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Abstract

Generalizing wavelets by adding desired redundancy and flexibility, framelets (a.k.a.

wavelet frames) are of interest and importance in many applications such as image pro-

cessing and numerical algorithms. Several key properties of framelets are high vanishing

moments for sparse multi-scale representation, fast framelet transforms for numerical ef-

ficiency, and redundancy for robustness. The theory and applications of scalar framelets

have been extensively studied in the literature. However, vector framelets, or equivalently

multiframelets, are far from being well understood. This thesis provides a theoretical

investigation of multiframelets.

Framelets are often derived from refinable vector functions via the popular oblique

extension principle (OEP), and such framelets are called OEP-based framelets. Con-

structing OEP-based tight multiframelets with several desired features is a well known

challenging problem. We circumvent this issue by considering quasi-tight multiframelets,

which are special dual multiframelets but behave almost identical as tight multiframelets.

We will show in Chapter 2 that from any compactly supported univariate refinable vector

function with at least two entries, one can always obtain a quasi-tight multiframelet such

that: (1) its associated discrete framelet transform is compact and has the highest pos-

sible balancing order; (2) all compactly supported framelet generators have the highest

possible order of vanishing moments. Several illustrative examples will be provided. The

results of this chapter are summarized as [43], which has been published in Applied and

Computational Harmonic Analysis.

In Chapter 3, we extend the theory of univariate quasi-tight multiframelets in Chap-

ter 2 to arbitrary dimensions. The generalization is not straight forward. Several new

challenges and elements are involved. The work of this chapter is summarized as [44],

which has been published in Science China Mathematics.
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In Chapter 4, we will discuss the more general question on how to construct multivari-

ate dual multiframelets satisfying all desired properties from any pair of compactly sup-

ported refinable vector functions. Our study on constructing OEP-based multiframelets

relies on a newly developed normal form of matrix-valued filters, which is of independent

interest and importance for greatly reducing the difficulty of studying refinable vector

functions and multiframelets. This chapter’s work is summarized as [57], which is sub-

mitted and is under review.

In Chapter 5, we introduce framelets with mixed dilation factors. Unlike a traditional

framelet system which only involves a single dilation factor, we consider framelet systems

involves different dilation factors. Recent advances on constructing tight framelets with

low redundancy and good directionality give us a taste of framelets with mixed dilation

factors, and demonstrate the interest and importance of establishing the corresponding

theory. In this thesis, we develop the basic theory of framelets with mixed dilation factors.
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Chapter 1

Introduction

1.1 Backgrounds on Framelets

Generalizing wavelets by adding desired redundancy and flexibility, framelets (a.k.a.

wavelet frames) are of interest and importance in many applications such as image pro-

cessing and numerical algorithms. Several key properties of framelets are high vanishing

moments for sparse multiscale representation, fast framelet transforms for numerical ef-

ficiency, and redundancy for robustness. The theory and applications of framelets have

been extensively studied over the past decades, see e.g. [8, 11–15, 18, 19, 21, 22, 24, 28, 30,

40,41,50,51,62] and many references therein.

To better explain the motivation of our work, we recall some basic concepts and

notations on framelets. Throughout the thesis, by M we always denote a dilation matrix,

which is a d × d integer matrix whose eigenvalues are greater than one in modulus, or

equivalently, limj→∞M−j = 0. Moreover, we define

dM := | det(M)|. (1.1.1)

By f ∈ (L2(Rd))r×s we mean that f is an r × s matrix of square integrable functions in
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L2(Rd). In particular, (L2(Rd))r := (L2(Rd))r×1. Define the inner product by

〈f, g〉 :=

∫
Rd
f(x)g(x)

T
dx, f ∈ (L2(Rd))r×s, g ∈ (L2(Rd))t×s. (1.1.2)

Let φ̊ = (φ̊1, . . . , φ̊r)
T ∈ (L2(Rd))r and ψ = (ψ1, . . . , ψs)

T ∈ (L2(Rd))s. We say that {φ̊;ψ}

is an M-framelet in L2(Rd) if there exist positive constants C1 and C2 such that

C1‖f‖2
L2(Rd) 6

∑
k∈Zd
|〈f, φ̊(·− k)〉|2 +

∞∑
j=0

∑
k∈Zd
|〈f, ψMj ;k〉|2 6 C2‖f‖2

L2(Rd), ∀ f ∈ L2(Rd),

(1.1.3)

where

|〈f, ψMj ;k〉|2 := ‖〈f, ψMj ;k〉‖2
l2

=
s∑
`=1

|〈f, ψ`,Mj ;k〉|2, (1.1.4)

and

ψMj ;k := d
j/2
M ψ(Mj · −k), ψ`,Mj ;k := d

j/2
M ψ`(M

j · −k), ` = 1, . . . , s. (1.1.5)

The number r is called the multiplicity of the framelet. If r = 1, we often call {φ̊;ψ}

a scalar framelet. If r > 1, then {φ̊;ψ} is often called a multiframelet or a vector

framelet. For simplicity, we refer both of them framelet.

For φ̊, ˚̃φ ∈ (L2(Rd))r and ψ, ψ̃ ∈ (L2(Rd))r, we say that ({φ̊;ψ}, {˚̃φ; ψ̃}) is a dual

M-framelet in L2(Rd) if both {φ̊;ψ} and {˚̃φ; ψ̃} are M-framelets in L2(Rd) and satisfy

f =
∑
k∈Zd
〈f, φ̊(· − k)〉 ˜̊φ(· − k) +

∞∑
j=0

∑
k∈Zd
〈f, ψMj ;k〉ψ̃Mj ;k, ∀f ∈ L2(Rd), (1.1.6)

with the above series converging unconditionally in L2(Rd). We say that {φ̊;ψ}(ε1,...,εs) is

a quasi-tight M-framelet in L2(Rd) if {φ̊;ψ} is an M-framelet in L2(Rd) and satisfies

f =
∑
k∈Zd
〈f, φ̊(· − k)〉φ̊(· − k) +

∞∑
j=0

s∑
`=1

∑
k∈Zd

ε`〈f, ψ`,Mj ;k〉ψ`,Mj ;k ∀ f ∈ L2(Rd) (1.1.7)
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for some ε1, . . . , εs ∈ {±1}, with the above series converging unconditionally in L2(Rd).

We say that {φ̊;ψ} is a tight framelet in L2(Rd) if (1.1.3) holds with C1 = C2 = 1, or

equivalently, {φ̊;ψ}(ε1,...,εs) is a quasi-tight M-framelet with ε1 = · · · = εs = 1. From the

above definitions, we see that a tight framelet is a special case of a quasi-tight framelet,

and a quasi-tight framelet is a special case of a dual framelet.

Framelet is a special type of of frames in L2(Rd). For φ̊ = (φ̊1, . . . , φ̊r)
T ∈ (L2(Rd))r

and ψ = (ψ1, . . . , ψs)
T ∈ (L2(Rd))s, we define the M-affine system generated by {φ̊;ψ}

via

AS({φ̊;ψ}) :={φ̊`(· − k) : ` = 1, . . . , r, k ∈ Zd}

∪ {ψ`,Mj ;k : ` = 1, . . . , s, k ∈ Zd, j ∈ N0}.
(1.1.8)

For φ̊, ˚̃φ ∈ (L2(Rd))r and ψ, ψ̃ ∈ (L2(Rd))r, it is trivial that ({φ̊;ψ}, {˚̃φ; ψ̃}) is a dual

M-framelet in L2(Rd) if and only if (AS({φ̊;ψ}),AS({˚̃φ; ψ̃})) is a pair of dual frames

of L2(Rd). Similarly, {φ̊;ψ}(ε1,...,εs) is a quasi-tight M-framelet in L2(Rd) if and only if

(AS({φ̊;ψ}),AS({φ̊; Diag(ε1, . . . , εs)ψ̃})) is a pair of dual frames of L2(Rd), and {φ̊;ψ} is

a tight framelet in L2(Rd) if and only if AS({φ̊;ψ}) is a tight frame of L2(Rd).

Most known framelets are constructed from refinable vector functions. By (l0(Zd))r×s

we denote the space of all r×smatrix-valued finitely supported sequences u = {u(k)}k∈Zd :

Zd → Cr×s such that {k ∈ Zd : u(k) 6= 0} is a finite set. For a vector function

φ ∈ (L2(Rd))r, we say that φ is an M-refinable vector function with a refinement

filter/mask a ∈ (l0(Zd))r×r if

φ = | det(M)|
∑
k∈Zd

a(k)φ(M · −k). (1.1.9)

The integer r is the multiplicity of φ. If r = 1, then we simply say that φ is an M-refinable

(scalar) function. For f ∈ L1(Rd), let f̂(ξ) :=
∫
Rd f(x)e−ix·ξdx for ξ ∈ Rd be its Fourier

transform. The definition of the Fourier transform can be naturally extended to L2(Rd)

functions and tempered distributions. For any finitely supported filter u ∈ (l0(Zd))s×r,
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define its Fourier series via

û(ξ) :=
∑
k∈Zd

u(k)e−ik·ξ, ξ ∈ Rd. (1.1.10)

It is easy to see that the refinable equation (1.1.9) is equivalent to

φ̂(MTξ) = â(ξ)φ̂(ξ), ξ ∈ Rd, (1.1.11)

where φ̂ is the r × 1 vector obtained by taking entry-wise Fourier transform on φ. To

construct framelets from refinable vector functions, an oblique extension principle

(OEP) was introduced. The scalar framelet version of the OEP was introduced in [8]

and [15]. The univariate multiframelet version of the OEP was studied in [33, 45] (also

see [41, Theorem 6.4.1]). Its corresponding multivariate version is as follows:

Theorem 1.1.1 (Oblique Extension Principle (OEP)). Let M be a d× d dilation matrix.

Let θ, θ̃, a, ã ∈ (l0(Zd))r×r and φ, φ̃ ∈ (L2(Rd))r be compactly supported M-refinable vector

functions with refinement filters a, ã ∈ (l0(Zd))r×r, respectively. For matrix-valued filters

b, b̃ ∈ (l0(Zd))s×r, define φ̊, ψ, ˚̃φ, ψ̃ as

̂̊
φ(ξ) := θ̂(ξ)φ̂(ξ), ψ̂(ξ) := b̂(M−Tξ)φ̂(M−Tξ), (1.1.12)

̂̊̃
φ(ξ) := ̂̃θ(ξ)̂̃φ(ξ), ̂̃ψ(ξ) := ̂̃b(M−Tξ)̂̃φ(M−Tξ). (1.1.13)

Then ({φ̊;ψ}, { ˜̊
φ; ψ̃}) is a dual M-framelet in L2(Rd) if the following conditions are sat-

isfied:

(1) φ̂(0)
T

Θ̂(0)̂̃φ(0) = 1 with Θ̂(ξ) := θ̂(ξ)
T̂̃θ(ξ);

(2) all entries in ψ and ψ̃ have at least one vanishing moment, i.e., ψ̂(0) = ̂̃ψ(0) = 0.

(3) ({a; b}, {ã; b̃})Θ forms an OEP-based dual M-framelet filter bank, i.e.,

â(ξ)
T
Θ̂(MTξ)̂̃a(ξ + 2πω) + b̂(ξ)

T̂̃b(ξ + 2πω) = δ(ω)Θ̂(ξ), (1.1.14)

4



for all ξ ∈ Rd and ω ∈ ΩM, where

δ(0) := 1 and δ(x) := 0, ∀x 6= 0 (1.1.15)

and ΩM is a particular choice of the representatives of cosets in [M−TZd]/Zd given

by

ΩM := {ω1, . . . , ωdM} := (M−TZd) ∩ [0, 1)d with ω1 := 0. (1.1.16)

Framelets derived from refinable vector functions via OEP are called OEP-based

framelets.

The most important feature of the multiscale representation in (1.1.6) is its sparsity,

which is highly desired for processing multidimensional data. By Pm−1 we denote the

space of all d-variate polynomials of degree less than m. The sparsity of the multiscale

representation in (1.1.6) comes from the vanishing moments of ψ. We say that a function

ψ has order m vanishing moments if

〈p, ψ〉 = 0, ∀ p ∈ Pm−1, or equivalently, ψ̂(ξ) = O(‖ξ‖m), ξ → 0,

where the notation f(ξ) = g(ξ) + O(‖ξ‖m) as ξ → 0 simply means ∂µf(0) = ∂µg(0) for

all µ = (µ1, . . . , µd)
T ∈ Nd

0 with |µ| := µ1 + · · ·+ µd < m. We define vm(ψ) := m with m

being the largest such integer. It is easy to deduce from (1.1.6) that a necessary condition

for all framelet generators ψ`, ` = 1, . . . , s to have order m vanishing moments is the

following polynomial preservation property:

∑
k∈Zd
〈p, φ̊(· − k)〉˚̃φ(· − k) :=

r∑
`=1

∑
k∈Zd
〈p, φ̊`(· − k)〉˚̃φ`(· − k) = p, ∀ p ∈ Pm−1, (1.1.17)

which plays a crucial role in approximation theory and numerical analysis for the conver-

gence rate of the associated approximation/numerical scheme. Using the Fourier trans-

form, it is well known in approximation theory (see e.g. [41, Proposition 5.5.2]) that if

5



vm(ψ) = m and vm(ψ̃) = m̃, then we necessarily have

̂̊
φ(ξ)

T̂̊̃
φ(ξ + 2πk) = O(‖ξ‖m),

̂̊
φ(ξ + 2πk)

T̂̊̃
φ(ξ) = O(‖ξ‖m̃), ξ → 0, k ∈ Zd\{0},

(1.1.18)

and ̂̊
φ(ξ)

T̂̊̃
φ(ξ) = 1 + O(‖ξ‖m̃+m), ξ → 0. (1.1.19)

For an OEP-based dual M-framelet ({φ̊;ψ}, {˚̃φ; ψ̃}), the vanishing moments on the framelet

generators ψ and ψ̃ is closely related to the orders of sum rules of the refinement masks

a and ã associated with the refinement vector functions φ and φ̃. We say that a filter

a ∈ (l0(Zd))r×r has order m sum rules with respect to M with a matching filter

υ ∈ (l0(Zd))1×r if υ̂(0) 6= 0 and

υ̂(MTξ)â(ξ + 2πω) = δ(ω)υ̂(ξ) + O(‖ξ‖m), ξ → 0, ∀ω ∈ ΩM. (1.1.20)

In particular, we define sr(a,M) := m with m being the largest possible integer in (1.1.20).

It can be easily deduced from (1.1.14) that vm(ψ) 6 sr(ã,M) and vm(ψ̃) 6 sr(a,M) al-

ways hold no matter how we choose θ and θ̃. The purpose of OEP is to improve the

orders of vanishing moments of the framelet generators ψ and ψ̃ by properly constructing

θ, θ̃ ∈ (l0(Zd))r×r such that (1.1.14), (1.1.18) and (1.1.19) are satisfied with m and m̃

being as large as possible.

1.2 The Major Shortcoming of OEP

With OEP, a lot of compactly supported scalar tight or dual framelets with the highest

possible vanishing moments have been constructed in the literature, to mention only a

few, see [2, 3, 8, 14–17, 30, 33, 41, 45, 46, 52, 53, 58, 62, 66] and many references therein. In

particular, see Chapter 3 of [41] for comprehensive study and references on scalar tight

or dual framelets. Though OEP appears perfect for improving the vanishing moments
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of framelet generators, it has a serious shortcoming. To properly address this issue, we

need to briefly recall the discrete framelet transform employing an OEP-based filter bank.

By (l(Zd))s×r we denote the linear space of all sequences v : Zd → Cs×r. We call every

element v ∈ (l(Zd))s×r a matrix-valued filter. For a filter a ∈ (l0(Zd))r×r, we define

the filter a? via â?(ξ) := â(ξ)
T
, or equivalently, a?(k) := a(−k)

T
for all k ∈ Zd. We define

the convolution of two filters via

[v ∗ a](n) :=
∑
k∈Z

v(k)a(n− k), n ∈ Zd, v ∈ (l(Zd))s×r, a ∈ (l0(Zd))r×r.

Let M be a d× d dilation matrix, define the upsampling operator ↑ M : (l(Zd))s×r →

(l(Zd))s×r and the downsampling operator ↓ M : (l(Zd))s×r → (l(Zd))s×r as

[v ↑ M](k) :=


v(M−1k), if k ∈ MZd,

0, elsewhere,

, [v ↓ M](k) := v(Mk), ∀k ∈ Zd, (1.2.1)

for all v ∈ (l(Zd))s×r.

We introduce the following operators acting on matrix-valued sequence spaces:

• For u ∈ (l0(Zd))r×t, the subdivision operator Su,M is defined via

Su,Mv = | det(M)|
1
2 [v ↑ M] ∗ a = | det(M)|

1
2

∑
k∈Zd

v(k)u(· −Mk), (1.2.2)

for all v ∈ (l(Zd))s×r.

• For u ∈ (l0(Zd))t×r, the transition operator Tu,M is defined via

Tu,Mv = | det(M)|
1
2 [v ∗ u?] ↓ M = | det(M)|

1
2

∑
k∈Zd

v(k)u(k −M·)
T
, (1.2.3)

for all v ∈ (l(Zd))s×r.
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Let a, ã, θ, θ̃ ∈ (l0(Z))r×r and b, b̃ ∈ (l0(Z))s×r be finitely supported filters. Define

a filter Θ := θ? ∗ θ̃, i.e., Θ̂(ξ) := θ̂(ξ)
T̂̃θ(ξ). We now state the discrete multiframelet

transform using these finitely supported filters. For any J ∈ N and any (vector-valued)

input signal/data v0 ∈ (l(Zd))1×r, the J-level discrete framelet transform using a filter

bank ({a; b}, {ã; b̃})Θ is as follows:

(S1) Decomposition: Recursively compute the framelet coefficients vj, wj, j = 1, . . . , J

by

vj := Ta,Mvj−1 = T ja,Mv0, wj := Tb,Mvj−1 = Tb,MT j−1
a,M v0, j = 1, . . . , J.

(S2) Reconstruction: Compute ṽJ := vJ ∗ Θ and recursively compute ṽj−1, j = J, . . . , 1

by

ṽj−1 := Sã,Mṽj + Sb̃,Mwj, j = J, . . . , 1.

(S3) Recover v̊0 from ṽ0 through the deconvolution v̊0 ∗Θ = ṽ0.

The deconvolution step (S3) is where the trouble arises. If ({a; b}, {ã; b̃})Θ is an OEP-

based dual M-framelet filter bank satisfying (1.1.14), then the original input data v0 is

guaranteed to be a solution of the deconvolution problem v̊0 ∗ Θ = ṽ0. However, the

deconvolution is inefficient and non-stable, that is, there could be multiple solutions of

the deconvolution problem. Thus we cannot expect that the input data can be exactly

retrieved by implementing the transform. As we shall see later in Chapter 3, one necessary

condition to avoid this issue is that Θ is strongly invertible.

Definition 1.2.1. Let Θ ∈ (l0(Zd))r×r be a finitely supported filter. We say that Θ̂ (or

simply Θ) is strongly invertible if there exists Θ−1 ∈ (l0(Zd))r×r such that Θ̂−1 = Θ̂−1, or

equivalently all entries of Θ̂−1 are 2πZd-periodic trigonometric polynomials.

For a scalar filter Θ (i.e., r = 1), it is strongly invertible if and only if Θ̂ is a non-zero

monomial, i.e., Θ̂(ξ) = ce−ik·ξ for some c ∈ C \ {0} and k ∈ Zd. When Θ is strongly

invertible, the discrete framelet transform is said to be compact, i.e., the transform is
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implemented by convolution/deconvolution with finitely supported filters only. Note that

the strong invertibility of Θ forces both θ̂ and ̂̃θ to be monomials, and we lose the main

advantage of OEP of improving the vanishing moments of framelet generators by choosing

such filters θ and θ̃. For instance, one of the most important examples of refinable scalar

functions are B-splines. For m ∈ N, the B-spline function Bm of order m is defined

by

B1 := χ[0,1] and Bm := Bm−1 ∗B1 =

∫ 1

0

Bm−1(· − t)dt. (1.2.4)

The B-spline function Bm is a piecewise polynomial function, belongs to Cm−1(R) with

support [0,m], and is M-refinable: B̂m(Mξ) = âBm,M(ξ)B̂m(ξ) with

âBm,M(ξ) := M−m(1 + e−iξ + · · ·+ e−i(M−1)ξ)m. (1.2.5)

We see that sr(aBm,M,M) = m and 1−|âBm,M(ξ)|2 = O(|ξ|2) as ξ → 0. Thus any OEP-based

tight M-framelet derived from Bm with the trivial choice Θ̂ ≡ 1 has at most 1 vanishing

moments on the framelet generators, even though m can be arbitrarily large.

The situation becomes even more complicated for multiframelets (i.e., r > 1). In

this case, Θ is strongly invertible if and only if det(Θ̂) is a non-zero monomial, which

is in general too much to expect. Nevertheless, we will see in Chapters 2, 3 and 4

that this condition can be satisfied without sacrificing other good properties of an OEP-

based multiframelet, which demonstrates great advantages of multiframelets over scalar

framelets.

1.3 Advantages and Difficulties of Multiframelets

The previously mentioned shortcoming of OEP motivates us to consider multiframelets,

that is, framelets with multiplicity r > 1. Multiframelets have certain advantages over

scalar framelets and have been initially studied in [27, 29] and references therein. In

sharp contrast to the extensively studied OEP-based scalar framelets, constructing mul-
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tiframelets through OEP is much more difficult and is much less studied. To our best

knowledge, we are only aware of [58, Chapter 2] for studying OEP-based tight multi-

framelets, and [33, 45] for investigating OEP-based dual multiframelets with vanishing

moments, which both focus only on the one-dimensional setting (i.e., d = 1). In this

section, we briefly explain the difficulties involved in studying multiframelets.

We see from Theorem 1.1.1 that the most important step of constructing OEP-based

framelets is choosing the appopriate filters θ, θ̃ ∈ (l0(Zd))r×r. In many situations, this is

not easy. Except for the examples in [33], all constructed OEP-based dual framelets with

non-trivial Θ (where Θ := θ? ∗ θ̃) do not have a compact underlying discrete framelet

transform, i.e., Θ is not strongly invertible. We will present some concrete examples in

Chapter 2. Choosing suitable filters θ and θ̃ becomes even harder when constructing

OEP-based tight framelets, in which case we require that θ = θ̃. Moreover, define

Pu;M(ξ) := [û(ξ + 2πω1), . . . , û(ξ + 2πωdM)], ξ ∈ Rd. (1.3.1)

for every matrix-valued filter u, where ω1, . . . , ωdM are defined as in (1.1.16). A tight

M-framelet filter bank {a; b}Θ satisfies (1.1.14) with a = ã and b = b̃, which is further

equivalent to

Ma,Θ(ξ) = Pb;M(ξ)
T
Pb;M(ξ), (1.3.2)

where

Ma,Θ(ξ) :=


Θ̂(ξ + 2πω1)

. . .

Θ̂(ξ + 2πωdM)

− Pa;M(ξ)
T
Θ̂(MTξ)Pa;M(ξ). (1.3.3)

Note that (1.3.2) forces Ma,Θ(ξ) > 0 (i.e., Ma,Θ(ξ) is positive semi-definite) for all

ξ ∈ Rd. This extra requirement makes the construction of Θ much harder, even in the

simplest case d = 1. Even though one can obtain Θ such thatMa,Θ > 0, we still have the
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problem of obtaining a spectral factorization of Ma,Θ as in (1.3.2). If d = 1, the Fejér-

Riesz lemma guarantees the existence of a spectral factorization. However, the spectral

factorization of a trigonometric polynomial matrix is much harder when d > 2, due to

its intrinsic connections to factorization and syzygy modules of multivariate polynomial

matrices (see [4, 5]).

On the other hand, the sparsity of a discrete framelet transform is another issue which

needs to be worried about when the multiplicity r > 1. First we look at the scalar case r =

1. Let ({φ̊;ψ}, {˚̃φ; ψ̃}) be an OEP-based dual M-framelet obtained through Theorem 1.1.1

with an underlying OEP-based dual M-framelet filter bank ({a; b}, {ã; b̃})Θ. Suppose that

vm(ψ) = m. Then the framelet representation (1.1.6) has sparsity in the sense that

the polynomial preservation property (1.1.17) holds. Moreover, item (1) of Theorem 1.1.1

yields φ̂(0) 6= 0. Thus it follows from ψ̂ := b̂(M−T·)φ̂(M−T·) that b̂(ξ) = O(‖ξ‖m) as ξ → 0.

For any polynomial p ∈ Pm−1, using Taylor expansion yields p(x−k) =
∑

α∈Nd0
(−k)α

α!
∂αp(x)

for all x, k ∈ Rd. Thus for any finitely supported sequence u ∈ l0(Zd), we have

[p∗u](x) =
∑
k∈Zd

p(x−k)u(k) =
∑
α∈Nd0

[∂αp](x)

(∑
k∈Zd

(−k)α

α!
u(k)

)
=
∑
α∈Nd0

(−i)|α|

α!
[∂αp](x)[∂αû](0),

which is a polynomial whose degree is no bigger than the degree of p, i.e., p ∗ u ∈

Pm−1. We now input a polynomial sequence data p ∈ Pm−1 and implement the J-level

discrete framelet transform with the filter bank ({a; b}, {ã; b̃})Θ. Observe that the framelet

coefficient v1 satisfies v1 = Ta,Mp = | det(M)| 12 [p ∗ a?](M·) ∈ Pm−1, and by induction we

conclude that vj ∈ Pm−1 for all j = 1, 2, . . . , J . It follows that the framelet coefficients wj

satisfy

wj = Tb,Mvj−1 = | det(M)|
1
2 [vj−1 ∗ b?](M·) = | det(M)|

1
2

∑
α∈Nd0

(−i)|α|

α!
[∂αvj−1](·)[∂αb̂](0) = 0,

for all j = 1, . . . , J . where the last step follows from b̂(ξ) = O(‖ξ‖m) as ξ → 0 and

vj ∈ Pm−1. Consequently, all framelet coefficients wj vanish. This means that the sparsity
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of the framelet expansion (1.1.6) automatically guarantees the sparsity of the underlying

multi-level discrete framelet transform. Unfortunately this is in general not the case

when r > 1, simply due to the fact that ψ̂(ξ) = b̂(M−Tξ)φ̂(M−Tξ) = O(‖ξ‖m) does not

imply any moment property of b̂(ξ) at ξ = 0. This issue is known as the balancing

property of a framelet in the literature ([9, 10, 33, 35, 41, 56, 65]). For the case r > 1,

the sparsity of a discrete framelet transform is measured by its balancing order (see

the definition in Chapter 2 for d = 1 and Chapter 3 for d > 1). For an OEP-based dual

framelet ({φ̊;ψ}, {˚̃φ; ψ̃}) has the highest possible orders of vanishing moments on framelet

generators, and the balancing order underlying discrete framelet transform is the same as

vm(ψ), then we say that the dual framelet is balanced. We will leave further discussion

of this issue to Chapters 2 and 3.

1.4 Framelets with Mixed Dilation Factors

The redundancy of framelet systems not only offers flexibility in their constructions but

also improves the performance when handling multi-dimensional data ([1,15,30,36,38,47–

49,60–62,67]). The degree of redundancy of a dual framelet is measured by its redundancy

rate. Here let us roughly explain the redundancy rate of a framelet transform.

Let M be a d × d dilation matrix. For simplicity let us consider a J-level dis-

crete framelet transform employing the OEP-based filter bank ({a; b}, {ã; b̃})δIr for some

a, ã ∈ (l0(Zd))r×r and b, b̃ ∈ (l0(Zd))s×r. In many applications, we consider an initial data

v0 ∈ (l0(Zd))1×r which has finite support. Suppose that v0 contains n real numbers, i.e.

#{Re (v0(k)l) , Im (v0(k)l) : k ∈ Zd; l = 1, . . . , r} = n. One first extend v0 to a periodic

sequence vper0 ∈ (l(Zd))1×r, and use vper0 as the input data of the discrete framelet trans-

form. Noting that vper0 ∗ a? and vper0 ∗ b? are both periodic sequences which have the same

period as vper0 , both sequences contain only finitely many real numbers. Thus the framelet

coefficients vj and wj contain finitely many real numbers for all j = 1, . . . , J , and say all

framelet coefficients contain a total of N real numbers. Then the ratio N
n

measures the
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redundancy of the J-level discrete framelet transform. For a J-level discrete framelet

transform employing a dual M-framelet filter bank ({a; b}, {ã; b̃})δIr , its redundancy rate

only depends on the level J , the number s and the dilation factor M.

Most dual framelets which offer good performance in practice have relatively high

redundacy rates (see e.g. [1, 15, 30,36,60–62,67]). Though the high redundancy rate of a

dual framelet improves performance in practice, the computational cost will also increase

as dimension increases. Recently, a version of tensor product complex tight framelets (TP-

CTF) was introduced in [49], which not only offers good performance on image processing,

but also has a significantly lower redundancy rate compared with existing systems in

the literature. This newly developed TP-CTF is a particular case of framelets with

mixed dilation factors. That is, instead of using one single dilation factor M, different

dilation factors are used in the framelet system. To be specific, let ψ0 = (ψ0
1, . . . , ψ

0
r)

T ∈

(L2(Rd))r, ψ1, . . . , ψs ∈ L2(Rd) and M0, . . . ,Ms be d × d dilation matrices. Define an

affine system with mixed dilation factors via

AS({ψl!Ml}sl=0) :={ψ0
q (· − k) : q = 1, . . . , r, k ∈ Zd}

∪ {| det(M−1
0 Ml)|

1
2ψl

Mj
0;M−1

0 Mlk
: l = 1, . . . , s, j ∈ N0, k ∈ Zd}.

We say that ({ψl!Ml}sl=0, {ψ̃l!Ml}sl=0) is a dual framelet in L2(Rd) with mixed dilation

factors if both (AS({ψl!Ml}sl=0) and AS({ψ̃l!Ml}sl=0)) are frames of L2(Rd) and satisfy

〈f, g〉 =
∑
k∈Zd
〈f, ψ0(· − k)〉〈ψ̃0(· − k), g〉

+
s∑
l=1

∞∑
j=0

∑
k∈Zd
| det(M−1

0 Ml)|〈f, ψlMj
0;M−1

0 Mlk
〉〈ψ̃l

Mj
0;M−1

0 Mlk
, g〉

(1.4.1)

for all f, g ∈ L2(Rd), with the above series converging absolutely.

Allowing mixed dilation factors creates more flexibility in constructing framelets, and

makes it possible to achieve a low redundancy rate while all desired properties for good
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performance are being kept. There is a small amount of work in the literature on lowering

redundancy rates of wavelet/framelet systems by considering mixed dilation factors (e.g.

[68, 70]). To our best knowledge, the only existing work in the literature discussing

framelets with mixed dilation factors theoretically is [49], which only addresses the case

of tight framelets with multiplicity r = 1.

1.5 Contributions

The majority of this thesis is devoted to the investigation on how to avoid the previously

mentioned shortcomings and difficulties on OEP-based framelets. We mainly focus on

multiframelets. For φ̊ ∈ (L2(Rd))r and ψ ∈ (L2(Rd))s and ε1, . . . , εs ∈ {±1}, recall that

{φ̊;ψ}(ε1,...,εs) is a quasi-tight M-framelet in L2(Rd) if ({φ̊;ψ}, {φ̊; Diag(ε1, . . . , εs)ψ}) is a

dual M-framelet in L2(Rd). Quasi-tight framelets are special dual framelets, but behave

almost identically as tight framelets. From any compactly supported refinable vector

function with multiplicity r > 1, we show that one can always construct a quasi-tight

multiframelet through OEP such that (1) all framelet generators have the highest pos-

sible vanishing moments; (2) its underlying discrete framelet transform is compact; (3)

its underlying discrete framelet transform has the highest possible balancing order, which

makes the transform sparse. Several illustrative examples will be provided for the case

d = 1. Our result on quasi-tight multiframelets can be further generalized to dual multi-

framelets. We prove that from any pair of compactly supported refinable vector functions,

an OEP-based dual framelet satisfying all desired properties can be obtained. This part of

the work demonstrates great advantages of OEP on multiframelets over scalar framelets.

The key ingredient of our study is a newly developed normal form of matrix-valued fil-

ters, which is of independent interest and importance for greatly reducing the difficulty

of studying refinable vector functions and multiframelets. We also study discrete multi-

framelet transforms employing OEP-based multiframelet filter banks in detail.

On the other hand, one chapter will be devoted to framelets with mixed dilation fac-
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tors. The basics of the theory of framelets with mixed dilation factors and with arbitrary

multiplicity will be developed. We will study properties of framelet filter banks with

mixed dilation factors, and then make connections with framelets in L2(Rd).

1.6 Thesis Structure

Chapter 2 deals with one dimensional quasi-tight multiframelets. First, we develop the

normal form of a matrix-valued filter and demonstrate its power. Next, we study the

discrete framelet transform employing an OEP-based dual framelet filter bank. We shall

discuss various properties including the compactness and the balancing property of the

framelet transform. Then we show how to construct an OEP-based quasi-tight mul-

tiframelet from any compactly supported refinable vector function, and provide some

examples to illustrate our result.

Chapter 3 is the multivariate counterpart of Chapter 2. However, we will see that the

multivariate case is much harder than the univariate case. There are new challenges that

we have to deal with, and several new elements will be involved in our study. We shall

also provide a structural characterization of OEP-based quasi-tight multiframelets with

high vanishing moments and high balancing orders.

In Chapter 4, we focus on OEP-based dual multiframelets. We prove that from any

pairs of refinable vector functions, one can always obtain a dual multiframelet through

OEP, with all desired properties being satisfied. We comment that the univariate dual

multiframelet case has been covered in [33]. Our main result in this chapter is a non-

trivial generalization of the corresponding result on the case d = 1 to the case d > 1.

In Chapter 5, we deal with framelets with mixed dilation factors and with arbitrary

multiplicity. The notion of a dual framelet filter bank with mixed dilation factors will

be encountered and its various properties will be studied. We will also link the theory
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in discrete settings to function settings, by making connections between filter banks and

framelet systems in L2(Rd).

Finally in Chapter 6, we provide a summary of the thesis, and discuss some potential

future research topics.
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Chapter 2

One-dimensional Quasi-tight

Multiframelets with High Balancing

Orders

In this chapter, we investigate the construction of one-dimensional OEP-based quasi-tight

multiframelets with high vanishing moments and high balancing orders. The work of this

chapter is summarized as [43], which has been published in Applied and Computational

Harmonic Analysis. Since we work on the case when the dimension is d = 1, the dilation

factor M is an integer with |M| > 2. Without loss of generality and for simplicity of

discussion, throughout this chapter, we assume M > 2, in which case the set ΩM defined

as (1.1.16) simply becomes

ΩM =

{
0,

1

M
, . . . ,

M− 1

M

}
,

with ωj = j−1
M

for j = 1, . . . ,M.

As discussed in Chapter 1, the key is to construct a desired filter Θ as in Theorem 1.1.1,

which maximizes the vanishing moments of all framelet generators, and makes the under-

lying discrete framelet transform compact and balanced. We start with this chapter by
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discussing various properties of a discrete framelet transform employing an OEP-based

filter bank. Next, we move on to develop the theory of the normal form of a matrix-valued

filter, which plays a key role in our study of OEP-based multiframelets. Then we show

that from any compactly supported refinable vector function, one can always obtain an

OEP-based quasi-tight multiframelet satisfying all desired properties. Several examples

will be provided at the end of the chapter to illustrate our main result.

2.1 The Perfect Reconstruction Property of a Multi-

level Discrete Framelet Transform

We shall address several important issues on a multi-level discrete framelet transform

such as the perfect reconstruct property and the balancing property. We have mentioned

in Section 1.2 that the deconvolution problem in (S3) of a multi-level discrete framelet

reconstruction may have infinitely many solutions, which cause nonstability and inaccu-

racy for reconstruction. We say that a multi-level discrete framelet transform has the

generalized perfect reconstruction property if any original input signal v0 can be

reconstructed as one of the solutions v̊0 of the deconvolution problem ṽ0 = v̊0 ∗Θ.

Let a, ã, θ, θ̃ ∈ (l0(Z))r×r and b, b̃ ∈ (l0(Z))s×r be finitely supported filter, and let J ∈

N. To analyze a J-level discrete framelet transform using the filter bank ({a; b}, {ã; b̃})Θ

(where Θ := θ? ∗ θ̃), we define:

• The J-level discrete framelet analysis/decomposition operator:

WJ : (l(Z))1×r → (l(Z))1×(sJ+r), WJ(v) = (Tb,Mv, Tb,MTa,Mv, . . . , Tb,MT J−1
a,M v, T Ja,Mv).

Define W :=W1 as the one-level analysis/decomposition operator.
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• The J-level discrete framelet synthesis/reconstruction operator:

ṼJ : (l(Z))1×(sJ+r) → (l(Z))1×r, ṼJ(ẘ1, ẘ2, . . . , ẘJ , v̊J) = ṽ0,

for all ẘj ∈ (l(Z))1×s and v̊J ∈ (l(Z))1×r, where ṽj−1, j = J, . . . , 1 are recursively

computed via

ṽj−1 := Sã,Mṽj + Sb̃,Mẘj, j = J, . . . , 1,

with ṽJ := v̊J . Define Ṽ := Ṽ1 as the one-level synthesis/reconstruction operator.

• The J-level convolution operator:

CΘ;J : (l(Z))1×(sJ+r) → (l(Z))1×(sJ+r), CΘ;J(ẘ1, ẘ2, . . . , ẘJ , v̊J) = (ẘ1, ẘ2, . . . , ẘJ , v̊J∗Θ),

for all ẘj ∈ (l(Z))1×s and v̊J ∈ (l(Z))1×r.

We observe that the J-level discrete framelet transform using the filter bank ({a; b}, {ã; b̃})Θ

has the generalized perfect reconstruction property for an input signal v ∈ (l(Z))1×r if

and only if

ṼJCΘ;JWJ(v) = CΘ(v), (2.1.1)

where CΘ is the convolution operator CΘ(v) = v ∗Θ. Moreover, by

WJ = (Id(l(Z))1×s(J−1) ⊗W) · · · (Id(l(Z))1×s ⊗W)W

and

ṼJ = Ṽ(Id(l(Z))1×s ⊗ Ṽ) · · · (Id(l(Z))1×s(J−1) ⊗ Ṽ),

we see that the J-level discrete framelet transform has the generalized perfect reconstruc-

tion property for v if and only if the one-level discrete framelet transform does, that

is,

Sã,M([Ta,Mv] ∗Θ) + Sb̃,M(Tb,Mv) = v ∗Θ. (2.1.2)
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Following the approach in [37, 41] for scalar framelets, we now provide the necessary

and sufficient conditions for the generalized perfect reconstruction property of a discrete

framelet transform as follows:

Theorem 2.1.1. Let a, ã, θ, θ̃ ∈ (l0(Z))r×r and b, b̃ ∈ (l0(Z))s×r be finitely supported

filters. Define Θ := θ? ∗ θ̃. The following statements are equivalent to each other:

(i) For any J ∈ N, the J-level discrete framelet transform using the filter bank ({a; b}, {ã; b̃})Θ

has the generalized perfect reconstruction property for any input signal v ∈ (l(Z))1×r

(or for any input signal v ∈ (l0(Z))1×r).

(ii) ({a; b}, {ã; b̃})Θ is an OEP-based dual M-framelet filter bank satisfying (1.1.14).

Proof. (i)⇒ (ii): The generalized perfect reconstruction property of the one-level discrete

multiframelet transform for v ∈ (l(Z))1×r is equivalent to (2.1.2). For v ∈ (l0(Z))1×r, we

observe that

Ŝa,Mv(ξ) = M1/2v̂(Mξ)â(ξ) and T̂a,Mv(Mξ) = M−1/2

M−1∑
γ=0

v̂(ξ + 2πγ
M

)â(ξ + 2πγ
M

)
T
.

Therefore, in the frequency domain, (2.1.2) is equivalent to

M−1∑
γ=0

v̂(ξ + 2πγ
M

)

[
â(ξ + 2πγ

M
)
T
Θ̂(Mξ)̂̃a(ξ) + b̂(ξ + 2πγ

M
)
T̂̃b(ξ)] = v̂(ξ)Θ̂(ξ). (2.1.3)

We now use the same argument as in [37, Theorem 2.1] and [41, Theorem 1.1.1] by

selecting v as Dirac sequences in (2.1.3) to prove (1.1.14). Observe that (2.1.3) actually

holds for all v ∈ (l0(Z))r×r. For each j = 0, . . . ,M − 1, plug v := δ(· − j)Ir into (2.1.3)

and noting that v̂(ξ) = e−ijξIr, we deduce from (2.1.3) that

M−1∑
γ=0

e−ij·
2πγ
M

[
â(ξ + 2πγ

M
)
T
Θ̂(Mξ)̂̃a(ξ) + b̂(ξ + 2πγ

M
)
T̂̃b(ξ)] = Θ̂(ξ), (2.1.4)

for all j = 0, . . . ,M − 1. Define the (rM) × (rM) matrix F :=
(
e−ij·

2πγ
M Ir

)
06j,γ6M−1

. For
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each γ = 0, . . . ,M− 1, define

ûγ(ξ) := â(ξ + 2πγ
M

)
T
Θ̂(Mξ)̂̃a(ξ) + b̂(ξ + 2πγ

M
)
T̂̃b(ξ), ξ ∈ R.

Note that (2.1.4) yields

F


û0(ξ)

û1(ξ)

...

ûM−1(ξ)


=


Ir

Ir
...

Ir


Θ̂(ξ). (2.1.5)

It is easy to verify that F
T
F = MIrM. Thus (2.1.5) implies

M


û0(ξ)

û1(ξ)

...

ûM−1(ξ)


= F

T


Ir

Ir
...

Ir


Θ̂(ξ) =


MIr

000r×r
...

000r×r


Θ̂(ξ), (2.1.6)

where 000r×r denotes the r × r zero matrix. Hence we have ûγ(ξ) = δ(γ)Θ̂(ξ), that is,

({a; b}, {ã; b̃})Θ is an OEP-based dual M-framelet filter bank. This proves item (ii).

(ii) ⇒ (i): Suppose that ({a; b}, {ã; b̃})Θ is an OEP-based dual M-framelet filter bank

satisfying (1.1.14). Then (2.1.3) must hold for all v ∈ (l0(Z))1×r. In the time domain,

(2.1.3) is equivalent to (2.1.2), which further implies (2.1.1). This proves the generalized

perfect reconstruction property for any v ∈ (l0(Z))1×r. Now for arbitrary v ∈ (l(Z))1×r,

we use the locality of the subdivision and transition operators (see the proof of [37,

Theorem 2.1] and [41, Theorem 1.1.1]) to prove that (2.1.3) holds for all v ∈ (l(Z))1×r.

Since all filters a, ã, b, b̃,Θ are all finitely supported, there exists N ∈ N such that all these

filters vanish outside [−N,N ]. Fix n ∈ Z. For any v ∈ (l(Z))1×r, define vn ∈ (l0(Z))1×r
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via

vn(k) :=


v(k), if n− (M + 2)N 6 k 6 n+ (M + 2)N

0, elsewhere.

For k ∈ Z ∩
[
n−N
M
, n+N

M

]
, we have

([Ta,Mv] ∗Θ)(k) =
∑
t∈Z

(∑
q∈Z

v(q)a(q −Mt)
T

)
Θ(k − t)

=
∑
t∈Z

(∑
q∈Z

v(q −Mt)a(q −Mk)
T

)
Θ(t)

=
N∑

t=−N

(
n+2N∑
q=n−2N

v(q −Mt)a(q −Mk)
T

)
Θ(t)

=
N∑

t=−N

(
n+2N∑
q=n−2N

vn(q −Mt)a(q −Mk)
T

)
Θ(t)

=
∑
t∈Z

(∑
q∈Z

vn(q −Mt)a(q −Mk)
T

)
Θ(t)

= ([Ta,Mvn] ∗Θ)(k).

Similarly we deduce that (Tb,Mv)(k) = (Tb,Mvn)(k) for all k ∈ Z ∩
[
n−N
M
, n+N

M

]
. By direct

calculation, we have

[Sã,M([Ta,Mv] ∗Θ)](n) + [Sb̃,M(Tb,Mv)](n)

=M1/2
∑

k∈Z∩[n−NM ,n+N
M ]

(
([Ta,Mv] ∗Θ)(k)ã(n−Mk) + Tb,Mv(k)b̃(n−Mk)

)
=M1/2

∑
k∈Z∩[n−NM ,n+N

M ]

(
([Ta,Mvn] ∗Θ)(k)ã(n−Mk) + Tb,Mvn(k)b̃(n−Mk)

)
=[Sã,M([Ta,Mvn] ∗Θ)](n) + [Sb̃,M(Tb,Mvn)](n)

=(vn ∗Θ)(n),

where the last identity follows from the generalized perfect reconstruction property of the
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transform for all v ∈ (l0(Z))1×r. Note that

(vn∗Θ)(n) =
∑
k∈Z

vn(k)Θ(n−k) =
n+N∑

k=n−N

vn(k)Θ(n−k) =
n+N∑

k=n−N

v(k)Θ(n−k) = (v∗Θ)(n).

Since n ∈ Z is arbitrary, this proves (2.1.2) for all v ∈ (l0(Z))1×r. The proof is now

complete.

