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Abstract

In this thesis, we introduce and study a model for a broker who executes

a client order and takes over its execution risk at some transition time. Such

agreements between clients and brokers are often called backstopped trades.

To minimize risk, it may be beneficial for the broker to trade on his/her own

book, even before taking over the execution risk of the order. The broker is

not allowed to trade in the same stock while executing on behalf of the client,

but the broker may trade in a different, correlated stock. We formulate this

question as a mean-variance optimization problem with two correlated stocks,

also incorporating permanent and temporary market impacts.

We consider this problems in three different cases. In the first case, we

assume that the transition time is deterministic. We then manage to find an

explicit formula for the optimal trading strategy and analyze it in a numerical

example. In the second case, we consider a stochastic transition time, but

restrict the analysis to deterministic strategies. Under this assumption, we

can characterize the optimal trading strategy through an ordinary differential

equation. Finally, in the most general case of a stochastic transition time

with stochastic strategies, we derive the Hamilton-Jacobi-Bellman equation

corresponding to the optimization problem and describe a numerical imple-

mentation to find an approximate solution.
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Chapter 1

Introduction

1.1 Motivation

Large client orders, known as block trades, can take different forms. In a bought

deal, the broker acts as manager of the buy order (sell order is analogous),

sells the shares to the client at the beginning and buys the shares later on the

market. The entire risk is with the broker. The other extreme is accelerated

book building, where the broker merely acts as an agent for the client and does

not take any risk him-/herself. Between the two forms, there are backstopped

deals, where the broker takes the shares on his/her own book at some transition

time. From that moment onward, the risk is with the broker.1 This leaves the

broker and the client share the risk; see the Financial Times article [7]. The

quantitative modeling and analysis of such backstopped deals is the topic of

this thesis.

At the transition time, the broker commits to give the remaining shares to

1A sample agreement for backstopped deals is provided by the Association for Fi-
nancial Markets in Europe (AMFE); see www.afme.eu/Documents/Standard-forms-and-
documents.aspx.
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the client for a fixed price. Therefore, the broker has the risk of price changes

in buying these shares after the transition time. An idea might be that the

broker could trade on his/her own book already before the transition time, in

order to minimize the risk of the trades after the transition time. However,

due to the regulatory restrictions, the broker is prohibited from trading the

same stock when he/she is also trading on behalf of a client. So, it may be

beneficial that the broker trades a second stock, which is correlated to the first

stock.

For example, the client wants to buy a large volume of stock A. Before

the transition time, the broker buys a certain quantity of a stock B which

has high positive correlation with stock A. When the transition time becomes

effective, the broker takes over the remaining order. After the transition time,

the broker buys the shares in stock A at his/her own risk, but at the same

time sells his/her position in stock B, thereby minimizing the risk of price

fluctuations because of the high positive correlation. Therefore, the broker

reduces the volatility of the cost due to price changes in the underlying stock.

We note that the higher trade volume from also trading in stock B inevitably

leads on average to more cost of the whole trade due to the price impact in

trading in stock B. So, if the quantity of trade in the second stock is too big,

the cost of the whole trade will more than offset the benefit from the reduction

in risk. Therefore, there is a tradeoff between risk minimization and cost of

trading due to the price impact. We decide to use mean-variance optimization

to find optimal strategies and to take the tradeoff between expected costs and

risk into account. Thus, we consider only the first two moments (mean and

variance) of the trading costs while neglecting higher-order moments. This is

standard in the literature (see Section 1.2 below) and allows for a tractable
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framework, which captures the main criteria used for measuring expected costs

and execution risk.

The remainder of this thesis is structured as follows. In the following sec-

tions in this chapter, we will review some related literature and formulate the

problem in a mathematical model. We then consider the problem based on

three different assumptions on transition time and trading strategies. In Chap-

ter 2, we assume both transition time and trading strategies are deterministic.

In Chapter 3, we solve the problem under the assumption of a stochastic tran-

sition time with deterministic trading strategies. In Chapter 4, we consider

the situation when both transition time and trading strategies are stochastic.

Finally, we conclude and summarize the optimal solutions in Chapter 5. The

Appendix contains MATLAB code used in the numerical examples of Chapters

3 and 4.

1.2 Some related literature

As equity markets are growing fast and new technology for algorithmic trading

is becoming available, optimal order execution of large stock volume has be-

come an important topic in both trading practice and academic research. We

give next a very brief summary of some research developments in this area.

Further relevant literature and a good overview can be found in the recent

book by Cartea et al. [8].

In 1998, Bertsimas and Lo [6] used stochastic dynamic programming to find

optimal trading strategies, which minimize the expected cost of trading a large

block of equity over a fixed time horizon, given a price impact function. Alm-

gren and Chriss [4] analyzed optimal execution of portfolio transactions with
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the aim of minimizing a combination of volatility risk and transaction costs

arising from permanent and temporary price impact. They used a mean-

variance formulation with the unimpacted stock price process modelled by

arithmetic Brownian motion, and the arrival price chosen as a benchmark.

Our situation differs from Almgren and Chriss [4] by the fact that the broker

bears the execution risk of the order only from some transition time onward

and can trade in another correlated stock, even before the transition time.

The seminal paper by Almgren and Chriss [4] was generalized in various other

works. For example, Almgren [2] incorporated a nonlinear price impact func-

tion. Bayraktar and Ludkovski [5] studied the optimal trade execution strate-

gies in financial markets with discrete order flow, and Gatheral and Schied

[11] extended the Almgren-Chriss setting from arithmetic Brownian motion to

geometric Brownian motion as a model for the unaffected price process.

Further recent studies in this area include Schied [19], who investigates

the robustness of the strategy which was derived in Gatheral and Schied [11].

Schied [19] proved that the strategy remains optimal whenever the unaffected

price process is a square-integrable martingale and also found an explicit so-

lution to the problem of minimizing the expected liquidation costs when the

unaffected price process is a square-integrable semimartingale. In the same

year 2013, Gatheral and Schied [12] studied the regularity of dynamical mar-

ket impact models and their associated optimal order execution strategies. In

addition, Guo et al. [13] proposed and studied an optimal placement problem

in a limit order book with two simple models, one with price impact and one

without price impact. Around the same time, a best execution problem in

the fixed income markets was brought up in Almgren [3]. This paper mainly

focused on interest rate markets and in particular on interest rates futures
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markets.

Curato et al. [9] explored the problem of the optimal execution of a large

trade in the propagator model with nonlinear transient impact in 2014. Very

recently, Frei and Westray [10] analyzed the optimal liquidation of a position

of stock (long or short) where trading has a temporary market impact on the

price. Their aim was to minimize a combination of the mean and variance of

the order slippage with respect to a benchmark given by the market volume-

weighted average price (VWAP).

1.3 The model and problem formulation

We consider a buy order of x shares of some stock. The order needs to be

executed over a finite time horizon [0, T ]. We assume that the stock prices are

given by

Su(t) = S(0) + σB1(t) + Γ1

∫ t

0

u(s) ds+ γ1u(t), 0 ≤ t ≤ T. (1.1)

where B1 is a standard Brownian motion and u(s) is the instantaneous rate of

buying at time s.2 The constants Γ1 and γ1 are the coefficients of permanent

and temporary market impact. Note that the temporary market impact γ1u(t)

vanishes instantaneously if u(t) becomes zero while the permanent market

impact Γ1

∫ t
0
u(s) ds depends on the entire volume traded up to time t. The

number of shares remaining to purchase at time t is denoted by Xu(t) and is

2Formally, we are working on a filtered probability space (Ω,FT , (Fs)0≤s≤T , P ), satisfy-
ing the usual conditions of completeness and right-continuity and containing two Brownian
motions B1 and B2 with instantaneous correlation ρ (compare Section I.1 and I.3 of Prot-
ter [17]). The control process u needs to be progressively measurable with respect to this
filtration.
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given by

Xu(0) = x, dXu(t) = −u(t) dt, Xu(T ) = 0. (1.2)

In a backstopped block order, the broker first acts as an agent for the client,

but at some transition time τ , the broker takes the risk of the remaining order.

In addition, we assume that when the broker acts merely as an agent, the buy

orders are done at a constant rate (TWAP order) so that u(s) = x/T , which

is in line with the model agreement mentioned in footnote 1.

For legal reasons, the broker is not allowed to do proprietary trading in

the stock which the client is buying. However, the broker may trade a second,

correlated stock. We assume that such a second, correlated stock has dynamics

P v(t) = P0 + νB2(t) + Γ2

∫ t

0

v(s) ds+ γ2v(t), 0 ≤ t ≤ T,

where B2 is a Brownian motion with instantaneous correlation ρ to B1. We

assume that trading in the first stock (and the second stock) has a price impact

only on the same stock. Otherwise, the broker could affect the transition time

τ by trading in the second stock. If τ is a stopping time depending on the price

of the second stock, we want to exclude this possibility. The broker starts and

ends with zero exposure in the second stock, hence, the investment will result

in a net loss on average due to the market impact. However, an investment

in the second stock can still be beneficial for the broker since it may allow

for a risk reduction because of the correlation between the two stocks. The

(negative) holdings of shares in the second stock are

Zv(0) = 0, dZv(s) = −v(s) ds, Zv(T ) = 0,
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using the same sign convention as in (1.2).

As is classical, we assume that the broker uses a mean-variance criterion to

minimize expected cost and risk. Hence, the broker’s minimization problem is

E[Y u,v] + λVar(Y u,v)

for a mean-variance tradeoff parameter λ > 0, where the costs of trading are

Y u,v =

∫ T

0

P v(s)v(s) ds+ 1τ≤T

∫ T

τ

Su(s)u(s) ds.

The parameter λ models how much the broker cares about the execution risk

(square root of Var(Y u,v)) relative to the expected costs E[Y u,v].

1.4 Target problem

In this section, we introduce a vector notation for the stock prices, which

allows us to write the minimization problem in a compact way.

First, we split Y u,v into two parts Y u,v = Y v
1 + 1τ≤TY

u,v
2 , where we define

Y v
1 =

∫ τ∧T

0

P v(s)v(s) ds

and

Y u,v
2 =

∫ T

τ

P v(s)v(s) ds+

∫ T

τ

Su(s)u(s) ds.

Our problem is two-dimensional with the positions of the stock given by

X(t) =

Xu(t)

Zv(t)

 , X(0) =

x
0

 , X(τ) =

x
(

1− τ

T

)
Zv(τ)

 .
7



The prices of the stocks are

S(t)> =
[
Su(t), P v(t)

]
.

The permanent market impact coefficients are

Γ =

Γ1 0

0 Γ2

 .
The temporary market impact coefficients are

γ =

γ1 0

0 γ2

 .
The Brownian motions are

B(t)> =
[
B1(t), B2(t)

]
.

The instantaneous rates of buying stocks at time t are

w(t)> =
[
u(t), v(t)

]
,

and the volatility matrix is

Σ =

σ√(1− ρ2) ρσ

0 ν

 .
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Then we are able to express the prices of these two stocks in a vector notation:

S(t) = S(0) + ΣB(t) + Γ

∫ t

0

w(s) ds+ γw(t).

Our minimization problem becomes E[Y u,v] + λVar(Y u,v), where

Y u,v =Y v
1 + 1τ≤TY

u,v
2

=

∫ τ∧T

0

P v(s)v(s) ds+ 1τ≤T

(∫ T

τ

P v(s)v(s) ds+

∫ T

τ

Su(s)u(s) ds

)
=

∫ τ∧T

0

P v(s)v(s) ds+ 1τ≤T

∫ T

τ

S(s)>w(s) ds.

In conclusion, the broker wants to minimize

E[Y v
1 + 1τ≤TY

u,v
2 ] + λVar[Y v

1 + 1τ≤TY
u,v
2 ]

over u(t) and v(t), subject to u(t) = x/T for 0 ≤ t < τ because the broker is not

allowed to trade the first stock as long as he/she is executing on behalf of the

client. Moreover, the strategies u and v need to be progressively measurable

and satisfy E
[ ∫ T

0
|u(t)|2 dt

]
<∞ and E

[ ∫ T
0
|v(t)|2 dt

]
<∞ to be admissible.
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Chapter 2

Deterministic transition time

Recall that the transition time τ is the time when the broker takes over the risk

of the remaining order of the first stock. As a starting point, we assume that

τ is deterministic. We will see, under this assumption, we can find an explicit

solution to the optimization problem, similarly to the solution in Section 1.2

in Almgren [2].

