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Abstract

Real-time strategy games require players to respond to short-term challenges (micro-

management) and long-term objectives (macromanagement) simultaneously to win.

However, many players excel at one of these skills but not both. This research studies

whether the burden of micromanagement can be reduced on human players through

delegation of responsibility to autonomous agents. In particular, this research pro-

poses an adversarial navigation architecture that enables units to autonomously nav-

igate through places densely populated with enemies by learning to micromanage

itself. Our approach models the adversarial pathfinding problem as a Markov Deci-

sion Process (MDP) and trains an agent with reinforcement learning on this MDP.

We observed that our approach resulted in the agent taking less damage from adver-

saries while travelling shorter paths, compared to previous approaches on adversarial

navigation. Our approach is also efficient in memory use and computation time. In-

terestingly, the agent using the proposed approach outperformed baseline approaches

while navigating through environments that are significantly different from the train-

ing environments. Furthermore, when the game design is modified, the agent discovers

effective alternate strategies considering the updated design without any changes in

the learning framework. This property is particularly useful because in game devel-

opment the design of a game is often updated iteratively.

ii



Acknowledgements

I am grateful to Professor Nathan Sturtevant for supervising the work, offering in-

valuable advices in all the stages of the research, and being patient with me. I am

also thankful to him for sharing a lot of resources online, such as the MovingAI.com

website, the HOG2 repository, and lecture recordings on YouTube, all of which I have

referred to frequently during my research.

I am also thankful to my defense committee for their expert insights and comments

on my work. Furthermore, I acknowledge the wonderful pedagogy and platform the

University of Alberta has provided me which made this research possible.

I thank Antonie Bodley for her careful evaluation of my writing and feedback on

grammar and readability.

Last but not least, I thank my wife for always keeping me motivated.

iii



Table of Contents

1 Motivation 1

1.0.1 Moving Units through Hostile Areas in Video Games . . . . . 1

1.1 Adversarial Navigation in the Real World, Autonomous Package Delivery 4

2 Introduction 5

2.1 Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Related Work 10

3.1 Machine Learning Approaches to Pathfinding . . . . . . . . . . . . . 12

4 Background 14

4.1 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1.1 Deep Q-Network . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Partial Refinement with Abstraction and A* (PRA*) . . . . . . . . . 17

4.3 Potential Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 A Novel Approach to Optimizing Adversarial Navigation with RL 21

5.1 Defining Adversarial Navigation . . . . . . . . . . . . . . . . . . . . . 21

5.2 Our MDP For Adversarial Navigation . . . . . . . . . . . . . . . . . . 22

5.3 Encoding Objectives in the Rewards Function . . . . . . . . . . . . . 23

5.4 Q-Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Environmental Representations 29

6.1 Risk Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.2 Rotation Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.3 Simple Grid-based Raycast Distances . . . . . . . . . . . . . . . . . . 34

6.4 Path Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7 Experimental Results 37

7.1 Experiment 1 : Adversarial Navigation on the Warcraft III Maps . . . 40

iv



7.2 Experiment 2 : Adversarial Navigation on the Warcraft III Maps After

a Game Design Update. . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.3 Experiment 3 : Adversarial Navigation on the Training Maps . . . . . 50

7.4 Limitations of the Proposed Approach . . . . . . . . . . . . . . . . . 53

8 Conclusion 55

Bibliography 57

v



List of Tables

6.1 Function to normalize angular distance of enemies . . . . . . . . . . . 30

7.1 Rewards used to train the agent . . . . . . . . . . . . . . . . . . . . . 39

7.2 Number of enemies in Warcraft III maps . . . . . . . . . . . . . . . . 41

7.3 Mean and 95% confidence intervals of damage and path ratio in exper-

iment 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.4 Mean and 95% confidence intervals of damage and path ratio in exper-

iment 2 having updated game design . . . . . . . . . . . . . . . . . . 50

vi



List of Figures

1.1 A snapshot from Age of Empires 1. War elephants under attack from

enemy towers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 A snapshot from StarCraft 2. Allied units under attack from the ene-

mies en-route. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 A screenshot from Dota 2. Units encountered adversaries on the way. 3

4.1 The agent environment interaction in reinforcement learning as a Markov

Decision Process (Sutton and Barto, 2018). . . . . . . . . . . . . . . . 14

4.2 Abstracting a general path (Sturtevant and Buro, 2005). . . . . . . . 17

4.3 Composite potential field of target and obstacles.(Jiang, Cai, and Xu,

2023). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1 A model of the neural network for learning navigation in adversarial

environments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.1 Plot of the normalizing function f(θ) . . . . . . . . . . . . . . . . . . 30

6.2 Change of coordinate system for rotation abstraction. . . . . . . . . . 31

6.3 Possible positions of the agent along the path is shown. Path directions

are marked with red arrows. Agent’s direction is inferred and shown

with black arrows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7.1 A generated map used to train the agent. . . . . . . . . . . . . . . . . 37

7.2 Warcraft 3 maps used to test the agent. From left to right: blastlands,

divƒideandconquer, duskwood, gardenofwar, and thecrucible. . . . . . 40

7.3 Amount of damage the agent takes, plotted against optimal path length.

The paths are binned by path length with bin size 10. For each agent,

we show the mean and two standard errors . . . . . . . . . . . . . . . 42

7.4 Path length suboptimality for different types of agents. . . . . . . . . 43

vii



7.5 The maximum memory used for path finding measured by the size of

the open list, plotted against the optimal path length. The paths are

binned by path length with bin size 10. For each agent, we show the

mean and two standard errors . . . . . . . . . . . . . . . . . . . . . . 43

7.6 The amount of time in milliseconds that the agent took to reach the

destination, plotted against the optimal path length. The paths are

binned by path length with bin size 10. For each agent, we show the

mean and two standard errors . . . . . . . . . . . . . . . . . . . . . . 45

7.7 Amount of damage the agent takes in experiment 2, plotted against

the optimal path length. The paths are binned by path length with

bin size 10. For each agent, we show the mean and two standard errors 47

7.8 Path length suboptimality for different types of agents in experiment 2. 48

7.9 The maximum memory used for path finding measured by the size of

the open list in experiment 2, plotted against the optimal path length.

The paths are binned by path length with bin size 10. For each agent,

we show the mean and two standard errors . . . . . . . . . . . . . . . 48

7.10 The amount of time in milliseconds that the agent took to reach the

destination in experiment 2, plotted against the optimal path length.

The paths are binned by path length with bin size 10. For each agent,

we show the mean and two standard errors . . . . . . . . . . . . . . . 49

7.11 Amount of damage the agents take in experiment 3. . . . . . . . . . . 51

7.12 Path length sub-optimality for different types of agents in experiment 3. 52

7.13 The maximum memory used by the agents for navigation in experiment

3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.14 The amount of time in milliseconds that the agents took to reach the

destination in experiment 3. . . . . . . . . . . . . . . . . . . . . . . . 53

viii



Chapter 1

Motivation

Real-time strategy (RTS) games are a genre of strategy games requiring players to

make decisions and moves simultaneously in real time. RTS games differ, for example,

from combinatorial games such as Chess or Checkers which are sequential in nature,

i.e. players take turns to make moves. Players of RTS games are typically challenged

with several objectives, such as gathering resources, engaging in battles, territorial

expansion, economic and technological advancement, etc. In order to secure victory, a

player needs to outmaneuver the opponents and accomplish certain overarching goal

like destroying opponent’s key infrastructure, or defending a base for certain duration.

This section lists a few instances from RTS games that demonstrate motivation for

this research.

1.0.1 Moving Units through Hostile Areas in Video Games

Imagine four war elephants are navigating to a battle site (Figure 1.1). On the

way, they come under attack from two enemy watch towers. The war elephants

have the option to counter attack the towers. Or, they may ignore the towers and

continue. The human player may, in this situation, instruct one war elephant to

engage the enemies and the other three war elephants to move towards the battle

site. Sacrificing a specific unit to protect other important units (such as heroes)

is sometimes an effective strategy in adversarial navigation. While micromanaging

navigation is essential, it requires significant time and effort from the human player.
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Figure 1.1: A snapshot from Age of Empires 1. War elephants under attack from
enemy towers.

We study the question whether we can make the units intelligent by default so that

the human players have more time and attention to develop higher-level complex

strategies. This can potentially evolve RTS game dynamics with greater focus on

macromanagement. This research is a step towards realizing this goal.

Figure 1.2 is a similar situation where allied troops are intercepted by enemy units.

In this specific situation, the enemy units are stronger than the allies and therefore

attacking the enemies directly is dangerous. Alternately, the allies can trick the

enemies by moving close to the enemies and then quickly retreating. As a result, some

of the enemies would leave the group to chase the allies. Once the chasing-enemies

are at a safe distance from the larger group, the allies can quickly attack and destroy

them. This will weaken the remaining enemies of the group. The allies can then

launch a successful attack. This situation is another example when micromanagement

of navigation is crucial for the safety of the units. Through this research, we propose

to make the units intelligent and reduce the burden of micromanagement on the

human players.

In a gameplay instance from Dota 2 (Figure 1.3), units proceeding toward a desti-

nation have inadvertently come under attack from enemies. An enemy unit is hurling

2



Figure 1.2: A snapshot from StarCraft 2. Allied units under attack from the enemies
en-route.