If the deconvolution in (S3) of the J-level discrete framelet reconstruction has infinitely

many solutions or no solution at all, without any extra information on the input signal,

then one cannot exactly recover the original input signal v0 from the transform. Hence, we

say that a discrete framelet transform has the perfect reconstruction property if any

original input signal v0 can be reconstructed as the unique solution v̊0 of ṽ0 = v̊0∗Θ in (S3).

To study the perfect reconstruction property of a discrete framelet transform, we need

the following auxiliary result.

Lemma 2.1.2. Let Θ ∈ (l0(Z))r×r be a finitely supported filter. Define the convolution

operator CΘ by CΘ(v) := v ∗Θ for any sequences v ∈ (l(Z))1×r. Then

(1) The mapping CΘ : (l∞(Z))1×r → (l∞(Z))1×r is injective (or bijective) if and only if

det(Θ̂(ξ)) 6= 0 for all ξ ∈ R.

(2) The mapping CΘ : (lsi(Z))1×r → (lsi(Z))1×r is injective (or bijective) if and only if

det(Θ̂(ξ)) 6= 0 for all ξ ∈ R, where lsi(Z) denotes the space of all slowly increasing

sequences, i.e., v ∈ lsi(Z) if (1 + | · |2)−mv ∈ l∞(Z) for some m ∈ N.

(3) The mapping CΘ : (l(Z))1×r → (l(Z))1×r is injective (or bijective) if and only if

det(Θ̂(ξ)) is a nontrivial monomial (i.e., det(Θ̂(ξ)) = ce−imξ for some m ∈ Z and

c ∈ C\{0}).

Proof. We first prove items (1) and (2) simultaneously. Let V0 be either (l∞(Z))1×r or

(lsi(Z))1×r. Suppose that CΘ : V0 → V0 is injective, but det(Θ̂(ξ0)) = 0 for some ξ0 ∈ R.
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We start with the case r = 1. In this case, we have 0 = Θ̂(ξ0) =
∑

k∈Z Θ(k)e−ikξ0 . Let

v ∈ l∞(Z) be defined by

v(k) = e−ikξ0 , ∀k ∈ Z. (2.1.7)

By definition, we have (v ∗ Θ)(n) = e−inξ0Θ̂(ξ0) = 0 for all n ∈ Z. So we find a non-zero

sequence v with v ∗ Θ = 0. Hence CΘ is not injective, which is a contradiction. So we

must have Θ̂(ξ) 6= 0 for all ξ ∈ R.

Now we consider r > 1. As det(Θ̂(ξ0)) = 0, we can find an invertible r × r matrix

Q such that all elements in the first row of QΘ̂(ξ0) are zero. Let v ∈ l∞(Z) be defined

as (2.1.7), and let u ∈ (l∞(Z))1×r be defined by u(k) = (v(k), 0, . . . , 0)Q for all k ∈ Z. It

follows immediately that u ∗ Θ = 0, which again contradicts our assumption that CΘ is

injective. Hence, det(Θ̂(ξ)) 6= 0 for all ξ ∈ R.

Conversely, suppose that det(Θ̂(ξ)) 6= 0 for all ξ ∈ R. Then the filter Θ−1, which is de-

fined by Θ̂−1(ξ) := Θ̂(ξ)−1, must be well defined and has exponential decaying coefficients.

Consequently, we can deduce that

(v ∗Θ) ∗Θ−1 = v ∗ (Θ ∗Θ−1) = v = v ∗ (Θ−1 ∗Θ) = (v ∗Θ−1) ∗Θ (2.1.8)

and v ∗Θ−1 ∈ V0 for all v ∈ V0. Hence, CΘ must be bijective. This proves items (1) and

(2).

Finally, we prove item (3). Suppose that CΘ : (l(Z)))1×r → (l(Z))1×r is injective, but

det(Θ̂(ξ)) is not a non-trivial monomial. Then there exist ξ0 ∈ C such that det(Θ̂(ξ0)) = 0.

Then by applying the same argument as in the proof of item (1), we conclude that CΘ is

not injective, which is a contradiction.

Conversely, if det(Θ̂(ξ)) is a non-trivial monomial, then Θ is strongly invertible and

Θ−1 ∈ (l0(Z))r×r. Consequently, (2.1.8) must hold for all v ∈ (l(Z))1×r. Hence, CΘ is

bijective.

Now Lemma 2.1.2 yields the following characterization on the perfect reconstruction

property of a discrete framelet transform employing an OEP-based dual framelet filter
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bank.

Theorem 2.1.3. Let a, ã, θ, θ̃ ∈ (l0(Z))r×r and b, b̃ ∈ (l0(Z))s×r be finitely supported

filters. Define Θ := θ? ∗ θ̃. Let V0 = (lsi(Z))1×r (or respectively, V0 = (l(Z))1×r). For any

J ∈ N, the J-level discrete framelet transform using the filter bank ({a; b}, {ã; b̃})Θ has

the perfect reconstruction property for any input signal from V0 if and only if

(i) ({a; b}, {ã; b̃})Θ is an OEP-based dual M-framelet filter bank satisfying (1.1.14);

(ii) det(Θ̂(ξ)) 6= 0 for all ξ ∈ R (or respectively, det(Θ̂(ξ)) is a non-trivial monomial),

where Θ̂(ξ) := θ̂(ξ)
T̂̃θ(ξ).

Except for the examples in [33], all constructed OEP-based dual framelet filter banks

with non-trivial Θ do not satisfy item (ii) of Theorem 2.1.3. For the convenience of the

reader, we now present two concrete examples of tight framelet filter banks such that item

(ii) of Theorem 2.1.3 fails.

Example 2.1. Let M = 2 and consider the B-spline filter aB2,2 ∈ l0(Z):

âB2,2(ξ) =
1

4
(1 + e−iξ)2, ξ ∈ R.

It is well known that aB2,2 is the mask associated to the refinable function B̂2(ξ) =
(

1−e−iξ
iξ

)2

.

That is, B̂2(2ξ) = âB2,2(ξ)B̂2(ξ) for all ξ ∈ R. With

θ̂(ξ) = (1 + e−iξ)/2, Θ̂(ξ) = θ̂(ξ)θ̂(ξ) = (2 + e−iξ + eiξ)/4,

one can construct a tight 2-framelet filter bank {aB2,2; b}Θ satisfying

âB2,2(ξ)Θ̂(2ξ)âB2,2(ξ) + b̂(ξ)
T

b̂(ξ) = Θ̂(ξ), âB2,2(ξ)Θ̂(2ξ)âB2,2(ξ + π) + b̂(ξ)
T

b̂(ξ + π) = 0

for all ξ ∈ R, where b := [b1, b2]T ∈ (l0(Z))2×1 is given by

b̂1(ξ) =

√
2

8
(e−iξ − 1)(e−iξ + 1)3, b̂2(ξ) =

√
2

4
(e−2iξ − 1), ξ ∈ R.
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Define
̂̊
φ(ξ) := θ̂(ξ)B̂2(ξ) and ψ̂(ξ) := b̂(ξ/2)B̂2(ξ/2) for all ξ ∈ R. Note that

̂̊
φ(0) =

θ̂(0)B̂2(0) = 1 and ψ has one vanishing moment. By Theorem 1.1.1, {φ̊;ψ} forms a

compactly supported tight 2-framelet in L2(R). However, because Θ̂(π) = 0, Theorem 2.1.3

tells us that the tight 2-framelet filter bank {aB2,2; b}Θ cannot have the perfect reconstruction

property for certain input signals.

Example 2.2. Let φ1(x) = B2(· − 1) = max(1− |x|, 0) for all x ∈ R. Then φ := [φ1, 0]T

is a 2-refinable vector of compactly supported functions satisfying φ̂(2ξ) = â(ξ)φ̂(ξ) with

â(ξ) =
1

4

e−iξ + 2 + eiξ 0

0 1

 , ξ ∈ R.

With

θ̂(ξ) =

(1 + e−iξ)/2 0

0 0

 , Θ̂(ξ) = θ̂(ξ)
T

θ̂(ξ), ξ ∈ R,

we can construct a tight 2-multiframelet filter bank {a; b}Θ satisfying

â(ξ)
T
Θ̂(2ξ)â(ξ) + b̂(ξ)

T

b̂(ξ) = Θ̂(ξ), â(ξ)
T
Θ̂(2ξ)â(ξ + π) + b̂(ξ)

T

b̂(ξ + π) = 0

for all ξ ∈ R, where b ∈ (l0(Z))2×2 is given by

b̂(ξ) =

√
2

8

(1− e−iξ)(1 + e−iξ)3 0

2e−iξ(e−2iξ − 1) 0

 , ξ ∈ R.

Define
̂̊
φ(ξ) := θ̂(ξ)φ̂(ξ) and ψ̂(ξ) = b̂(ξ/2)φ̂(ξ/2). Note that ‖̂̊φ(0)‖2 = φ̂(0)

T

Θ̂(0)φ̂(0) =

1 and ψ has one vanishing moment. By Theorem 1.1.1, {φ̊;ψ} is a tight 2-multiframelet

in L2(R). However, det(Θ̂) is identically zero, which clearly does not satisfy item (ii) of

Theorem 2.1.3. As a consequence, the tight 2-multiframelet filter bank {a; b}Θ does not

have the perfect reconstruction property.

The essence of OEP is to replace the original pair of refinable vector functions φ and
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φ̃ by another desired pair of refinable vector function φ̊ and ˚̃φ satisfying

̂̊
φ(Mξ) = ̂̊a(ξ)

̂̊
φ(ξ),

̂̊̃
φ(Mξ) = ̂̃̊a(ξ)

̂̊̃
φ(ξ),

with ̂̊a(ξ) := θ̂(Mξ)â(ξ)θ̂(ξ)−1, ̂̃̊a(ξ) := ̂̃θ(Mξ)̂̃a(ξ)̂̃θ(ξ)−1.

When item (ii) of Theorem 2.1.3 fails, we see that Θ := θ?∗θ̃ is not strongly invertible, and

consequently so is at least one of θ and θ̃. In this case, at least one of the two refinement

masks/filters å and ˚̃a has infinite support, even though both φ̊ and ˚̃φ have compact

support. In the multiframelet case (r > 1), the determinant of Θ̂ could even be identically

zero and therefore, the solution of the deconvolution problem is not unique at all. Hence, it

appears impossible for framelets constructed through OEP to achieve both high vanishing

moments and an efficient framelet transform simultaneously. The first breakthrough to

knock down this dead-end for OEP is probably [33] showing the real advantage of OEP

for r > 1. If Θ is strongly invertible, then the solution v̊0 to the deconvolution problem

ṽ0 = v̊0 ∗ Θ is simply given by v̊0 = ṽ0 ∗ Θ−1 (here Θ−1 ∈ (l0(Z))r×r is the filter with

Θ̂−1 = Θ̂−1) and the trouble of deconvolution is completely gone. Indeed, as proved in

[33, Theorem 1.2], if r > 1, then one can always construct a dual M-framelet through

OEP in Theorem 1.1.1 from any pair of matrix-valued filters such that the dual framelet

has the highest possible vanishing moments and both θ and θ̃ are strongly invertible

(consequently, Θ is strongly invertible). It is the purpose of this chapter to show that

we can always construct quasi-tight multiframelets, which are much stronger than simply

dual multiframelets, with all desired properties being kept.
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2.2 The Balancing Property of a Multi-level Discrete

Framelet Transform

Next, we discuss the discrete vanishing moments and the balancing property of a discrete

multiframelet transform. “Smooth” signals are often modelled by polynomial sequences.

For m ∈ N, by Pm−1 we denote the space of all polynomial sequences of degree less

than m. The sparsity of a discrete multiframelet transform is described by its ability

to have zero framelet coefficients wj for polynomial input data. The input to a discrete

multiframelet transform is a vector sequence in (l(Z))1×r, while most data in applications

are scalar-valued, i.e., in l(Z). Hence, we have to convert a scalar sequence into a vector

sequence by using the standard vector conversion operator

E̊ : l(Z)→ (l(Z))1×r with E̊v := [v(r·), v(r ·+1), . . . , v(r ·+(r − 1))]. (2.2.1)

Note that E̊ is a linear bijective mapping. Let ({a; b}, {ã; b̃})Θ be an OEP-based dual

M-framelet filter bank and ({φ̊;ψ}, {˚̃φ; ψ̃}) be its corresponding dual M-framelet. De-

fine m := sr(ã,M) be its sum rule order. Ideally, since the multi-level discrete framelet

transform is recursive, to have sparsity of a framelet transform, we hope that

Tb,ME̊(p) = 0, ∀ p ∈ Pm−1 (2.2.2)

and

Ta,ME̊(p) ∈ E̊(Pm−1), ∀ p ∈ Pm−1. (2.2.3)

The condition in (2.2.3) guarantees that the output signal Ta,ME̊(p) is still in the space

E̊(Pm−1) for any input data p ∈ E̊(Pm−1). The condition in (2.2.2) preserves sparsity for

all levels, that is, the framelet coefficients wj := Tb,MT j−1
a,M E̊(p) = 0 for all p ∈ Pm−1

and j ∈ N. Hence, we say that a filter b has m balanced vanishing moments if

(2.2.2) holds. Moreover, we define bvm(b,M) := m with m being the largest possible

integer such that (2.2.2) holds. Similarly, we say that a discrete multiframelet transform

28



(using the filter bank ({a; b}, {ã; b̃})Θ) or a filter bank {a; b} has m balancing order

with respect to the dilation factor M if both (2.2.2) and (2.2.3) hold. In particular, we

define bo({a; b},M) := m with m being the largest such integer satisfying both (2.2.2)

and (2.2.3). For the case r = 1, we always have bo({a; b},M) = bvm(b,M) = vm(ψ).

But for r > 1, it was first observed in [56] that bo({a, b},M) < vm(ψ) often happens.

This reduced sparsity hurdles the applications of multiwavelets and multiframelets. How

to remedy this shortcoming has been extensively studied in the function setting in [9,65]

and in the setting of discrete multiframelet transforms in [33,35,41].

The following result on characterizing the balanced vanishing moments and the bal-

ancing property is known (e.g., see [33, Theorem 4.4] or [41, Lemma 7.6.3]).

Theorem 2.2.1. Let M > 2 be a positive integer. Let a ∈ (l0(Z))r×r and b ∈ (l0(Z))s×r.

Define

Υ̂(ξ) :=
(
1, eiξ/r, . . . , ei(r−1)ξ/r

)
. (2.2.4)

Then

(1) The filter b has m balanced vanishing moments satisfying (2.2.2) if and only if

Υ̂(ξ)̂b(ξ)
T

= O(|ξ|m), ξ → 0. (2.2.5)

(2) The filter bank {a; b} has m balancing order satisfying both (2.2.2) and (2.2.3) if

and only if (2.2.5) holds and there exists c ∈ l0(Z) with ĉ(0) 6= 0 such that

ĉ(ξ)Υ̂(ξ)â(ξ)
T

= Υ̂(Mξ) + O(|ξ|m), ξ → 0. (2.2.6)

2.3 A Newly Developed Normal Form of a Matrix-

valued Filter

In this section, we study the normal form of a matrix-valued filter for the case d = 1. We

say that a function f is smooth near the origin if all the derivatives of f at the origin
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exist. The main results of this section are the following two theorems.

Theorem 2.3.1. Let M > 2 be an integer and a ∈ (l0(Z))r×r be a finitely supported

matrix-valued filter. Let φ be an r×1 vector of compactly supported distributions satisfying

φ̂(Mξ) = â(ξ)φ̂(ξ) with φ̂(0) 6= 0. Suppose that the filter a has m sum rules with respect

to M satisfying (1.1.20) with a matching filter υ ∈ (l0(Z))1×r such that υ̂(0)φ̂(0) = 1. Let̂̊υ be a 1 × r row vector and ûφ be an r × 1 column vector such that all the entries of ̂̊υ
and ûφ are functions which are smooth near the origin and

̂̊υ(ξ)ûφ(ξ) = 1 + O(|ξ|m), ξ → 0. (2.3.1)

If the multiplicity r > 2, then for any positive integer n ∈ N, there exists a strongly

invertible r × r matrix Û of 2π-periodic trigonometric polynomials such that

υ̂(ξ)Û(ξ)−1 = ̂̊υ(ξ) + O(|ξ|m) and Û(ξ)φ̂(ξ) = ûφ(ξ) + O(|ξ|n), ξ → 0. (2.3.2)

Define
̂̊
φ(ξ) := Û(ξ)φ̂(ξ) and ̂̊a(ξ) := Û(Mξ)â(ξ)Û(ξ)−1. Then the following statements

hold:

(i) The new vector function φ̊ is a vector of compactly supported distributions satisfying

the refinement equation
̂̊
φ(Mξ) = ̂̊a(ξ)

̂̊
φ(ξ) for all ξ ∈ R and

̂̊
φ(ξ) = ûφ(ξ) + O(|ξ|n)

as ξ → 0.

(ii) The new finitely supported matrix filter/mask å has m sum rules with respect to M

with the matching filter υ̊ such that ̂̊υ(0)
̂̊
φ(0) = 1, i.e., (1.1.20) holds with a and υ

being replaced by å and υ̊, respectively.

As a special case of Theorem 2.3.1, we have the following result.

Theorem 2.3.2. Let M > 2 be an integer and a ∈ (l0(Z))r×r be a finitely supported

matrix-valued filter. Let φ be an r×1 vector of compactly supported distributions satisfying

φ̂(Mξ) = â(ξ)φ̂(ξ) with φ̂(0) 6= 0. Suppose that the filter a has m sum rules with respect

to M satisfying (1.1.20) with a matching filter υ ∈ (l0(Z))1×r and υ̂(0)φ̂(0) = 1. If the
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multiplicity r > 2, then for any positive integer n ∈ N, there exists a strongly invertible

r×r matrix Û of 2π-periodic trigonometric polynomials such that the following properties

hold:

(i) ̂̊a(ξ) := Û(Mξ)â(ξ)Û(ξ)−1 takes the ideal (m,n)-normal form, i.e.,

(1 + e−iξ + · · ·+ e−i(M−1)ξ)mP1,1(ξ) (1− e−iMξ)mP1,2(ξ)

(1− e−iξ)nP2,1(ξ) P2,2(ξ)

 , (2.3.3)

with

̂̊a1,1(ξ) := (1 + e−iξ + · · ·+ e−i(M−1)ξ)mP1,1(ξ) = 1 + O(|ξ|n), ξ → 0, (2.3.4)

where P1,1, P1,2, P2,1 and P2,2 are some 1×1, 1×(r−1), (r−1)×1 and (r−1)×(r−1)

matrices of 2π-periodic trigonometric polynomials. Moreover, define

̂̊υ(ξ) :=
( ̂̊υ1(ξ), . . . , ̂̊υr(ξ)) := υ̂(ξ)Û(ξ)−1, (2.3.5)

̂̊
φ(ξ) :=

( ̂̊
φ1(ξ), . . . ,

̂̊
φr(ξ)

)T

:= Û(ξ)φ̂(ξ), (2.3.6)

we have
̂̊
φ(Mξ) = ̂̊a(ξ)

̂̊
φ(ξ) with

̂̊
φ1(ξ) = 1 + O(|ξ|n) and

̂̊
φ`(ξ) = O(|ξ|n), ξ → 0, ` = 2, . . . , r, (2.3.7)

and å has m sum rules with respect to M with the matching filter υ̊ satisfying

̂̊υ1(ξ) = 1 + O(|ξ|m) and ̂̊υ`(ξ) = O(|ξ|m), ξ → 0, ` = 2, . . . , r. (2.3.8)

(ii) If in addition

υ̂(ξ) =
φ̂(ξ)

T

‖φ̂(ξ)‖2
+ O(|ξ|m), ξ → 0, (2.3.9)

then Û in item (i) can be chosen such that the following “almost orthogonal” struc-
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ture holds:

Û(ξ)
−T
Û(ξ)−1 = Diag

(
‖φ̂(ξ)‖2, ‖û2(ξ)‖2, . . . , ‖ûr(ξ)‖2

)
+ O(|ξ|max(m,n)), ξ → 0,

(2.3.10)

where ûj is the j-th column of Û−1 for j = 2, . . . , r.

Conversely, if there exists Û such that item (i) and (2.3.10) hold, then (2.3.9) must hold.

We make some comments on the importance of the normal form of a matrix-valued

filter in the study of refinable vector functions and multiwavelets/multiframelets. The nor-

mal form (also called the canonical form) of a matrix-valued filter was initially introduced

in [45, Theorem 2.2] for dimension one and was further developed in [32, Proposition 2.4]

for high dimensions to study multivariate vector subdivision schemes and multivariate re-

finable vector functions. In the scalar case (i.e., r = 1), recall that a scalar filter a has m

sum rules with respect to the dilation factor M if and only if (1 + e−iξ + · · ·+ e−i(M−1)ξ)m |

â(ξ). That is, â(ξ) = (1− e−iMξ)mA(ξ)(1− e−iξ)−m = (1 + e−iξ + · · ·+ e−i(M−1)ξ)mA(ξ) for

a unique 2π-periodic trigonometric polynomial A(ξ). Now consider the case r > 1. If a

filter å takes the ideal normal form (2.3.3) in item (i) of Theorem 2.3.2, we can factorize

å as ̂̊a(ξ) = B(Mξ)A(ξ)B(ξ)−1 with

B(ξ) := Û(ξ)−1

(1− e−iξ)m

Ir−1

 , A(ξ) :=

 P1,1(ξ) P1,2(ξ)

(1− e−iξ)m+nP2,1(ξ) P2,2(ξ)

 .
The above factorization of a matrix-valued filter allows us to theoretically study and con-

struct multiwavelets/multiframelets with high vanishing moments from refinable vector

functions, in almost the same way as the scalar case using the popular factorization tech-

nique in the scalar case (i.e., r = 1). On the other hand, as we will see later in the

construction of OEP-based quasi-tight multiframelets, the almost orthogonal structure

introduced in item (ii) of Theorem 2.3.2 is the key to achieve the balancing property of

the associated discrete multiframelet transform.
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To prove Theorems 2.3.1 and 2.3.2, we need a few auxiliary results.

Lemma 2.3.3. Let v̂ = (v̂1, . . . , v̂r) and û = (û1, . . . , ûr) be 1 × r vectors of functions

which are smooth near the origin such that v̂(0) 6= 0 and û(0) 6= 0. If r > 2, then for

any positive integer n ∈ N, there exists a strongly invertible r× r matrix Û of 2π-periodic

trigonometric polynomials such that

û(ξ) = v̂(ξ)Û(ξ) + O(|ξ|n), ξ → 0. (2.3.11)

Proof. We first prove the claim for the special case û(ξ) = (1, 0, . . . , 0)+O(|ξ|n) as ξ → 0.

Since v̂(0) 6= 0, by permuting the entries of v̂, we can assume that v̂1(0) 6= 0. Moreover,

since v̂ is smooth near the origin, we can find a 1×r vector ̂̊v of 2π-periodic trigonometric

polynomials such that v̂(ξ) = ̂̊v(ξ) + O(|ξ|n) as ξ → 0. Hence, without loss of generality,

we assume that v̂ is a vector of 2π-periodic trigonometric polynomials. Since v̂1(0) 6= 0,

there exist 2π-periodic trigonometric polynomials ŵj(ξ), j = 2, . . . , r such that

ŵj(ξ) = −v̂j(ξ)/v̂1(ξ) + O(|ξ|n), ξ → 0, j = 2, . . . , r.

Define

Û1(ξ) :=


1 ŵ2(ξ) · · · ŵr(ξ)

0 1 · · · 0

...
. . .

...

0 0 · · · 1


.

Since det(Û1(ξ)) = 1, Û1 is strongly invertible and

v̂(ξ)Û1(ξ) = (v̂1(ξ), 0, . . . , 0) + O(|ξ|n), ξ → 0. (2.3.12)

Note that v̂1 is a 2π-periodic trigonometric polynomial with v̂1(0) 6= 0. We now adopt an
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idea in the proof of [33, Theorem 2.1] to prove the claim. Choose c ∈ l0(Z) such that

ĉ(ξ) :=
1

v̂1(ξ)
+ O(|ξ|2n), ξ → 0, (2.3.13)

and define d ∈ l0(Z) via

d̂(ξ) =
2n∑
k=1

(−1)k−1

(
2n

k

)
[ĉ(ξ)]k−1

[ĉ(0)]k
. (2.3.14)

Note that

(1− ĉ(ξ)/ĉ(0))2n = 1− ĉ(ξ)d̂(ξ). (2.3.15)

Due to our assumption r > 2, we can define

Û2(ξ) =


ĉ(ξ) −(1− ĉ(ξ)/ĉ(0))n 0

(1− ĉ(ξ)/ĉ(0))n d̂(ξ) 0

0 0 Ir−2

 .

Using (2.3.12) and (2.3.15), we trivially conclude that

v̂(ξ)Û1(ξ)Û2(ξ) = (v̂1(ξ), 0, . . . , 0)Û2(ξ) + O(|ξ|n) = (v̂1(ξ)ĉ(ξ), 0, . . . , 0) + O(|ξ|n)

as ξ → 0. Due to (2.3.13) and (2.3.15), we have v̂1(ξ)ĉ(ξ) = 1 + O(|ξ|n) as ξ → 0 and

det(Û2(ξ)) = 1. Hence, Û2 is strongly invertible and v̂(ξ)Û1(ξ)Û2(ξ) = (1, 0, . . . , 0) +

O(|ξ|n) as ξ → 0. The proof is completed for the special case of û by taking Û(ξ) :=

Û1(ξ)Û2(ξ).

Generally, by what has been proved, there exist strongly invertible matrices Ûv and

Ûu such that

v̂(ξ)Ûv(ξ) = (1, 0, . . . , 0) + O(|ξ|n), û(ξ)Ûu(ξ) = (1, 0, . . . , 0) + O(|ξ|n), ξ → 0.

Define Û(ξ) := Ûv(ξ)Ûu(ξ)
−1. Then Û is strongly invertible and (2.3.11) holds.
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Note that Lemma 2.3.3 often fails for r = 1, since (2.3.11) holds for r = 1 if and only

if û(ξ)/v̂(ξ) = ce−ikξ + O(|ξ|n) as ξ → 0 for some c 6= 0 and k ∈ Z.

The following result shows that the condition in (2.3.1) of Theorem 2.3.1 is also a

necessary condition.

Lemma 2.3.4. Let M > 2 be an integer and a ∈ (l0(Z))r×r be a finitely supported matrix-

valued filter. Let φ be an r × 1 vector of compactly supported distributions satisfying

φ̂(Mξ) = â(ξ)φ̂(ξ) with φ̂(0) 6= 0. Suppose that the filter a has m sum rules with respect to

M satisfying (1.1.20) with a matching filter υ ∈ (l0(Z))1×r such that υ̂(0)φ̂(0) = 1. Then

υ̂(ξ)φ̂(ξ) = 1 + O(|ξ|m), ξ → 0. (2.3.16)

Proof. The claim is essentially known in [32, Proposition 3.2]. Here we provide a simple

proof. Since the filter a satisfies (1.1.20), we have υ̂(Mξ)â(ξ) = υ̂(ξ) + O(|ξ|m) as ξ → 0.

Now we deduce from φ̂(Mξ) = â(ξ)φ̂(ξ) that

υ̂(Mξ)φ̂(Mξ) = υ̂(Mξ)â(ξ)φ̂(ξ) = υ̂(ξ)φ̂(ξ) + O(|ξ|m), ξ → 0. (2.3.17)

Considering the derivatives of the function υ̂(ξ)φ̂(ξ) at ξ = 0, (2.3.17) yields

Mj[υ̂φ̂](j)(0) = [υ̂φ̂](j)(0), ∀j = 0, . . . ,m− 1.

Since we assumed υ̂(0)φ̂(0) = 1 and M > 2, we can straightforwardly deduce that (2.3.16)

must hold.

Lemma 2.3.5. Let m ∈ N be a positive integer. Let v̂ be a 1× r row vector and û be an

r × 1 column vector such that all the entries of v̂ and û are functions which are smooth

near the origin such that

v̂(ξ)û(ξ) = 1 + O(|ξ|m), ξ → 0. (2.3.18)

For any positive integer n, there must exist 1× r vector ̂̊v of functions which are smooth
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near the origin such that

̂̊v(ξ) = v̂(ξ) + O(|ξ|m) and ̂̊v(ξ)û(ξ) = 1 + O(|ξ|n), ξ → 0. (2.3.19)

Proof. If n 6 m, then we can simply take ̂̊v := v̂ and it follows directly from our assump-

tion in (2.3.18) that (2.3.19) trivially holds. So, we assume n > m. We consider two cases

r = 1 and r > 1. If r = 1, then û(0) 6= 0. Taking ̂̊v(ξ) := 1/û(ξ), we see that (2.3.19) is

satisfied.

Suppose that r > 1. By Lemma 2.3.3, there exists a strongly invertible r × r matrix

Û such that ̂̆u(ξ) := Û(ξ)û(ξ) = (1, 0, . . . , 0)T + O(|ξ|n) as ξ → 0. We define ̂̆v(ξ) =

( ̂̆v1(ξ), . . . , ̂̆vr(ξ)) := v̂(ξ)Û(ξ)−1. Then it follows from (2.3.18) that

̂̆v1(ξ) = ̂̆v(ξ)̂̆u(ξ) + O(|ξ|n) = v̂(ξ)Û(ξ)−1Û(ξ)û(ξ) + O(|ξ|n) = v̂(ξ)û(ξ) = 1 + O(|ξ|m),

as ξ → 0. We define ̂̊v(ξ) := (1, ̂̆v2(ξ), . . . , ̂̆vr(ξ))Û(ξ). Then

̂̊v(ξ)û(ξ) = (1, ̂̆v2(ξ), . . . , ̂̆vr(ξ))Û(ξ)û(ξ) = (1, ̂̆v2(ξ), . . . , ̂̆vr(ξ))̂̆u(ξ) = 1 + O(|ξ|n)

as ξ → 0. By ̂̆v1(ξ) = 1 + O(|ξ|m) as ξ → 0 and noting ̂̆v(ξ) = v̂(ξ)Û(ξ)−1, we have

̂̊v(ξ) = ̂̆v(ξ)Û(ξ) + O(|ξ|m) = v̂(ξ) + O(|ξ|m), ξ → 0.

This completes the proof.

We are now ready to prove Theorem 2.3.1, which includes all the results on the normal

form of a matrix-valued filter in [32,33,41,45] as special cases for dimension one. Following

the lines of our proof for Theorem 2.3.1 below, we also point out that Theorem 2.3.1 can

be generalized without much difficulty to multidimensional matrix-valued filters.

Proof of Theorem 2.3.1. Obviously, it suffices to prove the claims for n > m. By

Lemma 2.3.4, we see that (2.3.16) holds. By our assumption in (2.3.1) and the fact that
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φ̂ is smooth at every ξ ∈ R (because φ is a vector of compactly supported distributions),

using Lemma 2.3.5, without loss of generality we can assume that

υ̂(ξ)φ̂(ξ) = 1 + O(|ξ|n) and ̂̊υ(ξ)ûφ(ξ) = 1 + O(|ξ|n), ξ → 0. (2.3.20)

Define ̂̆υ(ξ) := (1, 0, . . . , 0). Since ̂̊υ(0) 6= 0 and υ̂(0) 6= 0, by Lemma 2.3.3, there exist

strongly invertible r×r matrices Û1 and Û2 of 2π-periodic trigonometric polynomials such

that

̂̆υ(ξ) = ̂̊υ(ξ)Û1(ξ) + O(|ξ|n) and υ̂(ξ) = ̂̆υ(ξ)Û2(ξ) + O(|ξ|n), ξ → 0. (2.3.21)

Define

̂̆uφ(ξ) := Û1(ξ)−1ûφ(ξ),
̂̆
φ(ξ) := Û2(ξ)φ̂(ξ), and ̂̆a(ξ) := Û2(Mξ)â(ξ)Û2(ξ)−1.

Then it is trivial to check that
̂̆
φ(Mξ) = ̂̆a(ξ)

̂̆
φ(ξ) and ă has m sum rules with the

matching filter ῠ. Write ŭφ = (ŭ1, . . . , ŭr)
T. Using (2.3.20) and (2.3.21) as well aŝ̆υ(ξ) = (1, 0, . . . , 0), we observe that

̂̆u1(ξ) = ̂̆υ(ξ)̂̆uφ(ξ) = ̂̊υ(ξ)Û1(ξ)Û1(ξ)−1ûφ(ξ)+O(|ξ|n) = ̂̊υ(ξ)ûφ(ξ) = 1+O(|ξ|n), ξ → 0.

Write φ̆ = (φ̆1, . . . , φ̆r)
T. Since ̂̆υ(ξ) = (1, 0, . . . , 0), we deduce from (2.3.20) and (2.3.21)

that

̂̆
φ1(ξ) = ̂̆υ(ξ)

̂̆
φ(ξ) = υ̂(ξ)Û2(ξ)−1Û2(ξ)φ̂(ξ) = υ̂(ξ)φ̂(ξ) = 1 + O(|ξ|n), ξ → 0.

There exist 2π-periodic trigonometric polynomials ŵ` for all ` = 2, . . . , r such that

ŵ`(ξ) = ̂̆u`(ξ)− ̂̆φ`(ξ) + O(|ξ|n), ξ → 0, ` = 2, . . . , r.
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Define

Û3(ξ) :=


1 0 · · · 0

ŵ2(ξ) 1 · · · 0

...
...

. . .
...

ŵr(ξ) 0 · · · 1


.

Since det(Û3(ξ)) = 1, the matrix Û3 is strongly invertible. Moreover, by the definition of

ŵ`, we have

Û3(ξ)
̂̆
φ(ξ) = ̂̆uφ(ξ) + O(|ξ|n), ξ → 0, (2.3.22)

where we also used ̂̆u1(ξ) = 1 + O(|ξ|n) and
̂̆
φ1(ξ) = 1 + O(|ξ|n) as ξ → 0.

Define Û(ξ) := Û1(ξ)Û3(ξ)Û2(ξ). Then Û is strongly invertible and we now prove that

all the claims in Theorem 2.3.1 are satisfied. We first check (2.3.1). Using (2.3.21) and

n > m, we have

υ̂(ξ)Û(ξ)−1 = υ̂(ξ)Û2(ξ)−1Û3(ξ)−1Û1(ξ)−1 = ̂̆υ(ξ)Û3(ξ)−1Û1(ξ)−1 + O(|ξ|n)

= ̂̆υ(ξ)Û1(ξ)−1 + O(|ξ|n) = ̂̊υ(ξ) + O(|ξ|n) = ̂̊υ(ξ) + O(|ξ|m),

as ξ → 0, since the first row of Û3(ξ)−1 is [1, 0, . . . , 0] and ̂̆υ(ξ) = (1, 0, . . . , 0). Similarly,

by
̂̆
φ(ξ) = Û2(ξ)φ̂(ξ) and using (2.3.22), as ξ → 0, we have

Û(ξ)φ̂(ξ) = Û1(ξ)Û3(ξ)Û2(ξ)φ̂(ξ) = Û1(ξ)Û3(ξ)
̂̆
φ(ξ) = Û1(ξ)̂̆uφ(ξ)+O(|ξ|n) = ûφ(ξ)+O(|ξ|n),

where in the last identity we used the definition ̂̆uφ(ξ) = Û1(ξ)−1ûφ(ξ). This proves (2.3.2).

We now check items (i) and (ii). By φ̂(Mξ) = â(ξ)φ̂(ξ), we obviously have

̂̊
φ(Mξ) = Û(Mξ)φ̂(Mξ) = Û(Mξ)â(ξ)φ̂(ξ) = ̂̊a(ξ)

̂̊
φ(ξ).

Now by (2.3.1), we have
̂̊
φ(ξ) = Û(ξ)φ̂(ξ) = ûφ(ξ) + O(|ξ|n) as ξ → 0. This proves item

(i).

Since Û is strongly invertible, the filter å must be finitely supported. Since a satisfies
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(1.1.20) and (2.3.1) holds, for γ = 0, . . . ,M− 1, we have

̂̊υ(Mξ)̂̊a(ξ + 2πγ
M

) = υ̂(Mξ)Û(Mξ)−1Û(Mξ)â(ξ + 2πγ
M

)Û(ξ + 2πγ
M

)−1

=υ̂(Mξ)â(ξ + 2πγ
M

)Û(ξ + 2πγ
M

)−1 = δ(γ)υ̂(ξ)Û(ξ)−1 + O(|ξ|m) = δ(γ)̂̊υ(ξ) + O(|ξ|m), ,

as ξ → 0, which proves item (ii).

Finally, we prove Theorem 2.3.2.

Proof of Theorem 2.3.2. We first prove item (i). By Theorem 2.3.1, there exists a

strongly invertible r × r matrix Û of 2π-periodic trigonometric polynomials such that all

the claims of Theorem 2.3.1 hold with ̂̊υ(ξ) = (1, 0, . . . , 0) and ûφ(ξ) = (1, 0, . . . , 0)T. Now

by item (ii) of Theorem 2.3.1, we conclude that

̂̊a1,1(ξ + 2πγ
M

) = O(|ξ|m), ξ → 0, γ = 1, . . . ,M− 1 (2.3.23)

and ̂̊a1,2(ξ + 2πγ
M

) = O(|ξ|m), ξ → 0, γ = 0, . . . ,M− 1. (2.3.24)

(2.3.23) is equivalent to (1 + e−iξ + · · · + e−i(M−1)ξ)m | ̂̊a1,1(ξ), and (2.3.24) is equivalent

to (1 − e−iMξ)m | ̂̊a1,2(ξ). On the other hand, we have
̂̊
φ(ξ) = Û(ξ)φ̂(ξ) = ûφ(ξ) =

(1, 0, . . . , 0)T + O(|ξ|n) as ξ → 0, which is simply (2.3.7). Observing that
̂̊
φ(Mξ) =̂̊a(ξ)

̂̊
φ(ξ), we conclude from (2.3.7) that ̂̊a1,1(ξ) = 1 + O(|ξ|n) and ̂̊a2,1(ξ) = O(|ξ|n) as

ξ → 0. Thus (2.3.3) and (2.3.4) hold, and this proves item (i).

Next, we prove item (ii). By Theorem 2.3.1, there exists a strongly invertible filter

V ∈ (l0(Z))r×r such that

υ̂(ξ)V̂ (ξ) = ̂̊υ(ξ) = (1, 0, . . . , 0) + O(|ξ|m), V̂ (ξ)−1φ̂(ξ) =
̂̊
φ(ξ) = (1, 0, . . . , 0)T + O(|ξ|ñ),
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as ξ → 0, where ñ = max(m,n). It follows from (2.3.9) and the above identities that

(1, 0, . . . , 0)V̂ −1(ξ) =
φ̂(ξ)

T

‖φ̂(ξ)‖2
+O(|ξ|m), (1, 0, . . . , 0)V̂ (ξ)

T

= φ̂(ξ)
T

+O(|ξ|ñ), (2.3.25)

as ξ → 0. For j = 1, . . . , r, denote V̂j the j-th column of V̂ . It is easy to see from (2.3.25)

that V̂1(ξ) = φ̂(ξ) + O(|ξ|ñ) as ξ → 0. Set û1(ξ) := V̂1(ξ) and choose g1 ∈ l0(Z) such that

ĝ1(ξ) = 1

‖φ̂(ξ)‖2
+ O(|ξ|ñ) as ξ → 0. For j = 2, . . . , r, define uj ∈ (l0(Z))r×1 and choose

gj ∈ l0(Z) recursively via

ûj(ξ) = V̂j(ξ)−
j−1∑
l=1

V̂j(ξ)
Tûl(ξ)ĝl(ξ)ûl(ξ), (2.3.26)

ĝj(ξ) =
1

‖ûj(ξ)‖2
+ O(|ξ|ñ), ξ → 0. (2.3.27)

Define

Û(ξ)−1 := [û1(ξ), û2(ξ), . . . , ûr(ξ)] = [φ̂(ξ) + O(|ξ|ñ), û2(ξ), . . . , ûr(ξ)], ξ → 0. (2.3.28)

By our construction, it is not hard to verify that all claims of item (i) hold. Moreover, we

have det(Û−1) = det(V̂ ), which implies that U is strongly invertible.

For j = 1, . . . , r, we have

ûj(ξ) =

(
V̂j(ξ)−

j−1∑
l=1

V̂j(ξ)
Tûl(ξ)

ûl(ξ)

‖ûl(ξ)‖2

)
+ O(|ξ|ñ), ξ → 0.

This means whenever j 6= k, we have

ûj(ξ)
T
ûk(ξ) = O(|ξ|ñ), ξ → 0. (2.3.29)

Note that the first column of Û−1 is V̂1. It follows that

Û(ξ)
−T
Û(ξ)−1 = Diag

(
‖φ̂(ξ)‖2, ‖û2(ξ)‖2, . . . , ‖ûr(ξ)‖2

)
+ O(|ξ|ñ), ξ → 0.
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Hence (2.3.10) holds since ñ = max(m,n). Hence item (ii) is proved.

Conversely, suppose that item (i) and (2.3.10) hold. As Û is strongly invertible, we

see from (2.3.10) that ‖φ̂(0)‖2 6= 0. Now use item (i), (2.3.10) and max(m,n) > m, we

have

υ̂(ξ) = (1, 0, . . . , 0)Û(ξ) + O(|ξ|m) =
1

‖φ̂(ξ)‖2
(1, 0, . . . , 0)Û(ξ)

−T
Û(ξ)−1Û(ξ) + O(|ξ|m)

=
1

‖φ̂(ξ)‖2
(1, 0, . . . , 0)Û(ξ)

−T
+ O(|ξ|m) =

φ̂(ξ)
T

‖φ̂(ξ)‖2
+ O(|ξ|m), ξ → 0.

This proves (2.3.9). This completes the proof of Theorem 2.3.2.

2.4 The Main Theorem

In this section, we establish our main result on one-dimensional quasi-tight multiframelets

with high balancing orders. The main theorem is stated as the following.

Theorem 2.4.1. Let M > 2 be an integer and φ ∈ (L2(R))r be a compactly supported

M-refinable vector function with a matrix-valued refinement filter/mask a ∈ (l0(Z))r×r

satisfying φ̂(Mξ) = â(ξ)φ̂(ξ). Suppose that the filter a has m sum rules with respect

to the dilation factor M satisfying (1.1.20) with a matching filter υ ∈ (l0(Z))1×r such

that υ̂(0)φ̂(0) = 1. If the multiplicity r > 2, then there exist filters θ ∈ (l0(Z))r×r,

b ∈ (l0(Z))s×r and ε1, . . . , εs ∈ {±1} such that

(1) {φ̊;ψ}(ε1,...,εs) is a compactly supported quasi-tight M-framelet in L2(R), where
̂̊
φ(ξ) :=

θ̂(ξ)φ̂(ξ) and ψ̂(ξ) := b̂(ξ/M)φ̂(ξ/M). Furthermore, ψ has m vanishing moments.

(2) θ is strongly invertible. Moreover, the filter bank {̊a; b̊}(ε1,...,εs) is a finitely supported

quasi-tight M-framelet filter bank, i.e.,

̂̊a(ξ)
T̂̊a(ξ) +

̂̊
b(ξ)

T

Diag(ε1, . . . , εs )̂̊b(ξ) = Ir, (2.4.1)

̂̊a(ξ)
T̂̊a(ξ + 2πγ

M
) +
̂̊
b(ξ)

T

Diag(ε1, . . . , εs )̂̊b(ξ + 2πγ
M

) = 0, (2.4.2)
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for all γ = 1, . . . ,M−1 and for all ξ ∈ R, where the finitely supported matrix-valued

filters å ∈ (l0(Z))r×r and b̊ ∈ (l0(Z))s×r are defined by

̂̊a(ξ) := θ̂(Mξ)â(ξ)θ̂(ξ)−1 and
̂̊
b(ξ) := b̂(ξ)θ̂(ξ)−1. (2.4.3)

(3) The filter b̊ has m balanced vanishing moments.

(4) The associated discrete multiframelet transform employing the quasi-tight M-framelet

filter bank {̊a; b̊}(ε1,...,εs) is compact and has m balancing order with respect to M, i.e.,

bo({̊a; b̊},M) = m.

Moreover, the compactly supported vector functions φ̊ and ψ satisfy

̂̊
φ(Mξ) = ̂̊a(ξ)

̂̊
φ(ξ) and ψ̂(Mξ) =

̂̊
b(ξ)

̂̊
φ(ξ). (2.4.4)

Theorem 2.4.1 demonstrates that we can construct quasi-tight multiframelets from

any compactly supported refinable vector functions. This is not like existing works in

the literature that study tight framelets, which often require that the refinable vector

function φ should have stable integer shifts. This condition guarantees the existence of

Θ ∈ (l0(Z))r×r (which is often not strongly invertible at all) such that Ma,Θ is positive

semi-definite, where Ma,Θ is defined in (1.3.3) (see [59, Proposition 3.4 and Theorem

4.3]). The positive semi-definiteness ofMa,Θ is a necessary condition for the existence of

tight framelets.

