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ABSTRACT

Viscous fingering can reduce significantly the displacement efficiency when one
fluid immiscibly displaces another in a porous medium. As a conscquence, it is of
importance to be able to predict whether a displacement is stable or unstable. A stability
theory for linear displacement in‘cylindrical systems, assuming a moving boundary
model and the utilization of a force potential approach, is presented in this study. The
theory is validated by comparing experimental results with those obtained theoretically.

Twenty-one experiments, using two different viscosity ratios, have been
performed in cylindrical unconsolidated porous media. It is demonstrated that the
theory predicts correctly thé onset of instability for immiscible displacement in
cylindrical systems. By means of photographing different sections of the core, the
location along the length of the core where fingering began has been identified. This
technique helped demonstrate that the theory can be used to predict the breakthrough
recovery for both stable and pseudostable displacements.

Also presented in this study is a statistical sensitivity analysis pertaining to the
calculations of the instability number and the breakthrough recovery. By means of this
analysis, it is possible to identify the experimental variables which most contribute to
the total bias and variance in the calculations of the instability number and the
breakthrough recovery. Also, an estimate has been made of the effect of the variability
resulting from the properties of the sand and the packing procedure on the total

experimental variability.
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NOMENCLATURE
Core radius, m [ft]
Initial amplitudes of disturbance for oil and water fingers, respectively,
m [ft]
System cross-sectional area, m? [ft2]
Area under capillary pressure curve, kPa [psi]
Surface area of water finger, m2 [£2]
Factor depending only on the nature of the porous media, m™! [ft-1]
Arbitrary constants of proportionality in Equation 28
Correction factor, function of mobility ratio
Correction factor for cylindrical systems, defined by Equation 85
Correction factor fo;ectangular systems, defined by Equation 86
First order partial derivative of the function f(X1, X2, ..., Xp) at @ point
distant h to the left of the point of interest, given by Equation 132
First order partial derivative of the function f(Xj, X2, ..., Xp) at a point
distant h to the right of the point of interest, given by Equation 133
Second order partial derivative of the function f(X{, X2, ..., Xy) at the
point of interest, given by Equation 134
Core diameter, m [ft]
The expected value of variable Xj
Value of the function f(X1, X2, ..., Xn) at the point of interest

Value of the function (X1, X2, ..., Xn) at a point distant h to the left of

the point of interest

Value of the function f(X1, X2, ..., Xn) at a point distant 2h to the left

of the point of interest

Value of the function f(X1, X2, ..., Xn) at a point distant h to the right

of the point of interest
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Value of the function f(X, X, ..., Xj) at a point distant 2h to the right

of the point of interest

Gravitational acceleration, m/s [ft/sec2]

The spacing interval as a function of the standard deviation of the
variable of interest, given by Equation 130

Initial Oil in Place, m3 [ft3]

Instability number for cylindrical systems

Bessel Function of order n

Absolute permeability of a sandpack, m2 [d]

Permeability to oil at initial water saturation, m? [d]

Permeability to water at residual oil saturation, m? [d]

Length of the porous medium, m [ft]

Mode number

Endpoint mobility ratio

A positive integer giving a qualitative indication of the number of fingers
Time constant, sec1

Capillary number

Gravitational number

Microscopic capillary pressure, kPa [psi]

Macroscopic capillary pressure in the region where water is flowing,

kPa [psi]

Macroscopic capillary pressure in the region where oil is flowing, kPa
[psi}

Equilibrium macroscopic capillary pressure in the region where oil is
flowing, kPa [psi]

Volumetric injection rate, m3/s [ft3/sec)

Stabilized flow rates of oil and water, respectively, m3/s [ft3/sec]



r Radial coordinate, m [ft]

R (1) Separated function for finger surface, given by Equation 29

Rpt Breakthrough :ccovery, fraction of IOIP

Rsw Rate at which new surface is being created, m?/s [ft%/sec]

Sor Residual oil saturation

Sy Estimation of the standard deviation of variable y

t Real time, sec

to Time after commencement of injection when the fingering starts, sec
v Superficial velocity, m/s [ft/sec]

Va Average velocity of a stable displacement front, m/s [ft/sec]

(v:;m)w Maximal velocity of propagation of an oil finger, m/s [ft/sec]

Vor» Vo, Yoz T, 0, and z components of oil superficial velocity vector, respectively,

my/s [ft/sec]

(v;r)w, (v:e)w, Oil perturbation velocities in the r, 6 and z directions, respectively, in

(v:;z)w the region where water is flowing, m/s [ft/sec]
Vwa Average rate at which water crosses the base of a water finger, m/s
[ft/sec]
Vwia Actual velocity of a water finger, tn/s [ft/sec]
%
Vamlo Maximal velocity of propagation of a water finger, m/s [ft/sec]

Vwr Vw8, Vwz T, 8, and z components of water superficial velocity vector,

respectively, m/s [ft/sec]
* * N . ., " 3 . 3 .
(vW r) o (v we) 0,W ater perturbation velocities in the r, 0, and z directions, respectively,

(v*wz)o in the region where oil is flowing, m/s [ft/sec]

VAR (y) Variance of the variable y

Vb Bulk volume of the sandpack, m3 [ft3]
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Volume of an oil finger, m3 [ft3]

Pore volume of the sandpack, m3 [ft3]

Volume of a water finger, m3 [£t3]

Z-direction in the cylindrical coordinate system, m [ft]

Amplitude of an oil finger, m [ft]

Amplitude of a water finger, m [ft]

Location where fingering commenced, m [ft]

Angle core makes with the vertical, radians [degrees]

The mth root of Equation 49

Constant of proportionality, given by Equation 74

Characteristic eigenvalue for which capillary and gravity forces exactly
balance viscous forces, m-1 [ft-1]

Eigenvalues for oil and water regions, respectively, m-! [ft-1]
Function for the surface of a water finger in the region where oil is
flowing, as defined by Equation 47, m [ft]

Angular direction in cylindrical coordinates, radians [degrees]
Separated function for finger surface, given by Equation 27
Wavelength of a water finger, m {ft]

Function for the surface of a finger, m [ft]

Function for the surface of an oil finger in the region where water is

flowing, m [ft]

Function for the surface of a water finger in the region where oil is
flowing, as defined by Equation 30, m [ft)

Separation constant, given in Equation 22

Oil and water viscosities, respectively, Pa-s [cp]

Oil and water densities, respectively, kg/m3 [g/cm3]

Water-oil density contrast, kg/m3 [g/cm3)
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Summation

Interfacial tension, mN/m [dyne/cm]

Pseudointerfacial tension, mN/m [dyne/cm]

Variability due to geological properties of the sand and the packing
procedure in the estimation of instability number and breakthrough
recovery

Variability due to measurement of the component variables in the
estimation of instability number and breakthrough recovery

Total variability in the estimation of instability number and breakthrough
recovery, as given by Equation 136

Porosity, fraction

Force potential, N-m/kg [1bf-ft/lbm]

Capillary potential, N-m/kg [1bf-ft/lbm]

Initial value of the potential in oil on the oil side of the interface, N-m/kg
{1bf-ft/1bm]

Initial value of the potential in water on the water side of the interface,

N-m/kg [Ibf-ft/lbm]
Perturbation potential for water in the region where only oil is flowing,

N-m/kg [Ibf-ft/lbm]
Water force potential in the region where only water is flowing, N-m/kg

[1bf-ft/lbm]
Vector notation

Gradient operator



1. INTRODUCTION

With the ever-increasing demand for energy, it is of prime importance to be able
to improve efficiencies of existing recovery methods. Waterflooding has been the most
important secondary recovery method used for decades. Hence, research effort aimed
at gaining more insight into the various factors governing recovery efficiencies of
waterflood projects could be of immense importance.

Two of the more important factors governing the efficiency of any immiscible
displacement process are the heterogeneity of the reservoir and the displacement
stability. While man has no control over the scale and distribution of the
heterogeneities in the system, he does have control over some of the parameters
governing the stabilty of the displacement process. The stability of an immiscible
displacement process depends upon the balance of viscous, gravitational and capillary
forces which exist in the system. If the viscous forces exceed gravitational and capillary
forces, the system becomes unstable, and viscous fingers develop. Thus, it is of
importance to be able to predict if a displacement is stable or unstable.

There are two usual approaches to determining the conditions for instability in
immiscible displacements. The first approach uses first-order perturbation analysis and
the concept of a velocity potential. This theoretical approach, however, can deal only
with the incipient finger, as first-order perturbation theory is valid only if the
perturbations are small. Moreover, a velocity potential exists only for fields of flow
involving a fluid having constant viscosity and density and a homogeneous and
isotropic porous medium. Thus, such an approach should not be applied when the
flow is taking place in a real porous medium.

The second approach uses the Buckley-Leverett displacement equations.
However, a major limitation associated with theories following this approach is that

they make use of conventional relative permeability and capillary pressure curves which



are valid only for stable displacements. Hence, the usefuiness of the application of
these theories to unstable displacements is debatable.

Another approach to identifying the stability boundary during immiscible
displacements in porous media has been developed recently. This analysis does not
suffer from the limitations associated with the previous approaches. This theory is
based on the assumption of a moving boundary model and uses the concept of a force
potential. The theory, which has been developed for rectangular-shaped porous media,
has been validated experimentally. However, a similar theory for immiscible

displacements in cylindrical systems has yet to be developed.



2. LITERATURE REVIEW

It has long been recognized that the identification of the nature of an immsicible
displacement process, that is, whether it is stable or unstable, has practical and
theoretical value. Consequently, a number of authors have attempted to derive the
theory necessary to predict the conditions which give rise to instability during the
immiscible displacement of one fluid by another in a porous medium. These theories
can be classified into two broad groups: theories based on the Buckley-Leverett
displacement model and theories based on the moving boundary model. Most of the
theories based on the Buckley-Leverett model have met with only partial success,
mainly because of mathematical complications. On the other hand, theories based on
the moving boundary model have been successful not only in identifying the stability
boundary, but also in predicting breakthrough recoveries for stable and pseudostable
displacements.
2.1  Buckley-lLev model

Rachford [1] was the first author to develop a stability theory based on the
Buckley-Leverett equations. He argued that the performance of waterfloods in parallel-
plate models differed significantly from that of waterfloods in water-wet porous
systems containing connate water. Such differences were related primarily to how
saturation was distributed and to mobility ratio. Hence, he suggested that stability
theories based on parallel-plate models were not appropriate for predicting the
instability of immiscible displacement in porous media. Introducing perturbations in
capillary pressure and in the average pressure and using the Buckley-Leverett model, he
proposed a set of partial differential equations governing these perturbations.
However, the non-linearity of the equations forced him to assume the ten saturation-
dependent coefficients of the equations to be constant. Also, he used numerical
techniques based on a few select initial peturbations to obtain solutions to the equations.

Rachford observed that the presence of a saturation transition zone behind the invading
3



front in a waterflood greatly modified the fingering phenomena in water-wet systems.
He observed no tendency towards fingering in all the cases he studied for connate-
water bearing systems. He also concluded from his studies that increasing the water-oil
mobility difference decreased the tendency toward instability. However, Rachford's
findings are questionable because of the simplifying assumptions he made, which have
been discussed previously. Also, it is possible that other instability processes
(dispersion effects, etc.) might have been present in the cases that he studied.

In 1974, Hagoort [2] also investigated the stability of immiscible displacements
in water-wet porous media containing connate water by using the Buckley-Leverett
model. Arguing that the Muskat model of oil-water displacement was not valid for
displacements in water-wet porous media, he concluded from his analysis that it was
the so-called shock mobility ratio, which is lower than the end-point mobility ratio,
which governed the stability of a Buckley-Leverett-type displacement. Neglecting
gravitational forces, he showed that, in the absence of capillary forces, displacements
were unstable when the mobility ratio of the fluids behind and ahead of the shock front
was greater than one. Hagoort assumed that capillarity determined the wavelength of
an instability and, hence, included in his analysis the influence of capillary forces,
using energy arguments. His theory, though devoid of the existence of a critical
wavelength, assumed that the most dominant wavelength in an unstable displacement
would be the one associated with maximal energy dissipation. He concluded that a
displacement would be unstable if the shock mobility ratio were greater than one,
provided that the most probable wavelength was smaller than the width of the porous
medium. However, it is noteworthy that Hagoort, in order to simplify the analytical
computation, assumed that the flow consisted of two zones of constant saturation,
separated by a narrow transition zone. It can be seen from his analysis that for his
theory to be valid for moderate-to-high values of mobility ratio, the above-mentioned

assumption should approach that of a moving boundary displacement.
4



Yortsos and Huang 3] used multiphase flow principles to conduct a linear
stability analysis of the steady-state velocity, saturation and pressure distributions for
immiscible, two-phase displacement processes, by taking into account two-phase flow
on both sides of the front. They found that capillarity had a strong stabilizing influence
on flow disturbances. However, in the absence of capillary effects, flow stability was
shown to depend on the contrast in total mobility. The concept of total mobility
contrast was also used by Jerauld et al. [4] in their recent treatment where they showed
that, in the absence of gravity, the fronts were stable when the total mobility of the
flowing fluids far ahead of the front was greater than that of those flowing far behind
the front.

Theories which employ Buckley-Leverett type equations in the stability analysis
present some significant problems. In all the approaches mentioned above, except that
of Hagoort [2], the perturbation equations are solved numerically. Numerical methods
generally have numerical dispersion and numerical instabilities associated with them,
the effects of which may be difficult to distinguish from the actual behaviour of the
displacement system. Also, all of these theories make use of conventional relative-
permeability and capillary-pressure curves which are valid only for displacements that
are stable in nature. Thus, the use of these curves to predict the behaviour of an
unstable displacement is questionable.

2.2 vin n model

In 1950, Taylor [S] used small-perturbation analysis to study the stability of a
planar interface between two superimposed fluids of different densities when
accelerated in a direction normal to the interface. Neglecting the effects of viscosity and
interfacial tension, Taylor showed, using first-order theory, that the interface was stable
or unstable for small perturbations according to whether the acceleration was directed

from the more dense to the less dense fluid or vice versa. In a subsequent study, Lewis



[6] conducted a series of experiments which demonstrated the validity of Taylor's
theory.

Taking into account both gravity and viscosity effects, Hill [7] developed a
theory to account for the channelling which sometimes occurs when one fluid displaces
another along a uniformly packed column. He was able to define a critical velocity in
terms of the viscosities and densities of the two fluids, He showed that, depending on
the relation between the actual and the critical velocities, displacements can be stable or
unstable. For example, when water displaced a denser and more viscous liquid,
channelling occurred whenever the velocity of flow exceeded the critical velocity.

The above-mentioned phenomena of channelling of a displacing fluid through a
displaced fluid under certain flow conditions were observed by Engelberts and
Klinkenberg [8], who coined the term "viscous fingering". They carried out a series of
laboratory experiments on the displacement of oil by water in a homogeneous porous
medium. It was concluded that when the driving fluid was more mobile than the driven
fluid, the interface between the two fluids would become unstable, and this instability
would result in a severe decrease in recovery efficiency. They identified viscosity ratio
and rate of displacement as the important factors controlling the “fingering"
phenomenon. Engelberts and Klinkenberg observed that at a viscosity ratio of one the
displacing fluid uniformly invaded the porous medium and the breakthrough recovery
increased with the displacement rate. At higher viscosity ratios, the porous medium
was relatively well-invaded at low displacement rates. At high rates, the displacement
was haphazard and large sections of the porous medium were uncontacted by the
displacing water. For a given rate of displacement, the breakthrough recovery was
observed to be much lower for a higher viscosity ratio displacement and also, for a
viscosity ratio greater than one, the breakthrough recovery fell off significantly as the

rate was increased.



Similar conclusions were arrived at by van Meurs [9] in 1957. He studied the
mechanisms of flow processes using a three-dimensional transparent model that
permitted direct visual observations of the displacement process. He studied the
influence of viscosity ratio on the displacement efficiency of a linear waterdrive both in
a homogeneous formation and in a stratified formation,and also on the displacement
efficiency of a waterflood using a five-spot well pattern. By means of photography of
the displacement process at different stages of the experiment, he was able to show that
there was virtually no fingering when the oil-water viscosity ratio was equal to one,
whereas at a viscosity ratio of 80, water invasion occurred in the form of well-defined
fingers.

The study conducted by van Meurs [9] did not include an investigation of the
effects of surface tension on interfacial instability. Bellman and Pennington {10] were
the first authors to include the effects of viscosity in a stability analysis. They studied
the influence of surface tension and viscosity on the formation, and rate of growth, of
Taylor instability. They concluded that the introduction of viscosity eliminated
instability of the interface for small wavelength disturbances. They also observed that
the instability when both viscosity and surface tension were accounted for was less than
that when only viscosity was present. That is, surface tension was found to have a
stabilizing influence on the flow disturbances at the interface.

Results similar to those found by Taylor [5] were obtained by Saffman and
Taylor [11] in a study conducted in 1958. Assuming that two immiscible fluids remain
completely separated along a planar interface, the authors investi gated the flow stability
in a Hele-Shaw cell. They concluded that when the two viscous fluids flowed in a
direction perpendicular to the interface, the interface was stable or unstable to small
perturbations depending on whether the direction of motion was from the less-mobile to
the more-mobile fluid or vice versa, irrespective of the relative densities of the fluids,

provided that the displacement rate was large enough. They also studied the effect of
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surface tension on stability of motion in a Hele-Shaw cell. They concluded that surface
tension limited the range of disturbances which were unstable to those characterized by
wavelengths greater than a critical value which was a function of the surface tension,
the plate separation, the flow velocity and the differences between the densities and
viscosities of the two fluids.