2.1 First case: τ ≥ T

When τ ≥ T , the transition time does not become effective, which means

the deal becomes an “accelerated book building” and the client bears all the

cost and risk. Thus, the broker does not need to do anything to minimize the

objective function. Indeed, he/she is not allowed to trade in the first stock and

chooses v(t) = 0 for all t ∈ [0, T ] (no trading in the second stock) to minimize

the expected costs while risk cannot be reduced by trading in the second stock

as there is no risk for the broker from the first stock.
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2.2 Second case: τ < T

2.2.1 Objective function

In this section, we assume τ is deterministic and τ ≤ T . Using these assump-

tions, we can rearrange the terms of the costs of the trading:

Y u,v =Y v
1 + 1τ≤TY

u,v
2

=

∫ τ∧T

0

P v(s)v(s) ds+ 1τ≤T

∫ T

τ

S(s)>w(s) ds

=

∫ τ

0

P v(s)v(s) ds+

∫ T

τ

S(s)>w(s) ds.

Since we have already set up the price model for the two stocks in the previous

chapter, we now use it to simplify the function, which helps us study the

minimization problem. We have

∫ τ

0

P v(s)v(s) ds =− P0Z
v(τ)− νB2(τ)Zv(τ)

+

∫ τ

0

νZv(t) dB2(t)−
∫ τ

0

Γ2Z
v(t)v(t) dt+

∫ τ

0

γ2v(t)2 dt.

Similarly for
∫ T
τ
S(s)>w(s) ds but using matrix operations here, we can rewrite

∫ T

τ

S(s)>w(s) ds =
(
S(0)> +B(τ)>Σ

)
X(τ) +

∫ T

τ

X(t)>Σ dB(t)

+

∫ T

τ

(X(0)−X(t))>Γw(t) dt+

∫ T

τ

w(t)>γw(t) dt.

11



Thus, after combining the two parts and organizing them, we can write Y u,v

as a sum of some integrals plus two terms which are Fτ -measurable:

Y u,v =

∫ τ

0

νZv(t) dB2(t)−
∫ τ

0

Γ2Z
v(t)v(t) dt+

∫ τ

0

γ2v(t)2 dt∫ T

τ

X(t)>Σ dB(t) +

∫ T

τ

(X(0)−X(t))>Γw(t) dt+

∫ T

τ

w(t)>γw(t) dt

+ Su(0)Xu(τ) +
(
σ
√

1− ρ2Xu(τ) + ρσZv(τ)
)
B1(τ).

Next, we use Y u,v to get its expectation and variance, which together compose

the optimization problem. First, we know the main drivers of the variance are

the stochastic integrals with Brownian motion as integrator by the approxi-

mation of Section 1.1 in Almgren [2]. Using this and the conditional variance

formula, we can approximate the variance by

Var(Y u,v) ≈ E[av1 + au,v2 ],

av1 :=

∫ τ

0

ν2Zv(s)2 ds,

au,v2 :=

∫ T

τ

(
X(t)>ΣΣ>X(t)

)
ds+

(
σ
√

1− ρ2Xu(τ) + ρσZv(τ)
)2
τ.

Because E
[ ∫ T

0
α(t) dB(t)

]
= 0 for any progressively measurable process α

with E
[ ∫ T

0
|α(t)|2 dt

]
<∞, we have

E[Y u,v] = E[bv1 + bu,v2 ],

bv1 := −
∫ τ

0

Γ2Z
v(t)v(t) dt+

∫ τ

0

γ2v(t)2 dt,

bu,v2 :=

∫ T

τ

(X(0)−X(t))>Γw(t) dt+

∫ T

τ

w(t)>γw(t) dt+ Su(0)Xu(τ).
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Note that since all of av1, a
u,v
2 , bv1 and bu,v2 do not involve any stochastic expres-

sion, the optimal strategy will be deterministic and we can restrict ourselves

to optimizing over deterministic strategies. Indeed, for any stochastic u and

v, we have

av1(ω) + au,v2 (ω) + λ
(
bv1(ω) + bu,v2 (ω)

)
≥ min

ũ,ṽ deterministic
aṽ1 + aũ,ṽ2 + λ(bṽ1 + bũ,ṽ2 )

for all possible outcomes ω ∈ Ω and hence

min
u,v

E
[
av1(ω) + au,v2 (ω) + λ

(
bv1(ω) + bu,v2 (ω)

)]
≥ min

ũ,ṽ deterministic
aṽ1 + aũ,ṽ2 + λ(bṽ1 + bũ,ṽ2 ).

On the other hand, deterministic strategies are special cases of stochastic

strategies so that

min
u,v

E
[
av1(ω) + au,v2 (ω) + λ

(
bv1(ω) + bu,v2 (ω)

)]
≤ min

ũ,ṽ deterministic
aṽ1 + aũ,ṽ2 + λ(bṽ1 + bũ,ṽ2 ),

and thus

min
u,v

E
[
av1(ω) + au,v2 (ω) + λ

(
bv1(ω) + bu,v2 (ω)

)]
= min

ũ,ṽ deterministic
aṽ1 + aũ,ṽ2 + λ(bṽ1 + bũ,ṽ2 ).

13



Therefore, we can restrict ourselves to minimizing over deterministic strategies,

and we can split the objective function

OF = E[Y u,v] + λE[av1 + au,v2 ],

into two parts by two time periods, [0, τ ] and [τ, T ]:

OF = OF1 +OF2,

where

OF1 =E[bv1 + λav1]

=−
∫ τ

0

Γ2Z
v(t)v(t) dt+

∫ τ

0

γ2v(t)2 dt+

∫ τ

0

λν2Zv(s)2 ds,

OF2 =E[bu,v2 + λau,v2 ]

=

∫ T

τ

(X(0)−X(t))>Γw(t) dt+

∫ T

τ

w(t)>γw(t) dt

+

∫ T

τ

λ
(
X(t)>ΣΣ>X(t)

)
ds

+ λ
(
σ
√

1− ρ2Xu(τ) + ρσZv(τ)
)2
τ + Su(0)Xu(τ).

In the next step, we analyze the trading strategies on these two periods and

solve them backwards. If we just solved them separately, we would obtain

suboptimal solutions for the minimization problem, since these two periods

are related and not independent. Therefore, we solve the second period first,

and use that solution to find the optimal strategy for the first period and then

combine them.
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2.2.2 Optimal strategy from τ to T

For the second period [τ, T ], using this and the conditional expectation for-

mula, we make some modifications:

OF2 = E[bu,v2 + λau,v2 ]

= E
[
E[bu,v2 + λau,v2 |Fτ ]

]
.

To solve the problem above, we just need

minE[Y u,v
2 + λau,v2 |Fτ ]

over u and v on [τ, T ] for given Zv(τ). As we know,

λ
(
σ
√

1− ρ2Xu(τ) + ρσZv(τ)
)2
τ + Su(0)Xu(τ)

is Fτ -measurable. Then our problem becomes to minimize the integral:

I1 =

∫ T

τ

(
λX(t)>ΣΣ>X(t) + (X(0)−X(t))>Γw(t) + w(t)>γw(t)

)
dt.

Although our problem is a two-dimensional optimization, we can generalize it

to a multidimensional situation and find the general solution. Once we get the

solution, we apply it to our problem and get our optimal strategy.

Lemma 2.1. At time t, where τ ≤ t ≤ T , consider a multidimensional set-

ting with the positions of the stock X(t), the prices of the stocks S(t), and

the instantaneous rates of buying stocks w(t) are n-dimension column vectors;

the permanent coefficients Γ, and the temporary coefficients γ are (n × n)-
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dimensional diagonal matrices; the Brownian motions B(t) is a d-dimensional

column vector. Still, Σ is an (n × n)-dimensional matrix. The multidimen-

sional problem is to minimize

I =

∫ T

τ

(
λ
(
X(t)>ΣΣ>X(t)

)
+ (X(0)−X(t))>Γw(t) + w(t)>γw(t)

)
dt.

Then the optimal solution is

X(t) =
√
γ−1QH(t)Q>

√
γX(τ) (2.1)

where H(t) is a diagonal matrix with entries

[
H1(t), H2(t), . . . , Hn(t)

]
=

[
sinh(κ1(T − t))
sinh(κ1(T − τ))

,
sinh(κ2(T − t))
sinh(κ2(T − τ))

, . . . ,
sinh(κn(T − t))
sinh(κn(T − τ))

]
,

κ2i = λDii , for 1 ≤ i ≤ n , and (
√
γ)−1ΣΣ>(

√
γ)−1 = QDQ>, where Q is an

orthogonal matrix and D is a diagonal matrix.

Proof. This is a minimization problem and the target function is

∫ T

τ

(
λ
(
X(t)>ΣΣ>X(t)

)
+ (X(0)−X(t))>Γw(t) + w(t)>γw(t)

)
dt. (2.2)

Since X ′(t) = −w(t), using the Euler Lagrange equation, we can get

X
′′
(t) = λ(γ)−1ΣΣ>X(t).

Recall that the Euler Lagrange equation gives a differential equation for the op-

timizer of an integral of the form (2.2), where a function X(t) and its derivative

16



X ′(t) = −w(t) appear. Further information on the use of the Euler Lagrange

equation can be found in Roubicek [18].

By the eigendecomposition, we can write (
√
γ)−1ΣΣ>(

√
γ)−1 = QDQ>, where

Q is an orthogonal matrix and D is a diagonal matrix since (
√
γ)−1ΣΣ>(

√
γ)−1

is a symmetric matrix. Set U(t) = Q>
√
γX(t), the problem becomes

U
′′
(t) = λU(t),

which has the solution U(t) = H(t)U(τ), and shows (2.1).

We now apply Lemma 2.1 with n = 2 and d = 2. In addition, we

choose an orthogonal matrix Q, and diagonal matrices D and H such that

(
√
γ)−1ΣΣ>(

√
γ)−1 = QDQ> with

Q =

Q1 Q2

Q3 Q4

 , D =

D11 0

0 D22

 ,

H(t) =

H1(t) 0

0 H2(t)

 =


sinh(κ1(T − t))
sinh(κ1(T − τ))

0

0
sinh(κ2(T − t))
sinh(κ2(T − τ))

 ,

where κ21 = λD11 and κ22 = λD22.

Finally, using Lemma 2.1, we get that the optimal solution for the stock

positions X(t) is

X(t) =

A11(t) A12(t)

A21(t) A22(t)

X(τ), (2.3)
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where

A11(t) = H1(t)Q
2
1 +H2(t)Q

2
2,

A12(t) = (H1(t)Q1Q3 +H2(t)Q2Q4)

√
γ2
γ
,

A21(t) = (H1(t)Q1Q3 +H2(t)Q2Q4)

√
γ

γ2
,

A22(t) = H1(t)Q
2
3 +H2(t)Q

2
4.

Besides, the optimal solution for the instantaneous rates V (t) of trading stocks

is

V (t) =

B11(t) B12(t)

B21(t) B22(t)

X(τ) (2.4)

where

B11(t) = κ1H1(t)Q
2
1 + κ2H2(t)Q

2
2,

B12(t) = (κ1H1(t)Q1Q3 + κ2H2(t)Q2Q4)

√
γ2
γ
,

B21(t) = κ1H1(t)Q1Q3 + κ2H2(t)Q2Q4,

B22(t) = κ1H1(t)Q
2
3 + κ2H2(t)Q

2
4

√
γ

γ2
.

2.2.3 Value of the objective function from τ to T

After we have determined the solution over [τ, T ], we use it to get the minimal

value of OF2 = E[Y u,v
2 + λau,v2 |Fτ ] over that period for given Zv(τ). Because

our ultimate goal is to find the optimal strategy for the whole period, the

objective function OF2 will be needed later. We have to combine it with the
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objective function OF1 over the first period [0, τ ] to determine the optimal

holding position of the second stock.

We plug the solution back into the function

OF2 =E[bu,v2 + λau,v2 ]

=

∫ T

τ

(
λ
(
X(t)>ΣΣ>X(t)

)
+ (X(0)−X(t))>Γw(t) + w(t)>γw(t)

)
dt

+ λ(σ
√

1− ρ2Xu(τ) + ρσZv(τ))2τ + Su(0)Xu(τ).