Figure 1.3: A screenshot from Dota 2. Units encountered adversaries on the way.

3



giant rocks. In this case, the enemy is immobile, and the speed of the attack is slow.

Therefore, it would be prudent not to engage this enemy and instead move quickly

out of the enemy’s attack range.

Navigation through hostile environments should consider the influence of adver-

saries while simultaneously path planning for realistic behavior and unit longevity.

Consider a situation where fishing boats come under attack from enemy ships. If the

fishing boats have to wait for a human player to micromanage a rescue plan, impor-

tant time could be lost, resulting in higher overall damage. Alternatively, the fishing

boats could be intelligent by default and autonomously sail to a safe harbor where

allied battleships can protect them.

This research explores the idea of autonomous navigation in adversarial environ-

ments as a way to lower the burden of micromanagement on human players and

potentially evolve gameplay experience.

1.1 Adversarial Navigation in the Real World, Au-

tonomous Package Delivery

While this research is useful in virtual settings, it also has implications for real-

world applications. Delivery bots on the road from companies like Starship and

Nuro are increasingly common. These robots are susceptible to adversarial attacks

(such as theft or vandalism) from people and animals on the road, particularly in

dangerous neighbourhoods. Ideas from this research can be used to enhance the

robot’s intelligence for quick and safe transit through these areas.
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Chapter 2

Introduction

In RTS games, one common metric predictive of player performance is actions per

minute (APM) (Avontuur, Spronck, and Van Zaanen, 2013). A high APM rate often

means the player is micromanaging the behaviour of all the units under their control

to get the best possible behavior. While expert players do not necessarily want games

to reduce their burden of micromanagement since it gives them an advantage (Anhalt,

2011), one could imagine many scenarios where players could find increased enjoy-

ment when their units have better default behaviors. In particular, players want units

to trade off path-length optimality for other objectives. For example, offensive RTS

units might collaborate to encircle the enemy, while defensive units may prefer safer

escape routes (Botea et al., 2013). Other strategies for safe navigation include keep-

ing distance from enemies and avoiding enemy vantage points and areas commonly

patrolled by enemy scouts to avoid detection (Critch and Churchill, 2020). Makarov,

Polyakov, and Karpichev (2018) observed that the construction of Voronoi-based nav-

igation mesh in a first-person shooter game for tracking tactical properties like line

of fire, kill / death statistics, and enemy visibility significantly improved win-rate.

Tremblay, Torres, and Verbrugge (2014) showed the benefit of strategic navigation

for stealth operations in games. Ninomiya et al. (2015) described a constraint-aware

path-planning system that ensures minimum distance traveled from source to desti-

nation while satisfying certain constraints. Constraints can be location specific, such
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as the unit needs to check behind buildings. Or it can be about enemy evasion, such

as requiring the unit to avoid being seen. Constraints can also relate to unit organi-

zation, for example, the unit should stay in between two other units. A dynamic path

planner initially computes the constraint-aware path and later repairs it if constraints

are updated due to changing environmental dynamics.

In previous research, Levy et al., 2020 used deep reinforcement learning to gener-

ate safe routes in urban environments while optimizing path lengths. However, this

work learns features from the entire map, which does not generalize well to unseen

maps or scale to maps of arbitrary sizes. Other works on adversarial navigation use

influence maps (Critch and Churchill, 2020) and potential fields (Hagelbäck, 2016).

PRA* (Sturtevant and Buro, 2005; Sturtevant et al., 2019) is an efficient pathfind-

ing and navigation technique well-suited for dynamic environments, including hostile

ones. The is because in a dynamic environment computed paths get outdated quickly.

Since PRA* works by cheaply computing abstract paths with only partial refinement

of the real path, it can afford to replan repeatedly to avoid local enemies. The pre-

vious approaches, however, require manual tuning of parameters that determine the

magnitude of the agent’s attraction to and repulsion from objects in the environment.

With the broader goal of better micromanagement in mind, this thesis studies

the specific problem of adversarial pathfinding, proposing a reinforcement-learning

(RL) based approach combined with the PRA* for hierarchical pathfinding. Rein-

forcement learning (RL) is used for learning a policy to counter adversaries during

local movement while also optimizing path suboptimality. The agent then uses PRA*

for long-distance pathfinding, considering only static obstacles, using local strategies

learned through RL to reach nearby goals. While PRA* is a proven better alternative

to A* for pathfinding in dynamic environments, RL reduces the burden of refinement

on PRA* at the lowest levels of abstraction (that considers dynamic obstacles and

adversaries), thus resulting in a mutually beneficial relationship. Furthermore, our

use of environmental abstractions enables the agent to effectively execute adversarial
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navigation on maps that are significantly different from the maps used to train the

agent. It is also observed that the proposed approach is generalizable in the sense

that the agent can learn different strategies when the game design is updated with-

out requiring any code changes. This is a desirable property because game design is

usually an iterative process (Macklin and Sharp, 2016).

Experimental results show that agents using the proposed approach take about

four times less damage than baseline approaches based on either potential fields or

PRA* alone while not requiring significantly more computation resources (memory

and CPU time). Furthermore, the proposed approach is shown to scale to different

kinds of environments and those of varying sizes.

2.1 Thesis Objectives

We propose an RL based framework for autonomous navigation in adversarial en-

vironments that minimize path suboptimality and damage from adversaries in the

environment. We compare our approach with other baseline approaches on these

metrics: path length from source to destination, the amount of damage the agent

takes, amount of memory used for pathfinding, and the time to reach the destination.

Experimental results show that our approach outperforms the baseline approaches in

path length optimality and unit safety while not compromising on system resources

- memory and CPU time.

We are also interested in the generalizability of our approach. At any instant, the

agent has visibility only of the portion of the map within its field of view (FOV). This

makes the approach scalable because the original map can be of any size, and yet the

agent can perform local adversarial navigation. Our learning framework uses a single

convolution layer to extract features from the agent’s FOV coupled with a set of

computed abstract features. The simple structure of the neural network powered by

domain knowledge (used to define the abstract features) makes the generated model

highly explainable. In turn, this improves the model’s generalizability because we have
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good control over what is being learnt, allowing us to curate features that generalize

across environments. Ba and Caruana (2014) have shown that shallow networks are

not just faster to train than deep networks but also learn equally good representations.

As a result, the agent trained on small custom maps (size 27×27) could successfully

navigate large maps (size 512×512) of the popular RTS game Warcraft III even when

the test maps are significantly different from the training maps.

The proposed approach can uncover alternate strategies autonomously when the

game design is updated without changes to the learning framework. This is essen-

tial because game designing is normally an iterative process. However, there are

limitations to this generalization. For example, if a major design update occurs, the

agent’s state representation could become insufficient. Then an update to the learning

framework may be needed.

Our contributions are as follows:

• We introduced a novel approach for adversarial navigation that combines PRA*

and RL.

• We show that the approach can generalize to different game environments, es-

pecially standard game maps that have not been used to train the agent.

• We show that the approach can scale to maps of different sizes.

• We show that the approach is generalizable across game designs. That is, if the

game design is updated, the agent can uncover new strategies for adversarial

navigation following the proposed approach, without requiring update to the

agent’s learning framework.

• We provide a comparison to current state-of-the-art approaches for adversarial

navigation in terms of path length suboptimality, damage to the agent during

navigation, time to reach the destination, and the amount of extra space used.
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Chapter 3

Related Work

This chapter discusses in detail previous work on tactical navigation, methods that

were used to overcome adversaries during navigation, and limitations of those ap-

proaches. It further discusses Machine Learning based approaches for mutiobjective

path finding and navigation in video games and mobile robots.

Real-time strategy games usually take place in dynamic and hostile environments

where players have to make high-level and low-level decisions under extreme time con-

straints (Lara-Cabrera, Cotta, and Fernández-Leiva, 2013; Sailer, Buro, and Lanctot,

2007). Hagelbäck (2016) proposed a hybrid navigation system for the RTS game

StarCraft combining potential fields with A*. Their paper states that A* alone is

not well-suited for dynamic worlds because the environment can change as the unit

navigates, and the path computed by A* could quickly become obsolete. An alternate

approach called PRA* (Sturtevant and Buro, 2005) involves constructing hierarchical

abstractions on top of a given map and then partial pathfinding through refinement.

Unlike A*, PRA* is suited for dynamic environments because it interleaves partial

path planning and path execution, which helps solve the problem of long paths be-

coming obsolete over time. This is because the last stage of partial pathfinding does

not need to happen until an agent is nearby, meaning that the local environment is

known with higher certainty.

In the field of adversarial pathfinding, stealth games like Tom Clancy’s Splinter
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Cell (Ubisoft, 2002), Mark of the Ninja (Microsoft Studios, 2012), and Metal Gear

Solid V (Konami, 2015) encourage players to follow covert paths and utilize light

and sound to avoid enemy detection during navigation. Mendonça, Bernardino, and

Neto (2015) proposed a method to construct such covert paths in real-time using

navigation meshes. Other researchers have attempted to strike a balance between

path suboptimality and path safety in adversarial navigation. Jong et al. (2015) used

influence maps (IMs) to compute a safety score for each grid cell of the map and

then used it in the heuristic function of A* to find safe paths. The paper observed

that the search space of A* increases significantly due to this additional dimension.