In a study, similar to that of Saffman and Taylor [11], Chuoke et al. [12]
presented a systemdtic theoretical analysis of viscous fingering from the stability
viewpoint. Their theory, published in 1959, is considered to be one of the most
important on the subject of linear instability in immiscible displacements in Hele-Shaw
models. In developing this theory, Chuoke et al. postulated the existence of a velocity
potential and assumed a piston-like displacement model and a porous medium that was
macroscopically homogeneous and isotropic throughout. Their analytical study, based
on a first-order linear perturbation analysis of the immiscible displacement of one fluid
by another, allowed them to derive the necessary and sufficient conditions for
instability. According to them, for instability to occur, the displacement rate had to be
greater than a critical value, and the perturbed displaced front had to contain
wavelengths of disturbance greater than a critical value which resulted from the
interfacial tension between the two immiscible fluids. By examining the sinusoidal
frontal distortion of each wavelength, they found that a different initial growth rate
occurred for each wavelength. They then reasoned that the fastest growing wavelength
will dominate the displacement process and will have a peak-to-peak separation of V3
times the critical wavelength. Their theoretical development was validated by
experiments conducted in Hele-Shaw cells.

In 1962, Outmans [13] attempted to improve the first-order theory for frontal
stability that had been developed by Saffman and Taylor [11] and Chuoke et al. [12] by
utilizing non-linear perturbation theory. His extended first-order theory, he suggested,

could describe correctly the growth and shape of the viscous fingers. Using the
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method of higher-order approximation, he solved the non-linear stability problem,
including in his solutions perturbations up to the fourth degree. He showed that the
simple relationship between interfacial curvature and pressure difference was actually
inadequate, and proposed more complicated formulations. He also concluded from his
fourth-order theory that the growth rate of instability was less than that predicted by
linear theory both with and without interfacial tension.

The stability theories of Chuoke et al. [12] and Outmans [13] were for
waterfloods in parallel plate models which may differ from floods in a real porous
medium or, for that matter, in a packed laboratory model. Benham and Olson [14]
undertook a study to identify the important factors, including packing of a model,
affecting viscous fingering in a laboratory model. The displacing and displaced fluids
were of the same density to avoid gravity effects. They found that fingering was more
severe in a packed model than in a Hele-Shaw model for the same mobility ratio,
indicating that packing was an important variable in the fingering phenomena. It was
also observed that the frontal distortion varied linearly with the distance displaced.
Increased mobility ratio resulted in an increase in frontal distortion. Displacement
velocity also had the same effect on the growth of fingers for both the packed and Hele-
Shaw cells.

Similar conclusions were arrived at by Perkins and Johnston [15] in a later
study. They studied immiscible fingering in linear Hele-Shaw and bead-packed
models, the latter with, and without, an initial water saturation. Displacements were
performed at both favourable and unfavourable viscosity ratios. It was found that
Hele-Shaw displacements were inadequate for modelling the mechanism of immiscible
fingering in a reservoir. They observed that the presence of a connate-water saturation
had a significant influence on the displacement behaviour in a bead-packed model,
especially when the viscosity ratio was unfavourable. Hence, they concluded that

experiments aimed at studying immiscible fingering in water-wet porous media should
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be conducted with a residual connate-water saturation. In the bead-packed models,
they observed flat, piston-like displacement fronts at favourable mobility ratios. At
unfavourable mobility ratios, numerous small fingers developed and the recovery
efficiency at water breakthrough was significantly less than that for the favourable
mobility ratio displacement. They observed that at unfavourable viscosity ratios,
viscous fingers formed earlier during displacements with high injection rates. It was
observed also that the shape of particles constituting the porous medium had only a
slight influence on the recovery efficiency.

Like Perkins and Johnston [15], Gupta and co-workers conducted experiments
to investigate viscous fingering in a Hele-Shaw cell [16] and also in a porous medium
packed with glass beads [17]. It was found that after the incipient fingers formed, they
degenerated to one finger which dominated the subsequent part of the displacement
process. In the experiments conducted in the homogeneous Hele-Shaw model, the
number of incipient fingers matched exactly that predicted by Chuoke's theory [12].
However, in the experiments in porous media, the displacement front was not sharp
and the number of incipient fingers could not be counted. One very significant
conclusion reached by the authors was that for all flow rates considered, the
longitudinal finger growth was linear with time, both in the Hele-Shaw and the porous-
medium models. Based on the experimental results obtained independently from these
two studies, the authors concluded that the Hele-Shaw cell was indeed a valid tool for
studying viscous fingering phenomena for a horizontal immiscible displacement
process.

From the above-mentioned stability studies of immiscible displacement, it can
be seen that the different variables, which are important from the point of view of
immiscible interfacial instability, are viscosity ratio, capillary and gravitational forces,
displacement rate and system permeability and wettability. However, none of the

authors of these studies have been able to combine all of these variables into one
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universal dimensionless group which can be used to quantify the stability boundary in a
linear immiscible displacement. Peters and Flock [18] were the first authors who
combined all of the variables pertinent to the stability problem into one dimensionless
number which could be used to predict the onset of instability during linear immiscible
displacements in cylindrical and rectangular systems. They extended the theory of
Chuoke et al. [12] by imposing an additional boundary condition at the core wall where
the perturbation velocity normal to the wall was made to vanish. This condition
enabled them to incorporate the system dimensions into their stability analysis and also
helped them to arrive at the critical value for the dimensionless number, beyond which
the displacement would be unstable. Experiments were carried out in horizontal
cylindrical cores and photographs of sections of the cores were taken under ultraviolet
lighting. Measurement of the average dimensions of the fingers enabled them to
estimate the "wettability numbers" for water-wet and oil-wet porous media, and thus
the dimensionless number could be calculated. It was observed that beyond the
stability boundary predicted by their theory [18], there was an initial rapid decrease in
breakthrough recovery, with a tendency towards an eventual stabilization of recovery
(pseudostable region) at a lower level than in the stable regime. Noteworthy in the
analysis of Peters and Flock is the importance of the system dimensions which are
raised to the power of two in the dimensionless stability numbers, while all other
variables are raised to the power of one.

In their theory, Peters and Flock [18) used a sharp interface approximation and
based their analysis on the concept of a velocity potential. While such an approach can
deal with an incipient finger, it cannot deal with the subsequent growth of the finger
[19]. Also, a velocity potential exists only for fields of flow involving a fluid of
constant viscosity and density and a porous medium which is homogeneous and
isotropic throughout [20,21]. Moreover, the approach of Peters and Flock was not

able to account for the relative finger widths of the oil and water fin gers.
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In 1985, Bentsen [19], using the concept of a force potential, proposed a new
approach to study the fingering phenomena. The appro «!: taken was to define the
force potential for the water on the oil side and on the water side of the interface, from
which the perturbation potential for the water could be determined. This perturbation
potential, when combined with the appropriate form of Darcy's law, would give the
perturbation velocities for a water finger. A similar approach was followed to
determine the perturbation velocities for an oil finger. The perturbation velocities for
water and oil fingers were then combined by using several compatibility conditions,
and the resulting system of equations was solved to obtain an expression for the
eigenvalue dictating the width of a penetrating finger. Finally, by choosing an
eigenvalue that dictated the largest wavelength that could fit within the confines of a
rectangular porous medium, the instability number and its critical value were defined.
Bentsen's theory [19] was able to account for the fact that water fingers were wider
than the oil fingers and, thus, his instability number for a rectangular system was
proportional to the one proposed by Peters and Flock [18] for the same system, the
constant of proportionality being a function of mobility ratio.

In order to estimate one of the parameters in the defining equation for his
instability number, the pseudointerfacial tension, Bentsen [22] suggested that the
problem be approached at the macroscopic level rather than the microscopic level. By
employing the concept of a force potential, he was able to derive a definin g equation for
the pseudointerfacial tension associated with a smooth, continuous pseudosurface
located within a porous medium. Because the pseudointerfacial tension was defined in
terms of the area under the capillary-pressure-versus-saturation curve, he defined a
functional relationship for capillary pressure which can be used to estimate this area.
Thus, if the area under the capillary-pressure curve, and hence the pseudointerfacial
tension, need to be estimated, a capillary-pressure-versus-water-saturation relationship

must be established through laboratory experiments for a particular rock-fluid system.
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Recent experimental studies [23,24] have shown that the distance travelled by
the tip of the water and oil fingers with respect to the moving boundary was not a non-
linear time function as was assumed by Bentsen [19], but was in fact a linear function
of time as was observed by Gupta et al. [16,17]. The experiments, conducted in Hele-
Shaw cells, also confirmed the theoretical contention that water fingers are wider than
oil fingers. The same conclusion regarding relative finger widths was obtained by
Coskuner and Bentsen [25] when they modified Bentsen's earlier theory [19] to include
a linear time function. Their modified theory was able to predict the stability boundary
for Hele-Shaw displacements correctly. However, the predicted perturbation velocity
in their theory was significantly higher than the measured perturbation velocity. The
major reason for this discrepancy between measured and predicted perturbation
velocities could be the loss of flow details near the nose of the finger, such loss having
come about because of averaging of the flow information in the transverse direction to
flow. The averaging was undertaken in order to establish an analogy between two-
dimensional flow in a porous medium and flow in a Hele-Shaw cell.

Very good agreement between theory and experiment was attained in a study
undertaken by Sarma and Bentsen [26]. Their three-dimensional theory, a modified
version of Bentsen's stability theory [19] developed for flow through porous media,
was successfully applied to predict the perturbation velocity of viscous fingersin a
linear, rectangular-shaped, unconsolidated porous medium. Experimental results
demonstrated that the modified theory of Sarma and Bentsen was able to predict not
only the stability boundary for immiscible displacement in a rectangular core, but also

the breakthrough recoveries for stable and pseudostable displacements.
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3. STATEMENT OF THE PROBLEM

From the survey of the literature in the preceding section, two major
observations can be made. First, it is clear that immiscible displacement of two fluids
in a porous medium is either stable or unstable, depending on whether the combination
of capillary and gravitational forces exceeds the viscous force, or vice versa. The
stability of an immiscible displacement process is an important factor controlling the
displacement efficiency. This emphasizes the importance of stability analysis to predict
the onset of instability during a displacement process.

The second important observation is that linear stability theories, based either on
the Buckley-Leverett model [1-4] or on the moving-boundary model with a velocity-
potential approach [12,18], have some significant problems. In order to overcome
these limitations, Bentsen [19] developed a stability analysis, based on the concept of a
force potential, for immiscible displacements in a rectangular system.

However, most laboratory studies of linear displacements are carried out in
cylindrical, and not in rectangular, sand packs. Thus, there is a need to develop a
stability theory for immiscible displacement of two fluids for a cylindrical porous
medium. In particular, the theory should be able to describe the entire life span of the
viscous finger. Also, this theory should be able to account for the relative finger
widths of the oil and water fingers and should be simple enough to have an analytical
solution.

Thus, the purpose of this study is to develop a stability theory for immiscible
displacement in a cylindrical system by utilizing a force-potential approach. The theory
should be able to predict not only the stability boundary, but also the breakthrough
recoveries for stable and pseudostable displacements. Subsequently, the theory is to be
validated experimentally.

A further aim of this study is to perform a statistical error (sensitivity) analysis

on the calculations of the instability number and the breakthrough recoveries for stable
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and pseudostable displacements for a cylindrical system. The objective of the error
analysis is to determine the relative contributions of both the variability due to
measurement of the relevant variables, and the variability due to the sand properties and

the packing procedure to the total standard deviations of the instability number and the

breakthrough recovery.
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4, DEVELOPMENT OF STABILITY THEORY

4.1  Introduction

The success of most secondary-recovery schemes may depend upon whether
the displacement is stable or unstable. Thus, the identification of the stzability
boundaries during such displacements is of interest. For this purpose, stability theories
have been developed for immiscible displacements in rectanguiar systems (19, 26].
However, most laboratory displacement experiments are carried out in cylindrical, and
not rectangular, cores. The purpose of this section is to demonstrate the development
of a stability theory for cylindrical systems.

The theory presented here is based on the assumption that the oil-water
immiscible displacement process can be treated as a moving boundary problem. Thus,
in order to study the behaviour of a perturbation of the interface separating the two
fluids, the potential on each side of the interface must be specified. Such potentials
arise out of the contribution of capillary, gravitational and viscous forces. The
contribution of gravitational and viscous forces can be readily quantified [19, 26].
However, in order to estimate the contribution of the capillary forces, it is necessary to
know how the boundary &, which separates the displaced fluid from the displacing
fluid, evolves as the amplitude of the surface increases in magnitude with time.

The mathematical prediction of the evolution of the surface separating the two
fluids presents problems. The first reason for this is that the two fluids, in reality, are
separated by a transition zone (capillary fringe) and not by a plane interface. However,
it has been suggested in previous studies [19, 26, 27] that, when the capillary forces
are significant, the transition zone is relatively small when compared to the diameter of
the sandpack. This suggests that it may be possible, without introducing significant
error, to replace the transition zone by a sharp, plane macroscopic interface to which
pressure discontinuities are assigned, and up to which the relatively uniform saturation

and flow conditions prevailing outside the transition zone are extrapolated. The second
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problem associated with the theoretical prediction of the evolution of the pseudosurface
is that the potential distribution on each side of the interface is a function of the location
of the surface. This means that the potential distributions must be determined
simultaneously with &, which creates great difficulties. In order to deal with this
problem, it is assumed that the potentials may be specified a priori. Then, it is possible
to develop the partial differential equation describing the evolution of the two-
dimensional pseudosurface separating the water from the oil. This equation may be
derived by undertaking a summation of the normal forces acting on a differential
element of the pseudcsurface. The solution to this equation is used to determine the
contribution of the capillary forces to the potential distribution.

Once the force potentials for the water on the water side and on the oil side of
the interface are specified, the perturbation potential for the water can be determined
from the difference between these two potentials. From the equation for the
perturbation potential for the water, expressions for the water perturbation velocities are
obtained by the use of the appropriate form of Darcy's law. A similar approach is used
to determine the perturbation velocities for an oil finger. Finally, by application of
appropriate boundary conditions and several compatibility conditions to the perturbation
velocities for the oil and water fingers, an expression for the dimensionless instability
number is determined. Also, its critical value is obtained, beyond which the
displacement becomes unstable. The details of this approach are presented in the

following sections.

4.2 Capillary Pressure Potential
To determine the capillary pressure potential, one must know how the boundary

&, which separates the displacing fluid from the displaced fluid, evolves spatially and
temporally. Assuming that the force potentials on either side of the interface may be

specified a priori, the two-dimensional pseudosurface separating the two fluids can be
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described by means of a partial differential equation, which is obtained by undertaking
a summation of the normal forces acting on a differential element of the surface. The
differential equation describing the evolution of such a pseudosurface, in rectangular

systems has been shown to be [26, 27]

Ge[az Ewdo , PEw

where €y (X, y, z)),, gives the displacement of any point on the surface as a function of
the spatial coordinates and (Pew/(X, ¥, z)), is the pressure difference across the
interface. The pseudointerfacial tension, O, is assumed to be uniform over the

pseudosurface. The equivalent equation in the cylindrical coordinate system is [28]

2
g_(é“_'l‘l + 1 a(&w)o + 1 82(5\;)0 + (Pcw (r, 6, Z)L) =0

Te or2 I or 2

)

Equation 2 can be derived also independently to describe the evolution of the
pseudosurface separating the oil from the water in cylindrical systems [see Appendix
A]. It is to be noted that only the positive domain of the solution to the above equation

is used in the subsequent analysis.

4.3 Macroscopic Capillary Pressure
In order to define the macroscopic capillary pressure, (Pcw),,, the water

perturbation potential, (¢:V)°, must be specified. The water perturbation potential in the

region where the oil is flowing is defined by [19]
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(d):v)o = %% gz Cos 0. + gﬂ (cpo)o - ((bw)w + (PS:,)O + Pe 3)

w Pw

where (D), and (Po) o e defined, respectively, by

- k
Vi = -0 Y (@), @
and
Vo = —KeiwPoy g 5)
],l.o 0

Now, assuming that, on the interface, vyz = voz =V, and that, kyor and Kojw

are independent of z, it may be shown by integrating Equations 4 and 5, respectively,

that
(Dw),, = Dyi — ¥ &) (©)
kwor Pw
and
(@0, = oi — V(&) (7)
oiw Po

where @y, is the initial value of the potential in the water in the region where water is

flowing and ®; is the initial value of the potential in the oil in the region where oil is

flowing.

If the expressions for (dy,) w and (o) o from Equations 6 and 7, respectively,

are introduced into Equation 3, we get, after some manipulation,
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where
M = ko ©
Koiw Hw
and
_ Ap g kwor Cos o (10)
Ng = Hw Vv

At zero displacement of the interface, the surface is plane. If it is assumed that (PCW)0

is zero at Zero displacement of the interface, then it can be shown from Equation 8, that

(o0 z=0)), = L [P0 B~ Pu Bui + P (1) an

Again, if the roots of the viscous fingers are to remain fixed in the surface which

initially separates the two flowing fluids, it is necessary that (<I>:v (z= 0))_0 be zero [26].

In that case, we have, from Equation 11
Pe(t) = — (Po Poi — Pw Pwi) (12)

That is, Pc(t) turns out to be the pressure difference which existed across the

pseudosurface, prior to its being perturbed.

Combining Equations 8 and 12, we get

Pw (B), = = (M- 1-Ng) (Gl + (Pew), (13)
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Equation 13 defines the pressure difference across the pseudosurface corresponding to

a given perturbation of the surface, (Ew) - If the normal forces acting on the surface

were in equilibrium, the perturbation potential would be zero, and the equilibrium

pressure difference across the interface would be defined by

(Pewlye = ot (M= 1= Ng) (&), (14)

However, when a viscous finger starts propagating, the forces acting on the surface
will not be in equilibrium. In that situation, the pressure difference across the interface

will be slightly smaller than the equilibrium macroscopic capillary pressure, (Pew) oe

[26]. Assuming that the actual capillary pressure is proportional to (Pgy,) oe thE
macroscopic capillary pressure can be defined by

Pewy = MY 011N ), (15)

where By (M), the constant of proportionality, is a function of M (see Equation 74).