Assume

A(t)>ΣΣ>A(t) =

M11(t) M12(t)

M21(t) M22(t)

 ,
then accordingly,

M11(t) = A11(t)
2σ2 + 2A12(t)A21(t)ρσν+

A21(t)
2ν2,

M12(t) = A11(t)A12(t)σ
2 + A11(t)A22(t)ρσν+

A12(t)A21(t)ρσν + A21(t)A22(t)ν
2,

M21(t) = A11(t)A12(t)σ
2 + A11(t)A22(t)ρσν+

A12(t)A21(t)ρσν + A21(t)A12(t)ν
2,

M22(t) = A12(t)
2σ2 + 2A12(t)A22(t)ρσν+

A22(t)
2ν2.

Since Xu(τ) = x
(

1− τ

T

)
, so OF2 = N1Z

v(τ)2 +N2Z
v(τ) +N3,
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where

N1 =

∫ T

τ

[
λM22(t)− Γ1A12(t)B12(t)− Γ2A22(t)B22(t)

+ (B12(t)
2γ1 +B22(t)

2γ2)
]

dt+ λσ2
1ρ

2τ,

N2 =

∫ T

τ

[
λ(M12(t) +M21(t))x

(
1− τ

T

)
+B12(t)Γ1x

− Γ1A11(t)B12(t)x
(

1− τ

T

)
− Γ1B11(t)A12(t)x

(
1− τ

T

)
− Γ2B22(t)A21(t)x

(
1− τ

T

)
− Γ2B21(t)A22(t)x

(
1− τ

T

)
+ 2γ1B12(t)B11(t)x

(
1− τ

T

)
+ 2γ1B22(t)B21(t)x

(
1− τ

T

)]
dt

+ 2λρσ2x
(

1− τ

T

)
τ
√

1− ρ2,

N3 =

∫ T

τ

[
λM11(t)x

2
(

1− τ

T

)2
+ Γ1B11(t)x

2
(

1− τ

T

)
− Γ1A11(t)B11(t)x

2
(

1− τ

T

)2
− Γ2A21(t)B21(t)x

2
(

1− τ

T

)2
+ (B11(t)

2γ1 +B21(t)
2γ2)x

2
(

1− τ

T

)2]
dt

+ λσ2(1− ρ2)x2
(

1− τ

T

)2
τ + S(0)x

(
1− τ

T

)
.

2.2.4 Optimal strategy from 0 to τ

In this subsection, we consider the objective function over [0, τ ] and assume

τ > 0. We start by simplifying our objective function:

OF1 =E[bv1 + λav1]

=

∫ τ

0

[
λν2Zv(t)2 − Γ2Z

v(t)v(t) + γ2v(t)2
]

dt.
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As mentioned earlier, we have to combine the objective functions for both

periods and then find the optimal solution on [0, τ ], namely,

OF =OF1 +OF2

=

∫ τ

0

[
λν2Zv(t)2 − Γ2Z

v(t)v(t) + γ2v(t)2
]

dt

+N1Z
v(τ)2 +N2Z

v(τ) +N3.

We notice that this objective function is mixed of Lagrange form and Mayer

form. Because it involves a running cost (Lagrange form) and a terminal cost

(Mayer form). We transform the Mayer form to the Lagrange form so that we

just aim to minimize an integral, which is much easier for us to calculate.

First, set K(Zv(τ)) = N1Z
v(τ)2 + N2Z

v(τ) + N3, then K(Zv(0)) = N3.

Secondly, we make the transformation of K(Zv(τ)):

K(Zv(τ)) = K(Zv(0)) +

∫ τ

0

d

dt

(
K(Zv(t)

)
dt

=

∫ τ

0

(
2N1Z

v(t)Zv(t)′ +N2Z
v(t)′

)
dt+N3.

Since Zv(t)′ = −v(t),

OF =

∫ τ

0

[
λν2Zv(t)2 + (2N1 + Γ2)Z

v(t)Zv(t)′ + γ2Z
v(t)′

2

+N2Z
v(t)′

]
dt+N3.

It becomes solvable by the Euler Lagrange equation:

Zv(t)′′ =
λν2

γ2
Zv(t).
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Then set θ =

√
λν2

γ2
, the solution is Zv(t) = c1e

θt + c2e
−θt. Using the initial

condition Zv(0) = 0, our solution becomes

Zv(t) = 2c1
eθt − e−θt

2
= 2c1 sinh(θt),

Zv(t)′ = 2c1θ
eθt + e−θt

2
= 2c1θ cosh(θt).

Because we only have one initial condition, so that there still is one unknown

variable c1 remaining. Therefore, we have to find another way to determine

that constant. Plugging the solutions back into OF , we get a quadratic func-

tion of c1,

OF =
[ ∫ τ

0

4λν2sinh(θt)2 + 4(Γ2 + 2N1)θ sinh(θt) cosh(θt)

+ 4γ2θ
2cosh(θt)2 dt

]
c21 +

[ ∫ τ

0

2N2θ cosh(θt) dt
]
c1 +N3

=N4c
2
1 +N5c1 +N3.

We know that the minimal value of this quadratic function can be achieved

with c1 = − N5

2N4

. Finally, the solution becomes

Zv(t) = −N5(τ)

N4(τ)
sinh(θt),

Zv(t)′ = −N5(τ)

N4(τ)
θ cosh(θt).
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2.2.5 Conclusions

In conclusion, to minimize the objective function OF , the solution is

Zv(t) = −N5(τ)

N4(τ)
sinh(θt), Zv(t)′ = −N5(τ)

N4(τ)
θ cosh(θt)

for t ∈ [0, τ ], and

X(t) =

A11(t) A12(t)

A21(t) A22(t)

X(τ), V (t) =

B11(t) B12(t)

B21(t) B22(t)

X(τ)

for t ∈ [τ, T ], where

X(τ) =

x
(

1− τ

T

)
Zv(τ)

 ,
and the matrices A and B can be seen in (2.3) and (2.4).

2.2.6 Numerical examples and explanations

This subsection consists of two main parts. One part is to treat the optimal

strategy of two stocks as a function of λ, so we can see how it changes with

varied values of λ. The other part is to compare the optimal strategy we get

and the strategy with only one stock with respect to three aspects: expected

costs, approximate variances and objective functions. For this example, we

choose some parameters based on Chapter 4 in Almgren and Chriss [4].

S(0) P (0) ρ T τ x
50 30 0.78 5 3 106

σ ν Γ1 γ1 Γ2 γ2
0.95 0.83 2.5× 10−7 2.3× 10−6 2.8× 10−7 2× 10−6

Table 2.1: Chosen values of the model parameters
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First, we get three different trading strategies with three different λ, the

stock positions are as follows:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−3
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−1
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1

2

3

4
x 105

Time

Optimal Holding Positions of Two Stocks When lambda is 10−4

 

 
The Second Stock on [0,tau]
The First Stock on [tau T]
The Second Stock on [tau T]

Figure 2.1: Optimal positions for mean-variance tradeoff parameter λ = 10−4
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The Second Stock on [0,tau]
The First Stock on [tau T]
The Second Stock on [tau T]

Figure 2.2: Optimal positions for mean-variance tradeoff parameter λ = 10−6
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The Second Stock on [0,tau]
The First Stock on [tau T]
The Second Stock on [tau T]

Figure 2.3: Optimal positions for mean-variance tradeoff parameter λ = 10−8

The figures show when λ decreases, the holding position of the second stock

at time τ declines; the rate of trading the first stock is high at the beginning

and decreases as time progresses.

Explanations:

(1) λ is a risk-aversion parameter, so when it is bigger, the broker pays

more attention to risk. The function of the second stock is to help minimize

the risk. When the broker cares more about the risk, we should trade more

volume of the second stock to reduce the variance (the square of risk).

(2) As for the first stock, if we split the order and trade most in the early

period, we can reduce the risk thanks to the lower exposure to the stock price

fluctuations.

Secondly, I analyze the solution as a function of λ from 0 to 10−4, and get

the Figures 2.4–2.6, which further confirm the explanations above.
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Figure 2.4: Expected cost of optimal strategy
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Figure 2.5: Variance of optimal strategy
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Figure 2.6: Objective function

26



Although the expected cost of the whole trade increases when investments

in the second stocks are made, the objective function is still taking much lower

values than when trading only one stock because the position of the second

stock allows the broker to reduce the risk from the opposite position in the

first stock due to the correlation between the two stocks.
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Chapter 3

Stochastic transition time with

deterministic strategies

As we know, τ is often not fixed in reality, so it makes sense to also analyze

the situation where the transition time τ is stochastic, which we do next. To

model this, we assume the client and broker agree that when the stock price

hits the level S0 + L, the broker takes the risk of the remaining order and the

client receives the remaining order at price S0 + L from the broker. For the

problem to make sense, we need to have L ≥ γx/T , as otherwise, the broker

would take over the order immediately at the beginning. The time when the

broker takes over the order is

τ = inf{t ≥ 0 : Su(t) ≥ S0 + L}. (3.1)
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Note that in this definition of τ , we only use Su(t) before time τ , which is

given by

Su(t) = S(0) + σB1(t) + Γ1

∫ t

0

u(s) ds+ γ1u(t)

= S(0) + σB1(t) +
Γ1tx

T
+
γ1x

T

because u(t) = x/T before time τ . This shows that Su(t) used in the definition

(3.1) of τ does not depend on the strategy that the broker is using.

Lemma 3.1 (Density of hitting time). The density function of τ is

fτ (t) =
L− γ1x/T
σ
√

2πt3
exp

(
− (L− γ1x/T + Γ1xt/T )2

2σ2t

)
. (3.2)

Proof. First, we recall the density function of the stopping time without drift,

which is ν = inf{t ≥ 0 : B1(t) ≥ b}, where b is some constant. We use the

reflection principle, similarly to Section 2.6.A in Karatzas and Shreve [15]. We

know that

P [ν < t] = P [ν < t,B1(ν) > b] + P [ν < t,B1(ν) < b].

On the one hand, P [ν < t,B1(ν) > b] = P [B1(ν) > b]; on the other hand, if

ν < t and B1(ν) < b, then sometime before time ν the Brownian path reached

the level b and in the remaining time, it moved from b to some point, which is

less than b. Since the path of B1(t) with respect to b is symmetric starting at

b, the probability that B1(ν) lies above b is the same as that below b. Thus,

P [ν < t,B1(ν) < b] = P [ν < t,B1(ν) > b] = P [B1(ν) > b],
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which gives us

P [ν < t] = 2P [B1(ν) > b] =

√
2

π

∫ ∞
bt−

1
2

e−
x2

2 dx.

The density function becomes

fν(t) =
|b|√
2πt3

exp

(
− b2

2t

)
. (3.3)

Secondly, in our case, τ = inf{t ≥ 0 : Su(t) ≥ S0 + L}, which leads to

τ = inf
{
t ≥ 0 : B1(t)+Γ1

xt
σT
≥ L−γ1

x
T

σ

}
. Then set W̃t = B1(t)−ut, u = −Γ1

x
σT

and b =
L−γ1

x
T

σ
so that τ = inf{t ≥ 0 : W̃t ≥ b} has been written as a hitting

time of a Brownian motion with drift.

Based on Corollary 3.5.2 in Karatzas and Shreve [15], the process (W̃t)t≥0

is a Brownian motion under the probability measure P (u)(A) = E[1AZT ],

A ∈ FB1
T , where ZT = exp

(
uB1(T ) − 1

2
u2T

)
. In addition, due to {τ < t} ∈

F W̃
t ∩FB1

t , we get Zt∧τ = Zτ . Besides, note that

1

Zt
= exp

(
− uB1(t) +

1

2
u2t
)

= exp
(
− uW̃t −

1

2
u2t
)

is a martingale under P (u). Therefore, using the optional sampling theorem,

30



we have for all t ≤ T that

P [τ ≤ t] = E[1τ≤t] = E(u)

[
1τ≤t
ZT

]
= E(u)

[
1τ≤tE

(u)
[ 1

ZT

∣∣∣F W̃
t∧τ

]]
= E(u)

[
1τ≤t

1

Zτ

]
= E(u)

[
1τ≤t exp

(
− ub− 1

2
u2τ
)]

=

∫ t

0

exp
(
− ub− 1

2
u2s
)
f(s) ds, (3.4)

where E(u) denotes the expectation under P (u). Then we combine (3.3) and

(3.4) and we can conclude that for W̃t = B1(t) − ut, the density function of

τ = inf{t ≥ 0 : W̃t ≥ b} is

fτ (t) =
|b|√
2πt3

exp

(
− (b+ ut)2

2t

)
,

which leads to (3.2), given u = −Γ1
x
σT

and b =
L−γ1

x
T

σ
.