The paper then used PRA* to improve search performance. A similar idea based on

influence maps and flocking was implemented by Danielsiek et al. (2008) for group

navigation of units in the RTS game Glest. Avery, Louis, and Avery (2009) used

a set of influence maps to execute complex tactics in a naval RTS game having an

adversarial environment. Influence maps require storing of influence values for every

entity of the world and then use a pathfinding algorithm such as Dijkstra or A*

to find an optimal path by incorporating the influence values in the cost function

(Adaixo, 2014). Additionally, influence maps are computationally expensive without

parallelization since they must be updated frequently when the position of units in the

world changes (Mark, 2019). With parallelization, the implementation complexity of

the algorithm increases considerably.

Stanescu, Barriga, and Buro (2014) discussed a method to decompose strategies

in RTS games into decoupled hierarchical abstractions. The first layer deals with the

highest level strategies to win the game, the second layer encapsulates action plans

to execute the higher level strategies, and the third layer’s task is to generate the

actual execution plan in terms of real-world moves. The authors showed this approach

outperformed other state-of-the-art algorithms like UCT and Portfolio Search in large

combat experiments using StarCraft.

The game of capture-the-flag (CTF) is interesting in the context of adversarial
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pathfinding as it requires complex strategic navigation. Players need to defend their

own flag while trying to steal their opponent’s flag. Huang et al. (2011) calculated

the winning regions of both the attacker and the defender using the Hamilton-Jacobi

reachability. Like CTF, the game of cops and robbers requires adversarial navigation.

Moldenhauer and Sturtevant (2009) explored different algorithms for the robber to

evade capture by the cop for as long as possible. Tastan, Chang, and Sukthankar

(2012) analyzed the problem of intelligent interception of adversaries in first person

shooter games. The authors modelled the adversary’s motion using inverse reinforce-

ment learning and used that knowledge to track and ambush the adversaries at specific

target points. Besides video games, tactical adversarial navigation has applications in

the real world too. For example, a wildlife security group (PAWS) optimized its use

of human resources for patrolling large conservation areas while effectively combating

poaching (Fang et al., 2016).

Wang et al. (2020) proposed a method to navigate multiple mobile robots in a dy-

namic environment. The method uses RL to avoid collisions with static and dynamic

obstacles while following a global guidance path computed using the A* algorithm.

This work, however, has not addressed the problem of adversarial navigation and did

not demonstrate whether their approach can generalize to different types of maps

with different environment dynamics. Our work extends the idea to adversarial envi-

ronments, explores PRA* as an alternate global guidance, and is generalizable.

3.1 Machine Learning Approaches to Pathfinding

Panov, Yakovlev, and Suvorov (2018) explored a RL based pathfinding technique

called Neural-Q learning. It uses a reward structure that benefits the agent if its

action moves it closer to the destination. Moreover, the authors used a regularization

technique that penalizes the agent for straying off the path. The authors reported

that, after training, the agent could successfully navigate both seen and unseen paths.

However, there were instances when the agent failed to find any path (even though
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one exists) or the path that it found was longer than the one found with A*.

Navigation meshes (NavMeshes) are the industry standard for NPC navigation in

video games. The resultant graph is a compact representation of the 3D environment

as complex polygons. These graphs, however, do not incorporate the NPC’s unique

abilities. Traditional solutions do not make full use of the NPC’s abilities and often

look unrealistic. Alonso et al., 2020 demonstrated a solution with deep reinforce-

ment learning that worked well and eliminated the need for manually modifying the

NavMesh, thus achieving major cost saving procedurally generated for large maps.

Neural A* is a differentiable formulation of the A* search algorithm coupled with

a convolutional encoder (Yonetani et al., 2021). It benefits in path length optimality

by encoding visual information as guidance maps which then guide the A* search.

The module performs A* search in the forward pass and backpropagates losses. The

loss is computed by comparing against ground-truth optimal paths provided either

by human annotators or the neural planner. The objective of loss minimization is to

reduce the inconsistency between resulting search histories and ground truth paths.

The authors showed that Neural A* could predict realistic human trajectories on

natural images provided as input.

Multi agent path finding (MAPF) is a well-known planning problem that requires

multiple agents navigating in a common environment to reach their respective des-

tinations without collision (Stern et al., 2019). A solution to MAPF was explored

with reinforcement and imitation learning. The technique named PRIMAL taught

the agents fully decentralized policies such that the agents can implicitly coordinate

to avoid collisions while planning paths in a partially observable environment (Sar-

toretti et al., 2019). However, MAPF usually involves cooperative agents but this

work focusses on adversarial agents.
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Chapter 4

Background

4.1 Reinforcement Learning

RL entails an agent observing a state of the environment St at timestep t and re-

sponding with an action At (Figure 4.1). Consequently, the environment provides

the agent a scalar reward Rt+1 and transitions the agent to the next state St+1 at

time t + 1. The agent’s objective is to learn an optimal policy π∗ that maximizes

the expected discounted future rewards (Arulkumaran et al., 2017). Low values of

the discounting factor γ [0, 1] gives more importance to immediate rewards. The

policy π is a mapping from the states S to a probability distribution over actions,

π : S → p(a = A|S). The optimal policy (π∗) is defined as:

π∗ = argmax
π

(E[R|π]) (4.1)

An RL problem can be formally described as a Markov Decision Process (MDP)

Figure 4.1: The agent environment interaction in reinforcement learning as a Markov
Decision Process (Sutton and Barto, 2018).
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represented as a tuple < S,A, P,R > (Puterman, 2014). Here S represents a finite set

of states and A represents a finite set of actions. P is a set of transition probabilities,

where P (s′|s, a) is the probability of transitioning from state s to s′ after taking action

a. R is a reward function, where R(s, a) depends on the state and action. In RL, an

important assumption is the Markov Property which states the future is conditionally

independent of the past if the current state is known. In other words, the decision to

take at state st+1 can be made based solely on st. However, this assumption is often

unrealistic because it requires the states to be fully observable.

A value function represents the state’s expected cumulative discounted future re-

wards and is a measure of how good or bad each state is (Li, 2018). Under policy π,

a state value is defined formally as vπ(s) = Eπ[Rt|St = s]. The Bellman equation for

state value is (Sutton and Barto, 2018) :

vπ(s) =
∑︂
a

π(a|s)
∑︂
s′,r

p(s′, r|s, a)[r + γvπ(s
′)] (4.2)

The optimal state-value is v∗(s) = maxπ vπ(s). The Bellman equation for v∗(s) is

provided below (Sutton and Barto, 2018).

v∗(s) = max
a

∑︂
s′,r

p(s′, r|s, a)[r + γv∗(s
′)] (4.3)

The optimal action value qπ(s, a) = E[Rt|St = s, At = a] is the expected return

when selecting action a in state s, then following policy π. The Bellman equation for

action-value is (Sutton and Barto, 2018) :

qπ(s, a) =
∑︂
s′,r

p(s′, r|s, a)[r + γ
∑︂
a′

π(a′|s′)qπ(s′, a′)] (4.4)

The Bellman equation for the optimal action value is (Sutton and Barto, 2018) :
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q∗(s, a) =
∑︂
s′,r

p(s′, r|s, a)[r + γmax
a′

q∗(s
′, a′)] (4.5)

4.1.1 Deep Q-Network

In the DQN approach, a deep neural network (also called the Q-Network) is used

to approximate the action-value function. A network with L (where L > 0) hidden

layers, represented as {di}L+1
i=0 ⊆ N approximates a function f : Rd0 → RdL+1 (Fan

et al., 2020).

f(x) = WL+1 σ(WL σ(WL−1 σ(. . . (W2 σ(W1x+ b1) + b2) . . .) + bL−1) + bL) + bL+1

(4.6)

In (4.6), Wl ∈ RdlXdl−1 is the weight matrix, and bl ∈ Rdl is the bias vector of

the lth layer of the neural network. A non-linear transformation σ is applied to each

layer. The network parameters are the weights and biases. They are learned in the

process of training.

The Q-network is denoted as Q(s, a; θ), where θ represents the network parameters.

It is trained by minimizing a sequence of loss functions δi(θi) at every iteration i of

the training (Mnih et al., 2013).

δi(θi) = Es,a∼ρ(.)[(yi −Q(s, a; θi))
2]

where,

yi = E[r + γmax
a′

Q(s′, a′; θi−1|s, a)]

The target for the next iteration is represented as yi. ρ(s, a) is the behaviour policy.

In DQN, the target is a moving estimate of the actual Q value rather than being fixed

in the beginning, as is usually done for supervised learning. This concept is known as

bootstrapping. The loss function is optimized with stochastic gradient descent. The

derivative of the loss function with respect to θ is given below.
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Figure 4.2: Abstracting a general path (Sturtevant and Buro, 2005).

∇θiδi(θi) = Es,a∼ρ(.);s′∼ε[r + γmax
a′

Q(s′, a′; θi−1)−Q(s, a; θi)]∇θi(Q(s, a, θi)) (4.7)

4.2 Partial Refinement with Abstraction and A*

(PRA*)

A navigation task can be decomposed into two parts: path finding and path execution.

