1/-—1—TIB}

< ) ' ' Ao
X=Y——_1T|D i .

_— d‘
- d—X tlm(x\)

e s é

= (Res7,)lm e ’ ; (A1.19)

-~

Analogous to (Al. 17) (A1.19) shows that the numerical calculatlon of the second

d
order poles Is equrvalent 10 substltutmg X = ’\/ Ing+e mto ey, taking . E , and then

lemng e=0. .
o There 1s a problgm however REDUCE? is infallible in the sense that it never makes
mistakes in what it does, but it does not always evaluate expressions particularly
mtelhgently In this case REDU(B‘&? was unable to do the obvious cancellati

expression €2¥, and produced an mtermedlate result that had a zero deno
invested a certain amount of effort, using the tools available to the REDUCE

.(ie. flags such as KORDER,¥ACTOR, GCD, MCD, etc.) but we were unable to force the .

cancellations necessary to allow the evaluation of €2¥. ‘ = o

After several attempts to overcome this problem, I finally- arrived at the following

procedure which allc{ws“the evaluation of the second order S-wave poles Firstly, Im

. the substitution x = v — nB+ € and. express 82‘1’ in terms of a ratio of polynomlals of €.
After settmg z5=0in (A143) it follows that -

-

R

(Resy), = limoi[e, ‘I’lm(e)] Y
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Q2
) ]
t L > . .
7| Dyo(€ 21 D€
[Nlm(e) e+ Ny (€) 2 cu] lmz( ) _ N, (e) e™ ‘LZ() .
—m 4 & € c\(_—Tnnz
g0 de b, (© 2
Im! €
2 ﬁi

€ ,

(A1.19)
where primes indicate derivatives with respect to €. _
L _ After examining all the components of ¥, it was determined that N was of order ) in
+€,'and D was of the order of €2; that is: . i .
. © N@®=No+N;e+Nye +... . ;
N _ : 2 3 4 :
D) =D,e +D3e +Dye +o : -
yand thus \
- (Resz)lm = |

‘, v/\[(N.l.+‘QNze+...)%(I\JI&0‘+ N1é+..‘.)Z-}[D2+D3é+"f"]
—E——>O » - 1\ . ' ‘ | 2 ‘

. ( L . B " -

_f-[’N(H-N;r €+ . ] [D3 +2D4e+. ]} e c’/—_' e A

Y
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_ {N1+NOZJD2_NOD3 RELIY
N; No[ D V-1 npz | ' o
=l— 4+ =—|Z— = € v
gr’ [?2 DZ[ D2 ’ . ) (Ale)

~

So, the cﬁiéuiation of the S-pole residues can be reduced to determining three coefficients
. ©

of € in the numerator and denominator of ‘¥’ after substituting x =A, + eorx =X, + €, and

then evaluating (A1.20). This was a simple procedure in REDUCE2.

e
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REDUCE2 Code for Calculation of the Propagator Matrix

operator u,t;
on fero;off nat‘
fet |am=ad'lp**2*rho~2*mu, mu-bet**2*rho
matrix s(3,3),99¢(3,1),eqns(6, 1) r<3,1> b<6, 6) c(6,65,a(6,6)>;
r: —mat((x) Yy, €(z);
Comment specify derivatives wrt x and y.
for all |,x,y,z let
dfducl,x,y,z),x)=i*p*udl ,x,y,z),
dfdudl,x,y,z),yd=i*q*udl ,x,y,z), .
dfCtdl,x,y,z), x)=i*p*t(l,x,y,z),
dfit(l,x,y,zd, yd=i*xgq*t(l,x,y,z);
Comment speclfg equations A1.7 - Al. 9
for k:=1:2 do begin
slk,k): —Iam*(for n:=1:3 sum df(u(n X,4,2),rin, 1)));
sk, 3); ey >: s(3, k) —t(k X,4,Z7;

for m:=1gHs Ko maaty | ‘ .
s<k,m>;=-<ﬁ,m)§$§*<df<u<k,x,g,z),rkm,1>>+dr<u<m,x,g,z>,r<k,1>>>
end; ' '

s¢3,3):=t(3,x,y,2); o
Comment specify equations A1.1 - A1.6

' for k:=1:3 do begin ) C a 3

eqns(k 1>:=Cfor’ mi=1:3 sum v T : '

df(s<(k, m) r(m 1)))+rho*o**2*u(k X g,z) | ) N 4 <i>
eqns(k+3 1): ‘t(k XY, Z)— muk(dfuck,x,y, z) re3, 1) »

o
+dfdu(3,x,y,z),rk, 159 end;

’eqns<6 1 —eqns<6 D-lam*(for n:=1:3 sum dfluln,x,y,z), r(n 1)),
Comment find matrices. ﬂl(called C> and ﬂr(ca]led B>, then.-calc A
for l'—1 6 do

for m:=1:3 do begin : . .

g :¢C1 =0;coeff(egnsdl; 1);ulm, xrg z)‘cc) b¢i,m):=cet; - .
£ dd‘.—O‘coeff(eqps(l 1),t(m,x,g,z),dd),b{I,m+3>.=dd1; o i
‘c§1'—0'ék*=df(u(m x,4,2) z)'ébeff(eqns<lt1),ck,cd);c<l,m):=cc1}

"dd1:=0;dk:=df(tim,x,y, z) z); coeff(eqns(l 1},dk4dd); I

eCl,m+3):=dd1 S

‘end; L PN

=—(1/cy¥b; ;. P

‘matrix wi6,6),wi6,6);



SN

- ?”\},,

T

w:=kx*(fdent‘6)-a; - (
Comment propagator matrix is contour inieérql-of wi
out "—wit;write wi:=1/w;out t;
Comment. calculate residues ,
matrix prop(6,6);korder eps,eaz,ebz,o,dlp,bet;
let etak¥2=o%*2/alphk2—-(p*k2+g**2),
e tbik2=0%*Q/be t k¥ 2 (plk2+qk*2),
pRE2+ Rk 2=l kK2 ; . ' g
for 1:=1:6 do for m:=1:6 do begin; »
write |I,m; ) : . .
- numer :=numCwicl,m)Y$denom: =dencwiCl,m>>$
Comment Residues from P-wauve poles
let xx=i*etat+eps; resi:=sub(eps=0,eps*wi(l,m)*eaz);
.let xx=—i*etat+eps; re%2:=sub(eps=0:eps*wi(I,m)/eaz);
Comment Residues from S-wave poles -
let xx=i*etb+eps;n0:=ni:=d2:=d3:=0;
coef f(numer, eps,n);coeff(denom, eps, d);
res3:=(n1/d2+n0/d2*(dz-d3/d2))*ebz,
let xQ;;;*etb+eps;n0:=n1:=d2;=d3:=0;‘
coeff( umer,eps,n);coeff(denom;eps,a);
- -res4:=(n1/d2+n0/d2*(dz-d3/d2))/ebz;
out prop;write prop(l,m):=resi+res2+res3+res4;out t;
clear xx ' '
end;
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The Matrix A Coor )
The matrix A as it was calculated in REDUCE is given ‘below:
0 Y-1p '2— 0 0
. Bp
0
o203
Y1 q2p <)
. . . uZ ®
G 2 2 12 a2
S A (e —4B Yl
B Ll
@;m 4B y/a Asy
0
L [
where _ '
",22 22 ,4 ,22 S
e LPBpaB -0 a-4pB+q'af) :
B = > — : -
. a . . . . IR B . | N .~ R i
o 22022 5,4 T, 20 —
A PP B -0 o -49P +4q°a B )
52~ ) ~
a -
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The Propagator Matrix

4

4

Our propagartorvmatri.x as derived in REDUCE?2 is given below in the fo;m of a

FORTRAN subroutine.

>

SUBROUT INE PROPG2(RLP, BET,RHO,Z,20,P,Q,0,PROP>
IMPLICIT REAL*8 ¢A-H,0-2) ‘
COMPLEX*16 |,PROP(6,6),ETA,ETB,EAZ, EBZ,EZ
'REAL*8 K,ALP,BET,RHO, Z, 20, P,Q, o“

1=¢0.0,1.0)

K= DSQRT(P**2+Q**2)

" D2Z2=2-20

ETA = O%*2/ALPH*2-K¥*2 '
ETA = CDSQRTC(ETA)

ETB = O%*2/BET**2-K**2

ETB = CDSQRT(ETB)

EAZ=CDEXP (| *DZ*ETA)>

- EBZ2=CDEXP( | *DZ*ETB)>

EZ=ERZ*EBZ

PROP (1, 1)=(2¥K¥kgBET ¥ JHEAZHEZ 2K KM 4HBETHRGHEAZ 2Kk 4*BET
P Ak GHEBZHEZ+2*KHk Gk BETH*GHREBZ -2k Kk 2K Dk 2kBETHR 2R ERZHE Z +3 %K ok
| 2 0¥H2RBETHK2HEAZ+ I MKk 24 Ohok DRBETHk LR EBZHEZ -2 %K Ak 2% Q 4k 2% BE T *
!*Z*EBZ—2*Ki*2*0**2*BET**4*EHZ*E242*K**2*0**2*BET**4*EHZ+2*K*
| M QK 2HBETHRGHEBZHEZ - 2Kk 2% Quok 2#BE THK G HEBZ~ 0%k 4 REAZ - 0K GHE
| BZHEZ+2% 0 2% QiR 2¥BET # 2K EAZHEZ - 2% 0¥k 2 Quok 2R BE TH R 2HERZ — 2% 4ok
1 2RQue 2% BETH#2¥EBZHEZ+ 2% Q% 2kQe X 2HBET ¥R 2¥EBZ ) /( 20k 2kE 2k (KoK
1 2%BET#*2-0%%25)

PROP (1, 2)=(P*Q*BET**2* (K*k*2*BET**2*EARZKEZ - K**2*BET**2*EHZ Ko
'*2*BET**2*EBZ*EZ+K**2*BET**2*EBZ 0**2*EHZ*EZ+0**2*EHZ+O**2*E

1BZ*EZ- O**Z*EBZ))/(O**Z*EZ*(K**Q*BET**Z 0%k ) )

PROP(1,3)=(P*(~ 2*K**4EHLP**4*BET**4*EHZ*EZ+2*K**4*HLP**4*BET
'**4*EBZ+4*K**4*HLP**Z*BET**G*EHZ*EZ 4RO GRALPHR2¥BET*HG*EBZ
'—2*K**4*BET**8*EHZ*EZ+2*K**4*BET**8*EBZ+3*K**2*0**2*RLP**4*B
| ET#%2*EAZHEZ~3HK*H 2Ok A Priok g MBET 4ok 2K EBZ — G ¥k 2k 04k 2K AL P ok
| 2%BET#* 4R EAZHEZ+EKK 2k 0%k 2R AL Pk 24 BETHk 4R EBZ+ K Hk 2k Q¥ 2k BE
I THHGHERZHEZ~I ROk U BETHHGREBZ+ 22X H* 2KAL Pk 4 *ETR*ETB*BET
PARGRERZ-2F KR 2HALP* 4R ETA*ETB*BET**4*EBZ*EZ- 4*K**2*HLP**2*ET
'H*ETB*BET**G*ERZ+4*K**Z*HLP**Z*ETH*ETB*BET**ﬁ*EBZ*EZ+2*K**2*

*f'ETH*ETB*BET**8*ERZ—Z*K**2*ETH*ETB*BET**8*EBZ*EZ =O#kg*A **4*
"EHZ*EZ+0**4*HLP**4*EBZ+2*0**4*HLP**2*BET**2*EHZ*EZ —2%0% 4*HL

| PRk QRBET**2%EBZ- 0**4*8EI**4*ERZ*EZ+O**4*BET**4*EBZ 2*0**2*HL

'Pf*4*ETH*ETB*BET**2*Eﬂ2+2*0f*2*HLP**4*ETH*ETB*BET**Z*EBZ*EZ+:
: }ﬁ*0**2*HLP*!2*ETR*ETB*BET*‘4*EHZ-4*0**2*HLP**2*ET9*ETB*BET**
"1 4#EBZ*EZ- 2*0**2*ETH*ETB*BET**6*EHZ#Z*0**2*ETH*ETB*BET**6*EBZ
"'*EZ))/(2*0**2*ETH*EZ*(K**Z*HhP**4*8ET**2 —2KKHR 2K AL Pk QRBE T Hok

L 4+KHK2HBETHKE - QR H2HALP ARG + 240 * DKALPHK2KBE THk2 -0k 2R BETH4 ) )

PROPC 1, 4 Y=(K¥kq#ALP**4¥BE TH# 24 EAZAEZ-K 4R ALPR*4*BETH*2*EBZ-
| 2HKRKAHALPRAQHBE T H 4 HERZHEZ+ 2HK K4 #ALP# 4 2HBETHKAHEBZ +KAM4XBE
| THXEHFEAZWEZ DY *4¥BETH#EXEBZ-K**2HO##2KALPHHHEAZHEZ +KAH2HO**

1 2%ALP**4*EBZ I"K"""Z"‘0""“2"'HLP"""2"'BET""“2"‘EF§Z"‘EZ 2*K**2*0**2*HL

~

7

77



| PAK2XBETHH2HERZ- K**2*0**2*BET**4*EHZ*EZ+K**2*0**2*BET**4*EBZ

| KRR 2R QINDAAL Pk G HBE THH2HEAZMEZ +K#H2H QA+ 2KAL Pk g HBETHH2REBZ+.