Actually, there is something else we should note. Because in real life, the

trading strategy of the second stock depends on the course of the price of the

first stock. If the price of the first stock rises a lot and becomes really close to

the level S(0) + L, we should have a large short position in the second stock

to hedge the risk, because there is a higher chance that the price of the first

stock will hit the level S(0) +L soon. Conversely, if the price of the first stock

decreases a lot and it seems unlikely that it hits the level S(0) + L, we then

should have only a small short position or even none of the second stock.

However, in this chapter, we will assume the trading strategy of the second

stock is deterministic, which means it will not be affected by the movement of

the price of the first stock.
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3.1 Objective function

We still face the same minimization problem:

minE[Y v
1 + 1τ≤TY

u,v
2 ] + λVar[Y v

1 + 1τ≤TY
u,v
2 ]

over u(t) and v(t), subject to u(t) = x/T for 0 ≤ t < τ , where

Y u,v =Y v
1 + 1τ≤TY

u,v
2

=

∫ τ∧T

0

P v(s)v(s) ds+ 1τ≤T

∫ T

τ

Su(s)u(s) ds.

Similarly as in Chapter 2, we need to find the objective function. Although τ

here is stochastic, τ actually has no influence during the trading because our

trading strategy is deterministic at the beginning of our the trade. Firstly, we

separate our trade into two parts, over [τ, T ] and [0, τ ]. For [τ, T ], we still get

Y u,v
2 =

∫ T

τ

S(s)w(s) ds

=
(
S(0)> +B(τ)>Σ

)
X(τ) +

∫ T

τ

X(t)>Σ dB(t)

+

∫ T

τ

(X(0)−X(t))>Γw(t) dt+

∫ T

τ

w(t)>γw(t) dt.
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For [0, τ ], we should notice that the upper limit of the integral is τ ∧T instead,

thus

Y v
1 =

∫ τ∧T

0

P v(s)v(s) ds

=− P0Z
v(τ ∧ T )− νB2(τ ∧ T )Zv(τ ∧ T )

+

∫ τ∧T

0

νZv(t) dB2(t)−
∫ τ∧T

0

Γ2Z
v(t)v(t) dt+

∫ τ∧T

0

γ2v(t)2 dt.

Secondly, we combine them, rearrange them by

Zv(τ ∧ T ) = 1τ≤TZ
v(τ) + 1τ>TZ

v(T ) = 1τ≤TZ
v(τ),

and get a similar result to that in Chapter 2, namely,

Y u,v =

∫ τ∧T

0

νZv(τ) dB2(t)−
∫ τ∧T

0

Γ2Z
v(t)v(t) dt+

∫ τ∧T

0

γ2v(t)2 dt

1τ≤T

(∫ T

τ

X(t)>Σ dB(t) +

∫ T

τ

(X(0)−X(t))>Γw(t) dt

+

∫ T

τ

w(t)>γw(t) dt+Xu(τ)Su(0)

+
(
σ
√

1− ρ2Xu(τ) + ρσZv(τ)
)
B1(τ)

)
.

In the next step, we use Y u,v to get its expectation and variance, which together

compose the objective function. Assuming

E
[
1τ≤T

(
σ
√

1− ρ2Xu(τ) + ρσZv(τ)
)
B1(τ)

]
= 0,
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we approximate the expectation by

E[Y u,v] ≈ E[bv3 + 1τ≤T b
u,v
4 ],

bv3 := −
∫ τ∧T

0

Γ2Z
v(t)v(t) dt+

∫ τ∧T

0

γ2v(t)2 dt,

bu,v4 :=

∫ T

τ

(
X(0)−X(t)

)>
Γw(t) dt+

∫ T

τ

w(t)>γw(t) dt+ Su(0)Xu(τ).

Because the main driver of the variance is the Brownian motion and u, v are

deterministic by assumption, we approximate the variance by

Var(Y u,v) ≈ E[av3 + 1τ≤Ta
u,v
4 ],

av3 :=

∫ τ∧T

0

ν2Zv(s)2 ds,

au,v4 :=

∫ T

τ

(
X(t)>ΣΣ>X(t)

)
ds+

(
σ
√

1− ρ2Xu(τ) + ρσZv(τ)
)2
τ.

Finally, our objective function becomes OF = OF1 +OF2 with

OF1 =E[bv3 + λav3]

=E

[
−
∫ τ∧T

0

Γ2Z
v(t)v(t) dt+

∫ τ∧T

0

γ2v(t)2 dt+

∫ τ∧T

0

λν2Zv(s)2 ds

]
,

OF2 =E[1τ≤T (bu,v4 + λau,v4 )]

=E

[
1τ≤T

(∫ T

τ

(X(0)−X(t))>Γw(t) dt+

∫ T

τ

w(t)>γw(t) dt

+

∫ T

τ

λ
(
X(t)>ΣΣ>X(t)

)
ds

+ λ(σ
√

1− ρ2Xu(τ) + ρσZv(τ))2τ + Su(0)Xu(τ)
)]
.

34



We still analyze the problem minOF separately on two periods [0, τ ] and [τ, T ].

3.2 Trading from τ to T

Over the period [τ, T ], the result from the last chapter still applies here because

we adapted conditional expectation as in the last chapter. In this section, we

can use the same approach by

OF2 =E
[
E[1τ≤T (bu,v4 + λau,v4 )|Fτ ]

]
=E
[
1τ≤TE[(bu,v4 + λau,v4 )|Fτ ]

]
.

We just need to minE[bu,v4 + λau,v4 |Fτ ] first over u(t) and v(t) on [τ, T ] for

given τ and Zv(τ). Therefore, we adapt the same trading strategy:

X(t) =

A11(t) A12(t)

A21(t) A22(t)

X(τ)

for t ∈ [τ, T ], where matrix A can be seen in (2.3). The value of the objective

function from τ to T is

OF2 = E
[
1τ≤T

(
N1(τ)Zv(τ)2 +N2(τ)Zv(τ) +N3(τ)

)]
,

the coefficient, instead of constants N1, N2 and N3, are functions of τ now.

Thus, some changes and differences accordingly should be made in the follow-

ing sections.
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3.3 Trading from 0 to τ

On the time interval [0, τ ], for the second stock, the objective function is:

OF1 =E[bv3 + λav3]

=E

[ ∫ τ∧T

0

(
λν2Zv(t)2 − Γ2Z

v(t)v(t) + γ2v(t)2
)

dt

]
.

For the whole period, we add both objective functions OF1 and OF2 together:

OF = OF1 +OF2

= E
[ ∫ τ∧T

0

(λν2Zv(t)2 − Γ2Z
v(t)v(t) + γ2v(t)2) dt

+ 1τ≤T

(
N1(τ)Zv(τ)2 +N2(τ)Zv(τ) +N3(τ)

)]
.

We still need to transform the Mayer form to Lagrange form. However,

this time we set K(τ, Zv(τ)) = N1(τ)Zv(τ)2 + N2(τ)Zv(τ) + N3(τ), then we

can get

K(τ, Zv(τ)) = K(0, Zv(0)) +

∫ τ

0

d

dt

(
K(t, Zv(t)

)
dt

=

∫ τ

0

(
N ′1(t)Z

v(t)2 +N ′2(t)Z
v(t) +N ′3(t) +N2(t)Z

v(t)′

+ 2N1(t)Z
v(t)Zv(t)′

)
dt+N3(0).

Our goal is to find a deterministic strategy in the second stock, however,

the OF we get here is still stochastic due to the upper limit of the integral.

Therefore, we need to make some adjustments. Since Zv(t)′ = −v(t), we can
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rearrange our objective function:

OF =OF1 +OF2

=E

[ ∫ τ∧T

0

(λν2Zv(t)2 − Γ2Z
v(t)v(t) + γ2v(t)2) dt

+ 1τ≤T

∫ τ

0

N ′1(t)Z
v(t)2 +N ′2(t)Z

v(t) +N ′3(t)

+N2(t)Z
v(t)′ + 2N1(t)Z

v(t)Zv(t)′ dt+N3(0)

]
=E

[ ∫ T

0

1τ≥t(λν
2Zv(t)2 − Γ2Z

v(t)v(t) + γ2v(t)2)

+

∫ T

0

1τ≤T 1τ≥t

(
N ′1(t)Z

v(t)2 +N ′2(t)Z
v(t) +N ′3(t) +N2(t)Z

v(t)′

+ 2N1(t)Z
v(t)Zv(t)′

)
dt+ 1τ≤TN3(0)

]
=

∫ T

0

(
E[1{τ≥t}]E

[
λν2Zv(t)2 − Γ2Z

v(t)v(t) + γ2v(t)2
]

+ E[1{t≤τ≤T}]E
[
N ′1(t)Z

v(t)2 +N ′2(t)Z
v(t) +N ′3(t) +N2(t)Z

v(t)′

+ 2N1(t)Z
v(t)Zv(t)′

])
dt+ P [τ ≤ T ]N3(0)

=

∫ T

0

(
P [τ ≥ t]

(
λν2Zv(t)2 + Γ2Z

v(t)Zv(t)′ + γ2Z
v(t)′2

)
+ P [t ≤ τ ≤ T ]

(
N ′1(t)Z

v(t)2 +N ′2(t)Z
v(t) +N ′3(t) +N2(t)Z

v(t)′

+ 2N1(t)Z
v(t)Zv(t)′

))
dt+ P [τ ≤ T ]N3(0).

After these preparations, as P [τ ≤ T ] and N3(0) are constant, we just need

to minimize the integral in the middle, which is a total Lagrange form with

deterministic integral limits. Using the Euler Lagrange equation and

P (t ≤ τ) = 1− P (τ ≤ t) = 1−
∫ t

0

fτ (s) ds
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as well as

P [t ≤ τ ≤ T ] =

∫ T

t

fτ (s) ds,

we get our target ODE:

R1(t)Z
v(t)′′ +R2(t)Z

v(t)′ +R3(t)Z
v(t) = R4(t), (3.5)

where

R1(t) = 2γ2(1− P [τ ≤ t]),

R2(t) = −2γ2fτ (t),

R3(t) = −2λν2(1− P [τ ≤ t])− fτ (t)
(
Γ2 + 2N1(t)

)
,

R4(t) = fτ (t)N2(t).

Thus, our optimal trading strategy of the second stock is the solution of

the target ODE (3.5). Note that (3.5) is a linear, second-order ODE with

continuous coefficient, and thus has a unique solution; compare Chapter 13

of Nagle et al [16]. After time τ , the trading strategy of the first stock is

Xu(t) = A11(t)
(

1− τ

T

)
+A12(t)Z

v(t), where A11(t) and A12(t) can be seen in

(2.3).

3.4 Numerical solution and explanation

Although there is no explicit result from the ODE, we still can get numerical

answers by using MATLAB. The relevant parameters are the same as in Table

2.1 and λ is 10−6. Since as mentioned before, L ≥ γx/T = 0.46, we select L
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over [0.5, 10].

Firstly, we pick some different values of L, which are 1, 3, 6, 10 in our

case, and use Matlab with the ode45 function to get numerical solutions of the

holding positions of the second stock and draw graphs to make it more clear,

which are shown in Figures 3.1 and 3.2:
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Figure 3.1: Optimal positions for threshold values L = 1 and L = 3.
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Figure 3.2: Optimal positions for threshold values L = 6 and L = 10.