The nature of the dependence of By (M) on M, as will be seen later, also depends on

the core geometry.

4.4  Equation for Pseudosurface

Introducing the definition of the macroscopic capillary pressure from Equation

15 into Equation 2, we have

a(&uw)o 1 az(éw)o Bw M) py v _
T e (M~ 1-Np (&b = 0(16)

Then, defining



P = Pe My o Ny (17)

kwor Oc

it follows that

Plewh , 1 Alewh | 1 ek
Ty L Sk, 12 o+l =0 (18)

The solution to Equation 18, by the method of separation of variables [29, 30],

can be obtained as follows. Let
Ew, = R(@-©(8) (19)

That is to say, we assume that (&w)o, which is a function of r and 6, is the product of a
funtion of r and a function of 6. Both the functions R and © are real-valued.

Introducing Equation 19 into Equation 18, we have

RO®+LRO+L1lRO" +RRO=0 (20)
T

R
When Equation 20 is divided on both sides by -r—g-)-, it can be written as

2R ' "
-|PREIR 4 7 = & 1)

Now, when a function of one variable equals a function of another variable, the two
functions must be equal to the same constant, which is a negative number [31]. Thus,

we get
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(22)

where WL is an integer. Breaking Equation 22 up into two different equations, each

involving functions of one fundamental variable, we get
@ +p20@ =0, -w<0<=n
and
R" + R' + (y%ﬂ-—uz)R =0, O<r<a
Now, upon introducing the conditions
O(n) = O(xn)
and
O'(-n) = © (n)
we have, by solving Equation 23 [32]

©@® =CCosnb

where C is the constant of proportionality and n = 1, 2, 3,

solution to Equation 24 is [33]

R(@) =Cilan(ywn) + C2 Yo (fw1)
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where Cj and C; are constant. The funtion J, (Y, 1) is called Bessel's function of
order n and Yy, (Y 1) is called Neumann's Bessel function of the second kind of order
n. Now, as r tends to zero, Yy, tends to infinity. But, in the present problem, the
singular Bessel function cannot be used, because we want a solution that is regular at
the origin. Thus, in order that R (r) be bounded, C2 must be zero. Therefore,

Equation 28 yields
R(@ = Ciln(ywr) (29)

Again, since any multiple of a solution is another solution [34], we can drop the
constant C; in Equation 29 and the constant C in Equation 27, and by combining them,

we get from Equation 19
(éw)0 = ZyJn (Ywr) Cosn 0 (30)

where Zy,, the amplitude of a water finger, is a linear function of time [17, 24, 26] (see

Equation 45).

4.5  Perturbation Velocities
Introducing Equation 17 into Equation 15, the macroscopic capillary pressure in

the region where the oil is flowing may be defined by

(Pew)y = T ¥, Ew), 31

A similar approach may be taken to show that the macroscopic capillary pressure in the

region where water is flowing may be defined by

(Peo),, = Ge'Ycz, (o), (32)
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By combining the appropriate forms of Darcy's law with Equations 31 and 32,
it can be shown that the perturbation velocities in the radial direction in the region where

the oil is flowing and in the region where the water is flowing, respectively, are

(Vi = kw" 6 2 (F"”L (33)
and
(Ve = —L war oevz (g” (34)

The perturbation velocities in the z-direction, in the region where the oil is flowing and

in the region where the water is flowing, respectively, can be shown to be [26, 27]

(vido = [ (M-1-Np - cey%,] 3 (Ewh (35)

and

(Vi =—KIA—[V(M—1—NB)— k“foey%}a(%)w (36)

4.6  Time Function
While Equation 30 indicates how (Ey,) o depends on 1, 6 and zy, it does not

show how zy, depends on t. To derive the nature of the dependence of zy, ont, it can

be shown, by using Equations 33, 34, 35 and 36, that [26, 27]
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and

(Vi = a_(a_&:ﬁ .z —Klll-[v(M—l—Ng) - kW: ocy?,]

From Equations 37, 38, 39 and 40, it can be seen that

ot ok

oo

%V- = [v(M—l—Ng) - k—;f cey?.,]
and

9dZT° --L [V(M—I—Ng) - klf—: ocy%]

3 (ol

oz

37N

(38)

(39)

(40)

@41

(42)

(43)

(44)

Equations 41 and 42 define the rates of radiai increase of the bases of a water

finger and an oil finger, respectively. Equations 43 and 44 define the rates of increase
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of the amplitudes, in the z-direction, of a water finger and an oil finger, respectively.
These equations have been developed with the assumption that the roots of the water

and oil fingers remain attached to the surface which initially separated the water from

the oil.
From Equation 43, it can be seen that the velocity of propagation of a water

finger remains the same for any given value of Yy, provided the superficial velocity of

displacement, v, remains constant. Thus, it can be written that

*
Zyw =z = ay + (vwm)ot (45)

where ay, is the initial amplitude of the water finger and where (v":,m)o is defined by

Equation 43. Similarly, for an oil finger, it can be seen from Equation 44 that
*
= —Z = —8n— t
Zp = —Z = 35— (v om)w (46)

where a, is the initial amplitude of an oil finger, and where (v:m) is defined by
w

Equation 44.
Introducing Equation 45 into Equation 30 yields, for the surface of a water

finger in the region where oil is flowing,

(nw(r. 6, o = T (v 1) Cos n 0 {aw + (vimbt) 47)

Differentiating Equation 47 with respect to t yields the expression for the rate of

increase of the amplitude of the finger surface,

d(Mw .
(3: b _ (Vem)o Jn(ywr) Cosn @ (48)
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4.7  Minimum Geometric Eigenvalue
*

wr)o , is proportional

The radial perturbation velocity of a water finger, (v

to a(le)o.
T

Two conditions are applied to the radial peturbation velocity, in order to

model a water finger. First, the velocity normal to the core wall must vanish [18, 32];
that is, (v:/r)o must be zero at r = a, where a is the core radius. Applying this boundary

condition, it may be shown that

I (a) = 0 (49)

The second condition is that the radial perturbation velocity of a water finger is not zero
at the centre of the core. That is to say, Jn (0) should not equal zero. Based on these

two conditions, it can be concluded that n = 1, so that Equation 47 becomes

Nw @ 6,t) = J1 (Y1) Cos 8 {aw + (Vimbt) (50)

where J; is Bessel function of the first order.
For any particular value of n, Equation 49 has an infinite number of possible

roots, Om, where m is the mode number. Table 1, taken from Reference 35, lists the
first few positive roots of J, and T for different values of n. The roots of J listed

under any particular value of n, being the product of the wavenumber and the core
radius, give a qualitative indication of the possible wavelengths of the fingers [18].
Thus, for n = 1, and for fingering to take place, the value of (yw a) has to be at least
equal to 1.8412, the first mode value. Therefore, the minimum geometric eigenvalue is

given by
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Table 1: Zeros of Bessel Functions Jn(x) and J;](x)*

n=0 n=1 n=2 n=3

Jn(x) =0 2.4048 3.8317 5.1356 6.3802
5.5201 7.0156 8.4172 9.7616

8.6537 10.1735 11.6198 13.0152

11.7915 13.3237 14.7960 16.2235

J;(x) =0 0.0000 1.8412 3.0542 4.2012
3.8317 5.3314 6.7061 8.1052

7.0156 8.5363 9.9695 11.3459

10.1735 11.7060 13.1704 14.5859

* from Reference 35
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1.8412

ngeom. =T a G

which shows that

g =32 52)

Wgeom. a2

4.8  Compatibility Conditions

Certain corditions must be met if the growth of two or more pairs of oppositely
directed oil and water fingers is to be compatible. The conditions of symmetry,
continuity and similarity, which have been applied before in rectangular systems [19],
are also imposed here in order to ensure the compatibility of the growth of the fingers.

The functional forms are the same for both the oil and the water fingers.
Consequently, for the condition of symmetry to be met, the roots of the oil and water
fingers must be located symmetrically within the circular interface which initially
separated the oil from the water. This condition can be imposed by making the integral
values of the mode numbers for the oil and the water fingers equal. The condition of
similarity requires that the shape of a given water finger be similar to that of the
contiguous oil finger over the entire time span of finger growth. Similarity can be
guaranteed by requiring that the ratio of the velocities of a water finger and the adjacent
oil finger be the same in all directions. The condition of continuity can be met by
requiring that the volume of water contained within a water finger be the same as the
volume of oil contained within the continguous, oppositely directed oil finger.

Now, it can be seen from Equations 39 and 40 that
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(Vido = [V (M-1-Ny) - lilv" Gc}%] J1(Ywr) Cos 0 (53)

w

and

(Vi =_JM_ [v(M—l—Ng) - %5 ceY%] J1(Yer) Cos 8 (54)

At equivalent locations on the surface, the value of {J1 (yr) Cos 8} should be the same
for both the oil and the water fingers. Therefore, at equivalent locations on the surface,

it can be seen from Equations 53 and 54 that

(v}go _ (v}m)0 55
Vo, Com)
Again, we have from Equations 37 and 38
(Vi = = % G0 fau + (Vimbt) Ji (rur) Cos 6 (56)
and
(vl = —JM %’f Ge13 {20 + (vem)wt] J1(ver) Cos (57)

Using the same approach as before, it follows that at equivalent locations on the surface

andatt=0
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o, Mutw
o= (58)
(Vor)w Y?, dp

For the condition of similarity to be true, it may be shown, from Equations 55 and 58,

that

(V:vm) M ‘Y:v"v aw

= (59)
(Vom)w o do
The volume of water contained within a water fin ger is defined by
"2 ra
Vw = [ [ 16 0rdrde (60)

Introducing Equation 50 into Equation 60, it can be shown, by considering only the
first term of the expanded form of Jy, that an approximate value for the volume of a

water finger is given by

v, = [aw + (g%)o J Yo 23 61)

Similarly, the volume of oil contained within an oil fin ger can be shown to be

V, = [ao_"%w_t] Yo3 (62)

Equations 61 and 62 can also be arrived at by using Kronecker's formula [26], and by

considering the first two terms of the expanded form of J, For the condition of
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continuity to be true, V,y, should be equal to V, and the relationship obtained thereby

should hold true even when t =

Jo

Yw

&

Now, Equations 45 and 46 yield
*
aw = Zw - (va)O t

and

%*
% = 20 = (Vo )ot

from which, it can be seen, at t =, that

qw_ _ Zy
aH %y
so that, it follows that
*
Aw _ zy (vwm)o
= e p— *
YR v,

Combining Equations 59 and 67, it may be demonstrated that

£y

0. Applying this condition, it may be shown that

(63)

(64)

(65)

(66)

(67)

(68)



which implies that the wavelength of a water finger is M1/3 times that of the contiguous
oil finger. The validity of this relationship has been confirmed experimentally in
analogue models of porous media [23, 24], and has also been confirmed indirectly in
previous studies for rectangular systems [19, 26, 27]. Also, introducing Equation 68

into Equation 63, it can be shown that
ay = MI1B g, (69)

which relates the initial amplitudes of disturbance for oil and water fingers, by means of
a function of the mobility ratio. It is to be noted that Equations 68 and 69 can also be

derived by considering all the terms of the expanded form of Jj.

4.9  Velocity of Penetrating Fingers
The four unknowns (v:vm)o, (v;m)w, Yw and Y, are related by the four

equations: 43, 44, 68 and 70, where Equation 70, which is given as

*

Vo)
e I YU (70)

(Vom)w Yw

relates the maximal propagation rates of the water and the oil fingers. Equations 43,
44, 68 and 70 may be solved to arrive at an expression for the maximal velocity of the

penetrating water finger, as

(oo = v(M -21 - Ny ‘M;; 1) an
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Also, by combining Equations 70 and 71, it can be demonstrated that the maximal

velocity of the penetrating oil finger is given by

. v(M-1-N,) [M®B_1
(Vemhs = —— g’( M) (72)

4.10 Eigenvalue for the Water Region
Comparing the two defining Equations for (v:vm)o, 43 and 71, it may be shown

that

- Pwv(M-1-Nj (M7f3+ 1
% = P e (73)

where Yy, is the eigenvalue for the water region and it corresponds to a particular

superficial velocity, v. A comparison of Equation 73 with Equation 17 reveals that

Bw (M) is defined by

M2/3 + |
; (74)

BW (M) = IM2/3

It should be noted that Bw (1) equals one and Bw (=) equals 0.5, and for values of M

between one and infinity, Bw (M) gradually changes from 0.5 to one, the amount

depending on the value of M.

It should also be noted that, as distinguished from this case, the Bw (M) in the

case of a rectangular system, has been defined by

5/3
M + 1 (75)

Pv ) = 5 s
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4.11 Most Probable Finger Width

The ratic of the surface area to the volume of a water finger needs to be
determined in order to develop the defining equation for the time constant of a water
finger, from which the dominant wavelength of finger growth can be ascertained. The

surface area of a water finger has been defined by [26]

A, = ”" I V (%)3)2 + 32. (g(seL)")z rdrdo (76)

By introducing Equation 30 into Equation 76, and knowing that n = 1, and considering
that only the first term of the expanded form of J; is used, an approximate value for the

surface area of a water finger may be demonstrated to be

2
Asw = 5= - 2w Yw )

In view of Equations 61 and 77, the surface-area-to-volume ratio of a water finger may
be shown to be

Asy _ 3m
Ve ~ 4a (78)

The time constant of a water finger is obtained by multiplying Equation 78 by the
average velocity in the z-direction at which fluid is crossing the base of the finger [26].
The average velocity is obtained by integrating the peturbation velocity in the z-direction

(given by Equation 53) over the total flow area. By undertaking this procedure, it can
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be shown that the average rate at which water passes through the base of a water fin ger

is related to the maximum velocity of the finger by

* 2
Voa = (Vo) Tw e (79)

Hence, by combining Equations 43, 78 ard 79, it can be demonstrated that the time

constant of a water finger is defined by

nw=Y—w[v(M—1—Ng)—lL“:v—"ocy3vJ (80)

The time constant ny, which is associated with every finger wavelength,
determines how fast each wavelength will grow for a given superficial velocity, v. The
eigenvalue corresponding to zero growth rate for a finger is called the critical
eigenvalue, and is found, by equating Equation 80 to zero and solving for the

eigenvalue, to be

— A /BwVv(M-T-NJ 81)
kW(IGe

Ye

Equation 81 defines the eigenvalue at which the perturbation velocity is zero. That is,
Yc is the eigenvalue at which the viscous forces exactly balance the capillary and
gravitational forces.

It can be seen from Equation 81 that, with increasing velocity, fingers are
formed with progressively smaller wavelengths. Among the wavelengths, the one that
dominates the displacement has the maximum surface-creation rate per unit area [19,
23,26]. In other words, the most probable finger is the one for which the time

constant, as defined by Equation 80, is a maximum. Therefore, by differentiating
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Equation 80 with respect to y,,, and setting the resulting equation to zero, the dominant

finger wavelength may be shown to be

where Y is given by Equation 81. The above relationship has also been derived in

many previous studies [12, 18, 19, 23, 26].

4.12  Stability Criterion

The type of displacement that takes place within the confines of a porous
medium depends upon the balance existing among the viscous, capillary and
gravitational forces. If the combined forces of gravity and capillarity are greater than
the viscous forces, the displacement is stable. Otherwise, the displacement is unstable.

The effects of the viscous, capillary and gravitational forces on the wavelength
of the viscous fingers is reflected in Equation 73. Equation 73 shows that for every
velocity of displacement there is an associated wavelength of disturbance. However,
because the displacement takes place within the confines of a porous medium, only
those wavelengths which are smaller than a certain critical wavelength which is
determined by the dimensions of the porous medium, may be manifested. Therefore,
the largest wavelength which can fit within the confines of the porous medjum
determines the onset of instability [18, 19, 23, 26). This largest wavelength
corresponds to the smallest eigenvalue which is given by Equation 51.

Thus, for the displacement to be stable, it is required that

v, <y (83)

w gcom

38



Introducing Equations 52 and 73 into Equation 83, it can be shown that the

displacement is stable provided that

1. 2
_ Mwv(M-1-NgD ‘M%H < 13.56 (84)

I
= Kwa Ge
It should be noted that the instability number for cylindrical systems defined by

Equation 84 is proportional to the one developed by Peters and Flock [18], the constant
of proportionality

M2/3 41
oM (85)

CcM) =
being a function of mobility ratio. This factor arises because proper account was taken,
in the theory, of the fact that water fingers are wider than oil fingers [19]. The
correction factor in the instability number for rectangular systems has been shown to be
given by [19]

4 (M55 + 1)
(M + 1) (MIB 4+ 1)2 (86)

CG(M) =

4.12.1 Pseudointerfacial Tension

In order to determine the instability number for a displacement process using
Equation 84, the pseudointerfacial tension, Oc, must be estimated. In this study o, is
estimated by making use of a recently developed mechanistic model [22] that requires
the capillary-pressure-versus-saturation data for the rock-fluid system under

consideration. This model for 6, has also been used in some of the previous studies on
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instability in rectangular systems [26, 27). The parameter o, is calculated, by using the

capillary-pressure-versus-saturation data, from

Ge = Ac@ ( —lswi ~ Sor) (87)

where Ac is the area under the capillary-pressure-versus-saturation curve.

4.13  Breakthrough Recovery

The breakthrough recovery of a displacement process can be estimated by using
the equation for the perturbation velocity of a water finger (Equation 71) [19, 26]).
However, certain assumptions have to made before deriving the equation for the
breakthrough recovery. Also, these assumptions depend upon whether the

displacement is stable or pseudostable.