2K QoK 2R PAKDHBE THRGHEAZHEZ - 2% KWk 2R Qo 2R QL Pk BE Tk 4 KE
I BZ-K**2*Quk2HBETHKGHEAZHEZ KA 2% Qak 2BE THRGHERZ~K #ok 2 AL Pk g

TETRA*ETBHBETH*2*EAZ+K**2*ALP** 4 ¥ ETAXETB*BET**2KEBZHEZ + 2 kK Hk Dk

FALPA*2XETA*ETB*BET**4*EAZ- 2Kk * 2% AL P** 2k ETAXETBH*BET ** 4 *ERZ *E

12- K**2*ETH*ETB*BET**6*EHZ+K**Z*ETR*ETB*BET**G*EBZ*EZ+0**2*Q*

PX2RALP¥KGREAZHEZ -0k 2HQUok 2+ ALP KK GREBZ - 2% 0k 2k Qk kA P2 *BET
"**2*EHZ*EZ+2*0**2*Q**2*RLP**Z*BET**Z*EBZ+0**2*Q**2*BET**4*EH
T ZHEZ-O%H 2K QR Q¥BET ¥ REBZ + 0¥ 2R ALPH* 4 HETA*ETBHREAZ -0 %% 2 kAP #k
P QFETAYETB*EBZ*EZ~2%0%* % 2% AL PH* 2+ ETAETB*BETH*2*EAZ+ 2% 0%+ 2%/ P
DA RETAETBH*BE Tk 2XEBZH*EZ+0%* 2 *ETA*ETB*BE T **4 % ERZ -0 #* 2 *ETAKE
'TB*BET**4*EBZ*EZ+Q**2*HLP**4*ETH*ETB*BET**2*EHZ =QER2%QL PR g x
|ETA*ETB*BET**2%EBZ*EZ~ =2RQERRALPHK2HETARETBHBE T GHERZ+ 24 Qi
'2*HLP**2*ETH*ETB*BET**4*EBZ*EZ+Q**2*ETH*ETB*BET**6*EHZ —Q¥w2w
'ETH*ETB*BET**G*EBZ*EZ) »

PROP( 1, 4)=PROP( 1; 4)/(2*|*0**2*ETH*RHO*EZ*(K**Z*HLP**4*BET
I Aok 2— 2*K**2*HLP**2*BET**4+K**2*BET**6 0**2*HLP**4+2*0**2*HLP*
DR2ABETHR2 -0k 2HBET#%4 ) )

. PROP(1,5)= (P*Q*(K**2*ﬂLP**4*BET**Z*EHZ*EZ ~KAR QAL PRk RBE THk2
I *EBZ- 2*K**Z*HLP**Z*BET**4*EHZ*EZ+2*K**2*RLP**2*BET**4*EBZ+K*
IH2XBETHHEHEAZHEZ-K**2¥BET#H*G*EBZ -0 ¥ AL PA*4*EAZHEZ+Q**2%AL P
PARGHEBZ+2H QKA HALP AR 2DHBETHK 2HEAZKEZ - 2% 0%k 2¥AL Pk 2*BET % 2¥ERZ
I —Q¥*2HBETHK4REAZFEZ+Q* K 2HBE TH*4¥ERZ - —ALP**4*ETA*ETB*BET**2*ER
'Z+HLP**4*ETR*ETB*BET**2*EBZ*EZ+2!@LP* 2*ETA*ETB*BET**4*EAZ-2
IHALP**2*ETA*ETB*BET**4*EBZ*E2Z~ ETﬁ*ET ET**6*EAZ+ETA*ETB*BET
'**S*EBZ*EZ))/(Z*I*O**Z*ETR*RHO*E!*(K**Z*HLP**4*BET**2 —2%Kw*2
[HALP KR 2HBETHK4 +KCk R 2#BET # %6 —04* 2% AL P ¥k 4+ 24 0%k 2H AL PH*2HBE T2 -

. OR%R2%BET**4)) _

. PROP([,6)=(P*(K**2*HLP**4*BET**?*EHZ*EZ—K**Z*HLP**4*BET**2*E
FAZ-KA*2KALP*RGHBETHH2HEBZHEZ+K* ¥ 2 #ALP** 4 ¥ BETH# 2 HEBZ - 2w K* ¥ 2%
TLPA#F2HBETHHRGREAZHEZ +2 6K 4k 2 *AL Pk QRBE T #ok g ERZ + 2K Rk 2 AL Pk 24
VETHK4HEBZHEZ~2%K ¥k 2HALP #H2HBE THKGHEBZ+K #h2MBET 4ok GHERZKE Z =K 4ok
| 2BETHH*G*EAZ-K#** 2 BETH*GHEBZHEZ+KH*2HBE TH*GREBZ - 0Hk2KAL Pk 4w
TEAZHEZ+0**2XALPH*GREAZ+ONK2*AL Pk g *ERZHEZ —O¥H2HALPHRREHEBZ+ 24

T OHARKRALPHA2RBETHH 2HEAZHEZ~ 2% 0% * kAL PHK2HBE TH*2REAZ - 2*0**2*HL,

I PR QMBETHKKEBZHEZ+ 24 Q4 2K ALPH# 2K BE THKQKEBZ -0k 2#BE Tk 4 HEAZ*
IEZ+Q*#2*BETH*4HEAZ+O*H2HBETH*GHEE ZHEZ~ QR 2HBETHHGHEBZ ) ) / (2% |
| HOXAZHRHONEZ* (KA H2XALPA*4HBET 44 2= 24K Mk HALPHKQHBE T 44 444248
| TETHHRE-0RA2KALPHK 4+ 2K 04K 2HAL PAK2KBET Hk2 - QR4 KBETH%4 ) )

PROP(2, 1)= (P*Q*BET**Z*(K**2*BET**2*EHZ*EZ KH#2HBETHH*2REAZ Kk .
IR 2HBETHH2*EBZHEZ+K¥*2HBET**2*EBZ— 0**2*EHZ*EZ+O**2*EHZ+0**2*E:‘

IBZH*EZ-Q**2%EBZ)) / (O**2*EZH (KW UBETHH2-0%*2 ) )

PROP (2,2 )= (K#h2¥O*# 2BETAK2HEAZ +KA# 24O £ 2#BETH#2KEBZHEZ+2%K%
| H2H QK DHBE Tk AHERZHEZ-2WKAH2HQRk 2 KBET Sk 4 KEAZ~ 24K W42 H Qe #2#BET -

Lok REBZKEZ+ MK KR QIR 2KBETHH 4 REBZ - QMK 4HEAZ~O*K4HEBZHEZ 240k #
L 2HQIAQRBETHRKEAZKEZ + 2K OHH 2K Qb k2 HBETHHQKEAZ+ 2K OH K2 Qum2HBE T *
© | R2¥EBZ*EZ- T2HONKZHQURZHBETHHZHEDZ ] / (240 WH2HEZH (KH#2#BETH#2-0%
1%2))

PROP(Z,3)—(Q*(-2*KF*4*ﬁLP**4*BET**4*EBZ*EZ+2*K**4*HLP**4*BET
EAKGREBZ +AHKA* G HAL PR QHBE THRGKEAZ *EZ-4#K*# 4 *ALP##2*BETH*EEBZ
| ~2#K ARG HBETHHGHEAZMEZ+ 24K *HGHBET xR GHERZ + JHKFH2KOFKQKALP# 44 #B
|ET#*2¥ERZHEZ- KRR 2HQHAQHAL PR KBETHH2HEBZ ~EHKMR2H0RM2HALP**



l
|

| 2HBETHRGHERZHEZ +GHKHA2HQRHQHAL PHALKBE THKAKEBZ + JHIHH 2K ORk2HBE

TN THRGREAZHEZ -3 kR 2KQR R 2RBETHRGREBZ + 2% KR 2kAL PRk ETA*ETB*BET

[ HKGHEAZ 2K KRR QHALP*K G HETAXE TBHBE TH* G *EBZHEZ~ 4K #k DAL PHRKET
| ARETBH*BET**GHEAZ +4*K** 2K ALP* 4 2*ETARETBHBE THHGHEBZHEZ+ 24K HH 2k
|ETA*ETB*BETH*GHEAZ-2+K*#2#ETA*E TBHBE TH*GHEBZHEZ—-O**4*ALPA* 4k
| ERZHEZ+0%* 4 *ALP** 4 HEBZ+2%0*A4*ALPH* 2K BE TH# 2K EAZHEZ- 2% 0%k 4*AL
| PAR2RBETHN2HEBZ-ON*4#BE THHGHEAZHEZ+0%*GHBE TH*AHEBZ-2%O%*2*AL

| PaKgRETAKETBHBE THH2¥EAZ+ 24 0%+ 2*ALP**4¥ETA*ETB*BET**2+EBZ*EZ+

4RO 2kALPH*2*ETAKETB*BET**4*EAZ-4* Q% Z*HQP**2*ETH*ETB*BET**
| 4%EBZ*EZ~ 2*0**2*ETH*ETB*BET**S*EHZ+2*0**2?§TR*ETB*BET**G*EBZ

IREZ ) )/ (2%0Mk2HMETAREZH (IRH2HALPHKGRBE T2~ 2| Hok 2R AL P AR RBETHoHK

| 4 +KHHR2HBE Tk GOk 2HALP K4+ 2% 0ok 2K AL P #k Q¥ BETM 2~ OHK2KBETHK4 ) )
PROP(2, 4 )= (PHQ¥(KA#2+ALPWEG*BETHH2HEAZHEZ-KAE K ALPH*AXBETHH2
| KEBZ-2%KAk2HALP#H2HBETHk GHEAZKEZ + 2HKHH AL PAMIBET Hk 4 *EBZ+K

| #2XBET**GHEAZHEZ —K**2*BET#*G*EBZ - 0¥k 2 AL PH*4*EAZ*EZ+0**2*ALP,

| 4ok GREBZ+ 2% Q¥4 2K AL Pk 2HBETHHQHEAZHEZ 2% 0¥k RALPHKHBE THR2HEBZ
| ~Q#KHBETHHGHEAZHEZ+O**2*BE TH*4HEBZ—-ALP** 4 *ETAXETBHBETA*2*ER
| Z+AL Pk 4HETRFETB*BET#*2*¥EBZ*EZ+2+%AL PH*2¥ETA*ETB*BE T+ 4 ¥EAZ—2
| *ALP**2*ETA*ETB*BE T4+ 4 *EBZ*EZ~ETA*ETBH*BE T**6 *EAZ+ETAMEEB*BET
|RGHEBZHEZ ) ) / (2% | HOWKKETARRHOMEZ* (KHH2HAL Pk HBE Tk 2!
I RALP AR QABETH* 4 +K Ak 2KBETH#6 - o**z*ﬁLP**4+2*0**2*ﬂLP**2*ﬁ£
| Q*#2*BET**4 ) ) Bt
PROP (2, S5 )= (KH* 2K Quok kAL Pk 4HBE THHKEAZHEZ - Kk 2k Qok 201 EWMinp
| ET##2HEBZ -2 %K 4k 2k QAok 2R AL PAKHBE THH 4 REAZKE Z+ 24K Aok 2ok QRn AL
| 2HBETHH4HEBZ +K Mk 2k Qb4 QR BE THRGHEAZHEZ-KHh 2k QekQHBETH*GHEBZ-0%
LR QUK RAL PR GREAZKREZ+QhR 2K QIH 2R AL PRk GHEBZ+ 2K Q44 2k Qrok kAL Pk
| 2KBETH*2HEAZHEZ 2% 0% # 2 QHk 2 AL P#* 2#BE THH 2 EBZ - 0ok 2k Qhok 2HBET*
| GREAZHEZ+QHH2HQHw2HBETH* 4 KEBZ+ 0%k 2KAL PRk HETARETBHEAZ -0k 2
| ALP¥* 4 HETA*ETBHEB2*EZ -2+ 0™+ ¥ ALP** 2*ETAHE TB*BE THH2HEAZ+2% 0%k
1 2%ALP*R2XETARE TB*BE T 2XEBZHEZ+ 0% 2K ETAKE TBHBE Tk 4 KEAZ -0k 2k
FETAETB*BE TH**4*EBZ*E2-Q**2*ALP** ¥ ETAXE TBH*BETH*2*EAZ+Q*2*AL

| PR¥GRETARETBHBE TH#2*HEBZHEZ+24QH* 2k AL PH**ETA*ETB*BET**4*EAZ~"