On the other hand, Theorem 2.4.1 also demonstrates great advantages of OEP for mul-

tiframelets. In the scalar case (r = 1), OEP can increase the order of vanishing moments

on framelet generators, but quite often it is inevitable to sacrifice the compactness of the

associated discrete framelet transform. For example, [33, Theorem 1.3] proves that for

any scalar dual framelet constructed through OEP from any pair of scalar spline refinable

functions, if it has a compact framelet transform, then it can have at most one vanishing

moment. Besides, most of the multiframelets constructed in existing literatures lack the
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balancing property, which reduces sparsity when implementing a multi-level discrete mul-

tiframelet transform. Theorem 2.4.1 guarantees the existence of quasi-tight multiframelets

with all desired properties: (i) high order vanishing moments on framelet generators; (ii)

a compact and balanced associated discrete multiframelet transform.

To prove Theorem 2.4.1 and for the convenience of later presentation, we need the

following notations:

(1) For γ ∈ Z and u ∈ (l(Z))s×r, the γ-coset sequence of u with respect to the dilation

factor M is the sequence u[γ;M] ∈ (l(Z))s×r given by

u[γ;M](k) = u(γ + Mk), k ∈ Z.

It is straightforward to check that

û(ξ) =
M−1∑
γ=0

û[γ;M](Mξ)e−iγξ, ∀u ∈ (l0(Z))s×r, ξ ∈ R. (2.4.5)

Thus by letting Fr;M(ξ) to be the (Mr)× (Mr) matrix defined via

Fr;M(ξ) :=
(
e−i(l−1)(ξ+2π k−1

M
)Ir

)
16l,k6M

, (2.4.6)

we have [
û(ξ), û(ξ + 2π

M
), . . . , û(ξ + 2π(M−1)

M
)
]

=
[
û[0;M](Mξ), û[1;M](Mξ), . . . , ̂u[M−1;M](Mξ)

]
Fr;M(ξ).

(2.4.7)

Observe that Fr;M(ξ)
T
Fr;M(ξ) = MIMr, (2.4.7) is equivalent to

[
û(ξ), û(ξ + 2π

M
), . . . , û(ξ + 2π(M−1)

M
)
]
Fr;M(ξ)

T

=M
[
û[0;M](Mξ), û[1;M](Mξ), . . . , ̂u[M−1;M](Mξ)

]
.

(2.4.8)

(2) For j ∈ {1, . . . ,M} and u ∈ (l0(Z))r×r, let Du;M(ξ) be the (Mr)×(Mr) block diagonal
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matrix defined via

Du;M(ξ) :=


û(ξ)

û(ξ + 2π
M

)

. . .

û(ξ + 2π(M−1)
M

)


, (2.4.9)

and let Eu;M(ξ) be the (Mr)× (Mr) block matrix, whose (l, k)-th r × r block is

(Eu;M(ξ))l,k := û[k−l;M](ξ), (2.4.10)

for 1 6 l, k 6 M. Then direct calculation yields

Fr;M(ξ)Du;M(ξ)Fr;M(ξ)
T

= MEu;M(Mξ). (2.4.11)

The following theorem plays a key role in the proof of Theorem 3.3.1.

Theorem 2.4.2. Let M > 2 and r > 2 be positive integers and let a ∈ (l0(Z))r×r.

Suppose that a has m sum rules with respect to M with a matching filter υ ∈ (l0(Z))1×r

satisfying υ̂(ξ) = (1, 0, . . . , 0) + O(|ξ|m) as ξ → 0. Further suppose that φ is an r × 1

vector of compactly supported functions in L2(R) satisfying φ̂(Mξ) = â(ξ)φ̂(ξ) and φ̂(ξ) =

(1, 0, . . . , 0)T + O(|ξ|n) as ξ → 0 for some n > 2m. Then for any strongly invertible

U ∈ (l0(Z))r×r satisfying (2.3.10), there exist b ∈ (l0(Z))s×r and ε1, . . . εs ∈ {±1} for

some s ∈ N such that

(i) {a; b}U;(ε1,...,εs) is an OEP-based quasi-tight M-framelet filter bank, i.e.,

â(ξ)
T
Û(Mξ)â(ξ + 2π γ

M
) + b̂(ξ)

T

Diag(ε1, . . . , εs)̂b(ξ + 2π γ
M

) = δ(ω)Û(ξ), (2.4.12)

for all γ = 0, . . . ,M−1, where δ is defined as in (1.1.15) and Û(ξ) = Û(ξ)
−T
Û(ξ)−1

for all ξ ∈ R.
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(ii) {η;ψ}(ε1,...,εs) is a compactly supported quasi-tight M-multiframelet in L2(R) such

that all the entries of ψ have m vanishing moments, where

η̂(ξ) = Û(ξ)−1φ̂(ξ), ψ̂(ξ) = b̂(ξ/M)φ̂(ξ/M), ξ ∈ R. (2.4.13)

Proof. By our assumptions on υ̂ and φ̂, we see that â must take the form in (2.3.3), i.e.,

â(ξ) =

â1,1(ξ) â1,2(ξ)

â2,1(ξ) P2,2(ξ)

 ,
with

â1,1(ξ) = (1 + e−iξ + · · ·+ e−i(M−1)ξ)mP1,1(ξ) = 1 + O(|ξ|n), ξ → 0,

â1,2(ξ) = (1− e−iMξ)mP1,2(ξ), â2,1(ξ) = (1− e−iξ)nP2,1(ξ),

where P1,1, P1,2, P2,1 and P2,2 are some 1× 1, 1× (r− 1), (r− 1)× 1 and (r− 1)× (r− 1)

matrices of 2π-periodic trigonometric polynomials. Define

â1(ξ) := Û(ξ)− â(ξ)
T
Û(Mξ)â(ξ),

âj(ξ) := −â(ξ)
T
Û(Mξ)â(ξ + 2π(j−1)

M
), j = 2, . . . ,M.

For j = 1, using (2.3.10) and the fact that ‖φ̂(ξ)‖2 = 1 + O(|ξ|n) as ξ → 0, we have

p1(ξ) p2(ξ)

p3(ξ) p4(ξ)

 := â1(ξ) =

1

Ĉ(ξ)

− â(ξ)
T

1

Ĉ(Mξ)

 â(ξ) + O(|ξ|n), ξ → 0,

where Ĉ(ξ) = Diag (‖û2(ξ)‖2, . . . , ‖ûr(ξ)‖2) and ûj denote the j-th column of Û−1 for all

j = 1, . . . , r. Then
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• p1 is a 2π-periodic trigonometric polynomial satisfying

p1(ξ) = 1−

| â1,1(ξ)︸ ︷︷ ︸
=1+O(|ξ|n)

|2 + â2,1(ξ)
T︸ ︷︷ ︸

=O(|ξ|n)

Ĉ(Mξ)â2,1(ξ)

+ O(|ξ|n) = O(|ξ|n), ξ → 0.

• p2 is a 1× (r − 1) vector of 2π-periodic trigonometric polynomials satisfying

p2(ξ) = −â1,1(ξ) â1,2(ξ)︸ ︷︷ ︸
=O(|ξ|m)

− â2,1(ξ)
T︸ ︷︷ ︸

=O(|ξ|n)

Ĉ(Mξ)P2,2(ξ) + O(|ξ|n) = O(|ξ|m), ξ → 0.

• p3 and p4 are (r− 1)× 1 and (r− 1)× (r− 1) matrices of 2π-periodic trigonometric

polynomials satisfying p3(ξ) = p2(ξ)
T

= O(|ξ|m), ξ → 0.

Since n > 2m, we conclude that â1 admits the following factorization:

â1(ξ) =

(1− e−iξ)m

Ir−1


T

Ĉ1(ξ)

(1− e−iξ)m

Ir−1

 , (2.4.14)

for some C1 ∈ (l0(Z))r×r.

For j = 2, . . . ,M, we have

pj,1(ξ) pj,2(ξ)

pj,3(ξ) pj,4(ξ)

 := âj(ξ) = −â(ξ)
T

1

Ĉ(Mξ)

 â(ξ + 2π (j−1)
M

) + O(|Mξ|n), ξ → 0.

By n > 2m, we observe that

• pj,1 is a 2π-periodic trigonometric polynomial satisfying

pj,1(ξ)

=−

 â1,1(ξ)︸ ︷︷ ︸
=O(|ξ+2π(j−1)/M|m)

â1,1(ξ + 2π (j−1)
M

)︸ ︷︷ ︸
=O(|ξ|m)

+ â2,1(ξ)
T︸ ︷︷ ︸

=O(|ξ|n)

Ĉ(Mξ) â2,1(ξ + 2π (j−1)
M

)︸ ︷︷ ︸
=O(|ξ+2π(j−1)/M|n)

+ O(|Mξ|n)

=(1− eiξ)m(1− e−i(ξ+2π
(j−1)

M
))mF̂j(ξ),
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where F̂j(ξ) denotes some 2π-periodic trigonometric polynomial.

• pj,2 is a 1× (r − 1) vector of 2π-periodic trigonometric polynomials satisfying

pj,2(ξ) = −â1,1(ξ) â1,2(ξ + 2π (j−1)
M

)︸ ︷︷ ︸
=O(|ξ|m)

− â2,1(ξ)
T︸ ︷︷ ︸

=O(|ξ|n)

Ĉ(Mξ)P2,2(ξ + 2π (j−1)
M

) + O(|Mξ|n)

= O(|ξ|m), ξ → 0.

• pj,3 is a (r − 1)× 1 vector of 2π-periodic trigonometric polynomials satisfying

pj,3(ξ) = − â1,2(ξ)︸ ︷︷ ︸
=O(|ξ+2π(j−1)/M|m)

â1,1(ξ + 2π (j−1)
M

)− P2,2(ξ)
T
Ĉ(Mξ) â2,1(ξ + 2π (j−1)

M
)︸ ︷︷ ︸

=O(|ξ+2π(j−1)/M|m)

+O(|Mξ|n)

= O(|ξ + 2π (j−1)
M
|m), ξ → 0.

• pj,4 is some (r − 1)× (r − 1) matrix of 2π-periodic trigonometric polynomials.

Thus âj admits the following factorization:

âj(ξ) =

(1− e−iξ)m

Ir−1


T

Ĉj(ξ)

(1− e−i(ξ+2π
(j−1)
M

))m

Ir−1

 , (2.4.15)

for some Cj ∈ (l0(Z))r×r for all j = 2, . . . ,M. Hence by letting

∆̂m(ξ) :=

(1− e−iξ)m 0

0 Ir−1

 , (2.4.16)
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and

Ma,U(ξ) :=


Û(ξ)

. . .

Û(ξ + 2π(M−1)
M

)



−


â(ξ)

T

...

â(ξ + 2π(M−1)
M

)
T

 Û(Mξ)
[
â(ξ), . . . , â(ξ + 2π(M−1)

M
)
]
,

(2.4.17)

it follows from (2.4.14) and (2.4.15) that

Ma,U(ξ) = D∆m;M(ξ)
T
M(ξ)D∆m;M(ξ), (2.4.18)

whereM is some (Mr)×(Mr) Hermitian matrix of 2π-periodic trigonometric polynomials,

and D∆m;M is defined via (2.4.9) with u = ∆m.

It follows from (2.4.11) and (2.4.18) that

M−2 Fr;M(ξ)Ma,U(ξ)Fr;M(ξ)
T

=M−4
(
Fr;M(ξ)D∆m;M(ξ)

T
Fr;M(ξ)

T
)(

Fr;M(ξ)M(ξ)Fr;M(ξ)
T
)(

Fr;M(ξ)D∆m;M(ξ)Fr;M(ξ)
T
)

=E∆m;M(Mξ)
T
M̃(ξ)E∆m;M(Mξ),

where M̃(ξ) = M−2 Fr;M(ξ)M(ξ)Fr;M(ξ)
T

and E∆m;M is defined as in (2.4.10) with u = ∆m.

On the other hand, using(2.4.8) and (2.4.11), we see that

M−2 Fr;M(ξ)Ma,U(ξ)Fr;M(ξ)
T

=M−1EU;M(Mξ)−


â[0;M](Mξ)

T

...

̂a[M−1;M](Mξ)
T

 Û(Mξ)
[
â[0;M](Mξ), . . . , ̂a[M−1;M](Mξ)

]
.

(2.4.19)

Hence M̃(ξ) only depends on Mξ, say M̃(ξ) = M̊(Mξ), where M̊ is some (Mr) × (Mr)
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Hermitian matrix of 2π-periodic trigonometric polynomials. We now claim that M̊ can

be factorized in the following way:

M̊(ξ) = Ũ(ξ)
T

Diag(Is1 ,−Is2)Ũ(ξ), (2.4.20)

for some (s1 + s2)× (Mr) matrix of 2π-periodic trigonometric polynomials Ũ(ξ). In fact,

there always exist (Mr)× (Mr) matrices of 2π-periodic trigonometric polynomials M̊1(ξ)

and M̊2(ξ) such that

M̊(ξ) = M̊1(ξ)
T

M̊1(ξ)− M̊2(ξ)
T

M̊2(ξ).

For example, take M̊1(ξ) = IMr+ 1
4
M̊(ξ) and M̊2(ξ) = IMr− 1

4
M̊(ξ). Then simply choose

Ũ = [M̊T
1 ,M̊T

2 ]T, we see that (2.4.20) holds with s1 = s2 = Mr. Once we have factorized

M̊ as in (2.4.20), define b ∈ (l0(Z))(s1+s2)×r and ε1, . . . , εs1+s2 ∈ {±1} via

b̂(ξ) := Ũ(Mξ)Fr;M(ξ)

 Ir

000(M−1)r×r

 ∆̂m(ξ), (2.4.21)

ε1 = · · · = εs1 = 1, εs1+1 = · · · = εs1+s2 = −1, (2.4.22)

where 000q×t denotes the q × t zero matrix. Using (2.4.21) and (2.4.22), we have


b̂(ξ)

T

...

b̂(ξ + 2πM−1
M

)
T

Diag(ε1, . . . , εs1+s2)
[
b̂(ξ) . . . b̂(ξ + 2πM−1

M
)
]

=D∆m;M(ξ)
T
Fr;M(ξ)

T
Ũ(Mξ)

T

Diag(Is1 ,−Is2)Ũ(Mξ)Fr;M(ξ)D∆m;M(ξ)

=D∆m;M(ξ)
T
Fr;M(ξ)

T
M̊(Mξ)Fr;M(ξ)D∆m;M(ξ)

=Fr;M(ξ)
T
E∆m;M(Mξ)

T
M̊(Mξ)E∆m;M(Mξ)Fr;M(ξ)

=Ma,U(ξ).

(2.4.23)

Note that (2.4.23) is equivalent to say that (2.4.12) holds for all γ = 0, . . . ,M − 1. This
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proves item (i).

Define η and ψ as in (2.4.13). By φ̂(ξ) = (1, 0, . . . , 0)T +O(|ξ|n) as ξ → 0 and n > 2m,

we have

ψ̂(Mξ) = b̂(ξ)φ̂(ξ) = Ũ(Mξ)Fr;M(ξ)

 Ir

000(M−1)r×r

 ∆̂m(ξ)φ̂(ξ)︸ ︷︷ ︸
=O(|ξ|m)

= O(|ξ|m), ξ → 0,

which means that all the entries of ψ havem vanishing moments. Note that φ̂(0)
T

Û(0)φ̂(0) =

1. Now by Theorem 1.1.1, {η;ψ}(ε1,...,εs) is a quasi-tight M-framelet in L2(R). This proves

item (ii).

Now we are ready to prove Theorem 2.4.1.

Proof of Theorem 2.4.1. Let n > 2m be a positive integer. By Theorem 2.3.1, there

exists a strongly invertible filter θ ∈ (l0(Z))r×r such that

̂̊υ(ξ) := υ̂(ξ)θ̂(ξ)−1 = r−
1
2 Υ̂(ξ)+O(|ξ|m),

̂̊
φ(ξ) := θ̂(ξ)φ̂(ξ) = r−

1
2 Υ̂(ξ)

T

+O(|ξ|n), ξ → 0,

where Υ̂(ξ) := (1, eiξ/r, . . . , ei(r−1)ξ/r) as in (2.2.4)). Now by Theorem 2.3.2, there exists a

strongly invertible U ∈ (l0(Z))r×r such that

Û(ξ)
−T
Û(ξ)−1 = Diag

(
‖̂̊φ(ξ)‖2, ‖û2‖2, . . . , ‖ûr‖2

)
+ O(|ξ|n)

= Diag
(
1, ‖û2‖2, . . . , ‖ûr‖2

)
+ O(|ξ|n), ξ → 0,

where ûj denotes the j-th column of Û−1, and

̂̆v(ξ) := ̂̊υ(ξ)Û(ξ)−1 = (1, 0, . . . , 0)+O(|ξ|m),
̂̆
φ(ξ) := Û(ξ)

̂̊
φ(ξ) = (1, 0, . . . , 0)T+O(|ξ|n),

as ξ → 0. Define å, ă ∈ (l0(Z))r×r via

̂̊a(ξ) = θ̂(Mξ)â(ξ)θ̂(ξ)−1, ̂̆a(ξ) = Û(Mξ)̂̊a(ξ)Û(ξ)−1.
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It is trivial that ă has m sum rules with the matching filter v̆ and
̂̆
φ(Mξ) = ̂̆a(ξ)

̂̆
φ(ξ)

holds for all ξ ∈ R. Thus by item (i) of Theorem 2.4.2, there exist b̆ ∈ (l0(Z))s×r and

ε1, . . . , εs ∈ {±1} such that (2.4.12) holds for all γ = 0, . . . ,M − 1 with a and b being

replaced by ă and b̆ respectively. Hence by defining b, b̊ ∈ (l0(Z))s×r via

b̂(ξ) =
̂̆
b(ξ)Û(ξ)θ̂(ξ),

̂̊
b(ξ) = b̂(ξ)θ̂(ξ)−1,

we see that item (2) follows right away.

Next, define

ψ̂(ξ) := b̂(ξ/M)φ̂(ξ/M) =
̂̊
b(ξ/M)

̂̊
φ(ξ/M) =

̂̆
b(ξ/M)

̂̆
φ(ξ/M),

for all ξ ∈ R. By item (ii) of Theorem 2.4.2, {φ̊;ψ}(ε1,...,εs) is a quasi-tight M-framelet

in L2(R) with ψ̂(ξ) = O(|ξ|m) as ξ → 0. This proves item (1). Moreover, (2.4.4) holds

trivially.

Finally, we have

Υ̂(ξ )̂̊b(ξ)
T

= Υ̂(ξ)θ̂(ξ)
−T
b̂(ξ)

T

= r
1
2 φ̂(ξ)

T

b̂(ξ)
T

+O(|ξ|n) = r
1
2 ψ̂(Mξ)

T

+O(|ξ|n) = O(|ξ|m),

and

Υ̂(ξ)̂̊a(ξ)
T

= Υ̂(ξ)θ̂(ξ)
−T
â(ξ)

T
θ̂(Mξ)

T

= r
1
2 φ̂(ξ)

T

â(ξ)
T
θ̂(Mξ)

T

+ O(|ξ|n)

= r
1
2 φ̂(Mξ)

T

θ̂(Mξ)
T

+ O(|ξ|n) = Υ̂(Mξ) + O(|ξ|m),

as ξ → 0. Hence by Theorem 2.2.1, items (3) and (4) must hold. The proof is now

complete.
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2.5 Guidelines for Constructing Balanced OEP-based

Quasi-tight Multiframelets

To construct a quasi-tight framelet in Theorem 2.4.1 from a matrix-valued filter having

multiplicity greater than one, a desired filter θ in Theorem 2.4.1 plays a key role and is

guaranteed to exist by Theorem 2.4.1. In this section, we study properties of θ which allow

us to construct quasi-tight framelet filter banks and quasi-tight framelets in Theorem 2.4.1

having all the desired properties. Our theoretical investigation enable us to develop an

algorithm for construction.

For m ∈ N, we define a sequence ∇mδδδ ∈ l0(Z) through ∇̂mδδδ(ξ) := (1− e−iξ)m. Before

proceeding further, we need the following technical lemma, which provides an equivalent

way of interpreting the balanced vanishing moments condition.

Lemma 2.5.1. Let r > 2 and s ∈ N be positive integers. For any m ∈ N, a filter

b ∈ (l0(Z))s×r has m balanced vanishing moments (i.e., (2.2.5) holds) if and only if

b̂(ξ) =
[
q̂[0;r](ξ), q̂[1;r](ξ), . . . , q̂[r−1;r](ξ)

]
E∇mδδδ;r(ξ), ξ ∈ R, (2.5.1)

for some q ∈ (l0(Z))s×1, where E∇mδδδ;r is defined in (2.4.10) with M = r and u = ∇mδδδ.

Proof. Suppose that b has m balanced vanishing moments, i.e., (2.2.5) holds. We deduce

that

b̂1(rξ) + e−iξ b̂2(rξ) + · · ·+ e−iξ(r−1)b̂r(rξ) = ∇̂mδδδ(ξ)q̂(ξ), (2.5.2)

for some q ∈ (l0(Z))s×1, where b̂j denotes the j-th column of b̂. Since û(ξ) =
∑M−1

γ=0 û
[γ;M](Mξ)e−iγξ

in (2.4.5), we have

r∑
l=1

e−i(l−1)ξ b̂l(rξ) =

(
r−1∑
j=0

e−ijξ∇̂mδδδ[j;r](rξ)

)(
r−1∑
k=0

e−ikξ q̂[k;r](rξ)

)

=
r−1∑
j=0

e−ijξ
j∑

k=0

̂∇mδδδ[j−k;r](rξ)q̂[k;r](rξ) +
r−2∑
j=0

e−ijξe−irξ
r−1∑
k=j+1

̂∇mδδδ[j+r−k;r](rξ)q̂[k;r](rξ).
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Hence

b̂r(ξ) =
r−1∑
k=0

̂∇mδδδ[r−1−k;r](ξ)q̂[k;r](ξ), (2.5.3)

and

b̂j+1(ξ) =

j∑
k=0

̂∇mδδδ[j−k;r](ξ)q̂[k;r](ξ) + e−iξ
r−1∑
k=j+1

̂∇mδδδ[j+r−k;r](ξ)q̂[k;r](ξ)

=
r−1∑
k=0

̂∇mδδδ[j−k;r](ξ)q̂[k;r](ξ), j = 0, . . . , r − 2,

(2.5.4)

for all ξ ∈ R, where the last line of (2.5.4) follows from the fact that

e−iξû[r−l;r](ξ) = û[−l;r](ξ), ∀u ∈ (l0(Z))t×r, l ∈ Z. (2.5.5)

Thus (2.5.1) follows right away from (2.5.3) and (2.5.4).

Conversely, suppose that (2.5.1) holds. Then (2.5.3) and (2.5.4) must hold. Thus we

deduce that (2.5.2) hold. Now (2.2.5) follows trivially.

The following result provides a characterization for all the desired filters θ in Theo-

rem 2.4.1.

Theorem 2.5.2. Let M > 2 and r > 2 be integers and a ∈ (l0(Z))r×r be a finitely sup-

ported matrix-valued filter. Let φ ∈ (L2(R))r be a compactly supported vector function sat-

isfying φ̂(Mξ) = â(ξ)φ̂(ξ). Assume that a has m sum rules with respect to M with a match-

ing filter υ ∈ (l0(Z))1×r such that υ̂(0)φ̂(0) = 1. Define Υ̂(ξ) := (1, eiξ/r, . . . , ei(r−1)ξ/r)

as in (2.2.4). Let θ ∈ (l0(Z))r×r be a strongly invertible filter. If the filter θ satisfies the

following two conditions:

(i) There exist 2π-periodic trigonometric polynomials ĉ and d̂ with |ĉ(0)| = |d̂(0)| =

‖Υ̂(0)‖−1 = r−
1
2 such that

̂̊υ(ξ) := υ̂(ξ)θ̂(ξ)−1 = ĉ(ξ)Υ̂(ξ) + O(|ξ|m), ξ → 0, (2.5.6)

̂̊
φ(ξ) := θ̂(ξ)φ̂(ξ) = d̂(ξ)Υ̂(ξ)

T

+ O(|ξ|m), ξ → 0; (2.5.7)
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(ii) All the entries of the following two matrices are 2π-periodic trigonometric polyno-

mials:

M0(ξ) := E∇mδδδ;r(ξ)
−T
(
Ir − ̂̊a(ξ)

T̂̊a(ξ)

)
E∇mδδδ;r(ξ)

−1, (2.5.8)

Mj(ξ) := −E∇mδδδ;r(ξ)
−T̂̊a(ξ)

T̂̊a(ξ+ 2πj
M

)E∇mδδδ;r(ξ+ 2πj
M

)−1, j = 1, . . . ,M−1, (2.5.9)

where ̂̊a(ξ) = θ̂(Mξ)â(ξ)θ̂(ξ)−1 and E∇mδδδ;r is defined in (2.4.10) with M = r and

u = ∇mδδδ,

then there must exist b ∈ (l0(Z))s×r and ε1, . . . , εs ∈ {±1} such that all the items (1)–(4)

of Theorem 2.4.1 are satisfied. Conversely, if all the items (1)–(4) of Theorem 2.4.1 are

satisfied for some b ∈ (l0(Z))s×r and ε1, . . . , εs ∈ {±1}, then the filter θ must satisfy item

(ii) above and if additionally

1 is a simple eigenvalue of â(0)

and det(MjIr − â(0)) 6= 0 for all j ∈ Z \ {0} with |j| 6 M− 1,
(2.5.10)

and

̂̊c(ξ)Υ̂(ξ)̂̊a(ξ)
T

= Υ̂(Mξ) + O(|ξ|m), ξ → 0, for some c̊ ∈ l0(Z) with ̂̊c(0) = 1, (2.5.11)

then θ must also satisfy item (i) above.

Proof. For simplicity of presentation, we define Êm;r(ξ) := E∇mδδδ;r(ξ). Then Em;r is a

finitely supported matrix-valued filter. First observe from (2.4.11) and the fact Fr;r(ξ)Fr;r
T

=

rIr2 that

det(Êm;r(ξ)) = det(E∇mδδδ;r(ξ)) = det(D∇mδδδ;r(ξ/r)) =
r−1∏
j=0

(1−e−i(ξ+2πj)/r)m = (1−e−iξ)m, ξ ∈ R.

Therefore, Êm;r(ξ) is invertible for all ξ ∈ R\2πZ, and thus all the matricesM0,M1, . . . ,MM−1

in item (ii) are well defined for all ξ ∈ R \ 2πZ.
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Suppose that items (i) and (ii) hold. Define

Må(ξ) := IMr −


̂̊a(ξ)

T

...̂̊a(ξ + 2π(M−1)
M

)
T


[̂̊a(ξ), . . . , ̂̊a(ξ + 2π(M−1)

M
)
]
.

By item (ii), Må admits the following factorization:

Må(ξ) = DEm;r;M(ξ)
T
M(ξ)DEm;r;M(ξ), ξ ∈ R, (2.5.12)

where M(ξ) is some (Mr) × (Mr) matrix of 2π-periodic trigonometric polynomials. Ap-

plying the same argument as in the proof of Theorem 2.4.2, we have

1

M2
Fr;M(ξ)Må(ξ)Fr;M(ξ)

T
= EEm;r;M(Mξ)

T
M̃(Mξ)EEm;r;M(Mξ)T,

where M̃(ξ) is some Mr×Mr Hermitian matrix of 2π-periodic trigonometric polynomials.

Thus there exists an s×r matrix Ũ(ξ) of 2π-periodic trigonometric polynomials such that

M̃(ξ) = Ũ(ξ)
T

Diag(Is1 ,−Is2)Ũ(ξ), ξ ∈ R,

for some s1, s2 ∈ N0 satisfying s1 + s2 = s. Define b̊, b ∈ (l0(Z))s×r and ε1, . . . , εs ∈ {±1}

via ̂̊
b(ξ) := Ũ(Mξ)Fr;M(ξ)

 Ir

000r(M−1)×r

 Êm;r(ξ), b̂(ξ) :=
̂̊
b(ξ)θ̂(ξ), (2.5.13)

ε1 = · · · = εs1 = 1, εs1+1 = · · · = εs = −1. (2.5.14)

Using (2.5.12), (2.5.13) and (2.5.14), it is straightforward to check that item (2) of The-

orem 2.4.1 holds. Next, by letting q ∈ (l0(Z))s×1 be such that

[
q̂[0;r](ξ), q̂[1;r](ξ), . . . , q̂[r−1;r](ξ)

]
= Ũ(Mξ)Fr;M(ξ)

 Ir

000r(M−1)×r

 ,
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we see that items (3) and (4) of Theorem 2.4.1 follow immediately from Lemma 2.5.1.

On the other hand, since item (i) holds, it follows that ‖̂̊φ(0)‖2 = 1 and thus Theo-

rem 1.1.1 yields that {φ̊;ψ}(ε1,...,εs) is a quasi-tight M-framelet in L2(R), where ψ̂(ξ) =

b̂(ξ/M)φ̂(ξ/M). Moreover, (2.5.7) and item (3) of Theorem 2.4.1 guarantee that ψ has

m vanishing moments. This proves item (1) of Theorem 2.4.1. Hence all the claims of

Theorem 2.4.1 hold.

Conversely, suppose that θ is a strongly invertible filter and all the claims in Theo-

rem 2.4.1 holds. By item (3) of Theorem 2.4.1, (2.2.5) holds. Thus by Lemma 2.5.1, there

exists q ∈ (l0(Z))s×1 such that

̂̊
b(ξ) =

[
q̂[0;r](ξ), q̂[1;r](ξ), . . . , q̂[r−1;r](ξ)

]
Êm;r(ξ), ξ ∈ R. (2.5.15)

By (2.4.1) and (2.4.2), we have

Ir − ̂̊a(ξ)
T̂̊a(ξ) = Êm;r(ξ)

T


q̂[0;r](ξ)

T

...

q̂[r−1;r](ξ)
T

Diag(ε1, . . . , εs)
[
q̂[0;r](ξ), . . . q̂[r−1;r](ξ)

]
Êm;r(ξ),

and

− ̂̊a(ξ)
T̂̊a(ξ + 2πj

M
)

=Êm;r(ξ)
T


q̂[0;r](ξ)

T

...

q̂[r−1;r](ξ)
T

Diag(ε1, . . . , εs)
[
q̂[0;r](ξ + 2πj

M
), . . . q̂[r−1;r](ξ + 2πj

M
)
]
Êm;r(ξ + 2πj

M
),

for all ξ ∈ R and j = 1, . . . ,M − 1. By letting M0 as (2.5.8) and Mj as (2.5.9) for

j = 1, . . . ,M− 1, item (ii) follows immediately from the above two identities.

Finally, assume in addition that (2.5.10) and (2.5.11) hold. Since {̊a, b̊}(ε1,...,εs) is a

quasi-tight M-framelet filter bank, (2.4.3) holds. Multiplying ̂̊cΥ̂ on the left to both sides
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of (2.4.3) and using (2.5.11) and the fact that Υ̂(ξ )̂̊b(ξ)
T

= O(|ξ|m) as ξ → 0, we conclude

that

Υ̂(Mξ)̂̊a(ξ) = ̂̊c(ξ)Υ̂(ξ) + O(|ξ|m), ξ → 0. (2.5.16)

Choose c ∈ l0(Z) such that ĉ(ξ) :=
∏∞

j=0
̂̊c(M−jξ) +O(|ξ|m) as ξ → 0 (the infinite product

is well-defined as ̂̊c(0) = 1, see e.g. [41, Lemma 4.1.8]). It follows from (2.5.16) that

ĉ(Mξ)Υ̂(Mξ)̂̊a(ξ) = ĉ(ξ)Υ̂(ξ) + O(|ξ|m), ξ → 0. (2.5.17)

Moreover, (2.5.11) yields

ĉ(Mξ)Υ̂(Mξ)
T

= ̂̊a(ξ)ĉ(ξ)Υ̂(ξ)
T

+ O(|ξ|m), ξ → 0. (2.5.18)

As å has order m sum rules with the matching filter υ̊ with ̂̊υ := υ̂θ̂−1, the condition

(2.5.10) implies that ̂̊υj(0) are uniquely determined by ̂̊υ(Mξ)̂̊a(ξ) = ̂̊υ(ξ) + O(|ξ|m) as

ξ → 0 via the recurrence relation: ̂̊υ(0)̂̊a(0) = ̂̊υ(0) and

̂̊υ(j)
(0) =

(
Ir −Mĵ̊a(0)

)−1
j−1∑
k=0

(
j

k

)
Mk̂̊υk(0)̂̊a(j−k)

(0), j = 1, . . . ,m− 1. (2.5.19)

Thus (2.5.6) follows right away from (2.5.17). Similarly, by letting
̂̊
φ := φ̂θ̂, (2.5.10)

implies that
̂̊
φ

(j)

are uniquely determined by
̂̊
φ(Mξ) = ̂̊a(ξ)

̂̊
φ(ξ) via the recurrence relation:̂̊

φ(0) = ̂̊a(0)
̂̊
φ(0) and

̂̊
φ

(j)

(0) =
(
MjIr − ̂̊a(0)

)−1
j−1∑
k=0

(
j

k

)̂̊a(j−k)
(0)
̂̊
φ
k

(0), j = 1, . . . ,m− 1. (2.5.20)

Thus by (2.5.18), we have (2.5.7) holds with d̂ = ĉ. Note that ‖̂̊φ(0)‖2 = 1, which

immediately implies that |ĉ(0)| = r−
1
2 . This proves item (i).

The following corollary is an immediate consequence of Theorem 2.5.2.

Corollary 2.5.3. Let M > 2 and r > 2 be integers and a ∈ (l0(Z))r×r be a finitely sup-
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ported matrix-valued filter. Let φ ∈ (L2(R))r be a compactly supported vector function

satisfying φ̂(Mξ) = â(ξ)φ̂(ξ) and define Υ̂(ξ) := (1, eiξ/r, . . . , ei(r−1)ξ/r) as in (2.2.4). As-

sume that a has m sum rules with respect to M with a matching filter υ ∈ (l0(Z))1×r such

that υ̂(0)φ̂(0) = 1. If θ ∈ (l0(Z))r×r is a strongly invertible filter such that item (ii) of

Theorem 2.5.2 holds and

̂̊
φ(ξ) := θ̂(ξ)φ̂(ξ) = ĉ(ξ)Υ̂(ξ)

T

+ O(|ξ|m), ξ → 0, (2.5.21)

for some 2π-periodic trigonometric polynomial ĉ with ĉ(0) 6= 0, then

‖̂̊φ(ξ)‖2 = ‖̂̊φ(0)‖2 + O(|ξ|2m), ξ → 0. (2.5.22)

Proof. Let θ ∈ (l0(Z))r×r be a strongly invertible filter such that all above assumptions

are satisfied. From the proof of Theorem 2.5.2, we deduce that there exist b ∈ (l0(Z))s×r

and ε1, . . . , εs ∈ {±1} such that item (2) of Theorem 2.4.1 and the following condition

hold:

̂̊
φ(Mξ) = ̂̊a(ξ)

̂̊
φ(ξ) and ψ̂(ξ) :=

̂̊
b(ξ/M)

̂̊
φ(ξ/M) = O(|ξ|m) as ξ → 0, (2.5.23)

where
̂̊
φ := θ̂φ̂, ̂̊a := θ̂(M·)âθ̂−1 and

̂̊
b := b̂θ̂−1. By multiplying

̂̊
φ(ξ)

T

to the left and
̂̊
φ(ξ)

to the right to both sides of (2.4.1) and using (2.5.23), we have

‖̂̊φ(Mξ)‖2 + ψ̂(Mξ)
T

Diag(ε1, . . . , εs)ψ̂(Mξ) = ‖̂̊φ(ξ)‖2, (2.5.24)

which yields

‖̂̊φ(Mξ)‖2 = ‖̂̊φ(ξ)‖2 + O(|ξ|2m), ξ → 0. (2.5.25)

Hence (2.5.22) follows from (2.5.25) and M > 2.

The condition in (2.5.22) a key for vanishing moments of derived framelets ψ from φ̊.

Based on our previous investigation, we now present the general procedure of constructing
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quasi-tight framelets with all desired properties in Theorem 2.4.1. Let M > 2 and r > 2 be

integers and a ∈ (l0(Z))r×r be a finitely supported matrix-valued filter. Let φ ∈ (L2(R))r

be a compactly supported refinable vector function satisfying φ̂(Mξ) = â(ξ)φ̂(ξ). Assume

that a has m sum rules with respect to M with a matching filter υ ∈ (l0(Z))1×r such that

υ̂(0)φ̂(0) = 1. Let Υ̂(ξ) := (1, eiξ/r, . . . , ei(r−1)ξ/r) as in (2.2.4). The general construction

steps are as follows:

(1) Construct a strongly invertible filter θ ∈ (l0(Z))r×r with short support satisfying

items (i) and (ii) of Theorem 2.5.2.

(2) Construct a filter b ∈ (l0(Z))s×r such that (2.4.1) and (2.4.2) are satisfied (where å

and b̊ are given by (2.4.4)) for some ε1, . . . , εs ∈ {±1}, and b̂(ξ)φ̂(ξ) = O(|ξ|m) as

ξ → 0. The existence of such b ∈ (l0(Z))s×r and ε1, . . . , εs ∈ {±1} is guaranteed by

Theorem 2.5.2.

Define ψ̂(ξ) = b̂(ξ/M)φ̂(ξ/M). Then {φ̊;ψ}(ε1,...,εs) is a compactly supported quasi-tight

M-framelet in L2(R) satisfying all the desired properties in Theorem 2.4.1.

2.6 Some Examples of Spline Quasi-tight Framelets

with High Balancing Orders

In this section, we present some examples to illustrate our main result Theorem 2.4.1.

Example 2.3. Let M = r = 2, and consider φ = (B2(·− 1), 0)T, where B2 is the B-spline

of order 2 in (1.2.4). Then φ satisfies φ̂(2ξ) = â(ξ)φ̂(ξ) with a filter a ∈ (l0(Z))2×2 being

given by

â(ξ) =

Â(ξ) 0

0 p(ξ)

 ,
with

Â(ξ) =
1

4
(eiξ + 2 + e−iξ), (2.6.1)
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and p(ξ) is any 2π-periodic trigonometric polynomial. Note that sr(a, 2) = 2 with any

matching filter υ ∈ (l0(Z))1×2 satisfying υ̂(ξ) = (1, 0) + O(|ξ|2) as ξ → 0. We obtain a

strongly invertible filter θ ∈ (l0(Z))2×2 satisfying items (i) and (ii) of Theorem 2.5.2 as

follows:

θ̂(ξ) =
1

6
√

2(1 +
√

3)

−(3 +
√

3)e−iξ + 8
√

3 + 9−
√

3eiξ (7 + 13
√

3)e−iξ − 11 + (4 + 3
√

3)eiξ

(3
√

3− 1)e−iξ + 3
√

3 + 8− eiξ −
(

23
√

3
3 + 9

)
e−iξ − 11

√
3

3 +
(

4
√

3
3 + 3

)
eiξ

 .
Direct computation shows that (2.5.6) and (2.5.7) hold with m = 2 and

ĉ(ξ) = −
√

2

2
+

√
2(
√

3− 1)i

8
ξ+O(|ξ|2), d̂(ξ) = −

√
2

2
−
√

2(
√

3− 1)i

8
ξ+O(|ξ|2), ξ → 0.

Here we have the freedom to choose p(ξ) such that the degree of ̂̊a(ξ) := θ̂(2ξ)â(ξ)θ̂(ξ)−1

is as small as possible for simple presentation. By choosing p(ξ) = 1
4
e−iξ + 7

2
+ 1

4
eiξ, we

obtain b ∈ (l0(Z))4×2 such that {̊a; b̊}(ε1,ε2,ε3,ε4), with

̂̊a(ξ) := θ̂(Mξ)â(ξ)θ̂(ξ)−1 and
̂̊
b(ξ) := b̂(ξ)θ̂(ξ)−1

and ε1 = ε2 = ε3 = 1 and ε4 = −1, is a finitely supported quasi-tight 2-multiframelet filter

bank with 2 balancing orders, where

b̂(ξ) := eiξD
(
U1 +

√
3U2

)
Û3(2ξ)F̂ (ξ)θ̂(ξ),

with

• D = 1
9+4
√

3
Diag

(
d1λ1, d2

√
46
√
λ2 + λ3

√
3, d3

√
927889

√
λ4 + λ5

√
3, d4

√
λ6 + λ7

√
3
)

where

d1 = − 1

25180085734704776
, d2 =

1

170664162417838019952956
,

d3 =
1

281700714176366254998791127171400862653282671261438405782186152367677
,
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d4 =
1

5009062155049388954350661899051556951670668
;

λ1 =

√
5437900978131564 + 3120526414024498

√
3,

λ2 = 3719615046635084853, λ3 = 2147522348686212558,

λ4

=2270305904207568012940508624742913001613984744660994673284621339421892193611324,

λ5

=1310761724937036116861992517021585500520429420925813977012891122860726054086295,

λ6 = 378533294810068098618941042771044135712181,

λ7 = 218546299655829430553984760745834819062292.

• U1 and U2 are the 4× 4 constant matrices given by

U1 =


3392119873 −2778324120 −4025874315 8672724540

0 −8288658986045588 −10141655898429575 61508560391015634

0 0 0 λ8

0 0 λ9 λ10

 ,

U2 =


0 670619101 457342305 −11821258848

0 481466912421912 5873639680107160 −35445004131731402

0 0 0 λ11

0 0 λ12 λ13

 ,
where

λ8 = 655638898967488291661954282237504457186876,

λ9 = 1173830888361736998172384986078,

λ10 = −1055722690591344263872331100,
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λ11 = −378533294810068098618941042771044135712181

λ12 = −677711074380894544629813729391,

λ13 = 609520590739704131515104420.

• Û3 is the 4×4 matrix of 2π-periodic trigonometric polynomials given by Û3 = Û3,1Û3,2

where

Û3,1(ξ) =



1 0 0 0

0 1 0 0(
782849

√
3

61240674
+

1521092

10206779

)
e−iξ

699997− 272171
√

3

10206779
e−iξ 1 0(

17348101
√

3

122481348
− 9216904

30620337

)
e−iξ

(
4881421

√
3

61240674
− 5507049

40827116

)
e−iξ 0 1


,

Û3,2(ξ) =



1 0 0 0(√
3

6
+

1

2

)
e−iξ 1 −

√
3

3

(
2
√

3

3
− 3

)
eiξ +

5
√

3

6
+

3

2

0 0 0
1

2

−1

6
e−iξ 0

1

3
−5

6
− 2

3
eiξ


.

• F̂ (ξ) is the 4× 2 matrix of 2π-periodic trigonometric polynomials given by

F̂ (ξ) =


2 −1− eiξ

−1− e−iξ 2

2e−iξ −1− e−iξ

−e−2iξ − e−iξ 2e−iξ


. (2.6.2)

The filter b is supported on [−4, 3]. Define ψ = [ψ1, ψ2, ψ3, ψ4]T via ψ̂(ξ) = b̂(ξ/2)φ̂(ξ/2).

Define a new refinable vector function
̂̊
φ(ξ) := θ̂(ξ)φ̂(ξ). Then ‖̂̊φ(ξ)‖2 = 1 + O(|ξ|4) as
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ξ → 0 and {φ̊;ψ}(ε1,ε2,ε3,ε4) is a compactly supported quasi-tight 2-framelet in L2(R) such

that all the items (1)–(4) of Theorem 2.4.1 are satisfied with m = 2. Note that ψ has 2

vanishing moments. See Figure 2.1 for graphs of φ, φ̊, ψ1, . . . , ψ4.

(A) φ (B) φ̊ (C) ψ1

(D) ψ2 (E) ψ3 (F) ψ4

Figure 2.1: Graphs of φ = [B2(· − 1), 0]T and a new refinable vector function φ̊, to-
gether with graphs of ψ1, , . . . , ψ4 constructed from φ in Example 2.3. A graph with a
solid (resp. dash) line denotes the first (resp. second) component of a vector function.
{φ̊; (ψ1, . . . , ψ4)T}(1,1,1,−1) is a compactly supported quasi-tight 2-framelet in L2(R) with
balanced vanishing moments 2.

Example 2.4. Let M = r = 2, and ϕ := B2(· − 1) where B2 is the B-spline of order

2 in (1.2.4). Then ϕ satsfies ϕ̂(2ξ) = Â(ξ)ϕ̂(ξ) where Â is given by (2.6.1). Note that

sr(A, 2) = 2. Define φ := (ϕ(2·), ϕ(2 ·−1))T. By [33, Proposition 6.2], φ satisfies φ̂(2ξ) =

â(ξ)φ̂(ξ), where

â(ξ) =
1

4

 2 1 + eiξ

2e−iξ 1 + e−iξ

 , ξ ∈ R.

Moreover, sr(a, 2) = 2 with a matching filter υ ∈ (l0(Z))1×2 satisfying υ̂(ξ) = (1, eiξ/2) +

O(|ξ|2) as ξ → 0. Now applying the general construction steps presented above, we obtain

a desired strongly invertible filter θ ∈ (l0(Z))2×2 satisfying items (i) and (ii) of Theo-
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rem 2.5.2:

θ̂(ξ) =

√
2

24

1 −eiξ + 2− e−iξ

0 1

 .
Direct computation shows that (2.5.6) and (2.5.7) hold with m = 2 and

ĉ(ξ) = d̂(ξ) =

√
2

2
.