4.13.1 Stable Displacements

The instability theory is based on the assumption that the displaced and
displacing fluids are separated by a sharp displacement front, if the displacement is
stable. However, in a real porous medium the two regions where only one fluid is
flowing is not separated by a saturation discontinuity, but by a saturation transition
region. To model this saturation distribution, it is assumed that the mobility ratio and
the displacement velocity are such that the stability boundary has just been crossed

(i.e., m = 1) and that, as a consequence, half of a water finger is propagating. The
actual velocity of such a finger is obtained by adding the superficial velocity, v, to

(v:,m)o and then dividing by the porosity times the change in saturation [26]. The

resulting equation may be shown to be

Vuwh = Y I +

¢(l - Swi" Sa’)

M-1-N; M®»_|
2

M% (88)
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Now, let to be the time when fingering commences and t be the time, after

fingering starts, when the tip of the finger reaches the outlet end of the core. Then, ty is

given by
to = ZoA QD (1(‘2- Swi—Sor) (89)
and t by
t (L"ZO)A(MI"Swi—Sa) i
oft + Mo1-Ng MB-1 (50)

2 M23

where Q is the volumetric injection rate, Z, is the location, along the length of the core,

where fingering starts, and L is the core length. The total volumetric recovery at

breakthrough is given by

_ _ Q. L-Z,
Rt—q(t0+t)_A¢(l S\Vl S(X) ZO+ 1+M—1—Ng M%—l (91)

2 M2

Thus, the breakthrough recovery, as a fraction of the initial oil in place (IOIP), may be

shown tc be

1 ~ Swi~ S [Z, 1-ZJL
Ry = —2¥i7 9%« | Lo
T TTesa L L MoI-N, MBo 92)
2 M3

4]



Assuming that the fingering starts at the inlet end of the core, Equation 92 can be

written as

T-Sw | M_I-N, M®_] 93)

4.13.2 Pseudostable Displacements

For values of Isc at or near 13.56, only one finger is propagating. However,
as the instability number is increased above 13.56, increasing number of fingers with
progressively smaller wavelengths can be formed. Which wavelength will dominate
the displacement process depends upon the velocity of the displacement, and hence, the
instability number Igc. As the value of I increases, the likelihood that the most
probable wavelength will dominate the displacement becomes greater. Eventually, at a
sufficiently high value of Isc the most probable wavelength dominates the displacement
and the displacement is said to be pseudostable [19, 26, 36]. If the displacement is
pseudostable, the perturbation velocity of a finger is thrice that of the critical
perturbation velocity associated with the actual injection rate [19]. That is, the velocity

of the most probable finger is given by

«y _3v(M-1-Nyg [MB -1
O o
Consequently, the breakthrough recovery for a pseudostable displacement can be
demonstrated to be
1-Swi-Sa [Z, 1-ZJ/L
R - w1 o o
& 1-Sui L * | 3M_1_Ng M23_ | 95)
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5. EXPERIMENTAL EQUIPMENT, PROCEDURE AND VARIABLES OF
INTEREST
5.1  Description of the Experimental Apparatus
A schematic diagram of the equipment used in the experiments conducted to
validate the stability theory is shown in Figure 1. The experimental set-up was similar
to the one used in a previous study [27]. The circular corcholder, of an inner diameter
of 6.31 cm and a total length of 100 cm, was made of aluminum. The two end-caps
were designed in such a way as to achieve an even distribution of the injected liquid
across the entire cross-section of the core. The end caps were filled with large glass
beads which were held in place by a fritted glass plate made of fused glass beads. A
Ruska Pump was used to obtain a constant injection rate of the desired magnitude over
the range of 2.5 cc/hr to 1120 cc/hr. The pressure differentials across the length of the

core were measured by a pressure transducer capable of sensing pressures up to 50

psig.

5.2 Experimental Procedure
The experimental procedure can be divided into three distinct parts: core-
packing methodology, core property determination and displacement procedure. Each

part of the procedure is described in detail in the following sections.

5.2.1 Packing Procedure

The coreholder, the physical dimensions of which are listed in Table 2, was
packed by means of the wet-packing method which yields sandpacks of consistent
properties {37, 38]. After measuring the bulk volume of the coreholder, it was wet-
packed in the following manner. The coreholder was filled partially with distilled
water, followed by dry 80 - 120 mesh, Ottawa silica sand of known quantity. Close
packing of the sand grains was achieved by tamping the coreholder with a rubber

hammer [32] for about an hour. After the vibration period, compressed dry air was
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passed through the coreholder for about 12 hours in order to remove most of the
moisture in the core. The packed core was then attached to a vacuum pump and

evacuated for 24 hours to ensure the complete removal of the packing water.

Table 2: Physical Dimensions of Coreholders

Bulk Vol. iy i Length Between Diameter
(co) Inlet and Qutlet (cm)
Pressure taps
(cm)
3160 100 99 6.30
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5.2.2 Core Property Determination

In order to determine the core properties, the sandpack was placed in a vertical
position and saturated with distilled water. The vertical position of the core was
important for the simple reason that if any vapour did come off the water as it was
introduced to the evacuated core, it would be easier to extract it from the system in that
position. Also, no air would be trapped in the upper section of the core as could
happen if the core was saturated in the horizontal position. The pore volume of the
sandpack was then determined by a material balance calculation. Subsequently, the
absolute permeability of the core was estimated using Darcy's law for several flow
rates. The porosities and absolute permeabilities of the sandpacks are listed in Table 3.

Since the system used in this study was a water-wet one, the initial water
saturation was then established by displacing the water with the oil of interest. After
the injection of approximately three pore volumes of oil, it was observed that the
mobile water inside the core was removed completely. The initial oil in place (IOIP)
and the initial water saturation were then determined by a material balance calculation.
Subsequently, the permeability to oil at initial water condition was calculated by

measuring the pressure differential across the core and using Darcy's law.

5.2.3 Displacement Procedure

After the sandpack properties were estimated, the flood was commenced with
the displacing fluid being either distilled water or distilled water doped with 0.1%
sodium fluorescein. The latter was used as the displacing fluid in Runs 11 and 12
only. The displacement was stopped at water breakthrough in order to photograph the
core cross-sections under ultra-violet light. The flood was conducted in the following
manner. The inlet end of the horizontal coreholder was connected to the water bomb.
A graduated cylinder was placed at the outlet to the collect the effluent. An appropriate

injection rate was selected by choosing thie correct gear ratio on the Ruska Pump. The
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Table 3: Porosities and Absolute Permeabilities of Sandpacks

Runs Porosity (fraction) Absolute Permeability (d)
1 0.3548 13.27
2 0.3565 12.38
3 0.3550 13.20
4 0.3548 12.38
5 0.3613 12.59
6 0.3565 13.03
7 0.3419 12.18
8 0.3645 13.03
9 0.3548 13.27
10 0.3581 12.81
11 0.2581 12.59
12 0.3629 13.03
13 0.3548 12.92
14 0.3581 13.03
15 0.3613 13.03
16 0.3548 12.59
17 0.3516 12.81
18 0.3581 12.59
19 0.3565 13.03
20 0.3516 12.38
21 0.3548 13.03
22 (.3581 12.81
23 0.3565 13.27
25 0.3548 12.38

47



displacement, at this constant rate, was continued until the breakthrough of water, i.c.,
when the first drop of water reached the outlet end. Thus, the breakthrough recovery
of oil could be calculated, as a fraction of the IOIP. The flood was continued until three
to four pore volumes of water were injected, at which time, the incremental recovery of
oil from the core was observed to be zero. From material balance calculations, the
residual oil saturation within the core was determined. Finally, the permeability to
water at residual oil saturation was calculated by measuring the pressure drop across the

length of the core, and by using Darcy's law.

5.3  Photography of Core Cross-Sections

One of the objectives of this study was to attempt to determine, with a certain
degree of certainty, where a finger was initiated. To this end, a technique, which has
been used in previous studies [18, 32], was adopted whereby the core cross-sections,
after water breakthrough, were photographed under ultraviolet lighting.

Runs 11 and 12 were terminated after water breakthrough and several sections
of the core were retrieved from the coreholder and photographed under ultraviolet
lighting using ¢ yellow filter. In the resulting photographs, the bright white areas
indicate the areas of the core cross-sections swept by the fluorescent displacing water,

while the dark patches are the areas uncontacted by the water.

5.4  Variables of Interest

In order to determit.. the values of the instability number and the breakthrough
recoveries for stable and pseudostable displacements, there were several fundamental
variables which needed to be estimated or known. These variables could be classified
as follows.

(1)  Fundamental Material Property Variables

The fundamental material property variables were the follow ing.
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)

(i)

(if)

Ho, Hw, the viscosities of oil and water, respectively, at room
temperature;

Ac, the area under the capillary pressure versus saturation curve,
which is a function of wettability, interfacial tension znd pore-
size distribution [22, 27]. The values of A, for different fluid
pairs were taken from Reference 27, as the porous medium and
the fluids used in that study were the same as those in the

present study.

Fundamental Experimental Variables.

The fundamental experimental variables were the following.

(i)
(i)
(iii)

(iv)

W

(vi)

(vii)

(viii)

V3, the bulk volume of the core which was measured directly;
L, the length of the core;

V1, Va, the input and output volumes of water, respectively,
which were used to determine the pore volume (Vp) of the core;
V4, the total volume of water produced from the core at the end
of the oilflood which was used to calculate the initial water
saturation (S.wi);

Qo, APy, the flow rate of oil and the corresponding stabilized
pressure drop, respectively, which were used to estimate the
permeability of oil at initial water saturation (kjw);

Q, the flow rate at which the displacement of ol by water was
carried out;

Ry, the recovery of oil at water breakthrough;

Z,, the distance from the inlet end of the core where fingering

began;



(ix) Vs, the total volume of produced oil, measured at the end of the
waterflood which was used to estimate the residual oil saturation
(Sor);

(x) Quw, AP2, the flow rate of water and the corresponding stabilized
pressure drop, respectively, which were used to determine the
rermeability to water at residual oil *aturation (kwog).

Thus, a maxiinum of sixte2n fundamental variables were required to be known or
estimated, in order to calculate the values of the instability number (I) and the

breakzi»nugh recovery (Rpy) for every experimental run.
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6. EXPERIMENTAL RESULTS AND DISCUSSION
6.1  Introduction

The immiscible displacements carried out in this study were conducted in water-
wet unconsolidated sandpacks. Two different fluid pairs having viscosity ratios of
29.60 and 61.28 were used in this study. 1he differant properties of these fluids are
listed in Table 4. The experiments were carried out over 2 wide range of displacement
rates, from 5 cc/hr to 2800 cc/hr. The data from these experiments enabled the
validation not only of the stability boundary, but also of the equations used to estimate
the breakthrough recovery for stable and pseudostable displacements. Moreover, the
equation used to estimate the pseudointerfacial tension has been validated
experimentally.

The actual (calculat~d average) and predicted breakthrough recoveries for stable
and pseudostable displacements for the two different viscosity ratios used in this study
are reported in Table §. The displaced fluid (oil) in one-half of the 24 experiments
conducted in the present study was MCT-5, and in the remaining dozen was MCT-10.
The end-point saturations and permeabilities for displacements with MCT-5 and MCT-
10 are given in Tables 6 and 8, respectively, and the displacetzat data in Tables 7 and
9, respeciively. The end-point permeabilities for Run 3 could not be calculatesd because
of transducer malfunction. Runs 11 and 12 were stopped at water b:+akthrough in
order to photograph the core cross-sections to estimate the distance from the inlet end of
the core to where fingering was initiated. This distance (Zg) was then used in
Equations 92 and 95 to predict the stable and pseudostable breakthrough recoveries for
the two different viscosity ratios studied. The breakthrough recovery as a fraction of

the IOIP is plotted as a function of the instability number in Figure 2.

N
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6.2  Results
Some of the important results observed from the experiments are described in
detail in the following sections,

Table 4: Fluid Properties at 22°C

Fluid System Density* Viscosity  Int>rfacial tension Ac*
(gm/cc) (cp) (dyne/cm) (dynefcm?)
1. Distilled Water 0.9982 1.028 -
2. MCT-5 0.8123 30.43 33.2 16341
3. MCT-10 0.8576 63.00 343 13573

* from Reference 27

Table 5: Actual and Predicted Breakthrough Recoveries

Fluid System Viscosity ~ Stable breakthrough Pseudostable breakthrough
Ratio recovery (% of I0IP) recovery (% of I0IP)

Predicted Actual Predicted Actual
1. MCT-5 and 29.60 49.95 50.00 42.81 -
Distilled Water
2. MCT-10and 61.28 39.13 3901 37.14  36.37
Distilled Water




Table 6: End-Point Saturations and Permeabilities for MCT-5 Displacements

Runs Swi koiw Sor kwor
(% of pore volume) (d) (% of pore volume) (d)
1 10.91 8.31 18.00 1.85
2 12.22 9.48 23.98 1.95
3 11.93 - 22.60 -
4 11.27 9.37 23.64 1.95
5 11.16 8.94 19.20 2.12
6 11.04 8.24 20.18 1.90
7 10.33 7.51 25.47 1.67
8 12.57 8.17 26.55 1.90
9 10.91 9.87 21.82 2.21
10 11.71 8.54 20.72 1.89
11 11.26 8.30 - -
12 11.56 8.37 - -
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Table 7: Displacement Data for MCT-5 Displacements

Runs Q I0IP M Cc | Rp
(cc/hr) (cc) (dyne/cm) (% of 101P)
560 983 6.59 4122 97.13 43.88
2 50 970 6.09 3717 8.41 50.00
3 50 974 - 3798 - 49.90
4 50 976 6.16 3774 8.38 49.89
S 80 995 7.02 4111 12.95 50.25
6 100 983 6.83 4006 18.03 49.03
7 400 950 6.58 3584 88.25 45.05
8 200 088 6.88 3626 40.13 47.06
9 5 980 6.63 3900 0.772 49.80
10 10 980 6.55 3953 1.76 50.20
11 100 985 - - - 45.18
12 100 995 - - - 45.33
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Table & End-point Saturations and Permeabilities for MCT-10 Displacements

Runs Swi koiw Sor Kwor
(% of pore volume) d) (% of pore volume) @)

13 11.09 10.34 24.55 4.28
14 10.90 10.23 24.95 4.13
15 12.50 10.14 23.93 4.17
16 11.09 10.12 25.45 4.18
17 11.00 10.20 26.51 4.19
18 12.80 10.30 23.42 4.24
19 11.04 10.14 25.16 4.15
20 11.00 10.31 24.95 4.25
21 10.91 10.16 2491 4.15
22 11.08 10.13 24.50 4.18
23 11.76 10.23 23.98 4.17
24 11.91 10.22 24.09 4.42

¥4
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Table 9: Displacement Data for MCT-10 Displacements

Runs Q IOIP M Cc Iy Ry
(cc/hr) (cc) (dyne/cm) (% of 101P)

13 100 978 25.37 3100 37.75 38.24
14 560 989 24.74 3117 212.63 37.00
15 2400 680 25.20 3117 918.84 36.43
16 800 978 25.31 3056 312,97 36.50
17 1120 970 25.17 2982 445.55 36.29
18 2800 968 25.23 3100 1061.3 36.36
19 30 083 25.08 3087 11.60 38.96
20 40 970 25.26 3056 15.36 38.56
21 10 980 25.03 3091 3.85 39.08
22 1600 987 25.29 3131 610.47 36.47
23 2000 975 2498 3109 761.15 36.31
24 5 969 26.50 3082 1.92 39.00
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6.2.1 Displacement Records

The first twelve displacement runs in the present study were conducted with
MCT-$ as the displaced fluid and the corresponding data are tabulated in Table 7. It
can be observed from Table 7 that for Run 6, which was carried out at a displacement
rate of 100 cc/hr, the instability number was 18.03, which was the I value (in the
unstable region) closest to the stability boundary. Hence, in order to identify the
location, along the length of the core, where the fingering phenomenon was initiated,
Run 11 was performed at the sarne displacement rate as Run 6. The core cross-sections
were photographed after the displacement process was stopped at water breakthrough.

The photographs of the core cross-sections at water breakthrough, from the
inlet end of the core to 50 cm along its length, are presented in Plate 1. It can be
observed from Frames 1 to 6 that the displacement was uniform at all cross-setions.
However, as can be seen from Frame 7, severe oil bypassing commenced at a distance
of about 50 cm from the inlet end of the core. In order to confirm this finding, Run 12
was performed at a displacement rate of 100 cc/hr and the same procedure was
followed as before. It can be seen from Plate 2 that the recognizable pattern of viscous

fingering started to develop again at a distance of 50 cm from the core inlet.

6.2.2 Stability Boundary

As can be seen from Equation 84, the stability of an immiscible displacement
depends upon the diameter of the coreholder, and upon the mobility ratio, displacement
rate and pseudointerfacial tension of the fluids used in the displacement. It can be
observed from Figure 2 that there is good agriement between the theoretically predicted
value of the stability boundary and that determined experimentally for the two different
viscosity ratios used in the present study. Figures 3 and 4 have been used to indicate
the prediction of the un-et of instability in cylindrical systems in the studies by Peters

[32], Demetre [371, Wiborg [40] and Baird [41].
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The data from several runs in the above-mentioned studies, which are listed in
Appendix B, were analyzed in order to calculate the instability number, I, as given by
Equation 84, for every run. In order to achieve this goal, the pseudointerfacial tension,
Oc, given by Equation 87, and, hence, the area under the capillary-pressure-versus-
saturation curve, A, for the particular rock-fluid system of interest had to be known or

determined. To solve this problem, it was necessary to assume that A cc .‘d be

considered to be a product of C and &, where C was a factor depending on the nature of
the porous medium and ¢ was the interfacial tension between the fluids. An average
value of C was found to be 409 cm"! from Reference 27 and it was assumed that this
value could be used to obtain the approximate values of A for the different systems
used by Peters [32], Demetre [37], Wiborg [40] and Baird [41], provided :-= values of
o were known. The values of I, from these four studies, thus calculated, were plotted
in Figures 3 and 4 against the observed values of the breakthrough recovery as

fractions of the IQIP.