The traditional approach first computes the entire path from source to destination

and then requires the agent to follow or execute the path. Sturtevant and Buro,

2005 suggested an alternate idea called Partial Refinement A* (PRA*). Instead of

computing the entire path from source to destination, a high level plan is initially

created, and then the actual path is computed partially and progressively as the agent

travels. The idea interleaves path computation with path execution which makes it

robust to environment dynamics and precludes path re-computation.

The first step involves creating an abstraction of the world where a vertex in the

abstract space represents a group of vertices in the real world. A “clique and orphan”

abstraction pattern ensures that all real nodes of an abstract node are reachable from

each other in one step. An orphan node in abstract space can be reached only from a

single real node. In Figure 4.2, the nodes in the real world are abstracted into cliques

marked A, B, C, D based on their connectivity to neighbouring nodes. The cost of

constructing abstraction is O(n), where n is the number of vertices of a graph.

PRA* performs an A* search in the abstract space using an abstract heuristic
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function. The search cost in the real world is reduced by ensuring that A* search in

the real world generates only those nodes whose parents are part of the abstract path.

This constrained A* search is the primary reason for PRA*’s significant speedup over

A* while also utilizing less memory than A*.

While the original PRA* paper used multiple abstraction levels, we have used a

single abstraction level in this research.

4.3 Potential Fields

The idea of potential fields is about using attractive and repulsive forces to guide

the agent’s navigation. In RTS games, the attractive charge is placed at the goal (or

position to be reached), and repulsive charges are on obstacles. The magnitude of

these repelling charges is typically small and within a short radius of the obstacle,

while the magnitude of the attractive force of the destination is large and must reach

the entire virtual world. The potential field from adversaries can depend on many

factors, such as if the agent can attack the opponent, the opponent can attack the

agent, whether the agent or the opponent is on the offensive or defensive, and the

range of the weapon of the agent and the opponent (Hagelbäck, 2012). A problem

with potential field based navigation is that the agent might get stuck in local optima.

This is a point of high potential surrounded by regions of low potential and is not

the destination. A solution proposed by Hagelbäck and Johansson (2021) used a

repulsive trail (also called potential trail) to push the agent forward and prevent it

from coming back to its earlier locations. This approach was successful in preventing

the agent from getting stuck in local optima when deployed in the open source RTS

game, ORTS (Buro and Churchill, 2012).

We represent a 2D world W ⊆ R2 . The current location of the agent in W is

q. Then the potential field U(q) is calculated by superimposing the attraction and

repulsion fields at q (Filimonov, Filimonov, and Barashkov, 2019) (Figure 4.3).
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Figure 4.3: Composite potential field of target and obstacles.(Jiang, Cai, and Xu,
2023).

U(q) = Uattractive(q) + Urepulsive(q) (4.8)

The potential force F(q) is calculated as below.

F (q) = −∇U(q) = −
[︃
∂U(q)
∂x

∂U(q)
∂y

]︃
(4.9)

The attractive potential is usually a parabolic function.

Uattractive(q) =
1

2
Ka.d(q)

2 (4.10)

Here d(q) is the Euclidean distance of the agent from the goal, d(q) = ||q− qgoal||.

Ka is a constant, such that Ka > 0. The repulsive potential is calculated as shown

below.

Urepulsive(q) =

⎡⎢⎣1
2
Kr · ( 1

ρ(q)
− 1

ρ0
)2, ρ(q) ≤ ρ0

0, ρ(q) > ρ0

⎤⎥⎦ (4.11)

Here, ρ(q) is the minimum distance of the agent to the obstacles. This formulation

creates a repulsive field of radius ρ0 around the obstacle. An important disadvantage
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of this solution is that the attractive force decreases quickly and becomes nearly zero

when the agent is close to the goal. To overcome this problem, the definition of

attractive forces is modified slightly.

Uattractive(q) =

⎡⎢⎣1
2
Ka · d(q)2, d(q) ≤ d0

1
2
Ka · d(q), d(q) > d0

⎤⎥⎦ (4.12)

Here, d0 is assumed to be a short distance from the goal.

In this chapter we reviewed the literature on RL, focussing on the DQN algorithm.

For our approach we chose DQN because of the algorithm’s inherent simplicity and

easy implementation. Next, we reviewed two methods: PRA* and Potential Fields,

for executing adversarial navigation in dynamic environments. Since these are popular

approaches as explained in Chapter 3, we have used them as baselines for comparison

with our proposed approach. In the next chapter, we will define the adversarial

navigation problem formally and then explain our solution.
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Chapter 5

A Novel Approach to Optimizing
Adversarial Navigation with RL

5.1 Defining Adversarial Navigation

The adversarial pathfinding problem is defined on a graph G = (V,E) where V is the

set of nodes and E is the set of valid edges between the nodes. Edges are represented

as E = {(v, v′) : (v & v′ ∈ V )}. Each edge has an associated positive cost represented

by c(v, v′) ∈ R+. A path ν is a sequence of nodes ν = v0, v1, v2, v3 . . . vk such that

(vi, vi+1) ∈ E for every i ∈ {0, 1, 2, . . . k−1}. The i-th node on the path is represented

using νi. The cost of traversing a path is calculated by summing all the edges in ν:

cost(ν) =
k−1∑︂
i=0

c(νi, νi+1)

Enemies (ξ) are defined as units whose objective is to inflict damage on the agent.

The adversarial path planning problem is modelled by considering enemies as part of

the environment. Enemies have a defined set of actions, which in this research are:

move to an adjacent vertex, stay at the same location, and attack the agent. An

enemy ξi can cause damage of magnitude Ai
ˆ to the agent. Graph G is an adversarial

environment with N enemies located at vertices: v1̂, v2̂, v3̂, . . . vN̂ .

The agent starts with an initial health H at location vs. It’s destination is vd. The

agent has a legal set of actions, which in this research are moves to adjacent vertices. If

ξi is successful in its attack on the agent, then the health of the agent after the attack
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is: H−Ai
ˆ . The agent is killed if its health falls to 0 or lower. Therefore, we can define

the input to the adversarial navigation problem using the tuple ⟨G, c, ξ, Â,H, vs, vd⟩.

The behaviour of ξ is not known but assumed to be static. The objective of the agent

is to reach the destination by simultaneously reducing the distance travelled and the

damage it takes from the enemies. The trade-off occurs because minimizing distance

requires the agent to follow specific shortest distance paths which can cause frequent

enemy encounters and high damage. Minimizing enemy encounters could require the

agent to plan longer paths that avoid areas with many enemies.

In our experiment, G is an 8-connected (octile) grid map, but the approach is

extensible to other pathfinding architectures.

5.2 Our MDP For Adversarial Navigation

We design a Markov decision process (MDP) that represents the general adversarial

navigation problem. In our game design, the world is deterministic and consists of

fixed obstacles and dynamic enemies. The agent can only observe a limited area of

the map around it, called the agent’s field of view (FOV) (Figure 5.1). The agent’s

FOV is much smaller than the area of the entire map. This means that changes in

the map are not completely predictable when the agent moves, as new obstacles come

into the FOV. Similarly, enemies have their own strategies for movement and may

appear or disappear from the FOV. As a result, the agent’s view of the dynamics of

the game are modeled by an MDP.

States in the MDP are defined by the agent’s field of view. The image of the

FOV defines half of the MDP state. An additional set of features are computed

using information from the agent’s FOV as the other half of the MDP state. These

derived features contain the locations of nearby enemies, and will be discussed in the

Q-Network architecture section.

In this work our enemies are identical and have fixed strategies for chasing and

attacking the agent. Similar to the agent, the enemies have visibility of the portion
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of the map that is within their FOV. An enemy will chase and attack the agent if

the agent is in their FOV. To execute a chase, the enemies predict the agent’s next

location by tracking the agent’s previous location, and planning a path towards the

agent’s predicted next location. Enemies attack the agent by collision. Further details

of the game design are provided in the section on experimental setup.

Actions in the MDP are defined relative to the direction of the global PRA* path

at its point closest to the agent. The legal actions include going straight and turning

45 or 90 degrees in either direction relative to the global path.

The agent is trained on the MDP using reinforcement learning, so the learned

policy depends on the rewards in the MDP. We have two objectives for agents in the

game: (1) they should take short paths from the source to the destination and (2)

they should avoid taking damage from enemies on the way. The rewards in the MDP

are used to balance these objectives during learning.

5.3 Encoding Objectives in the Rewards Function

The states of the MDP are split into two sets with two different reward structures.

The first set of rewards applies when the agent is safe with no enemies in the vicinity,

and the second set when the agent is unsafe due to presence of enemies.