We obtain b ∈ (l0(Z))4×2 such that {̊a; b̊}, with å and b̊ being defined in (2.4.3), is a

finitely supported tight 2-framelet filter bank with 2 balancing orders. For simplicity of

presentation, we write

b̂(ξ) = D̂(2ξ)Ê(2ξ)F̂ (ξ),

with

• D̂(ξ) is the 4× 4 diagonal matrix of 2π-periodic trigonometric polynomials given by

D̂(ξ) = Diag (d1(ξ), d2, d3, d4) with

d1(ξ) =

√
70

43680λ1

(
−52
√

5249 + 364
√

105 +
(

364
√

105 + 52
√

5249
)
eiξ
)
,

d2 = − 1

96λ1λ2

, d3 = −
√

6

576λ3λ4

, d4 = −
√

2

48λ3

,

where

λ1 =
√

154299444795192054502909, λ2 =
√

392716620870,

λ3 =
√

28366141, λ4 =
√

1870079147.

• Ê(ξ) is the 4× 4 matrix of 2π-periodic trigonometric polynomials given by Ê(ξ) =
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E−1e
iξ + E0 + E1e

−iξ with

E−1 =



0 0 −116055812828 −116541733616

0 0 31811040936954791 514403328290664092

0 0 −24580769 −98323076

0 0 449 1796


,

ET
0 =



2591577536 −2573825532553116272 393292304 −7184

18434692032 −13507206835285209804 2064784596 −37716

6760552105 −7105187917736625576 6589364832 −81521

0 −3908121799627104752 −16304613472 −117450


,

E1 =



0 0 0 0

86906212475244992 618190750766215104 226709010062624185 0

−205796480 −398928912 239683385 0

−128302 −76394 −20406 0


.

• F̂ is the 4× 2 matrix of 2π-periodic trigonometric polynomials given by (2.6.2).

The filter b is supported on [−4, 3], i.e., b(k) = 0 whenever k /∈ Z ∩ [−4, 3]. Define

ψ = [ψ1, ψ2, ψ3, ψ4]T via ψ̂(ξ) = b̂(ξ/2)φ̂(ξ/2). Define a new refinable vector function̂̊
φ(ξ) := θ̂(ξ)φ̂(ξ). Then ‖̂̊φ(ξ)‖2 = 1 + O(|ξ|4) as ξ → 0 and {φ̊;ψ} is a compactly

supported tight 2-framelet in L2(R) such that all the desired properties in items (1)–(4)

of Theorem 2.4.1 are satisfied. Note that ψ has 2 vanishing moments. See Figure 2.2 for
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graphs of φ, φ̊, ψ1, ψ2, ψ3, ψ4.

(A) φ (B) φ̊ (C) ψ1

(D) ψ2 (E) ψ3 (F) ψ4

Figure 2.2: Graphs of φ = [ϕ(2·), ϕ(2 · −1)]T and the new refinable vector function φ̊,
together with graphs of ψ1, , . . . , ψ4 constructed from φ in Example 2.4. A graph with
a solid (resp. dash) line denotes the first (resp. second) component of a function vec-
tor. {φ̊; (ψ1, . . . , ψ4)T} is a compactly supported tight 2-framelet in L2(R) with balanced
vanishing moments 2.

As we discussed in item (3) of Lemma 2.1.2, a 2π-periodic trigonometric polynomial

Θ̂ is strongly invertible (i.e., 1/Θ̂ is also a 2π-periodic trigonometric polynomial) if and

only if Θ̂(ξ) = ce−imξ for some m ∈ Z and c ∈ C\{0}. Thus for framelets constructed

from scalar refinable functions to have high vanishing moments, usually it is inevitable to

sacrifice the compactness of the associated discrete (scalar) framelet transform, because a

non-trivial scalar filter Θ is not strongly invertible. Examples 2.3 and 2.4 demonstrate that

this difficulty can be easily resolved by simply vectorizing the scalar refinable function,

and do the constructions by using the new refinable vector function.

Example 2.5. Let φ = (φ1, φ2)T be the Hermite cubic splines as

φ1(x) =


(1− x)2(1 + 2x), x ∈ [0, 1]

(1 + x)2(1− 2x), x ∈ [−1, 0)

0, otherwise,

φ2(x) =


(1− x)2x, x ∈ [0, 1]

(1 + x)2x, x ∈ [−1, 0)

0, otherwise.

(2.6.3)
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We have φ̂(2·) = âφ̂, where a ∈ (l0(Z))2×2 is the Hermite interpolatory filter:

â(ξ) =
1

16

4eiξ + 8 + 4e−iξ 6(eiξ − e−iξ)

−(eiξ − e−iξ) −eiξ + 4− e−iξ

 , ξ ∈ R. (2.6.4)

. We have sr(a, 2) = 4 with a matching filter υ ∈ (l0(Z))1×2 satisfying υ̂(ξ) = (1, iξ) +

O(|ξ|4) as ξ → 0. Thus there exist quasi-tight 2-framelets derived from φ which satisfy all

claims of Theorem 2.4.1, with the maximum possible choice m = 4 for balanced vanish-

ing moments. For simplicity of presentation, here we present an example of quasi-tight

framelets with m = 2 instead. Following the construction guidelines, we first construct a

desired strongly invertible filter θ ∈ (l0(Z))2×2 as follows:

θ̂(ξ) =

√
2

256

 96eiξ + 32 −77e−iξ + 506 + 51eiξ

160eiξ − 32 −385e−iξ − 78− 17eiξ

 .
Direct computation shows that (2.5.6) and (2.5.7) hold with m = 2 and

ĉ(ξ) =

√
2

2
− i
√

2

4
ξ + O(|ξ|2), d̂(ξ) =

√
2

2
+
i
√

2

4
ξ + O(|ξ|2), ξ → 0.

We obtain b ∈ (l0(Z))6×2 such that {a; b}Θ;(ε1,...,ε6) is a finitely supported quasi-tight

2-multiframelet filter bank with Θ̂(ξ) = θ̂(ξ)
T

θ̂(ξ), ε1 = ε2 = −1, and ε3 = · · · = ε6 = 1.

For simplicity of presentation, we write

b̂(ξ) =


Diag(−1, 1)− 1

4
Diag(−1, 1)N(2ξ) 0002×2

Diag(−1, 1) + 1
4
Diag(−1, 1)N(2ξ) 0002×2

0002×2 De2iξ

 D̃Ê(2ξ)F̂ (ξ)θ̂(ξ),

where 000q×t denotes the q × t zero matrix and
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• N(ξ) is the 2× 2 matrix of 2π-periodic trigonometric polynomials given by

N(ξ) =
(
N−1e

iξ +N0 +N1e
−iξ)Diag

(
28831

932734773870005846016
,

104831

70129776762814464

)
,

where

N−1 = Diag

(
2219987

92160
,
8071987

74502

)[
−280650717637 32961105478501

1406309548267 −205511772233035

]
Diag

(
47,

5

53759

)
,

N0 = Diag

(
28831

230400
,
104831

37251

)[
45834164001503531 −3709367687537217

−3709367687537217 2370098256094979

]
Diag

(
1,

25

53759

)
,

N1 = Diag

(
104339389

18432
,
8071987

74502

)[
−280650717637 1406309548267

164805527392505 −1027558861165175

]
Diag

(
1

5
,

1

53759

)
.

• D = Diag(d1, d2) where

d1 =
1761312

√
13212226268199396309514273

51195503191172527
, d2 =

√
547545488675642

37192694
.

• D̃ = Diag(d3, d4, d5, d6) where

d3 =
1

16174191
, d4 =

1

1505540889600
,

d5 =
1

24064994385271402392453120
, d6 =

1

269129558593851555840
.

• Ê is the 4× 4 matrix of 2π-periodic trigonometric polynomials given by

Ê(ξ) = D−1E−1e
iξ +D0E0 +D1E1e

−iξ +D2E2e
−2iξ + E3e

−3iξ,

where

D−1 = Diag (187, 1505540889600, 263278430792912227, 370729762969181) ,
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D0 = Diag (1, 1, 187, 18596347) ,

D1 = Diag (318703, 318703, 14399, 18596347) ,

D2 = Diag (16174191, 4589004497, 1108723, 1431918719) ,

E−1 =


0 −3713 −18565 5417

0 0 0 0

0 3713 18565 −5417

0 3713 18565 −5417



ET
0 =


16174191 0 192032829613853577201 −1724291840139

7619899 −204477398651 −210030256538769846979 −4565648413949

4457703 −262538115175 192032829613853577201 −9050015332017

956109 −230405377741 427912364665047103611 −535702395579

 ,

ET
1 =


−1 −505023 5110725327108891443 −824326243735

0 −344267 1450280624007721927 −1270122003803

0 −201399 −383860742942300317 −− 1307289140551

0 −43197 −1583445964329957343 −967745336173

 ,

E2 =


0 0 0 0

1 0 0 0

−19768729169137143 −12286216971251881 −7187537033154957 −1541616578141871

−8001370677 −5625792235 −3291134295 −705897885

 ,

E3 =


0 0 0 0

0 0 0 0

569741919122396546911 0 0 0

336929465078003105 0 0 0


.

• F̂ is the 4× 2 matrix of 2π-periodic trigonometric polynomials given by (2.6.2).
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The filter b is supported on [−3, 5]. Define ψ = [ψ1, ψ2, ψ3, ψ4, ψ5, ψ6]T via ψ̂(ξ) =

b̂(ξ/2)φ̂(ξ/2). Define a new refinable vector function
̂̊
φ(ξ) := θ̂(ξ)φ̂(ξ). Then ‖̂̊φ(ξ)‖2 =

1 + O(|ξ|4) as ξ → 0 and {φ̊;ψ}(ε1,...,ε6) is a compactly supported quasi-tight 2-framelet

in L2(R) such that all the desired properties in items (1)–(4) of Theorem 2.4.1 are sat-

isfied with m = 2. Note that ψ has 2 vanishing moments. See Figure 2.3 for graphs of

φ, φ̊, ψ1, . . . , ψ6.

(A) φ (B) φ̊ (C) ψ1 (D) ψ2

(E) ψ3 (F) ψ4 (G) ψ5 (H) ψ6

Figure 2.3: Graphs of φ and the new refinable vector function φ̊, together with graphs of
ψ1, , . . . , ψ6 constructed from the Hermite cubic splines φ defined as (2.6.3) in Example 2.5.
{φ̊; [ψ1, . . . , ψ6]T}(−1,−1,1,1,1,1) is a compactly supported quasi-tight 2-framelet in L2(R)
with balanced vanishing moments 2.

2.7 Summary of the Chapter

From arbitrary univariate compactly supported refinable vector function with multiplicity

r > 1, we proved in this chapter that we can always obtain a compactly supported quasi-

tight multiframelet such that its associated discrete framelet transform is compact and

has the highest order of balancing orders and vanishing moments. Moreover, in order to

prove our main result, we further developed the normal form of a matrix-valued masks,

which is of interest in itself for studying refinable vector functions and multiframelets.
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Chapter 3

Balanced Quasi-tight Multiframelets

in Arbitrary Dimensions

In this chapter, we study quasi-tight multiframelets derived from any compactly sup-

ported refinable vector functions in arbitrary dimensions. The results in this chapter are

summarized in [44], which has been published in Science China Mathematics.

The theory of multivariate framelets and wavelets are of interest in both theory and

applications. One way to obtain multivariate framelets is by tensor product from one-

dimensional tight framelets, and these are what we called separable framelets. However,

it is often important but challenging to construct non-separable framelets through OEP,

mainly due to their intrinsic connections to the factorization of multivariate polynomial

matrices. The problem becomes even more challenging if we consider multiframelets

with certain desired properties (e.g. high order of vanishing moments), mainly due to

the difficulty of constructing a suitable filter Θ in OEP. Due to the existing difficulties on

multivariate framelet, most papers in the literature (e.g., see [4–7,9,16,25,42,53–55,63,64]

and references therein) study OEP-based multivariate framelets only for the particular

case r = 1,Θ = δ and special choices of φ and φ̃, in which case we have i.e., Θ̂ = 1,

φ̊ = φ and ˚̃φ = φ̃, which is called unitary extension principle in [62]. Indeed, many known

refinable scalar functions such as spline refinable functions satisfy (1.1.18) with Θ = δ
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for a large positive integer m, which guarantees that the integer shifts of φ provide m

approximation order for approximating functions. But (1.1.19) with Θ = δ can only hold

with m = 1 for most known refinable (scalar) functions including all spline functions.

Hence, it is not surprising that most known multivariate tight framelets including those

derived from all spline functions can have only one vanishing moment.

We circumvent all above-mentioned difficulties by considering multivariate quasi-tight

multiframelets. From an arbitrary compactly supported refinable vector function φ with

multiplicity greater than one (r > 1), we prove that we can always derive from φ a

compactly supported multivariate quasi-tight framelet such that

(i) all the framelet generators have the highest possible order of vanishing moments;

(ii) its associated discrete framelet transform is compact with the highest balancing

order.

For a refinable scalar function φ (i.e., r = 1), the above item (ii) often cannot be achieved

intrinsically but we show that we can always construct a compactly supported OEP-based

multivariate quasi-tight framelet derived from φ satisfying item (i).

The work of this chapter generalizes theory presented in Chapter 2 for the case d = 1.

We will develop the normal form of a matrix-valued filter, study the properties of a dis-

crete framelet transform employing an OEP-based filter bank, and establish the main

theorem on constructing OEP-based quasi-tight multiframelets, all in arbitrary dimen-

sions. Furthermore, a structural characterization of multivariate OEP-based quasi-tight

multiframelets will be given. However, due to the aforementioned difficulties on multivari-

ate multiframelets, the generalization is not trivial. Several new challenges and difficulties

are involved in the study of multivariate multiframelets.
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3.1 Properties of a Discrete Framelet Transform

In this section, we discuss a discrete multiframelet transform employing an OEP-based

dual framelet filter bank in an arbitrary dimension d.

Let a, ã, θ, θ̃ ∈ (l0(Zd))r×r and b, b̃ ∈ (l0(Zd))s×r be finitely supported filters, and let

Θ := θ? ∗ θ̃. For J ∈ N, we say that the J-level discrete framelet transform employing

the filter bank ({a; b}, {ã; b̃})Θ has the perfect reconstruction property if any orig-

inal input signal v0 can be exactly recovered through the above J-level discrete framelet

reconstruction steps in (S1)–(S3) (recall from Section 1.2).

Define the convolution operator CΘ : (l(Zd))1×r → (l(Zd))1×r by

CΘ(v) := v ∗Θ, ∀v ∈ (l(Zd))1×r. (3.1.1)

Observe that a J-level discrete framelet transform employing the filter bank ({a; b}, {ã; b̃})Θ

has the perfect reconstruction property if and only if

Sã,M([Ta,Mv] ∗Θ) + Sb̃,M(Tb,Mv) = v ∗Θ (3.1.2)

holds for all v ∈ (l(Zd))1×r and the convolution operator CΘ in (3.1.1) is bijective.

Lemma 3.1.1. For Θ ∈ (l0(Zd))r×r, the mapping CΘ : (l(Zd))1×r → (l(Zd))1×r is bijective

if and only if Θ is strongly invertible, that is, Θ̂−1 is an r × r matrix of 2πZd-periodic

trigonometric polynomials.

Proof. Suppose that CΘ is bijective, but Θ is not strongly invertible. This means that

det(Θ̂) is not a non-trivial monomial. Here a non-trivial monomial is of the form ceik·ξ

for some c ∈ C \ {0} and k ∈ Zd. Thus, det(Θ̂(ξ0)) = 0 for some ξ0 ∈ Cd. We start with

the case r = 1. In this case, we have 0 = Θ̂(ξ0) =
∑

k∈Zd Θ(k)e−ik·ξ0 . Define v ∈ l(Zd) by

v(k) = eik·ξ0 , k ∈ Zd. (3.1.3)
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It is easy to see that (v ∗ Θ)(n) = ein·ξ0Θ̂(ξ0) = 0 for all n ∈ Zd, which contradicts the

injectivity of CΘ. For r > 1, as det(Θ̂(ξ0)) = 0, we can find an invertible r × r matrix

Q such that all elements in the first row of QΘ̂(ξ0) are zero. Let v ∈ l(Zd) be defined as

in (3.1.3). Define u := (v, 0, . . . , 0)Q ∈ (l(Zd))1×r. It follows that u ∗Θ = 0, which again

contradicts the assumption that CΘ is injective. Therefore, Θ must be strongly invertible.

Conversely, if Θ is strongly invertible, then Θ−1 ∈ (l0(Zd))r×r with Θ̂−1 := [Θ̂(ξ)]−1.

Consequently, we have v = (v ∗Θ) ∗Θ−1 = (v ∗Θ−1) ∗Θ for v ∈ (l(Zd))1×r. Hence, CΘ is

bijective.

We now characterize the perfect reconstruction property of a J-level discrete framelet

transform. The following theorem generalizes Theorem 2.1.3 for the case d = 1 to arbitrary

dimensions.

Theorem 3.1.2. Let a, ã, θ, θ̃ ∈ (l0(Zd))r×r and b, b̃ ∈ (l0(Zd))s×r be finitely supported

filters. Define Θ := θ? ∗ θ̃. Then the following statements are equivalent to each other:

(1) For any J ∈ N, the J-level discrete framelet transform employing the filter bank

({a; b}; {ã; b̃})Θ has the perfect reconstruction property.

(2) Both filters θ and θ̃ are strongly invertible and ({a; b}, {ã; b̃})Θ is an OEP-based dual

M-framelet filter bank satisfying (1.1.14).

Proof. (1)⇒ (2). Suppose that item (1) holds. By Lemma 3.1.1, Θ is strongly invertible,

and thus implies that both θ and θ̃ are strongly invertible. On the other hand, observe

that

Ŝa,Mv(ξ) = | det(M)|1/2v̂(MTξ)â(ξ), (3.1.4)

T̂a,Mv(ξ) = | det(M)|−1/2
∑
ω∈ΩM

v̂(M−Tξ + 2πω)â(M−Tξ + 2πω)
T
, (3.1.5)

for all v ∈ (l0(Zd))1×r, where ΩM is defined as (1.1.16). Therefore, (3.1.2) yields that for
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all v ∈ (l0(Zd))1×r,

∑
ω∈ΩM

v̂(ξ + 2πω)

[
â(ξ + 2πω)

T
Θ̂(MTξ)̂̃a(ξ) + b̂(ξ + 2πω)

T̂̃b(ξ)] = v̂(ξ)Θ̂(ξ). (3.1.6)

Let ΓM be a complete set of canonical representatives of the quotient group Zd/[MZd]

given by

ΓM := {γ1, . . . , γdM} =: [M[0, 1)d] ∩ Zd with γ1 := 0. (3.1.7)

Note that (3.1.6) holds for all v ∈ (l0(Zd))r×r. Plugging v̂γ(ξ) = e−iγ·ξIr with γ ∈ ΓM into

(3.1.6) and using the same argument as in the proof of Theorem 2.1.3, we deduce from

(3.1.6) that (1.1.14) must hold. This proves (1) ⇒ (2).

(2) ⇒ (1). Suppose item (2) holds. Then (1.1.14) implies that (3.1.2) must hold for

all v ∈ (l0(Zd))1×r. As all filters a, ã, b, b̃ and Θ are finitely supported, using the locality of

the subdivision and transition operators (see the proof of Theorem 2.1.3 or [37, Theorem

2.1]), we can prove that (3.1.2) holds for all v ∈ (l(Zd))1×r. Noting that Θ is strongly

invertible, we conclude that the J-level discrete framelet transform employing the filter

bank ({a; b}; {ã; b̃})Θ has the perfect reconstruction property for every J ∈ N. This proves

(2) ⇒ (1).

If both θ and θ̃ are strongly invertible, then we see that the following filters are finitely

supported: ̂̊a(ξ) := θ̂(MTξ)â(ξ)θ̂(ξ)−1, ̂̊̃a(ξ) := ̂̃θ(MTξ)̂̃a(ξ)̂̃θ(ξ)−1, (3.1.8)

̂̊
b(ξ) := b̂(ξ)θ̂(ξ)−1,

̂̊̃
b(ξ) := ̂̃b(ξ)̂̃θ(ξ)−1. (3.1.9)

Therefore, instead of using the dual framelet filter bank ({a; b}, {ã; b̃})Θ, we can im-

plement a J-level discrete framelet transform using the new dual framelet filter bank

({̊a; b̊}, {˜̊a;
˜̊
b})δIr as follows:

(S1’) The J-level discrete framelet decomposition: recursively compute

v̊j := Tå,Mv̊j−1, ẘj := T̊b,Mv̊j−1, j = 1, . . . , J,
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for an input data v̊0 ∈ (l(Zd))1×r.

(S2’) The J-level discrete framelet reconstruction: recursively compute ˜̊vj, j = J, . . . , 1 by

˜̊vj−1 := S˜̊a,M
˜̊vj + S˜̊

b,M
ẘj, j = J, . . . , 1.

We see that the deconvolution step disappears with the new filter bank ({̊a; b̊}, {˜̊a;
˜̊
b})δIr ,

which greatly increases the efficiency of the discrete framelet transform.

Next, we discuss the balancing property of a discrete framelet transform in an arbitrary

dimension d. Like what we have for the case d = 1, vectorizing a scalar data v ∈ l(Zd) so

that the input data is a vector sequence in (l(Zd))1×r is needed to implement a discrete

framelet transform employing matrix-valued filters. Let N be a d× d integer matrix with

| det(N)| = r , and let ΓN be a complete set of canonical representatives of the quotient

group Zd/[NZd] given by

ΓN := {̊γ1, . . . , γ̊r} =: [N[0, 1)d] ∩ Zd with γ̊1 := 0. (3.1.10)

We define the standard vector conversion operator associated with N via

[ENv](k) := (v(Nk + γ̊1), v(Nk + γ̊2), . . . , v(Nk + γ̊r)), k ∈ Zd, v ∈ l(Zd). (3.1.11)

It is obvious that EN is a linear bijective mapping. For the case d = 1, we have a natural

choice N = r so that ΓN = {0, 1, . . . , r−1} and EN is simply the one dimensional standard

vector conversion operator E̊ defined as in (2.2.1).

Let ({a; b}, {ã; b̃})Θ be an OEP-based dual M-framelet filter bank and ({φ̊;ψ}, { ˜̊
φ; ψ̃})

be its corresponding dual M-framelet. Let Pm−1 be the space of all d-variate polynomial

sequences of degree less than m. The sparsity of a multiframelet transform is described

by its ability to annihilate framelet coefficients wj for polynomial input data, which is
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measured by the following properties:

(1) The operator Ta,M is invariant on EN(Pm−1), that is,

Ta,MEN(p) ∈ EN(Pm−1), ∀ p ∈ Pm−1. (3.1.12)

(2) The high-pass filter b has order m EN-balanced vanishing moments, that is,

Tb,MEN(p) = 0, ∀ p ∈ Pm−1. (3.1.13)

Items (1) and (2) preserve sparsity for all levels when implementing a multi-level

discrete framelet transform, because the framelet coefficients wj := Tb,MT j−1
a,M EN(p) = 0

for all p ∈ Pm−1 and j ∈ N. We define bvm(b,M,N) := sup{m ∈ N0 : (3.1.13) holds}.

A discrete framelet transform or a filter bank {a; b} has m EN-balancing order if both

(3.1.12) and (3.1.13) hold. In particular, we define bo({a; b},M,N) := sup{m ∈ N0 :

(3.1.12) and (3.1.13) hold}. The balancing property for multiwavelets has been studied

in [9, 33,41,56,65] and references therein.

Let a, ã, θ, θ̃ ∈ (l0(Zd))r×r and b, b̃ ∈ (l0(Zd))s×r such that ({a; b}, {ã; b̃})Θ is an

OEP-based dual M-multiframelet filter bank, where Θ = θ? ∗ θ̃. Suppose that φ, φ̃ ∈

(L2(Rd))r are compactly supported M-refinable vector functions in L2(Rd) satisfying

φ̂(MTξ) = â(ξ)φ̂(ξ) and ̂̃φ(MTξ) = ̂̃a(ξ)̂̃φ(ξ). Define φ̊, ψ, ˚̃φ, ψ̃ as in (1.1.12) and (1.1.13). If

φ̂(0)
T

Θ̂(0)̂̃φ(0) = 1 and ψ̂(0) = ̂̃ψ(0) = 0, then Theorem 1.1.1 tells us that ({φ̊;ψ}, { ˜̊
φ; ψ̃})

is a dual M-framelet in L2(Rd). With m := sr(ã,M), we observe that vm(ψ) 6 m,

bvm(b,M,N) 6 m and bo({a; b},M,N) 6 bvm(b,M,N). If bo({a; b},M,N) = bvm(b,M,N) =

vm(ψ) = m, then we say that the discrete framelet transform or the filter bank {a; b} is or-

der m EN-balanced. For r > 1, bo({a, b},M,N) < vm(ψ) often happens. Hence, having

high vanishing moments on framelet generators does not guarantee the balancing prop-

erty and thus significantly reduces the sparsity of the associated discrete multiframelet

transform. How to overcome this shortcoming has been extensively studied in the setting

of functions in [9, 56,65] and in the setting of discrete framelet transforms in [33,35,41].
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The following result on properties of the subdivision and the transition operators that

are related to the standard vector conversion operator were investigated, we refer the

reader to [35] for detailed discussions and proofs of the following result.

Theorem 3.1.3. Let M be a d× d dilation matrix, s ∈ N and r > 2 be positive integers.

Let N be a d×d integer matrix with | det(N)| = r and EN be the standard vector conversion

operator associated with N in (3.1.11). Define {̊γ1, . . . , γ̊r} := ΓN as in (3.1.10) and

Υ̂N(ξ) :=
(
eiN
−1γ̊1·ξ, . . . , eiN

−1γ̊r·ξ
)
, ξ ∈ Rd. (3.1.14)

Define Pm,y := {p ∗ y : p ∈ Pm} for y ∈ (l0(Zd))1×r. Then the following statements hold:

(1) EN(Pm) = Pm,y ⊆ (Pm)1×r with y ∈ (l0(Zd))1×r if and only if

ŷ(ξ) = ĉ(ξ)Υ̂N(ξ) + O(‖ξ‖m+1) as ξ → 0 for some c ∈ l0(Zd) with ĉ(0) 6= 0.

(2) For u ∈ (l0(Zd))r×r and y ∈ (l0(Zd))1×r, Tu,MPm,y = Pm,y if and only if

ĉ(ξ)ŷ(MTξ) = ŷ(ξ)û(ξ)
T

+ O(‖ξ‖m+1) as ξ → 0 for some c ∈ l0(Zd) with ĉ(0) 6= 0.

(3) For u ∈ (l0(Zd))r×r and y ∈ (l0(Zd))1×r, Su,MPm,y ⊆ (Pm)1×r if and only if

ŷ(MTξ)û(ξ + 2πω) = O(‖ξ‖m+1), ξ → 0, ω ∈ ΩM \ {0}.

(4) For u, ũ ∈ (l0(Zd))r×r and y ∈ (l0(Zd))1×r, Su,MTũ,M(v) = v for all v ∈ Pm,y if and

only if

ŷ(ξ)̂̃u(ξ)
T

û(ξ + 2πω) = δ(ω)ŷ(ξ) + O(‖ξ‖m+1), ξ → 0, ω ∈ ΩM.

The following result is known (see [35, Proposition 3.1, Theorem 4.1]), which charac-

terizes the balancing property of a discrete framelet transform in any dimension.
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Theorem 3.1.4. Let M be a d × d dilation matrix and r > 2 be a positive integer. Let

a ∈ (l0(Zd))r×r and b ∈ (l0(Zd))s×r for some s ∈ N. Let N be a d× d integer matrix with

| det(N)| = r and EN in (3.1.11). Define Υ̂N as in (3.1.14). Then the following statements

hold:

(1) The filter b has order m EN-balanced vanishing moments satisfying (3.1.13) if and

only if

Υ̂N(ξ)̂b(ξ)
T

= O(‖ξ‖m), ξ → 0. (3.1.15)

(2) The filter bank {a; b} is order m EN-balanced satisfying both (3.1.12) and (3.1.13)

if and only if (3.1.15) holds and

Υ̂N(ξ)â(ξ)
T

=ĉ(ξ)Υ̂N(MTξ) + O(‖ξ‖m), ξ → 0,

for some c ∈ l0(Zd) with ĉ(0) 6= 0.
(3.1.16)

3.2 A Matrix-valued Filter Normal Form for an Ar-

bitrary Dimension d

In this section, we extend the normal form of a matrix valued-filter developed in Chapter 2

for the case d = 1 to arbitrary dimentions. Some ideas from the case d = 1 can be

borrowed, but several new elements and challenges are involved for the high dimensional

case. First, we state the main result of this section as the following.

Theorem 3.2.1. Let M be a d×d dilation matrix and φ be a vector of compactly supported

distributions satisfying φ̂(MTξ) = â(ξ)φ̂(ξ) with φ̂(0) 6= 0 and a finitely supported matrix-

valued filter a ∈ (l0(Zd))r×r. Suppose that the filter a has order m sum rules with respect

to M satisfying (1.1.20) with a matching filter υ ∈ (l0(Zd))1×r such that υ̂(0)φ̂(0) = 1. If

r > 2, then for any positive integer n ∈ N, there exists a strongly invertible r × r matrix

Û of 2πZd-periodic trigonometric polynomials such that the following properties hold:

(1) Define ̂̊υ(ξ) := ( ̂̊υ1(ξ), . . . , ̂̊υr(ξ)) := υ̂(ξ)Û(ξ)−1 and
̂̊
φ(ξ) := (

̂̊
φ1(ξ), . . . ,

̂̊
φr(ξ))

T :=
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Û(ξ)φ̂(ξ). Then

̂̊
φ1(ξ) = 1 + O(‖ξ‖n) and

̂̊
φ`(ξ) = O(‖ξ‖n), ξ → 0, ` = 2, . . . , r, (3.2.1)

̂̊υ1(ξ) = 1 + O(‖ξ‖m) and ̂̊υ`(ξ) = O(‖ξ‖m), ξ → 0, ` = 2, . . . , r. (3.2.2)

(2) Define a finitely supported matrix-valued filter å ∈ (l0(Zd))r×r by ̂̊a(ξ) := Û(MTξ)â(ξ)Û(ξ)−1.

Then the filter å takes the ideal (m,n)-normal form, i.e.,

̂̊a(ξ) =

̂̊a1,1(ξ) ̂̊a1,2(ξ)̂̊a2,1(ξ) ̂̊a2,2(ξ)

 , (3.2.3)

where ̂̊a1,1,̂̊a1,2,̂̊a2,1 and ̂̊a2,2 are 1× 1, 1× (r− 1), (r− 1)× 1 and (r− 1)× (r− 1)

matrices of 2πZd-periodic trigonometric polynomials such that the following moment

conditions hold as ξ → 0:

̂̊a1,1(ξ) = 1 + O(‖ξ‖n), ̂̊a1,1(ξ + 2πω) = O(‖ξ‖m), ∀ω ∈ ΩM \ {0}, (3.2.4)

̂̊a1,2(ξ + 2πω) = O(‖ξ‖m), ∀ω ∈ ΩM, (3.2.5)

̂̊a2,1(ξ) = O(‖ξ‖n), (3.2.6)

where ΩM is defined as (1.1.16). Moreover,
̂̊
φ(MTξ) = ̂̊a(ξ)

̂̊
φ(ξ) and the new filter å

has order m sum rules with respect to M with the matching filter υ̊ ∈ (l0(Zd))1×r.

(3) Define ‖φ̂(ξ)‖2 := ‖φ̂(ξ)‖2
l2

:= φ̂(ξ)
T

φ̂(ξ). If in addition

υ̂(ξ) = ‖φ̂(ξ)‖−2φ̂(ξ)
T

+ O(‖ξ‖m), ξ → 0, (3.2.7)

then the strongly invertible Û can satisfy the following additional “almost orthogo-

nality” moment condition as ξ → 0:

Û(ξ)
−T
Û(ξ)−1 = Diag

(
‖φ̂(ξ)‖2, ‖û2(ξ)‖2, . . . , ‖ûr(ξ)‖2

)
+ O(‖ξ‖ñ), (3.2.8)
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where ûj is the j-th column of the matrix Û−1 for j = 2, . . . , r and ñ := max(m,n).

Conversely, if there exists a strongly invertible matrix Û of 2πZd-periodic trigonometric

polynomials such that items (1) and (2) and (3.2.8) hold with n > m, then (3.2.7) must

hold.

If d = 1 and without loss of generality assume that M is positive, the three moment

conditions (3.2.4), (3.2.5) and (3.2.6) further yield

̂̊a1,1(ξ) = (1 + e−iξ + · · ·+ e−i(M−1)ξ)mP1,1(ξ) = 1 + O(|ξ|n), ξ → 0,

̂̊a1,2(ξ) = (1− e−iMξ)mP1,2(ξ), ̂̊a2,1(ξ) = (1− e−iξ)nP2,1(ξ),

where P1,1, P1,2 and P2,1 are some 1 × 1, 1 × (r − 1) and (r − 1) × 1 matrices of 2π-

periodic trigonometric polynomials. So the filter å takes the form (2.3.3), which demon-

strates that Thereom 2.3.1 on the one-dimensional normal form is indeed a special case

of Thereom 3.2.1. Unfortunately for d > 2, there are no corresponding factors for

(1 + e−iξ + · · · + e−i(M−1)ξ)m and (1 − e−iξ)m. This means the factorization technique

that we had for the case d = 1 is no longer available, which illustrates that the investiga-

tion is more difficult for d > 1.

To prove Theorem 3.2.1, several auxiliary results are needed. We start with the follow-

ing result, which is a straightforward generalization of Lemma 2.3.3 (see also [35, Lemma

2.3]).

Lemma 3.2.2. Let v̂ = (v̂1, . . . , v̂r) and û = (û1, . . . , ûr) be 1 × r vectors of functions

which are infinitely differentiable at 0 with v̂(0) 6= 0 and û(0) 6= 0. If r > 2, then for

any positive integer n ∈ N, there exists a strongly invertible U ∈ (l0(Zd))r×r such that

û(ξ) = v̂(ξ)Û(ξ) + O(‖ξ‖n) as ξ → 0.

Next, we establish the following lemma on the moment conditions for vectors of smooth

functions, which is a simple extension of Lemma 2.3.5 for the case d = 1 to an arbitrary

dimention d
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Lemma 3.2.3. Let m ∈ N. Let v̂ be a 1× r row vector and û be an r × 1 column vector

such that all the entries of v̂ and û are functions which are infinitely differentiable at the

origin such that

v̂(ξ)û(ξ) = 1 + O(‖ξ‖m), ξ → 0. (3.2.9)

Then for any positive integer n, there exists an 1 × r vector ̂̊v of 2πZd-periodic trigono-

metric polynomials such that

̂̊v(ξ) = v̂(ξ) + O(‖ξ‖m) and ̂̊v(ξ)û(ξ) = 1 + O(‖ξ‖n), ξ → 0. (3.2.10)

To prove Theorem 3.2.1, we also need the following result linking a refinable vector

function φ with the matching filter υ for the associated matrix-valued filter of φ.

Lemma 3.2.4. Let M be a dilation matrix and a ∈ (l0(Zd))r×r. Let φ be an r × 1

vector of compactly supported distributions satisfying φ̂(MTξ) = â(ξ)φ̂(ξ) with φ̂(0) 6= 0.

If a has order m sum rules with respect to M satisfying (1.1.20) with a matching filter

υ ∈ (l0(Zd))1×r and υ̂(0)φ̂(0) = 1, then

υ̂(ξ)φ̂(ξ) = 1 + O(‖ξ‖m), ξ → 0. (3.2.11)

Proof. This is the multivariate version of Lemma 2.3.4, but the proof does not follow

trivially.

By our assumption on a, using υ̂(MTξ)â(ξ) = υ̂(ξ) +O(‖ξ‖m) as ξ → 0 and φ̂(MTξ) =

â(ξ)φ̂(ξ), we deduce that

υ̂(MTξ)φ̂(MTξ) = υ̂(MTξ)â(ξ)φ̂(ξ) = υ̂(ξ)φ̂(ξ) + O(‖ξ‖m), ξ → 0. (3.2.12)

We now prove that (3.2.12) yields (3.2.11) using [32, Proposition 2.1]. For a p× q matrix

A = (akj)16k6p,16j6q and an s×t matrix B, their Kronecker product A⊗B is the (ps)×(qt)
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block matrix given by

A⊗B =


a11B . . . a1qB

...
. . .

...

ap1B . . . apqB

 .
For any n ∈ N, define ⊗nA := A ⊗ · · · ⊗ A with n copies of A. Recall that if A,B,C

and E are matrices of sizes such that one can perform the matrix products AC and

BE, then we have (A ⊗ B)(C ⊗ E) = (AC) ⊗ (BE). Thus by induction, we have

(⊗n(AC))⊗ (BE) = [(⊗nA)⊗B][(⊗nC)⊗ E].

Define the 1 × d vector of differential operators D := (∂1, . . . , ∂d), where ∂j := ∂
∂ξj

for j = 1, . . . , d. For simplicity, we define ĝ(ξ) := υ̂(ξ)φ̂(ξ). Direct calculation yields

D ⊗ [ĝ(MT·)] = [(DMT) ⊗ ĝ](MT·). Here DMT :=
(∑d

j=1 M1j∂j, . . . ,
∑d

j=1 Mdj∂j

)
is a

1 × d vector of differential operators where M := (Mjk)16j,k6d. By induction, for j ∈ N,

we have

[⊗jD]⊗ [ĝ(MT·)] = [(⊗j(DMT))⊗ ĝ](MT·) =
(
[(⊗jD)⊗ ĝ](MT·)

)
(⊗j(MT)). (3.2.13)

It follows from (3.2.12) and (3.2.13) that

(
[(⊗jD)⊗ ĝ](0)

)
(⊗j(MT)) = [(⊗jD)⊗ ĝ](0), j = 1, . . . ,m− 1.

Since all the eigenvalues of M are greater than 1 in modulus, so are the eigenvalues of

⊗j(MT) for every j ∈ N. This forces the above linear system to have only the trivial

solution [(⊗jD)⊗ ĝ](0) = 0001×dj for j = 1, . . . ,m− 1. Hence we conclude that ∂µĝ(0) = 0

for all µ ∈ Nd
0 with 1 6 |µ| 6 m−1. By g(0) = υ̂(0)φ̂(0) = 1, we proved g(ξ) = 1+O(‖ξ‖m)

as ξ → 0, which is just (3.2.11).

We now prove the following theorem, which generalizes all results on the standard

normal form of a matrix-valued filter in [32, 33, 35, 41, 43, 45] but under much weaker

conditions.

Theorem 3.2.5. Let M be a d × d dilation matrix and a ∈ (l0(Zd))r×r be a matrix-
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valued filter. Let φ be an r × 1 vector of compactly supported distributions satisfying

φ̂(MTξ) = â(ξ)φ̂(ξ) with φ̂(0) 6= 0. Suppose the filter a has order m sum rules with respect

to M satisfying (1.1.20) with a matching filter υ ∈ (l0(Zd))1×r such that υ̂(0)φ̂(0) = 1. Let̂̊υ be a 1 × r row vector and ûφ be an r × 1 column vector such that all the entries of ̂̊υ
and ûφ are functions which are infinitely differentiable at 0 and

̂̊υ(ξ)ûφ(ξ) = 1 + O(‖ξ‖m), ξ → 0. (3.2.14)

If r > 2, then for any positive integer n ∈ N, there exists a strongly invertible r×r matrix

Û of 2πZd-periodic trigonometric polynomials such that

υ̂(ξ)Û(ξ)−1 = ̂̊υ(ξ) + O(‖ξ‖m) and Û(ξ)φ̂(ξ) = ûφ(ξ) + O(‖ξ‖n), ξ → 0. (3.2.15)

Define
̂̊
φ(ξ) := Û(ξ)φ̂(ξ) and ̂̊a(ξ) := Û(MTξ)â(ξ)Û(ξ)−1. Then the following statements

hold:

(i) The new vector function φ̊ is a vector of compactly supported distributions satisfyinĝ̊
φ(MTξ) = ̂̊a(ξ)

̂̊
φ(ξ) for all ξ ∈ R and

̂̊
φ(ξ) = ûφ(ξ) + O(‖ξ‖n) as ξ → 0.

(ii) The new finitely supported filter å has order m sum rules with respect to M with the

matching filter υ̊ satisfying ̂̊υ(0)
̂̊
φ(0) = 1 and (1.1.20) with a and υ being replaced

by å and υ̊, respectively.

Proof. It suffices to prove the claims for n > m. By Lemma 3.2.4, we see that (3.2.11)

holds. Note that φ̂ is smooth at every ξ ∈ Rd, which follows from the Paley-Wiener

theorem. Thus by (3.2.14) and Lemma 3.2.3, without loss of generality we may assume

that

υ̂(ξ)φ̂(ξ) = 1 + O(‖ξ‖n) and ̂̊υ(ξ)ûφ(ξ) = 1 + O(‖ξ‖n), ξ → 0. (3.2.16)

Now by applying the argument as in the proof of Theorem 2.3.1, all claims can be proved.
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We are now ready to prove Theorem 3.2.1.

Proof of Theorem 3.2.1. Choose a strongly invertible r×r matrix Û of 2πZd-periodic

trigonometric polynomials such that all claims of Theorem 3.2.5 hold with ̂̊υ(ξ) = (1, 0, . . . , 0)

and ûφ(ξ) = (1, 0, . . . , 0)T. Then we immediately observe that item (1) holds.

Next, we prove item (2). By Theorem 3.2.5, we see that
̂̊
φ(MTξ) = ̂̊a(ξ)

̂̊
φ(ξ) and å has

order m sum rules with respect to M with the matching filter υ̊. Moreover,

(1, 0, . . . , 0)̂̊a(ξ + 2πω) = δ(ω)(1, 0, . . . , 0) + O(‖ξ‖m), ξ → 0, ∀ω ∈ ΩM.

It follows that ̂̊a1,1(ξ+2πω) = O(‖ξ‖m) as ξ → 0 for all ω ∈ ΩM \{0}, and ̂̊a1,2(ξ+2πω) =

O(‖ξ‖m) as ξ → 0 for all ω ∈ ΩM. This proves the second moment condition in (3.2.4)

and (3.2.5). On the other hand, by (3.2.1) and
̂̊
φ(MTξ) = ̂̊a(ξ)

̂̊
φ(ξ), it follows immediately

that ̂̊a1,1(ξ) = 1 + O(‖ξ‖n) and ̂̊a2,1(ξ) = O(‖ξ‖n). This proves the first identity in (3.2.4)

and (3.2.6). Hence item (2) is proved.

Finally, item (3) can be proved by applying the same argument as in the proof of item

(ii) in Theorem 2.3.2.

3.3 Multivariate Quasi-tight Multiframelets with High

Vanishing Moments and High Balancing Orders

In this section, we study OEP-based quasi-tight multiframelets with balancing property

and compact discrete multiframelet transforms. The main result is the following theorem,

which is a generalization of Theorem 2.4.1 to arbitrary dimensions.

Theorem 3.3.1. Let M be a d × d dilation matrix and φ ∈ (L2(Rd))r be a compactly

supported M-refinable vector function satisfying φ̂(MTξ) = â(ξ)φ̂(ξ) with φ̂(0) 6= 0 and

a matrix-valued filter a ∈ (l0(Zd))r×r. Suppose that the filter a has order m sum rules

with respect to M satisfying (1.1.20) with a matching filter υ ∈ (l0(Zd))1×r such that
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υ̂(0)φ̂(0) = 1. Let N be a d × d integer matrix with | det(N)| = r. If r > 2, then there

exist filters b ∈ (l0(Zd))s×r, θ ∈ (l0(Zd))r×r and ε1, . . . , εs ∈ {±1} such that

(1) {φ̊;ψ}(ε1,...,εs) is a compactly supported quasi-tight M-framelet in L2(Rd) such that ψ

has order m vanishing moments, where φ̊ and ψ are defined in (1.1.12). Moreover,

φ̊ and ψ satisfy the refinable structure

̂̊
φ(MTξ) = ̂̊a(ξ)

̂̊
φ(ξ), ψ̂(MTξ) =

̂̊
b(ξ)

̂̊
φ(ξ), ξ ∈ Rd, (3.3.1)

with the filters å, b̊ being defined as

̂̊a(ξ) := θ̂(MTξ)â(ξ)θ̂(ξ)−1 and
̂̊
b(ξ) := b̂(ξ)θ̂(ξ)−1. (3.3.2)

(2) θ̂ is strongly invertible.

(3) {a; b}Θ,(ε1,...,εs) and {̊a; b̊}δIr,(ε1,...,εs) are finitely supported quasi-tight M-framelet filter

banks, satisfying

â(ξ)
T
Θ̂(MTξ)â(ξ + 2πω) + b̂(ξ)

T

Diag(ε1, . . . , εs)̂b(ξ + 2πω) = δ(ω)Θ̂(ξ) (3.3.3)

and

̂̊a(ξ)
T̂̊a(ξ + 2πω) +

̂̊
b(ξ)

T

Diag(ε1, . . . , εs )̂̊b(ξ + 2πω) = δ(ω)Ir, (3.3.4)

for all ξ ∈ Rd, ω ∈ ΩM, where δ and ΩM are defined as in (1.1.15) and (1.1.16),

respectively.

(4) The associated discrete multiframelet transform employing {̊a; b̊}δIr,(ε1,...,εs) is com-

pact and order m EN-balanced, where EN is the vector conversion operator in (3.1.11).

To prove Theorem 3.3.1, let us first recall some notations. For k ∈ Zd, the difference
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operator ∇k is defined via

∇ku(n) = u(n)− u(n− k), ∀n ∈ Zd, u ∈ (l(Zd))t×r.