6.2.3 Onset of the Pseudostable Region

For a particular rock-fluid system, v-hen the displacement rate is large so that
the magnitude of Igc falls within the pseudostable region, then, as in the stable region,
the recovery is independent of I [27, 37, 38]. Denetre [37] has sho n, using his
data and also data from the study carried out by Peters [32], that the onset of the
pseudostable behaviour occurs at a stability number of 900. Ncw, the instability
number, developed in the present study and given by Equation 84 is proportional to
the one derived by Peters and Flock [18). The constant of propu:ticnality, C¢(M), is
given by Equation 85. Thus, if C¢(M) is taken into consideration when determining the
onset of the pseudostable region, one would expect an instability number differing from
that reported by Demesire [37] by the factor, C.(M). The redsons for this difference are

two-fold. First, the present theory is based on the force potential approach; and, unlike
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the velocity potential approach of Peters and Flock | 18] or Demetre, this theory can
account for the relative widths of the oil and water fingers as will be discussed in detail
Jater in Section 6.2 Secord, in the experiments conducted by Peters and Flock and
Demetre, the disp’  + + «+.s were terminated at water breakthrough and not at residual
il conditiviis. Morec - n these studies, in the equation for the stability number, the
permeability t water at residual oil saturation was approximated by the absolute
permeability. . - :se factors in combination mighi have been the major reason for the
noise in the displacement data in these studies.

For M = 25.26, the value of C.(M) is 0.558; and hence, if this factor is taken
into consideratio::, then the instability number at which the onset of the psendostable
region occurs becomes (900) - (0.558) = 500. This agrees fairly closcly with the
<xperimental observations which are plotted ir Figure 2, from which it can be seen that
the pseudostable region begins at an I value of about 450. It is to be notead that an
identical value of the instability number was found to coincide with the onset of

pseudostable behaviour for rectangular systems {27

6.2.4 Breakthrough Recovery

Knowing the perturbation velocity of a water finger, given by Eguation 71, the
equations for the breakthrough recovery of oil for stable (Equation 92) and
pseudostable (Equation 95) displacements were derived. Equation 92 was derived with
the assumption that the superficial velocity of the displacement was such that Ige was

only slightly greater than 13.56, and the only wavelength possible was that associated

with the critical eigenvalue, v, [23]. Equation 95 was developed by assuming that the
wavelength associated with the most probabie eigenvalue, Y, was the one that was

propagating througi the system.
Using Equations 92 and 95, the breakthrough recoveries for stable and

psueodsrable displacements were calculated for the two different fluid pairs used in this
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study. As can be seen from Table 5, it would appear that the predicted values for
breakthrough recovery of a stabie dispfécément are in good agreement with the average
values determined experimentally for the two viscosity ratios of interest, with the
maximal difference between the predicted and the actual values being about 2%. Ti.:
variation in the observed breakthrough recovery for stable displacements (the range in
the calculated values of stable Ry beirig, on the average, about 0.6% of the mean
caiculated stable Ryy), as niay be seen from Figure 2, rmiay be attributed to two major
reasons. First, the end-poiut mobility ratio varies irom rum 1o ua because of variations
in the end-point saturations. Second, the varisé:iiiiy wue 0 pecking and the geological
properties of the sand had an eftcct on the breakthrough recovery. as will be seen l.ier
in Scetion 7 of this report.

or the displacements with MCT: 5, for which the average calculated mobility
ratio was 6.59, it was not pcssible to conduct displacements at high values of the
instability number, because ¢f equipment limitations (very high flow rates and small
pore volumes of the sandpack). However, because of the higher mobility ratio
encountered (M = 25.26) during displacements wi:h M. -10, it was possible to go
beyond the pseudctability bouadary. The predicted breakthrough recovery for
pseudostzble dis,.. - ments matched fairly closely with the average calculated
breakthrough recovery for the MCT-10 displacements, with the difference being about

2% of the actual pseudostable Ryy.

6.3  Discussion

One of the significant achievements of the present study is the successful
extension, to cylindrical porous media from rectangular systems, of the stability theory
of Bentsen [19] to predict the onset of instability and the breakthrough recovery for

stable and pseudostable displacements. According to the present theory, the instability



number, Igc, and its critical value beyond which iiic displacement becomes unstable, for
cylindrical systems, are given by Equation 84.

As ca' be seen from Figures 2, 3 and 4, she di v.cnsionless group, lgc, uivides
the displacement domain in a cylindrical core into a stuble, an unstable and a
pseudostable region. When Iy is less than 13.56, the displacement is stable, whercus
when it is greater than 13.56 and less than about 450, the displacement is unstable.
Beyond the Ig; value of 450, the displacement is pseudostable.

In the defining equation for the instability number (Equation 84), the term (M -
1 — Np) arises because of the force balance carried out on the interface. In particular,
the term M — 1 arises because of the contribution of the mobility coriirast to the pressure
difference across the interface, while the term Ny arises oui ¥ the density contrast
across the interface. The term C.(M) appears in Equation 84 because of the fact that
when the mobility of the disp">ed fluid is iess than that of the dispiacing fluid, the
width of a finger of the driving fluid is greater than that of the contiguous, oppositely
directe finger of the driven fluid [19, 26]. This additional factor, C:(M), did not
appear in the stability number proposed by Peters and Floc:: {18] because when the
velocity potential approach is taken, one cannot determine how rock and fluid
properties might affect the displacement process [19]. The correction factor in the
instability number of rectangular systems has been shown to be given by Equation 86.
Comparing Equations 85 and 86 it can be seen that the correction factor in the instability
number depends upon the geometry of the coreholder.

Figure 5 shows the dependence of C¢ (M) and C; (M) on the mebility ratio, M.
As can be seen from Figure 5, when M changes from 1 to o, C¢ (M) varies gradually
from 1 t0 0.5 and C; (M) from 1 to 4. Thus, there is a significant difference between
these functions as far as their dependence on mobility ratio is concemned. Now, the
instability number for cylindrical systems has been validated in the present study.

Moreover, the instability number of rectangular systems has also been verified by
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means of experimental data [26]. Hence, it may be concluded that in spite of the
correction factors differing markedly, the fact that the instability numbers for these two
systems have been validated experimentally shows, at least indirectly, that the
pseudointerfacial tension, o, which has been used in the defining equations of both o
these instability numbers, has been defined correctly.

The pseudointerfacial tension, given by Equation 87, was defined ty assuming
that the transition region (capillary fringe) separating the oil from the water could be
replaced with a continuous, smooth pseudosurface to which the macroscopic radii of
curvature could be ext-apolated. Moreover, the pseudointerfacial tension was defined
in terms of ihe area under the capillary pressure curve, A, which was supposed to have
units of erg/cm3. Even though this supposition is correct when considering units, from
the physics viewpuint, Ac shov!d have units of erg/cm2/cm, where the unit of cm
refers to the thickness of the capiuary fringe swrounding the centrai core of the water
finger [42]. It has been showr recently by Bentsen {%2] that, by including the
thickness of the capillary fringe and by using Gibbs' theory of surface tension, the
pseudointerfacial tension may be defined by

Oe = Ac ¢ (1-Sywi—Sor) ws (96)

where wg refers to the average thickness of the capillary fringe. From a comparison of
Equations 87 and 96, it may be observed that for these two equations to be equivalent,
the thickness of the capillary fringe, ws, should be equal to 1 cm.

As has been discussed in Sections 4.7 and 4.12, the stability boundary for an
immiscib!e displacement process in cytuidrical «5ses can be obtained by choosing m = 1
for the instability number, where m is the geometric mode number. This particular
value of the mode number corresponds to the largest wavelength of the finger that can

be accommedated by the porous medium. At higher values of the mode number., the
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corresponding eigenvalues become larger, resulting in smaller values of the

wavelength. The relationship between eigenvalue and wavelength of a water finger is

given by
1, =& ©7)

Now, at different values of the mode number, the instability number »;/ill have
different values. For example, for the values of m of 2, 3 ard 4, the corresponding
‘of Yy are 113.7, 291.5 and 548, respe.ctively. Th's means that above the Ig
ue of 113.7 the dispriacement w1l exhioit the second-mode configuration; that is, m
= 2 gives the lower boundary of the second-mode, unstable displacement domain. It
has been shown in Section 6.2.3 that the pseudostable region commenced at an Ig;
value of about 450, and the closest integral value of m corresponding to this value of
Isc is 4.

Equation 80 enables the calculation of the time constant, ny, for every
eigenvalue, v.y, for a particular value of superficial velocity, v. Although this
relationship is continuous from the fluid mechan:cs point of view, in actual experiments
only certain wavelengths, corresponding to the different values of the geometric mode
number, are possible, owing to the finite size of the system. Figure 6 shows the time-
constant-versus-wavelength plots for water and MCT-10 as the fluid pair (viscosity
ratio of 61.28) for different values of the instability number. The number of points on
cach of these curves indicates the maximal mode number associated with that curve.
For example, the curve corresponding to an instability number of 548 has four points
and, hence, corresponds to m = 4. The point on the extreme left (on the curve) relates

to the highest mode, which is the fourth mode for this particular curve. The point on the

69



OL-1O0N
GNV H3LVM 40 Hivd diNid 3HL HOd HLONITIAVM

40 NOILONNL ¥ SV LINVLISNOOD 3NILL -9 JHNDId
w ‘YyirfusjeAepy

(0] )

90°0

L'ELL = 08
T8z = o8]

8¥9 = 09|
9L0! = 08|

pusbe

- o o
llllll'l,
-
-
-~

-~
-
-~
-
-
-~

""-"""'*"Wé_""

s

.

!
I
1

-—

000

0’0

(N

¢o

€0

v'0

9°0

9°0

Lo

8°0

6'0

S ‘JUeISU0) ewli ]

70



extreme right corresponds to the first mode, or the largest possible discrete value of the
wavelength. For a particular value of the instability number, the most probable mode is
the one, lying on the curve, having the maximal time constant.

From Figure 6 it can be observed tht, for the _urve corresponding tom =4,
the most probable mode is a smaller mode than the maximal mode for that curve. Thus,
at an instability number of 548, the displacement should commence at the fourth mode,
as at this mode there is enough energy to drive the perturbed interface at the
corresponding wavelength [23]. However, later on, the displacement should shift to
the third mode which has the greatest rate of surface creation among all the possible
modes. At the third mode, three water fingers should propagate thfough the system,
from a purely geometric point of view. In other words, for this particular fluid pair and
porous media (diameter of 6.31 cm), three water fingers should be proragating through
the system at the onset of the pseudostable behaviour. In a recent study conducted by
Peters et al. [43], éomputer image processing techniques were used to count the
population of water fingers per core cross-section at different degrees of instability. An
empirical formula was developed in order to correlate the average number of fingers
with the stability number. Using this formula, and by means of a relationship between
Isc and Peters’ stability number, it was calculated that, at an I of 450, the average
number of fingers per core cross-section was about 2.3. Similarly, the average number
of fingers amounts to 2.5 at an instability number of 548. This compares fairly well
with the observation, made earlier in this paragraph, that three water fingers should be
propagating through the system at the onset of the pseudostable behaviour. It should
be noted, while making this comparison, that the relationship between time constant
and wavelength of the fingers, and also the equations describing the iingers, are quite
different for cylindrical systems, which have been used in this study, and rectangular

systems, which were usedby Peters et al {43]. It may be argued that this difference in
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“ar; caleulated values of the number of fingers may be due io the above-mentioned
reasons.

From Figure 6 it can be seen that, with increasing instability number, the
maximum of the plot of time constant versus wavelength gets sharper, and the
probability that one particular mode dominates the displacement becomes greater.
However, as has been observed experimentally in Reference 23, at high I values the
presence of microscopic heterogeneities in the porous medium may perturb and
subsequently cause the mode configuration of the fingers to switch from a higher to a
lower value. Now, the energy available in the system to drive the interface is constant
for a constant displacement rate. When the fingers switch to a lower mode, some
energy is released due to a reduction in the total surface area. This excess energy
manifests itself by driving the resulting :gers at a high  “ite [23].

Although in the present study ne :i:cmast was made o investigate the effect of
variation of the core diameter on the stabiliiy problem, a few comments may be made
on the effect of the core size on the plot of time constant versus wavelength. For
different values of the core diameter, the superficial velocity, v, will hav~ -3¢ -ent
values for the same volumetric flow rate, and hence the plot of time constant versus
wavelength will be different and the values of the critical and most probable
wavelengths will be different. Figure 7 is a plot of time constant versus wavelength,
which has been obtained by using data from the study conducted by Demetrz [37] who
carried out experiments for cores having two different sizes. The smaller cores had an
average diameter of 2.39 cm and the larger cores an average diameter of 4.851 cm. It
can be seen from Figure 7 that, while the value of the time constant at any wavelength
is greater for the smaller core, it is the third mode which is always closer to the peak of
the curve than any other mode, irrespective of the size of the core.

It was observed in the study conducted by Demetre [37] that, for water-wet

systems, the size of the core had no influence on the value of the stability number
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coinciding with the onset of the pseudostable region. However, as can be seen from
Figure 7, for the two different diameters, the values of the time constant and
wavelength are different at the peaks of the respective curves. This suggests that the
onset of the pseudostable region is not brought about by the most probable wavelength
but rather by the size of the propagating fingers. Now, the peak of the time-constant-
versus-wavelength plot for the critical value of Ig (i.e. Isc = 450) may be shown to
occur at a wavelength of about 0.0242 m for the particular system under consideration.
As may be observed from Figure 6, for any I value greater than the critical value of
Isc, the peak of the time-constant-versus-wavelength plot corresponds to a wavelength
smaller than that corresponding to the peak of the curve for I;c = 450. Hence, in order
to explain the pseudostable behaviour of the displacement process, it may be argned
that for I values below the critical value, mode switching may take place from the
highest to the lowest modes for any given unstable displacement. However, for Isc
values greater than 450, mode switching may take place only from the largest to the
most probable modes and no further switches are possible. For example, for the
uppermost curve in Figure 6, the most probable mode number is 4 and the maximal
mode number is 6; hence, during the displacement process only two mode switches
may take place.

Now, from a purcly geometric point of view, the diameters of the dominant
fingers propagating through the system can be calculated for different values of the
maximal mode number, assuming that the cross-sectional shape of the fingers is
circular. For example, for a maximal mode number of 2, the diameter of the fully
developed finger, assuming it is circular, may be shown to be 2.27 cm for the particular
core size used in the present study. It has been observed in this study that at the onset
of the pseudostable region, which coincides with an I value of 450, the dominant
mode number of the displacement process is 3. The diameter of the dominant finger

associated with the third mode is calculated to be about 1.42 cm. However, at this
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point, it should be noted that in a real porous medium, because of local heterogeneiiies,
local variations in G, etc., the actual finger shape and size may be somewhat different
from that considered in the present study. In the study conducted recently by Peters et
al. [43], an empirical formula was developed to correlate the average cross-sectional
area of viscous fingers with the stability number. Using this formula, for an instability
number of 450, the average area of cross-sertion of a finger is calculated to be 4.96

cm2, from which, assuming the finger has a circular shape, its diameter comes out to be

about 2.51 cm.

This differs quite widely from tke value of the finger diameter calculated before.
The difference between these two values may, as mentioned earlier, be attributed to the

differences in finger behaviour in rectangular and cylindrical systems.
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7. SENSITIVITY ANALYSIS

7.1  Introduction

The instability number, I, which is used to determine whether a given
immiscible displacement of oil by water is stable or unstable, may be calculated by
using Equation 84. The breakthrough recovery, Ry, for any such stable or
pseudostable displacement may be predicted by means of Equation 92 or 95,
respectively. In ascertaining the magnitude of Igc and Ry, it is necessary to determine
experimentally the vai. - 7 <ach of their component variables. Moreover, each
measurernent of these vii..es involves experimental error, and each of these
measurements con‘ribeies *o the overall errors in the calculated values of Igc and Ry .
In the present study, the estimated value of each of the component variables, together
with its estimated standard error (which will be called standard deviation in this study),
have been used to perform an error (sensitivity) analysis, both analytically and
numerically, on the calculation of Igc. In addition, the relative contribution of each of
the different components to the total bias and variance has been estimated. A similar
analysis has been performed numerically on the calculation of Rp.

Howeseer, it is to be noted that the above analysis is valid only for a single
determination of Iy or Ry and, hence, the errors involved are with respect to a single,
non-reproducible experiment with a given sample of sandpack. The total variance with
respect to general experimental determination of Iy (and Rpy) must include, in addition,
the variability attributable to the material properties of the sandpack sample and the
packing procedure. Consequently, an attempt has also been made in this study tc
estimate the contributions of both the variability due to the packing procedure and the
geological characteristics of the sand to the total experimental variability. In order to

achieve this goal, data from two replicate runs (Runs 2 ard 4) have been used.

76



7.2 Mathematical Model

The basic problem is as follows. Given y = (X1, X2, X3, ..., Xn), where f is

any single-valued function of n variables, then the individual mean value may be

estimated using

i

X
X; = ZT (98)

where N is the number of observed values of variable Xj. Let E(X;) be the expected
value of ith component variable (i=1,2,..,n)and E(y) be the expected value of y.

The expected valus= of any continuous function g(X) is defined as [44]

ElgX)] = f g (x) fx (x) dX

(99)
where
Fx(x) = P(X<X), -wo<X<oo (100)
and
fx (x) = d_F;‘i("_) (101)

Here, X is a random variable, x is a particular value in the set of all possible values of

X,P(X £x)is the probability that X will take on a value less than or equal to the
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particular value x and fx(x) is the probability density function of the continuous variate

X.