There are some comments on the interpretation of Figure 3.2: Firstly, we

can get that as L increases, the trading volume of the second stock gets down

quickly; especially, when L equals to 10, the volume is almost zero. This is

because, when L increases, the initial price becomes further away from the

threshold level, which means that the probability P [τ < T ] declines. We

should have a smaller short position in the second stock with the decreasing

probability. Because if there is little chance that the stock price of the first

stock can hit the given level, we do not have to short sell any shares of the

second stock to hedge the risk. For example, based on the model I set up and

use, the probability P [τ < T ] is low enough with L equal to 10 or T equal to

5, to make the trade volume quite small, almost zero.

Secondly, we notice that as L increases, the largest position is taken at a later

moment. It is still because when L becomes bigger, the probability P [τ < T ]

declines and E[τ ] increases, which means that we do not need to short sell the
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second stock early. Late trades still meet our goal to use the second stock and

reduce the variance part of the objective function, while they are less costly

than building a large short position early.

In addition, in Figures 3.3 and 3.4, I analyze the time and volume of the

maximum short position, as functions of L from 0.5 to 10. The graph of

time further confirms our second conclusion above, that with bigger values

of L, the maximum short position appears later. However, our first conclusion

just partially explains the Figure 3.4, where the largest short position of the

second stock declines. There is a short period when the largest short position

of the second stock actually increases. That is because when the value of L

is relatively small, in our case L < 1, the time to build the maximum short

position is also small, although we should take larger position due to the higher

probability P [τ < T ]. This means we have to trade the second stock during

a shorter time. If we do so, we would have a large temporary market impact

and then the expected cost would get much bigger so as to make our objective

function increase. The increase in expected cost dominates the decrease in

approximate variance. Thus, to avoid this circumstance, we have to reduce

the volume of the maximum short position to minimize the objective function.

Therefore, the volume of the maximum short position at first goes up and gets

down afterwards.
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Figure 3.3: The time of the largest position
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Figure 3.4: The volume of the largest position
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Chapter 4

Stochastic transition time with

stochastic strategies

In the previous chapter, we assumed that the trading strategy of the second

stock is deterministic, which does not need to be the case in reality. As a matter

of fact, the movement of the first stock does affect the trading strategies on

both stocks. Thus, in this chapter, we would like to find the optimal strategies

under the conditions that both transition time τ and trading strategies u(t)

and v(t) are stochastic.

4.1 The HJB equation for the Almgren-Chriss

problem

The Hamilton-Jacobi-Bellman (HJB) equation is a well-known method to solve

optimal control problems. The solution of the HJB equation is the value

function which gives the minimum value for a given dynamical system with

an associated function. We first illustrate this method on the Almgren-Chriss
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problem. It is an alternative way to the solution via discrete approximations

as in Almgren and Chriss [4] and the calculus of variation approach applied in

Almgren [2]. We use the same notation as in Section 1.1 in Almgren [2].

First, we know the objective function is

J
(
t, x(t), v

)
=

∫ T

t

(
ηv2(s) + λσ2x2(s)

)
ds

from Section 1.2 in Almgren [2]. Then we define the value function as

V
(
t, x(t)

)
= inf

v

∫ T

t

(
ηv2(s) + λσ2x2(s)

)
ds. (4.1)

Since x(t) = −
∫ t
0
v(s) ds, with the application of the partial derivative with

respect to V
(
t, x(t)

)
, the HJB equation is

Vt + min
v
{Vx(−v) + ηv2 + λσ2x2} = 0,

where we write Vt = Vt(t, x) and Vx = Vx(t, x) for notational simplicity. Writ-

ing

Vx(−v) + ηv2 + λσ2x2 = η
(
v − Vx

2η

)2
− V 2

x

4η
+ λσ2x2,

we see that the minimizer is

v =
Vx
2η
.
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Plugging v =
Vx
2η

back into the HJB equation, we get a PDE

Vt −
V 2
x

4η
+ λσ2x2 = 0

with boundary condition V (t, 0) = 0.

To find a solution to this PDE, we make the ansatz

V
(
t, x
)

= x2g(t)

because the problem (4.1) is quadratic in the initial value x. We obtain

x2g′(t)− g2(t)x2

η
+ λσ2x2 = 0

so that

g′(t)− g2(t)

η
+ λσ2 = 0.

A solution to this Riccati equation is given by

g(t) = ηκ coth
(
κ(T − t)

)
,

where κ =
λσ2

η
, and therefore a solution of this PDE is

V (t, x) = ηκx2 coth
(
κ(T − t)

)
.

Thus, due to v =
Vx
2η

, the optimal trading strategy becomes

v(t) = κx(t) coth
(
κ(T − t)

)
.
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4.2 The HJB equation for our problem

In this section, we consider the HJB equation for our minimization problem.

As we know, the cost of trading is

Y u,v =Y v
1 + 1τ≤TY

u,v
2

=

∫ τ∧T

0

P v(t)v(t) ds+ 1τ≤T

∫ T

τ

Su(s)u(s) ds.

Our problem is to

minE[Y u,v] + λVar[Y u,v]

over u(t) and v(t), subject to u(t) = x/T for 0 ≤ t < τ .

Then we use that the main driver of the variance is the Brownian motion as

in the approximation of Section 1.1 in Almgren [2] and obtain the objective

function in the form of

J
(
t, B1(t), B2(t), X

u(t), Zv(t);u(t), v(t)
)

= E

[ ∫ T

t

L
(
s, B1(s), B2(s), X

u(s), Zv(s);u(s), v(s)
)

ds

∣∣∣∣Ft

]
,

where

L
(
s, B1(s), B2(s), X

u(s), Zv(s);u(s), v(s)
)

= 1τ≥s
(
λν2Zv(s)2 − Γ2Z

v(s)v(s) + γ2v(s)2
)

+ 1τ≥sE[1τ≤T |Fs]

×
(
N ′1(s)Z

v(s)2 +N ′2(s)Z
v(s) +N ′3(s)−N2(s)v(s)− 2N1(s)Z

v(s)v(s)
)
.
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We define the value function as

V
(
t, B1(t), B2(t), X

u(t), Zv(t)
)

= inf
(u,v)∈A

J
(
t, B1(t), B2(t), X

u(t), Zv(t);u(t), v(t)
)

with A , the set of all such pairs of functions
(
u(.), v(.)

)
. Then our HJB

equation is

Vt +
1

2
Vx2

1
+

1

2
Vx2

2
+ ρVx1,x2

+ inf
(u,v)
{Vx3(−u) + Vx4(−v) + L

(
t, B1(t), B2(t), X

u(t), Zv(t);u(t), v(t)
)
} = 0.

Next, we take derivatives with respect to u and v to obtain

Lu
(
t, B1(t), B2(t), X

u(t), Zv(t);u(t), v(t)
)
} = Vx3

Lv
(
t, B1(t), B2(t), X

u(t), Zv(t);u(t), v(t)
)
} = Vx4

with the boundary condition that V
(
τ, B1(τ), B2(τ), Xu(τ), Zv(τ)

)
takes the

same value as the solution in the Almgren-Chriss problem with two stocks as

in Almgren [2].

Theoretically, we may determine the optimal strategy (u, v) in terms of Vx3

and Vx4 and get a PDE for V . After solving this PDE, we could get the value

function and the optimal strategies. However, this problem appears to be

very complicated. Hence, we study in the next section an approximation via

a binomial model.
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4.3 Approximation using a binomial model

Since it is too difficult to solve our problem directly by the HJB equation, we

choose a binomial model to approximate the prices of the first stock during

the whole time.

4.3.1 Trading from τ to T

Actually, the objective functions we use here are the same as those in Chap-

ter 3, because we have already assumed there that the transition time τ is

stochastic. In addition, because of a similar reason as we mentioned in Chap-

ter 3, the trading strategy from τ to T will not be affected, either. Thus, we

will use the conclusions from Section 3.2.

Therefore, we still have our objective functions OF = OF1 +OF2 with

OF1 =E[bv3 + λav3]

=E

[
−
∫ τ∧T

0

Γ2Z
v(t)v(t) dt+

∫ τ∧T

0

γ2v(t)2 dt+

∫ τ∧T

0

λν2Zv(t)2 dt

]
,

OF2 =E[1τ≤T (bu,v4 + λau,v4 )]

=E

[
1τ≤T

(∫ T

τ

(X(0)−X(t))>Γw(t) dt+

∫ T

τ

w(t)>γw(t) dt

+

∫ T

τ

λ
(
X(t)>ΣΣ>X(t)

)
dt

+ λ(σ
√

1− ρ2Xu(τ) + ρσZv(τ))2τ + Su(0)Xu(τ)
)]
.

Moreover, the formula for the density function of τ still holds too,

fτ (t) =
L− γ1x/T
σ
√

2πt3
exp

(
− (L− γ1x/T + Γ1xt/T )2

2σ2t

)
.
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Therefore, we adapt the same trading strategy

X(t) =

A11(t) A12(t)

A21(t) A22(t)

X(τ),

for t ∈ [τ, T ], where the matrix A can be seen in (2.3).

The value of the objective function from τ to T is

OF2 = E
[
1τ≤T

(
N1(τ)Zv(τ)2 +N2(τ)Zv(τ) +N3(τ)

)]
.

Then we still can get

OF =OF1 +OF2

=E

[ ∫ T

0

1τ≥t

(
(λν2Zv(t)2 − Γ2Z

v(t)v(t) + γ2v(t)2)

+ 1τ≤T
(
N ′1(t)Z

v(t)2 +N ′2(t)Z
v(t) +N ′3(t) +N2(t)Z

v(t)′

+ 2N1(t)Z
v(t)Zv(t)′

))
dt

]
+N3(0).

4.3.2 Trading from 0 to τ

Things go differently from here. Because the trading strategy is stochastic

now, the objective function OF has to be rearranged in another way.

To make it look simpler, since Zv(t)′ = −v(t), we set

L1(v(t), Zv(t)) = λν2Zv(t)2 − Γ2Z
v(t)v(t) + γ2v(t)2
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and

L2(t, v(t), Zv(t)) =N ′1(t)Z
v(t)2 +N ′2(t)Z

v(t) +N ′3(t)−N2(t)v(t)

− 2N1(t)Z
v(t)v(t).

The objective function becomes

OF =E

[ ∫ T

0

1τ≥t
(
L1(v(t), Zv(t)) + 1τ≤TL2(t, v(t), Zv(t))

)
dt

]
+ P [τ ≤ T ]N3(0).

Since P [τ ≤ T ] and N3(0) are constants, our problem is

min I2 = E

[ ∫ T

0

1τ≥t

(
L1(v(t), Zv(t)) + 1τ≤TL2(t, v(t), Zv(t))

)
dt

]
. (4.2)

We adopt a binomial model this time, so we are going to determine the

trading strategy of the second stock afterwards based on each simulated sit-

uation on every node. Thus, we have to take conditional expectations with

respect to Ft and obtain

I2 =E

[ ∫ T

0

1τ≥t

(
L1(v(t), Zv(t)) + 1τ≤TL2(t, v(t), Zv(t))

)
dt

]
=E

[ ∫ T

0

E
[
1τ≥t

(
L1(v(t), Zv(t)) + 1τ≤TL2(t, v(t), Zv(t))

)∣∣∣Ft

]
dt

]
=E

[ ∫ T

0

1τ≥t

(
L1(v(t), Zv(t)) + P

[
τ ≤ T |Ft

]
L2(t, v(t), Zv(t))

)
dt

]
. (4.3)

4.3.3 The general idea for the simulation

First, we use a binomial tree to simulate the movement of the Brownian motion

B1, then incorporate the permanent market impact to the first stock. There-
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fore, we get a tree for the price of the first stock during the whole trading time,

from 0 to T , so that the transition time τ can be observed. The jump between

each time point is σ
√
T/N , where σ is the coefficient of B1 in (1.1) and N is

the number of steps in the binomial tree. When the trade is over, the tem-

porary market impact disappears almost instantaneously and does not change

the stock price. We have to consider a permanent market impact because it

changes the stock prices permanently. As we assume that before time τ , the

buy orders are done at a constant rate (TWAP order) so that u(t) = x/T for

0 ≤ t ≤ τ . Thus, we add Γ1
xt

T
to each node of the price tree.

Second, we assume for each node in the tree, we have three choices for the trad-

ing rate. Based on the deterministic strategy we got from the previous chapter,

the three options are v(t), v(t) + std and v(t)− std, where v(t) is the average

of the trading speed at the same time point and that at the next time point in

the deterministic strategy for t = 0, T/N, 2T/N, . . . , T (N−1)/N , and std is the

standard deviation of the averages v(t), for t = 0, T/N, 2T/N, . . . , T (N − 1)/N .

