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_ABSTRACT > .

Senantlc networks-haye»provided a ﬁoverful ﬁornalisu
.for‘reoresenting'deolarative aachlae:knouledgel but they
have lacked the ability to provide an organizational ’
structure thCh can fac111tate the. efflcxent access ; of\

- concept-based facts relevant to an arbltrary Query.

‘As a prellllnary srep to developlng an organlzarlon for
semantlc netuork prop051tlons, a probablllty dlstrlbutlon of
| ‘truth values is proposed as a tool for represent1ng the

credlblllty of prop051tlon, and as a prerequlslte for
defln}ng the concept of a fuzzy toplc predlcate. Fuzzf
-topic predlcates fo:m the basxs for the developnent‘of'a,
toplc hlerarchy organlzatlon uh1ch can be super-llposed on a
senantlc netvork data base in order to cla551fy topically-

related prop051t10ns 1nro-fuzzy categorles.
| IR 2 e
The Synbol uapplﬂg problem is descrlbed as the problem
of prov1d1ng fast access to prop051tlons relevant to a i
query, and the,advantages of a toplc h1erarchy~solut10n avéE

eristing solutions (e.g. an IS-A hierarchy) are disqnssedi

’ - ' . .
S S
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‘£ : ' Chapter 1 .

Introduction

)

-

w

- Hy own belief is that many philosophical
difficulties and controversies arise from an
insufficient realization of ‘the difference betveen
different kinds of knovledge, and of the vagueness
and uncertainty that characterizes most of vhat we
believe ourselves to know (Russell, 1948, page -
421) . ' '

1.1 Prologue

- ‘\)
. If a machine is ever to behave in an intelligent manmer .

it must inoi"so-ething about the world invvhichlit lives.
.Thé question 'hév tanﬂé machine know anything about iﬁs
eniironlént?' has been the sﬁbject of'lnch conéern in the
field of»Artificial Intelligence. Most approaéhes to
laéhine‘theories of knovlé&ge‘have been cdnsisted df’a
‘reéréséntagiénil schema and a htilitationai'schéla,:hich -
fogether'prqvide an artif%cial system with t§§ abilfti t?“
'represent ahd use knévledge to suit its purpose. In ios£
knovledge theories thi§ distinction has remained ‘
ltrahspéreﬁf,_although basic controversiéér;nd biééés

te.qg. uccétthy & BHayes 1965, I}noérad 1975) have arisen froa

. the disénssion of the'differenées between representing and

| § ,



1.1 Pprologue , . . .2

using knowledge.,

The development of actual nnovledge models (e.ge Schankl
et al. 1975, Bobren et al. 1977) aleo:othibits thie-duality,
vith tepresentationalrand atilizational conponents‘being
‘more or less visibfe ;£ thefconpletion of each of their

+

deveroplentalscyclesi Only a relatively cursory analysiseef

vhat transpi;ec between these develop-ent cycles is .
necessary to discover the interdependence of these tvo najon '
aCOngpents. Thq nature of this interface is often regarded
as beind eithet representational,Ot utilizational,.depend;ng"
- on the interpreter's. bias. Recent trends 1njknoviedqe
research (e.qg. 8cr;pts,nfranes,‘schenana, scenarios)
indicate that this integfacefis perhaps another faif%x.i,
_disiinct conponent, an organizdfidnal schela; rhis>enesis
is organize‘ into representational, organizational, ‘and
ntilizational conponents 1n the hope that snch a tbree part
thene v;ll provide‘a stiln;ating fralevork for dlscns§ion‘of
a sisple model-of nachine'knovledge erganizatfen.

1.2 Pocaus

Semantic netvorks have prOVided an in;alnanle qp§1 for |
e'investigating the stfnctnne and sdbstance»of lachine' | |
\inovfedge.'vrheir pcpulat'acceptance'has'been swift liess
than a decade), vith an ilpressive array of variants being
produced (e. g- ! Qnillian 1968, schank 1972, 51--ons’1973
Rulelhart et al. 1975, Schubert 1975). The early role ofld“

semantic netwvorks (e.g. Qnill1an 1969’ was generally one ofx
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@

prov1d1ng\doma1n spec1f1c fsemantic memory' for systems
whose exhlblted béhaviour was of most concern.  For the most

’ ~

part, the pragmatic componeﬂt of semantlc network usage was

-

buried ln the programming 'of ‘such systems, because of the

o

major empha51s placei on. developlng the exhlblted behav1our
of such systems. Tlese efforts to develoﬁcthe visibly
oBvious inteliigent behaviour of pﬁogramméd‘systems has lead
to the belief that knowledge and its use plays a vital role
in 1nte111gent systems. The recent development of
organizational theories support‘this hypothesis,.and the
subsequént need.for represénting'apd using larger aﬁd more
complex domaihs of real wérld knowledgé hasdput explicit
focus pn thevpragmatic-cbqponent of organizing and using‘

semantic network knowledge models.