Now, considering two different input variables X; and X, the estimator of the

second moment of the variables may be defined by [45]

Sij = E[Xi- X]] - E[X{ - E[X]] (102)

where

‘o
i

E[Xi . Xj] = I L: Xi Xj in.Xj(xi! Xj) dx; dx; (103)

If X; and X; are statistically independent, one can write Equation (103) as

E[Xi-X] = [ xifi,(x) dx; - [Txifg (x)dx; = E[X] - E[X]  (104)

By introducing Equation 104 into Equation.102, it follows that Sjj =0. In other

words, when Sjj = 0 for i # j, the variables are statistically independent. When i =],
Sij is written as Siz, where Si2 is an estimator of the variance of the ith variable.

Similarly, Sii is an estimator of the variance of X;.

Now, considering the equation y = f(X1, X2, X3, ..., Xy), it is assumed that
the component variables are uncorrelated. Then, expanding f(X1, X2, X3, ..., Xp) in a
multivariable Taylor Series up to second order (leaving out the 3/ and higher order

terms) about (X 1, X3 ..., Xp], one gets, after simplifying [46],
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~ Y. Y. X 3 2
E[Y] = f(X*l, X2, crey xn) + %‘2 (__' _ SX; (105)

and

& [ of
VAR (y) = ; (-é-x—}i S% (106)

where VAR(y) is the variance of y and the subscript X; means that the terms are
evaluated at the average values of the component variables. The second term in the
right-hand side of Equation 105 will be called the bias in the estimation of y.

Equations 105 and 106 apply to any function. The only restriction is that all the
measured quantities indicated by X's are statistically independent. The equation for
VAR() (or S?) provides a method for estimating the total variance of a function and,
hence (assuming that one can measure precision in terms of second central moments),
the total precision of the calculated result. It is also a method for determining which
component of the function makes the largest contribution to the variance of the total,
and therefore points the way both to where t‘hc maximal improvement can be effected
and where it is fruitless to attempt an improvement in the precision.

The application of the propagation of variance formula involving the derivatives
is illustrated by means of the following example. The porosity of a core is defined as ¢
= \X,I; , where Vp is the pore volume and Vy is the bulk volume of the core. Then, in
order to make an analytical evaluation of the variance of ¢, the values of the squares of
the partial derivatives of ¢ with respect to its two component variables need to be

determined. The partial derivative of ¢ with respect to Vp at the mean values of the

variables is given by
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) _
90 _ 1 _ 9% (107)

so that

(108)

Similarly, the square of the partial derivative of ¢ with respect to Vj, at the mean values

of the variables is
2 -2
a_¢) 2 -9
3V Vb ‘7% Vo (109)

Introducing Equations 108 and 109 into Equation 106, one obtains

2 2
Ss = VAR (9) = ¢ (-'\?2! + —V—E"-) (110)
P b
2 2
SV SVb
The values of :—22 and vy indicate the relative contributions of the variables Vp, and
A \'
p b

Vb, respectively, to the variance of the porosity, ¢. The square root of the total
variance gives the standard deviation in ¢, S¢. If one assumes that the probability
distribution of ¢ is normal, then ¢ * 1.96 S¢ gives the interval over which 95% of the
experimental determinations of ¢ may be expected to occur [47]. Conversely, if one

has determined a number of ¢ values whose range spans the above limit, then one may

say that these values are not significantly different at the 5% level.
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7.3  Formulas Used to Czlculate Igc and Ry

As mentioned earlier in Section 5, there are a maximum of 16 fundamental
variables which need to be measured or estimated, in order to calculate the values of the
instability number and the breakthrough recovery. These variables have been defined
already in Section 5. The formulas that are used to calculate the different parameters of
interest, and finally the values if Isc and Ry, are as follows.

The porosity of a sandpack is defined as

_Vi-Vy

¢ = (a1

where V1, V2 and V3 are the input and output volumes of water and the bulk volume of

the core, respectively. The initial water saturation is calculated as

__ initial water volume _ Vj -V - V4
Swi = pore volume =~ < V1-V2 (112)

where V4 is the total volume of the mobile water in the core. The pernieability to oil at
initial water saturation is calculated as

o _Qolol?
Koiw =% AP; (113)

where Q, and AP; are the flow rate of oil and the corresponding stabilized pressure
drop measured across the length L of the core, respectively. The parameter |, is the oil

viscosity. The residual oil saturation is estimated using

residual oil volume _ V4 - Vs (114)

Sor = pore volume “Vi-V
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where Vs is the volume of the mobile oil in the core. The permeability to water at
residual oil saturation is given by

_ Qwlw L2
kwor = V3 AP, (115)

where Qy, and AP, are the flow - ate of water and the corresponding stabilized pressure
drop across the length of the core. The parameter Ly, is the viscosity of water. Using
Equations 113 and 115, the mobility ratio of the displacement of oil by water may be
defined as

_ kworllo _ Qw AP 11
M_koiwuw- Qo AP2 (116)

The pseudointerfacial tension may be defined, by introducing Equations 111, 112 and

114 into Equation 87, as

o, = 2%Ys (117)

Now, the instability number for cylindrical systems is defined by Equation 84.
Introducing Equations 115, 116 and 117 into Equation 84, the instability number may

be expressed in terms of the fundamental variables as

Qw AP1)2/3+ 1
Hw Q Qw APy ) Qo AP,
I = 87786.946 : ).
) Qu b Lz) AcVy QAP 2. (B2 (118)
V3AP, Vs Qo AP,

where Ly, is measured in cp, the flow rates, Q, Qq and Qw, are measured in cc/hr, the
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pressure drops, AP and AP», are measured in psi, the volumes, V3 and Vs, are
measured in cc and the area under the capillary pressure curve, Ac, is measured in
dyne/cm2. For stable displacements, the breakthrough recovery, expressed as a
fraction of the IOIP, has been defined by Equation 92. Introducing Equations 112, 114

and 116 into Equation 92, one obtains, for the breakthrough recovery for stable

displacements,
i 7z -
b
Va|L QuAP 1) {QWAPI } (119)
1+ QoAPZ QOAPZ
QWAPI)
R QoAPZ N

where all the variables are expressed in consistent units. Itis to be noted that in both
Equations 118 and 119, the gravity number, Ny, is considered to be equal to zero

because of the fact that the system under consideration is horizontal.

7.4  Standard Deviations of the Component Variables

In order to evaluate analytically the standard deviation of I, one has to
determine the values of the partial derivatives of I with respect to the component
variables at the average values of these variables. Also, based on experimental
observations, the mean values and the standard deviations of the component variables
need to be estimated. These standard deviations, which actually are the standard errors
of estimation of the relevant variables, have been estimated only on the basis of
experience gained from Run 1. Hence, assuming each of these variables to be normally
distributed, any particular value of such a variable has a 68% chance of lying within the

range of plus- or minus-one standard deviation of the mean value of the variable.
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From Equation 118 it can be seen that a maximum of ten fundamental variables
need to be known in order to calculate Ig.. The average values (which, in fact, are the
estimated values, based on data obtained from Run 1) of these variables and their
standard deviations are listed in Table 10. As can be seen from Table 10, the error in
measuring the viscosity of water is considered to be about 0.5%, because the room
temperature (at which the viscosity of water was determined) was observed to remain
nearly constant throughout the course of the experiment. Hence, there could not have
been any significant variation in the value of Py . Similarly, because of the fact that the
bulk volume of the coreholder was estimated directly by noting the volume of water
required to fill up the empty coreholder completely, the measurement error is
considered to be as low as 10 cc for a bulk volume of 3100 cc. The pressure
differentials were measured using transducers, and the error of 0.01 psi was the
maximum attained, once the pressures stabilized. The flow rates are considered to have
errors of 0.05 cc/hr each, as the flow rates were governed by the gear-settings in the

Ruska pump which yielded flow rates very close to the specified values.

7.5  Analytical Evaluation of the Standard Deviation of I

The variance of Ig can be calculated by considering all the component variables
of Isc given in Equation 118, and by using Equation 106. The mean values and the
standard deviations of the component variables of I are listed in Table 10. Noting,

from Table 10, that Qy = Qo = Q, Equation 118 may be simplified to

v2  (APSB+ AP,APZ — APYRAP, - AP}
AcVsL2 2 APP

I = 87786.946 (120)

The partial derivatives of Ig with respect to the component variables may be determined
as follows. The first-order partial derivative of Isc with respect of V3 is
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Table 10: Average Values and Standard Deviations of Variables Used to Calculate Ig;
Data from Run 1

Variables Units Estimated Values Estimated Standard Deviations

Hw cp 1.028 0.005

Q cc/hr 560.00 0.05
Qw cc/hr 560.00 0.05
APy psi 26.47 0.01
Qo cc/hr 560.00 0.05
APy psi 4.02 0.01
L cm 99.0 0.10
V3 cc 3100 10.00
Ac dyne/cm? 16341 10.00
Vs cc 782 5
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_ SC 2 ISC
V3 = 2V3 V2 =V (121)
3
The first-order partial derivative of Ig with respect to the area under the capillary
pressure curve is given by
dl I
FA%CQ = - ﬁ (122)
The first-order partial derivative of I with respect to V5 may be shown to be
0l I
TVs= Ve (123)

The partial derivative of I with respect to length is given by

(124)

Finally, the partial derivatives of Iy with respect of AP; and AP may be demonstrated
to be

-13
o _, AP?”+%AP%’3AP%”+%API AP
d(AP))

" AP3E(APS® + AP,APY _ AP2PAP, — AP (123)

and
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31 2 APAP, " - AP - 2 APY°
& 3

3(AP) AP5 + AP,APS - APMAPg APP

(126)

respectively. Using Equations 106 and 118, one obtains, for the standard deviation of

Isc,

Si. = YVAR (I
=wfaZSv3+bZSA°+CZS\2/,+d23L+02 Sap, + 2 Syp, (127)

where the values of a, b, ¢, d, e and f are given by Equations 121, 122, 123, 124, 125
and 126, respectively. Using Equation 120 and the mean values of the component

variables, the mean value of Igc may be obtained as

Ts=97.13 (128)
Introducing Equation 121 into 126 and the mean value of Igc from Equation 128 into
Equation 127, and using the mean values and the standard deviations of the component

variables from Table 10, one obtains

Slsc = 0.9066 (129)

It can be seen that the computation of the standard deviation of Isc, and the
calculation of the relative contributions of all the fundamental component variables to
the variance in I, involve a lot of time and effort, when done analytically. Similar
computations for the bias of Igc will require much more time and effort, if performed
analytically, because of the need to determine second-order partial derivatives. These

calculations may be done numerically, thus reducing the computational work by a
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substantial amount. Also, after every cycle, the analysis can be redone as many times

as desired with modified values of the arguments.

7.6  Numerical Evaluation of the Partial Derivatives

In the numerical method, the first- and second-order partial derivatives of I
and Ry with respect to the different component variables are evaluated numerically.
The method that has been used in the present study is as follows. If Sxi =0, then the
bias and variance in the variable X; are zero. Otherwise, five-point central differences
are used to determine the first-order partial derivative at )_(i[48]. The points are spaced
(0.01 Sxi) apart and are located centrally about ii. These five points are used to
estimate the first-order partial derivatives to the left and to the right of X;. If the
product of these left and right first-order derivatives is negative or zero, then the
second-order partial derivative of the function at )_(g is set to zero. Otherwise, the
second-order partial derivative is calculated from the five points [48]. The bias and
variance calculations are made using a Taylor series expansion of the function about its
mean value, truncating all third- and higher-order terms. In order to perform a
numerical evaluation of the partial derivatives of a function f(X1, X2, ..., Xp) with

respect to a variable X; at any point X;, the following formulas are used. Let

h = 0.018x, (130)

Then the variance of the function may be calculated as

VAR = z {(fmz"fm)+8(fn—fmx) Sx‘2 (131)
i=1

12h
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where fml’ fmz’ fpl and fp2 refer to the values of the function at ( X; - h), (X; -2 h),

(X; + h) and (X; + 2h), respectively. Again, let

where f is the value of the function at )—(i. Also, let

dlr = —fm2+6fm1— 18f+10 fp1+3fp2 (133)

Here, dj) and dj are the values of the partial derivatives of the function with respect to
X to the left and to the right of X;, respectively. If dyj. dyr €0, then the second-order
partial derivative of the function at the point of interest is set to zero. Otherwise, the

second-order partial derivative is calculated as

_ —(fma = )+ 16 (fim, ~ £p) = 30 f

da (134)
12 h?
Then, the bias in the function may be estimated using
- d
BIAS = 2?2 . 8% (135)
i=1

7.7  Description of the Program
The program, given in Appendix C, uses the method described in Section 7.6
for numerical calculation of the partial derivatives. Input of the number of function

arguments, the names and units of these arguments, the name and unit of the function
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result, and the statement of the function yields the function result together with its unit.
Double-precision values of the arguments and their estimated standard deviations are
then supplied, in list-directed mode, and the variance- and bias-component analysis
table is produced by the program. The program is written in such a way that it recycles
for possible argument modification. Modifications of the values of the arguments and
their estimated standard deviations enable the user to repeat the analysis. For any
particular estimate of a parameter and its standard deviations, the program allows the
user to simulate the arguments as normal (Gaussian) or lognormal variates.

The main program is called "MAIN". The subprograms are called "REC",
"DRAND", "RNORM", "RLOGN", "MNVRCP" and "FSORTI". "REC" is the only
user-written routine here, and it returns a double-precision result from the values of the

component variables. It is assumed that the function is defined throughout the practical

simulation range of Xj + 4Sxi (i = 1, n), and is smooth enough that numerical

differentiation at a spacing of (0.01 Sxi) is valid. Subroutine "MNVRCP" accepts the

arguments, the standard deviations of the variables and the function of interest, and
performs numerical differentiation. Finally, the absolute bias and variance are
calculated from a Taylor expansion of the fﬁnction of interest (up to the second-order
terms only) at the expected values of the variables. Function "DRAND" is a
multiplicative, congruential generator of single-precision, uniformly distributed pseudo-
random numbers. Function "RNORM" returns a double-precision, normal deviate of
the mean and the standard deviation, whereas function "RLOGN" returns a double-
precision, lognormal deviate of the mean and the standard deviation of the function.

Subroutine "FSORTI" partially sorts a real vector.

7.8  Results Obtained by the Numerical Method
Numerical evaluations of the bias and the standard deviation of Iy, together

with estimations of the relative contributions of the component variables to the final
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variance and bias calculation, are performed. A simulation output file, containing
information regarding the quantile distribution of I, is then generated. The simulation

output file may be used to gain an approximate idea concerning the normality of the
distribution of Is;. Considering the 95% C.1., the values of Isc + 1.96 81, and I~

1.96 Slsc’ as calculated, are compared with the quantile 97.5% and the quantile 2.5%

values of Ig, respectively. If they match fairly closely, it can be said that the
distribution is normal. The numerical results, obtained by means of data from different
runs, are listed in Tables 11 and 12. Similar results are also obtained for the calculation
of the breakthrough recovery, Ry, using data from Run 6, and are listed in Table 14.
Experimental results from the three replicate Runs, viz., 2, 3 and 4, are listed in Table

13.

7.8.1 Results Obtained for the Calculation of Isc

Table 11 has been generated by using data from Run 1. Listed in Table 11 are
the total bias and the standard deviation in the calculation of I, together with the
relative contributions of the ten different variables to the final bias and variance
estimation. Using the same values of the estimated standard deviations of the
component variables as in Table 11, Table 12 was generated by using the data from
Run 2.