An agent’s state at time t is represented using λUt if the agent is in an unsafe state

and λSt if the agent’s state is safe. In safe states the rewards are designed such that

the agent learns to follow the global path. If the agent is at node νi on the global

path then any action that moves the agent to node νj : j > i receives a positive

reward RewardAdvance (all reward values are provided in Table 7.1). Safe states on

the global path are terminal states of the MDP. That is, an episode ends when the

agent reaches a location on the global path that is ahead of its previous location on

the global path. Thus the agent’s trajectory during gameplay from vs to vd consists

of, from a learning perspective, many, potentially short, episodes. This simplifies the

learning process and allows agents to start learning quickly.
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Other safe states that are not on the global path, but have the global path in

the agent’s field of view, are non-terminal states of the MDP. If an agent’s action

transitions the agent to a non-terminal state at unit distance from the global path,

the agent receives a reward RewardNonTerminal 1 Safe. Similarly, if the agent’s

action results in transition to a non-terminal state located 2 units from the global

path, the reward is RewardNonTerminal 2 Safe. In the same manner, we have defined

rewards (RewardNonTerminal 3 Safe) for actions that transition the agent to states

that are at 3 or more units away from the global.

Safe states that do not have the global path in the agent’s field of view are terminal

states and represent the case that the agent is unrecoverable or lost. An action that

transitions the agent to a lost state is rewarded negatively with RewardLost. This

is also a terminal state. The agent starts a new episode by resuming at the same

location with a new global path from PRA*.

In unsafe states the rewards are designed such that the agent learns to reduce

damage and reach a safe state. Consider three possible sequences of states (ψ1,

ψ2, and ψ3) the agent may encounter while moving from vs to vd. The hyphens in

the sequences are used indicate when separate episodes begin. A safe state on the

global path is a terminal state and therefore the agent’s trajectory can contain many

episodes.

ψ1 = λS0 − λS1λ
S
2λ

U
3 λ

U
4 λ

U
5 λ

U
6 λ

S
7 − λS8

ψ2 = λS0 − λS1λ
S
2λ

U
3 λ

U
4 λ

S
5 − λS6 − λS7λ

S
8

ψ3 = λS0λ
S
1 − λS2λ

S
3λ

S
4 − λS5λ

S
6λ

S
7λ

S
8

The adversarial navigation trajectory represented by ψ3 is simpler because it only

requires making progress on the global path through safe states. Since ψ1 has more

unsafe states than ψ2, we consider ψ1 to be further from the solution to the problem

of adversarial navigation than ψ2. Therefore we designed our rewards such that the

agent learns to avoid damage in the unsafe states while looking to move to a safe
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state on the global path. This reduces both path cost and damage from enemies.

In practice, once the agent has learnt to navigate within safe states, it will learn

to navigate unsafe states with strategies that neutralize enemies the fastest. For

example, in a certain unsafe state, the agent can decide whether an escape strategy

(defensive) is better than an attacking (offensive) strategy based on which strategy

can defeat enemies more quickly.

We hypothesize (H) that the design of our rewards will lead to an improved solution

for adversarial navigation. The hypothesis H is validated if the proposed approach

results in reduced damage and shorter paths than the baseline approaches. We will

validate the hypothesis empirically through experiments.

The agent is provided a negative reward RewardNonTerminalUnsafe when its cur-

rent state is an unsafe state, and its next action leads to another unsafe state. If an

agent-action results in damage to the agent due to an attack from a nearby enemy,

then it receives a large negative reward RewardInjury. Furthermore, an agent action

that transitions the agent to a lost state also receives a negative reward RewardLost.

Both agent states where the agent is either damaged or lost are terminal states. The

agent starts a new episode by resuming at the same location where the previous

episode terminated. The learning follows the reward structure of safe state to safe

state transitions when the agent’s action transitions it from an unsafe to a safe state.

5.4 Q-Network Architecture

This section describes the architecture of the learning framework, including the inputs

and outputs of each module (Figure 5.1).

Features are extracted from the agent’s field of view (FOV) through a combina-

tion of 2D convolution layers and environmental representations (refer to Chapter

6). Environmental representations are computed features that generalize well across

different environments. For example, the agent uses raycasts to spot the position of

obstacles around it, abstracting actual shapes and sizes of the obstacles. Furthermore,
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Figure 5.1: A model of the neural network for learning navigation in adversarial
environments.

instead of tracking the entire section of the path inside the FOV, the agent abstracts

it by finding the point on the path that is closest to the agent and the direction of

the path at that point. The agent evaluates linear and angular distances to enemies

in the FOV relative to its current direction of motion. These measures are invariant

to FOV rotations which happen when the agent’s direction changes as it navigates.

Based on the linear and angular distances to an enemy, a risk score is assigned to it.

Risk scores are higher for enemies located close to the agent or having frontal place-

ment, while risk scores are lower for enemies further away or located in the rear of the

agent. The enemies are then sorted by their risk scores. This helps the agent prioritize

threats and also reduce variance in the training data. Environmental representations

are designed to reduce the size and variance of the feature space through extraction

and processing of key information while abstracting unnecessary details. They also

help generalize the learning to unseen environments (i.e. environments not used in

training the agent). A detailed explanation on the environmental representations are

provided in the Chapter 6.

We observed that complementing the environmental representations with a single

2D convolution layer improves model accuracy without compromising on generaliz-
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ability or speed of training. The dimensions of the agent’s FOV is 9×9. The CNN

has 3 input channels that capture the position of obstacles, enemies, and the global

path in the FOV. The kernel size is 3, and there are 16 output channels of the CNN.

The output of the CNN is then passed through a ReLU activation function before

being flattened into a one dimensional tensor.

The agent computes abstract features through the environmental representations

module and creates a single dimensional tensor. The two tensors are concatenated

forming the agent’s complete state tensor. The state tensor of size 834 is the input

layer of a fully-connected neural network with 2 hidden layers and 1 output layer.

The first hidden layer contains 520 neurons, and the second hidden layer contains

400 neurons. The output of the hidden layers pass through a ReLU activation before

entering the next layer. The output layer contains the same number of neurons as the

agent’s action space. In this research, the agent’s action space consists of 5 actions

determined relative to the agent’s current direction: move straight, move left, move

right, move diagonal left, move diagonal right.

Given an agent state, the output layer produces Q-values associated with every

action from that state. The neural network is trained by minimizing the loss function,

as explained in Section 4.1.1. During training, the agent follows an ϵ-greedy strategy

- choosing the action having highest Q-value with a probability of 1− ϵ (exploitation)

and a random action (exploration) otherwise. The value of ϵ is initially set to 1 to

encourage exploration over exploitation and then decayed gradually until the value of

0.25 is reached after which no more decay is allowed. The loss function is optimized

with stochastic gradient descent using the Adam optimizer and gradient clipping. A

replay buffer of capacity 15000 is used to store past experiences, from which a batch

of 4000 is randomly sampled in every epoch of training. Training is run for 300,000

epochs.

In this chapter, we defined the problem of adversarial navigation formally, then

provided a detailed description of our approach based on reinforcement learning. We
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also explained the architecture of the neural network used to train the agent. We

also introduced environmental representations which are a set of computed features

on which the neural network is trained. The next chapter is a deeper dive into these

features.
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Chapter 6

Environmental Representations

In this chapter we will discuss the environmental representations, that are used as

part of the Q-Network architecture (Section 5.4), in detail. We assume that the world

is partially observable to the agent. However, the agent has complete knowledge of

the portion of the world which is within its field of view (FOV). The agent’s FOV

defines the agent’s current state. Any change to the FOV is a different state for the

agent. The agent’s FOV also includes enemies that are located within the agent’s

FOV. Additionally, the same FOV but observed from different directions, such as the

agent facing North vs. the agent facing East, are different states for the agent. The

FOV of the agent can vary extensively within a single environment and also between

different environments. As a result, learning a representation of the FOV is challeng-

ing due to the possible number of features and variance in the date. Furthermore, this

process of learning a representation of the FOV from all possible features can pre-

vent the training from converging due to the large state space of the FOV, or cause

overfitting due to learning from features that do not generalize to unseen environ-

ments. Therefore we developed certain abstract features which we call environmental

representations with the objective of capturing only essential information while leav-

ing out superfluous details. The environmental representations are manually crafted

using domain knowledge that can generalize across environments.
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Figure 6.1: Plot of the normalizing function f(θ)

6.1 Risk Representation

Each enemy within the agent’s FOV is assigned a risk score based on its Manhattan

and angular distance from the agent. The closer an enemy is to the agent, the greater

its risk score. Similarly, enemies that are located towards the front of the agent are

more capable of inflicting damage to the agent than enemies located towards the rear.

To deduce an expression for the risk score, we first define a normalizing function f(θ)

where θ is the enemy’s angular distance from the agent’s direction of motion.

Table 6.1: Function to normalize angular distance of enemies

f(θ) = cos θ + 1, in quadrant 1 f(θ) = sin θ, in quadrant 2

f(θ) = sin θ, in quadrant 3 f(θ) = -(cos θ + 1), in quadrant 4

f(θ) is calculated according to Table 6.1 and shown in Figure 6.1. f(θ) is positive

in the interval [0, π], which is the left side of the agent, assuming angles are measured

counter-clockwise. It is negative in the interval [π, 2π], which is the right side of the

agent. The absolute value of f(θ) approaches 2 for enemies positioned to the front of

the agent and nears 0 for enemies located near the rear of the agent.

The risk score η for an enemy with a Manhattan distance d and angular distance

θ is calculated below:
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Figure 6.2: Change of coordinate system for rotation abstraction.