For any multi-index β = (β1, . . . , βd)
T ∈ Nd

0, define∇β := ∇β1
e1
∇β2
e2
. . .∇βd

ed
, where {e1, . . . , ed}

is the standard basis of Rd. For u ∈ (l0(Zd))r×r, we have

∇̂βu(ξ) = ∇̂βδ(ξ)û(ξ) = (1−e−iξ1)β1(1−e−iξ2)β2 · · · (1−e−iξd)βdû(ξ), ξ = (ξ1, . . . , ξd)
T ∈ Rd.

For x = (x1, . . . , xd) and y = (y1, . . . , yd), we say x ≺ y if there exists l ∈ {1, . . . , d} such

that xj = yj for all j < l and xl < yl. By x � y we mean that x ≺ y or x = y.

By Theorem 1.1.1, the key step to obtain an OEP-based dual framelet is the con-

struction of an OEP-based dual framelet filter bank ({a; b}, {ã; b̃})Θ satisfying (1.1.14) of

Theorem 1.1.1. Let us now rewrite (1.1.14) into a matrix form below. For γ ∈ Zd and u ∈

(l(Zd))s×r, the γ-coset sequence of u with respect to M is the sequence u[γ;M] ∈ (l(Zd))s×r

given by

u[γ;M](k) = u(γ + Mk), k ∈ Zd.

Trivially, û(ξ) =
∑

γ∈ΓM
û[γ;M](MTξ)e−iγ·ξ, where ΓM is defined as (3.1.7). Let ΩM be

defined in (1.1.16). Define Fr;M(ξ) to be the (rdM)× (rdM) matrix below

Fr;M(ξ) :=
(
e−iγl·(ξ+2πωk)Ir

)
16l,k6dM

. (3.3.5)

For ω ∈ ΩM and u ∈ (l0(Zd))r×r, let Du,ω;M(ξ) and Eu,ω;M(ξ) be the (rdM) × (rdM)

block matrices, whose (l, k)-th r × r blocks are given by

(Du,ω;M(ξ))l,k :=


û(ξ + 2πωl), if ωl + ω − ωk ∈ Zd

0, otherwise,

(3.3.6)
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and

(Eu,ω;M(ξ))l,k := ̂u[γk−γl;M](ξ)e−iγk·(2πω). (3.3.7)

Following the lines of the proof of [16, Lemma 7], we have

Fr;M(ξ)Du,ω;M(ξ)Fr;M(ξ)
T

= dMEu,ω;M(MTξ), ξ ∈ Rd, ω ∈ ΩM. (3.3.8)

Recall that Pu;M(ξ) :=
[
û(ξ + 2πω1), û(ξ + 2πω2), . . . , û(ξ + 2πωdM)

]
in (1.3.1). It is

straightforward to check that Pu;M(ξ) = Qu;M(MTξ)Fr;M(ξ), where

Qu;M(ξ) :=
[
û[γ1;M](ξ), û[γ2;M](ξ), . . . , û[γdM ;M](ξ)

]
. (3.3.9)

Since Fr;M(ξ)
T
Fr;M(ξ) = dMIdMr, it is trivial to observe that Pu;M(ξ)Fr;M(ξ)

T
= dMQu;M(MTξ).

Now by (3.3.8), it is clear that (1.1.14) is equivalent to

Na,ã,Θ(ξ) = Qb;M(ξ)
T
Qb̃;M(ξ), (3.3.10)

with

Na,ã,Θ(ξ) := d−1
M EΘ,0;M(ξ)−Qa;M(ξ)

T
Θ̂(ξ)Qã;M(ξ). (3.3.11)

Note that {a; b}Θ,(ε1,...,εs) is a quasi-tight M-framelet filter bank if and only if ({a; b}, {a; b̃})Θ

is a dual M-framelet filter bank with b̃ := Diag(ε1, . . . , εs)b. In this case, (3.3.10) yields

Qb;M(ξ)
T
Diag(ε1, . . . , εs)Qb;M(ξ) = Na,a,Θ(ξ). (3.3.12)

For d = 1, recall that a 2π-periodic trigonometric polynomial û satisfies û(ξ) =

O(‖ξ‖m) as ξ → 0 if and only if (1 − e−iξ)m | û(ξ). When d > 2, we can no longer

separate out a moment factor that plays the role of (1 − e−iξ)m. Nevertheless, the fol-

lowing result is known in [16, Lemma 5] and [32, Theorem 3.6], which characterizes the

moment condition for arbitrary dimensions.

Lemma 3.3.2. Let m ∈ N and v ∈ l0(Zd). Then v̂(ξ) = O(‖ξ‖m) as ξ → 0 if and only if
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v̂(ξ) =
∑

β∈Nd0;m
∇̂βδ(ξ)ûβ(ξ) for some uβ ∈ l0(Zd) for all β ∈ Nd

0;m, where Nd
0;m := {β ∈

Nd
0 : |β| = m}.

For simplicity of later presentation, we introduce the following definition.

Definition 3.3.3. Let M be a d × d dilation matrix and N be a d × d integer matrix

with | det(N)| = r > 2. Let EN be the vector conversion operator in (3.1.11) and Υ̂N in

(3.1.14).

(a) For å ∈ (l0(Zd))r×r, we say that å has ordermEN-balanced sum rules with respect to

M if a has order m sum rules with respect to M with a matching filter υ̊ ∈ (l0(Zd))1×r

satisfying

̂̊υ(ξ) = ĉ(ξ)Υ̂N(ξ) + O(‖ξ‖m), ξ → 0, for some c ∈ l0(Zd) satisfying ĉ(0) 6= 0.

Such a filter υ̊ is called an EN-balanced matching filter for å. We define bsr(̊a,M,N) :=

m with m being the largest such integer.

(b) For n ∈ N, we say that å is an order n EN-balanced refinement filter associated to

an r × 1 vector φ̊ of compactly supported distributions if
̂̊
φ(MTξ) = ̂̊a(ξ)

̂̊
φ(ξ) for all

ξ ∈ Rd and

̂̊
φ(ξ) = d̂(ξ)Υ̂N(ξ)

T

+ O(‖ξ‖n), ξ → 0, for some d ∈ l0(Zd) satisfying d̂(0) 6= 0.

We first prove a special case of Theorem 3.3.1, which states that certain balanced

filters can be used to construct quasi-tight framelets with high order vanishing moments.

This result plays a key role in our proof of Theorem 3.3.1 on multivariate quasi-tight

framelets.

Theorem 3.3.4. Let M be a d× d dilation matrix and N be a d× d integer matrix with

| det(N)| = r > 2. Define EN and Υ̂N as in (3.1.11) and (3.1.14), respectively. Suppose

that å ∈ (l0(Z))r×r is an order m EN-balanced refinement filter associated to an r × 1
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vector φ̊ of compactly supported functions in L2(Rd), and å has order m EN-balanced sum

rules with respect to M with an EN-balanced matching filter υ̊ ∈ (l0(Zd))1×r. If

̂̊υ(ξ) = ‖̂̊φ(ξ)‖−2̂̊φ(ξ)
T

+ O(‖ξ‖m) = ĝ(ξ)Υ̂N(ξ) + O(‖ξ‖m) as ξ → 0

for some g ∈ l0(Zd) with ĝ(0) 6= 0,

(3.3.13)

and

‖̂̊φ(ξ)‖2 = 1 + O(‖ξ‖n), ξ → 0, (3.3.14)

for some n > 2m, then there exist b̊ ∈ (l0(Z))s×r and ε1, . . . , εs ∈ {±1} for some s ∈ N

such that

(i) {̊a; b̊}δIr,(ε1,...,εs) is a quasi-tight M-multiframelet filter bank satisfying (3.3.4).

(ii) {φ̊;ψ}(ε1,...,εs) is a quasi-tight M-framelet in L2(Rd) and ψ has order m vanishing

moments, where ψ̂(ξ) :=
̂̊
b(M−Tξ)

̂̊
φ(M−Tξ) for ξ ∈ Rd.

Proof. As (3.3.13) holds, by Theorem 3.2.1, there exists a strongly invertible U ∈ (l0(Zd))r×r

such that

φ̂(ξ) := Û(ξ)
̂̊
φ(ξ) = (1, 0, . . . , 0)T + O(‖ξ‖n), ξ → 0,

υ̂(ξ) := ̂̊υ(ξ)Û(ξ)−1 = (1, 0, . . . , 0) + O(‖ξ‖m), ξ → 0,

and (3.2.8) holds with φ being replaced by φ̊. Moreover, by letting â(ξ) = Û(MTξ)̂̊a(ξ)Û(ξ)−1,

we see that â takes the ideal (m,n)-normal form in item (2) of Theorem 3.2.1 with å being

replaced by a. Enumerate ΩM as in (1.1.16). Define Û := Û
−T
Û−1 and

â1(ξ) := Û(ξ)−â(ξ)
T
Û(MTξ)â(ξ) and âj(ξ) := −â(ξ)

T
Û(MTξ)â(ξ+2πωj), j = 2, . . . , dM.

For j = 1, using (3.2.8) and (3.3.14), we have

â1(ξ) =

1 ̂̃U(ξ)

− â(ξ)
T

1 ̂̃U(MTξ)

 â(ξ) + O(‖ξ‖n) =

p1(ξ) p2(ξ)

p3(ξ) p4(ξ)

 , ξ → 0.
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where ̂̃U(ξ) = Diag (‖û2(ξ)‖2, . . . , ‖ûr(ξ)‖2) and ûj denotes the j-th column of Û−1. Here

p1, p2, p3, p4 are 1×1, 1×(r−1), (r−1)×1 and (r−1)×(r−1) matrices of 2πZd-periodic

trigonometric polynomials. Using (3.2.4), (3.2.5) and (3.2.6) with å being replaced by a,

we deduce the following moment conditions as ξ → 0:

p1(ξ) = 1−
(
|â1,1(ξ)|2 + â2,1(ξ)

T ̂̃U(MTξ)â2,1(ξ)
)

+ O(‖ξ‖n) = O(‖ξ‖n), (3.3.15)

p2(ξ) = −â1,1(ξ)â1,2(ξ)− â2,1(ξ)
T ̂̃U(MTξ)â2,2(ξ) + O(‖ξ‖n) = O(‖ξ‖m), (3.3.16)

p3(ξ) = p2(ξ)
T

= O(‖ξ‖m). (3.3.17)

For every β ∈ Nd
0 with |β| = m, define ∆β := Diag(∇βδ, δIr−1) ∈ (l0(Zd))r×r. Using

(3.3.15),(3.3.16),(3.3.17), Lemma 3.3.2 and n > 2m, we see that there exist B1,α,β ∈

(l0(Zd))r×r for all α, β ∈ Nd
0;m such that

â1(ξ) =
∑

α,β∈Nd0;m

∆̂α(ξ)
T

B̂1,α,β(ξ)∆̂β(ξ), (3.3.18)

where Nd
0;m := {β ∈ Nd

0 : |β| = m}. For j = 2, . . . , dM, we have

âj(ξ) = −â(ξ)
T

1 ̂̃U(MTξ)

 â(ξ + 2πωj) + O(‖MTξ‖n) =

pj,1(ξ) pj,2(ξ)

pj,3(ξ) pj,4(ξ)

 .
Here pj,1, pj,2, pj,3, pj,4 are 1× 1, 1× (r − 1), (r − 1)× 1 and (r − 1)× (r − 1) matrices of

2πZd-periodic trigonometric polynomials. It follows from the (3.2.4), (3.2.5), (3.2.6) with

å being replaced by a and n > 2m that as ξ → 0,

pj,1(ξ) = −
(
â1,1(ξ)â1,1(ξ + 2πωj) + â2,1(ξ)

T ̂̃U(MTξ)â2,1(ξ + 2πωj)
)

+ O(‖MTξ‖n) = O(‖ξ‖m),

pj,2(ξ) = −â1,1(ξ)â1,2(ξ + 2πωj)− â2,1(ξ)
T ̂̃U(MTξ)P2,2(ξ + 2πωj) + O(‖MTξ‖n) = O(‖ξ‖m),

pj,3(ξ) = −â1,2(ξ)â1,1(ξ + 2πωj)− â2,2(ξ)
T ̂̃U(MTξ)â2,1(ξ + 2πωj) + O(‖MTξ‖n) = O(‖ξ‖m),
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and using symmetry and the same argument, we further have

pj,1(ξ + 2πωj) = O(‖ξ‖m) and pj,3(ξ + 2πωj) = O(‖ξ‖m), ξ → 0, j = 2, . . . , dM.

Hence the above identities and Lemma 3.3.2 yield

âj(ξ) =
∑

α,β∈Nd0;m

∆̂α(ξ)
T

B̂j,α,β(ξ)∆̂β(ξ + 2πωj), (3.3.19)

for some Bj,α,β ∈ (l0(Zd))r×r for all α, β ∈ Nd
0;m and all j = 2, . . . , dM. Recall that

Pa;M(ξ) := [â(ξ+ω1), . . . , â(ξ+ 2πωdM)] as in (1.3.1). It follows from (3.3.18) and (3.3.19)

that

Ma,U(ξ) :=Diag
(
Û(ξ + ω1), . . . , Û(ξ + 2πωdM)

)
− Pa;M(ξ)

T
Û(MTξ)Pa;M(ξ)

=

dM∑
j=1

Daj ,ωj(ξ) =

dM∑
j=1

∑
α,β∈Nd0;m

D∆α,0(ξ)
T
DBj,α,β ,ωj(ξ)D∆β ,0(ξ),

(3.3.20)

where Du,ω := Du,ω;M is defined via (3.3.6) for every u ∈ (l0(Zd))r×r and ω ∈ ΩM with the

subscript M being dropped for simplicity. It follows from (3.3.8) and (3.3.20) that

d−2
M Fr;M(ξ)Ma,U(ξ)Fr;M(ξ)

T

=d−4
M

∑
α,β∈Nd0;m

(
Fr;M(ξ)D∆α,0(ξ)

T
Fr;M(ξ)

T
) dM∑

j=1

Fr;M(ξ)DBj,α,β ,ωj (ξ)Fr;M(ξ)
T

(Fr;M(ξ)D∆β ,0(ξ)Fr;M(ξ)
T
)

=
∑

α,β∈Nd0;m

E∆α,0(MTξ)
T

d−1
M

dM∑
j=1

EBj,α,β ,ωj (M
Tξ)

E∆β ,0(MTξ),

where Eu,ω := Eu,ω;M is defined via (3.3.7) for every u ∈ (l0(Zd))r×r and ω ∈ ΩM by

dropping the subscript M. Define

E̊α,β(ξ) :=
d−1
M

2

dM∑
j=1

(
EBj,α,β ,ωj(ξ) + EBj,β,α,ωj(ξ)

T
)
.
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It is straightforward to see that E̊α,α
T

= E̊α,α for all α ∈ Nd
0;m. It follows that

d−2
M Fr;M(ξ)Ma,U(ξ)Fr;M(ξ)

T

=
∑

α,β∈Nd0;m,α≺β

(
E∆α,0(MTξ)

T
E̊α,β(MTξ)E∆β ,0(MTξ) + E∆β ,0(MTξ)

T
E̊α,β(MTξ)

T

E∆α,0(MTξ)
)

+
∑

α∈Nd0;m

E∆α,0(MTξ)
T
E̊α,α(MTξ)E∆α,0(MTξ).

For α, β ∈ Nd
0;m and α ≺ β, we take any factorization E̊α,β(ξ) = Eα,β,1(ξ)

T
Eα,β,2(ξ) such

that Eα,β,1 and Eα,β,2 are r × r matrices of 2πZd-periodic trigonometric polynomials. By

calculation:

∑
α,β∈Nd0;m,α≺β

(
Eα,β,1(ξ)E∆α,0(ξ) + Eα,β,2(ξ)E∆β ,0(ξ)

)T (
Eα,β,1(ξ)E∆α,0(ξ) + Eα,β,2(ξ)E∆β ,0(ξ)

)
=

∑
α,β∈Nd0;m,α≺β

(
E∆α,0(ξ)

T
E̊α,β(ξ)E∆β ,0(ξ) + E∆β ,0(ξ)

T
E̊α,β(ξ)

T

E∆α,0(ξ)
)

+
∑

α,β∈Nd0;m,α≺β

(
E∆α,0(ξ)

T
Eα,β,1(ξ)

T
Eα,β,1(ξ)E∆α,0(ξ) + E∆β ,0(ξ)

T
Eα,β,2(ξ)

T
Eα,β,2(ξ)E∆β ,0(ξ)

)
=

∑
α,β∈Nd0;m,α≺β

(
E∆α,0(ξ)

T
E̊α,β(ξ)E∆β ,0(ξ) + E∆β ,0(ξ)

T
E̊α,β(ξ)

T

E∆α,0(ξ)
)

+
∑

α∈Nd0;m

E∆α,0(ξ)
T
Eα(ξ)E∆α,0(ξ),

where Eα is a Hermitian dMr × dMr matrix of 2πZd-periodic trigonometric polynomials

for every α ∈ Nd
0;m. Define εα,β,k := 1 and bα,β,k ∈ (l0(Zd))1×r for k = 1, . . . , rdM via

b̂α,β(ξ) :=


b̂α,β,1(ξ)

...

b̂α,β,rdM(ξ)

 := Eα,β,1(MTξ)Fr;M(ξ)

 ∆̂α(ξ)

000(dM−1)r×r

+Eα,β,2(MTξ)Fr;M(ξ)

 ∆̂β(ξ)

000(dM−1)r×r

 ,

for all α, β ∈ Nd
0;m with α ≺ β, where 000q×t denotes the q × t zero matrix. Define Pb;M via

(1.3.1) for all matrix-valued filter b. By (3.3.8) and Fr;M(ξ)
T
Fr;M(ξ) = dMIdMr, it follows

96



that

Pbα,β ;M(ξ) =Eα,β,1(MTξ)Fr;M(ξ)D∆α,0(ξ) + Eα,β,2(MTξ)Fr;M(ξ)D∆β ,0(ξ)

=Eα,β,1(MTξ)E∆α,0(MTξ)Fr;M(ξ) + Eα,β,2(MTξ)E∆β ,0(MTξ)Fr;M(ξ),
(3.3.21)

Similarly, for ` ∈ {1, 2}, we define ε`;α,k := (−1)`+1 and b`;α,k by

b̂`;α(ξ) :=


b̂`;α,1(ξ)

...

b̂`;α,dMr(ξ)

 :=
(
pIr − (−1)`q(E̊α,α(MTξ)− Eα(MTξ))

)
Fr;M(ξ)

 ∆̂α(ξ)

000(dM−1)r×r

 ,

for α ∈ Nd
0;m and k = 1, . . . , dMr, where p, q ∈ R satisfy p+ q = 1

4
. We conclude that

Pb`;α;M(ξ) =
(
pIr − (−1)`q(E̊α,α(MTξ)− Eα(MTξ))

)
E∆α,0(MTξ)Fr;M(ξ), (3.3.22)

for ` ∈ {1, 2}. Define

{(b`, ε`) : ` = 1, . . . , s} :={(bα,β,k, εα,β,k) : α, β ∈ Nd
0;m with α ≺ β, k = 1, . . . , dMr}

∪ {(b`;α,k, ε`;α,k) : α ∈ Nd
0;m, k = 1, . . . , dMr, ` = 1, 2},

and let b := [bT1 , . . . , b
T
s ]T. We claim that {a; b}U;(ε1,...,εs) is an OEP-based quasi-tight
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M-framelet filter bank. Indeed, by (3.3.21) and (3.3.22), we have

Pb;M(ξ)
T

Diag(ε1, . . . , εs)Pb;M(ξ)

=
∑

α,β∈Nd0;m,α≺β

Pbα,β ;M(ξ)
T
Pbα,β ;M(ξ) +

∑
α∈Nd0;m

(
Pb1;α;M(ξ)

T
Pb1;α;M(ξ)− Pb2;α;M(ξ)

T
Pb2;α;M(ξ)

)

=Fr;M(ξ)
T

 ∑
α,β∈Nd0;m,α≺β

(
E∆α,0(MTξ)

T
E̊α,β(MTξ)E∆β ,0(MTξ) + E∆β ,0(MTξ)

T
E̊α,β(MTξ)

T
E∆α,0(MTξ)

)

+
∑

α∈Nd0;m

E∆α,0(MTξ)
T
E̊α,α(MTξ)E∆α,0(MTξ)

Fr;M(ξ)

=Fr;M(ξ)
T
(
d−2
M Fr;M(ξ)Ma,U(ξ)Fr;M(ξ)

T
)
Fr;M(ξ)

=Ma,U(ξ).

This proves the claim. Define b̊ ∈ (l0(Zd))s×r via
̂̊
b = b̂Û . The above identity is equivalent

to saying that {̊a; b̊}δIr;(ε1,...,εs) is a quasi-tight M-framelet filter bank. This proves item

(i).

By definition in item (ii), ψ̂(MTξ) =
̂̊
b(ξ)

̂̊
φ(ξ). Note that φ̂(0)

T

Û(0)φ̂(0) = ‖̂̊φ(0)‖2 =

1. Thus by Theorem 1.1.1, {φ̊;ψ}(ε1,...,εs) is a quasi-tight M-framelet in L2(Rd). Moreover,

note that ∆̂α(ξ)

000(dM−1)r×r

 φ̂(ξ) =

 ∆̂α(ξ)

000(dM−1)r×r

 (1, 0, . . . , 0)T+O(‖ξ‖n) = O(‖ξ‖m), ξ → 0, ∀α ∈ Nd
0;m.

Thus it follows that ψ̂(MTξ) =
̂̊
b(ξ)

̂̊
φ(ξ) = b̂(ξ)φ̂(ξ) = O(‖ξ‖m) as ξ → 0. This proves

item (ii).

We are now ready to prove the main result Theorem 3.3.1 on multivariate quasi-tight

framelets.

Proof of Theorem 3.3.1. By Theorem 3.2.5, there exists a strongly invertible θ ∈
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(l0(Zd))r×r such that

̂̊υ(ξ) := υ̂(ξ)θ̂(ξ)−1 =
1√
r

Υ̂N(ξ) + O(‖ξ‖m), ξ → 0, (3.3.23)

̂̊
φ(ξ) := θ̂(ξ)φ̂(ξ) =

1√
r

Υ̂N(ξ)
T

+ O(‖ξ‖n), ξ → 0, (3.3.24)

for some n > 2m, where Υ̂N is defined in (3.1.14). In fact, the proof works as long as

(3.3.13) and (3.3.14) hold with n > 2m.

By the choice of θ, item (2) trivially holds. Let ̂̊a(ξ) := θ̂(MTξ)â(ξ)θ̂(ξ)−1. Then å

is an order m EN-balanced refinement filter associated to the refinement vector function

φ̊, with the EN-balanced matching filter υ̊ ∈ (l0(Zd))1×r. Moreover, (3.3.13) and (3.3.14)

hold. Thus by Theorem 3.3.4, there exist b ∈ (l0(Zd))s×r and ε1, . . . , εs ∈ {±1} such that

items (1) and (3) hold.

On the other hand, using (3.3.23) and (3.3.24), we have

Υ̂N(ξ)̂̊a(ξ)
T

=
√
r
̂̊
φ(ξ)

T̂̊a(ξ)
T

+ O(‖ξ‖n) =
√
r
̂̊
φ(MTξ)

T

+ O(‖ξ‖n) = Υ̂N(MTξ) + O(‖ξ‖m),

and

Υ̂N(ξ )̂̊b(ξ)
T

=
√
r
̂̊
φ(ξ)

T̂̊
b(ξ)

T

+ O(‖ξ‖n) =
√
rψ̂(MTξ)

T

+ O(‖ξ‖n) = O(‖ξ‖m), ξ → 0.

as ξ → 0. Hence item (4) follows from Theorem 3.1.4. The proof is now complete.

Though Theorem 3.3.1 is for multiplicity r > 2, one can easily obtain a similar but

weaker result for r = 1. For r = 1, the notion of balancing property will not come into

play since we no longer need the vectorization of scalar data. On the other hand, a scalar

filter θ ∈ l0(Zd) is strongly invertible if and only if θ̂(ξ) = ce−ik·ξ for some c ∈ C \ {0}

and k ∈ Zd. Thus it is too much to expect the strong invertibility of θ when r = 1 (see

[33] for details about the case d = 1). By applying the Hermitian matrix decomposition

technique as presented in the proof of Theorem 3.3.4, one can still achieve high vanishing

moments on framelet generators. We have the following corollary of Theorem 3.3.4.
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Corollary 3.3.5. Let M be a d × d dilation matrix and let φ ∈ L2(Rd) be a compactly

supported refinable function satisfying φ̂(MTξ) = â(ξ)φ̂(ξ) with φ̂(0) 6= 0, where a ∈ l0(Zd)

has order m sum rules with respect to M satisfying (1.1.20) with a matching filter υ ∈

l0(Zd) such that v̂(ξ) = 1/φ̂(ξ) + O(‖ξ‖m) as ξ → 0. Then there exist b ∈ (l0(Zd))s×1,

ε1, . . . , εs ∈ {±1} and θ ∈ l0(Zd) such that

1. {a; b}Θ;(ε1,...,εs) forms an OEP-based quasi-tight M-framelet filter bank satisfying (3.3.3).

2. {φ̊;ψ}(ε1,...,εs) is a compactly supported quasi-tight M-framelet in L2(Rd) and ψ has

order m vanishing moments, where φ̊ and ψ are defined in (3.3.1).

3.4 The Structure of OEP-based Balanced Multivari-

ate Quasi-tight Multiframelets

In this section, we investigate the structure of OEP-based balanced quasi-tight multi-

framelets. To derive a balanced quasi-tight multiframelet through OEP, the filter θ in

Theorem 3.3.1 plays a key role in our investigation. Hence it is important for us to

understand the underlying structure that θ must satisfy. The proof of Theorem 3.3.1

reveals some ideas on which strongly invertible θ ∈ (l0(Zd))r×r serves as a desired filter

for constructing balanced quasi-tight framelets.

For simplicity of later discussion, we need the following definition.

Definition 3.4.1. Let N be a d × d integer matrix with | det(N)| = r > 2 and EN be

the vector conversion operator defined as (3.1.11). Let M be a d × d dilation matrix and

a ∈ (l0(Zd))r×r be a filter associated to a compactly supported refinable vector function

φ ∈ (L2(Rd))r satisfying φ̂(MTξ) = â(ξ)φ̂(ξ). Suppose that the filter a has order m sum

rules with respect to M satisfying (1.1.20) with a matching filter υ ∈ (l0(Zd))1×r such that

υ̂(0)φ̂(0) = 1. We say that θ ∈ (l0(Zd))r×r is an order m EN-balanced moment correction

filter associated to the filter a if θ is strongly invertible and there exist b ∈ (l0(Zd))s×r,

ε1, . . . , εs ∈ {±1} such that all claims in Theorem 3.3.1 hold.
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A concrete characterization of balanced moment correction filters is given by the fol-

lowing theorem.

Theorem 3.4.2. Let N be a d × d integer matrix with | det(N)| = r > 2 and define EN

and Υ̂N as in (3.1.11) and (3.1.14), respectively. Let M be a d × d dilation matrix and

φ ∈ (L2(Rd))r be a compactly supported M-refinable vector function satisfying φ̂(MTξ) =

â(ξ)φ̂(ξ) such that a ∈ (l0(Zd))r×r has order m sum rules with respect to M with a matching

filter υ ∈ (l0(Zd))1×r and υ̂(0)φ̂(0) 6= 0. Then the following statements hold:

(i) If θ ∈ (l0(Zd))r×r is strongly invertible and if (3.3.13) and (3.3.14) hold with n = 2m

and

̂̊a(ξ) := θ̂(MTξ)â(ξ)θ̂(ξ)−1, ̂̊υ(ξ) := υ̂(ξ)θ̂(ξ)−1 and
̂̊
φ(ξ) := θ̂(ξ)φ̂(ξ),

then θ is an order m EN-balanced moment correction filter associated to φ and a.

(ii) If θ ∈ (l0(Zd))r×r is an order m EN-balanced moment correction filter associated to

φ and a, then θ is strongly invertible and (3.3.14) must hold with n = 2m. If in

addition

1 is a simple eigenvalue of â(0),

and det(λ±βIr − â(0)) 6= 0 for all β ∈ Nd
0 with 0 < |β| < m,

(3.4.1)

where λ = (λ1, . . . , λd) is the vector of all the eigenvalues of M, and if

p̂(MTξ)Υ̂N(MTξ)̂̊a(ξ) = p̂(ξ)Υ̂N(ξ) + O(‖ξ‖m) as ξ → 0, (3.4.2)

for some p ∈ l0(Zd) with p̂(0) 6= 0, then (3.3.13) must hold.

Proof. Following the lines of the proof of Theorem 3.3.1, if θ is strongly invertible such

that (3.3.13) and (3.3.14) hold with n = 2m, then one can obtain b ∈ (l0(Zd))s×r and

ε1, . . . , εs ∈ {±1} such that all claims of Theorem 3.3.1 hold, which implies that θ must
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be an order m EN-balanced moment correction filter associated to φ and a. This proves

item (i).

Conversely, if θ is an order m EN-balanced moment correction filter associated to a,

then there exist b ∈ (l0(Zd))s×r and ε1, . . . , εs ∈ {±1} such that all claims of Theorem 3.3.1

hold. In particular,

̂̊a(ξ)
T̂̊a(ξ) +

̂̊
b(ξ)

T

Diag(ε1, . . . , εs )̂̊b(ξ) = Ir, (3.4.3)

where
̂̊
b(ξ) := b̂(ξ)[θ̂(ξ)]−1. By multiplying

̂̊
φ(ξ)

T

to the left and
̂̊
φ(ξ) to the right on both

sides of (3.4.3), and using item (1) of Theorem 3.3.1, we deduce that (3.3.14) holds with

n = 2m.

By item (4) of Theorem 3.3.1, we see that (3.1.13) holds with b being replaced by

b̊ respectively. Consequently, we deduce from (3.1.4), (3.1.5) and (3.3.4) that for all

u ∈ EN(Pm−1),

û(ξ) =

dM∑
j=1

û(ξ + 2πωj)̂̊a(ξ + 2πωj)
T̂̊a(ξ) +

dM∑
j=1

û(ξ + 2πωj )̂̊b(ξ + 2πωj)
T

Diag(ε1, . . . , εs )̂̊b(ξ)

= d
1
2
MT̂å,Mu(MTξ)̂̊a(ξ) + d

1
2
MT̂̊b,Mu(MTξ)Diag(ε1, . . . , εs )̂̊b(ξ) = ̂Så,MTå,Mu(ξ).

Suppose in addition that (3.4.1) and (3.4.2) hold. Let y ∈ (l0(Zd))1×r be such that

ŷ(ξ) = p̂(ξ)Υ̂N(ξ) + O(‖ξ‖m) where p is the same as in (3.4.2). (3.4.4)

By item (1) of Theorem 3.1.3, we have EN(Pm−1) = Pm−1,y ⊆ (Pm−1)1×r. Thus by item

(2) of Theorem 3.1.3, we have

Så,M(Pm−1,y) = Så,MTå,MEN(Pm−1) = EN(Pm−1) ⊆ (Pm−1)1×r.

Hence by item (3) of Theorem 3.1.3 and (3.4.2), å has order m sum rules with respect to

M, with a matching filter y ∈ (l0(Zd))1×r satisfying (3.4.4). On the other hand, since å
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has order m sum rules with a matching filter υ̊ with ̂̊υ := υ̂θ̂−1, we have

̂̊υ(MTξ)̂̊a(ξ) = ̂̊υ(ξ) + O(‖ξ‖m), ξ → 0.

Now the condition in (3.4.1) will force ̂̊υ(ξ) = ŷ(ξ) + O(‖ξ‖m) as ξ → 0.

By our assumption in item (ii) on θ, item (4) of Theorem 3.3.1 holds. Hence, (3.1.15)

and (3.1.16) of Theorem 3.1.4 hold with a = å and b = b̊. Multiplying Υ̂N(ξ) from the

left-hand side of (3.3.4) with ω = 0, we deduce from (3.1.15) and (3.1.16) that

Υ̂N(ξ) = Υ̂N(ξ)̂̊a(ξ)
T̂̊a(ξ)+O(‖ξ‖m) = ĉ(ξ)Υ̂N(MTξ)̂̊a(ξ)+O(‖ξ‖m) = ĉ(ξ)

p̂(ξ)

p̂(MTξ)
Υ̂N(ξ)+O(‖ξ‖m)

as ξ → 0. Since p̂(0) 6= 0 and Υ̂(0) 6= 0, we conclude from the above identity that ĉ(0) = 1.

Since
̂̊
φ(MTξ) = ̂̊a(ξ)

̂̊
φ(ξ) and (3.1.16) holds with ĉ(0) = 1 and a = å, (3.4.1) will force

̂̊
φ(ξ) = f̂(ξ)Υ̂N(ξ)

T

+ O(‖ξ‖m), ξ → 0

with f̂(ξ) :=
∏∞

j=1 ĉ((M
T)−jξ). Note that f̂(0) = 1, ̂̊υ(ξ)

̂̊
φ(ξ) = 1+O(‖ξ‖m) and ‖̂̊φ(ξ)‖2 =

rf̂(ξ)f̂(ξ) + O(‖ξ‖m) as ξ → 0. It follows that p̂(ξ) = 1

rf̂(ξ)
+ O(‖ξ‖m) as ξ → 0. Thus

̂̊υ(ξ) = [rf̂(ξ)]−1Υ̂N(ξ) + O(‖ξ‖m) = ‖̂̊φ(ξ)‖−2̂̊φ(ξ)
T

+ O(‖ξ‖m), ξ → 0.

Therefore, (3.3.13) holds. This proves item (ii).

Here we give an example to illustrate such an EN-balanced moment correction filter θ.

Example 3.1. Consider a compactly supported M√2-refinable vector function φ = (φ1, φ2)T

given in [26] (see Figure 3.1 for details) with its refinement matrix filter a ∈ (l0(Z2))2×2

being given by

â(ξ1, ξ2) :=
1

4

 2 1 + eiξ1 + eiξ2 + ei(ξ1+ξ2)

2e−iξ1 0

 and M√2 :=

1 1

1 −1

 . (3.4.5)
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The filter a has order 2 sum rules with respect to M√2, with a matching filter υ ∈

(l0(Z2))1×2 satisfying

v̂(ξ) =

(
1, 1 +

i

2
(ξ1 + ξ2)

)
+ O(‖ξ‖2), ξ = (ξ1, ξ2)→ (0, 0).

Let N := M√2. One can obtain an order 2 EN-balanced moment correction filter θ given

by

θ̂(ξ) :=

p1(ξ) p2(ξ)

p3(ξ) p4(ξ)

 , ξ ∈ R2,

where p1, p2, p3, p4 are the following 2πZ2-periodic bivariate trigonometric polynomials:

p1(ξ) :=

√
2

272

(
542001− 3225e−2iξ1 − 7740e−i(ξ1+ξ2) − 265735e−iξ1 + 12267eiξ2

−4522ei(ξ1−ξ2) − 273258eiξ1
)
,

p2(ξ) := −
√

2

17
e−i(ξ1+ξ2)

(
645e−iξ1 − 646

)
,

p3(ξ) :=

√
2

3264
ei(ξ1+ξ2)

[
(7740e−2iξ1 − 12267e−iξ1 + 4522)e−2iξ2 − 1075e−2iξ1 − 89655e−iξ1 + 90873

+(3225e−3iξ1 + 265735e−2iξ1 − 544581e−iξ1 + 274763)e−iξ2
]
,

p4(ξ) :=

√
2

204
e−iξ1(645e−i(ξ1+ξ2) − 646e−iξ2 − 215).

Define ̂̊υ(ξ) := υ̂(ξ)θ̂(ξ)−1 and
̂̊
φ(ξ) := θ̂(ξ)φ̂(ξ), we have ‖̂̊φ(ξ)‖2 = 1 + O(‖ξ‖4) as

ξ → (0, 0) and

̂̊υ(ξ) =
̂̊
φ(ξ)

T

= −
√

2

24
(12 + 429iξ1 − iξ2, 12 + 435iξ1 + 5ξ2) + O(‖ξ‖2), ξ → (0, 0).

By Theorem 3.4.2, there exist b ∈ (l0(Zd))s×r and ε1, . . . , εs ∈ {±1} such that all the

claims in Theorem 3.3.1 hold with m = 2. For simplicity of presentation, we skip details

about filters b ∈ (l0(Zd))s×r.

The characterization of balanced moment correction filters in Theorem 3.4.2 moti-

vates us to establish an algorithm for constructing quasi-tight multiframelets with high
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(A) φ1 (B) φ2

Figure 3.1: The entries of the M√2-refinable vector function φ = (φ1, φ2)T in Example 3.1.

balancing orders.

Lemma 3.4.3. Let r > 2 and s ∈ N be positive integers. Let N be a d× d integer matrix

with | det(N)| = r and define EN as in (3.1.11). Then b ∈ (l0(Zd))s×r has order m EN-

balanced vanishing moments if and only if there exist qβ ∈ (l0(Zd))s×1 for all β ∈ Nd
0;m

such that

b̂(ξ) =
∑

β∈Nd0;m

Qqβ ;N(ξ)Êβ;N(ξ) with Êβ;N := E∇βδ,0;N, (3.4.6)

where Nd
0;m := {β ∈ Nd

0 : |β| = m}, E∇βδ,0;N is defined as in (3.3.7) with u and M being

replaced by ∇βδ and N, respectively, and Qqβ ;N is defined in (3.3.9) with u and M being

replaced by qβ and N, respectively.

Proof. Suppose that b has order m EN-balanced vanishing moments, i.e., (3.1.15) holds.

Recall that {̊γ1, . . . , γ̊r} = ΓN as in (3.1.10). For simplicity, we define u[̊γj ] := u[̊γj ;N] for

the γ̊j-coset of u with respect to N. Let b̂j be the j-th column of b̂ for j = 1, . . . , r. By
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Lemma 3.3.2, there exist qβ ∈ (l0(Zd))s×1 for all β ∈ Nd
0;m such that

r∑
j=1

e−i̊γj ·ξ b̂j(N
Tξ) =

∑
β∈Nd0;m

∇̂βδ(ξ)q̂β(ξ)

=
∑

β∈Nd0;m

(
r∑

k=1

∇̂βδ [̊γk](NTξ)e−i̊γk·ξ

)(
r∑
l=1

q̂
[̊γl]
β (NTξ)e−i̊γl·ξ

)

=
∑

β∈Nd0;m

r∑
k=1

r∑
l=1

∇̂βδ [̊γk](NTξ)q̂
[̊γl]
β (NTξ)e−i(̊γk+γ̊l)·ξ.

(3.4.7)

For every pair of indices k, l ∈ {1, . . . , r}, there exist unique γ̊k,l ∈ ΓN and pk,l ∈ Zd such

that γ̊k + γ̊l − γ̊k,l = Npk,l. Note that û[̊γ](ξ)eip·ξ = û[̊γ+Np](ξ) for all γ̊, p ∈ Zd. It follows

that

∇̂βδ [̊γk](NTξ)q̂
[̊γl]
β (NTξ)e−i(̊γk+γ̊l)·ξ = ∇̂βδ [̊γk](NTξ)q̂

[̊γl]
β (NTξ)e−i̊γk,l·ξe−ipk,l·N

Tξ

= ̂∇βδ [̊γk−Npk,l](NTξ)q̂
[̊γl]
β (NTξ)e−i̊γk,l·ξ = ̂∇βδ [̊γk,l−γ̊k](NTξ)q̂

[̊γl]
β (NTξ)e−i̊γk,l·ξ.

It follows from (3.4.7) and the above identities that

r∑
k=1

e−i̊γk·ξ b̂k(N
Tξ) =

r∑
k=1

∑
β∈Nd0;m

r∑
l=1

̂∇βδ [̊γk−γ̊l](NTξ)q̂
[̊γl]
β (NTξ)e−i̊γk·ξ. (3.4.8)

Hence, b̂k(ξ) =
∑

β∈Nd0;m

∑r
l=1

̂∇βδ [̊γk−γ̊l](ξ)q̂
[̊γl]
β (ξ) for all k = 1, . . . , r and (3.4.6) follows

immediately.

Conversely, if (3.4.6) holds, then (3.4.8) must hold. By working out the above calcula-

tion backwards, we obtain (3.4.7), which precisely means that b has order m EN-balanced

vanishing moments.

The following result is an immediate consequence of Lemma 3.4.3.

Proposition 3.4.4. Let M be a d×d dilation matrix and N be a d×d integer matrix with

| det(N)| = r > 2 and define EN as in (3.1.11). Let φ ∈ (L2(Rd))r be a compactly supported

vector function satisfying φ̂(MTξ) = â(ξ)φ̂(ξ) with a ∈ (l0(Zd))r×r. Suppose a has order

m sum rules with respect to M satisfying (1.1.20) with a matching filter υ ∈ (l0(Zd))1×r
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such that υ̂(0)φ̂(0) = 1. If θ ∈ (l0(Zd))r×r is an order m EN-balanced moment correction

filter associated to a, by letting ̂̊a(ξ) = θ̂(MTξ)â(ξ)θ̂(ξ)−1 and

Må(ξ) := IdMr − På;M(ξ)
T
På;M(ξ), (3.4.9)

then there exist Aα,β ∈ (l0(Zd))dMr×dMr for all α, β ∈ Nd
0;m with α � β such that

Âα,α(ξ)
T

= Âα,α(ξ) (3.4.10)

and

d−2
M Fr;M(ξ)Må(ξ)Fr;M(ξ)

T
=

∑
α∈Nd0;m

EEα;N,0(MTξ)
T
Âα,α(MTξ)EEα;N,0(MTξ)+

∑
α,β∈Nd0;m,α≺β

[
EEα;N,0(MTξ)

T
Âα,β(MTξ)EEβ;N,0(MTξ)

+EEβ;M,0(MTξ)
T ̂Aα,β(MTξ)

T

EEα;N,0(MTξ)

]
,

(3.4.11)

where Fr;M is defined in (3.3.5), Eβ;N is defined via (3.4.6), and EEβ;N,0 := EEβ;N,0;M is

defined via (3.3.7) with u and ω being replaced by Eβ;N and 0 respectively.

Proof. Since θ is an order m EN-balanced moment correction filter associated to φ and a,

there exist b ∈ (l0(Zd))s×r and ε1, . . . , εs ∈ {±1} such that all the claims of Theorem 3.3.1

hold. In particular, by letting
̂̊
b := b̂θ̂, {̊a; b̊}(ε1,...,εs) is a quasi-tight M-framelet filter bank

satisfying

Må(ξ) = P̊b;M(ξ)
T
Diag(ε1, . . . , εs)P̊b;M(ξ).

Moreover, the filter b̊ has order m EN-balanced vanishing moments. So by Lemma 3.4.3,

there exist qβ ∈ (l0(Zd))s×1 for all β ∈ Nd
0;m such that (3.4.6) holds with b being replaced

by b̊. Define

̂̊
bj(ξ) :=

̂̊
b(ξ)

T

Diag(ε1, . . . , εs )̂̊b(ξ + 2πωj), j = 1, . . . , dM.
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It follows that for j = 1, . . . , dM,

̂̊
bj(ξ) =

∑
α,β∈Nd0;m

Êα;N(ξ)
T

Qqα;N(ξ)
T
Diag(ε1, . . . , εs)Qqβ ;N(ξ + 2πωj)Êβ;N(ξ + 2πωj).

For j = 1, . . . , dM, letting

q̂α,β,j(ξ) := Qqα;N(ξ)
T
Diag(ε1, . . . , εs)Qqβ ;N(ξ + 2πωj), α, β ∈ Nd

0;m,

we have

Må(ξ) =

dM∑
j=1

Db̊j ,ωj ;M
(ξ) =

dM∑
j=1

∑
α,β∈Nd0;m

DEα;N,0;M(ξ)
T
Dqα,β,j ,ωj ;M(ξ)DEβ;N,0;M(ξ). (3.4.12)

Note that the decomposition in (3.4.12) is similar to the one in (3.3.20). Thus by applying

the same idea as in the proof of Theorem 3.3.4, one can obtain (3.4.11).

We now provide an algorithm for constructing balanced multivariate quasi-tight framelets.

This offers an alternative constructive proof to Theorem 3.3.1 on multivariate quasi-tight

framelets.

Theorem 3.4.5. Let M be a d × d dilation matrix and φ ∈ (L2(Rd))r be a compactly

supported vector function satisfying φ̂(MTξ) = â(ξ)φ̂(ξ) with a ∈ (l0(Zd))r×r. Suppose that

the filter a has order m sum rules with respect to M satisfying (1.1.20) with a matching

filter υ ∈ (l0(Zd))1×r such that υ̂(0)φ̂(0) = 1. If N is an d × d integer matrix with

| det(N)| = r > 2, then one can obtain b ∈ (l0(Zd))s×r, ε1, . . . , εs ∈ {±1} and θ ∈

(l0(Zd))r×r such that all claims of Theorem 3.3.1 hold by implementing the following steps:

(Step 1) Construct a strongly invertible θ ∈ (l0(Zd))r×r such that (3.3.13) and (3.3.14) hold

with n = 2m, where ̂̊υ(ξ) := υ̂(ξ)θ̂−1(ξ) and
̂̊
φ(ξ) = θ̂(ξ)φ̂(ξ).