It can be seen, from Tables 11 and 12, that the total bias in the calculation of I
is quite small and the average standard deviation of I is about 1% of its mean value.
Also, it is to be noted that the major contributions to the variance of Isc appear from the
estimation of V5 (which is the total volume of oil measured to establish the residual oil
saturation) and V3 (the bulk volume of the core), with their average contributions being
about 48% and 44%, respectively. The error in estimating the length of the core
contributes about 4.4% to the estimated variance of Igc. It can be seen, from the

simulation output file in Table 11, that the distribution of I may be considered to be
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Table 11: Results Obtained by the Numerical Method Using Data from Run 1

Factor Unit Mean Std.Dev. % Bias % Var
Kw cp 1.028 0.005 0.0 0.0
Q cc/hr 560.00 0.05 -0.0 0.0
Qw cc/hr 560.00 0.05 0.0 0.0
AP} psi 26.47 0.01 23.0 0.2
Qo cc/hr 560.00 0.05 0.0 0.0
APy psi 4.02 0.01 40.5 0.0
L cm 99.0 0.1 89.7 4.8
V3 cc 3100 10 42.9 47.7
Ac dynefcm? 16341 10 -46.3 0.4
Vs cc 782 5 -49.7 46.9
Total Bias in instability number -0.749209
Estimated instability number 96.3845
Standard Deviation of instability number ~ 0.908678
SIMULATION OUTPUT FILE

Quantile 0.5%  instability number  94.854
Quantile 0.1 % instability number  95.073
Quantile 2.5% instability number  95.421
Quantile 50% instability number  95.711
Quantile 95.0% instability number  98.641
Quantile 97.5 % instability number  98.942
Quantile 99.0% instability number  99.181
Quantile 99.5% instability number  99.451




Table 12: Numerical Results Using Data from Run 2

Factor Unit Mean Std.Dev. % Bias % Var
Hw cp 1.028 0.005 0.0 0.0
Q cc/hr 50.00 0.05 0.0 1.0
Qw cc/hr 50.00 0.05 -26.7 0.0
APy psi 5.80 0.01 20.9 3.2
Qo cc/hr 140.00 0.05 -14 0.1
APy psi 0.34 0.01 64.9 1.5
L cm 99.0 0.1 -2.8 4.0
V3 cc 3100 10 45.7 40.6
Ac dyne/cm? 16341 10 -0.0 0.4
Vs cc 705 5 -0.6 49.2
Total Bias in instability number -0.0725368
Estimated instability number 8.33484
Standard Deviation of instability number  0.0850364
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Table 13: Experimental Results from the Three Replicate Runs 2, 3 and 4

Variables Units Run 2 Run3 Run4
Hw cp 1.028 1.028 1.028
Q cc/hr 50.00 50.00 50.00
Qw cc/hr 50.00 50.00 50.00
AP psi 5.80 - 5.87
Qo cc/hr 140 140 140
APy psi 0.34 - 0.34
L cm 99.0 99.0 99.0
V3 cc 3100 3100 3100
Ac dyne/cm? 16341 16341 16341
Vs cc 705 724 716
Isc dimensionless 8.41 - 8.38
Rpt (observed) % of IOIP 50.00 49.90 49.89
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Table 14: Numerical Results from Run 6

Factor Unit Mean Std.Dev. % Bias % Var
Zy cm 50 5 31.4 97.0
L cm 100 0.1 314 0.0
V4 cc 983 5 -2.6 1.0
Vs cc 760 5 -0.0 1.6
Qo cc/hr 560 0.05 -2.6 0.0
APy psi 26.7 0.01 41.2 0.0
Qw cc/hr 100 0.05 -2.6 0.0
APy psi 0.7 0.01 3.8 0.4
Total Bias in Breakthrough Recovery 0.62217 x 103 of IOIP
Estimated Breakthrough Recovery 0.512 of IOIP
Standard Deviation of Breakthrough Recovery 0.02657 of IOIP
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normal. The calculated mean and standard deviation of Ig; are 96.3845 and 0.908678,
respectively, so that I + 1.96 Slsc =98.1655 and I'ic — 1.96 S]SC =94.6035. These

values match fairly closely (within about 0.8%) with the quantile 97.5% and the

quantile 2.5% values of I, respectively.

It is demonstrated in Table 13 that, for replicate Runs 2 and 4, calculated values
of Ic are 8.41 and 8.38, respectively, so that the range between the two Iy values is
0.03. Now, when the observed range in a sample of two items is 0.03, the central
estimate of the standard deviation (G5pg,) may be shown to be [49] (0.03) (0.886) =
0.02658. The 99% confidence limits for the standard deviation would be 699 5¢, =
0.03/3.97 and 6 59, = 0.03/0.01; that is, 0.00756 and 3.000, respectively. If the total
standard deviation in the estimation of I, based on two replicate runs, is denoted by

OT, then it may be shown that
or = Vogp + Oy (136)

where oGp is the variability due to geological properties of the sand and the packing

procedure and o) is found to be about 0.085. Hence, substituting 6504, for oT in
Equation 136, it is observed that oép has a negative value. Therefore, it may be
concluded that either the maximal possible value of Ggp is zero, or the value of o) has
been over-estimated in the analysis. A similar conclusion may be reached by
substituting 699,59, for ot in Equation 136. However, when 60 59, is substituted for
ot in Equation 136, it may be seen that the order of magnitude of ogp is much higher
than that of oM. Thus, it may be concluded that, considering a probability of 50%, and
based on data from two replicate runs, the variability due to packing and geological
properties of the sand is of a smaller order of magnitude than the measurement

variability.
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7.8.2 Results Obtained for the Calculation of Ry

Table 14 has been generated by using data from Run 6. Listed in Table 14 are
the total bias and the standard deviation in the calculation of stable Ry, together with
the relative contributions of the eight different variables to the final bias and variance
estimation. It can be seen from Table 14 that the total bias in the calculation of Ry is
quite small, even though the standard deviation of Ry is as high as about 5% of its
mean value. This is so because of the high value of the estimated standard deviation of
Zo, as can be observed from the contribution of the Z, term to the variance of Ry,
which is about 97%. The effect of the magnitude of the standard deviation of Z, on the
standard deviation of Is; may be demonstrated by reducing the standard deviation of Z,,
to 2% of its mean value when the standard deviation of Ry comes down to about
1.36% of its average value.

It may be seen from Table 13 that, for the three replicate runs considered, the
range of Rpt is 0.11. Now, when the observed range in a sample of three items is
0.11, the central estimate of the standard deviation (050%,) may be shown to be [49]
(0.11) (0.591) = 0.06501. The 99% confidence limits for the standard deviation would
be 699,59, =0.11/4.42 and 6 59, = 0.11/0.13; that is, 0.02489 amd 0.84615,
respectively. Considering that the total standard deviation in the estimation of Ry,
based on three replicate runs, is comprised of the variability due to geological properties
of the sand and the packing procedure, and the variability due to measurement of the
variables of interest, the total standard deviation, 6T, may be expressed by Equation

136. From Table 14, o) is found to be 2.657 and hence, substituting 6509, for oT in
Equation 136, it is observed that cép has a negative value. Similar conclusions are

also reached by substituting 699 59, or 6¢.5% for o1 in Equation 136. Hence, it may be

concluded that, either the value of oy is over-estimated (probably because of the high
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value of the estimated standard deviation of Zy, as shown in Table 14), or, based on a

99% confidence limit, ogp is of a much smaller order of magnitude than opy.

7.9  Discussion

The analytical and numerical error analysis, as performed in the present study,
is based on the use of Equations 105 and 106. These equations have been developed
with the assumption that all of the component variables are statistically independent.
However, it is to be noted that, not all of the sixteen fundamental variables in the
present study are uncorrelated. Moreover, the mean values and the standard deviations
of the component variables have been estimated from data obtained from only Runl.
Therefore, the results obtained from this analysis may be considered as approximate.

The numerical method yields fairly accurate results, as can be seen by
comparing the standard deviation of Iy obtained analytically (and given by Equation
129) with that obtained numerically (and given by Table 11). For the instability
number of 97.13, the analytical method gives the value of the standard deviation of Igc
to be 0.9066, whereas the numerical method gives the value to be 0.9087. The major
contributions to the standard deviation of Ic arise out of the respective estimations of
the volume of mobile oil produced from the core during waterflooding, and of the bulk
volume of the core. Therefore, care must be exercised in estimating these variables.

Numerical evaluation of the standard deviation and bias in the estimation of Ry,
has been done by using the data from Run 6, in which the waterflood was carried out at
a flow rate of 100 cc/hr which resulted in an instability number just outside the stability
boundary. The estimated stable breakthrough recovery from the numerical method is
0.512 of IOIP, which is within about 2.5% of the predicted or the actual stable
breakthrough recovery for the fluid pair of MCT-5 and water. For the entire range of
stable Ry, the standard deviation is about 5% of the mean value of Ryy; that is, the 95%

C.1. for stable Ry, will be approximately 0.460 and 0.564 of IOIP, for MCT-5 and
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water. The fact that every calculated stable Ry value for this particular fluid system is
actually within this confidence limit shows that the measurement variability is of a much
larger magnitude than the variability due to the sand properties and the packing

procedure, and/or the value of the measurement variability has been overestimated.
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SUMMARY AND CONCLUSIONS

A dimensionless scaling group for immiscible displacements in cylindrical
porous media has been derived along with its critical value at the onset of instability.
This was achieved by deriving the partial differential equation which describes
approximately the evolution of the two-dimensional pseudointerface separating oil from
water. The theory presented in this study, like that in an earlier approach [19], is based
on the concept of a force potential, and hence can take into account the relative widths
of the oil and water fingers. The stability boundary developed in this theory has been
validated by means of experimental data. Moreover, it has been shown that the theory
can be used to predict the breakthrough recovery for stable and pseudostable
displacements.

Furthermore, an error analysis has been performed on the calculations of the
instability number and the breakthrough recovery. For single determinations of the
instability number and the breakthrough recovery, this analysis has been used to
calculate the total bias and variance and also the relative contribution of each of the
different component variables to the final bias and variance. Also, the contribution of
the variability due to the geological properties of the sand and the packing procedure, to
the total variability in the estimation of the instability number and the breakthrough
recovery, has been estimated, by using data from three replicate runs.

Based on the experimental results presented herein, and keeping in mind the
limitations of the theory and of the error analysis, the following conclusions may be
drawn:

1. The stability boundary may be predicted by using Equation 84. Consequently,
itmay be concluded that Equation 87 may be used to predict the
pseudointerfacial tension associated with the pseudosurface separating the two

immiscible fluids.
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The viscous fingers are initiated at a distance of about 50 cm from the inlet end
of the coreholder for the particular sand-fluid system used in this study. Also,
Equation 92 may be used to estimate the breakthrough recovery for a stable
displacement.

Equation 95 may be used to estimate the breakthrough recovery for a
pseudostable displacement. However, this conclusion is tentative because of
the scarcity of supporting data.

Based on the limited amount of data available, the instability number coinciding
with the onset of the pseudostable behaviour was observed to be about 450.
This value of the instability number was found to correspond to a most probable
mode number of 3, irrespective of the diameter of the core.

The variables which contribute most to errors in the estimation of the instability
number and the breakthrough recovery are the total volume of mobile oil
produced during waterflooding, the core bulk volume and the distance from the
inlet end of the core where fingering is initiated.

Based on a probability of at least 50%, the variability due to the geological
properties of the sand and the packing procedure has a smaller order of
magnitude than the measurement variability, for the estimation of the instability

number and the breakthrough recovery.
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SUGGESTIONS FOR FUTURE STUDY
The following improvements are suggested in future studies:
Displacements should be conducted using high-flow-rate pumps, so that even
for fluid pairs having low viscosity contrasts, such as MCT-5 and water, the
pseudostable displacement regime might be reached. This would enable better
identification of the pseudostable boundary.
A hydraulic ram should be constructed for the coreholder being used, in order
to extract the cores from the coreholder in a more efficient manner. This would
help in increasing the accuracy of measurement of the distance from the inlet
end of the core where fingering is initiated.
An attempt should be made to design experiments with a view to obtaining
detailed physical information regarding the nature of the capillary fringe
separating the displacing fluid from that which is being displaced.
As flow in the immediate vicinity of a wellbore is radial in nature, a similar
stability analysis for a plane-radial system should be undertaken.
An attempt should be made to extend this stability analysis in order to include

non-Newtonian fluids.
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APPENDIX A

Derivation of Equation Describing the Pseudosurface
Separating Oil from Water in a Cylindrical System

Let us consider a small, nearly rectangular portion of the pseudosurface, lying

in the r-¢ plane, which separates the oil from the water. Also, let the magnitude of the
vertical displacement of any point in the pseudosurface be denoted by & (r, 6, z), where
z, the amplitude of the displacement, is a function of time. Now, let us suppose that
the small element of the surface is bounded by the points (r, 8, 0), (r +dr, 6, 0), (r, +
dr, 0 +d0, 0) and (r, 0 + d6, 0).

In order to obtain a differential equation for the pseudosurface, we have to
identify the different forces acting on the differential element of the pseudosurface. We
assume that the force due to acceleration on the surface may be neglected and that the
pseudosurface is under uniform tension which is given by the pseudosurface tension,
Ce. Also, due to the change in pressure across the pseudointerface, there is a vertical
force P¢ acting per unit area of the surface.

Now, the net force normal to the surface of the element due to the pair of

tensions on the sides of the element, of length dr each, is given by [42].

_ a§ d§
eaiefd] o

Similarly, the net force normal to the surface of the element due to the pair of

tensions on the two curved sides of the element, of length (r + dr) d6 each, is given by

0 0
SR
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In addition, there is a vertical force P¢(r, 6, z) (r +dr) drd@ acting on the

pseudosurface. Taking the algebraic sum of the vertical forces yields

oot B AE)) o allF] ()

(A-3)
+ 0. dr do [(8&) (6&){] + P.(r,0,z)rdrd0 =0
) f
where the term P (r, 6, z) dr dr d6 has been neglected in comparison to the other
terms. Upon dividing Equation (A-3) by r dr d0 and letting dr — 0 and d8 — 0, it
follows that
%8 L1958 %
O‘e[rz ae T ar ) +P.(r,0,2) = (A4)

where P¢ (r, 6, z), the pressure difference across the inicrface, depends on the

curvature of the surface and o, is independent of location on the surface.
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APPENDIX B: EXPERIMENTAL RESULTS FROM THE LITERATURE
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Table: B.1
Summary of Displacement Results from Peters [32]

Water-wet system; M = fo/ly = 102.5; ¢ =24.3 dyne/cm; Sqr = 0.27 [39]

Run Q Isc Rpt
(cc/hr) (% of 101P)
1 2.5 1.24 43.63
2 20 9.16 41.88
3 10 3.67 43.68
4 160 69.19 35.32
5 50 19.80 40.30
6 100 38.19 41.10
7 480 307.56 30.40
8 160 76.77 32.22
9 200 67.06 30.89
10 240 113.20 34.69
11 1120 585.33 23.94
12 480 191.86 26.81
13 480 211.47 33.24
14 800 ~ 286.26 28.62
15 1120 433.07 23.43
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Table: B.2
Summary of Displacement Results from Demetre [37]

Water-wet system; M = Lo/ilw = 102.5; ¢ =24.3 dyne/cm; Sor = 0.27

Run Q Isc R
(cc/hr) (% of 101P)
1 140 57.496 34.63
2 40 17.18 39.71
3 3.13 1.36 42.16
4 0.5 0.234 41.99
5 25 11.39 4091
6 15 9.70 40.19
7 50 23.45 41.90
8 3.13 1.73 44.03
9 480 304.85 32.42
10 200 93.76 36.85
11 50 24.98 39.73
12 60 24.89 40.21
13 0.50 0.245 38.94
14 50 24.22 42.00
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Table: B.3
Summary of Displacement Results from Wiborg [40]
Water-wet system; M = Mo/l =1114; 6=345 dyne/cm; Sy =0.27

Run Q Isc Ryt
(cc/hr) (% of I0IP)
1 160.0 56.83 25.90
2 80.0 28.60 25.00
3 5.0 1.80 32.80
4 15.0 5.43 31.20
5 30.0 15.64 26.70
6 2.5 0.88 31.60
7 20.0 7.17 29.90
8 60.0 21.35 26.60
9 320.0 113.48 17.30
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Table: B.4

Summary of Displacement Results from Baird [41]

Water-wet system; M = Wo/lly, = 545.7; ¢ =34.0dyne/cm; Sop = 0.45

Run Q I Ryt
(cc/hr) (% of 101P)
1 2.5 6.87 27.22
2 10 24.94 24.41
3 160 426.40 19.74
4 300 963.42 16.98
5 800 422477 16.28
6 20 115.17 25.87
7 560 283.59 16.17
8 50 129.15 20.90
9 15 75.19 23.77
10 40 93.16 25.11
11 600 2284.51 15.20
12 1120 4654.5 15.10
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APPENDIX C: PROGRAM FOR SENSITIVITY ANALYSIS.

TO PROVIDE A GENERAL CODE FOR NUMERICAL VARIANCE AND BIAS
COMPONENT ANALYSIS PLUS SIMULATION, OF THE DOUBLE-PRECISION
FUNCTION "REC(X,N)". COURTESY OF PROF. W. H. GRIFFIN, DEPT. OF
MINERAL ENG., UNIV. OF ALBERTA, EDMONTON (DEC. 7, 1989).

*kkkokkk OPERATION kKKK KK

THE NUMBER OF FUNCTION ARGUMENTS "N",THE NAMES OF THESE
ARGUMENTS AND THEIR UNITS (FACT(I), I=1,N), THE NAME OF THE
FUNCTION RESULT "FRNM", THE FUNCTION RESULT UNIT "FRUNTS",
INITIAL VALUES FOR THE FUNCTION ARGUMENTS AND AN INITIAL
FUNCTION RESULT "R" ARE SET BY THE STATEMENT "R=REC(X,N)". A
VARIANCE AND BIAS COMPONENT ANALYSIS TABLE IS NOW WRITTEN TO
THE SCREEN AND THE USER IS PROMPTED FOR MODIFICATIONS OF THE
ARGUMENTS (X(I), I=1,N) AND THE ESTIMATED STANDARD DEVIATIONS
OF THESE ARGUMENTS (SDX(I), I=1,N). THE FORMAT HERE IS LIST-
DIRECTED, THE ORDER IS (X(I), I=1,N), (SDX(I), I=1,N) AND
INTERNAL VALUES ARE DOUBLE-PRECISION.

THE VARIANCE AND BIAS COMPONENT ANALYSIS TABLE IS THEN
REWRITTEN AND THE PROGRAM RECYCLES FOR POSSIBLE ARGUMENT
MODIFICATION. WHEN THE USER IS SATISFIED, RECYCLE IS
TERMINATED BY THE LIST DIRECTED "/" OPTION. THE USER IS NOW
PROMPTED "“SIMULATE ?". AN ANSWER WITH A WORD WHOSE FIRST
CHARACTER IS NOT "L" WILL CAUSE ALL ARGUMENTS TO BE SIMULATED
AS NORMAL VARIATES. OTHERWISE, THEY WILL BE TREATED AS LOG-
NORMAL VARIATES. THE FINAL USER INPUT PROMPT IS FOR "DSEED ?",
THE STARTING DOUBLE-PRECISION NUMBER FOR PSEUDO RANDOM NUMBER
GENERATION. AS THIS IS ALSO LIST DIRECTED, THE "/" RESPONSE
WILL LEAVE "DSEED" AT ITS INTERNAL VALUE. IF THIS OPTION IS
NOT TAKEN, THE USER SHOULD INPUT A POSITIVE ODD NUMBER OF AT
LEAST 10 DIGITS TO THE RIGHT OF THE DECIMAL. THE PROGRAM NOW
GOES THROUGH 10000 MONTE CARLO SAMPLES OF "R=REC(X,N)",
WRITING EACH SAMPLE TO A FILE IN A DOUBLE-PRECISION
LIST-DIRECTED FORMAT TO COMPLETE PROGRAM EXECUTION.