η =
⃓⃓
f(θ)

⃓⃓
e−0.9d (6.1)

Risk scores of enemies are included in the agent’s state space. Enemies within the

agent’s FOV are also sorted by risk scores. Sorting reduces the agent’s state space

since ordering of features reduces many states to a single state. The top five risk

scores are added to the input tensor of the neural network (Figure 5.1).

6.2 Rotation Abstraction

As the agent traverses the global path, it changes direction at the turns. The agent’s

FOV is computed relative to the agent’s direction. As a result, the FOV around the

agent rotates either clockwise or anti-clockwise. This abstraction ensures that the

agent does not consider a rotated FOV as a new state. In this section, we derive

expressions that enable the agent to be invariant to FOV rotations when the agent’s

direction change.

The world is represented using a 2D grid world with (x, y) coordinate system, as

shown in Figure 6.2. The agent’s position is represented with b⃗ and enemy’s position

is e⃗, both of which are relative to the origin. l̂ is a unit vector along the agent’s

direction of movement and p̂ is a unit vector orthogonal to l̂. The enemy’s position

relative to the agent’s coordinate system, represented by (l̂, p̂), is e′⃗. Unlike e⃗, e′⃗ is

rotation invariant. Therefore, the objective is to deduce the location of the enemy
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(e′⃗) relative to the agent’s direction of motion given the agent’s coordinates (b⃗), the

enemy’s coordinates (e⃗) and the agent’s direction of motion.

Using vector arithmetic, we have (Figure 6.2):

b⃗+ e′⃗ = e⃗ (6.2)

We now split e⃗ into its x-component e1 and y-component e2 and the agent vector

into its x-component b1 and y-component b2.

e⃗ = e1x̂+ e2ŷ (6.3)

b⃗ = b1x̂+ b2ŷ (6.4)

The vectors l̂ and p̂ can be represented similarly.

l̂ = l1x̂+ l2ŷ (6.5)

p̂ = p1x̂+ p2ŷ (6.6)

We can represent e′⃗ relative to the agent’s coordinate system (l̂, p̂) using the com-

ponents (e′1, e
′
2)

e′⃗ = e′1l̂ + e′2p̂ (6.7)

Substituting 6.5 and 6.6 in 6.7.

e′⃗ = e′1(l1x̂+ l2ŷ) + e′2(p1x̂+ p2ŷ) (6.8)

Substituting 6.8, 6.4 and 6.3 and in 6.2.

b1x̂+ b2ŷ + e′1(l1x̂+ l2ŷ) + e′2(p1x̂+ p2ŷ) = e1x̂+ e2ŷ (6.9)
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Rearranging terms in 6.9

(b1 + e′1l1 + e′2p1)x̂+ (b2 + e′1l2 + e′2p2)ŷ = e1x̂+ e2ŷ (6.10)

Equating x̂ on both sides of equality of 6.10, we get the following:

e′1l1 + e′2p1 = e1 − b1 (6.11)

Equating ŷ on both sides of equality of 6.10, we get the following:

e′1l2 + e′2p2 = e2 − b2 (6.12)

From 6.11 and 6.12 we can solve for e′1 and e
′
2. This then tells us e′⃗, which represents

the enemy’s position relative to the agent’s direction of motion. e′⃗ is invariant to FOV

rotations due to change in agent’s direction. The positioning relative to the agent’s

coordinate system (l̂, p̂) abstracts the agent’s direction with respect to the actual

coordinate system (x̂, ŷ).

We solve 6.11 and 6.12 using matrix operations.⎡⎢⎣l1 p1

l2 p2

⎤⎥⎦
⎡⎢⎣e′1
e′2

⎤⎥⎦ =

⎡⎢⎣e1 − b1

e2 − b2

⎤⎥⎦ (6.13)

Solving for e′1 and e′2, we get:

e′1 =
p2e1 − p2b1 − p1e2 + p1b2

l1p2 − p1l2
(6.14)

e′2 =
l2b1 − l2e1 + l1e2 − l1b2

l1p2 − p1l2
(6.15)

The distance of the enemy from the agent is given by |e′⃗| =
√︁

(e′1)
2 + (e′2)

2. The

enemy’s angular distance relative to the agent’s direction is θ = arccos
e′1
|e′⃗|

.

Linear and angular distances of the enemies with the top five risk scores are cal-

culated. These values are appended to the input tensor of the neural network (5.1).
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6.3 Simple Grid-based Raycast Distances

The agent uses raycasts to determine the position of obstacles around it (Sauze and

Neal, 2010). It does so by scanning for obstacles in a radially outward manner. The

information obtained as a result abstract away details of the environment that are

not necessary to build effective navigation strategies. For example, if a unit cannot

swim, it would consider both water bodies and impenetrable forests as obstacles.

Furthermore, the agent does not need to know the exact shape and size of the obstacles

to decide which moves are blocked by obstacles. Raycasts precisely conveys the

information about obstacle distances while abstracting unnecessary details.

The agent also uses raycasts to locate the global path relative to its direction of

motion. Once a node on the path is identified, the agent determines the direction of

the path at that node by analyzing the adjacent nodes that lie on the path. Raycast

distances are computed by scanning (outwards) for obstacles in the direction of the

agent’s actions: straight, 45 degrees to the left, 90 degrees to the left, 45 degrees

to the right, and 90 degrees to the right. As a result of the scan, the distance of

obstacles in the direction of raycasts are included in the input tensor of the neural

network (5.1).

6.4 Path Representation

Within the agent’s FOV, the characteristics of the global path can vary widely. A

model that considers detailed path characteristics while making a decision is likely to

overfit and generalize poorly. Therefore, in the proposed approach, the agent extracts

relevant abstract features from the path while discarding unnecessary details. The

agent first uses raycasts to locate the path. Then, it scans neighbouring nodes on

the path within the FOV to decide direction. The agent chooses the direction having

maximum overlap with the path. For example, in Figure 6.3, the agent’s directions

are North in position 1, East in positions 2 and 5, and South in positions 3 and 4.
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Figure 6.3: Possible positions of the agent along the path is shown. Path directions
are marked with red arrows. Agent’s direction is inferred and shown with black
arrows.

The abstraction implies that the agent only considers the path location and path

direction for its decision, ignoring detailed path characteristics like the actual shape

of the path inside the agent’s FOV.

The agent combines the path representation abstraction with rotation abstractions

(Section 6.2) to prune states. For example, in Figure 6.3, positions 1 and 3 are

identical to the agent as well as positions 2, 4, and 5. In positions 1 and 3 the agent

determines that the path is to its right by considering the amount of overlap of the

path with the FOV and the path’s direction in the maximum overlapped portion of

the path. In a similar manner, for positions 2, 4 and 5 the the agent determines that

the path is to its left. The agent ignores other path characteristics such as the exact

shape and nature of the path because consideration of detailed path characteristics

is unnecessary for the agent’s immediate decisioning. Thus, the agent can compress

5 different states into only 2 distinct states. This is another way the agent reduces

variance in the training data and the size of the state space of the MDP.
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Using path representations the agent determines its direction and the relative po-

sition of the global path. The global path can be located to the agent’s left, right

or in-front. The agent can also be located on the global path. This information is

finally provided to the neural network by appending four binary values [on path, left,

right, in-front] to the input tensor. For example, if the agent is on the path, then

these values would be: 1, 0, 0, 0.

36



Chapter 7

Experimental Results

In this chapter, we discuss in detail the experiments we have conducted to test whether

adversarial navigation can be approximately solved through our approach. This chap-

ter is organized as a list of experiments. For each experiment we provide its objective,

experimental setup, observations, and a discussion of results.

Figure 7.1: A generated map used to train the agent.

For all of our experiments we have designed a simplified adversarial game, as shown

in Figure 7.1. The agent is represented as a boy. The objective of the agent is to

navigate from the start position (marked with a circle) to the goal position (marked

with a flag). The map is populated with fire monsters, which are enemies capable of

inflicting damage to the agent. If the agent is in the field of view of the fire monsters,
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they chase the agent. A collision with a monster would cause 10 points of damage to

the agent. Each fire monster is territorial and stays within a radius of 6 units from its

starting location. All other objects, such as rocks, water, trees, etc., are considered

obstacles. The fire monsters have one weakness: If two or more monsters collide

with each other, they are both destroyed and removed from the game. The agent is

unaware of this weakness. However, we expect the agent to eventually discover this

enemy weakness and learn to exploit it.

The agent is trained on 10 maps of size 27×27 with obstacles uniformly placed, as

shown in Figure 7.1. These maps differ in the initial position of the fire monsters,

which are calculated by random selection from a uniform distribution. At each it-

eration of training, the agent’s start and goal locations are decided randomly. The

agent’s trajectory from the start to the goal is split into many training episodes. An

episode ends if the agent can reach a location on the global path that is safe and

ahead of agent’s last location on the global path. Additionally, an episode ends when

the agent is killed by an enemy or has lost the global path from its FOV. When an

episode ends, the agent starts a new episode by resuming at the location the previous

episode ended. This process continues until the agent reaches the destination or a

timeout occurs. A timeout will occur if the agent has travelled 5 times the opti-

mal path length and yet not reached the destination. If the agent has reached the

destination or a timeout occurred, the agent will start a new episode of adversarial

navigation with new start and goal location on the same game map or a different one.