P 2%QUER AL PHR RETAKETBHBETH*4*EBZHEZ - Q¥+ 2*ETAXETB*BET**G*EAZ+
| Q**2*ETA*ETBH*BET**6*EBZ*EZ ) / (2% | #0##2xETARRHOKE 2% ( Kk 2k AL Pk
P 4¥BETHK2-2%[CR¥ 2 AL Pk 2k BET** 4+ KH# 24 BET ¥ G0N 2KALPAKkG + 2004 %2
JRALP#*2BET*42-Q%*2%BET*%*4 ) ) v

PROP (2, 60=( Qe (K**2¥AL Pk 4*BETH*2HEAZHEZ—K**2KALPH*4HBET R 2HE
FAZ~KHR*2#ALPHgHBETHH2HEBZHEZ +K Kk 2KAL PH Kk 4HBETHR2¥EBZ—2¥KHH2%A

| LP##Q¥BETHR4HEAZMEZ + KRR 2K AL PHH2KBE TH* G HEAZ+2¥K M2 ALPHH24B

|ETH*4EBZHEZ—2HK MK AL PHHKBE THH4HEBZ+K 4k 2HBE TG HEAZHEZ K4k
| 2XBETH*GHEAZKH*2HBE THAEHEBZHEZ+ KRR HBE THHGHEBZ -0k QHALPH* 4

|ERZHEZ+0%** 2 ALPH*4HEAZ+O¥ R 2UALPHRHGHERZ*EZ - 0*f2*ﬁLP**4*EBZ+2*'
1 QER2KAL PR2RBETHH2KEAZREZ - 2% R 2¥AL PR 2DRBETHH2HERZ-2K0¥ R 2*AL

'P**2*BET**2*EBZ*EZ+2*0**2*HLP**2*BET**2*EBZ =QHA2HBETHRGHERZ *

L IEZ+0%#QHBETHRGHEAZ+ QRN 2HBET R4 KEBZHEZ- O H2XBETH*4*EBZ ) ) / (2% |

| %O K2 KRHOKEZ (KWW 2WALP o GHBETHHR2— 2K KM QAL PAKQHBE THk4-+KHK24B
|ETHHRG 0K 2HALP #4426 0% # 2 AL PHKQRBETHH2- Ok 2XBETH*4 ) )

PROP(3, 1)=(ALP**E*ETA-2*ALP**4*BET*#2*ETA+ALPH*2¥BETH*4*ETA
| YHK(— | YRPRBETHM2KEAZHK( — | Ik (—KHR2KOMK(~2 DRALPRAGREAZHH2+KH*2
LR QAN ( =2 SRALPHKG+ 20K HK2H 0k ( ~2 YRAL PRk HBE THKKEAZ k2 - 2K KK 240
LR (=2 YRALPHRGRBE THM2-KHA 2O (=2 YRALPHHQABETHKGREAZHH 2+ HH 2k
| 0%k (=2 )*ALPHK2HBE TH*4+ALPHF*AHEAZ 42 ~ALP k4~ 2KALPHR2HBETHH24E

| AZ**2+2XALP*H2HBE THH 24 BETH*AHEAZ##2-BETHH4 )+ ( 2KORHGRALP##2-2
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1R QR4 RBET KD~ —2XQHRDKALPRRKBETHA2HK MK+ 2K QMK 2MBE THk 4K HKD Yok
L= 1 YRPHBETHR2KETBHREBZHH( — | Y4 2%K*R 2K AL PHKHBE THK2HER T4k~ 2K
LA QAL Pk QHBETHok 22 KR 2KBE THk G REBZ WM 24+ 2Kk QM BE Tk 4 ok DAL
IPAKNEBZAKQ+0HKRAL PAK2 4 Q%4 2KBE TR 2KEBZHK— Ok NBETHH2 )

PROP(3, 2)=(Q*BETH*2%( ~2%KH*4HALP*#GHBETHH2REQZHEZ+ 2K Kk HALP

l**S*BET**Z*EBZ+6*K**4*HLP**6*BET**4*EHZ*EZ—B*K**4*HLP**6*BET"

'**4*EBZ—6*K**4*HLP**4*BET**6*ERZ*EZ+6*K**4*ﬂLRf*4*BET**6*EBZ

L+ 2% KA* A Pk 2¥BE TR *GREQAZHEZ - 2*K**4*HLP**2*BET**8*EBZ+2*K**2:

PRO*H2HALPHKGREAZHEZ - 24Kk k24D 2HE PhokgRERZ - —RKRRQHQN R 2P ik
'G*BET**Z*EHZ*EZ+4*K**Z*O**Z*HLP**G*BET**Z*EBZ+4*K**2*0**2*HL
[P 2¥BETH*EHEAZHEZ—~ 4R KNk 2k kAL Pk 2R BE THRGHERZ - =2RKHON MO
'*BET**G*EHZ*EZ+2*K**2*0**2*BET**8*EBZ+2*K**2*HLP**8*ETH*ETB*
IBETH*2¥ERZ-2%K ¥ 2+ALP¥*BHETAXETB*BET ** 24 EBZHEZ— kK ** 24 AL PHkE
PRETAYETBHBETH*4HEAZ+EH KA 2HALP**GRETARETB*BE T4 EBZHEZ+6 KKk
PR2HALPA*4*ETA*ETB*BET**6*EAZ~ —OHKHIR2RAL PR 4R ETARETB*BET**6*EB
1 Z*EZ- 2*K**Z*HLP**Z*ETH*ETB*BET**8*EﬂZ+2*K**2*HLP**2*ETH*ETB*
| BET**8*EBZ*E2Z- 2*0**4*HLP**6*EHZ*EZ+2*0**4*HLP**G*EBZ+6*0**4*
LALP K4 *BET**2XEAZ*EZ~6* 0%k 4k ALP**4HBETH*2*EBZ - —OHQHRGHALPHH 2w
'BET**4*EH2*EZ+6*0**4*HLP**2*BET**4*EBZ+2*0**4*BET**6*EHZ*EZ—
L 2%0¥*HBET*HGREBZ~QH* 2k ALP* ¥ GHETA*ETBH*EAZ+0** 24 AL P**GHETAET
I B*EBZH*EZ+3*0%*2kALP**GHETARETBH*BET** 2% EAZ -3 0%k kAL Pk G*ETA*
IETB*BET**2*EBZ*EZ- —3HO*HR2HALPHRGHETARETB*BET** 4R ERZ+ 302 %A
"P**4*ETH*ETB*BET**4*EBZ*EZ+0**2*HLP**2*ETH*ETB*BET**6*EHZ =0%
PR2HALP**x 2k ETA*ETB*BETH*6*EBZ*EZ ) )

PROP(3,2)=PROP(3, 2) /(2% 0**2kALPH*2KETRREZH( Kok
'Z*HLP**G*BET**Z 3*K**2*HLP**4*BET**4+3*K**Z*HLP**2*BET**6 ~K*
R 2*BETH*g— 0**2*HLP**6+3*0**2*HLP**4*BET**2 ~3QRH2NAL PR 2FBET
I %4+ Q%K XBETH*6 ) ) !

PROP(3, 3)=(- 2*K**4*BET**4*EHZ*EZ+2*K**4*BET**4*EHZ+2*K**4*BE
'T**4*EBZ*EZ —2HKHRHAHBETHRGHEBZ+IHK HK 2K Wk 2HBE THk QHERZHEZ - 2| ¥
PHR2HOH A 2HBETHH2RERZ -2 XK HH 2K Q# K 2K BE THH 2HEBZHEZ + 3K ok 20 Okk 2% BET
LAk QHEBZ 0% *GHEAZHEZ-OWHGHEBZ ) / ( 2*Q*H 2REZH (KA 2HBETH*2-0%k2 ) )

PROP (3, 4 )= (PH*(K¥*2¥ALP**4¥BETH*2KEAZHEZ—K¥ 2% AL PRk 4*BE Tgh % 2*E
FAZ~KA*2*ALP**GHBETHH 2HEBZHEZ+K** 2 RAL PHok g MBE T2 HEBZ - 2k k2%
TLP¥*2HBETH*GHEAZHREZ + 2% H* 2K ALP*HRBETHKGHEAZ+ 2K ¥4 2+ AL PHk2%p
TETHHRGHEBZHEZ 24K * 2R ALP**2HBET*HGHEBZ+ K% 2k BE THHGhERZHE Z—|C % *
[ 2¥BET**G*EAZ~K#H2HBETHHGHEBZHEZ+K M 2HBET #*6HEBZ~ 0%k 2#AL Pk *
FEAZHEZ+O**2%ALP**GHEAZ+QWK2XALPHHGHEBZHEZ - Q% 2HAL P4 HERZ + 2%
QXK 2HAL P A 2HBE THR2HEAZHEZ <24 O H 2 ¥ AL P 2HBE TRk 2HEAZ~ 24O H 2 kAL
| PARKRBETHH2HEBZHEZ + 24 Q¥ U AL PH#2*BETH%2%EBZ~ 0**2*BET!*4*EHZ*
lEZ+0**2*BET**4*EHZ+0**2*BET*"'4*EBZ"‘EZ ~O**2HBETH*4*EBZ ) ) /(2%
"*O**Z*RHO*E?*(K**ZfﬁLP**4*BET**2 —2HKHH2RAL PR HBETHkg +K 4 2%B
TETHRE—0%* AL PHKG+ 2% Ok 2KALPHR2HBETHH2 -0 2*BET# %4 ) )

- PROP(3,5)=(Q*(K**2%ALP** 4 ¥BETH*2HERZHEZ-KHk 2% AL Pk 4w BEIT #k 24E

'AZ- K**2*HLP**4*BET**Z*EBZ*EZ+K**2*ﬁLP**4*BET**2*EBZ =2¥K**2%A
V'LP**2*BET**4*EHZ*EZ+2*K*:}*HLP**Z*BET**4*EHZ+2*K**ZFHLP**2*B
LETHHRGREBZHEZ=2%KH*H2HALP ¥ 24 BET#*4#EBZ+K#* 2#BETH*GHEAZKEZ —K %
'2*BET**S*EHZ—K**2*BET**6*EBZ*EZ+K**Z*BET**G*EBZ ~OH¥*2RALPHEg*
'EHZ*EZ+0**2*HLP**4*EHZ+0**2*ﬂLP**4*EBZ*EZ ~O*#2%ALPH*4HEBZ+2%
Q¥ 24 AL PA*2KBE T 2HEAZ*E 2~ ~2HORN2HALPANIRBET HkJREAZ - 24O 2%AL
IPAR2RBETH*2*EBZHEZ+ 20 * 2% ALP* % 2xBETHH2HEBZ~O** 2*BET**4*EAZ*
FEZ+Q#*2#BET**4*ERZ+O¥ ¥ 2*BET#*4HEBZHEZ-Q##*2%BE TH*4*EBZ ) ) /(2%]
I HOHH2HRHOREZ* (KH* 2R AL PH*4HBETHK2~ 2Kk 4 2R AL PH#2BETHA 4 +K #4245
TETH*E—0%¥2HALPH*4+2% 0%k 2 %A Pk 2hBETHK 22— #2#BET*%4 ) )



PROP(3,6)=(-K**4*9&8**2*BET**Z*EHZ*EZ+K**4*HLP**Z*BET**Z*E

I BZ+K## 2% Q#k 2k QL P2 EQZ*EZ—K** 2% Q%K 24 Q[ Pk 2kERZ 4K %k 2k Qrhok Dk

| BET#*2*%EAZH*EZ-K** 2% 0¥ * 2% BET# 2% EBZ+K**2* AL P**2*ETA*ETB*BET
PR 2REAZ-KH* 2% AL Pk 24 ETAKETB*BET**2*EBZ*EZ -4k EAZKEZ+0%*4
VREBZ ) /(2% | %O ¥ 2% ALP** 2% ETA*RHO*EZ* (K**2*BET#*2-0%%2 ) )
PROP(4, 1)=(2*RHO*BET #** 4k (K4 *AL Pk G*EAZ ¥4 2~ [tk G kAL PG~ 2k
I RGHALPHRGHBE TR 2MEAZHK2+ 2% KRG KAL PG RBET 42 +K* k4% PR 2BET
I g RERZ AR KR4 HAL PR 2MBE Tk G- [KOR K2 QMR 2R Priok g kEQZH K2+ KAk 2%0
LAk M AL Pk G+ 2H KR 2k QR 2R AL Pk 2R BE T K2 KEAZ 4ok 2 2 k[ ok 2 QbR 2k AL Pk
!*2*BET**é—K**2*O**Z*BET**4*EHZ**2+K**2*0**2*BET**4-K**2*Q**2
PHALPHKGRERZHH2+ Kk 2 Q2 kAL P AokG+ 2Kk 2% Qiok 2k AL P Aok gk BE TH*2%ER
| 22— 2K N2k QR 2K AL PRk G BE Tk 2 — ok 2k Qo 2k AL P ok 2HBE Tk 4k Q7 ok
| 24Kk 2 Qik 2 AL Pk KBE T4+ 04k 2k Qiok 2 kAL P Aok GokE QZ kD — Qok 2k ok Dok
VALP #4200k 2k Qa2 kA Pk 2kBE THR2REQZ #2424 0k k 2k Q k2 kA P Aok 2%B
TETHRH2+0%R 2% Qua2nBETHRGREAQZ ¥R - QR R QIR RBETHk4 ) ) / (| 0k 2%ALP
P**Z*EHZ*ETR*(HLP**4—2*HLP**2*BET**2+BET**4))+(I*RHO*BET**Z*E
I TB#R (=4 K¥k g kA PAk2HBETHHGREB 2NN+ 4 kKRG RALP KR 2KBET 44 +4k|Ckk4
IHBETH®*G*EBZ#*2—¢ KHHGHBETHH G+ KMk Nk RAL Pk 2RBETH% 2K ERZ A0k
1 24 H[CORMQRQAR AL P2 RBET k2 — G |Chok 20 Mok HBE Tk G HEBZ Mk 2+ 4 KK kKD
§ QM MBETHoKG+ KAk 2R QAR KA PRk QKBE Tk GREBZ Aok 2 — 4Kk 2ok Qo 2 AL