REAL*8 X(20), BIAS(20), SDX(20), VAR(20), R, SDR, TBIAS,
REC

REAL*8 XX (20), SDXX(20), DSEED

REAL*4 SIM(1000)

INTEGER*4 IND (8)

INTEGER*4 N, IER, I

EXTERNAL REC

CHARACTER*60 SIMFLN

CHARACTER*28 FACT (20)

CHARACTER*15 FRNM

CHARACTER*30 TBC, EST, SDV

CHARACTER*7 FRUNTS

CHARACTER*1 YES

LOGICAL*4 LN
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10
20
30

40
50

60

70
80

90

100

110

COMMON /FUNC/ FRNM, FRUNTS, FACT

DATA LN / .FALSE. /

DATA X, BIAS, SDX, VAR, R, SDR, TBIAS, XX, SDXX /123*0.D0/
DATA DSEED /99876321.D0/

DATA N /20/, IND /5, 10, 25, 50, 950, 975, 990, 995/

DATA TBC /' TOTAL BIAS IN '/

DATA EST /' ESTIMATED v/

DATA SDV /' STANDARD DEV '/

R = REC(X,N)

FORMAT (A)

FORMAT (I3, 1X, A28, 2G15.8, 2F5.1)

FORMAT (' #', 9X, 'FACTOR', 18X, 'MEAN STD DEVIATION',

1 ! % BIAS % VAR', /)

WRITE (*,30)
DOS0I=1, N
WRITE (*,20) I, FACT(I), X(I), SDX(I), BIAS(I), VAR(I)
WRITE (*,60) TBC, FRNM, TBIAS, FRUNTS
WRITE (*,60) EST, FRNM, R, FRUNTS
WRITE (*,60) SDV, FRNM, SDR, FRUNTS
FORMAT (A, A, G12.6, A)
WRITE (*,*)"INPUT X AND SDX IN LIST DIRECTED MODE'
READ (*,*) (X(I),I=1,N), (SDX(I),I=1,N)
DO 70 I =1, N
IF (XX(I) .NE. X(I) .OR. SDX(I) .NE. SDXX(I)) GO TO 80
CONTINUE
GO TO 110
CALL MNVRCP (REC, X, SDX, BIAS, VAR, N, IER)
R = 0.D0
SDR = 0.DO
DO 90 I =1, N
R = R + BIAS(I)
SDR = SDR + VAR(I)
DO 100 I =1, N
IF (R .NE. 0.D0) BIAS(I) = BIAS(I) * 100.DO / R
IF (SDR .NE. 0.D0) VAR(I) = VAR(I) * 100.DO / SDR
XX (I) = X(I)
SDXX (I) = SDX(I)
CONTINUE
TBIAS = R
R = R + REC(X,N)
SDR = DSQRT (SDR)
GO TO 40
WRITE (*,*)'SIMULATE ?'
READ (*,10) YES
IF (YES .NE. 'Y') STOP
WRITE (*,*)'NORMAL OR LOGNORMAL ?'
READ (*,10) YES
IF (YES .EQ. 'L') LN = .TRUE.
WRITE (*,*)'RANDOM SEED ?'
READ (*,*) DSEED
WRITE (*,*)' FILE NAME FOR SIMULATION OUTPUT ?'
READ (*,10) SIMFLN
OPEN (7,FILE=SIMFLN)
DO 140 J = 1, 1000
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DO 130 I =1, N
IF (SDX(I) .LE. 0.D0) GO TO 130
IF (LN) GO TO 120
X(I) = RNORM (XX (I),SDX(I),DSEED)
GO TO 130
120 X(I) = RLOGN (XX (I),SDX(I),DSEED)
130 CONTINUE
140 SIM(J) = REC(X,N)
CALL FSORTI (SIM, 1000, IND, 8)
DO 150 I =1, 8
150 WRITE (*,160)'QUANTILE',IND(I)/10.,'%', FRNM, SIM(IND(I)),
1FRUNTS
160 FORMAT (A, F5.1, A, A, G12.5, A)
DO 170 I =1, 1000
170 WRITE (7,*) SIM(I)
CLOSE (7)
END
FUNCTION DRAND (DSEED)
C COURTESY OF PROF. W. H. GRIFFIN, UNIV. OF ALBERTA, EDMONTON
(DEC 7, 1989).
C TO PRODUCE A UNIFORM RANDOM NUMBER
REAL*8 DSEED, D1, D2, D3
DATA D1, D2, D3 /2147483647.D0, 2147483648.D0, 16807.D0/
DSEED = DMOD (D3*DSEED, D1)
DRAND = SNGL (DSEED/D2)
RETURN
END
DOUBLE PRECISION FUNCTION RNORM (U, S,DSEED)
C COURTESY OF PROF. W. H. GRIFFIN, UNIV. OF ALBERTA, EDMONTON,
(DEC 7, 1989).
C TO PRODUCE A NORMAI VARIATE OF MEAN U AND STD DEV S
REAL*8 DSEED, U, S, A, B, W
LOGICAL*4 SW
DATA SW / .FALSE. /
IF (SW) GO TO 20

10 A = 2.D0 * DBLE(DRAND (DSEED)) - 1.D0
B = 2.D0 * DBLE (DRAND(DSEED)) - 1.DO
W=A*A+B*B

IF (W .GT. 1.D0) GO TO 10
W = DSQRT (-2.DO*DLOG (W) /W)
RNORM = A * W * S + U

SW = .TRUE.
RETURN
20 RNORM = B * W * S + U
SW = .FALSE.
RETURN
END

DOUBLE PRECISION FUNCTION RIOGN (U, S,DSEED)
C COURTESY OF PROF. W. H. GRIFFIN, UNIV. OF ALBERTA, EDMONTON
(DEC 7, 1989).
C TO PRODUCE A LOGNORMAL OF MEAN U AND STD DEV S
REAL*8 U, S, DSEED, RLGN
RLGN = DLOG(((S*S)/(U*U)) + 1.DO0)
RLGN = RNORM(DLOG(U) - RLGN/2.D0,DSQRT (RLGN) ,DSEED)
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RLOGN = DEXP (RLGN)
RETURN
END

SUBROUTINE MNVRCP (FX, X, SDX, BIAS, VAR, N, IER)

COURTESY OF PROF. W. H. GRIFFIN, UNIV. OF ALBERTA, EDMONTON

1

(DEC 7, 1989).
REAL*8 X(*), SDX(*), BIAS(*), VAR(*), H, FM2, FMl, F, FP1,

FP2, D1, D2, FX

REAL*8 D1L, D1R

INTEGER*4 N, IER, I

TESTS FOR INVALID "N" OR %SDX"

IER =1
IF (N .LT. 1) RETURN
IER = 2

DO1C I =1, N

IF (SDX(I) .LT. 0.DO) RETURN

10 CONTINUE

IER = 0

LOOP FOR "BIAS"™ AND "VAR" EVALUATION VIA PARTIAL DERIVATIVES.

DO20I =1, N

BIAS(I) = 0.DO
VAR(I) = 0.DO

IF "SDX(I)" IS 0. THEN BOTH "BIAS(I)" AND "VAR(I)" ARE 0.

IF (SDX(I) .EQ. 0.D0) GO TO 20

SET THE SPACING INTERVAL AND CALCULATE THE VALUE OF "FX" AT
FIVE POINTS CENTRALLY LOCATED ABOUT "X(I)".

H = SDX(I) / 100.D0
X(I) = X(I) - 2.D0 * H
FM2 = FX(X,N)

X(I) = X(I) + H

FM1 = FX(X,N)

X(I) = X(I) + H

F = FX(X,N)

X(I) = X(I) + H

FP1 = FX(X,N)

X(I) = X(I) + H

FP2 = FX(X,N)

X(I) = X(I) - 2.D0 * H
D1 = ((FM2 - FP2) + 8.DO*(FP1 - FMl)) / (12.DO*H)

C CALCULATE THE FIRST ORDER PARTIAL TO THE LEFT AND RIGHT OF
C CENTRE. IF EITHER IS ZERO OR OF DIFFERING SIGN THEN SET THE
C SECOND ORDER PARTIAL TO ZERO. OTHERWISE CALCULATE THE SECOND
ORDER PARTIAL FROM THE FIVE POINTS EVALUATED.

C

1

1

1

D1L = -3.D0 * FM2 - 10.DO * FM1 + 18.D0 * F - 6.D0 *

FP1l + FP2
DIR = -FM2 + 6.D0 * FM1 - 18.D0 * F + 10.D0O * FP1 +
3.D0 * FP2
IF (D1L*D1R .LE. 0.D0) THEN
D2 = 0.D0
ELSE

D2 = (-(FM2 + FP2) + 16.D0* (FM1 + FP1) - 30.DO*F) /
(12.D0 * H ** 2)
END IF

C BIAS COMPONENT IS ONE HALF THE PRODUCT CF THE SECOND ORDER
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C PARTIAL AND THE SQUARE OF THE STANDARD DEVIATION.
C VARIANCE COMPONENT IS THE PRODUCT OF THE FIRST ORDER PARTIAL

C AND THE STANDARD DEVIATION SQUARED.

OOOOOOOOOOOOOOOOOOOOOOO

OO0 000000

BIAS(I) = (D2/2.D0) * (SDX(I)**2)
VAR(I) = (D1*SDX(I)) ** 2
20 CONTINUE
RETURN
END

SUBROUTINE FSORTI(A, N, IND, NI)

FROM HERE ON THE CODE IS SIMILAR TO THAT GIVEN ON PAGE 410
P 2-0 OF COLLECTED ALGORITHMS FROM ACM VOL II.

COURTESY OF PROF. W. H. GRIFFIN, DEPT. OF MINERAL ENGG.,
UNIV. OF ALBERTA, EDMONTON (DEC 7, 1989).

INPUT:
A - A REAL VECTOR TO BE PARTIAL SORTED

N ~ THE DIMENSIONS OF THE REAL VECTOR. INTEGER
VARIABLE OR CONSTANT GREAT OR EQUAL TO 1

IND - THE ORDER STATISTIC SET THAT THE REAL VECTOR IS
TO PARTIALLY SORTED INTO. INTEGER VECTOR WHOSE
VALUES MUST BE GREATER THAN ZERO, LESS OR EQUAL
TO N AND ALL DIFFERENT. THEY MUST BE IN ASCENDING
ORDER.

NI - THE DIMENSIONS OF IND. INTEGER VARIABLE OR
CONSTANT GREATER THAN ZERO, LESS THAN OR EQUAIL TO
N

OUTPUT:
A - THE REAL VECTOR IS REORDERED AS PER THE NI ITEMS

OF IND, THAT IS, A(IND(I)),I=1,NI IS IN THE
(IND(I)) NTH ORDERED POSITION
N,NI & IND - REMAIN UNCHANGED
SUBROUTINES REQUIRED: NONE

REAL A(*), T, TT
INTEGER N, IND(*), NI, INDU{16), INDL(16), IU(16), IL(16)
INTEGER P, JL, JU, I, J, M, K, IJ, L

INTERNAL VARIABLES:
T,TT - TEMPORARY REAL STORAGE FOR A SWITCHING
INDU, INDL, IU, IL -~ INDEXING VECTORS TO ACT AS POINTERS
THESE VECTORS ARE DIMENSIONED AT 16 AND
THEREFORE LIMIT THE VALUE OF INPUT PARAMETER N
TO 2**(16+1) = 131072
I,3,M,K,P,JL,JU & IJ- INTEGER INDEXING AND TEMPORARY
STORAGE VARIABLES

IF (NI .LT. 1 .OR. NI .GT. N) RETURN
M = IND(1)
IF (M .LT. 1 .OR. M .GT. N) RETURN
IF (NI .EQ. 1) GO TO 20
DO 10 I = 2, NI
IF (IND(I) .LE. M .OR. IND(I) .GT. N) RETURN

10 M = IND(I)
20 CONTINUE
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NI

INDL (1) =1

INDU(1) =1
C

I=1

J=N

M=1

30 IF (I .GE. J) GO TO 140

C

C FIRST ORDER A(I),A(J),A((I+J)/2),AND USE MEDIAN TO SPLIT DATA
C

40K=1I
Ig=(I+J /2
T = A(IJ)
IF (A(I) .LE. T) GO TO 50
A(IJ) = A(I)
A(I) =T
T = A(IJ)

50L=2J
IF (A(J) .GE. T) GO TO 70
A(IJ) = A(J)
A(Jd) =T
T = A(1J)
IF (A(I) .LT. T) GO TO 70
A(IJ) = A(I)
A(I) =T
T = A(IJ)
GO TO 70

60 A(L) A(K)
A(K) TT

7ML=L-1
IF (A(L) .GT. T) GO TO 70
TT = A(L)

SPLIT THE DATA INTO A(I TO L).LT.T, A(K TO J) .GT.T

OO0

80 K=K+ 1
IF (A(K) .LT. T) GO TO 80
IF (K .LE. L) GO TO 60
INDL (M) JL
INDU (M) JU
P M
M M+ 1

C SPLIT THE LARGER OF THE SEGMENTS

I .LE. J - K) GO TO 110
I
L

IF (L
IL(P)
IU(P)
I =K

SKIP ALL SEGMENTS NOT CORRESPONDING TC AN ENTRY IN IND

OO0
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90 IF (JL .GT. JU) GO TO 140
IF (IND(JL) .GE. I) GO TO 100

JL=JL +1
GO TO 90
100 INDU(P) = JL - 1
GO TO 150
110 IL(P) =K
IU(P) =J
Jd=1L

120 IF (JL .GT. JU) GO TO 140
IF (IND(JU) .LE. J) GO TO 130
Ju=JU0 -1
GO TC 120

130 INDL(P) = JU + 1
GO TO 150

140 M =M -1

IF (M .EQ. 0) RETURN

I =1IL(M)

J = IU(M)

JL = INDL (M)
JU = INDU(M)
IF (JL .GT. JU) GO TO 140

150 IF (J - I .GT. 10) GO TO 40
IF (I .EQ. 1) GO TO 30

I=1I-1
160 I =1+ 1
IF (I .EQ. J) GO TO 140
T =24(I + 1)
IF (A(I) .LT. T) GO TO 160
K=1
170 A(K + 1) = A(K)
K=K-~1
IF (T .LT. A(K)) GO TO 170
A(K+1) =T
GO TO 160
END
DOUBLE PRECISION FUNCTION REC(X,N)

FUNCTION FOR CALCULATING THE INSTABILITY NUMBER FOR A
CYLINDRICAL SYSTEM WHICH IS A DIMENSIONLESS NUMBER. THIS NO.
AND ITS STANDARD DEVIATION ARE CALCULATED USING THE VALUES AND
THE STANDARD DEVIATIONS OF THE FUNDAMENTAL MATERIAIL AND
EXPERIMENTAL VARIABLES.

INPUT: X(1)=REAL*8 VARIABLE GIVING THE WATER VISCOSITY
cp
X (2)=REAL*8 VARIABLE GIVING THE FLOW RATE
cc/hr
X (3)=REAL*8 VARIABLE GIVING THE WATER FLOW RATE
cc/hr
X (4) =REAL*8 VARIABLE GIVING THE PRESSURE DROP (1)
psi
X (5)=REAL*8 VARIABLE GIVING THE FLOW RATE OF OIL
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10

cc/hr

X (6) =REAL*8 VARIABLE GIVING THE PRESSURE DROP (2)

psi

X(7)=REAL*8 VARIABLE GIVING THE LENGTH

cm

X (8)=REAL*8 VARIABLE GIVING THE BULK VOL

CcC

X (9) =REAL*8 VARIABLE GIVING THE AREA UNDER THE CAPILLARY

CURVE dyne/cm**2

X(10)=REAL*8 VARIABLE GIVING THE VOLUME OF OIL THAT

COMES OUT OF THE CORE cc

REAL*8 X (*)
INTEGER*4 N
CHARACTER*28 FACT (20)
CHARACTER*15 FRNM
CHARACTER*7 FRUNTS

COMMON /FUNC/ FRNM, FRUNTS, FACT

LOGICAL*4 SW

DATA SW / .FALSE. /
IF (SW) GO TO 10
FRNM = 'Inst. number'
FRUNTS = 'non dim'

FACT (1) = 'H20 visco cp'
FACT (2) = 'Dis rate cc/hr'
FACT (3) = 'H20 rate cc/hr!
FACT (4) = ‘Delta P1 psi'
FACT(5) = '0il rate cc/hr'
FACT (6) = 'Delta P2 Psi'
FACT(7) = 'Length cm'
FACT (8) = 'Bulk vol cc'
FACT (9) = 'Ac dyne/cm2’'
FACT (10) = '0il vol cc!
X(1) = 1.028D0
X(2) = 560.D0
X(3) = 560.0D0
X(4) = 26.47D0
X(5) = 560.D0
X(6) = 4.02D0
X(7) = 99.D0
X(8) = 3100.D0
X(9) = 16341.D0
X(10) = 782.D0
N =10
SW = .TRUE.
U = End-point mobility ratio
U = X(3) * X(4) / (X(5)*X(6))
V =

ratio
V = ((U**,.66666666666667D0) + 1.DO0)

# ((Ux*,666666666667D0) *2.D0)
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W= (U-1.D0) *V

Y = Permeability to water at residual oil saturation
Y = X(3) * X(1) * (X(7)**2.D0) / (X(8)*X(6))

Z = Pseudointerfacial tension

Z = X(9) * X(10) / X(8)

REC = 87786.946 * X(1) * X(2) * W / (Y*2)

RETURN

END
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