The agent is trained with reinforcement learning using the reward structure shown in

Table 7.1.

The agent can request a new path if it considers proceeding on the current path to

be too risky. The agent consider a state risky when Q values for all available actions

in that state are lower than a threshold. The threshold is set to -22 and determined

through manual tuning by trial and error. This threshold value has not been modified

in any of the experiments.
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State Name Value

Safe RewardAdvance 15

Safe RewardNonTerminal 1 Safe −1

Safe RewardNonTerminal 2 Safe −2

Safe RewardNonTerminal 3 Safe −3.5

Unsafe RewardInjury −45

Unsafe RewardNonTerminal Unsafe −3.5

Both RewardLost −45

Table 7.1: Rewards used to train the agent

There are two baseline agents for comparison. The first one is based on PRA*

(Sturtevant and Buro, 2005). The PRA* agent computes an abstract path from the

source to the destination and then refines up to 8 abstract nodes in the real world.

While pathfinding in the real world, the agent considers enemies as virtual obstacles.

It is possible to prevent this baseline agent from going close to the enemies (whenever

possible) by treating enemies as larger obstacles. The second baseline is based on

potential fields (Hagelbäck, 2016). The goal is given a low potential, and the enemies

and obstacles are assigned high potential values. The agent moves in the direction of

the steepest drop in potential.

This experiments compare the proposed approach against the baseline approaches

on the following measures: 1) Amount of damage the agent takes, 2) Path length

sub-optimality, 3) Maximum memory used for pathfinding, and 4) Execution time of

episodes. For the purpose of measuring the amount of damage and comparing the

approaches, the agent is given infinite life. At the end of an episode of adversarial

navigation, the total damage incurred by the agent is recorded. Path length sub-

optimality is calculated as ActualPathLength
OptimalPathLength

. Since PRA* is based on the A* (Hart,

Nilsson, and Raphael, 1968) algorithm, it requires an open and a closed list for path

finding. The maximum size of the open list is a measure of the maximum mem-
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ory used. The execution time represents the total time to complete an episode in

milliseconds.

For convenience, we call the agent using the proposed approach the RL agent. The

baseline agent using PRA* is named the PRA* agent. Similarly, we call the baseline

agent using potential field the PF agent.

All experiments are conducted on a Macbook with Apple M1 processor and 16 GB

RAM. C++ is used for programming and LibTorch is used for Machine Learning.

7.1 Experiment 1 : Adversarial Navigation on the

Warcraft III Maps

Figure 7.2: Warcraft 3 maps used to test the agent. From left to right: blastlands,
divƒideandconquer, duskwood, gardenofwar, and thecrucible.

This experiment compares the proposed approach with baseline approaches on the

maps of the popular RTS game Warcraft III, developed and published by Blizzard

Entertainment. The maps are scaled versions of the original maps and have dimen-

sions 512×512 (Sturtevant, 2012). It is important to note that these maps have not

been used for training the agent. Furthermore, the maps of Warcraft III (Figure

7.2) are significantly different from the maps used for training the agent (Figure 7.1).

Therefore this experiment also checks the generalizability of our approach. Five War-

craft III game maps: blastedlands, divideandconquer, duskwood, gardenofwar, and

thecrucible (Figure 7.2), were randomly selected. We then generated 2000 random

paths per map evenly binned by path lengths. The bin size is 50. The number of en-

emies in each of the Warcraft III maps is provided in the Table 7.2. The enemies are
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distributed in the maps randomly with the only constraint that two enemies would

be placed at least 3 units apart.

We observed that the proposed approach takes 4 times less damage than the base-

line approaches on average without compromising on path length. The proposed ap-

proach has similar memory efficiency to the baseline approaches and is comparatively

faster in execution time than the baseline approaches. Furthermore, the proposed

approach’s superior performance on different types of test maps (Figure 7.2) in addi-

tion to the custom training maps (Figure 7.1) demonstrate its generalizability. The

experimental results on the training maps is provided in Section 7.3.

Map Total Enemies

Blastlands 6276

DivideAndConquer 5779

Duskwood 5984

GardenOfWar 5739

TheCrucible 3904

Table 7.2: Number of enemies in Warcraft III maps

The baseline approaches require hand-tuning of parameters for every game envi-

ronment setup used in the experiments. This is often tedious and challenging. In

the case of PRA* baseline, there is a need to set the size of the virtual obstacles.

For the potential field based baseline the attraction and repulsion values need to be

tuned. We plotted all the figures in this section with our best possible configuration

for PRA* and potential fields for each experiment.

Since both the baseline agents have a similar evasion strategy, which is to stay

away from the enemies, they accrue similar damage points for similar path lengths

(Figure 7.3). However, the proposed approach (RL) takes significantly less damage,

which implies that the learnt strategies are more effective than the simple enemy

evasion strategy the baseline agents use. For example, the enemy evasion strategy is
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Figure 7.3: Amount of damage the agent takes, plotted against optimal path length.
The paths are binned by path length with bin size 10. For each agent, we show the
mean and two standard errors

ineffective when the agent is encircled by adversaries. We observed that the RL agent

is less vulnerable to encirclement as its strategies more aggressively exploit enemy

weak points, allowing little time for enemy build-up around it.

The length of the actual paths navigated by the RL and the PRA* agents are more

often closer to the optimal path than the PF agent (Figure 7.4). This is because both

approaches explicitly minimize path cost. However, the PF agent is not penalized

for taking longer paths. We also observed that the RL agent is less sub-optimal

than PRA* in path length. This shows that the RL agent has learnt to counter

enemies while staying close to the global path, as a result minimizing path length

suboptimality. This affirms our hypothesis (H) from Section 5.3.

Both the RL agent and the PRA* agent use additional memory for pathfinding.

The PRA* paper defines a constrained A* search which significantly reduces the

search space. This results in lower memory footprint and execution time compared

to a regular A* search. However, we observed that in a dynamic environment refin-
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Figure 7.4: Path length suboptimality for different types of agents.

Figure 7.5: The maximum memory used for path finding measured by the size of the
open list, plotted against the optimal path length. The paths are binned by path
length with bin size 10. For each agent, we show the mean and two standard errors
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ing narrow corridors as part of the constrained A* search can be unsuccessful when

enemies accumulate in such corridors blocking the path completely. One solution to

this problem is to expand the size of the corridors. However, since this amounts to

relaxing the constraint of the constrained A* search, it will increase memory use and

execution time compared to the unrelaxed constrained A* search. In our experiment,

we dropped constrained A* search from the PRA* baseline to resolve the problem of

unsuccessful refinement due to enemy congestion. This is the reason for high memory

usage of PRA* (Figure 7.5). The RL-agent does not suffer from the enemy-congestion

problem despite using PRA* because it does not consider enemies (and dynamic ob-

stacles) during the pathfinding step. It tackles enemies and dynamic obstacles locally

during navigation. Therefore, combining RL and PRA* together in the proposed

approach is symbiotic, resulting in effective navigation in hostile environments. The

potential field approach does not use any additional memory except when it is stuck

in local optima (Hagelbäck and Johansson, 2021). We implemented repulsive trails to

minimize the problem but still needed PRA* to recover the agent in the few instances

the agent got stuck. Thus, we see the PF-agent using some additional memory in

Figure 7.5.

The execution time of PRA* is the highest (Figure 7.6) because: 1) its heuristic

function does not account for environment dynamics and is therefore less accurate,

2) it does not benefit from the constrained A* search due to the problem of enemy

congestion. Note that the PRA*-agent can benefit from constrained-A* search par-

tially if the size of the corridors are expanded. The RL-agent fully benefits from the

constrained A* search and is therefore significantly faster in computing paths than

the PRA*-agent. Moreover, in the case of the RL agent, inference from neural net-

works is a constant time operation with respect to the path length. However, the

PRA* agent repeatedly searches for new paths to avoid adversaries, which has an ex-

ponential worst case time complexity in path length (Korf and Reid, 1998). Therefore

execution time grows faster for the PRA* agent compared to RL agent.
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Figure 7.6: The amount of time in milliseconds that the agent took to reach the
destination, plotted against the optimal path length. The paths are binned by path
length with bin size 10. For each agent, we show the mean and two standard errors

Agent Damage Path Ratio

Statistics Mean Confidence Intervals Mean Confidence Intervals

RL 6.55 ±0.1 1.54 ±0.01

PRA* 21.94 ±0.27 1.92 ±0.04

PF 22.89 ±0.25 6.13 ±0.12

Table 7.3: Mean and 95% confidence intervals of damage and path ratio in experiment
1.

Time complexity of potential field calculation is linear in the branching factor of the

map. It involves checking the potential values of the grid cells adjacent to the agent’s

current cell. Since in our octile grid maps the branching factor is constant, we can

treat potential field calculation as a constant time operation in path length. Therefore,

the execution time growth rate of the PF agent is slower than the PRA* agent.

However, the PF agent is significantly more suboptimal in path length compared to
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the RL agent and therefore requires a longer time to reach the destination.

The mean and 95% confidence intervals of path ratio and damage for all the agents

are shown in Table 7.3.

7.2 Experiment 2 : Adversarial Navigation on the

Warcraft III Maps After a Game Design Up-

date.