Third, we calculate the conditional expectations I2 at each time point over dif-

ferent combinations of v(t), for t = 0, T/N, 2T/N, . . . , T (N − 1)/N .

Finally, based the conditional expectations, we choose the optimal trading

strategies that make the objective function minimal.

4.3.4 Example

Let us take a four-step binomial model for instance, which means N = 4. The

relevant parameters are the same as in Table 2.1 and λ is 10−6.

We simulate a binomial tree to represent the price movement without market

impacts. Every node in the tree has the same probability for up or down
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and the jump is σ
√
T/N = 1.0621. Next, we incorporate the permanent

market impacts by adding Γ1xj/N = 0.0625t to the according nodes, for

j = 0, 1, 2, 3, 4. Besides, we also use the price tree to calculate the indicator

function and conditional probability in (4.3) preparing for the integral cal-

culation later. Secondly, I pick up the according v(t) from the deterministic

strategy we got in the previous chapter, for t = 0, 1.25, 2.5, 3.75, 5, which are

−3.8716, −3.5261, 0.1528, 2.6937, 5.3711. After taking the average of the ad-

jacent two v(t), a sample standard deviation is obtained as 3.4064. Thus, the

choice matrix for v(t) is



−0.2924 −3.6989 −7.1053

1.7198 −1.6867 −5.0931

4.8297 1.4232 −1.9832

7.4388 4.0324 0.6260


.

Finally, we just need to calculate the conditional expectation for each possibil-

ity of v(t) combination and select the optimal strategy backward. The related

codes can be seen in Appendix A.2.3.
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Chapter 5

Conclusion

In this thesis, we discussed backstopped deals from the broker’s perspective

under different assumptions. Differently from the Almgren-Chriss problem, we

introduced a second stock to hedge the risk of the trading in order to minimize

the objective function.

In the first chapter, we introduced the definition of backstopped deals,

elaborated on the motivation and then formulated the mathematical problem.

The target problem has been presented, which is used to find the objective

function in the following chapters.

The second chapter described the situation when the assumption is that

the transition time τ and the optimal strategy are both deterministic. We

divided into two cases, when τ ≥ T and when τ < T . For τ ≥ T , the broker

need not do anything because the client bears all the risk. For τ < T , we

obtained an explicit solution by using the Euler Lagrange equation and tested

the solution with different parameters. In addition, we compared our result

with the situation when there was no second stock and explained the resulting

differences.
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The third chapter presented the further study under the assumption that,

while optimal strategy was still deterministic, the transition time τ was stochas-

tic, which is a situation that also occurs in practice. We used the conclusion

from Chapter 2 for the first stock during the time interval [τ, T ]. For the

second stock, we got an ODE with no explicit solution. Thus, we exploited

the numerical answers with various hitting price levels, also made comparisons

among them and explained the outcomes.

Finally, we assumed a stochastic transition time with stochastic strategies

in the fourth chapter. First, we set up the HJB equation for the Almgren-

Chriss problem to show the viability. However, after getting the HJB equation

for our problem, we found it too complicated to deal with. Therefore, we

chose an alternative, an approximation using a binomial model, to solve our

problem. Next, we stated the fact that the trading strategy from τ to T will

not be affected and then the general idea about how to implement the model to

find an approximate solution. Lastly, a simple example was shown to further

explain the binomial model with four steps.
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Appendix A

MATLAB code

A.1 To Chapter 3: stochastic transition time

with deterministic strategies

A.1.1 N1(t), N2(t) and N3(t)

1 function a = N1(t,LN)

2 %The N1 function returns the coefficient of Zˆv(\tau)ˆ2 in ...

the objective function 2 in Section 3.2. t is the time ...

from the beginning and LN is the excess price by which ...

the hit level is above the orinigal price S(0). The ...

other parameters used already are included in the ...

m−file, which are from Table 2.1.

3 S0=50;

4 P0=30;

5 L =LN;

6 sigma = 0.95;
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7 nu = 0.83;

8 rho = 0.78;

9 Gamma = 2.5 * 10ˆ−7;

10 gamma = 2.3*10ˆ−6;

11 Xi = 2.8 * 10ˆ−7;

12 xi = 2*10ˆ−6;

13 T = 5;

14 lambda= 10ˆ−6;

15 x= 10ˆ6;

16 per= [ Gamma 0 ; 0 Xi];

17 tem= [ gamma 0 ; 0 xi];

18 Sigma= [ sigma*sqrt(1 − rhoˆ2) rho*sigma ; 0 nu];

19 duichen = sqrt(tem)ˆ−1 * Sigma * Sigma.' * sqrt(tem)ˆ−1 ;

20 [Q,D] = eig(duichen);

21 kappa =sqrt(lambda * D);

22 theta = sqrt(lambda*nuˆ2/xi);

23 N = 10ˆ3;

24 s = t : (T−t)/N:T;

25 ∆ = (T−t)/N;

26 %%

27 l1= length(t);

28 l2 =length(s);

29 %%

30 function b = n1(x1,y1)

31 H1 = sinh(kappa(1,1)*(T−y1))/sinh(kappa(1,1)*(T−x1));

32 H2 = sinh(kappa(2,2)*(T−y1))/sinh(kappa(2,2)*(T−x1));

33 H3 = cosh(kappa(1,1)*(T−y1))/sinh(kappa(1,1)*(T−x1));

34 H4 = cosh(kappa(2,2)*(T−y1))/sinh(kappa(2,2)*(T−x1));

35 H = [H1 0;0 H2];

36 Hu = [H3 0;0 H4];

37 A = sqrt(tem)ˆ−1*Q*H*Q.'*sqrt(tem);
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38 B = sqrt(tem)ˆ−1*Q*kappa*Hu*Q.'*sqrt(tem);

39 M = A.'*Sigma*Sigma.'*A;

40 b = lambda*M(2,2)−Gamma*A(1,2)*B(1,2) − Xi*A(2,2)*B(2,2)...

41 +B(1,2)ˆ2*gamma+B(2,2)ˆ2*xi;

42 end

43 a = zeros(l1,1);

44 for i = 1 : l1

45 for j = 2 : l2

46 a(i) = a(i) + n1(t(i),s(j))*∆;

47 end

48 a(i) = a(i)+lambda*sigmaˆ2*rhoˆ2*t;

49 end

50 end

1 function a = N2(t,LN)

2 %The N2 function returns the coefficient of Zˆv(\tau) in ...

the objective function 2 in Section 3.2. t is the time ...

from the beginning and LN is the excess price by which ...

the hit level is above the orinigal price S(0). The ...

other parameters used already are included in the ...

m−file, which are from Table 2.1.

3 S0=50;

4 P0=30;

5 L = LN;

6 sigma = 0.95;

7 nu = 0.83;

8 rho = 0.78;

9 Gamma = 2.5 * 10ˆ−7;

10 gamma = 2.3*10ˆ−6;
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11 Xi = 2.8 * 10ˆ−7;

12 xi = 2*10ˆ−6;

13 T = 5;

14 lambda= 10ˆ−6;

15 x= 10ˆ6;

16 per= [ Gamma 0 ; 0 Xi];

17 tem= [ gamma 0 ; 0 xi];

18 Sigma= [ sigma*sqrt(1 − rhoˆ2) rho*sigma ; 0 nu];

19 duichen = sqrt(tem)ˆ−1 * Sigma * Sigma.' * sqrt(tem)ˆ−1 ;

20 [Q,D] = eig(duichen);

21 kappa =sqrt(lambda * D);

22 theta = sqrt(lambda*nuˆ2/xi);

23 N = 10ˆ3;

24 s = t : (T−t)/N:T;

25 ∆ = (T−t)/N;

26 %%

27 l1= length(t);

28 l2 =length(s);

29 %%

30 function b = n2(x1,y1)

31 H1 = sinh(kappa(1,1)*(T−y1))/sinh(kappa(1,1)*(T−x1));

32 H2 = sinh(kappa(2,2)*(T−y1))/sinh(kappa(2,2)*(T−x1));

33 H3 = cosh(kappa(1,1)*(T−y1))/sinh(kappa(1,1)*(T−x1));

34 H4 = cosh(kappa(2,2)*(T−y1))/sinh(kappa(2,2)*(T−x1));

35 H = [H1 0;0 H2];

36 Hu = [H3 0;0 H4];

37 A = sqrt(tem)ˆ−1*Q*H*Q.'*sqrt(tem);

38 B = sqrt(tem)ˆ−1*Q*kappa*Hu*Q.'*sqrt(tem);

39 M = A.'*Sigma*Sigma.'*A;

40 b = lambda*(M(1,2)+M(2,1))*x*(1−x1/T)...

41 − Gamma*A(1,1)*B(1,2)*x*(1−x1/T) − ...
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Gamma*B(1,1)*A(1,2)*x*(1−x1/T)...

42 − Xi*A(2,1)*B(2,2)*x*(1−x1/T) − ...

Xi*B(2,1)*A(2,2)*x*(1−x1/T)...

43 +2*B(1,1)*B(1,2)*gamma*x*(1−x1/T)...

44 +2*B(2,2)*B(2,1)*xi*x*(1−x1/T)+B(1,2)*x*Gamma;

45 end

46 a = zeros(l1,1);

47 for i = 1 : l1

48 for j = 2 : l2

49 a(i) = a(i) + n2(t(i),s(j))*∆;

50 end

51 a(i) = a(i)+2*lambda*x*(1−t/T)*sigmaˆ2*...

52 rho*t*sqrt(1−rhoˆ2);

53 end

54 end

1 function a = N3(t,LN)

2 %The N3 function returns the coeficient of the constant ...

term (without Zˆv(\tau)) in the objective function 2 in ...

Section 3.2. t is the time from the beginning and LN is ...

the excess price by which the hit level is above the ...

orinigal price S(0). The other parameters used already ...

are included in the m−file, which are from Table 2.1.

3 S0=50;

4 P0=30;

5 L = LN;

6 sigma = 0.95;

7 nu = 0.83;

8 rho = 0.78;
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9 Gamma = 2.5 * 10ˆ−7;

10 gamma = 2.3*10ˆ−6;

11 Xi = 2.8 * 10ˆ−7;

12 xi = 2*10ˆ−6;

13 T = 5;

14 lambda= 10ˆ−6;

15 x= 10ˆ6;

16 per= [ Gamma 0 ; 0 Xi];

17 tem= [ gamma 0 ; 0 xi];

18 Sigma= [ sigma*sqrt(1 − rhoˆ2) rho*sigma ; 0 nu];

19 duichen = sqrt(tem)ˆ−1 * Sigma * Sigma.' * sqrt(tem)ˆ−1 ;

20 [Q,D] = eig(duichen);

21 kappa =sqrt(lambda * D);

22 theta = sqrt(lambda*nuˆ2/xi);

23 N = 10ˆ3;

24 s = t : (T−t)/N:T;

25 ∆ = (T−t)/N;

26 %%

27 l1= length(t);

28 l2 =length(s);

29 %%

30 function b = n3(x1,y1)

31 H1 = sinh(kappa(1,1)*(T−y1))/sinh(kappa(1,1)*(T−x1));

32 H2 = sinh(kappa(2,2)*(T−y1))/sinh(kappa(2,2)*(T−x1));

33 H3 = cosh(kappa(1,1)*(T−y1))/sinh(kappa(1,1)*(T−x1));

34 H4 = cosh(kappa(2,2)*(T−y1))/sinh(kappa(2,2)*(T−x1));

35 H = [H1 0;0 H2];

36 Hu = [H3 0;0 H4];

37 A = sqrt(tem)ˆ−1*Q*H*Q.'*sqrt(tem);

38 B = sqrt(tem)ˆ−1*Q*kappa*Hu*Q.'*sqrt(tem);

39 M = A.'*Sigma*Sigma.'*A;
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40 b = lambda*M(1,1)*xˆ2*(1−x1/T)ˆ2 ...

41 − Gamma*A(1,1)*B(1,1)*xˆ2*(1−x1/T)ˆ2 − ...

Xi*A(2,1)*B(2,1)*xˆ2*(1−x1/T)ˆ2 ...