Semantic networks have provided é powerful formallsm
.for representlng declaratlveamachlr ﬁﬁnovle&ﬁi?'but they
have lacked thecability to prov1de an organizational
structure which can facilitate the efficient~a¢cess of
concept-ﬁas “acts relevant to an arbltrary query. As a
prellmlnar‘ ster to developlng an organiza“ Lo for. semantlc
»qetvorx prc¢o-sit ons, a probablllty dlstglbut¢on of truth
values is_proL 2d as a tool'foE:;épresenfing the
credibiiity_of broposifions( and as a prérequisite qu
defining the concept’of a fuzz}_topic predicate. “fuzix

topic predicates fornm the,bésis»for the development of a

a o

topic hierarchy organization which can' be super-imposedyon a

semantic hetvérk data base in order to classify topically-
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relared'propositions intQ.fuzzy categories{ TheTSymbol-
Mapping problem is described as the problem.of previding
fast access tO‘propoéitioné relevant ;a a query,,aud\the
advautages of a topie‘hierarchy<solution over-eristing
solutions (e.g. an IS-A hierarchy) are discussed.

{

1.3 Background Influences

The single most direet ihfluehce on this reeearch has
been semantfé netwerks themselves, or rather their often
discussed!t tendency to suggest methods and struq;urggﬂyhich
-ﬂéan~be used to auguent their own expressive power and ease
their couputarional use., In this case, thlS 1nfluence 1s
largely attributable to the succinct notat;on of Schubert

[\

(1975), subsequent uses of the notation in Cercone &
Schubert (1975) and Cercone (1975), as well- ;s the work of
Schank (1972), Rumelhart et al. (1975), Qullllan'\
(1968,1969), Winston (1970), and th% philosophy of Quine

(1958, 1960, 1969, 1971) s

Schank.s Rieger'(1974);“1efaivre (1974, 1977) and Zadeh
(1965, 1974) have prov1ded'a background for the development
,JP a representatlon for conceptual vagueness and
propos1tlonal credlbllltyf- The deve;opment of scripts
(Abelson 1973( Schank j975,~Abelson 1975, Abelson & Schaak
‘j975), frames (HiQSkf 1974, Kuipers 1975fg.schemata'(Bcbrow;
& Noruan 1975); deméns;(charniak 19f2, 1953);,and'scenarinc'

i

1. for'instancei see Quilligp ¢1968), Schuberf‘(1975);\



1.3 Background Influences ) o s

(Mylopolous et al. 1977) has provided the impetus for

investigating knowledge organizations.

The actual development of a semantic_network
-organlzatlon has been spurred by the presentatlon of the
Symbol Mapping problem by- Fahlman (1975), ‘and by subsequent
dlSCUSSlODS of it by ucDermott (1975) and Moore (1975). Ihe
work of Bobrov 8-W1nograd (1976), Bobrov et al. (1977) andb
Charniak (1972,1976) Hhas provided valuable insights into the
problems of representing, organizing, and using'lachinel |

knowledge.

1.8 Preview.

'Chapters 2, 5, and 4 constitute'the main body of“this
"the51s, 'and their organlzatlon reflects the three part theme
presented in the Prologue. Chapter 2 deals with
representlng knowledge, Chapter-B with organizing‘ﬁhe
knowledge,being represented, and Chapter 4 discusses rhe
application and use of pronosed representational‘and

organizational conoepts in a propositional data base model.

Cnapter 2 descrlbes the use of semantic networks for
'representlng knovledge, and»presents the notatlon of
Scpubert~(1975) as a suitablefcandidate. A short.
desé;aptlon of hls orlglnal notatlon is followed by a brlef
presentatlon of prev1ous ideas about representlng vagueness
and uncertalnty within knouledge systens, then a new 1dea

for representingcboth the vagueness of concepts and the

°
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credibility of propositions is proposed as an extension to

the existing notation.