I PRKQKBETHMG— K Rk 2K Qiok 2HBE THHGHEBZHH 2+ KAk 2k QIR KBE Tk — ok

[ 4HALPHR2HEBZHH2+ 0%k G HALP K2+ QNG RBETHR2KEBZHk2 -0k g kBET#42-3
[ RO 2H QI 2HAL P HR2HBE TR 2HEBZ k2 4 JhOHk 2k Qiok 2 kAL P Aok 2K BE Tohok 2 + 3k

POWRRQUEHBETHHGHEBZ A2~ HOHARQuA2HBET 44 ) ) / (2% Q¥ 2¥EBZH (K*

| R2HALPAKHBET #h2 - KAk 2KBE THH4 -0 2RALP#H2+ QMK 2HBETHH2 ) )
PROP (4, 2)=( 2%P*Q*RHO*BE T4k g (K ¥ 2*EAZ K 2K AL PHoKE— kK RK QHERZ R
| 2%ALP*HGHBET#H 24K ¥k 2HEAZ WM 2 WAL P#k 2HBETH k4 KRR 2KAL PAHOKE + 2K HK2

| UKALP R4 HBE THMQ— KoMK 2K AL Pk 2+ BE Tk — QoM ZHEAZ MK AL PH* 4+ 2K Q4K 2K

| ERZHH2HALPHK2HBE THR2 -~ Ok 2MEAZHHQHBE TG + 04k 2RAL PHok~ 2K ONH KA

| ILPH*2KBETHR2+QR*2HBETHK4 ) ) /| %Q**2¥EAZHALPHRR2XETAK ( ALPHH4—2%

IALPHR2HBETHH2+BETH44 ) )+ ( | #P*QrRHORE TBHBE THokdk ( 4K HkREBZ Mok 2k
| ALPHKQHBETHk2—4 kK AR 2KEBZ#k 2K BE THk G — 4 KOk H 2R AL P AR HBE THHQ 4 4Kk

PH2KXBETHHG—3HOHHQREBZ N RALPHK2+ kO 2REBZHR2MBET #2243k Q% 2kA
VLPHHRQ-FRQARQRBETH%2 ) ) / (24 QHH2REBZ4 ( ~K ¥k 2RAL Pk 2RBE T Hk 24 [ ko 2%k

| BET#HM4+0%M2KALPH#2— QR 2#BETH42 ) )

PROP(4, 3)=(PHBETH¥2¥RYO* ( 24K #* A KALPH*ARBE TH*GHEAZKEZ— 2Rk
| 4*ALPHKGKBETH*4HEAZ-2KKH kG HALPH*GABETHHGHEBZHEZ+2KKH *4*ALP
DRORGRBETRKGHEBZ -4 KRR HALP R 2HBET##GHEAZKEZ+4 KOk * 4+ALPH#2%B
TETHREREAZ+4 IRk RALPHR2KBE THHGREBZHEZ— 4 +KH*4*ALPFH2HBET 46
| MEBZ+24KH k4 HBE THRGHREAZHEZ~ 24K ¥k MBETHHGMEAZ—2HK *okq HBE THk gk

LRk 2k O *HLP**4*BET*!2*EHZ+3*K**2*0**2*RLP**4*BET**2*EBZ*
| EZ—- KR RQU QMK 2HAL PH K GHBETHHQHEBZ +E KN 2HORRKAL PRk 2HBET#5r4

!EBZ*EZ+Z§K**4*BET**8*EBZ 3*K**2*0**2*HLP**4*BET**2*E§§?EZ+3* .

FREAZHEZ ~6HK k2K DRRKAL PR 2HBE THKGREAZ -G HK AR ROARRAL PHok24D

.~!ET**4*88Z*EZ+6*K**2*0**2*ﬁLP**2*BET**4*EBZ-3*K**Z*O**Z*BET

| HRGREAZHEZ+IHK MK 2K Q#H 2HBE T 4ok GHEAZ + FRKHH 2RO HK QA BE TRk G KEBZHE
| 2-3HKHH2KOHM2HBE THREHEBZ +O% kA *ALPH#GFEAZHEZ~O%*4*ALP**4¥EAZ -
| QR GHALP IR REBZHEZ+ON K4 HALPHHGHEBZ-2# 0%k GHALPH*2¥BETH*2XER

- | ZNEZ+ 2% QR4 RALPRKHBE THR2HEAZ+ 24Ok RALP K HBE TR 2HEBZ*EZ-
? AQRQIKARALPHR2HBE TR 2HEBZ +OWK4#BETH*4HEAZHEZ-O**4*BETH*4*EA
12-0**4#BETH*4HEBZHEZ+0*#IHBETHHGHEBZ ) )/ ( | RORK2KEZH (KH*2¥AL

PG RBE T2 MR RAL PRM2HBE TH k4 +K kA 2HBE THHE—OR 2 HALPH*4+2

I RO¥ QWAL PHRQKBETHH2-0*#2#BET#44 ) )
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PROP (4, 4 )= ( 2*K#*4KBETH* G *EAZHEZ~ 24Kk 4 KBE TH*4RERZ ~ 2Kk 4G
LETHHGREBZHMEZ+2*K kG HBETHRGHEBZ—2HK ¥k 2k Qdok 2WBE TR KEAZHEZ 43
DRKOR 2k QR QM BE THH2HEAZ +FHK KR 2 QK 2KBE Tk 2R EBZHEZ— 2 Kok 2ok ok

I 2HBETHAQKEBZ~ 2HK AN R QR 2KBE THHGREAZHEZ+ 2% K ¥k 2k Qo 2B E T 4
LERZ#2KKAKQKQHok 2K BE THkGHEBZHE Z— 24K ok 2 Qhok DB T ok g EBZ— Ok 4

| EAZ-0* k4 HEBZHEZ+ 24Dk 2k Quok 2R BE TH# 2HEAZKEZ - 2K Ok k2 Qbok 2 HBE T 44k
I *EAZ~ 2*0**2*0**2*BET**2*EBZ*EZ+2*0**2*0**2*BET**2*EBZ)/(2*

| QHHQKEZH (KK 2HBETHH2-0%%2 ) )

PROP (4,5 )= (PHQHBET4% 2% (K#h 2¥BE THH2HEAZHEZ-KAh 2HBE THHQKEAZ—

| KHKQHBET 44 ZHEBZHEZ KWK 2HBE THHQHEBZ ~O¥*2XEAZHEZ+OM*2HEAZ +0M

PR2KEBZHEZ-QRHHEBZ ) 3/ (O 2MEZH (KHH2HBETHR2~0%%2 ) )

PROP(4,6)= (@*BET**Z*( —KHHRHEAZIRKAL P ARG+ KRR 2HERZ N kA Pk
'4*BET**2 K*“Z*EHZ**2*HLP**Z*BET**4+K**2*HLP**6 =2¥CRNQHAL Prord

"*BET**2+K**245 PHAABETHRG + Q4R 2RERZ N2 KA PHokg— 20Ok 2KERZ Nk

FALP#*2HBE TH* 204K DKERZHK DKBE Tk g QK 2HAL P Aok 44 200k 2RAL PAKDHB
LETH#k2-0#k24BEAA*4 ) > / ( ORK2HETAREAZHALPH*k ( ALP 44— 2 AL PAk2*FBE
LTH*2+BET*¥4 ) )+ (PHBETHKKE TR ( 24K 4ok 2KEBZ ok 2k AL PH#2HBE T Hok2— 24K
DAKQKEBZHm 2HBETHHG~ 2K KK 2HALPAK 2HBETHH 2+ 24K MBE T ¥k d - Ok 2HER

| ZAok2HALPAK 2+ QXM REBZ MM QMBE THH2 40N 2HALP K2~ QW MMBETHH2 ) ) /(2% -
}0**2*EBZ*(—K**z*HLP**2*BET**2+K**2*8ET**4+0**2*HLP**2 ~0**2+B

TET**2)5) “

PROP(S, 1)= (2*P*Q*RHO*BET**4*(K**Z*EﬁZ**2QﬁLP**6 2HCORM2HEART ok
'2*HLP**4*BET**2¥K**2*EHZ**2*HLP**2*BET**4 SKARQHALPAOKE + 2K 40k 2
PRALP AR GRBET A2~k k2KAL PRk 2RBET Hk 4 0**2*EHZ**2*HLP**4+2*0**2*
LERZ#H AL Pk 2HBE T k2~ ~Q¥H2HEAZHKQRBE THokG + UK 2RALPokg ~ 2k Ok 2R
TLPAK2KBETHK24+0#%¥2KBET4k4 ) ) / ( | #O%#2REQAZHALPH*2KET A% AL P kg2 %
VALPH*2*BET**2+BET#*4 ) )+ ( | #*P*Q*RHOKETB*BET % 4% ( 4Kk 2hERZHH Dok
TALPAA2HBETHH 24K HkQREB 2R 2HBE Tk 4 — Gk hok 2 kA PAokQRBE Tk D + 4
1 % 2%BET**4 - 3*0**2*EBZ**Z*HLP**Z+3*0**2*EBZ**Z*BET**2+3*O**2*H
PLPHAH2—3kQk2KBETHH2 ) ) / (20K 2KEBZ* ( ~ K**Z*HLP**2*BET**2+K**2*
IBETHH4+ 0% 2¥ALPH#2~Qe*2eBETH42 ) )

PROP(S, 2)=(2%Q#*2#RHO*BE TH* 4% (K¥#2x AL PHkGREAZK* D~ K**Z*HLP**G
'—2"‘K"""2"‘HLP""“4"‘BET"""2"‘EHZ"""2+2"‘I'<"‘"‘2“‘HLP"‘"'4"‘BET"““Z-"K"""2"‘RLP““'l
V2HBETH*PREAZKH2- KA 2RALP*H2HBE T Hk g — Ok 2%AL PG REQZHHD 4%k kA
LLPAK Q424 0k 2 AL PAoK2MBETHK2HERZ A2~ 24Ok 2k AL Pk 2RBE Tk 2 - Ok 2

IBET#HGHEAZHR2+0%H2WBETH*4 ) ) / (| #O**2¥ALP*H2HEAZHETA*(ALP**4=2

PRALPAR2KBET**2+BET**4 ) )+ ( | *RHO*BE T**2*ETB*( ~ ~KARQR QN2 AL PR 2
I XBETH*2KEBZHH2+K ¥4 QMK 2RAL PAKMBETH#H 2+ K h K2k 2HBE Tk KEBZ*
| 4Q— K**z*o**z*BET**4+4*K**2*Q**2*ﬁLP**2*BET**4*E§Z**2~4*K*#2*
QR 2HALPH K 2HBET #k 4 — 4k 2k Quok M BETHRGHEBZHH2 + 4 HKHk 2k Qe 2WBET

LK + 04 G HALPAKKEBZHH2 - 0Nk G HALP A2~ OR M4 KBE THMKEBZHH2+Q4H4 4B

FETHR2=kOHk 2k Qik 2K AL PHY2HBETHR2KERZHM 2+ JH Wk 2k Qo 2k Q| Pk 2#BE
ETH¥2434QH 2K QU QHBETHHGREBZHH2 =k Qhk 2R Qiok 2RBET 4 ) ) / ( 2 Q%%
TEBZ* (~KH#2%ALPHMUBET #k 2+ Kk 2k BETHk g + Ok 2 QL P2 - Ok 2 wBE Tk
DD