42 +(B(1,1)ˆ2*gamma+B(2,1)ˆ2*xi)*xˆ2*(1−x1/T)ˆ2 ...

43 +Gamma*B(1,1)*xˆ2*(1−x1/T);

44 end

45 a = zeros(l1,1);

46 for i = 1 : l1

47 for j = 2 : l2

48 a(i) = a(i) + n3(t(i),s(j))*∆;

49 end

50 a(i) = a(i)+lambda*xˆ2*(1−t/T)ˆ2*Etau*sigmaˆ2*(1−rhoˆ2) ...

+ S0*x*(1−t/T);

51 end

52 end

A.1.2 Density function and cumulative distribution func-

tion of τ

1 function a = ftau(t,LN)

2 %The ftau returns the value of the density of \tau, based ...

on the density function proved by Lemma 3.1 in Chapter ...

3. t is the time from the beginning and LN is the excess ...

price by which the hit level is above the orinigal price ...

S(0). The other parameters used already are included in ...

the m−file, which are from Table 2.1. In the case t=0, I ...

specify that the density is zero

3 S0=50;
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4 P0=30;

5 L = LN ;

6 sigma = 0.95;

7 nu = 0.83;

8 rho = 0.78;

9 Gamma = 2.5 * 10ˆ−7;

10 gamma = 2.3*10ˆ−6;

11 Xi = 2.8 * 10ˆ−7;

12 xi = 2*10ˆ−6;

13 T = 5;

14 lambda= 10ˆ−6;

15 x= 10ˆ6;

16 l = length(t);

17 a= zeros(l,1);

18 for i = 1:l

19 if t(i) == 0

20 a(i) = 0;

21 else

22 a(i) = (L − gamma * x/T)/(sigma*sqrt(2*pi*t(i)ˆ3))* ...

23 exp(−(L−gamma*x/T − Gamma * x * ...

t(i)/T)ˆ2/(2*sigmaˆ2*t(i)));

24 end

25 end

1 function a = Ptau(t,LN)

2 %The Ptau returns the value of the probability of \tau ...

smaller than t. t is the time from the beginning and LN ...

is the excess price by which the hit level is above the ...

orinigal price S(0). Riemann sum ia used by splitting ...
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the interval into 1000 parts.

3 N = 10ˆ3;

4 b = 0:t/N:t;

5 a = sum(ftau(b,LN))*t/N;

A.1.3 Target ODE and the function needed to find Zv(0)′

1 function xprime = ODE2(t,Z,LN)

2 %The function ODE2 returns a first−order system, which ...

consist of two equations. Taking Z1(t) = Z(t) and Z2(t) ...

= Z'(t), the first one is Z'1(t) =Z2(t). The second one ...

is the target second−order ODE. t is the time from the ...

beginning, Z is the objective function and LN is the ...

excess price by which the hit level is above the ...

orinigal price S(0). The other parameters used already ...

are included in the m−file, which are from Table 2.1.

3 S0=50;

4 P0=30;

5 L = LN;

6 sigma = 0.95;

7 nu = 0.83;

8 rho = 0.78;

9 Gamma = 2.5 * 10ˆ−7;

10 gamma = 2.3*10ˆ−6;

11 Xi = 2.8 * 10ˆ−7;

12 xi = 2*10ˆ−6;

13 T = 5;

14 lambda= 10ˆ−6;

15 x= 10ˆ6;
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16 R1 = 2*xi*(1 − Ptau(t,LN));

17 R2= − 2*xi*ftau(t,LN);

18 R3 = − (2*lambda*nuˆ2*(1 − Ptau(t,LN))+ ftau(t,LN)*(Xi + ...

2*N1(t,LN)));

19 R4 = ftau(t,LN)*N2(t,LN);

20 xprime = [Z(2);(−R2*Z(2)− R3*Z(1)+R4)/R1];

1 function Z0 = Zprime0(h,l,LN)

2 %The Zprime0 returns the value of Zˆv(0)' that makes the ...

Zˆv(T) close to zero (within some pre−specified error ...

range, which is 10ˆ−4 in this case). h is the value of ...

Zˆv(0)' that makes the Zˆv(T) positive outside the ...

range, l is the value of Zˆv that makes the Zˆv(T) ...

negative outside the range, LN is the excess price by ...

which the hit level is above the orinigal price S(0).

3 tspan = [0,5];

4 Z01 = [0;h];

5 Z02 = [0;l];

6 Z03 = (Z01+Z02)/2;

7 [t,Z] = ode45(@(t,Z)ODE2(t,Z,LN),tspan,Z03);

8 if abs(Z(end,1)) < 10ˆ−4

9 Z0 = Z03;

10 elseif Z(end,1) > 10ˆ−4

11 Z0 = Zprime0(Z03(2),l,LN);

12 else

13 Z0 = Zprime0(h,Z03(2),LN);

14 end
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A.2 To Chapter 4: stochastic transition time

with stochastic strategies

A.2.1 N1(t)
′, N2(t)

′ and N3(t)
′

1 function a = N1prime(t,LN)

2 %The N1prime function returns the value of partial ...

derivative of function N1 with respect to t. t is the ...

time from the beginning and LN is the excess price by ...

which the hit level is above the orinigal price S(0). ...

The other parameters used already are included in the ...

m−file, which are from Table 2.1.

3 S0=50;

4 P0=30;

5 L =LN;

6 sigma = 0.95;

7 nu = 0.83;

8 rho = 0.78;

9 Gamma = 2.5 * 10ˆ−7;

10 gamma = 2.3*10ˆ−6;

11 Xi = 2.8 * 10ˆ−7;

12 xi = 2*10ˆ−6;

13 T = 5;

14 lambda= 10ˆ−6;

15 x= 10ˆ6;

16 per= [ Gamma 0 ; 0 Xi];

17 tem= [ gamma 0 ; 0 xi];

18 Sigma= [ sigma*sqrt(1 − rhoˆ2) rho*sigma ; 0 nu];

19 duichen = sqrt(tem)ˆ−1 * Sigma * Sigma.' * sqrt(tem)ˆ−1 ;
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20 [Q,D] = eig(duichen);

21 kappa =sqrt(lambda * D);

22 theta = sqrt(lambda*nuˆ2/xi);

23 N = 10ˆ3;

24 s = t : (T−t)/N:T;

25 ∆ = (T−t)/N;

26 %%

27 l1= length(t);

28 l2 =length(s);

29 %%

30 syms x2 y2

31 H1 = sinh(kappa(1,1)*(T−y2))/sinh(kappa(1,1)*(T−x2));

32 H2 = sinh(kappa(2,2)*(T−y2))/sinh(kappa(2,2)*(T−x2));

33 H3 = cosh(kappa(1,1)*(T−y2))/sinh(kappa(1,1)*(T−x2));

34 H4 = cosh(kappa(2,2)*(T−y2))/sinh(kappa(2,2)*(T−x2));

35 H = [H1 0;0 H2];

36 Hu = [H3 0;0 H4];

37 A = sqrt(tem)ˆ−1*Q*H*Q.'*sqrt(tem);

38 B = sqrt(tem)ˆ−1*Q*kappa*Hu*Q.'*sqrt(tem);

39 M = A.'*Sigma*Sigma.'*A;

40 b = lambda*M(2,2)−Gamma*A(1,2)*B(1,2) − Xi*A(2,2)*B(2,2)...

41 +B(1,2)ˆ2*gamma+B(2,2)ˆ2*xi;

42 b2 =diff(b,x2);

43 %%

44 a = zeros(l1,1);

45 for i = 1 : l1

46 b3 = subs(b2,x2,t(i));

47 for j = 2 : l2

48 a(i) = a(i) + subs(b3,y2,s(j))*∆;

49 end
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50 a(i) = ...

a(i)−subs(b,[x2,y2],[t(i),t(i)])+lambda*sigmaˆ2*rhoˆ2;

51 end

52 end

1 function a = N2prime(t,LN)

2 %The N2prime function returns the value of partial ...

derivative of function N2 with respect to t. t is the ...

time from the beginning and LN is the excess price by ...

which the hit level is above the orinigal price S(0). ...

The other parameters used already are included in the ...

m−file, which are from Table 2.1.

3 S0=50;

4 P0=30;

5 L = LN;

6 sigma = 0.95;

7 nu = 0.83;

8 rho = 0.78;

9 Gamma = 2.5 * 10ˆ−7;

10 gamma = 2.3*10ˆ−6;

11 Xi = 2.8 * 10ˆ−7;

12 xi = 2*10ˆ−6;

13 T = 5;

14 lambda= 10ˆ−6;

15 x= 10ˆ6;

16 per= [ Gamma 0 ; 0 Xi];

17 tem= [ gamma 0 ; 0 xi];

18 Sigma= [ sigma*sqrt(1 − rhoˆ2) rho*sigma ; 0 nu];

19 duichen = sqrt(tem)ˆ−1 * Sigma * Sigma.' * sqrt(tem)ˆ−1 ;
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20 [Q,D] = eig(duichen);

21 kappa =sqrt(lambda * D);

22 theta = sqrt(lambda*nuˆ2/xi);

23 N = 10ˆ3;

24 s = t : (T−t)/N:T;

25 ∆ = (T−t)/N;

26 %%

27 l1= length(t);

28 l2 =length(s);

29 %%

30 syms x2 y2

31 H1 = sinh(kappa(1,1)*(T−y2))/sinh(kappa(1,1)*(T−x2));

32 H2 = sinh(kappa(2,2)*(T−y2))/sinh(kappa(2,2)*(T−x2));

33 H3 = cosh(kappa(1,1)*(T−y2))/sinh(kappa(1,1)*(T−x2));

34 H4 = cosh(kappa(2,2)*(T−y2))/sinh(kappa(2,2)*(T−x2));

35 H = [H1 0;0 H2];

36 Hu = [H3 0;0 H4];

37 A = sqrt(tem)ˆ−1*Q*H*Q.'*sqrt(tem);

38 B = sqrt(tem)ˆ−1*Q*kappa*Hu*Q.'*sqrt(tem);

39 M = A.'*Sigma*Sigma.'*A;

40 b = lambda*(M(1,2)+M(2,1))*x*(1−x2/T)...

41 − Gamma*A(1,1)*B(1,2)*x*(1−x2/T) − ...

Gamma*B(1,1)*A(1,2)*x*(1−x2/T)...

42 − Xi*A(2,1)*B(2,2)*x*(1−x2/T) − ...

Xi*B(2,1)*A(2,2)*x*(1−x2/T)...

43 +2*B(1,1)*B(1,2)*gamma*x*(1−x1/T)...

44 +2*B(2,2)*B(2,1)*xi*x*(1−x2/T)+B(1,2)*x*Gamma;

45 b2 = diff(b,x2);

46 a = zeros(l1,1);

47 for i = 1 : l1

48 b3 = subs(b2,x2,t(i));
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49 for j = 2 : l2

50 a(i) = a(i) + subs(b3,y2,s(j))*∆;

51 end

52 a(i) = a(i)−subs(b,[x2,y2],[t(i),t(i)])...

53 +2*lambda*x*(1−t/T)*sigmaˆ2*rho*sqrt(1−rhoˆ2);

54 end

55 end

1 function a = N3prime(t,LN)

2 %The N3prime function returns the value of partial ...

derivative of function N3 with respect to t. t is the ...

time from the beginning and LN is the excess price by ...

which the hit level is above the orinigal price S(0). ...

The other parameters used already are included in the ...

m−file, which are from Table 2.1.