Experiment 2 is also conducted using the five Warcraft III maps (Figure 7.2) de-

scribed in the previous experiment. Additionally the number of enemies and the

initial positions of the enemies in Experiment 2 are the same as Experiment 1. We

updated the design of the game in Experiment 2. The objective of this experiment

is to find out whether the agent can learn effective alternate strategies in a different

game environment without any updates to the learning framework. If true, then this

would imply that the proposed approach is generalizable across game designs. The

results of this experiment is important because game designing is an iterative process.

Our approach ensures that the agent can autonomously update its navigation strate-

gies without code changes, when the game design is updated. Also, by not changing

code of any agent we ensure that we do not accidentally give an advantage to the RL

agent.

In the updated game design, we eliminated the vulnerability of the fire monsters.

Instead, the fire monsters on collision fuse to become a single stronger enemy with

greater attack points and range. The starting location of the fused enemies is the

fusion site, which gives it an advantage since the fusion site is often located close to

the agent’s location. The design update resulted in the game becoming significantly

more challenging than the first experiment for all types of agents (RL, PRA* and

PF).

We observed that the agent was able to learn new strategies that worked well on

the updated game design, even though no changes were made to the agent’s learning
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framework. The results of the second experiment are similar to the first experiment

(in relative trends), with some differences in the magnitude of values (damage, path

length sub-optimality, memory use, and execution time). The values are larger in

the second experiment than the first because of stronger enemies in the second. It is

also important to note that the strategies the agent has learnt in the first experiment

are ineffective in the second experiment. Therefore, the RL agent must learn new

strategies specific to the game’s design in the second experiment for good performance.

Figure 7.7: Amount of damage the agent takes in experiment 2, plotted against the
optimal path length. The paths are binned by path length with bin size 10. For each
agent, we show the mean and two standard errors

Notice, Figure 7.7 is very similar to Figure 7.3, except that in this case all types of

agents (RL, PRA*, and PF) take more damage. This happens because, in Experiment

2, the adversaries are stronger than in Experiment 1. The RL agent continues to

dominate this metric with significantly less damage compared to the baseline agents.

This confirms that the RL agent is able to learn alternate strategies that are effective

in the updated game despite no changes in the learning framework.

Figure 7.8 compares path length suboptimality of different types of agents. The
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Figure 7.8: Path length suboptimality for different types of agents in experiment 2.

Figure 7.9: The maximum memory used for path finding measured by the size of the
open list in experiment 2, plotted against the optimal path length. The paths are
binned by path length with bin size 10. For each agent, we show the mean and two
standard errors
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Figure 7.10: The amount of time in milliseconds that the agent took to reach the
destination in experiment 2, plotted against the optimal path length. The paths are
binned by path length with bin size 10. For each agent, we show the mean and two
standard errors

results of Experiment 2 match the results of Experiment 1 (Figure 7.4). The RL

agent is optimizing path cost and damage simultaneously better than the baseline

agents in the updated game.

Next, we compare the different types of agents based on the amount of memory used

for pathfinding and navigation. Figure 7.9 shows that the RL agent in Experiment

2 has consumed more memory than in Experiment 1 (Figure 7.5). This is due to

the RL agent’s re-pathing behaviour. Since the game episodes of Experiment 2 is

more challenging than Experiment 1, the RL-agent requested new paths more often

in Experiment 2 than in Experiment 1. Thus, we notice higher memory consumption

of the RL agent in Experiment 2 than Experiment 1. However, the additional memory

used by the RL agent still positions it in between the PRA* agent and the PF agent

as in Experiment 1.

The behaviour of the agents with respect to execution time in Experiment 2 (Fig-
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ure 7.10) is very similar to Experiment 1 (Figure 7.6) and hence needs no further

explanation.

The mean and 95% confidence intervals of path ratio and damage for all the agents

are shown in Table 7.4.

Agent Damage Path Ratio

Statistics Mean Confidence Intervals Mean Confidence Intervals

RL 15.12 ±0.2 1.73 ±0.01

PRA* 29.09 ±0.33 1.72 ±0.04

PF 33.57 ±0.38 6.6 ±0.11

Table 7.4: Mean and 95% confidence intervals of damage and path ratio in experiment
2 having updated game design

7.3 Experiment 3 : Adversarial Navigation on the

Training Maps

This experiment compares the proposed approach with baseline approaches on the

training maps. We have shown in the the previous experiments that our approach

can generalize to test maps that were not used for training. The purpose of this

experiment is to verify the generalizability of our approach by reporting results on

the training maps that are significantly different from the test maps.

There are 10 training maps of size 27×27. Due to the small size of the training

maps, we generated 2000 paths of fixed length. The start and end locations were

randomly picked such that the optimal path length between them is 26. For comparing

the results, we have used a Raincloud plot (Allen et al., 2019), which shows summary

statistics such as median and mean, and probability densities in an appealing format

with minimum redundancy.

The RL agent takes less damage than the baseline approaches with no damage at

all in more than 50% of the cases (Figure 7.11). The PRA* agent and the PF agent
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Figure 7.11: Amount of damage the agents take in experiment 3.

performed similar to each other in the amount of damage they take from enemies.

The results are similar to our observations in the other experiments.

Similarly, the RL agent on the training maps has lower suboptimality in the path

length than the baseline approaches (Figure 7.12). The results are consistent with

our observations from the experiments described earlier.

Furthermore, we found no difference in the results on maximum memory used

(Figure 7.13) in comparison to the other experiments. PRA* agent used the maximum

memory, followed by the RL agent and finally the PF agent.

In terms of execution time (Figure 7.14), we noted a difference from the other

experiments. In this experiment, the RL agent is slower than the baseline agents.

However, this result is not surprising since inference from Neural Networks, although

constant time, is still an expensive operation. The Neural Network inference cost gets

more pronounced because path finding in small maps is computationally cheap.
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Figure 7.12: Path length sub-optimality for different types of agents in experiment 3.

Figure 7.13: The maximum memory used by the agents for navigation in experiment
3.
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Figure 7.14: The amount of time in milliseconds that the agents took to reach the
destination in experiment 3.

7.4 Limitations of the Proposed Approach

The RL agent’s generalizability is limited by its state and action representation. As

an example, the models we trained for the experiments described in this thesis are

unlikely to work well in a shooting game. In a shooting game, the agent requires infor-

mation such as ammunition left, types of weapons and their ranges, enemy weapons,

etc. This information should be encoded in the agent’s state. Furthermore, the

agent’s action space should be updated to contain actions such as select weapon,

reload weapon, take aim at target, and shoot. The agent can then be trained to per-

form adversarial navigation in shooting games. The learning will generalize to other

shooting games which were not used for training the agent.

We have also not explored the effectiveness of the approach in a full-scale RTS game

such as StarCraft. There are two primary reasons for this. First, in a full-scale RTS

game it is not easy to compare pathfinding approaches due to the influence of other

objectives such as resource gathering, territorial expansion, trades, conquests, etc.
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that are outside the scope of the current work. Secondly, swapping out the pathfinding

and navigation algorithms from a full-scale RTS game is a major challenge.

The proposed technique for adversarial navigation has demonstrated success with a

single type of adversaries having a defined behaviour. The research did not explore the

case of adversaries with different behaviours. Additionally, the research’s applicability

to areas like MAPF and cooperative pathfinding also remains unanswered.

Finally, the research has used manually crafted features called environmental rep-

resentations. While these features are explainable and reduce the complexity of the

CNN, they are less portable in terms of implementation. As an example, environ-

mental representations for a shooting game like Counter Strike could have differences

from an adventure game like Prince of Persia which involves sword fights.
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Chapter 8

Conclusion

The topic of adversarial navigation presents multiple objectives that must be simul-

taneously optimized to achieve the desired result. Previous approaches based on

machine learning have failed to show that they generalize to unseen environments or

scale to game maps of different sizes. Other popular approaches that are not learning

based require manual tuning of parameters for different types of maps and adver-

saries. Through this thesis, we formalized the problem of adversarial navigation as

an optimization task. We showed that reinforcement learning combined with PRA*

can minimize path length and damage from adversaries simultaneously, without com-

promising memory or CPU time. We trained the agent on custom maps of size 27 ×

27 and showed that the agent can outperform baseline approaches on maps of size 512

× 512 of the RTS game Warcraft III. This demonstrates our approach’s generalizabil-

ity, and ability to scale to large maps. In a second experiment, we updated the game

dynamics to answer the question whether our approach can generalize across game

designs. This property is useful since game designing is usually an iterative process.

We observed that the agent could discover new strategies different from the ones used

in the earlier game design. With the new strategies, the RL agent outperformed the

baseline agents in the updated game.

The generalizability of the proposed approach is however limited by the agent’s

state and action space. For example, games of different genres would likely require
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the agent to be trained on different feature sets, although, the core ideas for adversarial

navigation discussed in this research stays intact. The proposed approach also used

manually designed features called environmental representations. These features are

less portable in terms of implementation than standard machine learning algorithms.

However, these features are highly explainable and makes the learning more robust

and generalizable. It is possible to swap out the environmental representations with

appropriate machine learning approaches and larger models, albeit at the cost of

explainability and greater training time and computation resources.
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