PROP (S, 3)=(Q*BET**2*RHO* ( 2*K** A PRk HBE TH*4HEQZHEZ— 2k ks
PHALPAKGHBETHRGHEAZ - 2K K ¥ "G RAL PRk g R BETHk4HEBZHEZ+2*K**4*ALP

| ok GRBETHKGHEBZ - 4K HAL PR 2HBE THRGREAZHEZ +4HK Ak GHALPR*2*B
TETHHO*EAZ+4HK K HGHALPH*2HBETH*GREBZHEZ—4# K H 4 AL P##2KBE TH%E
PREBZ+2¥KH* 4 BETH*BHEAZHEZ~24KH* k4 HBET #HGREAZ— 2% K k*4#BETH4g*
LEBZ*EZ+2#K#*4H#BETH*BHEBZ -3 HK k¥ 244 2k AL PH*4 ¥ BETH#2HEAZHEZ+3*
TAK2HQHA2 AL PHKQRBETHH2REAZ+ KKk 2k Ok 2R PA*GHBETHH2REBZH -
'E2~- 3*K**2*0**2*HLP**4*BET**2*EBZ+6*K**2*0**2*RLP**Z*BET**4



SRR PR

PREAZHEZ -G KR 20 2% ALP* 42 HBET* ¥ G REAZ -S*ICK* 2k 0%k 2k [ P*%2¥B
TET**4REBZHEZ+OHKHH2HQ¥ k24 AL Pk 2KBETH*GHEBZ ~FK[Ckk 2k Ok 2BET

| #AGREAZHREZ+3HICRR 2RO 2HBETHRGHEAZ + 3 *KHk 2 Q¥ ¥ 24 BE TH*GHEBZ*E

1 2=k 2K QA2 HBETHKGREBZ+0**4*AL P4 HEAZHEZ -4 kAL PHR*GKREAZ -
FO**4*ALP**4*EBZ*EZ+0%*4*ALP ¥ 4KEBZ -2 0¥k JkAL Pk 2kBETH*2HER

| ZHEZ+2%0% % G*ALP**2¥BET* ¥ 2HEAZ+ 2% Q¥ * KA Pk 24BETH*2HERZHEZ
!2‘5**4*HLP**Z*BET**2*EBZ+0**4*BET**4*ERZ*EZ-O**4*BET**4*EH
12~0¥k4*BETHRGHEBZHEZ+O*¥GHBETHH*GHEBZ ) ) / (| #O¥k2MEZ R Kk 2%AL

I PAKkGHBET k2~ 24K hk 2R AL P A 2HBET 44+ Kk 2KBETHKE— 0k 2k AL Pk g +2
PRQHR2BALPRH2HBETHH 2~ 2% BET**4 ) )

PROP(S, 4 )=(P*Q*BET** 2% (K**2¥BET#**2*EAZ*EZ K4 2% BE T *k2kEAZ -
TR 2HBETH*2MEBZ*EZ+K 44 2¥BET ¥ 2KEBZ 0¥ * 2¥EAZ*EZ+0%*2KERZ +0%

P R2REBZHEZ-O%*2HEBZ ) ) / (O 2HEZ* (KH*2¥BET#%2-0%*2 ) )

PROP (S, S)=(K#*2K0##24BETHR*2¥EAZ+KH** 2% 0¥k 2¥BET** 2k EBZHEZ+ 2K *
'*2*0**2*BET**4*ERZ*EZ 2H KRk QIR BET ok GRERZ — 2K HH 2k ok 2% BET
'**4*EBZ*EZ+2*K&*Z*Q**Z*BET**4*EBZ ~0kkGREAZ-ORKGREBZKEZ -2k 0%
F24QrH2¥BETHH*2REAZHEZ+2K0** ¥ Qi 2R BET K 2HEAZ 4+ 2% 0k 2k Qo 2k BE Tk
I %2%EBZ2*EZ~ 2*0**2*0**2*8ET**2*EBZ)/(2*0**2*EZ*(K**2*BET**2 =0*
t%2))

PROP(S, 6= (Q*BET#*2% (- K**Z“EHZ**2*HLP**6+2*K**2*EHZ**2*HLP**

»'Q‘EET**z K2R EAZ N2 HA| PR BET k4 +KRM2RAL PRk G~ 2*K**2*HLP**4

IRBETHK2 4+ KHH AL PHkQRBETHk 4 + 0%k 2REAZHK2RAL P Ak~ 2*0**2*Eﬁ2**2*
FALPARHBETH 2+ 0% *2¥EAZ**2HBET#* 4~ ~ QWK AL P 4k 4+ 2% QAok KA P Aok 24
FETH*2- 0**2*BET**4)2/(0**2*ETH*EHZ*HLP**2*(HLP**4 —2*ALP**2*BE
'T**2+BET**4))+(Q*B§J**2*ETB*(2*K**2*EBZ**Z*RLP**Z*BET**Z 2*K
[AA2HEBZH*2RBET 4 -2 K2 AL PRk 2eBET 42+ 2% Ktk 2% BET k%4 -k k2 *ER
| ZHM2MALPHH2+ Mok 2KEBZ M QHBETHH2 + 0¥k kR Pk - =0k 2HBET*%2) ) /(2%
| O%#2%EBZ*(~ K**2*HLP**2*BET**2+K**2*BET**4+O**2*RLP**2 =0%%2%B
FET**2))

PROP (6, 1)=(P*BET#*¥*2¥RHO* ( 2*K**4 kAL Prorg kBETH*kGHEAZKEZ - 24K Wk 4%
IALP**4*BET**4*ERZ 2Kk GHAL PRk 4 eBE TR GKREBZHEZ+ 2%k GRAL PRk gk
IBET**4*EBZ 4K ¥4 *AL PHk2¥BETHHEREAZKEZ+4 KK ¥k GHAL PRRRBETHG*
YEAZ+ 4Kk QPR HBETHHEHEBZHEZ -4 *K**4*AL PRk 2¥BETHRGHEBZ+ 29K
PR QRBETHHGHEAZHEZ -2k 4 HBET**GHEAZ~ 2% K kG KBETHHGHEBZHEZ+2%K
!**4*BET**B*EBZ-3fK**2*0**2*ﬂLP?*4*BET**Z*ERZ*EZ+3*KT*2*0**2*
VALP**4*BET*¥*2KEAZ+IHKHH2¥ QK2 [l Pk BETHk2HEBZHEZ-IHICHk 2% %
PR2HALPHHGHBETHH2¥EBZ+5KK w2k Ok 2 kAL Prok 2kBETH*4*ERZHEZ-6*KH*2
QAN AL PR QHBETH*GRERZ -Gk hk 2k Ok 2 kAL PAk 2KBE T4 HEBZHEZ+6%K
PHRH QUK P2 ¥ BETH*4REBZ—-FHICRK2 MOk 2R BETHkGRERZ*EZ+ 3K Kk 2%

"0**2*8ET**6*ERZ+3‘K**Z*O**2*BET**G*EBZ*EZ-3*K**2*0**2*8ET**6

DREBZ+0%H4*ALP ¥k G EAZKEZ-O%*AHALP#k 4 RERZ Q¥ K4 RALP KA KEBZHEZ+0
DRKQHAL PR KEBZ~ 20K RALP AR KBE THKQREAZKEZ + 2% QMK 4 *ALP*#2*BET
DRRQHEAZ+2HOMHGHALPHRHBE T+ # 2R EBZHEZ -2 %O Rk AL PH*2HBETH*2FEBZ
| 404 4HBETR*4HEAZHEZ—QF K4 KBET#* 4 REAZ~0 ¥k 4 HBE THRAREBZHEZ +OH* 4

IBETH*4*EBZ ) )/ ( | ROMKKEZH (KA 2RALPHKGHBE T #4224 K#k AL PRk 2*BE

| TAR44KORZHBETHHG 0NN ZHALPHH 44 240X H2HALPHA2HBE TH42- O+ 4 24BE T4k
14))
PROP(G,2)-(Q*BET**Z*R~0*<2*K**4*HLP**4*BET**4*ERZ*EZ—2*K**4*

| ALP** 4 ¥BETH¥4XEAZ - 24K ¥4 KALP** G NBETHRAREBZHEZ+ XK AR RALPHKAH

| BET#*4*EBZ-4#K¥* 4 +ALPHk2HBE THAEHEAZFEZ + 4K MH4RAL PHRKBETHRE*
|EAZ+Q*K "4 #AL PH#2*BE THRGHEBZHEZ -4 K kK HALPRRBE THHE¥EBZ+2%K
LRk HBETH*GHEAZHEZ-2+K ¥ K RBETHHBREAZ - 24K k4 *BE THHGHEBZHEZ+2*K
| kg ABET **GREBZ~ 3Ktk 2 O¥ R 2KA Pk G HBE THok Dk AT HE 74 ki ok Pk (Pkooke P ok



'HLP**4*BET**2*EHZ+3*K**2*O**2*HLP**4*BET**2*EBZ*EZ L G YIS
"*2*HLP**4*BET**2*EBZ+G*K**2*O**2*ﬂLP**2*BET**4*EﬂZ*EZ =GnK2
RO 2RAL P 2RBETH*4*EAZ - 6*K$72*0**Z*HLP**2*BET**4*EBZ*EZ+6*K
(AR IR KA PRk 2RBE THHGHEBZ - ~ KRR 2RO RBE TG HEAZHEZ+ KWk
LOHKHBETHHGHEAZ+IHK K 2H 04k 2RBE THHGHEBZHEZ— —3HKHH 2R ORR2HBETHHKG
'*EBZ+O**4*HLP**4*EHZ*EZ —0*%4HALP**GREAZ - ~O%*qHAl PRR4RERZ*EZ+Q,
Dok gk PAok4*ERZ ~ 2*0**4*HLP**2*BET**Z*EHZ*EZ+2*0**4*RLP**Z*BET
- 1% 2*EH2+2*0**4*HLP**2*BEJ**2*EBZ*EZ 2*0**4*HLP**2:BET**2*EBZ
s HRGHBETH G HEAZREZ-O¥*4*BET**4*EAZ- 0%k G *BETHKGHEBZHEZ + 0ok g+
'BﬁT**4*EBZ))/(I*0**2*E2*(K**Z*RLP**4*BET**2 = 2RKHHHAL PR *BE
I Tk Q+ KRR 2HBET 46— O**2*HLP**4+2*O*f§*HLP**Z*BET**Z O 2BET %%
14)5) ¢ i

PROP (6, 3)=(RHO*( ~4*KA*G*ALP**4¥BETH*EHEBZ + 4 kKKK GHALPHkARBET*

J*6*EHZ*EZ+8*K**6*HLP**2*BET**8*EBZ —BHCHKGRALP R R 2HBETH*GHEAZ*

-'EZ—4*K**6*BET**10$EBZ+4*K**6*BET**lO*EHZ*EZ+8*K**4*O**Z*HLP*'

DHAHBETHRGHEBZ - BRI KA KOk 2R AL PHHGHBE THRGRERZHEZ~ | 6HKAR R QHK 2k
| ALPA#2KBETHHEHEBZ+ | 64Kk 4 QHH2HALPHk 2HBE THKEKEAZME ZHBHKM* 440
| X QHBETHRGHEBZ -G 4K hk 4K Q4 QKBE T HHBHEAZHEZ+4 KKKk hAL Pk g HBET 4o

‘**2*BET**8*ETB*ETH*EBZ*EZ+8*K**4*HLP**2*BET**8*ETB*ETH*EGZ+4
'*K**4*BET**10*ETB*ET8*EBZ*EZ —4HKHRGHBET 4k | OHETBHETA*EAZ - SHK*
“*2*0**4*HLP**4*BET**Z*EBZ+S*K**2*0**4*HLP**4*BET**2*EHZ*EZ+1
g *K**2*0**4*RLP**2*8ET**4*EBZ—10*K**2*0**4*HLP**Z*BET**4*EHZ
"L'*K**2*0**4*8ET**6*EBZ+5*K**2*O**4*BET**6*EHZ*EZ Bl hd Gl A
. 2 HLP**4*BET**4*ETB*ETH*EBZ*EZ+4*K**2*0**2*ﬁLP**4*BET**4*
BT *ETH*EHZ+8*K**2*0**2*HLP**2*BET**G*ETB*ETH*EBZ*EZ -l Sl
ke g*ﬂLP**2*BET**6*ETB*ETH*EHZ PRCRR2HOH R 2HBETH*BHETB*ETA*ER
. 2¢4*K**2*0**2*BET**8*ETB*ETH*EHZ+O**6*HLP**4*EBZ —~0**6*ALP:
'*EﬂZ*EZ—Z*O**6*HLP**2*BET**2*EBZ+2*0**6*HLP**Z*BET**Z*EHZ
T2 +0MRGHBE T **4*EBZ~ —O¥HEHBETHHAHEAZHEZ ) ) /(2% | #OWH2HETAREZ*( -
- “K**Z*HLP**4*8ET**2+2*K**2*8LP**2*BET**4 ~KHH2eBETHHG+O**2%AL P
T PRRQ-2ROHA R PRKKBE TR+ Q4N 2KBET %4 ) )
PROP (6, 4 )= (P*(~2%K** 4k ALP**4*BETH*GHEBZ+2%Kkh4 AL Pk gwBET kg
PRERZHEZ+4HKH*GHALP*k 2HBETHKGHEBZ—4HK ¥k G kAL PHk2RBET*HGHEQZHEZ
'—2*K**4*BET**8*EBZ+2*K**4*BET**8*EHZ*EZ+3*K**2*0**2*HLP**4*8
o VETARREBZ 34wk 2044 2% AL PHHg#BET R4 A EAZHEZ G*K**Z*O**Z*HLP**
'2*BET**4*EBZ+6*K**2*0**2*HLP**2*8ET**4*EHZ*EZ+3*K**2*O**2*BE
I T**G*EBZ- 3*K**2*0**2*BET**6*EﬂZ*EZ+2*K**2*HLP**4*BET**4*ETB*
'ETAXEBZH*EZ-2%K** 2¥ALP** 4 *BET*# 4k ETB*ETA*EAZ -4 K #H2KAL PHw2+BE