(Step 2) Define ̂̊a(ξ) := θ̂(MTξ)â(ξ)θ̂(ξ)−1 and Må(ξ) as in (3.4.9). Apply Proposition 3.4.4

to find Aα,β ∈ (l0(Zd))rdM×rdM for all α, β ∈ Nd
0;m with α � β such that (3.4.10) and

(3.4.11) hold.
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(Step 3) For all α, β ∈ Nd
0;m with α ≺ β, factorize Âα,β(ξ) = Âα,β,1(ξ)

T

Âα,β,2(ξ) with

Aα,β,1, Aα,β,2 ∈ (l0(Zd))dMr×dMr. Find Bα ∈ (l0(Zd))rdM×rdM for every α ∈ Nd
0;m

such that B̂α(ξ)
T

= B̂α(ξ) and

∑
α,β∈Nd0;m,α≺β

(
Âα,β,1(ξ)EEα;N,0(ξ) + Âα,β,2(ξ)EEβ;N,0(ξ)

)T (
Âα,β,1(ξ)EEα;N,0(ξ) + Âα,β,2(ξ)EEβ;N,0(ξ)

)
+

∑
α∈Nd0;m

EEα;N,0(ξ)
T
B̂α(ξ)EEα;N,0(ξ) = N (ξ),

where N (MTξ) := d−2
M Fr;M(ξ)Må(ξ)Fr;M(ξ)

T
and EEβ;N,0 := EEβ;N,0;M is defined via

(3.3.7) with u and ω being replaced by Eβ;N and 0, respectively.

(Step 4) Define εα,β,k = 1 and b̊α,β,k ∈ (l0(Zd))1×r for k = 1, . . . , dMr and α, β ∈ Nd
0;m with

α ≺ β via

̂̊
bα,β(ξ) :=


̂̊bα,β,1(ξ)

...

˚̂bα,β,dMr(ξ)

 := Âα,β,1(MTξ) Fr;M(ξ)

 Êα;N(ξ)

000(dM−1)r×r

+Âα,β,2(MTξ) Fr;M(ξ)

 Êβ;N(ξ)

000(dM−1)r×r.

 ,
for ` ∈ {1, 2} and k = 1, . . . , dMr, define ε`;α,k = (−1)`+1 and b̊`;α,k ∈ (l0(Zd))1×r by

̂̊
b`;α(ξ) :=


̂̊
b`;α,1(ξ)

...

˚̂b`;α,dMr(ξ)

 :=
(
pIr − (−1)`q(Âα,α(MTξ)− B̂α(MTξ))

)
Fr;M(ξ)

 Êα;N(ξ)

000(dM−1)r×r



for α ∈ Nd
0;m, where p, q ∈ R satisfy p+ q = 1

4
. Define

{(̊b`, ε`) : ` = 1, . . . , s} :={(̊bα,β,k, εα,β,k) : α, β ∈ Nd
0;m with α ≺ β, k = 1, . . . , dMr}

∪ {(̊b`;α,k, ε`;α,k) : α ∈ Nd
0;m, k = 1, . . . , dMr, ` = 1, 2}.

Let b̊ := [̊bT1 , . . . , b̊
T
s ]T and b = b̊∗θ. Then {̊a; b̊}δIr,(ε1,...,εr) is a finitely supported quasi-tight

M-framelet filter bank such that all the claims of Theorem 3.3.1 hold.

Proof. The existence of θ ∈ (l0(Zd))r×r satisfying all the conditions in (Step 1) is guaran-

109



teed by Theorem 3.2.1 (e.g. choose θ ∈ (l0(Zd))r×r such that (3.3.23) and (3.3.24) hold).

So it is straightforward to see that item (2) of Theorem 3.3.1 holds. Moreover, θ is an

order m EN-balanced moment correction filter associated to φ and a. Thus, (Step 2) is

justified by Proposition 3.4.4. The filters Bα satisfying the identity in (Step 3) can be

obtained by using the same idea as in the proof of Theorem 3.3.4. Now define b̊ as in

(Step 4). By (3.3.8) and the identity Fr;M(ξ)
T
Fr;M(ξ) = dMIdMr, we deduce that

P̊bα,β ;M(ξ) = Âα,β,1(MTξ)EEα;N,0(MTξ)Fr;M(ξ) + Âα,β,2(MTξ)EEβ;N,0(MTξ)Fr;M(ξ),

(3.4.13)

P̊b`;α;M(ξ) =
(
pIr − (−1)`q(Âα,α(MTξ)− B̂α(MTξ))

)
EEα;N,0(MTξ)Fr;M(ξ), (3.4.14)

for ` ∈ {1, 2}. By (3.4.13) and (3.4.14), item (3) of Theorem 3.3.1 can be verified by

direct calculation.

Define qα,β,l, ql;α ∈ (l0(Zd))dMr×1 for ` = 1, 2 and for all α, β ∈ Nd
0;m with α ≺ β such

that

Qqα,β,`;N(ξ) := Âα,β,`(M
Tξ)Fr;M(ξ)

 Ir

000(dM−1)r×r

 ,
Qq`;α;N(ξ) :=

(
pIr − (−1)`q(Âα,α(MTξ)− B̂α(MTξ))

)
Fr;M(ξ)

 Ir

000(dM−1)r×r


for ` ∈ {1, 2}. We see that

̂̊
bα,β(ξ) = Qqα,β,1;N(ξ)Êα;N(ξ) +Qqα,β,2;N(ξ)Êβ;N(ξ)

for all α, β ∈ Nd
0;m with α ≺ β, and

̂̊
b`;α(ξ) = Qq`;α;N(ξ)Êα;N(ξ) for all α ∈ Nd

0;m and

` = 1, 2. Hence Lemma 3.4.3 implies that b̊ has order m EN-balanced vanishing moments.

Combining this fact with (3.3.14), we conclude that items (1) and (4) of Theorem 3.3.1

follow right away.
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3.5 Summary of the Chapter

In sharp contrast to univariate quasi-tight framelets, multivariate quasi-tight framelets

are much harder to study and construct. This is because constructing framelet filter

banks is related to the factorization of polynomial matrices, which is challenging when

the dimension d > 1. Furthermore, it is more difficult to achieve high order of vanishing

moments on the framelet generators when d > 1, as the technique of separate out the

special factors (1 − e−iξ)m in the case d = 1 is no longer valid. Nevertheless, we were

able to generalize the theory of quasi-tight multiframelets to arbitrary dimentions. We

developed the multivariate version of a matrix-valued filter normal form as a tool to

study multiframelets. Consequently, we proved the existence of OEP-based multivariate

quasi-tight multiframelets, and performed analysis on their structural properties.

3.6 References

1. M. Charina, M. Putinar, C. Scheiderer and J. Stöckler, An algebraic perspective on
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Chapter 4

Multivariate Dual Multiframelets

Derived from Arbitrary Compactly

Supported Refinable Vector

Functions

In Chapters 2 and 3, we studied how to obtain a quasi-tight multiframelet with several

desired properties from any given compactly supported refinable vector functions. In this

chapter, we consider the more general question, on how to derive a dual multiframelet

with high vanishing moments and high balancing orders, from any given pair of compactly

supported refinable vector functions. The work of this chapter is summarized as [57].

Comparing with univariate framelets, the main challenge involved in studying multi-

variate framelets is that we have to deal with the highly non-trivial problem of factor-

izing multivariate polynomial matrices (see e.g. [4, 5]). As a consequence, multivariate

framelets are much less studied than univariate framelets in the literature. Among those

existing works on multivariate framelets, most of them are for the scalar case (see e.g.

[16, 20, 23, 31, 36, 39, 55, 63, 69]). We are only aware of the following papers which discuss

multivariate dual multiframelets from the theoretical aspect: (1) [35] studies the balanc-

ing property and the structure of OEP-based multivariate dual multiframelets; (2) [44]
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studies multivariate OEP-based quasi-tight framelets, which we have seen these work in

Chapter 3. How one can obtain a desired OEP-based multivariate dual multiframelet

from refinable vector functions remains unsolved, and we will answer this question in this

chapter. The work of this chapter generalizes the results on univariate dual multiframelets

in [33].

4.1 The Main Theorem on OEP-based Dual Multi-

framelets

In this section, we prove the following theorem on OEP-based balanced dual multi-

framelets.

Theorem 4.1.1. Let M be a d × d dilation matrix and r > 2 be an integer. Let φ, φ̃ ∈

(L2(Rd))r be compactly supported M refinable vector functions associated with refinement

masks a, ã ∈ (l0(Zd))r×r. Suppose that sr(a,M) = m̃ and sr(ã,M) = m with matching

filters υ, υ̃ ∈ (l0(Zd))1×r respectively such that υ̂(0)φ̂(0) 6= 0 and ̂̃υ(0)̂̃φ(0) 6= 0. Let N

be a d × d integer matrix with | det(N)| = r. Then there exist θ, θ̃ ∈ (l0(Zd))r×r and

b, b̃ ∈ (l0(Zd))s×r for some s ∈ N such that

(1) θ and θ̃ are both strongly invertible.

(2) Define finitely supported filters å, b̊,˚̃a,˚̃b via (3.1.8) and (3.1.9). Then ({̊a; b̊}, {̊ã;˚̃b})δIr
is an OEP-based dual M-framelet filter bank. Moreover, bo({̊a; b̊},M,N) = sr(̊ã,M) =

m.

(3) ({φ̊;ψ}, {˚̃φ; ψ̃}) is a compactly supported dual M-framelet in L2(Rd) with vm(ψ) = m

and vm(ψ̃) = m̃, where φ̊, ψ, ˚̃φ, ψ̃ are vector-valued functions defined as in (1.1.12)

and (1.1.13).

Proof. Let Υ̂N be defined as in (3.1.14), and let n := m + m̃. By Theorem 3.2.5, there
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exist strongly invertible filters θ, θ̃ ∈ (l0(Zd))r×r such that

̂̊υ(ξ) = r−1/2Υ̂N(ξ) + O(‖ξ‖m̃),
̂̊
φ(ξ) = r−1/2Υ̂N(ξ)

T

+ O(‖ξ‖n), (4.1.1)

̂̃̊υ(ξ) = r−1/2Υ̂N(ξ) + O(‖ξ‖m),
̂̊̃
φ(ξ) = r−1/2Υ̂N(ξ)

T

+ O(‖ξ‖n), (4.1.2)

as ξ → 0, where ̂̊υ := υ̂θ̂−1,
̂̊
φ := θ̂φ̂, ̂̃̊υ := ̂̃υ̂̃θ−1

and
̂̊̃
φ := ̂̃θ̂̃φ. In particular, item (1) holds.

Define å,˚̃a ∈ (l0(Zd))r×r as in (3.1.8). It is trivial that å (resp. ˚̃a) has m̃ (resp. m) sum

rules with respect to M with a matching filter υ̊ (resp. ˚̃υ), and satisfies the refinement

relation
̂̊
φ(MT·) = ̂̊â̊φ (resp.

̂̊̃
φ(MT·) = ̂̃̊â̊̃φ).

It remains to show the existence of finitely supported filters b, b̃ ∈ (l0(Zd))s×r such

that items (2) and (3) hold. By Theorems 3.2.1, there exists a strongly invertible filter

U ∈ (l0(Zd))r×r such that

r−1/2Υ̂N(ξ)Û(ξ)−1 = (1, 0, . . . , 0)+O(‖ξ‖max(m,m̃)), r−1/2Û(ξ)Υ̂N(ξ)
T

= (1, 0, . . . , 0)T+O(‖ξ‖n),

as ξ → 0. Moreover, Û can be chosen such that the following relation holds:

̂̃U(ξ) := Û(ξ)
−T
Û(ξ)−1 = Diag

(
‖r−1/2Υ̂N(ξ)‖2, ‖Û2‖2, . . . , ‖Ûr(ξ)‖2

)
+ O(‖ξ‖n)

= Diag
(

1,
̂̆
U(ξ)

)
+ O(‖ξ‖n), ξ → 0,

where Uj denotes the j-th column of U−1 for all j = 2, . . . , r and
̂̆
U := Diag(‖Û2‖2, . . . , ‖Ûr‖2).

Define ă, ˘̃a ∈ (l0(Zd))r×r via ̂̆a := Û(MT·)̂̊aÛ−1 and ̂̃̆a := Û(MT·)̂̃̊aÛ−1. It is not hard

to see that ă =

ă1,1 ă1,2

ă2,1 ă2,2

 takes the ideal (m̃, n)-normal form, and ˘̃a =

˘̃a1,1
˘̃a1,2

˘̃a2,1
˘̃a2,2


takes the ideal (m,n)-normal form, that is, ̂̆a1,1,̂̆a1,2,̂̆a2,1 and ̂̆a2,2 (resp. ̂̃̆a1,1,

̂̃̆a1,2,
̂̃̆a2,1 and̂̃̆a2,2) are 1 × 1, 1 × (r − 1), (r − 1) × 1 and (r − 1) × (r − 1) matrices of 2πZd-periodic

trigonometric polynomials such that

• ̂̆a1,1(ξ) = 1 + O(‖ξ‖n) (resp. ̂̃̆a1,1(ξ) = 1 + O(‖ξ‖n)) as ξ → 0, and ̂̆a1,1(ξ + 2πω) =

O(‖ξ‖m̃) (resp. ̂̃̆a1,1(ξ + 2πω) = O(‖ξ‖m)) as ξ → 0 for all ω ∈ ΩM \ {0}.
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• ̂̆a1,2(ξ + 2πω) = O(‖ξ‖m̃) (resp. ̂̃̆a1,2(ξ + 2πω) = O(‖ξ‖m)) as ξ → 0 for all ω ∈ ΩM.

• ̂̆a2,1(ξ) = O(‖ξ‖n) (resp. ̂̃̆a2,1(ξ) = O(‖ξ‖n)) as ξ → 0.

Define Mă,˘̃a,Ũ as

Mă,˘̃a,Ũ (ξ) :=


̂̃U(ξ + 2πω1)

. . . ̂̃U(ξ + 2πωdM)

− Pă;M(ξ)
T ̂̃U(MTξ)P˘̃a;M(ξ), (4.1.3)

where Pu;M is defined as in (1.3.1) for any matrix valued filter u. Note that Mă,˘̃a,Ũ =∑dM
j=1DAj ,ωj ;M where Aj ∈ (l0(Zd))r×r, j = 1, . . . , dM are defined via

Âj(ξ) := δ(ωj)
̂̃U(ξ)− ̂̆a(ξ)

T ̂̃U(MTξ)̂̃̆a(ξ + 2πωj), j = 1, . . . , dM, (4.1.4)

and DAj ,ωj ;M is defined as in (3.3.6) with u and ω being replaced by Aj and ωj respectively.

We now perform structural analysis on each Âj. First consider j = 1, we have

Â1(ξ) =

1

̂̆U(ξ)

− ̂̆a(ξ)
T

1 ̂̆
U(MTξ)

 ̂̃̆a(ξ) + O(‖ξ‖n) =

Â1;1 Â1;2

Â1;3 Â1;4

 , ξ → 0,

where Â1;1, Â1;2, Â1;3 and Â1;4 are 1×1, 1×(r−1), (r−1)×1 and (r−1)×(r−1) matrices

of 2πZd-periodic trigonometric polynomials, satisfying the following moment conditions

as ξ → 0:

Â1;1(ξ) = 1−
(̂̆a1,1(ξ)̂̃̆a1,1(ξ) + ̂̆a2,1(ξ)

T ̂̆
U(MTξ)̂̃̆a2,1(ξ)

)
+ O(‖ξ‖n) = O(‖ξ‖n), (4.1.5)

Â1;2(ξ) = −̂̆a1,1(ξ)̂̃̆a1,2(ξ)− ̂̆a2,1(ξ)
T ̂̆
U(MTξ)̂̃̆a2,2(ξ) + O(‖ξ‖n) = O(‖ξ‖m), (4.1.6)

Â1;3(ξ) = −̂̆a1,2(ξ)
T̂̃̆a1,1(ξ)− ̂̆a2,2(ξ)

T ̂̆
U(MTξ)̂̃̆a2,1(ξ) + O(‖ξ‖n) = O(‖ξ‖m̃). (4.1.7)

Recall that ∆α := Diag(∇αδ, δIr−1) for all α ∈ Nd
0 and Nd

0;m := {β ∈ Nd
0 : |β| = m} for
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all m ∈ N0. It follows from (4.1.5),(4.1.6),(4.1.7) and Lemma 3.3.2 that

Â1(ξ) =
∑

α∈Nd0;m,β∈Nd0;m̃

∆̂α(ξ)
T

Â1,α,β(ξ)∆̂β(ξ), (4.1.8)

where A1,α,β ∈ (l0(Zd))r×r for all α ∈ Nd
0;m, β ∈ Nd

0;m̃.

For j = 2, . . . , dM, we have

Âj(ξ) = −̂̆a(ξ)
T

1 ̂̆
U(MTξ)

 ̂̃̆a(ξ + 2πωj) + O(‖MTξ‖n) =

Âj;1 Âj;2

Âj;3 Âj;4

 ,
as ξ → 0, where Âj;1, Âj;2, Âj;3 and Âj;4 are 1×1, 1×(r−1), (r−1)×1 and (r−1)×(r−1)

matrices of 2πZd-periodic trigonometric polynomials for each j, satisfying the following

moment conditions as ξ → 0:

Âj;1(ξ) = −
(̂̆a1,1(ξ)̂̃̆a1,1(ξ + 2πωj) + ̂̆a2,1(ξ)

T ̂̆
U(MTξ)̂̃̆a2,1(ξ + 2πωj)

)
+ O(‖MTξ‖n) = O(‖ξ‖m),

Âj;1(ξ − 2πωj) = −
(̂̆a1,1(ξ − 2πωj)

̂̃̆a1,1(ξ) + ̂̆a2,1(ξ − 2πωj)
T ̂̆
U(MTξ)̂̃̆a2,1(ξ)

)
+ O(‖MTξ‖n)

= O(‖ξ‖m̃),

Âj;2(ξ) = −̂̆a1,1(ξ)̂̃̆a1,2(ξ + 2πωj)− ̂̆a2,1(ξ)
T ̂̆
U(MTξ)̂̃̆a2,2(ξ + 2πωj) + O(‖MTξ‖n) = O(‖ξ‖m),

Âj;3(ξ − 2πωj) = −̂̆a1,2(ξ − 2πωj)
̂̃̆a1,1(ξ)− ̂̆a2,2(ξ − 2πωj)

T ̂̆
U(MTξ)̂̃̆a2,1(ξ) + O(‖MTξ‖n)

= O(‖ξ‖m̃).

Hence one can conclude that

Âj(ξ) =
∑

α∈Nd0;m,β∈Nd0;m̃

∆̂α(ξ)
T

Âj,α,β(ξ)∆̂β(ξ + 2πωj), (4.1.9)

where Aj,α,β ∈ (l0(Zd))r×r for all α ∈ Nd
0;m, β ∈ Nd

0;m̃ and all j = 2, . . . , dM. It follows from
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(4.1.8) and (4.1.9) that

Mă,˘̃a,Ũ(ξ) =

dM∑
j=1

DAj ,ωj ;M(ξ) =

dM∑
j=1

∑
α∈Nd0;m,β∈Nd0;m̃

D∆α,0;M(ξ)
T
DAj,α,β ,ωj ;M(ξ)D∆β ,0;M(ξ).

Define Nă,˘̃a,Ũ as in (3.3.11) with a, ã and Θ being replaced by ă, ˘̃a and Ũ respectively.

Define Eu,ω;M as in (3.3.7) for any u ∈ (l0(Zd))r×r and ω ∈ ΩM. By (3.3.8) and Fr;M Fr;M
T

=

dMIdMr with Fr;M being defined as in (3.3.5), we have

Nă,˘̃a,Ũ(MTξ) = d−2
M Fr;M(ξ)Mă,˘̃a,Ũ(ξ)Fr;M(ξ)

T

=d−1
M

dM∑
j=1

∑
α∈Nd0;m,β∈Nd0;m̃

E∆α,0;M(MTξ)
T
EAj,α,β ,ωj ;M(MTξ)E∆β ,0;M(MTξ).

(4.1.10)

By letting

Eα,β(ξ) := d−1
M

dM∑
j=1

EAj,α,β ,ωj ;M(ξ), ξ ∈ Rd, α ∈ Nd
0;m, β ∈ Nd

0;m̃, (4.1.11)

we have

Nă,˘̃a,Ũ(ξ) =
∑

α∈Nd0;m,β∈Nd0;m̃

E∆α,0;M(ξ)
T
Eα,β(ξ)E∆β ,0;M(ξ). (4.1.12)

For every α ∈ Nd
0;m̃ and β ∈ Nd

0;m, choose Eα,β,1 and Eα,β,1 which are dMr × dMr ma-

trices of 2πZd-periodic trigonometric polynomials such that Eα,β = Eα,β,1
T
Eα,β,2. Define

b̆α,β,k,
˘̃bα,β,k ∈ (l0(Zd))1×r for k = 1, . . . , dMr and all α ∈ Nd

0;m, β ∈ Nd
0;m̃ via

̂̆
bα,β(ξ) :=


̂̆bα,β,1(ξ)

...

˘̂bα,β,dMr(ξ)

 := Eα,β,1(MTξ)Fr;M(ξ)

 ∆̂α(ξ)

000dM(r−1)×r

 , (4.1.13)

̂̃̆
bα,β(ξ) :=


̂̃̆
bα,β,1(ξ)

...

˘̃̂bα,β,dMr(ξ)

 := Eα,β,2(MTξ)Fr;M(ξ)

 ∆̂β(ξ)

000dM(r−1)×r

 , (4.1.14)

121



where 000t×q denotes the t × q zero matrix. Recall that Pu;M(ξ) = [û(ξ + 2πω1), . . . , û(ξ +

2πωdM)] as in (1.3.1) for all matrix-valued filter u. It follows from (3.3.8) and Fr;M Fr;M
T

that

Pb̆α,β ;M(ξ) = Eα,β,1(MTξ)E∆α,0;M(MTξ)Fr;M(ξ)
T
. (4.1.15)

Similarly,

P˘̃
bα,β ;M

(ξ) = Eα,β,2(MTξ)E∆β ,0;M(MTξ)Fr;M(ξ)
T
. (4.1.16)

It follows from (4.1.10), (4.1.12), (4.1.15) and (4.1.16) that

Mă,˘̃a,Ũ(ξ) = Fr;M(ξ)
T
Nă,˘̃a,Ũ(MTξ)Fr;M(ξ) =

∑
α∈Nd0;m,β∈Nd0;m̃

Pb̆α,β ;M(ξ)
T
P˘̃
bα,β ;M

(ξ). (4.1.17)

Define

{b̆` : ` = 1, . . . , s} := {b̆α,β : α ∈ Nd
0;m, β ∈ Nd

0;m̃}, (4.1.18)

{˘̃b` : ` = 1, . . . , s} := {˘̃bα,β : α ∈ Nd
0;m, β ∈ Nd

0;m̃}, (4.1.19)

and let b̆ := [b̆T1 , . . . , b̆
T
s ]T, ˘̃b := [˘̃bT1 , . . . ,

˘̃bTs ]T. We see that (4.1.17) becomes

Mă,˘̃a,Ũ(ξ) = Pb̆;M(ξ)
T
P˘̃
b;M

(ξ), (4.1.20)

which is equivalent to say that ({ă; b̆}, {˘̃a; ˘̃b})Ũ is an OEP-based dual M-framelet filter

bank satisfying

̂̆a(ξ)
T ̂̃U(MTξ)̂̃̆a(ξ + 2πω) +

̂̆
b(ξ)

T̂̃̆
b(ξ + 2πω) = δ(ω) ̂̃U(ξ), ξ ∈ Rd, ω ∈ ΩM. (4.1.21)

Now define b̊,˚̃b, b, b̃ ∈ (l0(Zd))s×r via

̂̊
b(ξ) :=

̂̆
b(ξ)Û(ξ),

̂̃̊
b(ξ) :=

̂̃̆
b(ξ)Û(ξ), b̂(ξ) :=

̂̊
b(ξ)θ̂(ξ)−1, ̂̃b(ξ) :=

̂̊
b(ξ)̂̃θ(ξ)−1.

It follows from (4.1.21) that ({̊a; b̊}, {̊ã;˚̃b})Ir is an OEP-based dual M-framelet filter bank
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satisfying

̂̊a(ξ)
T̂̃̊a(ξ + 2πω) +

̂̊
b(ξ)

T̂̃̊
b(ξ + 2πω) = δ(ω)Ir, ξ ∈ Rd, ω ∈ ΩM, (4.1.22)

and ({a; b}, {ã; b̃})Θ (where Θ := θ? ∗ θ̃) is an OEP-based dual M-framelet filter bank

satisfying (1.1.14). Note that

Υ̂N(ξ )̂̊b(ξ)
T

= Υ̂N(ξ)Û(ξ)
T̂̆
b(ξ)

T

= r1/2(1, 0, . . . , 0)̂b̆(ξ)
T

+ O(‖ξ‖n), ξ → 0. (4.1.23)

Moreover, it is trivial that (1, 0, . . . , 0)

[
∆̂α(ξ)

T

,000r×dM(r−1)

]
= O(‖ξ‖m) as ξ → 0 for all

α ∈ Nd
0;m. Thus by (4.1.23) and the way we define b̆, we conclude that

Υ̂N(ξ )̂̊b(ξ)
T

= O(‖ξ‖m), ξ → 0. (4.1.24)

Similarly, we deduce that

Υ̂N(ξ )̂̊b̃(ξ)

T

= O(‖ξ‖m̃), ξ → 0. (4.1.25)

On the other hand, it follows immediately from the definition of φ̊ in (4.1.1) and the

refinement structure
̂̊
φ(MT·) = ̂̊â̊φ that

Υ̂N(ξ)̂̊a(ξ)
T

= Υ̂N(MTξ) + O(‖ξ‖m), ξ → 0. (4.1.26)

Hence by Theorem 3.1.4, we have bo({̊a; b̊},M,N) = m = sr(̊ã;M). This proves item (2).

Now define vector functions φ̊, ψ, ˚̃φ, ψ as in (1.1.12) and (1.1.13). We have

ψ̂(MTξ) = b̂(ξ)φ̂(ξ) =
̂̊
b(ξ)

̂̊
φ(ξ) = r−1/2̂̊b(ξ)Υ̂N(ξ) + O(‖ξ‖n) = O(‖ξ‖m), ξ → 0,

where the last identity follows from (4.1.24). Thus vm(ψ) = m. Similarly, (4.1.25) yields
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vm(ψ̃) = m̃. Further note that

φ̂(0)
T

Θ̂(0)̂̃φ(0) =
̂̊
φ(0)

T̂̊̃
φ(0) = 1.

It follows from Theorem 1.1.1 that ({φ̊;ψ}, {˚̃φ; ψ̃}) is a dual M-framelet in L2(Rd). This

proves item (3).

Theorem 4.1.1 is valid for the case r > 1. For the case r = 1, we have to sacrifice

the strong invertibility of θ and θ̃ to improve the orders of vanishing moments of the

framelet generators. Neverthe less, the matrix decomposition technique in the proof of

Theorem 4.1.1 can be applied to deduce the following result for the case r = 1.

Corollary 4.1.2. Let M be a d × d dilation matrix and let φ, φ̃ ∈ L2(Rd) be compactly

supported refinable functions satisfying φ̂(MTξ) = â(ξ)φ̂(ξ) and ̂̃φ(MTξ) = ̂̃a(ξ)̂̃φ(ξ), where

a, ã ∈ l0(Zd) have order m̃ and m sum rules with respect to M with matching filters

υ, υ̃ ∈ l0(Zd), respectively. Suppose that υ̂(0)φ̂(0) = ̂̃υ(0)̂̃φ(0) = 1. Then there exist

b, b̃ ∈ (l0(Zd))s×1 and θ, θ̃ ∈ l0(Zd) such that

1. ({a; b}, {ã; b̃})θ?∗θ̃ forms an OEP-based dual M-framelet filter bank.

2. ({φ̊;ψ}, {˚̃φ; ψ̃}) is a compactly supported dual M-framelet in L2(Rd), where φ̊, ψ, ˚̃φ

and ψ̃ are defined as in (1.1.12) and (1.1.13). Moreover, vm(ψ) = m and vm(ψ̃) =

m̃.

4.2 Structural Properties of OEP-Based Balanced Dual

Multiframelets

In this section, we investigate properties of the filters θ, θ̃ ∈ (l0(Zd))r×r which allow us

to construct dual multiframelets satisfying all claims of Theorem 4.1.1. The following

theorem states the sufficient conditions on θ and θ̃.
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Theorem 4.2.1. Let N be a d × d integer matrix with | det(N)| = r > 2 and define

EN and Υ̂N in (3.1.11) and (3.1.14), respectively. Let M be a d × d dilation matrix and

φ, φ̃ ∈ (L2(Rd))r be compactly supported M-refinable vector functions satisfying φ̂(MTξ) =

â(ξ)φ̂(ξ) and ̂̃φ(MTξ) = ̂̃a(ξ)̂̃φ(ξ) for some a, ã ∈ (l0(Zd))r×r. Suppose a has order m̃ sum

rules with respect to M with a matching filter υ ∈ (l0(Zd))1×r, and ã has order m sum

rules with respect to M with a matching filter υ̃ ∈ (l0(Zd))1×r, such that υ̂(0)φ̂(0) 6= 0 and̂̃υ(0)̂̃φ(0) 6= 0. If θ, θ̃ ∈ (l0(Zd))r×r are strongly invertible filters such that the following

moment conditions hold as ξ → 0:

̂̊υ(ξ) = C
̂̊̃
φ(ξ)

T

+ O(‖ξ‖m̃) = ĉ(ξ)Υ̂N(ξ) + O(‖ξ‖m̃), (4.2.1)

̂̃̊υ(ξ) = C̃
̂̊
φ(ξ)

T

+ O(‖ξ‖m) = d̂(ξ)Υ̂N(ξ) + O(‖ξ‖m), (4.2.2)

̂̊
φ(ξ)

T ̂̊̃̂
φ(ξ) = 1 + O(‖ξ‖m+m̃), (4.2.3)

for some c, d ∈ l0(Zd) with ĉ(0) 6= 0 and d̂(0) 6= 0, and some C, C̃ ∈ C \ {0}, wherê̊υ := υ̂θ̂−1,
̂̊
φ := θ̂φ̂, ̂̃̊υ := ̂̃υ̂̃θ−1

and
̂̊̃
φ := ̂̃θ̂̃φ. Then there exist b, b̃ ∈ (l0(Zd))s×r for some

s ∈ N such that all claims of Theorem 4.1.1 hold.

Proof. Define å,˚̃a ∈ (l0(Zd))r×r as in (3.1.8). We have
̂̊
φ(MT·) = ̂̊â̊φ, and

̂̊̃
φ(MT·) = ̂̃̊â̊̃φ.

Furthermore, å (resp. ˚̃a) has order m̃ (resp. m) sum rules with respect to M with a

matching filter υ̊ (resp. ˚̃υ).

By Theorem 3.2.5, there exists a strongly invertible U ∈ (l0(Zd))r×r such that

̂̆
φ(ξ) := Û(ξ)

̂̊
φ(ξ) = (1, 0, . . . , 0)T+O(‖ξ‖m̃+m), ̂̆υ(ξ) := ̂̊υ(ξ)Û(ξ)−1 = (1, 0, . . . , 0)+O(‖ξ‖m̃),

as ξ → 0. Thus by letting ̂̆a := Û(MT·)̂̊aÛ−1 and n := m̃ + m, we see that ă takes the
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ideal (m̃, n)-normal form, that is,

̂̆a(ξ) =

̂̆a1,1(ξ) ̂̆a1,2(ξ)̂̆a2,1(ξ) ̂̆a2,2(ξ)

 , (4.2.4)

where ̂̆a1,1,̂̆a1,2,̂̆a2,1 and ̂̆a2,2 are 1× 1, 1× (r− 1), (r− 1)× 1 and (r− 1)× (r− 1) matrices

of 2πZd-periodic trigonometric polynomials such that

̂̆a1,1(ξ) = 1 + O(‖ξ‖n), ̂̆a1,1(ξ + 2πω) = O(‖ξ‖m̃), ξ → 0, ∀ω ∈ ΩM \ {0}, (4.2.5)

̂̆a1,2(ξ + 2πω) = O(‖ξ‖m̃), ξ → 0, ∀ω ∈ ΩM, (4.2.6)

̂̆a2,1(ξ) = O(‖ξ‖n), ξ → 0, (4.2.7)

as ξ → 0.

On the other hand, we have

̂̃̆υ(ξ) := ̂̃̊υ(ξ)Û(ξ)
T

=
̂̊
φ(ξ)

T

Û(ξ)
T

+ O(‖ξ‖m) = (1, 0, . . . , 0) + O(‖ξ‖m), (4.2.8)

̂̆̃
φ(ξ) := Û(ξ)

−T̂̊̃
φ(ξ) = Û(ξ)

−T̂̊υ(ξ)
T

+ O(‖ξ‖m̃) = (1, 0, . . . , 0)T + O(‖ξ‖m̃), (4.2.9)

as ξ → 0. Moreover, the condition (4.2.3) implies that

̂̃̆
φ1(ξ) = 1 + O(‖ξ‖n), ξ → 0, (4.2.10)

where ˘̃φ1 is the first coordinate of ˘̃φ. Thus by letting ̂̃̆a := Û(MT·)
−T̂̃̊aÛT

, we see that̂̆̃
φ(MT·) = ̂̃̆â̆̃φ and ˘̃a has order m sum rules with respect to M with a matching filter ˘̃υ.

We have ̂̃̆a(ξ) =

̂̃̆a1,1(ξ) ̂̃̆a1,2(ξ)̂̃̆a2,1(ξ) ̂̃̆a2,2(ξ)

 , (4.2.11)

where ̂̃̆a1,1,
̂̃̆a1,2,

̂̃̆a2,1 and ̂̃̆a2,2 are 1× 1, 1× (r− 1), (r− 1)× 1 and (r− 1)× (r− 1) matrices
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of 2πZd-periodic trigonometric polynomials such that

̂̃̆a1,1(ξ) = 1 + O(‖ξ‖n), ̂̃̆a1,1(ξ + 2πω) = O(‖ξ‖m), ξ → 0, ∀ω ∈ ΩM \ {0}, (4.2.12)̂̃̆a1,2(ξ + 2πω) = O(‖ξ‖m), ξ → 0, ∀ω ∈ ΩM, (4.2.13)̂̃̆a2,1(ξ) = O(‖ξ‖m̃), ξ → 0, (4.2.14)

as ξ → 0.

For j = 1, . . . , dM, define

̂̆
Aj(ξ) := δ(ωj)Ir − ̂̆a(ξ)

T̂̃̆a(ξ + 2πωj). (4.2.15)

we have ̂̆
A1(ξ) = Ir − ̂̆a(ξ)

T̂̃̆a(ξ) =

̂̆A1;1(ξ)
̂̆
A1;2(ξ)̂̆

A1;3(ξ)
̂̆
A1;4(ξ)

 , (4.2.16)

where
̂̆
A1;1,

̂̆
A1;2,

̂̆
A1;3 and

̂̆
A1;4 are 1×1, 1×(r−1), (r−1)×1 and (r−1)×(r−1) matrices

of 2πZd-periodic trigonometric polynomials, satisfying the following moment conditions

as ξ → 0:

̂̆
A1;1(ξ) = 1−

(̂̆a1,1(ξ)̂̃̆a1,1(ξ) + ̂̆a2,1(ξ)
T̂̃̆a2,1(ξ)

)
= O(‖ξ‖n), (4.2.17)

̂̆
A1;2(ξ) = −̂̆a1,1(ξ)̂̃̆a1,2(ξ)− ̂̆a2,1(ξ)

T̂̃̆a2,2(ξ) = O(‖ξ‖m), (4.2.18)̂̆
A1;3(ξ) = −̂̆a1,2(ξ)

T̂̃̆a1,1(ξ)− ̂̆a2,2(ξ)
T̂̃̆a2,1(ξ) = O(‖ξ‖m̃). (4.2.19)

For j = 2, . . . , dM, we have

̂̆
Aj(ξ) = −̂̆a(ξ)

T̂̃̆a(ξ + 2πωj) =

̂̆Aj;1(ξ)
̂̆
Aj;2(ξ)̂̆

Aj;3(ξ)
̂̆
Aj;4(ξ)

 , (4.2.20)

where
̂̆
Aj;1,

̂̆
Aj;2,

̂̆
Aj;3 and

̂̆
Aj;4 are 1×1, 1×(r−1), (r−1)×1 and (r−1)×(r−1) matrices
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of 2πZd-periodic trigonometric polynomials for each j, satisfying the following moment

conditions as ξ → 0:

̂̆
Aj;1(ξ) = −

(̂̆a1,1(ξ)̂̃̆a1,1(ξ + 2πωj) + ̂̆a2,1(ξ)
T̂̃̆a2,1(ξ + 2πωj)

)
= O(‖ξ‖m),

̂̆
Aj;1(ξ − 2πωj) = −

(̂̆a1,1(ξ − 2πωj)
̂̃̆a1,1(ξ) + ̂̆a2,1(ξ − 2πωj)

T̂̃̆a2,1(ξ)

)
= O(‖ξ‖m̃),

̂̆
Aj;2(ξ) = −̂̆a1,1(ξ)̂̃̆a1,2(ξ + 2πωj)− ̂̆a2,1(ξ)

T̂̃̆a2,2(ξ + 2πωj) = O(‖ξ‖m),̂̆
Aj;3(ξ − 2πωj) = −̂̆a1,2(ξ − 2πωj)

̂̃̆a1,1(ξ)− ̂̆a2,2(ξ − 2πωj)
T̂̃̆a2,1(ξ) = O(‖ξ‖m̃).

Hence one can conclude that

̂̆
Aj(ξ) =

∑
α∈Nd0;m,β∈Nd0;m̃

∆̂α(ξ)
T̂̆Aj,α,β(ξ)∆̂β(ξ + 2πωj), (4.2.21)

for some Ăj,α,β ∈ (l0(Zd))r×r for all α ∈ Nd
0;m, β ∈ Nd

0;m̃ and all j = 1, . . . , dM.

Note that the factorization in (4.2.21) takes the same form as the one in (4.1.9).

Hence by applying the same argument as in the proof of Theorem 4.1.1, there exist

b̆, ˘̃b ∈ (l0(Zd))s×r such that ({ă; b̆}, {˘̃b; ˘̃b})δIr is an OEP-based dual M-framelet filter bank,

and

ψ̂(ξ) :=
̂̆
b(M−Tξ)

̂̆
φ(M−Tξ) = O(‖ξ‖m), ̂̃ψ(ξ) :=

̂̃̆
b(M−Tξ)

̂̆̃
φ(M−Tξ) = O(‖ξ‖m̃), ξ → 0.

Finally, define b, b̃, b̊,˚̃b ∈ (l0(Zd))r×r via

̂̊
b :=

̂̆
bÛ−1,

̂̃̊
b :=

̂̃̆
bÛ

T

, b̂ :=
̂̊
bθ̂−1, ̂̃b :=

̂̃̊
b̂̃θ−1

.

It is straight forward to check that all claims of Theorem 4.1.1 hold. This completes the

proof.

By imposing some mild conditions on the filters a, ã ∈ (l0(Zd))r×r, we obtain the
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following converse result of Theorem 4.2.1.

Theorem 4.2.2. Let N be a d × d integer matrix with | det(N)| = r > 2 and define

EN and Υ̂N in (3.1.11) and (3.1.14), respectively. Let M be a d × d dilation matrix and

φ, φ̃ ∈ (L2(Rd))r be compactly supported M-refinable vector functions satisfying φ̂(MTξ) =

â(ξ)φ̂(ξ) and ̂̃φ(MTξ) = ̂̃a(ξ)̂̃φ(ξ) for some a, ã ∈ (l0(Zd))r×r. Suppose a has order m̃ sum

rules with respect to M with a matching filter υ ∈ (l0(Zd))1×r, and ã has order m sum

rules with respect to M with a matching filter υ̃ ∈ (l0(Zd))1×r, such that υ̂(0)φ̂(0) 6= 0 and̂̃υ(0)̂̃φ(0) 6= 0.

Suppose θ, θ̃ ∈ (l0(Zd))r×r and b, b̃ ∈ (l0(Zd))s×r are finitely supported filters such that

all claims of Theorem 4.1.1 hold. Further assume

(i) 1 is a simple eigenvalue of â(0) and ̂̃̊a(0). Moreover,

λαIr − â(0), Ir − λβâ(0), Ir − λα̂̃a(0), λβIr − ̂̃a(0)

are invertible matrices for all α, β ∈ Nd
0 with 0 < |α| < m̃ and 0 < |β| < m, where

λ := (λ1, . . . , λd) is the vector of the eigenvalues of M.

(ii) p̂(MTξ)Υ̂N(MTξ)̂̃̊a(ξ) = p̂(ξ)Υ̂N(ξ) + O(‖ξ‖m) as ξ → 0 for some p ∈ l0(Zd) with

p̂(0) 6= 0, where ̂̃̊a := ̂̃θ(MT·)̂̃ẫθ−1

.

(iii) q̂(ξ)̂̃̊a(ξ)Υ̂N(ξ)
T

= q̂(MTξ)Υ̂N(MTξ)
T

+ O(‖ξ‖m̃) as ξ → 0 for some q ∈ l0(Zd) with

q̂(0) 6= 0.

Then the moment conditions (4.2.1) — (4.2.3) must hold as ξ → 0 for some c, d ∈

l0(Zd) with ĉ(0) 6= 0 and d̂(0) 6= 0 and some C, C̃ ∈ C \ {0}.

Proof. Define å ∈ (l0(Zd))r×r as in (3.1.8) and define b̊,˚̃b ∈ (l0(Zd))s×r as in (3.1.9). By

item (2) of Theorem 4.1.1, we have

̂̊a(ξ)
T̂̃̊a(ξ) +

̂̊
b(ξ)

T̂̃̊
b(ξ) = Ir, (4.2.22)
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and bo({̊a; b̊},M,N) = m. By Theorem 3.1.4, we have

Υ̂N(ξ )̂̊b(ξ)
T

= O(‖ξ‖m), Υ̂N(ξ)̂̊a(ξ)
T

= ̂̊c(ξ)Υ̂N(MTξ) + O(‖ξ‖m), ξ → 0, (4.2.23)

for some c̊ ∈ l0(Zd) with ̂̊c(0) 6= 0.

Assume in addition that items (iii) - (v) hold.

By left multiplying Υ̂N on both sides of (4.2.22) and using item (iv), we have

Υ̂N(ξ) = ̂̊c(ξ)Υ̂N(MTξ)̂̃̊a(ξ) + O(‖ξ‖m) = ̂̊c(ξ) p̂(ξ)

p̂(MTξ)
Υ̂N(ξ) + O(‖ξ‖m), ξ → 0.

From the above relation we conclude that ̂̊c(0) = 1, and thus

̂̊
d(MTξ)Υ̂N(MTξ)̂̃̊a(ξ) =

̂̊
d(ξ)Υ̂N(ξ) + O(‖ξ‖m), ξ → 0, (4.2.24)

where d̊ ∈ l0(Zd) satisfies

̂̊
d(ξ) =

∞∏
j=1

̂̊c((MT)−jξ) + O(‖ξ‖m), ξ → 0. (4.2.25)

Moreover, it is easy to see from the second relation in (4.2.23) that

̂̊
d(MTξ)Υ̂N(MTξ)

T

= ̂̊a(ξ)d̂(ξ)Υ̂N(ξ)
T

+ O(‖ξ‖m), ξ → 0. (4.2.26)

Since˚̃a has m sum rules with a matching filter ˚̃υ with ̂̃̊υ := ̂̃υ̂̃θ−1

, we have ̂̃̊υ(MTξ)̂̃̊a(ξ) =̂̃̊υ(ξ) + O(‖ξ‖m) as ξ → 0. Furthermore, note that the refinement relation
̂̊
φ(MT·) = ̂̊â̊φ

(where
̂̊
φ = θ̂φ̂) holds. Hence by the conditions in item (i) on å and ˚̃a, we conclude from

(4.2.24) and (4.2.26) that (4.2.2) holds for some C̃ ∈ C \ {0}, with d ∈ l0(Zd) being a

non-zero scalar multiple of d̊.
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On the other hand, the condition on ˚̃a in item (iii) and item (v) together yield

̂̊̃
φ(ξ) = Kq̂(ξ)Υ̂N(ξ)

T

+ O(‖ξ‖m̃), ξ → 0, (4.2.27)

for some non-zero constant K. As item (ii) holds, then in particular item (3) of Theo-

rem 4.1.1 holds. Then vm(ψ̃) = m̃ and (4.2.27) imply that
̂̃̊
b(ξ)Υ̂N(ξ)

T

= O(‖ξ‖m̃) as

ξ → 0. Now right multiplying q̂Υ̂N

T

to both sides of (4.2.22) yields

q̂(MTξ)Υ̂N(MTξ)̂̊a(ξ) = q̂(ξ)Υ̂N(ξ) + O(‖ξ‖m̃), ξ → 0. (4.2.28)

Since å has m̃ sum rules with a matching filter υ̊ with ̂̊υ := υ̂θ̂−1, we have ̂̊υ(MTξ)̂̊a(ξ) =̂̊υ(ξ) + O(‖ξ‖m̃) as ξ → 0. Moreover, ˚̃a satisfies the refinement equation
̂̊̃
φ(MT·) = ̂̃̊â̊̃φ. By

the condition in item (iii) on å, we conclude from (4.2.27) and (4.2.28) that (4.2.1) must

hold for some C ∈ C \ {0}, with c ∈ l0(Zd) being a non-zero scalar multiple of q.