3 S0=50;

4 P0=30;

5 L = LN;

6 sigma = 0.95;

7 nu = 0.83;

8 rho = 0.78;

9 Gamma = 2.5 * 10ˆ−7;

10 gamma = 2.3*10ˆ−6;

11 Xi = 2.8 * 10ˆ−7;

12 xi = 2*10ˆ−6;

13 T = 5;

14 lambda= 10ˆ−6;

15 x= 10ˆ6;

16 per= [ Gamma 0 ; 0 Xi];
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17 tem= [ gamma 0 ; 0 xi];

18 Sigma= [ sigma*sqrt(1 − rhoˆ2) rho*sigma ; 0 nu];

19 duichen = sqrt(tem)ˆ−1 * Sigma * Sigma.' * sqrt(tem)ˆ−1 ;

20 [Q,D] = eig(duichen);

21 kappa =sqrt(lambda * D);

22 theta = sqrt(lambda*nuˆ2/xi);

23 N = 10ˆ3;

24 s = t : (T−t)/N:T;

25 ∆ = (T−t)/N;

26 %%

27 l1= length(t);

28 l2 =length(s);

29 %%

30 syms x2 y2

31 H1 = sinh(kappa(1,1)*(T−y2))/sinh(kappa(1,1)*(T−x2));

32 H2 = sinh(kappa(2,2)*(T−y2))/sinh(kappa(2,2)*(T−x2));

33 H3 = cosh(kappa(1,1)*(T−y2))/sinh(kappa(1,1)*(T−x2));

34 H4 = cosh(kappa(2,2)*(T−y2))/sinh(kappa(2,2)*(T−x2));

35 H = [H1 0;0 H2];

36 Hu = [H3 0;0 H4];

37 A = sqrt(tem)ˆ−1*Q*H*Q.'*sqrt(tem);

38 B = sqrt(tem)ˆ−1*Q*kappa*Hu*Q.'*sqrt(tem);

39 M = A.'*Sigma*Sigma.'*A;

40 b = lambda*M(1,1)*xˆ2*(1−x2/T)ˆ2 ...

41 − Gamma*A(1,1)*B(1,1)*xˆ2*(1−x2/T)ˆ2 − ...

Xi*A(2,1)*B(2,1)*xˆ2*(1−x2/T)ˆ2 ...

42 +(B(1,1)ˆ2*gamma+B(2,1)ˆ2*xi)*xˆ2*(1−x2/T)ˆ2 ...

43 +Gamma*B(1,1)*xˆ2*(1−x2/T);

44 b2 = diff(b,x2);

45 a = zeros(l1,1);

46 for i = 1 : l1
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47 b3 = subs(b2,x2,t(i));

48 for j = 2 : l2

49 a(i) = a(i) + subs(b3,y2,s(j))*∆;

50 end

51 a(i) = a(i)−subs(b,[x2,y2],[t(i),t(i)])...

52 +lambda*xˆ2*(1−t/T)ˆ2*sigmaˆ2*(1−rhoˆ2)...

53 + lambda*xˆ2*(2*t/Tˆ2 − 2/T)*t*sigmaˆ2*(1−rhoˆ2)− ...

(S0*x)/T...

54

55 end

56 end

A.2.2 L1(v(t), Zv(t)) and L2(t, v(t), Zv(t))

1 function a = L1(vt,zt)

2 %The L1 fuction returns the value of L1 function in ...

equation (4.2) with respect to vt and zt. vt is the ...

value of the trading rate at time t and zt is the ...

position of the second stock at time t.

3 sigma = 0.95;

4 nu = 0.83;

5 rho = 0.78;

6 Gamma1 = 2.5 * 10ˆ−7;

7 gamma1 = 2.3*10ˆ−6;

8 Gamma2 = 2.8 * 10ˆ−7;

9 gamma2 = 2*10ˆ−6;

10 lambda= 10ˆ−6;

11 a = lambda * nuˆ2 *zt.ˆ2 − Gamma2*zt.*vt + gamma2*vt.ˆ2;
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1 function a = L2(N,vt,zt,LN,T)

2 %The L2 fuction returns the value of L2 function in ...

equation (4.2) with respect to N,vt, zt, LN and T. N is ...

the number of steps of the binomail model. vt is the ...

value of the trading rate at time t. zt is the position ...

of the second stock at time t.LN is the excess price by ...

which the hit level is above the orinigal price S(0) and ...

T is the ternial time.

3 L=LN;

4 N1p = zeros(N,1);

5 N2p = zeros(N,1);

6 N3p = zeros(N,1);

7 N1m = zeros(N,1);

8 N2m = zeros(N,1);

9 for c = 0:N−1

10 N1p(c+1) = N1prime(c/N*T,L);

11 N2p(c+1) = N2prime(c/N*T,L);

12 N3p(c+1) = N3prime(c/N*T,L);

13 N1m(c+1) = N1(c/N*T,L);

14 N2m(c+1) = N2(c/N*T,L);

15 end

16 N1p = repmat(N1p,1,3ˆ(N−1));

17 N2p = repmat(N2p,1,3ˆ(N−1));

18 N3p = repmat(N3p,1,3ˆ(N−1));

19 N1m = repmat(N1m,1,3ˆ(N−1));

20 N2m = repmat(N2m,1,3ˆ(N−1));

21 a = N1p.* zt.ˆ2 + N2p.*zt + N3p − N2m.*vt − 2*N1m.*zt.*vt;
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A.2.3 Generating the binomial tree and selecting the

optimal strategy

1 N = 4; % The binomial model has N steps

2 T = 5; % The terminal time

3 L = 3; % The excess prive above S(0)

4 x= 10ˆ6; % Total trading volume

5 sigma = 0.95; % The coefficient of B 1(t)

6 nu = 0.83; % The coefficient of B 2(t)

7 rho = 0.78; % The correlation of B 1(t) and B 2(t)

8 Gamma1 = 2.5 * 10ˆ−7; % Permenant impact coefficient of ...

the first stock

9 gamma1 = 2.3*10ˆ−6; % Temporary impact coefficient of the ...

first stock

10 Gamma2 = 2.8 * 10ˆ−7; % Permenant impact coefficient of ...

the second stock

11 gamma2 = 2*10ˆ−6; % Temporary impact coefficient of the ...

second stock

12 lambda= 10ˆ−6;

13 ∆ = sigma * sqrt(T/N);

14 tree= zeros(N+1,2ˆN); % 2ˆN paths

15 for i = 1:N

16 a = 2ˆN / 2ˆi;

17 b = 0:a:2ˆN;

18 l= length(b);

19 for j =2:2:l

20 tree(i+1,b(j−1)+1:b(j)) = ∆;

21 tree(i+1,b(j)+1:b(j+1))= −∆;

22 end
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23 end

24 tree2 = cumsum(tree); %Cumulative sum of tree

25 tree3= zeros(N+1,2ˆN); % Tree with permenant market impact

26 for j = 1:N

27 tree3(j+1,:)= tree2(j+1,:)+ Gamma1 * x *j/N;

28 end

29 treev = tree(2:end,:);

30 tree4= tree(1:end−1,:);

31 tree5= tree2(1:end−1,:);

32 tree6= tree3(1:end−1,:);

33 %% indicator function

34 I1= zeros(N,2ˆN);

35 I1(tree6≥3)=0;

36 I1(tree6<3)=1;

37 I2 = cumprod(I1);

38 %% conditional probability

39 cp =zeros(N,2ˆN);

40 for m= 1:N

41 for n = 1: 2ˆN

42 if tree6(m,n)≥3

43 cp(m,n) = 1;

44 else

45 cp(m,n) = Ptau(T−T*(m−1)/N, L−tree6(m,n));

46 end

47 end

48 end

49 %% The different choice for vt

50 v0 = [−3.8716, 0.25*(−3.3242)+0.75*(−3.5934), ...

51 0.1528,0.25*2.5254+0.75*2.7498,5.3711];

52 v = zeros(N,1);

53 for i = 1:N %Take the average of the adjacent two v(t)
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54 v(i,1) = (v0(i)+v0(i+1))/2;

55 end

56 standv = std(v); %

57 v2 = zeros(N,3);

58 v2(:,1) = v+standv;

59 v2(:,2) = v;

60 v2(:,3) = v−standv;

61 v3 = v2(1:end−1,:);

1 %% conditional expectation

2 k=3;

3 vt1 = zeros(N,kˆ(N−1));

4 for i = 1:N−1

5 vt1(i,:) = ...

reshape(repmat(v3(i,:),[kˆ(N−1−i),kˆ(i−1)]),1,kˆ(N−1));

6 end

7 vt1(N,:) = −(sum(vt1(1:N−1,:)));

8 zt1=[zeros(1,3ˆ(N−1)); cumsum(vt1)*T/N];

9 zt1=zt1(1:end−1,:) ;

10 %L1

11 L1v = L1(vt1,zt1);

12 %L2

13 L2v = L2(N,vt1,zt1,L,T);

14 %% for upward at first step

15 %for upward at second step

16 I21 =repmat(I2(:,1),1,3ˆ(N−1));

17 I22 =repmat(I2(:,3),1,3ˆ(N−1));

18 cp1 =repmat(cp(:,1),1,3ˆ(N−1));

19 cp2 =repmat(cp(:,3),1,3ˆ(N−1));
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20 it1 = I21.*(L1v+cp1.*L2v)*T/N;

21 it2= I22.*(L1v+cp2.*L2v)*T/N;

22 ita = sum((it1+it2)/2);

23 %for downward at second step

24 I23 =repmat(I2(:,5),1,3ˆ(N−1));

25 I24 =repmat(I2(:,7),1,3ˆ(N−1));

26 cp3 =repmat(cp(:,5),1,3ˆ(N−1));

27 cp4 =repmat(cp(:,7),1,3ˆ(N−1));

28 it3 = I23.*(L1v+cp3.*L2v)*T/N;

29 it4= I24.*(L1v+cp4.*L2v)*T/N;

30 itb = sum((it3+it4)/2);

31 %% for downward at first step

32 %for upward at second step

33 I25 =repmat(I2(:,9),1,3ˆ(N−1));

34 I26 =repmat(I2(:,11),1,3ˆ(N−1));

35 cp5 =repmat(cp(:,9),1,3ˆ(N−1));

36 cp6 =repmat(cp(:,11),1,3ˆ(N−1));

37 it5 = I25.*(L1v+cp3.*L2v)*T/N;

38 it6= I26.*(L1v+cp4.*L2v)*T/N;

39 itc = sum((it5+it6)/2);

40 %for downward at second step

41 I27 =repmat(I2(:,13),1,3ˆ(N−1));

42 I28 =repmat(I2(:,15),1,3ˆ(N−1));

43 cp7 =repmat(cp(:,13),1,3ˆ(N−1));

44 cp8 =repmat(cp(:,15),1,3ˆ(N−1));

45 it7 = I27.*(L1v+cp7.*L2v)*T/N;

46 it8= I28.*(L1v+cp8.*L2v)*T/N;

47 itd = sum((it7+it8)/2);

48 %% select the optimal strategy

49 %upward at fisrt step

50 num1= zeros(9,2);
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51 v1= zeros(9,2);

52 m1=0;

53 for m1 = 1:9 %find v(2.5) minimize the I2 among same ...

v(0)and v(1.25).

54 [v1(m1,1),up1] = min(ita(:,3*m1−2:3*m1));

55 [v1(m1,2),up2] = min(itb(:,3*m1−2:3*m1));

56 num1(m1,1)= up1*m1;

57 num1(m1,2)= up2*m1;

58 end

59 v12 = (v1(:,1)+v1(:,2))/2;

60 num2= zeros(3,2);

61 v2= zeros(3,1);

62 for m2 = 1:3 %find v(1.25) minimize the I2 among same v(0).

63 [v2(m2,1),up3] = min(v12(3*m2−2:3*m2,:));

64 numa = up3*m2;

65 num2(m2,:) =num1(numa,:);

66 end

67 %downward at first step

68 num3= zeros(9,2);

69 v3= zeros(9,2);

70 for m3 = 1:9 %find v(2.5) minimize the I2 among same ...

v(0)and v(1.25).

71 [v3(m3,1),dn1] = min(itc(:,3*m3−2:3*m3));

72 [v3(m3,2),dn2] = min(itd(:,3*m3−2:3*m3));

73 num3(m3,1)=dn1*m3;

74 num3(m3,2)=dn2*m3;

75 end

76 v32 = (v3(:,1)+v3(:,2))/2;

77 num4= zeros(3,2);

78 v4= zeros(3,1);

79 for m4 = 1:3 %find v(1.25) minimize the I2 among same v(0).
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80 [v4(m4,1),dn3] = min(v32(3*m4−2:3*m4,:));

81 numb = dn3*m4;

82 num4(m4,:) =num3(numb,:);

83 end

84 %% at the beginning

85 v5 = (v2+v4)/2;

86 num5 = zeros(4,1);

87 [vf,numc] = min(v5); %find v(0) minimize the I2

88 numf =[num2(numc,:);num4(numc,:)];
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