'T**G*ETB*ETﬂ*EBZ*EZ+4*K**Z*HLP**Z*BET**6*ETB*ETH*EHZ+2*K**2*'

'BETH*@*ETB*ETA*EBZ*EZ—-2#K#*2#BET**G*E TB*ETA®EAZ - (%4 * QL Pk *
FEBZ+0**4RALPH*GHEAZHEZ +2K0%kGHAL Pk 2HBET hk2HERZ~ 2k Q% k4 HAL Pk

[ 2BETH*2HEAZHEZ—O¥*4HBET** 4 *EBZNO** 4 *BETH*GHEQZKEZ~ 2Ok 2HAL

.| PRKGRBETHHZHETBHETAREBZ*EZ+2# 0%+ 2k ALP 4 #BET#*2*ETB*ETA*EAZ+

1 4XRO%K KA PHK2RBE TH*4*ETB*ETAREBZ*EZ~ ~4¥O*H2HALPHR2UBE (HR4HETR

IHETA*EAZ-2%0%* 2% BETH*G*ETBH*ETA*EBZ*EZ+2#0%** 2% BET**G*E TB*ETA*

YERZ) )/ (2%0**2%ETAREZ* (—K# ok 2*AL PG HBET H% 24 2% K% kAL PR 2HBE T *
|G —KHk 2HBETHHE+0MK2KALPHk G -2k Ohk 2 AL PRKQKBETHK2 4 Q%M 2RBETH%4 ) )

PROP (6, S)=(Q¥(~2%K**4*ALP** 4k BETH*GHEBZ+ 2% K4 H AL PH#g#BETH* 4

- !*EHZ?EZ+4*K**4*HLP**Z*BET**G*EBZ—4*K**4*ﬂLP**Z*BET**6‘EHZ*EZ

v F=2HORRQHBETH*BHERZ + 2% M G *BETH*BHEAZHEZ+ 3Kk ¥ 2 Q% k2 * QL Prokg*g
IET**2+EBZ- 3*K**2*0**2*HLP**4*BET**2*ERZ*EZ G*K**Z*O**Z*HLP**

I Dt O T oalesde d e IITT 4+ o sl hesde /b om bl P bt om o ——t.a _——— i ——

I 6*ETB*ETA*EBZ*EZ— — ¥R GRAL PR RBET R GHETBHETAREAZ ~B*K ** 4 *AL P
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4
I THHRGHEBZ~ KKK QK2R BETHRGHEAZHEZ+ 2K k2 HAL PHk 4 RBETHHRETE"
| ETAXEBZHEZ—-2%K* 4 2 ALPH* 4 #BE TH* 4 *ETB*ETAREAZ -4 HKkk 24 AL Pk 2B E
| TARGHETBHETAREBZ*EZ+4 %K * 2+ALP**2*BE TG HETBHETAREAZ + 2K 4k 2%

" BETHHGHETBHEFAKEBZ*HEZ~24%K#* 2% BET**B*ETB*ETA®EAZ-0**4 % AL Prkgh

t EBZ+O#k AL PH*GHEAZHEZ+ 2 0%k 4 RALP K *2BETH*24ER2 - —2%0* 4 HAL PR

= | 2¥BET#*2*ERZHEZ—Okk4HBETH*GHEBZ+0%* 4 *BE TH*4KEAZHEZ— 2% 0%k 2¥AL

| Pk G RBE T4 2KETBRETAREBZHEZ+ 2% 0k 2K ALP**4 X BET ¥ 2#ETBHETA*EAZ +
L ARORHR KA PR 2KBE TRk GHRETBHETAREBZHEZ-4*O%H2HALP*#2#BETH# 4 ¥ETH
.. DHETAXEAZ-2+Q%*QKBET**GHETBHETRAEBZ*EZ+2%0**2#BE THHGHETBHETA

TERZ) ) /(2% 0%+ 2K ETAREZ ¥ (~K*H2kAL P4k RBETHK2+ 2 XK #ok 2k AL Pk JHBE T+

!*4—K**2*BET**6+0**2*9LP**4-2*0**2*HLP**2*Bsth*zE
v PROP(6, 6)=(~2KKH*4*BETHHGHEBZHEZ+2%K "4 ¥ BETHIGHEBZ+2#K e *4 #BE
| TR*GHERZHEZ=2KKAKGHBE THRGRERZ +2KK 4 2 ¥ Ok 2RBE THM2KEBZHEZ —FHK
FHQHOHKRBE THHZKEBZ - KKk A0 N M RBE TAKQEEAZKEZ+ 2K MM 2k 0k 2HBET

| gHIIERZHORRANEBZAORKANERZHED )/ (240442 E24(~KHRH2HBETHH2+0%%2) )

RETURN
END A . . '
$ENDFILE : , . L '
« \
% i N
@ > ‘

+OWKRRHBET %4 ) )
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Appendix 2

\

(,omputer Code for Productlon of Synthetlc Selsmograms

OO'OOOhGOOQOOO'OOOOhOOOh

INPUT ON UNIT 5: N:

[N
<

THIS ?ORTHHN IV PROGRAM CHLCULHTES“SVHTHETIC SEISMOGRAMS FOR A STACK
OF HOﬂQGFNEOUS LAYERS USING THE PROPAGATOR MHTRIX METHOD.« THERE IS HN
. INTER L\POINT‘ﬂ]CROSEISHIC SOURCE MAXLMUM OF FIVE LAYERS

(THE HALF- -SPACE IS LAYER 1)

DX: ' THE MINIMUM SEISMOMETER SPACING IN THE E-W
DIRECTION

DY: * THE' HINIMUM SEISHONETER SPACING IN THE N-S

' 'DIRECTION

ALPCID: COHPRESSIUNHL WAVE VELOCITY PN‘LHVER I

CBETCI): SHEAR NHUE VELOCITY IN LARYER |
\RHOC1>: DENSITY IN LHVER |

2¢1): THE DEPTH TO THE TOP OF LHVER 1" (2 INCREASES

UPHARD >

LEN OF |HORK=6*MAXC(NNH, NNP-NNQ)+150
LEN OF RHORK=6*MAX(NNW, NNP ; NNQ)+150
LEN OF CWORK=MAX(NNP,6NNQ>

-

THIS UERSION (APRIL 25, 1987) USES HNHL?TIC E MATRIX

IMPLICIT REAL*8CA-H, 0-2)

INTEGER 1WORK(630)

DIMENSION RHORK(630)

COMPLEX*16 U1¢40,20,20),U2¢40,20,20),U3(40, 20,207,
CHORK(50),6¢6),UT1¢3),UT2¢3),US1¢3),US2¢(3)>

COMMON /DOMAIN/ W,P,Q

COMMON /MEDIUM/ ALP(S), BET(S), RHO(S) 2¢6)
COMMON /4 UT1, UT2 DW,DP,DQ -
P1=3. 14150265361 - 5

REHD(S,IOO)N,HO,DX;DV;ﬁﬂLP(I),BET(I),RHO(I),Z(I),I;J,N)

""RMATC12,3F10.3/(4F10.3)). . o
=10 ’ ) o . o o,
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N 112;"_EQRHRT('N,P,Q,UT1<3)',SEloa2?'

NP=10, -

NQ=10

NWBLNK=NH/2

NNW=2%N+4*NLBLNK

NNP=2%NP - h

NNQ=2*NQ o

"N =NUBLNK+1 o

NHF =NUBLNK+NW

IF (NWBLNK.EQ.0)> DM=2.0%W0
IF (NWBLNK.NE.O) DH=MHO/NWBLNK ~

PP=1.0/DX/2.0/PI

QQ=1.0/DY/2.0/P!

DP=PP /NNP

DQ=QQ/NNd

DO 15 I=1,NNW

DO 15 J=1,NNP o .

' DO 15.K=1,NNQ .
U1CI,J,K)=¢0.0,0.0)
U2¢1,J,K)=¢0.0,0.0)
U3C1,J,K>=¢0.0,0.0)

| NDX 1=NH+NHBLNK+ 1

DO 10 1=NH1 ;NWF
JINDX1=INDX1=1 .

WRITEC6, 110>, INDX 1

FORMATC 313,3E10.3)

H=(1-0.5 Y*DM
DO 10 J=1,NP ,
P=(J-0.5»DBP-PP/2.0
DO - 10 K=1,NQ '
Q=(K-0.5>*DQ-QQ/2. 0
CALL SOURCE(N,G)
IER=0
» CALL CALCUCN,G,UT1, IER)
~ HRITECS, 112)H,P,Q,UT1(3).

~

: P=-P
.. -CALL SOURCECN,G> "
"' CALL GALCU(N,G,UTZ, IER)
- p=-P

" cALL FﬁSSGN(Ul,1,Nnu,NHP,NNQ,|N0XT;J;K)\igti**i"

g

.'_.-\’ .



i1

O

0O 0000000000000

o o

CALL FASSGNCU2, 2, NNW,NNP,NNQ, INDX1,J,K) ¢
CALL FhSSGN(U3,3,HNN,NNP,NNQ,lNDthJ,K)
HRITE(G, 1115¢CCU3C, J,K),J=1,NNP), I=1,NNU), K=1,NNQ)>
1 FORMATL ‘U3’ /(BE10. 25
" CALL FFT3D(U1,40,20,NNU, NNP,NNQ, ~1 ;uonk RWORK , CHORK >
CALL FFT3D(U2,40,20,NNW, NNP,NNQ, =1, IHORK, RNORK CHORK >
CALL FFT30<93,40,2o,ﬂnu,NNP,NNQ, ,INORK,RHORK,CNORK)
CALL CHSIGNCU1,NNW,;NNP,NNQ)
CALL CHSIGN(U2,NNH,NNP,NNQ)
CALL CHSIGN(U3, NNW, NNP, NNQ)
WRITE(6, 111)U3 '

HRITEC?)> U3 |
HRITECS, 1.11>CCCU3CT, J, KD, J=1,NNP), I=1,NNUY,K=1,NNQ)
STOP ' ‘

END
R B RO o B R oS AR SR R R R R SR R SR R o 3B R O R R AR HROR R AOR R

SUBROUT INE SOURCE(N, G)
%% THIS SUBROUTINE CALCULATES THE SOURCE CONTRIBUTION TO. THE
*#* PROPAGATOR MATRIX ASSUMING THE SOURCE IS DELTA-LIKE IN
%% SPACE AND TIME. THAT IS, IT CALCULATES G AS DEFINED BY
ok EQUATIONS ¢2.31> AND ¢2.34). '

sk S LAYER CONTAINING THE SOURCE (THE HALF-SPACE IS 1)

%% G1 G* AS DEFINED BY (2.31) - .

*#% G2 G** AS DEFINED BY (2.31) '3
wx N THE NUMBER OF LAYERS (= INDEX OF TQP LAYER) —
ik M THE SOURCE MOMENT TENSOR

***_ XS I )

*%% ¥S | THE COORDINATES OF THE SOURCE LOCATION o

oW

*4k TS THE TIME OF THE SOURCE

INTEGER N, S/2/

REAL*8 W,P,Q,XS,¥S,2S, TS, ALP(S);BETCS), RHOCS), 2(6,M(3,3)
~ COMPLEX*16 G(63,61¢6,62(6>,H1¢6), u2<s> H3¢6), L1, AC6,6),

| ~ PROP(S6,6Y,EX |,;~;,;,;y

COMMON /DONH!N/ H,P,Q: IR



<

OO0 o0 o0 o0

% R

9

COMMON /MEDIUM/. ALP, BET, RHQ, 2 o -
c . A ’ .