Finally, by left multiplying
̂̊
φ
T

and right multiplying
̂̊̃
φ (where

̂̊̃
φ := ̂̃θ̂̃φ) to (4.2.22), we

have ̂̊
φ(MTξ)

T̂̊̃
φ(MTξ) =

̂̊
φ(ξ)

T̂̊̃
φ(ξ) + O(‖ξ‖m̃+m), ξ → 0.

By applying the same argument as in the proof of Lemma 3.2.4, (4.2.3) follows from the

above identity. The proof is now complete.

4.3 Summary of the Chapter

In this chapter, we answered the question on how to derive a balanced dual multiframelet

from a pair of multivariate compactly supported refinable vector functions. We only

performed a theoretical approach to investigate this question, and we did not address any

construction guidelines. It is of practical interest to develop an effective algorithm for

constructing OEP-based multivariate dual multiframelets.
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Chapter 5

Framelets with Mixed Dilation

Factors

In this chapter, we develop the basic theory of framelets with mixed dilation factors. As

discussed in Chapter 1, the main reason for considering framelets with mixed dilation

factors is to achieve a relatively low redundancy rate on the framelet system without

sacrificing its desired properties such as directionality. To our best knowledge, the first

and the only paper which investigates the theory of framelets with mixed dilation factors

is [49], which addresses basic concepts and properties of scalar tight framelets with mixed

dilation factors. In this chapter, we will systematically investigate framelets with mixed

dilation factors, with arbitrary multiplicity in arbitrary dimensions. In Section 5.1, we

will first study the discrete framelet transform employing a filter bank with mixed dilation

factors, and discuss its various properties. Next, the notion of a discrete affine system

in l2(Zd) will be introduced in Section 5.2, which greatly facilitates our study of discrete

framelet transforms with mixed dilation factors. Finally, we will discuss framelets and

wavelets with mixed dilation factors in Section 5.3.
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5.1 Discrete Framelet Transforms with Mixed Dila-

tion Factors

To discuss discrete framelet transforms with mixed dilation factors, we need to recall some

preoperties of the subdivision and transition operators.

For u ∈ (l2(Zd))t×r and v ∈ (l2(Zd))s×r, we define:

〈u, v〉l2(Zd) :=
∑
k∈Zd

u(k)v(k)
T
. (5.1.1)

Note that 〈u, v〉l2(Zd) ∈ Ct×s is a matrix of complex numbers.

Recall the subdivision operator Su;M and the transition operator Tu;M defined as in

(1.2.2) and (1.2.3), respectively. The following two lemmas are the matrix-valued fil-

ter versions of [37, Lemma 2.3 and Lemma 4.3], which are important properties on the

subdivision and transition operators.

Lemma 5.1.1. Let a ∈ (l0(Zd))r×q be a finitely supported matrix-valued filter and M be

a d× d dilation matrix. Then the following operators are well-defined:

Sa,M : (l2(Zd))s×r → (l2(Zd))s×q, Ta,M : (l2(Zd))s×q → (l2(Zd))s×r.

Moreover, we have Sa,M = T ?a,M. That is

〈Sa,Mv, w〉l2(Zd) = 〈v, Ta,Mw〉l2(Zd), v ∈ (l2(Zd))s×r, w ∈ (l2(Zd))s×q. (5.1.2)

Lemma 5.1.2. Let u1 ∈ (l0(Zd))q×t, u2 ∈ (l0(Zd))r×q be finitely supported matrix-valued

filters and let M1,M2 be d× d dilation matrices. Then

Su1,M1Su2,M2v = S(u2↑M1)∗u1,M1M2v, Tu2,M2Tu1,M1w = T(u2↑M1)∗u1,M1M2w, (5.1.3)

for all v ∈ (l(Zd))s×r and w ∈ (l(Zd))s×t.
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Suppose we have finitely supported matrix-valued filters b0, b̃0 ∈ (l0(Zd))r×r and

b1, . . . , bs, b̃1, . . . , b̃s ∈ (l0(Zd))1×r, and d × d dilation matrices M0,M1, . . . ,Ms. We now

state the discrete framelet transform employing the filter bank ({bl!Ml}sl=0, {b̃l!Ml}sl=0)

with mixed dilation factors. For J ∈ N, the J-level discrete framelet transform can be

stated as the following:

Step 1. For any input signal v0,0 ∈ (l(Zd))1×r, perform the J-level discrete framelet decom-

position procedure:

vl,j = Tbl,Ml
v0,j−1, j = 1, . . . , J, l = 0, . . . , s. (5.1.4)

Step 2. Set ṽl,J := vl,J for all l = 0, . . . , s. Recursively compute ṽj−1, j = J, . . . , 1 via

ṽj−1 :=
s∑
l=0

Sb̃l,Ml
ṽl,j, j = J, . . . , 1. (5.1.5)

We say that a J-level discrete framelet transform has the perfect reconstruction

(PR) property if the original input data v0 is equal to the output data ṽ0. To study

the J-level discrete framelet transform employing the filter bank ({bl!Ml}sl=0, {b̃l!Ml}sl=0),

we need to define the following linear operators:

(1) The J-level discrete framelet analysis operator WJ : (l(Zd))1×r → (l(Zd))1×(sJ+r)

employing the filter bank {bl!Ml}sl=0:

WJv := (v1,1, . . . , vs,1, . . . , v1,J , . . . , vs,J , v0,J), (5.1.6)

for all v ∈ l(Zd), where vl,j, l = 0, . . . , s, j = 1, . . . , J are defined as (5.1.4). Define

W :=W1.

(2) The J-level discrete framelet synthesis operator ṼJ : (l(Zd))1×(sJ+r) → (l(Zd))1×r

employing the filter bank {b̃1!Ml}sl=0:

ṼJ(ṽ1,1, . . . , ṽs,1, . . . , ṽ1,J , . . . , ṽs,J , ṽ0,J) := ṽ0, (5.1.7)
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for all ṽ1,1, . . . , ṽs,1, . . . , ṽ1,J , . . . , ṽs,J ∈ l(Zd), ṽ0,J ∈ (l(Zd))1×r, where ṽ0 is calculated

via (5.1.5). Define Ṽ := Ṽ1.

It follows immediately that the J-level discrete framelet transform has the PR property

if and only if

ṼJWJ = Id(l(Zd))1×r . (5.1.8)

Moreover, by noting that

WJ = (Id(l(Zd))1×[s(J−1)] ⊗W) . . . (Id(l(Zd))1×s ⊗W)W , (5.1.9)

and

ṼJ = Ṽ(Id(l(Zd))1×s ⊗ Ṽ) . . . (Id(l(Zd))1×[s(J−1)] ⊗ Ṽ), (5.1.10)

it is obvious that (5.1.8) is equivalent to

ṼW = Id(l(Zd))1×r . (5.1.11)

Here we provide a characterization of the PR property of a multi-level discrete framelet

transform with mixed dilation factors.

Theorem 5.1.3. Let b0, b̃0 ∈ (l0(Zd))r×r, b1, . . . , bs, b̃1, . . . , b̃s ∈ (l0(Zd))1×r be finitely sup-

ported matrix-valued filters and M0, . . . ,Ms be d × d dilation matrices. The following

statements are equivalent:

(i) For every J ∈ N, the J-level discrete framelet transform employing the filter bank

({bl!Ml}sl=0, {b̃l!Ml}sl=0) has the PR property.

(ii) ṼWv = v for all v ∈ (l0(Zd))1×r, where W and Ṽ are the 1-level discrete analysis

and synthesis operators respectively.

(iii) ({bl!Ml}sl=0, {b̃l!Ml}sl=0) is a dual framelet filter bank with mixed dilation factors, i.e.,

s∑
l=0

χΩl(ω)b̂l(ξ)
T ̂̃bl(ξ + 2πω) = δ(ω)Ir, (5.1.12)
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for almost every ξ ∈ Rd and every ω ∈
⋃s
l=0 Ωl, where

Ωl := [M−Tl Zd] ∩ [0, 1)d, l = 0, . . . , s, (5.1.13)

and χE is the indicator function of the subset E ⊆ Rd.

Proof. (i) ⇔ (ii): (i) ⇒ (ii) is trivial. To prove (ii) ⇒ (i), one uses the locality of the

subdivision and transition operators (see the proof of Theorem 2.1.1, or [37, Theorem 2.1]

and [41, Theorem 1.1.1]).

(i) ⇒ (iii): By definition we have

ṼWv =
s∑
l=0

Sb̃l,Ml
Tbl,Ml

v, v ∈ (l(Zd))1×r. (5.1.14)

By item (i) and taking Fourier series on both sides of (5.1.14), we have

v̂(ξ) =
s∑
l=0

∑
ωl∈Ωl

v̂(ξ + 2πωl)b̂l(ξ + 2πωl)
T ̂̃bl(ξ), ξ ∈ Rd. (5.1.15)

For simplicity of presentation, define Ω :=
⋃s
l=0 Ωl. For every ω ∈ Ω, define

ûω(ξ) :=

(
s∑
l=0

χΩl(ω)b̂l(ξ + 2πω)
T ̂̃bl(ξ))− δ(ω)Ir, ξ ∈ Rd. (5.1.16)

It follows that (5.1.15) is equivalent to

v̂(ξ) =
∑
ω∈Ω

v̂(ξ + 2πω)ûω(ξ), ξ ∈ Rd. (5.1.17)

Define

ε1 := inf
x∈Ω\{0}

‖x‖∞, ε2 := inf
x∈Ω\{0},y∈{0,1}d

‖x− y‖∞. (5.1.18)

Let x0 ∈ (−π, π)d be fixed. For every ε ∈ (0,min(ε1, ε2)), define Ex0,ε := x0 + [− ε
π
, ε
π
]d.
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Let v ∈ (l(Zd))1×r be such that

(supp(v̂) ∩ [−π, π)d) ⊆ Ex0,ε ⊆ (−π, π)d. (5.1.19)

Note that for any ξ ∈ Ex0,ε and ω ∈ Ω \ {0} ⊆ [0, 1)d, the point ξ + 2πω lies in

[−π, π)d + 2πy for some (unique) y ∈ {0, 1}d. Moreover, for any ξ ∈ Ex0,ε, ω ∈ Ω \ {0}

and y ∈ {0, 1}d, we have

‖ξ + 2πω − (x0 + 2πy)‖∞ > 2π‖ω − y‖∞ − ‖ξ − x0‖∞ > 2πε− ε

π
>
ε

π
.

It follows that v̂(ξ+2πω) = 0001×r for all ξ ∈ Ex0,ε and ω ∈ Ω\{0}. By (5.1.17), v̂(ξ)û0(ξ) =

0001×r for all ξ ∈ Ex0,ε, and thus û0(ξ) = 0001×r for all ξ ∈ Ex0,ε as v ∈ (l(Zd))1×r satisfying

(5.1.19) is arbitrary. Since x0 ∈ (−π, π)d is arbitrary and Ex0,ε is a neighbourhood of x0,

we conclude that û0(ξ) = 000r×r for all ξ ∈ (−π, π)d. Since û0 is 2πZd-periodic, it follows

that û0 = 000r×r for a.e. ξ ∈ Rd. For ω̊ ∈ Ω \ {0}, note that (5.1.17) is equivalent to

∑
ω∈Ω

v̂(ξ + 2π(ω − ω̊))ûω(ξ − 2πω̊) = 0001×r, ∀ξ ∈ Rd. (5.1.20)

By applying the same argument as above, we have ûω̊ = 000r×r for ξ ∈ Rd. This proves

item (iii).

(iii) ⇒ (i): This follows immediately from item (iii) and the fact that (5.1.17) holds

for all v ∈ (l0(Zd))1×r.

Remark 5.1.4. It is not hard to observe that ({bl!Ml}sl=0, {b̃l!Ml}sl=0) is a dual framelet

filter bank if and only if ({b̃l!Ml}sl=0, {bl!Ml}sl=0) is a dual framelet filter bank.

Next, we discuss the stability of a discrete framelet transform with mixed dilation

factors.

Definition 5.1.5. A filter bank {bl!Ml}sl=0 has stability in l2(Zd) if there exist C1, C2 > 0
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such that

C1‖v‖2
(l2(Zd))1×r 6 ‖WJv‖2

(l2(Zd))1×[(sJ+r)] 6 C2‖v‖2
(l2(Zd))1×r (5.1.21)

for all J ∈ N and v ∈ (l2(Zd))1×r, where WJ is the J-level discrete analysis operator

employing the filter bank {bl!Ml}sl=0. In this case, {bl!Ml}sl=0 is called a framelet filter

bank with mixed dilation factors.

The following result provides several equivalent ways to interpret the stability of a

discrete filter bank.

Theorem 5.1.6. Let ({bl!Ml}sl=0, {b̃l!Ml}sl=0) be a dual framelet filter bank with mixed

dilation factors, and let 0 < C1 ≤ C2 < ∞. For each J ∈ N, let WJ and VJ (resp. W̃J

and ṼJ) be the J-level discrete framelet analysis and synthesis operators employing the

filter bank {bl!Ml}sl=0 (resp. {b̃l!Ml}sl=0). The following statements are equivalent.

(1) {bl!Ml}sl=0 and {b̃l!Ml}sl=0 have stability in l2(Zd) with (5.1.21) and

C−1
2 ‖v‖2

(l2(Zd))1×r 6 ‖W̃Jv‖2
(l2(Zd))1×[(sJ+r)] 6 C−1

1 ‖v‖2
(l2(Zd))1×r (5.1.22)

hold for all J ∈ N and v ∈ (l2(Zd))1×r.

(2) ‖WJ‖2 6 C2 and ‖W̃J‖2 6 C−1
1 for all J ∈ N.

(3) ‖VJ‖2 6 C2 and ‖Ṽ‖2 6 C−1
1 for all J ∈ N.

(4) ‖VJ‖2 6 C2 and ‖W̃J‖2 6 C−1
1 for all J ∈ N.

(5) ‖WJ‖2 6 C2 and ‖ṼJ‖2 6 C−1
1 for all J ∈ N.

Proof. By Lemma 5.1.1, we have

〈VJw, v〉l2(Zd) = 〈w,WJv〉l2(Zd), 〈ṼJw, v〉l2(Zd) = 〈w, W̃Jv〉l2(Zd) (5.1.23)

for all J ∈ N, w ∈ (l2(Zd))1×[(sJ+r)] and v ∈ (l2(Zd))1×r. Thus we have (2)⇔(3)⇔(4)⇔(5).

We finish the proof by proving (1)⇔(2). It’s trivial to see that (1)⇒(2). To prove the
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converse, note that by Remark 5.1.4, we have VJW̃Jv = ṼJWJv = v for all v ∈ l2(Zd)

and J ∈ N. Moreover, by Lemma 5.1.1, we have ‖WJ‖ = ‖VJ‖ and ‖W̃J‖ = ‖ṼJ‖ for all

J ∈ N. Thus item (2) yields

‖VJW̃Jv‖2
(l2(Zd))1×r = ‖v‖2

l2(Zd) 6 C2‖W̃Jv‖2
(l2(Zd))1×[(sJ+r)] , (5.1.24)

‖ṼJWJv‖2
(l2(Zd))1×r = ‖v‖2

(l2(Zd))1×r 6 C−1
1 ‖WJv‖2

(l2(Zd))1×[(sJ+r)] , (5.1.25)

for all J ∈ N and v ∈ (l2(Zd))1×r. Thus

‖WJ‖2 = ‖VJ‖2 6 C2, ‖W̃J‖2 = ‖ṼJ‖2 6 C−1
1 . (5.1.26)

This proves (2)⇒(1), and the proof is now complete.

We now introduce the notion of a wavelet filter bank with mixed dilation factors.

Briefly speaking, wavelet filter banks are special framelet filter banks which are non-

redundant (or critically sampled). To do this, we need the following proposition on the

analysis and synthesis operators.

Proposition 5.1.7. Let b0, b̃0 ∈ (l0(Zd))r×r, b1, . . . , bs, b̃1, . . . , b̃s ∈ (l0(Zd))1×r be finitely

supported filters and M0, . . . ,Ms be d×d dilation matrices such that ({bl!Ml}sl=0, {b̃l!Ml}sl=0)

is a dual framelet filter bank with mixed dilation factors. Let W and Ṽ be the dis-

crete framelet analysis and synthesis operators employing the filter banks {bl!Ml}sl=0 and

{b̃1!Ml}sl=0. The following statements are equivalent.

(i) W is surjective.

(ii) Ṽ is injective.

(iii) ṼW = Id(l(Zd))1×r and WṼ = Id(l(Zd))1×(s+r).

Proof. (iii) ⇒ (i) and (iii) ⇒ (ii) are trivial.

We now prove that either (i) or (ii) implies (iii). The condition ṼW = Id(l(Zd))1×r

follows immediately from Theorem 5.1.3. It remains to show that either (i) or (ii) implies
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that WṼ = Id(l(Zd))1×(s+r) . First assume item (i) holds. For every v ∈ (l(Zd))1×r we have

Wv =W(ṼW)v =WṼ(Wv). (5.1.27)

By the surjectivity of W , we conclude that WṼ = Id(l(Zd))1×(s+r) . Now assume item (ii)

holds. For every w ∈ (l(Zd))1×(s+r), we have

Ṽ(WṼ)w = (ṼW)Ṽw = Ṽw. (5.1.28)

Since Ṽ is injective, we see that (WṼ)w = w for all w ∈ (l(Zd))1×(s+r).

Definition 5.1.8. A dual framelet filter bank ({bl!Ml}sl=0, {b̃l!Ml}sl=0) is called a biorthog-

onal wavelet filter bank with mixed dilation factors if any one of the equivalent conditions

in Proposition 5.1.7 holds.

The following theoreom characterizes the biorthogonal wavelet filter banks with mixed

dilation factors.

Theorem 5.1.9. Let b0, b̃0 ∈ (l0(Zd))r×r, b1, . . . , bs, b̃1, . . . , b̃s ∈ (l0(Zd))1×r be finitely sup-

ported filters and let M0, . . . ,Ms be d× d dilation matrices. The following are equivalent:

(i) ({bl!Ml}sl=0, {b̃l!Ml}sl=0) is a biothogonal wavelet filter bank with mixed dilation fac-

tors.

(ii) ({bl!Ml}sl=0, {b̃l!Ml}sl=0) is a dual framelet filter bank with mixed dilation factors, and

satisfies

∑
ω∈Ωk∩Ωl

b̂k(ξ + 2πω)̂̃bl(ξ + 2πω)
T

=



Ir, k = l = 0

δ(k − l), k, l 6= 0

0001×r, k 6= 0, l = 0

000r×1, k = 0, l 6= 0,

ξ ∈ Rd,

for all k, l = 0, . . . , s, where Ωl is defined via (5.1.13).
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Proof. Let W and Ṽ be the discrete framelet analysis and synthesis operators employing

the filter bank ({bl!Ml}sl=0, {b̃l!Ml}sl=0).

(i) ⇒ (ii): If item (i) holds, then by item (iii) of Proposition 5.1.7, we have ṼW =

Idl(Zd). This means that ({bl!Ml}sl=0, {b̃l!Ml}sl=0) must be a dual framelet filter bank with

mixed dilation factors.

On the other hand, let w := (w1, . . . , ws, w0) with w1, . . . , ws ∈ l1(Zd) and w0 ∈

(l1(Zd))1×r. By WṼ = Id(l(Zd))1×(s+r) , we have

wk = (WṼw)k =
s∑
l=0

Tbk,Mk
Sb̃l,Ml

wl, k = 0, . . . , s. (5.1.29)

By taking Fourier series of both sides of (5.1.29), we have

ŵk(ξ) =
s∑
l=0

| det(Mk)|−
1
2

∑
ω∈Ωk

Ŝb̃l,Ml
wl(M

−T
k ξ + 2πω)b̂k(M

−T
k + 2πω)

T

=
s∑
l=0

| det(Mk)|−
1
2 | det(Ml)|

1
2

∑
ω∈Ωk

ŵl(M
T
l (M−Tk ξ + 2πω))̂̃bl(M−Tk ξ + 2πω)b̂k(M

−T
k + 2πω)

T

=
s∑
l=0

∑
ω∈Ωk

ŵl(M
T
l (M−Tk ξ + 2πω))ûl,k(M

−T
k ξ + 2πω)

where

ûl,k(ξ) := | det(Mk)|−
1
2 | det(Ml)|

1
2
̂̃bl(ξ)b̂k(ξ)T, ξ ∈ Rd. (5.1.30)

As (M−Tl Zd)∩(M−Tk Zd) is a sublattice of M−Tk Zd which contians Zd, there exist ωk,1, . . . , ωk,Lk,l ∈

Ωk with ωk,1 = 0 and Lk,l := #Ωk
#(Ωk∩Ωl)

such that

M−Tk Zd =

Lk,l⊔
jk,l=1

(
ωk,jk,l + [(M−Tl Zd) ∩ (M−Tk Zd)]

)
. (5.1.31)
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It follows that

∑
ω∈Ωk

ŵl(M
T
l (M−Tk ξ + 2πω))ûl,k(M

−T
k ξ + 2πω)

=

Lk,l∑
jk,l=1

ŵl(M
T
l M
−T
k ξ + 2πMT

l ωk,jk,l))
∑

ω∈Ωk∩Ωl

ûl,k(M
−T
k ξ + 2πMT

l ωk,jk,l + 2πω).

Consequently, we have

ŵk(ξ) =
s∑
l=0

Lk,l∑
jk,l=1

ŵl(M
T
l M
−T
k ξ+2πMT

l ωk,jk,l))
∑

ω∈Ωk∩Ωl

ûl,k(M
−T
k ξ+2πMT

l ωk,jk,l+2πω), ξ ∈ Rd,

for all w ∈ (l(Zd))1×(s+1). Denote {er1, . . . , err} the standard basis of Rr. Choose w0 :=

δδδerj , j = 1, . . . , r and w1 = · · · = ws := 0, we conclude that the special case of item (ii)

with k = l = 0 holds. Similarly choose w0 := 0001×r, wk := 1 for some k ∈ {1, . . . , s} and

wl := 0 for all l 6= k, we can prove the special case of item (ii) with k = l and k, l 6= 0.

Next, we consider the case when k 6= l. First fix k ∈ {1, . . . , s}. Choose any w =

(w1, . . . , ws, w0) ∈ (l1(Zd))1×(s+r) such that w1 = · · · = ws = 0 and w0 6= 0001×r. By

(5.1.29),

0 = ŵk(M
T
k ξ) =

Lk,0∑
jk,0=1

ŵ0(MT
0 ξ + 2πMT

0ωk,jk,0))
∑

ω∈Ω0∩Ωk

û0,k(ξ + 2πωk,jk,0 + 2πω), (5.1.32)

for all ξ ∈ Rd. Note that if Ωk ⊆ Ω0, then MT
0ωk,jk,0 ∈ Zd and Lk,0 = 1. Thus (5.1.32)

reduces to

0 = ŵ0(MT
0 ξ)

∑
ω∈Ωk

û0,k(ξ + 2πω), ξ ∈ Rd. (5.1.33)

As w0 ∈ (l1(Zd))1×r \ {0001×r} is arbitrary, it follows immediately from (5.1.33) that

∑
ω∈Ω0∩Ωk

û0,k(ξ + 2πω) = 000r×1 (5.1.34)
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for all ξ ∈ Rd. If Ωk * Ω0, then MT
0ω /∈ Zd for all ω ∈ Ωk \ Ω0. Thus

δ := inf
ω∈Ωk\Ω0,y∈Zd

2π‖MT
0ω − y‖ > 0. (5.1.35)

Fix x0 ∈ (−π, π)d and set y0 := MT
l x0. Choose w0 such that ε ∈ (0, δ/2) and ŵ0 ∈

(C∞(Td))1×r such that the following hold:

1. ŵ0(ξ) = (erj)
T for all ξ ∈ Bε(y0) with j = 1, . . . , r;

2. ŵ0(ξ) = 0001×r for all ξ ∈ Bε(y0) + 2πMT
0ω with ω ∈ Ωk \ Ω0;

3. M−T0 Bε(y0) ⊆ (−π, π)d;

4. supp(ŵ0) ∩ [y0 + (−π, πd)] ⊆ B2ε(y0).

By our choice of wl, it follows from (5.1.33) that

∑
ω∈Ω0∩Ωk

û0,k(ξ + 2πω) = 000r×1, ξ ∈ MT
0Bε(y0). (5.1.36)

As x0 ∈ (−π, π)d is arbitrary and û0,k is 2πZd-periodic, we conclude that (5.1.34) holds

for a.e. ξ ∈ Rd. Similarly, one can prove that

∑
ω∈Ωl∩Ω0

ûl,0(ξ + 2πω) = 0001×r,
∑

ω∈Ωl∩Ωk

ûl,k(ξ + 2πω) = δ(k − l), (5.1.37)

for a.e. ξ ∈ Rd and for all k, l = 1, . . . , s. This proves item (ii).

(ii) ⇒ (i): Conversely suppose item (ii) holds. Then by Theorem 5.1.3, ṼW =

Id(l(Zd))1×r .

It remains to show that WṼ = Id(l(Zd))1×(s+r) . Let uk,l be defined via (5.1.30). For all
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w = (w1, . . . , ws, w0) ∈ (l0(Zd))1×[r(s+1)], we have

̂(WṼw)k(ξ) =
s∑
l=0

∑
ω∈Ωk

ŵl(M
T
l (M−Tk ξ + 2πω))ûl,k(M

−T
k ξ + 2πω)

=

Lk,l∑
jk,l=1

ŵl(M
T
l M
−T
k ξ + 2πMT

l ωk,jk,l))
∑

ω∈Ωl∩Ωk

ûl,k(M
−T
k ξ + 2πωk,jk,l + 2πω)

= ŵk(ξ),

for a.e. ξ ∈ Rd and all k = 0, 1, . . . , s. Thus WṼw = w for all w ∈ (l0(Zd))1×(s+r). By

using the locality of the subdivision and transition operators, we conclude that WṼ =

Id(l(Zd))1×(s+r) . This proves item (i).

The following result states the non-redundant property of a biorthogonal wavelet filter

bank.

Lemma 5.1.10. Let b0, b̃0 ∈ (l0(Zd))r×r, b1, . . . , bs, b̃1, . . . , b̃s ∈ (l0(Zd))1×r be finitely sup-

ported filters and let M, . . . ,Ms be d× d dilation matrices. If ({bl!Ml}sl=0, {b̃l!Ml}sl=0) is a

biorthogonal wavelet filter bank with mixed dilation factors, then

r

| det(M0)|
+

s∑
l=1

1

| det(Ml)|
= r. (5.1.38)

Proof. Let V and W (resp. Ṽ and W̃) be the discrete framelet synthesis and analysis

operators employing the filter bank {bl!Ml}sl=0 (resp. {b̃l!Ml}sl=0). By definition of a

biorthogonal wavelet filter bank, we have WṼ = Id(l(Zd))1×(s+r) . Fix k =∈ {1, . . . , s} and

define v := (v1, . . . , vs, v0) ∈ (l(Zd))1×(s+r) via

v0 := 0001×r, vk := δ, vl = 0, l ∈ {1, . . . , s} \ {k}. (5.1.39)
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By Lemma 5.1.1, we have

1 = 〈v, v〉l2(Zd) = 〈v,WṼv〉l2(Zd) = 〈δ, Tbk,Mk
Sb̃k,Mk

δ〉l2(Zd)

=〈Sbk,Mk
δ,Sb̃k,Mk

δ〉l2(Zd) = 〈Ŝbk,Mk
δ, Ŝb̃k,Mk

δ〉L2(Td)

=(2π)−d| det(Mk)|
∫

[0,2π)d
b̂k(ξ)

̂̃bk(ξ)Tdξ
(5.1.40)

Similarly, denote {er1, . . . , err} the standard basis of Rr and choose wj := (w1, . . . , ws, w
j
0) ∈

(l(Zd))1×(s+r) with

wj0 := (erj)
Tδ, wl = 0, l = 1, . . . , s. (5.1.41)

One can conclude that

1 = 〈wj, wj〉l2(Zd) = (2π)−d| det(M0)|
∫

[0,2π)d

(
b̂0(ξ) ̂̃b0(ξ)

T
)
j,j

dξ, j = 1, . . . , r.

(5.1.42)

It follows from (5.1.12), (5.1.40) and (5.1.42) that

r = Trace(Ir) =
s∑
l=0

(2π)−d
∫

[0,2π)d
Trace

(
b̂l(ξ)

T ̂̃bl(ξ)) dξ
=

s∑
l=0

(2π)−d
∫

[0,2π)d
Trace

(
b̂l(ξ)

̂̃bl(ξ)T) dξ
=

r

| det(M0)|
+

s∑
l=1

1

| det(Ml)|
.

(5.1.43)

5.2 Discrete Affine Systems in l2(Zd)

In this section, we further study the discrete framelet transforms by introducing the no-

tion of a discrete affine system in l2(Zd).

Let b0, b̃0 ∈ (l0(Zd))r×r, b1, . . . , bs, b̃1, . . . , b̃s ∈ (l0(Zd))1×r be finitely supported filters,
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and let M0, . . . ,Ms be d× d dilation matrices. Define

b̂l,j(ξ) := b̂l((M
T
0 )j−1ξ)b̂0((MT

0 )j−2ξ) . . . b̂0(MT
0 ξ)b̂0(ξ), (5.2.1)

̂̃bl,j(ξ) := ̂̃bl((MT
0 )j−1ξ) ̂̃b0((MT)j−2ξ) . . . ̂̃b0(MT

0 ξ)
̂̃b0(ξ), (5.2.2)

for all j ∈ N, l = 0, . . . , s and ξ ∈ Rd, with the convention b0,0 := δIr =: b̃0,0, bl,1 := bl

and b̃l,1 := b̃l for l = 1, . . . , s. In other words:

bl,j := (bl ↑ Mj−1
0 ) ∗ (b0 ↑ Mj−2

0 ) ∗ · · · ∗ (b0 ↑ M0) ∗ b0, (5.2.3)

b̃l,j := (b̃l ↑ Mj−1
0 ) ∗ (b̃0 ↑ Mj−2

0 ) ∗ · · · ∗ (b̃0 ↑ M0) ∗ b̃0, (5.2.4)

where ↑ is the upsampling operator defined as in (1.2.1). For all k ∈ Zd, J ∈ N and

l = 0, . . . , s, define

bl,j;k := | det(M0)|
j−1
2 | det(Ml)|

1
2 bl,j(· −Mj−1

0 Mlk), (5.2.5)

b̃l,j;k := | det(M0)|
j−1
2 | det(Ml)|

1
2 b̃l,j(· −Mj−1

0 Mlk). (5.2.6)

The following lemma is an important result on the multi-level discrete analysis and

synthesis processes.

Lemma 5.2.1. Let b0 ∈ (l0(Zd))r×r, b1, . . . , bs ∈ (l0(Zd))1×r be finitely supported filters,

and let M0, . . . ,Ms be d× d dilation matrices.

(i) For any fixed v0,0 ∈ (l(Zd))1×r, define vl,j as in (5.1.4) for all l = 0, . . . , s and

j = 1, . . . , J . Then we have

vl,j(k) = 〈v0,0, bl,j;k〉l2(Zd) =
∑
n∈Zd

v0,0(n)bl,j;k(n)
T
, k ∈ Zd. (5.2.7)
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(ii) For v0,J , vl,j ∈ l(Zd) with l = 1, . . . , s and j = 1, . . . , J , we have

VJ(0, . . . , 0, v0,J) =
∑
k∈Zd

v0,J(k)b0,J ;k (5.2.8)

and

VJ(0, . . . , 0, vl,j, 0, . . . , 0) =
∑
k∈Zd

vl,j(k)bl,j;k, l = 1, . . . , s, j = 1, . . . , J, (5.2.9)

where VJ is the J-level discrete synthesis operator employing the filter bank {bl!Ml}sl=0.

Proof. For every k ∈ Zd, we have

vl,j(k) = Tbl,Ml
v0,j−1(k) = Tbl,Ml

T j−1
b0,M0

v0,0(k)

= T(bl↑Mj−1
0 )∗(b0↑Mj−2

0 )∗···∗(b0↑M0)∗b0,Mj−1
0 Ml

v0,0(k) (by Lemma 5.1.2)

= Tbl,j ,Mj−1
0 Ml

v0,0(k)

= | det(Ml)|
1
2 | det(M0)|

j−1
2

∑
n∈Zd

v0,0(n)bl,j(n−Mj−1
0 Mlk)

T

= 〈v0,0, bl,j;k〉l2(Zd).

This proves item (i).

To prove item (ii), Define

v̊0,j−1 = Sb0,M0 v̊l,j, j = J, . . . , 1, (5.2.10)
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with then convention v̊0,J = v0,J . Then

VJ(0, . . . , 0, v0,J) = v̊0,0 = SJb0,M0
v0,J

= S(b0↑Mj−1
0 )∗···∗(b0↑M0)∗b0,MJ

0
v0,J (by Lemma 5.1.2)

= Sb0,J ,MJ
0
v0,J

= | det(M0)|
J
2

∑
k∈Zd

v0,J(k)b0,J(· −MJ
0k)

=
∑
k∈Zd

v0,J(k)b0,J ;k.

Similarly, one can conclude that

VJ(0, . . . , 0, vl,j, 0, . . . , 0) =
∑
k∈Zd

vl,j(k)bl,j;k, l = 1, . . . , s, j = 1, . . . , J. (5.2.11)

This proves item (ii).

In traditional framelet theory, discrete affine systems are introduced to study the frame

representation property of discrete framelet systems generated by framelet filter banks (see

[37, 41]). By mimicing the way we did in traditional framelet theory, we introduce the

definition of a discrete affine system with mixed dilation factors as the following.

Definition 5.2.2. Let b0 ∈ (l0(Zd))r×r, b1, . . . , bs ∈ (l0(Zd))1×r be finitely supported filters

and let M0, . . . ,Ms be d × d dilation matrices. For every J ∈ N, the J-level discrete

affine system associated to the filter bank {bl!Ml}sl=0 is defined via

DASJ({bl!Ml}sl=0) = {b0,J ;k : k ∈ Zd} ∪ {bl,j;k : l = 1, . . . , s, j = 1, . . . , J, k ∈ Zd},

where bl,j;k is defined via (5.2.5) for all k ∈ Zd, j ∈ N and l = 0, . . . , s.

The stability of a filter bank is naturally linked to the frame property of its associated

discrete affine systems.

Lemma 5.2.3. Let b0 ∈ (l0(Zd))r×r, b1, . . . , bs ∈ (l0(Zd))1×r be finitely supported filters

and let M0, . . . ,Ms be d× d dilation matrices. Then the filter bank {bl!Ml}sl=0 has stability
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in l2(Zd) if and only if there exist C1, C2 > 0 such that

C1‖v‖2
(l2(Zd))1×r 6

∑
k∈Zd
‖〈v, b0,J ;k〉l2(Zd)‖2

+
J∑
j=1

s∑
l=1

∑
k∈Zd
|〈v, bl,j;k〉l2(Zd)|2 6 C2‖v‖2

(l2(Zd))1×r

(5.2.12)

holds for all v ∈ (l2(Zd))1×r and J ∈ N.

Proof. LetWJ be the J-level discrete analysis operator employing the filter bank {bl!Ml}sl=0.

By item (i) of Lemma 5.2.1, we have

‖WJv‖2
(l2(Zd))1×(sJ+r) = ‖v0,J‖2

(l2(Zd))1×r +
J∑
j=1

s∑
l=1

‖vl,j‖2
(l2(Zd))1×r

=
∑
k∈Zd
‖〈v, b0,J ;k〉l2(Zd)‖2 +

J∑
j=1

s∑
l=1

∑
k∈Zd
‖〈v, bl,j;k〉l2(Zd)‖2,

(5.2.13)

for all v ∈ (l2(Zd))1×r and J ∈ N. Hence the result follows immediately.

The associated discrete affine systems of a dual framelet filter bank have the frame

expansion property, which is illustrated by the following result.

Lemma 5.2.4. Let b0, b̃0 ∈ (l0(Zd))r×r, b1, . . . , bs, b̃1, . . . , b̃s ∈ (l0(Zd))1×r be finitely sup-

ported filters and let M0, . . . ,Ms be d× d dilation matrices. Then ({bl!Ml}sl=0, {b̃l!Ml}sl=0)

is a dual framelet filter bank with mixed dilation factors if and only if

v =
∑
k∈Zd
〈v, b0,J ;k〉l2(Zd)b̃0,J ;k +

J∑
j=1

s∑
l=1

∑
k∈Zd
〈v, bl,j;k〉l2(Zd)b̃l,j;k (5.2.14)

for all v ∈ (l2(Zd))1×r and J ∈ N, where bl,j;k and b̃l,j;k are defined as (5.2.5) and (5.2.6)

for all k ∈ Zd, j ∈ N and l = 0, . . . , s.

Proof. Let v0,0 ∈ (l2(Zd))1×r and J ∈ N. Define vl,j as in (5.1.4) for all j = 1, . . . , J and
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l = 0, . . . , s. Then by Lemma 5.2.1, we have

ṼJWJv0,0 = ṼJ(v1,1, . . . , vs,1, . . . , v1,J , . . . , vs,J , v0,J)

=
∑
k∈Zd

v0,J(k)b̃0,J ;k +
J∑
j=1

s∑
l=1

∑
k∈Zd

ṽl,j(k)b̃l,j;k

=
∑
k∈Zd
〈v0,0, b0,J ;k〉l2(Zd)b̃0,J ;k +

J∑
j=1

s∑
l=1

∑
k∈Zd
〈v0,0, bl,j;k〉l2(Zd)b̃l,j;k.

(5.2.15)

Hence ({bl!Ml}sl=0, {b̃l!Ml}sl=0) is a dual framelet filter bank with mixed dilation factors if

and only if (5.2.14) holds for all v ∈ (l2(Zd))1×r and J ∈ N.

Now we are at the stage to give a complete characterization of a dual framelet filter

bank by using its associated discrete affine systems, which is summarized as the following

theorem:

Theorem 5.2.5. Let b0, b̃0 ∈ (l0(Zd))r×r, b1, . . . , bs, b̃1, . . . , b̃s ∈ (l0(Zd))1×r be finitely sup-

ported filters and let M0, . . . ,Ms be d× d dilation matrices. The following statements are

equivalent.

(i) ({bl!Ml}sl=0, {b̃l!Ml}sl=0) is a dual framelet filter bank with mixed dilation factors.

(ii) For all v, w ∈ (l2(Zd))1×r:

〈v, w〉l2(Zd) =
s∑
l=0

∑
k∈Zd
〈v, bl,1;k〉l2(Zd)〈b̃l,1;k, w〉l2(Zd). (5.2.16)

(iii) For all J ∈ N and v, w ∈ (l2(Zd))1×r:

〈v, w〉l2(Zd) =
∑
k∈Zd
〈v, b0,J ;k〉l2(Zd)〈b̃0,J ;k, w〉l2(Zd)

+
J∑
j=1

s∑
l=1

∑
k∈Zd
〈v, bl,j;k〉l2(Zd)〈b̃l,j;k, w〉l2(Zd).

(5.2.17)
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(iv) (Cascade structure) For all j ∈ N and v, w ∈ (l2(Zd))1×r:

∑
k∈Zd
〈v, b0,j−1;k〉l2(Zd)〈b̃0,j−1;k, w〉l2(Zd) =

s∑
l=0

∑
k∈Zd
〈v, bl,j;k〉l2(Zd)〈b̃l,j;k, w〉l2(Zd), (5.2.18)

with the convention b̃0,0 = b0,0 := δIr and b̃0,0;k = b0,0;k := δkIr where δk := δ(·−k).

If further assume that {bl!Ml}sl=0 and {b̃l!Ml}sl=0 have stability in l2(Zd), then each of

items (i) - (iv) is equivalent to the following statement:

(v) (5.2.14) holds, and moreover, there exist C1, C2 > 0 such that (5.2.12) and

C−1
2 ‖v‖2

(l2(Zd))1×r 6
∑
k∈Zd
‖〈v, b̃0,J ;k〉l2(Zd)‖2

+
J∑
j=1

s∑
l=1

∑
k∈Zd
|〈v, b̃l,j;k〉l2(Zd)|2 6 C−1

1 ‖v‖2
(l2(Zd))1×r

(5.2.19)

hold for all J ∈ N and v ∈ (l2(Zd))1×r.

Proof. (i)⇔(ii): Follows immediately from Lemma 5.2.4.

(ii)⇔(iv): Suppose that (iv) holds. Recall that b0,0;k = b̃0,0;k = δδδkIr. Then we have

v =
∑
kZd
〈v, b0,0;k〉l2(Zd)b̃0,0;k =

s∑
l=0

∑
k∈Zd
〈v, bl,1;k〉l2(Zd)b̃l,1;k (5.2.20)

for all v ∈ (l2(Zd))1×r. Thus (ii) holds. Conversely, suppose that (ii) holds. Note that for

all l = 0, . . . , s and j ∈ N, we have

bl,j = (bl,1 ↑ Mj−1
0 ) ∗ b0,j−1 =

∑
k∈Zd

bl,1(k)b0,j−1(· −Mj−1
0 k). (5.2.21)
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For all k ∈ Zd, l = 0, . . . , s and j ∈ N, it follows that

bl,j;k = | det(M0)|
j−1
2 | det(Ml)|

1
2 bl,j(· −Mj−1

0 Mlk)

= | det(M0)|
j−1
2 | det(Ml)|

1
2

∑
m∈Zd

bl,1(m)b0,j−1(· −Mj−1
0 Mlk −Mj−1

0 m)

= | det(M0)|
j−1
2 | det(Ml)|

1
2

∑
m∈Zd

bl,1(m−Mlk)b0,j−1(· −Mj−1
0 m)

=
∑
m∈Zd

bl,1;k(m)b0,j−1;m.

(5.2.22)

Thus for all v ∈ (l2(Zd))1×r, k ∈ Zd, l = 0, . . . , s and j ∈ N, we have

〈v, bl,j;k〉l2(Zd) =
∑
m∈Zd
〈v, b0,j−1;m〉l2(Zd)bl,1;k(m)

T
= 〈B0,j−1;v, bl,1;k〉l2(Zd), (5.2.23)

where

B0,j−1;v(m) = 〈v, b0,j−1;m〉l2(Zd), m ∈ Zd. (5.2.24)

It follows from (5.2.22) and(5.2.23) that

s∑
l=0

∑
k∈Zd
〈v, bl,j;k〉l2(Zd)b̃l,j;k =

s∑
l=0

∑
k∈Zd
〈B0,j−1;v, bl,1;k〉l2(Zd)

∑
m∈Zd

b̃l,1;k(m)b̃0,j−1;m

=
∑
m∈Zd

(
s∑
l=0

∑
k∈Zd
〈B0,j−1;v, bl,1;k〉l2(Zd)b̃l,1;k(m)

)
b̃0,j−1;m

=
∑
m∈Zd

B0,j−1;v b̃0,j−1;m

=
∑
m∈Zd
〈v, b0,j−1;m〉l2(Zd)b̃0,j−1;m.

(5.2.25)

This proves (iv).

(ii)⇔(iii): (iii) trivially implies (ii). Conversely, (ii) and (iv) are equivalent to each

other, and together imply (iii).

If we further assume that both {bl!Ml}sl=0 and {b̃l!Ml}sl=0 have stability in l2(Zd), then
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by Lemma 5.2.3, each of items (i)-(iv) is equivalent to (v).

Similarly, we have the following characterization of biorthogonal filter banks using

discrete affine systems.

Theorem 5.2.6. Let b0, b̃0 ∈ (l0(Zd))r×r and b1, . . . , bs, b̃1, . . . , b̃s ∈ (l0(Zd))1×r be finitely

supported filters and let M0, . . . ,Ms be d× d dilation matrices. The following statements

are equivalent.

(i) ({bl!Ml}sl=0, {b̃l!Ml}sl=0) is a biorthogonal wavelet filter bank with mixed dilation fac-

tors.

(ii) For every J ∈ N, (5.2.14) holds for all v ∈ (l2(Zd))1×r, and moreover,

(DASJ({bl!Ml}sl=0),DASJ({b̃l!Ml}sl=0)) is a pair of biorthogonal systems in l2(Zd)

which satisfies the following biorthogonality relations:

〈b̃0,J ;k′ , b0,J ;k〉 = δ(k − k′)Ir, 〈b̃l,j;k, b0,J ;k′〉 = 0001×r, (5.2.26)

for all l = 1, . . . , s, j = 1, . . . , J , k, k′ ∈ Zd, and

〈b̃l′,j′;k′ , bl,j;k〉 = δ(l − l′)δ(j − j′)δ(k − k′), (5.2.27)

for all l, l′ = 1, . . . , s, j, j′ = 1, . . . , J , and k, k′ ∈ Zd.

If we further assume that both {bl!Ml}sl=0 and {b̃l!Ml}sl=0 have stability in l2(Zd), then

each of items (i) and (ii) is equivalent to the following statement:

(iii) (5.2.14) holds and there exist C1, C2 > 0 such that (5.2.12) and (5.2.19) hold for all

v ∈ l2(Zd) and J ∈ N. Moreover, (DASJ({bl!Ml}sl=0),DASJ({b̃l!Ml}sl=0)) is a pair of

biorthogonal systems which satisfies (5.2.26) and (5.2.27).