©, C % CALCULATE G* AND G** AS DEFINED BY EQUATION <2.21> ASSUMING
| C %K XS=vS=0.0. 8

c . .
. 2s=25.0 -
F1=¢0.0,1.0)
DO S I=1,3
DO 5 J=1,3
5 MCI,J>=0.0

MC1,3)>=1.0E10 ' v

MC3, 15=1.0E10 |

DO 10 I=1,3 -

C O GICIH3)=— 1 DRCPRMCT, 1H+QRMCL, 2))
G1¢15=¢0.0,0.0>
62C1+3)=MC 1, 3)
62¢1=¢0.0,0.0) _

10 CONTINUE -

1
/

#¥% CALCULATE THE PROPAGATOR MATRIX FROM THE TOP OF THE STACK
*okk OF LAYERS TO THE DEPTH OF THE SOURCE, AND MULT BY G.
*okk GEPRG1 +PRAXG2

CALL PROP2(N,S.ZS,PROP)
CALL MMULTCM1,6, 1,PROP,6,G1)
CALL MATRXACALPCSY,BET(S),RHOCS), A)
CALL MMULTCM2,6,1,R,6,62)
CALL MMULTCH3,6, i,PROP,6,H2).
'D0.20 I=1,6
200 . GCI=HIC4H3CI)
RETURN
END

Y

C ' ' .
[ **************************f’l**********************#****************

C

SUBROUT I NE CALCU(N, G, U, IER)

C R A l~
C wk THIS SUBROUTlNE‘CHLCULHTESVTHE TBANSFORM- OF THE SURFRCE o

C *%k DI.SPLACEMENT (U>. SEE EQUATIONS (2.33) AND (2.36).
. ‘
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C #%% N |S THE NUMBER OF LAYERS CINDEX OF TOP LAYER)
C *%k G IS THE SOURCE TERM CALCULATED MY SUBROUTINE SOURCE
- ¢ %k U IS THE TRANSFORM OF THE SURFACE DISPLACEMENT '

c
INTEGER N, IER’
REAL*8 ALP(S),BET(S),RHOCS),Z(6),MW,P,Q, RMORK(3)
CRMPLEX*16 EC6,6),PROP(6,6),B(¢3,3),C(3,3,CINU(3,3),6(6),

161¢3),62¢3>,UC3), CORKC 15>, H1¢3,3), H2(3,3), H3(3, 3>, U4(3, 3>, ETA, ETH
COMMON /DOMAIN/ W,P,Q . '
COMMON /MEDIUM/ ALP,BET,RH0,Z -
. ‘ p

C *+* FIND THE EIGENVECTOR MATRIX (E)‘FOR'THé HHLF—SPHCE (2=0)>
CALL EVECT1CALP(1),BETC( 1), RHOC1),ED

C *#** FIND THE PROPAGATOR MATRIX (PROP) FOR THE ENTIRE STACK OF LAVYERS

@)

B}

CALL PROP2(N,2,0.0D0,PROP)

#hk B=-(P{1*E12 + P12%E22)

ok C=(P2I*E12 + P22%E22)

wowk CINU=CH¥—1 = - |
##k SURFACE D|SPLACEHENT=U=B*CINU*G2 + G1

O 0O 0O 0O 00

» CALL SUBMATCPROP,6,6,H1,3,3,1,3,1,3)

o CALL SUBMAT(E,6,6,H2,3,3,4,3,4,6)

' CALL MMULTCM3,3,3,H1,3,H2)
CALL SUBMATC(PROP,6,6,H1,3,3,1,3,4,6) |
CALL SUBMATCE,S,6,U2,3,3,4,6,4,6) S
CALL MMULTCW4,3,3,H1,3,H2) ' y
DO 10 I=1,3 e C e o

DO 10-J=1,37 e

10 BCI J)a-(u3¢! Joysbaci, o ERa

CALL SUBMATCPROP,6,6,41,3,3,4,6,1,3)

CALL SUBMATCE,6,6,42,3,3,1,3,4,6)

,CHLL\HHULTKN3,3,3,u1,3,u2) ' ,

CALL SUBMAT(PROP,6,6,l1,3,3,4,6,4,6) e

'CALL SUBMATC(E,6,6,U2,3,3,4,6,4,6) -

CALL MMULTCH4,3,3,H1,3,H2)

DO 20 1=1,3
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130~
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40

0O 0000

- s oo RN S o R A o o o o s o o o o s o e 4 o o e e o o o e oo o o e o o e e o o o o o oo o o o o o o

*+% GET A SUB MATRIX

. DO 1 J=IC,LE

91

D0 30 J=1,3
CINUCI, J>=0.0
CCI,Jd=H3CT, II+HACT, J)
G1C1=6¢1) -
G2 1)=6GC 1+3)
CINU(!,I)=1.0

4K USE IMSL ROUTINE- LEQ2C TO INUVERT B BINV NUST BE THE IDENTITY
4% MATRIX ON INPUT: 70 'LEQ2C. PRINT H,P, Q AND RETURN IF LEQ2C
*ork CRASHES . ‘

" CALL LEQZC(C 3 3,CiINV,3,3,0, CHORK RWORK, lER)
- IF CIER. EQ 0> GOTO SO ' :

ETA=W**2 /ALP (2 Y42 Pk~ Q**2
" ETA=CDSQRT(ETA)>
ETB=W#*2 /BET (2 k2~ Pk —Qhk2

'ETB=CDSQRT(ETB) - R
HWRITEC6, 1205W,P, Q, ETA, ETB

HRITEC6, 1300¢CCC1,J),J=1,3), [=1,3>
FORMATC 6E10.2) ‘ '
FORMATC"+% CALCU** W, P, Q,ETA,ETB, C */7D10.2>
RETURN . - ;
CONT I NUE B |
CALL MMULT(M1,3,3,8,3,CINU)
CALL MMULT(W2,3,1,M1,3,62)
DO 40 i=1,3 } ‘
UCId=U2¢T, 1+61C> © . W

 couT|NyE L

" RETURN

EMD . A

T

v
\

SUBROUTINE SUBMAT(A,NA,MA,B,NB,MB, IR,LR, IC,LC)

. COMPLEX*16 ACNA, MB>BONB . MB)

DO 1 I=IR,LR



c

Cc #******#*******************?*************************************ﬁp

c

oo 0o

0O .0

c
c

BCI=IR+1,J-I1C+1)>=ACI,J)
RETURN
END
< S

/

SUBROUTINE MMULTCA,NA,MA,B,MB,C)
otk MATRIX MULT4PLICATION SUBROUTINE
wook A(NA, MA)Y=B(NA, MB Y*C(MB, MA>

COMPLEX*16 ACNA,MAY,BC(NA,MB),C(MB, MA)

'DO 1 I=1,NA
DO 1 J=1,MA
ACl,J>=0.0
- &,
/DO 1 K=1,MB
RCH,UI=ACE, II+BCI, KI*C(K, JD
RETURN

END.

#

R
N cANN

,SUBROUTINE_RROPZ(TOP,BGT{QH;ZO,PROP)

. /o
#kx THIS SUBROUTINE CALCULATES THE PROPAGATOR MATRIX (PROP) FOR

C mox THE EARTH SECTION FROM: THE TOP OF LAYER TOP TO ZO WHICH

c
C

15

10

%% |S IN LAYER BOTTOH.
INTEGER | ,BOTTOM, TOP _

REAL*8 W,P,Q, ALPCS), BET(SMRHOC(S), Z(6),22(6), 20

.COMPLEX*16 Pho<6;6>,Pnop<;?;>,u1<s,s>

COMMON /DOMAIN/M,P,Q o

COMMON /MEDIUM/ALP, BET, RHO, Z - R

o

DO 10 I=1,6 Lo
DO 15 J=1,6 o
PROP( 1, J>=¢0.0,0.0)
_CONTINUE '
~ PROP(I,1)=¢1.0,0.0)
CONT INUE '

‘*********&**********i*********************************************

k 4



O O 0 0 0 00 0 00

1C

*#4 FOR THE ENTIRE THICKNESS OF EACH LAYER (WORKING FROM TOP TO
** BOTTOM), CALCULATE THE PROPAGATOR MATRIX (PRO). SINCE,
}Hk  PROP(ZS,22)>=PROP(ZS, Z3 Y*PROP (23, Z2) '
ok LIHEN PRO |S FOR THE LAYER BETWEEN 23 AND 22, WE HAUVE: (
%k PROP=PROP*PRO |
*#% LIHERE PROP. 1S NOM FOR THE DEPTH 25 TO 22 INSTEAD OF THE
%% PREUIOUS 25 TO 23. ON THE FIRST LOOP, PBOP IS THE IDENTITY
*4k MATRIX, SO PROP(ZS,24) BECOMES PRO FOR THE ENTIRE STH LAYER.
K .
DO 25 I=1,TOP >
25 2zCH=z¢1H ]
~22¢1)y=20 S B
c DO 20 I=TOP,BOTTOM,~1 '
» 1=TOP+1 it t
2077 1=1-1
IF ¢1.LT.BOTTOM) GOTO 20 3 ‘
CALL PROPG2CALPC1,BETCI >, RHOCI ), 22¢1),22¢1~1),P,Q,W,PRO)
CALL MMULTCH1,6,6,PROP,6,PRO)
DO 30 L=1,6 '
DO 30 M=1,6
30  PROPCL, MY=H1CL, M)
GOTO. 7077 .
20 CONTINUE
RETURN -
END™ : a
. . ,
(o **********;*#******;**********************************************
SUBROUTINE EVECT1CALP,BET,RHO,E)>
. , A :
C *%% THIS SUBROUTINE CALCULATES THE [EIGENUECTOR MATRIX USING AN }
C *** ANALVTIC DERIUATION (SEE CHAPTER 2). _ v -/
c . 5 . :

‘cohPLEx*163| JETA,ETB,EC6,6), HORK(S, 63, HORK2(¢6, 6 3, CHORK(48)
LEINU(C6,6)5,A¢6,6> =~ - "

REAL*8 W,P,Q,K,ALP,BET, RHO, LA, HU, RHORK(84 >

COMMON /DOMAIN/ W,P,Q

1=¢0.0,1.0>

K=DSQRT(P**2+Q**2 )



(EC4, 1)==2%P*MUETA *J

94 .

ETA=W**2 /ALP**2-K*¥2
ETA=COSQRT(ETA)
ETB=W##2 /BET#42-KH#2
ETB=CDSQRTCETBY a \
MU=RHO*BET**2 !
LAM=RHO*ALP#**2-2%HU |
ECT,1)=1%P
EC1,2)=1*P*ETB
EC1,3)=1%Q

, i
| PHETB

EC2, 1)=1%Q
E(2,2)=1*Q*ETB

- E€2,3)=—| %P

EC2,4)=—|*P
E(2,5)=—|*Q*ETB
EC2,6)=1%Q

E(3, 1)=|*ETA

E(3, 2)=—| *K*¥2

E¢3,3)=0.0 : o ' .
E(3,4)=0.0

E(3,5)=—| *K**2 o

E(3,6)=-1*ETA

EC4, 2)=PHHU*(K¥*2-ETB**2) |
E¢4,3)=~Q*MU*ETB | .
EC4,4)=Q*NU*ETB

EC4, 5 )=P*MU*(K**2-ETB**2)

" EC4,6)=2+%P*MU*ETA

ECS, 1)=-2%Q*HU*ETA ‘
ECS, 2)=Q¥MUR(K**2-ETB**2)

- E(S, 3)=P*MU*ETB

E(S, 4>=-P*MU*ETB
ECS, S)=QeMUR(K**2-ETB**2)
E(S, 6)=2*Q*MU*ETA

"ECS, 1)=(~ Z*HU*ETH**Z*ﬂLP**Z LHH*N**Z)/HLP**Z

E(6, 2)’2*K**2*HU*ETB
EC6, '3)=0.0.



[

E(6,45=0.0 -

EC6, 5)=~2¥%K kR 24 HUXETB ﬁ\\
EC6, 6)=C=2kMURETR**2HALPH*2 - AMKL**2 ) /AL PH*2
RETURN  ~ L v

END ¢

{ ' -
C HorlooRoRRRORRR MK R o R B o R R o ool R ook o oo o b ok o o ks o oo o o o ok sl o o o o oo o o

O .

SUBROUTINE MATRXACALP,BET,RHO,A)

*dk THIS SUBROUTINE CALCULATES THE MATRIX A BASED ON
ok A OUTPUT FROM REDUCE2 FOR THE GI!UEN SEISMIC VELOCITIES AND
ek DENSITY. A IS DEFINED BY EQUATION (2.6).