Proof. (i)⇔(ii): Suppose that (i) holds. Then in particular ({bl!Ml}sl=0, {b̃l!Ml}sl=0) is a

dual framelet filter bank with mixed dilation factors. Thus (5.2.14) holds for all J ∈ N
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and v ∈ (l2(Zd))1×r by Lemma 5.2.4. Moreover, we have ṼJWJ = Id(l(Zd))1×r for all J ∈ N.

Now the biorthogonality relations (5.2.26) and (5.2.27) follow straight away from (5.2.15)

and the injectivity of ṼJ .

Conversely suppose that (ii) holds, then (5.2.14) implies that ({bl!Ml}sl=0, {b̃l!Ml}sl=0)

is a dual framelet filter bank with mixed dilation factors. Moreover the injectivity of VJ

follows from the biorthogonality relations (5.2.26) and (5.2.27) and the fact that

ṼJw =
∑
k∈Zd

w0,J(k)b̃0,J ;k +
J∑
j=1

s∑
l=1

∑
k∈Zd

wl,j(k)b̃l,j;k (5.2.28)

holds for all w = (w1,1, . . . , w1,J , . . . , ws,1, . . . , ws,J , w0,J) ∈ (l(Zd))1×(sJ+r). This proves

item (i).

Finally, by further assuming that both {bl!Ml}sl=0 and {b̃l!Ml}sl=0 have stability in

l2(Zd), it follows from Lemma 5.2.3 that each of items (i) and (ii) is equivalent to item

(iii).

5.3 Framelets and Wavelets in L2(Rd) with Mixed di-

lation Factors

In this section, we discuss the connections between framelet filter banks and framelets

in L2(Rd). First, we briefly review several definitions and results related to refinable

functions obtained from finitely supported filters. The following result is well known (see

e.g. [41, Theorem 5.1.2]).

Lemma 5.3.1. Let b0 ∈ (l0(Zd))r×r be a finitely supported filter and let M0 be a d × d

dilation matrix. Suppose there exist C0, Cb, τ > 0 and u ∈ (l0(Zd))r×1 such that

0 <
∣∣∣∣∣∣∣∣∣̂b(0)

∣∣∣∣∣∣∣∣∣‖M0‖−τ < 1, ‖b̂0(ξ)û(ξ)− û(MT
0 ξ)‖ 6 Cb‖ξ‖τ , ξ ∈ [−π, π]d, (5.3.1)
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where |||·||| is some fixed sub-multiplicative matrix norm (i.e., |||EF ||| 6 |||E||||||F |||). Then

ϕ(ξ) := lim
n→∞

(
n∏
j=1

b̂0((M−T0 )jξ)

)
û((M−T0 )nξ), ξ ∈ Rd (5.3.2)

is a well-define locally bounded measurable function which satisfies

ϕ(ξ) = û(ξ) + O(‖ξ‖τ ), ξ → 0. (5.3.3)

Moreover, there exists a compactly supported vector distribution ψ0 such that ψ̂0 = ϕ, and

satisfies the following refinement equation:

ψ0(·) =
∑
k∈Zd

b0(k)ψ0(M0 · −k), (5.3.4)

with the above series converging in the sense of tempered distributions.

Definition 5.3.2. For any finitely supported filter b0 ∈ (l0(Zd))r×r satisfying (5.3.1) for

some C0, Cb, τ > 0 and u ∈ (l0(Zd))r×1, the function φ which is defined via (5.3.2) is

called a standard refinable function associated to the filter a.

The following proposition is an important result for our later study on framelets and

wavelets in L2(Rd).

Proposition 5.3.3. Let b0 ∈ (l0(Zd))r×r, b1, . . . , bs ∈ (l0(Zd))1×r be finitely supported

filters and let M0, . . . ,Ms be d× d dilation matrices. Suppose there exist C0, Cb, τ > 0 and

u ∈ (l0(Zd))r×1 such that (5.3.1) holds. Define a compactly supported standard refinable

vector function ψ0 via (5.3.2) and define ψ1, . . . , ψs via

ψ̂l(ξ) = b̂l(M
−T
0 ξ)ψ̂0(M−T0 ξ), ξ ∈ Rd, l = 1, . . . , s. (5.3.5)

If {bl!Ml}sl=0 has stability in l2(Zd), then there exists C > 0 such that

∑
k∈Zd

ψ̂0(ξ + 2πk)ψ̂0(ξ + 2πk)
T

6 CIr,

s∑
l=1

∑
k∈Zd

∣∣∣ψ̂l(M−Tl MT
0 (ξ + 2πk))

∣∣∣2 6 C (5.3.6)
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for a.e. ξ ∈ Rd.

Proof. For J ∈ N, let VJ and WJ be the J-level discrete framelet synthesis and analysis

operators employing the filter bank {bl!Ml}sl=0. By the stability of {bl!Ml}sl=0 in l2(Zd),

there exists K > 0 such that

‖VJw‖2
(l2(Zd))1×r 6 K‖w‖2

(l2(Zd))1×(sJ+r) , w ∈ (l2(Zd))1×(sJ+r), J ∈ N. (5.3.7)

Let w = (0, . . . , 0, v) ∈ (l2(Zd))1×(sJ+r) with v ∈ (l2(Zd))1×r. We have

VJw = SJb0,M0
v = Sb0,J ,MJ

0
v, (5.3.8)

where b0,J = (b0 ↑ MJ−1
0 ) ∗ · · · ∗ (b0 ↑ M0) ∗ b0. Thus by Parseval’s identity, we have

‖Su,M0VJw‖2
l2(Zd)

=(2π)−d
∫

(MT
0 )J [0,2π)d

v̂(ξ)b̂0,J((M−T0 )Jξ)û((M−T0 )Jξ)b̂0,J((M−T0 )Jξ)û((M−T0 )Jξ)
T

v̂(ξ)
T
dξ.

It now follows from Fatou’s lemma that

(2π)−d
∫
Rd
v̂(ξ)ψ̂0(ξ)ψ̂0(ξ)

T

v̂(ξ)
T
dξ 6 lim inf

J→∞
‖Su,M0VJw‖2

l2(Zd)

6 lim inf
J→∞

| det(M0)‖‖VJw‖2
(l2(Zd))1×(s+r)‖u‖2

(l1(Zd))r×1

6K| det(M0)|‖u‖2
(l1(Zd))r×1‖v‖2

(l2(Zd))1×r

(5.3.9)

for all v ∈ l2(Zd). Note that

∫
Rd
v̂(ξ)ψ̂0(ξ)ψ̂0(ξ)

T

v̂(ξ)
T
dξ =

∫
[0,2π)d

v̂(ξ)

(∑
k∈Zd

ψ̂0(ξ + 2πk)ψ̂0(ξ + 2πk)
T
)
v̂(ξ)

T
dξ,

for all v ∈ (l2(Zd))1×r. It follows from (5.3.9) and the periodicity of
∑

k∈Zd ψ̂
0(ξ +
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2πk)ψ̂0(ξ + 2πk)
T

that

∑
k∈Zd

ψ̂0(ξ + 2πk)ψ̂0(ξ + 2πk)
T

6 K| det(M0)|‖u‖2
(l1(Zd))r×1Ir, (5.3.10)

for a.e. ξ ∈ Rd.

Similarly, choose w = (0, . . . , wl,J , . . . , 0) ∈ (l2(Zd))1×(sJ+r) with wl,J ∈ l2(Zd) for some

fixed l ∈ {1, . . . , s}, and using the fact that

ψ̂l(ξ) = lim
J→∞

b̂l(M
−T
0 ξ)

J−1∏
j=1

ψ̂0((M−T0 )jξ), l = 1, . . . , s, ξ ∈ Rd, (5.3.11)

one can apply the above same arguments to conclude that there exists K̃ > 0 such that∑
k∈Zd

∣∣∣ψ̂l((M−Tl MT
0 )(ξ + 2πk))

∣∣∣2 6 K̃ for all l = 1, . . . , s and a.e. ξ ∈ Rd. This completes

the proof.

For a function (distribution) matrix f : Rd → Cs×r and a d× d invertible real matrix

U , define

fU ;k,n(x) := | det(U)|
1
2 e−in·Uxf(Ux− k), x, k, n ∈ Rd. (5.3.12)

In particular, define fU ;k := fU ;k,0. It is straight forward to verity that

f̂U ;k,n = f̂U−T;n,k.

Definition 5.3.4. Let f : Rd → Cs×r and g : Rd → Ct×r are matrices of measurable

functions, and U is a d × d invertible real matrix, define the U-bracket product of f

and g via:

[f, g]U(x) :=
∑
k∈Zd

f(x+ 2πU−1k)g(x+ 2πU−1k)
T
, (5.3.13)

whenever the series converges absolutely for a.e. x ∈ Rd. Define [f, g] := [f, g]Id. Note

that [f, g]U is an s× t matrix of 2πU−1Zd-periodic functions.
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We discuss some important properties of the bracket product.

Lemma 5.3.5. Let f ∈ (L2(Rd))s×r, g ∈ (L2(Rd))t×r and let U be a d× d invertible real

matrix. We have [f̂ , ĝ]U ∈ (L1(U−1Td))s×t and its Fourier series is

| det(U)|
∑
k∈Zd
〈f, g(·+ UTk)〉e−ik·Ux. (5.3.14)

Proof. Let f ∈ (L2(Rd))s×r and g ∈ (L2(Rd))t×r. For j ∈ {1, . . . , s} and l ∈ {1, . . . , t},

the (j, l)-th entry of [f̂ , ĝ]U satisfies

∣∣∣∣([f̂ , ĝ]U(ξ)
)
j,l

∣∣∣∣ 6 r∑
k=1

[f̂j,k, f̂j,k]U [ĝk,l, ĝk,l]U <∞, ξ ∈ Rd. (5.3.15)

It follows from (5.3.15) that

∫
U−1[0,2π)d

∣∣∣∣([f̂ , ĝ]U(ξ)
)
j,l

∣∣∣∣ dξ 6 r∑
k=1

‖f̂j,k‖L2(Rd)‖ĝk,l‖L2(Rd). (5.3.16)

Thus [f̂ , ĝ]U ∈ (L1(U−1Td))s×t, and its k-th Fourier coefficient is given by

| det(U)|(2π)−d
∫
U−1[0,2π)d

∑
n∈Zd

f̂(ξ + 2πU−1n)ĝ(ξ + 2πU−1n)
T
e−ik·Uξdξ

=| det(U)|(2π)−d
∫
Rd
f̂(ξ)ĝ(ξ)eik·Uξ

T
dξ

=| det(U)|(2π)−d〈f̂ , ĝId;0,−UTk〉

=| det(U)|〈f, g(·+ UTk)〉.

The following lemma is a generalization of [41, Lemma 4.1.1] to high dimensions and

arbitrary dilation factors. The result can be proved by following the lines of the proof of

[41, Lemma 4.1.1].

Lemma 5.3.6. Let U be an invertible d×d real matric, and f, g : Rd → C, h, h̃ : Rd → Cr
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be such that

∫
Rd

∑
k∈Zd
‖f(x)h(Ux)

T
‖‖f(x+ 2πU−1k)h(Ux+ 2πk)

T
‖dx <∞ (5.3.17)

and ∫
Rd

∑
k∈Zd
‖g(x)h̃(Ux)

T

‖‖g(x+ 2πU−1k)h̃(Ux+ 2πk)
T

‖dx <∞. (5.3.18)

Then

∑
k∈Zd
〈f, hU ;0,k〉〈h̃U ;0,k, g〉 = (2π)d

∫
Rd

∑
k∈Zd

f(x)h(Ux)
T
h̃(Ux+ 2πk)g(x+ 2πU−1k)dx.

(5.3.19)

Proof. Note that

∫
U−1[−π,π)d

‖[f, h(U ·)]U(x)‖2dx =

∫
Rd
f(x)h(Ux)

T
[f, h(U ·)]U(x)

T
dx

6
∫
Rd

∑
k∈Zd
‖f(x)h(Ux)

T
‖‖f(x+ 2πU−1k)h(Ux+ 2πk)

T
‖dx <∞.

(5.3.20)

Thus [f, h(U ·)]U ∈ (L2(U−1Td))1×r, and by Lemma 5.3.5, its k-th Fourier coefficient is

given by:

| det(U)|
1
2 (2π)−d〈f, hU ;0,−k〉. (5.3.21)

Similarly we have [g, h̃(U ·)g]U ∈ (L2(U−1Td))1×r, with its k-th Fourier coefficient equals

| det(U)|
1
2 (2π)−d〈g, h̃U ;0,−k〉. (5.3.22)

By Parseval’s identity:

∑
k∈Zd
〈f, hU ;0,k〉〈h̃U ;0,k, g〉 = (2π)d

∫
U−1[−π,π)d

[f, h(U ·)]U(x)[h̃(U ·), g]U(x)dx

=(2π)d
∫
Rd

∑
k∈Zd

f(x)h(Ux)
T
h̃(Ux+ 2πk)g(x+ 2πU−1k)dx.

(5.3.23)
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Similar to what we have done in the discrete case, we now introduce the notion of an

affine system in L2(Rd) to facilitate our study of framelets in function spaces.

Definition 5.3.7. Let ψ0 = (ψ0
1, . . . , ψ

0
r)

T ∈ (L2(Rd))r, ψ1, . . . , ψs ∈ L2(Rd) and M0, . . . ,Ms

be d× d dilation matrices. Define an affine system via

AS({ψl!Ml}sl=0) :={ψ0
q (· − k) : q = 1, . . . , r; k ∈ Zd}

∪ {| det(M−1
0 Ml)|

1
2ψl

Mj
0;M−1

0 Mlk
: l = 1, . . . , s, j ∈ N0, k ∈ Zd}.

The following result connects discrete affine systems in l2(Zd) with affine systems in

L2(Rd).

Proposition 5.3.8. Let b0 ∈ (l0(Zd))r×r, b1, . . . , bs ∈ (l0(Zd))1×r be finitely supported

filters and let M0, . . . ,Ms be d × d dilation matrices. Suppose that ψ0 ∈ (L2(Rd))r is a

refinable vector function associated to b0 satisfying (5.3.4). Define ψ1, . . . , ψs via (5.3.5)

for l = 1, . . . , s. Suppose in addition that ψ0 ∈ (L2(Rd))r. For f ∈ L2(Rd), define

wl,j(k) = 〈f, | det(M−1
0 Ml)|

1
2ψl

Mj
0;M−1

0 Mlk
〉, k ∈ Zd, l = 0, . . . , s, j ∈ N0. (5.3.24)

Then the following statements hold:

(i) For every j ∈ N0, l = 0, . . . , s and k ∈ Zd, we have

wl,j(k) = TblMl
w0,j+1(k). (5.3.25)

(ii) For every J, j ∈ N0 with J > j, l = 0, . . . , s and k ∈ Zd, we have

wl,J(k) = 〈w0,J , bl,J−j;k〉l2(Zd), (5.3.26)

where bl,j;k is defined via (5.2.5).

(iii) If further assume that {bl!Ml}sl=0 has stability in l2(Zd), then AS({ψl!Ml}sl=0) is a
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Bessel sequence in L2(Rd).

Proof. Note that (5.3.5) is equivalent to

ψl(x) = | det(Ml)|
∑
k∈Zd

bl(k)ψ0(M0x− k), x ∈ Rd, l = 0, . . . , s. (5.3.27)

Thus we see that ψ1, . . . , ψs ∈ L2(Rd). By calculation:

wl,j(k) =

∫
Rd
f(x)| det(M−1

0 Ml)|
1
2ψl

Mj
0;M−1

0 Mlk
(x)

T
dx

= | det(Mj−1
0 Ml)|

1
2

∫
Rd
f(x)ψl(Mj

0x−M−1
0 Mlk)

T

dx

=
∑
m∈Zd

| det(Mj+1
0 Ml)|

1
2

(∫
Rd
f(x)ψ0(Mj+1

0 x−Mlk −m)
T

dx

)
b̂l(m)

T

=
∑
m∈Zd

| det(Ml)|
1
2 〈f, ψ0

Mj+1
0 ;Mlk+m

〉b̂l(m)
T

=
∑
m∈Zd

| det(Ml)|
1
2w0,j+1(Mlk +m)b̂l(m)

T

= Tbl,Ml
w0,j+1(k),

for all k ∈ Zd, j ∈ N0 and l = 0, . . . , s. This proves item (i)

Next, define bl,j via (5.2.1) for all j ∈ N and l = 0, . . . , s. Use item (i), we have

wl,j(k) = Tbl,Ml
T J−j−1
b0,M0

w0,J(k)

= T(bl↑MJ−j−1
0 )∗(b0↑MJ−j−2

0 )∗···∗(b0↑M0)∗b0,MJ−j−1
0 Ml

w0,J(k)

= Tbl,J−j ,MJ−j−1
0 Ml

w0,J(k)

= | det(Ml)|
1
2 | det(M0)|

J−j−1
2

∑
m∈Zd

w0,J(m)bl,J−j(m−MJ−j−1
0 Mlk)

T

= 〈w0,J , bl,J−j;k〉l2(Zd),

whenever J, j ∈ N0 and J > j. This proves item (ii).
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Finally, we prove item (iii). By items (i) and (ii), we have

∑
k∈Zd
‖〈f, ψ0

Id;k〉‖2 +
J−1∑
j=0

∑
k∈Zd
|〈f, | det(M−1

0 Ml)|
1
2ψl

Mj
0;M−1

0 Mlk
〉|2

=
∑
k∈Zd
‖w0,0(k)‖2 +

J−1∑
j=0

∑
k∈Zd
|wl,j|2

=
∑
k∈Zd
‖〈w0,J , b0,J ;k〉l2(Zd))‖2 +

J−1∑
j=0

∑
k∈Zd
|〈w0,J , bl,J−j;k〉l2(Zd)|2,

(5.3.28)

for all J ∈ N. Since {bl!Ml}sl=0 has stability in l2(Zd), Lemma 5.2.3 yields that there exists

C > 0 such that

∑
k∈Zd
‖〈w0,J , b0,J ;k〉l2(Zd))‖2 +

J−1∑
j=0

∑
k∈Zd
|〈w0,J , bl,J−j;k〉l2(Zd)|2 6 C‖w0,J‖2

l2(Zd), (5.3.29)

for all J ∈ N. Moreover, by Proposition 5.3.3, there exists K > 0 such that [ψ̂0
T
, ψ̂0

T
](ξ) 6

K for a.e. ξ ∈ Rd, i.e., [ψ̂0
T
, ψ̂0

T
] ∈ L∞(Td). Thus [f̂ , ψ̂0] ∈ L2(Td) for all f ∈ L2(Rd).

Now use Lemma 5.3.5 and Parseval’s identity, we have

‖w0,J‖2
l2(Zd) =

∑
k∈Zd
‖〈f, ψ0

MJ
0 ;k〉‖

2 =
∑
k∈Zd
‖〈fM−J0 ;0, ψ

0(· − k)〉‖2

= (2π)−d
∫

[0,2π)d
|[f̂(MT

0 )J ;0, ψ̂
0](ξ)|2dξ

6 (2π)−d
∫

[0,2π)d
[f̂(MT

0 )J ;0, f̂(MT
0 )J ;0](ξ)[ψ̂0

T
, ψ̂0

T
](ξ)dξ

6 (2π)−dK

∫
[0,2π)d

[f̂(MT
0 )J ;0, f̂(MT

0 )J ;0](ξ)dξ

= (2π)−dK‖f̂(MT
0 )J ;0‖2

L2(Rd) = K‖f‖2
L2(Rd).

(5.3.30)

It follows from (5.3.28), (5.3.29) and (5.3.30) that

∑
k∈Zd
‖〈f, ψ0

Id;k〉‖2 +
J−1∑
j=0

∑
k∈Zd
|〈f, | det(M−1

0 Ml)|
1
2ψl

Mj
0;M−1

0 Mlk
〉|2 6 CK‖f‖2

L2(Rd) (5.3.31)

for all f ∈ L2(Rd) and J ∈ N. By letting J →∞, we see that AS({φl!Ml}sl=0) is a Bessel
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sequence in L2(Rd). This proves item (iii).

We are now ready to state the main theorem which connects discrete framelet filter

banks and frameltes in l2(Zd).

Theorem 5.3.9. Let b0, b̃0 ∈ (l0(Zd))r×r, b1, . . . , bs, b̃1, . . . b̃s ∈ (l0(Zd))1×r be finitely sup-

ported filters and let M0, . . . ,Ms be d × d dilation matrices. Suppose ψ0, ψ̃0 ∈ (L2(Rd))r

are compactly supported standard refinable vector functions satisfying

ψ̂0(MT
0 ξ) = b̂0(ξ)ψ̂0(ξ), ̂̃ψ0(MT

0 ξ) = ̂̃b0(ξ)̂̃ψ0(ξ), ξ ∈ Rd, (5.3.32)

and ψ̂0(0)
T̂̃ψ0(0) = 1. Define ψ1, . . . , ψs, ψ̃1, . . . , ψ̃s ∈ L2(Rd) via

ψ̂l(ξ) = b̂l(M
−T
0 ξ)ψ̂0(M−T0 ξ), ̂̃ψl(ξ) = ̂̃bl(M−T0 ξ)̂̃ψ0(M−T0 ξ), ξ ∈ Rd. (5.3.33)

Then

(i) ({bl!Ml}sl=0, {b̃l!Ml}sl=0) is a dual framelet filter bank with mixed dilation factors. Fur-

thermore, both {bl!Ml}sl=0 and {b̃l!Ml}sl=0 have stability in l2(Zd),

implies

(ii) ({ψl!Ml}sl=0, {ψ̃l!Ml}sl=0) is a dual framelet in L2(Rd). Furthermore, there exists

C > 0 such that

[ψ̂0, ψ̂0](ξ) + [̂̃ψ0, ̂̃ψ0](ξ) 6 CIr, a.e. ξ ∈ Rd. (5.3.34)

Conversely, if in addition

[ψ̂0, ψ̂0](ξ) > C ′Ir, [̂̃ψ0, ̂̃ψ0](ξ) > C ′Ir, a.e. ξ ∈ Rd, (5.3.35)
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for some constant C ′ > 0, then item (ii) implies item (i).

Proof. Define

D := {f ∈ L2(Rd) : f̂ ∈ D(Rd)}, (5.3.36)

where D(Rd) denotes the space of compactly supported C∞-functions on Rd. By Lemma 5.3.6,

for every f, g ∈ D and j ∈ N0, we have

∑
k∈Zd
〈f̂ , ψ̂0

((M0)−T)j ;0,k〉〈
̂̃ψ0

((M0)−T)j ;0,k, ĝ〉

=(2π)d
∫
Rd

∑
k∈Zd

f̂(ξ)ψ̂0((M−T0 )jξ)
T̂̃ψ0((M−T0 )jξ + 2πk)ĝ(ξ + 2π(MT

0 )jk)dξ.

(5.3.37)

Choose j sufficiently large such that f̂(ξ)ĝ(ξ + 2π(MT
0 )jk) = 0 for all ξ ∈ Rd and k ∈

Zd \ {0}, we have

∑
k∈Zd
〈f̂ , ψ̂0

((M0)−T)j ;0,k〉〈
̂̃ψ0

((M0)−T)j ;0,k, ĝ〉 = (2π)d
∫
Rd
f̂(ξ)ψ̂0((M−T0 )jξ)

T̂̃ψ0((M−T0 )jξ)ĝ(ξ)dξ.

(5.3.38)

By Lemma 5.3.1, ψ̂0 and ̂̃ψ0 are vectors of locally bounded measurable functions and

lim
j→∞

ψ̂0((M−T0 )jξ)
T̂̃ψ0((M−T0 )jξ) = ψ̂0(0)

T̂̃ψ0(0) = 1, ξ ∈ Rd. (5.3.39)

It follows from the Dominated convergence theorem that

lim
j→∞

∑
k∈Zd
〈f̂ , ψ̂0

((M0)−T)j ;0,k〉〈
̂̃ψ0

((M0)−T)j ;0,k, ĝ〉 = (2π)d〈f̂ , ĝ〉. (5.3.40)

Define

ηl := ψl(M−1
0 Ml·), η̃l = ψ̃l(M−1

0 Ml·), l = 1, . . . , s. (5.3.41)

We have

ψl(· −M−1
0 Mlk) = ηl(M−1

l M0 · −k), η̂l = | det(M−1
0 Ml)|−1ψ̂l(MT

0M
−T
l ·), (5.3.42)
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ψ̃l(· −M−1
0 Mlk) = η̃l(M−1

l M0 · −k), ̂̃ηl = | det(M−1
0 Ml)|−1 ̂̃ψl(MT

0M
−T
l ·), (5.3.43)

for all l = 1, . . . , s. For f, g ∈ D, Lemma 5.3.6 yields

| det(M−1
0 Ml)|2

∑
k∈Zd
〈f̂ , η̂lMT

l M
−T
0 ;0,k〉〈 ̂̃ηlMT

l M
−T
0 ;0,k, ĝ〉

=(2π)d| det(M−1
0 Ml)|2

∫
Rd

∑
k∈Zd

f̂(ξ)η̂l(MT
l M
−T
0 ξ)

T ̂̃ηl(MT
l M
−T
0 ξ + 2πk)ĝ(ξ + 2π(MT

0M
−T
l )k)dξ.

=(2π)d
∫
Rd

∑
k∈Zd

f̂(ξ)ψ̂l(ξ)
T ̂̃ψl(ξ + 2π(MT

0M
−T
l )k)ĝ(ξ + 2π(MT

0M
−T
l )k)dξ.

=(2π)d
∫
Rd

∑
k∈Zd

f̂(ξ)b̂l(M
−T
0 ξ)ψ̂0(M−T0 ξ)

T ̂̃bl(M−T0 ξ + 2π(M−Tl )k)̂̃ψ0(M−T0 ξ + 2π(M−Tl )k)

× ĝ(ξ + 2π(MT
0M
−T
l )k)dξ.

=(2π)d
∫
Rd
f̂(ξ)ψ̂0(M−T0 ξ)

T
(∑
ω∈Ωl

b̂l(M
−T
0 ξ)̂̃bl(M−T0 ξ + 2πω)

)

×
∑
k∈Zd

̂̃ψ0(M−T0 ξ + 2πω + 2πk)ĝ(ξ + 2πM0ω + 2πM0k)dξ.

Similarly:

∑
k∈Zd
〈f̂ , ψ̂0

Id;0,k〉〈
̂̃ψ0

Id;0,k, ĝ〉

=(2π)d
∫
Rd
f̂(ξ)ψ̂0(M−T0 ξ)

T
(∑
ω∈Ω0

b̂0(M−T0 ξ) ̂̃b0(M−T0 ξ + 2πω)

)

×
∑
k∈Zd

̂̃ψ0(M−T0 ξ + 2πω + 2πk)ĝ(ξ + 2πM0ω + 2πM0k)dξ.

It follows that

∑
k∈Zd
〈f̂ , ψ̂0

Id;0,k〉〈
̂̃ψ0

Id;0,k, ĝ〉+
s∑
l=1

| det(M−1
0 Ml)|2

∑
k∈Zd
〈f̂ , η̂lMT

l M
−T
0 ;0,k〉〈 ̂̃ηlMT

l M
−T
0 ;0,k, ĝ〉

=(2π)d
∫
Rd
f̂(ξ)ψ̂0(M−T0 ξ)

T
(∑
ω∈Ω

s∑
l=0

χΩl(ω)b̂l(M
−T
0 ξ)̂̃bl(MT

0 ξ + 2πω)

)

×
∑
k∈Zd

̂̃ψ0(M−T0 ξ + 2πω + 2πk)ĝ(ξ + 2πM0ω + 2πM0k)dξ
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for all f, g ∈ D.

Suppose item (i) holds. By (5.1.12) and (5.3.37), we have

∑
k∈Zd
〈f̂ , ψ̂0

Id;0,k〉〈
̂̃ψ0

Id;0,k, ĝ〉+
s∑
l=1

| det(M−1
0 Ml)|2

∑
k∈Zd
〈f̂ , η̂lMT

l M
−T
0 ;0,k〉〈 ̂̃ηlMT

l M
−T
0 ;0,k, ĝ〉

=(2π)d
∫
Rd
f̂(ξ)ψ̂0(M−T0 ξ)

T ∑
k∈Zd

̂̃ψ0(M−T0 ξ + 2πk)ĝ(ξ + 2πM0k)dξ

=
∑
k∈Zd
〈f̂ , ψ̂0

M−T
0 ;0,k〉〈

̂̃ψ0
M−T

0 ;0,k, ĝ〉,

for all f, g ∈ D. Note that

〈f̂U−1;0, ĝ〉 = 〈f̂ , ĝU ;0〉, f, g ∈ L2(Rd). (5.3.44)

It follows that

∑
k∈Zd
〈f̂ , ψ̂0

(M−T
0 )j ;0,k〉〈

̂̃ψ0
(M−T

0 )j ;0,k, ĝ〉+
s∑
l=1

| det(M−1
0 Ml)|2

∑
k∈Zd
〈f̂ , η̂lMT

l (M−T
0 )j ;0,k〉〈 ̂̃ηlMT

l (M−T
0 )j ;0,k, ĝ〉

=
∑
k∈Zd
〈f̂ , ψ̂0

(M−T
0 )j+1;0,k〉〈

̂̃ψ0
(M−T

0 )j+1;0,k, ĝ〉,

for all f, g ∈ D and j ∈ N0. So for m,n ∈ N0 with m > n, we have

∑
k∈Zd
〈f̂ , ψ̂0

(M−T
0 )n;0,k〉〈

̂̃ψ0
(M−T

0 )n;0,k, ĝ〉+
m∑
j=n

s∑
l=1

| det(M−1
0 Ml)|2

∑
k∈Zd
〈f̂ , η̂lMT

l (M−T
0 )j ;0,k〉〈 ̂̃ηlMT

l (M−T
0 )j ;0,k, ĝ〉

=
∑
k∈Zd
〈f̂ , ψ̂0

(M−T
0 )m+1;0,k〉〈

̂̃ψ0
(M−T

0 )m+1;0,k, ĝ〉.

By letting m→∞, (5.3.40) yields

∑
k∈Zd
〈f̂ , ψ̂0

(M−T
0 )n;0,k〉〈

̂̃ψ0
(M−T

0 )n;0,k, ĝ〉+
∞∑
j=n

s∑
l=1

| det(M−1
0 Ml)|2

∑
k∈Zd
〈f̂ , η̂lMT

l (M−T
0 )j ;0,k〉〈 ̂̃ηlMT

l (M−T
0 )j ;0,k, ĝ〉

=(2π)d〈f̂ , ĝ〉,

166



for all f, g ∈ D and n ∈ N0. By Plancherel’s theorem and letting n = 0 in the above

identity, we see that (1.4.1) holds for all f, g ∈ D. Since D is dense in L2(Rd), we conclude

that (1.4.1) holds for all f, g ∈ L2(Rd). Next, by item (iii) of Proposition 5.3.8, the sta-

bility of {bl!Ml}sl=0 and {b̃l!Ml}sl=0 implies that both AS({ψl!Ml}sl=0) and AS({ψ̃l!Ml}sl=0)

are Bessel sequences. Thus by theory of Hilbert spaces (see e.g. [41, Theorem 4.2.5]),

(AS({ψ̃l!Ml}sl=0),AS({ψl!Ml}sl=0)) is a pair of dual frames for L2(Rd). Finally, (5.3.34)

follows rightaway from item (iii) of Proposition 5.3.3. This proves the direction (i)⇒ (ii).

Conversely, suppose that ({ψl!Ml}sl=0, {ψ̃l!Ml}sl=0) is a dual framelet in L2(Rd). It

follows from (5.3.37) that

0 =

∫
Rd
f̂(ξ)ψ̂0(M−T0 ξ)

T
(∑
ω∈Ω

s∑
l=0

χΩl(ω)b̂l(M
−T
0 ξ)̂̃bl(M−T0 ξ + 2πω)− δ(ω)Ir

)

×
∑
k∈Zd

̂̃ψ0(M−T0 ξ + 2πω + 2πk)ĝ(ξ + 2πM0ω + 2πM0k)dξ,

(5.3.45)

for all f, g ∈ L2(Rd). By using the similar argument as in the proof of (ii) ⇒ (iii) in

Theorem 5.1.3 (or see the proof of [34, Lemma 5]), one can conclude that

ψ̂0(ξ)
T
(

s∑
l=0

χΩl(ω)b̂l(ξ)
̂̃bl(ξ + 2πω)− δ(ω)Ir

) ̂̃ψ0(ξ + 2πω + 2πk) = 0 (5.3.46)

for a.e. ξ ∈ Rd. Note that the condition (5.3.35) implies that

span
{
ψ̂0(ξ + 2πk) : k ∈ Zd

}
= Cr, span

{
ψ̂0(ξ + 2πk) : k ∈ Zd

}
= Cr, (5.3.47)

for a.e. ξ ∈ Rd. Thus (5.3.46) yields (5.1.12), and we conclude that ({bl!Ml}sl=0, {b̃l!Ml}sl=0)

is a dual framelet filter bank with mixed dilation factors. It remains to prove that

both {bl!Ml}sl=0 and {b̃l!Ml}sl=0 have stability in l2(Zd) under the additional assump-

tions that (5.3.34) and (5.3.35) hold. Define the shift invariant space generated by
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ψ0 = (ψ0
1, . . . , ψ

0
r)

T via

S(ψ0) := span{ψ0
l (· − k) : l = 1, . . . , r, k ∈ Zd} ⊆ L2(Rd). (5.3.48)

By (5.3.34), (5.3.35) and [41, Theorem 4.4.12], {ψ0
l (· − k) : l = 1, . . . , r, k ∈ Zd} is a

Riesz basis of S(ψ0). This means that the map

Wψ0 : S(ψ0)→ (l2(Zd))1×r, Wψ0(f) = {〈f, ψ0(· − k)〉}k∈Zd (5.3.49)

is a well-defined bounded isomorphism. Thus for each v ∈ (l2(Zd))1×r, there exists a

unique hv ∈ S(ψ0) such that Wψ0hv = v and that

‖v‖2
(l2(Zd))1×r =

∑
k∈Zd
|〈hv, ψ0(· − k)〉|2 > C2‖hv‖2

L2(Rd), (5.3.50)

for some constant C2 > 0. On the other hand, let WJ be the J-level discrete framelet

analysis operator employing the filter bank {bl!Ml}sl=0. By (5.2.13), (5.3.28) and the fact

that 〈hv
MJ

0 ;0
, ψ0

MJ
0 ;k
〉 = 〈hv, ψ0(· − k)〉 = v(k), we have

‖WJv‖2
(l2(Zd))1×(sJ+r) =

∑
k∈Zd
‖〈hvMJ

0
, ψ0(· − k)〉‖2 +

J−1∑
j=0

∑
k∈Zd
|〈hvMJ

0
, | det(M−1

0 Ml)|
1
2ψl

Mj
0;M−1

0 Mlk
〉|2

6D‖hv‖2
L2(Rd),

(5.3.51)

for some constant D > 0. Hence (5.3.50) and (5.3.51) together yield

‖WJv‖2
(l2(Zd))1×(sJ+r) 6 DC−1

2 ‖v‖2
(l2(Zd))r , v ∈ (l2(Zd))r, J ∈ N. (5.3.52)

Similarly we can prove that there exists D′ > 0 such that

‖W̃Jv‖2
(l2(Zd))1×(sJ+r) 6 D′C−1

2 ‖v‖2
(l2(Zd))r , v ∈ (l2(Zd))r, J ∈ N. (5.3.53)
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Thus by item (ii) of Theorem 5.1.6, we see that both {bl!Ml}sl=0) and {b̃l!Ml}sl=0 have

stability in l2(Zd). This completes the proof.

A similar result which connects discrete wavelet filter banks in l2(Zd) and biorthogonal

wavelets in L2(Rd) can be established, which is the following theorem.

Theorem 5.3.10. Let b0, b̃0 ∈ (l0(Zd))r×r, b1 . . . , bs, b̃1, . . . , b̃s ∈ (l0(Zd))1×r be finitely sup-

ported filters and let M0, . . . ,Ms be d×d dilation matrices. Suppose ψ0, ψ̃0 ∈ (L2(Rd))r are

compactly supported standard refinable vector functions satisfying (5.3.32) and ψ̂0(0)
T ̂̃ψ0(0) =

1. Define ψ1, . . . , ψs, ψ̃1, . . . , ψ̃2 ∈ L2(Rd) via (5.3.33). Then ({ψl!Ml}sl=0, {ψ̃l!Ml}sl=0) is

a biorthogonal wavelet in L2(Rd) if the following conditions are satisfied:

(i) ({bl!Ml}sl=0, {b̃l!Ml}sl=0) is a biorthogonal wavelet filter bank with mixed dilation fac-

tors.

(ii) {bl!Ml}sl=0 and {b̃l!Ml}sl=0 have stability in l2(Zd).

(iii) The biorthogonality relation

〈ψ̃0, ψ0(· − k)〉 = δ(k)Ir (5.3.54)

holds for all k ∈ Zd.

Conversely, if ({ψl!Ml}sl=0, {ψ̃l!Ml}sl=0) is a biorthogonal wavelet in L2(Rd) and assume in

addition that (5.3.35) holds for some constant C ′ > 0, then items (i)-(iii) hold.

Proof. By Theorem 5.3.9, items (i) and (ii) imply that ({ψl!Ml}sl=0, {ψ̃l!Ml}sl=0) is a dual

framelet in L2(Rd). On the other hand, define bl,j, b̃l,j as in (5.2.3) and (5.2.4) and define

bl,j;k, b̃l,j;k as in (5.2.5) and (5.2.6) for all l = 0, . . . , s, j ∈ N and k ∈ Zd. It follows from

(5.3.33) that

ψl(x) = | det(M0)|j
∑
k∈Zd

bl,j(k)ψ0(Mj
0x− k), ψ̃l(x) = | det(M0)|j

∑
k∈Zd

b̃l,j(k)ψ̃0(Mj
0x− k)
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for a.e. ξ ∈ Rd and for all l = 0, . . . , s and j ∈ N. By calculation, we have

〈| det(M−1
0 Ml)|

1
2 ψ̃l

Id;M−1
0 Mlm

, | det(M−1
0 Mt)|

1
2ψt

Mj−1
0 ;M−1

0 Mtn
〉

=| det(M−2
0 MlMt)|

1
2 | det(M0)|

j−1
2 | det(M0)|j+1

×
∑
p,q∈Zd

b̃l,j(p−Mj−1
0 Mlm)

(∫
Rd
ψ̃0(x− p)ψ0(x− q)

T
dx

)
bt(q −Mtn)

T

=| det(M0)|
j−1
2 | det(Ml)|

1
2 | det(Mt)|

1
2

×
∑
p,q∈Zd

b̃l,j(p−Mj−1
0 Mlm)

(∫
Rd
ψ̃0(x− p)ψ0(x− q)

T
dx

)
bt(q −Mtn)

T

=
∑
p,q∈Zd

b̃l,j;m(p)〈ψ0(· − p), ψ̃0(· − q)〉L2(Rd)bt,1;n(q)
T

=
∑
p,q∈Zd

δ(p− q)b̃l,j;m(p)bt,1;n(q)
T

=
∑
p∈Zd

b̃l,j;m(p)bt,1;n(p)
T

=〈b̃l,j;m, bt,1;n〉l2(Zd),

(5.3.55)

for all l, t = 0, . . . , s, j ∈ N and m,n ∈ Zd. Similarly, by a simple scaling technique, one

can prove that

〈| det(M−1
0 Ml)|

1
2ψl

Mj′
0 ;M−1

0 Mlm
, | det(M−1

0 Ml)|
1
2 ψ̃t

Mj−1
0 ;M−1

0 Mtn
〉 = 〈bl,j;m, b̃t,j′;n〉l2(Zd) (5.3.56)

for all l, t = 0, . . . , s, m,n ∈ Zd and j, j′ ∈ N. By Theorem 5.2.6, (5.3.55) and (5.3.56),

(AS({ψl!Ml}sl=0),AS({ψ̃l!Ml}sl=0)) is a pair of biorthogonal sequences in L2(Rd). Hence

({ψl!Ml}sl=0, {ψ̃l!Ml}sl=0) is a biorthogonal wavelet in L2(Rd).

Conversely, suppose that ({ψl!Ml}sl=0, {ψ̃l!Ml}sl=0) is a biorthogonal wavelet in L2(Rd).

Then item (iii) trivially holds. Next, by the frame property of AS{ψl!Ml}sl=0 and AS{ψ̃l!Ml}sl=0,

[41, Proposition 4.4.13] yields that (5.3.34) holds for some constant C > 0. If in addition

that (5.3.35) holds for some C ′ > 0, then by the proof of Theorem 5.3.9, we conclude that

{bl!Ml}sl=0 and {b̃l!Ml}sl=0 have stability in l2(Zd). This proves item (ii).
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Finally, using (5.3.55), (5.3.56) and the biorthogonality of (AS{ψl!Ml}sl=0,AS{ψ̃l!Ml}sl=0),

we see that (DAS{bl!Ml}sl=0,DAS{b̃l!Ml}sl=0) is a pair of biorthogonal sequences. Hence by

Theorem 5.2.6, we conclude that ({bl!Ml}sl=0, {b̃l!Ml}sl=0) is a biorthogonal wavelet filter

bank with mixed dilation factors. This proves item (i).

5.4 Summary of the Chapter

In this chapter, we introduced the theory of framelets with mixed dilation factors. We first

studied properties of a multi-level discrete framelet transform employing framelet filter

banks with mixed dilation factors. The notion of a discrete affine system was introduced to

further facilitate our study on the frame property of a discrete framelet system. Morevoer,

we made connections between discrete framelet filter banks and framelets in L2(Rd).

171



Chapter 6

Summary and Future Work

In this thesis, we studied framelets derived from refinable vector functions with arbitrary

multiplicity in arbitrary dimensions. In Chapter 2, we showed that from any univariate

compactly supported refinable vector function with multiplicity greater than 2, one can

always use the oblique extension principle (OEP) to construct a quasi-tight multiframelet

with the highest possible orders of vanishing moments, and its underlying discrete multi-

framelet transform is compact and balanced. In Chapter 3, we developed the multivariate

counterpart of the work of Chapter 2. Motivated by our discussion of OEP-based quasi-

tight multiframelets, we proved in Chapter 4 that from any pair of compactly supported

multivariate refinable vector functions with at least two entries, a balanced OEP-based

dual multiframelet with a compact underlying discrete multiframelet transform can al-

ways be obtained. Not only we have proved the possibility of constructing multiframelets

from refinable vector functions, but the structure of balanced multiframelets have been

also studied. The key ingredient of our investigation is a newly developed normal form

of a matrix-valued filter, which greatly benefits the study of OEP-based multiframelets.

Finally, in Chapter 5 we established the basic theory of framelets with mixed dilation

factors, which is a topic that is of interest in itself.

Some related questions remain open, which could be research tasks in the future.
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The most important question to ask is whether it is possible to construct a OEP-

based tight multiframelet with the highest possible order of vanishing moments, and the

associated discrete framelet transform is balanced and compact. To out best knowledge,

the construction of OEP-based tight multiframelets have been only discussed in [58].

However, the tight framelets constructed in [58] either fail to have a compact associated

discrete framelet transform or lack high orders of vanishing moments. It is challenging

and interesting to study whether we can obtain an OEP-based tight multiframelet with

all desired properties being kept.

Next, we comment on the construction process of OEP-based multiframelets. From

Chapters 2, 3 and 4, obtaining suitable filters θ, θ̃ and factorizing matrices of trigonomet-

ric polynomials are required for construction. The construction algorithms we developed

are good for theoretical investigation, but may not be ideal in practice. The examples

we have in Chapter 2 of univariate quasi-tight multiframelets are already too complicated

to present. The situation is getting even harder for the multivariate case. The main

reason that causes the difficulty in construction is that, suitable choices of θ, θ̃ often make

the matrix way too complicated to factorize. How to find a more feasible algorithm for

construction could be a future research topic.

On the other hand, we are interested in whether we can get stronger versions of The-

orem 2.4.1, Theorem 3.3.1 and Theorem 4.1.1 on OEP-based multiframelets. Say we

are given refinable vector functions φ, φ̃ ∈ (L2(Rd))r whose associated refinement filters

a, ã ∈ (l0(Zd))r×r are rational matrix-valued . Can we obtain rational matrix-valued fil-

ters θ, θ̃ ∈ (l0(Zd))r×r and b, b̃ ∈ (l0(Zd))s×r such that ({a; b}, {ã; b̃})θ?∗θ̃ is an OEP-based

filter bank such that the asscoaited OEP-based multiframelet has all desired properties?

More generally, is it possible to obtain a filter banks such that all elements lie in the same

arbitrary algebraic number field (e.g., Q,Q
√

2, etc.)? We may need some new ideas to

get the solutions.
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Last but not the least, framelets with mixed dilation factors could be a future research

topic. We only developed the basics of the theory of this topic in this thesis. It is clear

that the theory is not as comprehensive as the work on traditional framelets. Extending

this topic could lead to future research problems.
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multivariate tight wavelet frames. Constr. Approx. 38 (2013), 253–276.

[5] M. Charina, M. Putinar, C. Scheiderer and J. Stöckler, An algebraic perspective
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