O O 0O OO0

REAL*8 W,P,Q, ALP,BET, RHO, MEW, LAM
COMPLEX*16 11,A¢6,6)
COMMON /DOMAIN/ W,P,Q

11=¢0.0, 1.0
C *k* INITIALIZE A TO THE ZERO MATRIX
c ) '
DO 10 1=1,6
DO 10 J=1,6

AC1,J>=¢0.0,0.0)
10 o CONTINUE '

MEW=RHO*BE T**2

LAM=RHO*ALP**2-2%MEW

ACT,3)=—]1*P

AC1,4>=1.0/¢BET**2*RH0)

AC2,3)=—11%Q

AC2,5)=1.0/CBET**2*RHO)> 4

AC3, 15=C1 | RP*(2%BETH**2-ALP*%2 ) ) /ALP**2

AC3, 2)=C | | %Q*(2*BET##2-ALP**2)) /ALP**2 B _ :“l
AC(3,6)=1.0/C(RHO*ALP**2) . '

AC4, 1)=CRHO*C ~HK2KALPAK2 -4 kPHk 2HBE TG + 4 HPRR2HBETH* 2FALPH*2
!+Q**i*BET**2*nLg**2>>/aLP**2

AC4, 2)=(PHQ*BETH*2*RHO* (-4 #BET*¥2+3%ALP*42) ) /ALP**2

AC4, 6)=C 1| *PH(XBET**2—ALP**2) ) /ALP**2

ACS, 1)=(P*Q*BET**2%RHO* (~4*BET**2+3%ALP**2 ) ) /ALP**2



0O 000 0o

O OO0 0 0 O

{- }
ﬁ(s 2)=(RHO*(— u**2*ﬂLP**2+P**2*BER**Z*HLP**Z 4*0**2*BET** +4
I HQUMRBET#R2RALP**2 ) ) /ALP#*2 )
ACS, 6= 1 | *QK(2*BETH*2-ALP*%2)) /ALP**2

. A6, 3)=-L**2%RHO

) ’ <
*****#*****#*********************************************ﬁ********

ook
ok
Ok

ohok

Heokok

MOk
ook

Aokok

A6, 4)=—1 | *P
AC6,S)=—11%Q
- RETURN

END

SUE OUTINE FASSGNC(U, E00RD, NI, NJ,NK, | ,J,K)> %*\>

THIS SUBROUTINE FILLS OUT U, THE TRANSFORM OF THE SURFACE
DISPLACEMENT, USING SYMMETRY RELATIONS. EG. UCP,Q,W)=
UC=P,-Q,~H>*, WHERE * INDICATES COMPLEX CONJUGHTE SEE .
CHAPTER 3 FOR A COMPLETE DESCRIPTION.

INTEGER N1, NJ,NK, |, J,K, A, B, C, COORD T
REAL*8 DW,DP,DQ : S .
'COMPLEX*16 U(40,20,20),61¢(3),62¢(3) e ' o '
connoN //G1,Gz,ou,DP,bQ ”
p
|,J, AND K CORRESPOND TO NEGATIUE FREQUENCIES AND NHUENUHBERS
A,B, AND C CORRESPOND TO POSITIUE FREQUENCIES AND HAVE-
NUMBERS. THIS ROUTINE INIALIZES FOR A EVEN-NUMBERED FFT, AND
THUS THE SPECTRUM IS NOT SAMPLED AT THE DC. LEUEL
SCRLEaDH*DP*DQ*NI*NU*NK
A=N1=1+1 ]

fB Nu J+1 L v 7A'H ‘ : . . . | ) ‘iibtu
" C=NK-K+1i .. Col o o

"UC1, J,K)=G1(COORD Y*SCALE

UCA, J,KD=UCT; J, KD

UC1 B, K)>=62(COORD S#SCALE

UCA, B,K)>=UCI, B, K) S
Uct,J,co= DCONJG(GZ(COORD))*SCHLEV .
UCA,J,CH=UCI,J,C> 8
uct,B C)=DCONJG(GI(COORD))*SCHLE -
UCA,B,CO=UCI,B,C)

-

o
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RETURN
END

c ***************#****************i*********q********m**************

c
‘ 'SUBROUTINE CHSIGNCU, NNH, NNP, NNQY .
. ,
'C *¥% THIS SUBROUT'NE APPLIES THE PHASE FACTOR NECESSRARY FOR
C *** SMALL FFT'S (SEE EQUATION <e 6>
C .
" INTEGER 1,J,K Mo
| REAL*8 EX,P|
COMPLEX*16 UC40,20,20), || ) ”
11=¢0.0,1.0>
P1=3. 14159265359
DO 10 I=1,NNW -

DO 10 J=1,NNP
DO 10 K=1,NNQ B
EX=1-1.0-C1=1.0)/DFLOATCNNN ) #J=1.0~(J=1. 0)/DFLORT(NHP)
! AK=1.0-(K=-1.0>/DFLOATCNNGY
“ ) .‘U<I,J,K) CDEXP (P 1% | [*EXY*UC 1 J, K>
10 - TONTINUE
" RETURN
END.

_ When the source was descried by (2.31) and (4 14), the following subroutine was
substlwted for the one of the same name given above )

SUBROUT I NE souncecN;G>_"

*#k” THI'S ‘SUBROUT | NE caﬁcuLaTEs THE SOURCE CONTRIBUTION TO THE -
*#* PROPAGATOR MATRIX ASSUMING THE SOURCE IS GIUEN BY

wokk AARKERR (| X| /AR YHBBHER*(~| Y| /BO*D(T-TS IHD(Z-2S )

**% WHERE || DENOTES ABSOLUTE VALUE, AND D IS THE DIRAC DELTA.
***'(Eounrlon <4.12)> . o

Aak S LAVER CONTAINING THE SOURCE < THE HALF-SPACE IS 1)
Aok G1 O G* AS: DEFINED BY ¢2.23) : T

*#% G2 G**'AS DEF INED BY (2.23) ‘ S

0000060000



ook

ook ok

b1

Mook

ko

0O 0000 o0 o0

C ook

C oKk

Hokok

'COMMON /MEDIUM/ ALP,BET, RHO, 2

= ;
‘ / .‘
, ) AN
N THE-NUMBER OF LAYERS (= INDEX OF TOP LAYER) : ~
M THE SOURCE MOMENT TENSOR N
xs | .
¥S | THE COORDINATES OF THE SOURCE LOCATION
zs | _ : .
TS THE TIME OF THE SOURCE : *

INTEGER N, 5/2/
REAL*8 W,P,Q, XS vs, 28, TS ALP(3),BET(5)>,RHO(S), 2¢(b >, M(3,3>

-1 ,AA, ARA,B,BB

COMPLEX*16 G(6),G1¢(6>,62(6), H1¢6),H2(6) L H3(6),
! 11,A¢6,6),PROP(6,6), EX
COMMON /DOMAIN/ W,P,Q

CALCULATE G* AND G** AS DEFINED BY EQUHTIONS (2. 32) AND (4.H45
ASSUMING XS=YS=0.0

26=25.0
11=¢0.0,1.0)
AR=O0. 1
ARA=1.0/2.0/AA
B=0. 1 ‘.
BB=1.0/2.0/8B
DO 5 i=1,3
DO. 5 J=1,3
HCI,Jd)=0.0

MC1,3)=1.0E10

-10
c

M(3, 1>=1.0E10

DUMMY=ARA%*2ARA*P /  1+ARAKKKPAR2) * BAKKBBRQ/( 1+BHRKQI*2)

DO 10 1=1,3 M ,
G1C1+3)=~4*DUMNY*CHC T, 1) /RA+HCT, 25/B)
G1¢1)=¢0.0,0.0) | R
62¢1+3)=MC1,3) ' '
62¢1)>=¢0.0,0.0)

CONT I NUE

C *%* CALCULATE THE PROPAGATOR MATRIX FROM THE TOP OF THE STACK

C %%k OF LAYERS TO THE DEPTH OF THE SOURCE, AND MULT BY G.

C 4% G=PG! +P*A%G2

a4y
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CALL PROP2(N,S,ZS,PROP) _ -
CcALL MMULT(H1,6, 1,PROP,6,G1)

CALL HATRXACALP(S),BET(S),RHO(S),A)

CALL MMULT(H2,6,1,A,6,62)

CALL MMULT(W3,6, 1,PROP,6,MH2)

.DO0 20 1=1,6
20 GCI=HICIH+E3CT )
RETURN
END

When the source was descnbed by (4.20) and (4.21), the following subroutme was N
substituted for the one of the same name given above.

SUBROUTINE SOURCE(N, G)> 5

*4% TS THE TIME OF THE SOURCE

c .

C k. THIS SUBROUTINE CALCULATES THE SOURCE CONTRIBUTION TO THE
C % PROPAGATOR MATR! . ASSUMING THE SOURCE IS GIVEN BY

C ookk ARAXERK(-XOR*2 /AANKKD YRBBHEHK(~Y¥%2 /B**2)

C- %k '*CC*E**(qT**Z/C*fz)*D(Z—ZS)

C *%* WHERE D IS THE DIRAE DELTA.

C #x% (EQUATION (4.18))

c N |

C *#% S LAYER CONTAINING THE SOURCE (THE HALF-SPACE iS 1>

C **¥x G G* AS DEFINED BY (4.20)

C *#% G2 G** AS DEFINED BY (4.21>

C **% N THE NUMBER OF LAYERS <= INDEX OF TOP LAYER)

C *xx M THE SOUF~E MOMENT TENSOR

C **x XS |

C **k YS | THE COORDINATES OF THE SOURCE LOCATION

C #okk 25 | ’ W
c

C

INTEGER N,S/Z/
REAL*8 W,P,Q,XS,YS,ZS,TS,ALP(S),BET(5),RHOCS), 2¢6),M(3,3)
L ,AA,AAA, B, BB, P| '
COMPLEX*16 G¢6),G1(6),62C ., 1¢6),H2(6),H3(6),
I 11,A(6,6),PROP(6,65,EX,- MMY
COMMON /DOMAIN/ W,P,Q
COMMON /MEDIUM/ ALP,BET,RHO,Z >
| ¥ :
T .



RN

C .
C ##* CALCULATE G* AND G** AS DEFINED BY EQUATIONS (4.20) AND

C 4% (4,21 ASSUMING XS=Y$=0.0
c . '
. PI=3.14159265359

25=25.0

11=¢0.0,1.0)

AR=0. 1 : .

AAR=1.0/2.0/AR%*2

B=0. 1 2 .

BB=1.0/2.0/8%%2

c=0. 1 .

CC=1.0/2.0/C**2 S ' - &

po 5 1=1,3 _

. DO S J=1,3 - . /
s MC1,J)=0.0 -

MC1,3)>=1.0E10

M(3, 1>=1.0E10

DUMMY=RAAKBB*CCHAHBHCHP | #( 1.5 )%

| DEXP (-0, 25% CARMK2HPHA2+BHHHQHK2+CHRDMLINNZ ) )

DO 10 1=1,3 _
G1<|+3>=—||*nﬂn*onuﬁnv*n<|,1>—||*n<i,z>*aa*o*ounnv
G1¢1>=¢0.0,0.0> .

62 1+3)=M(1, 3)*DUHMY
% 62¢1)=¢0:0,0.0>
10 CONTINUE

&

R

~

c
C #*** CALCULATE THE PROPAGATOR MATRIX FROM THE TOP 'OF THE STACK
C #*% OF LAYERS TO THE DEPTH OF THE SOURCE, AND MULT BY G.
C 4% G=P*G{ +P*A*G2
C. ’ %
“  CALL-PROP2(N, S, ZS, PROP) ) '
CALL MMULTCH1,6, 1,PROP,6,G1)
CALL MATRXACALP(SY,BET(S),RHOCS), A
CALL MMULTCH2,6,1,R,6,62) ]
CALL HMULTCH3,6, 1,PROP,6,H2)
Do 20 I=1,6 - ' .
20 GCIO=H1CTY+H3CE) ‘ -2
RETURN
END.

100
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- When the Elgcnvaluc matrix was replaced by the matrix gwcn in (4 "6) the cm_f.}r
10 EVECT 1 in soubroutine SOURCE was replaced by :

CHLLiEUECT3(HLP(1),BET<I);RHO(l),E) ' :
and the following subroutine waé,addcd to the progrjzim given above.

SUBROUTINE EUECT3(HLP,BET;RHO,E)

‘OO0 00 o0 o

4% THIS SUBROUTINE CALCULATES THE ECH,P,Q)+E(H,-P,-Q)*

*oor WHERE E--1'S--THE EIGENVECTOR MATRIX, AND * INDICATES

**% COMPLEX CONJUGATE. THIS NEN MATRIX HILL TRANSFORM TO.

w4k A REAL MATRIX. SEE. CHHPTER 4 FOR DETAILS.

- COMPLEX*16 E(6, 65,E1(6,6),E2(6,6)

B _RERL*G H,P,Q,K,ALP,BET, RHO "
COMMON /DOHHIH/ H P Q .

" pp=p
QQ=Q
CALL EVECT1¢PP,QQ, W, ALP, BET, RHO JEDY

=—PP
oo=—oo | T 3
CALL EVECTI1(PP,QQ,H,ALP,BET,RHO,E2) : -
DO 10 L=1,6
DO 10 H=1,6
10 OB, M=ENCL, H)+DCONJG(E2(L M)
RETURN
END
Input/Outgut
An example of an input for the READ on unit 5 is:
-2,30.,32.,24., '
2600.,180052400.,0.,, A

2000.,1150.,2100.,225., | -

This specifies a 1 layer over a haif-space model. The first non-zero agplitude occurs at
H0=30., and DX=32., Dvy=24. The output consists of a unformatted binary dump of the
vertical surface displacement U3(t,x,y). This program is contained in file SYN, and Unit 5
is attached to SEISDATA on the University of Alberta MT'S account ENY3.