Chépter’B describes the Symbdl—ﬂapping problem-and tﬂe
copsequent need for alconcept—based o;ganization of factual
kn&wledéé in semantic neﬁworks; The cbncept of a fuziy
topic predicaté is iptroduced and ugéd as the basis for-a
concept-~based topic organization‘vhich‘can be used -to \\
‘“structﬁré?topically-teléfed propositions inté‘fuziy |
categories. It is shovn'how these 'structures, whgn
adequately defined, can prbvide qoncep{-based éécess to
tobicaily—felevant'propositioné'by guiding the
classification and retrieval of propositions in a
propositioﬁai data bése (PDB). Some of the'problemé both_'

presented.and solved by such structures are also discussed.

*‘

Cﬁapter 4 describes the structure and function of a
Jpropqsitioﬁal data base (PDB) systenm vhich'provides_q
substrate for supéfinposing concept-baéed fopic hierarchies;
An overview of the PDB's stfucture isAgivenrbefore' |
elaborating on the basic function ofAits CléssifiCation and
retrieval subsystens in terms of the PDB's focus finder, |
propésition matcher, and cohcepf and'topic hierarchy
maintenance éoﬁponehts. The éhapter‘ends by presenting

ilséveral examples of theIOPefati§n_of the PDB's -

classification and retrieval mechanisms.
4

Finaily, Chapter 5 assesses the significance of the

structures'and:ideas proposed, before presenting,some_ideas



1.4 Preview o : L . ) v 7

for future research based on the extended representation and

the concept-based topic hierarchies.



. Chapter 2 - N

Representing Knowledge with Semantic Networks

»

2.1 A Semantic Network RepresentatiOnalfSchena

Many wrlters (e g. Schank 1972, Anderson & Bower 1973,
Schubert 1975 WOods 1975) have indlcated a preference for
using semantic. networks to represent factual knowledge.

Thelr most 1mportant reasons for doing so 1nclude .the

following:

. Semantic(%etworks clearly indicate unique conCepts,and
.their-relationships with other concepts. The one to one
correspondence bewteen netvork concepts and network
nodes provides a unlque_access point. for knoﬁledge about

a particular concept.

® The intuitive immediacy of a semantic network structure

aids in the des1gn of conputer data structures for

'encodlng these networks. One can ea51ly see the
correspondence betveen concepts and unlgue storage
-10%@t10ns, and betueen relational links and storage

address p01nters. Resnltant structures can be



- 2.1.1 A Semantic Network Hotatjon 10

2.1.1 a Selantic Netwvork Notation

The notatlon to. be described is that .0f Schubert
(1975). For a more detalled d1scn551on of the notation the

reader is directed to Schubert (1975) or Cercone (1975)

The most primitive unit of information to be

represented is a concept node. Wlthln a: senantlc network,

?

‘concept nodes may- represent generic concepts (e.g.,DOG CAT)

e} of 1nstances of generlc concepts (e.g. dog11, Bruce-the-
tcat) 'An unnamed node is con51deredrto be awvariable,
denoting an unspecified instance of a generic concept.

2.1.1.1 Netvork Propoj;tions.

The ba51c un1t of knowledge represented by the notatlon
- is ‘the network prop051t10n, ‘which will snbsequently be
referred to by the tern 'network' ) All netyorks con51st of
atomic netvorks and logical compounds of atomlc networks.p

\

' An atomlc netvork 15 constructed fron a prop051t10n node and

a set of concept node arguments connected to the prop051t10n

node by labelled llnks._ One such 11nk is a predlcate link
(PF :D 1linkj). vhlch 1np1nges on the predlcate (generlc concept
node) of'the prop031t10n. Other links (ARG llnks) bind
1nd1v1dual or variable concept nodes to the proposition’ as
requlred by the predlcate._ Flgure 2. 1‘provides an example.
of an atomlc netwvork whlch asserts ‘Fred 1s a dog'

Networks whose predlcatlve concepts have more than one

argument will have their ARG links labelled toffnd;:;tthhe



2.1, 1.1 Netvork'Propositions 1
IS

Figure 2.1 (Pred DOG }

ARG1

LIKES

> ~ Figure 2.2 [Fred LIKES Bruce]

" binding order o€ the argument nodes (seevfigurené;Z).

2.1.1.2 Network Operators and.Connectives

A netvork operator or connective, along wlth a number

of networks (elther atomic or compound) can be llnked to a

v

prop051t10n node with logical links (LOG links are dravn as
' -
e >') to form a new compound’ netuork. The rules for

constructing compound networks are slmllar to the rules for'

constructlng a vwell- formed formula in predlcate calculus.v

If tpr is a vell-forned'netvork (vfn), then SO is *'not pt



2.1.1.2 Netvork Operators and Connectives‘ : 12
(or *-~P*) and 'necessary pP' (or ;nP').l If 'P; and *'Q' are
wfn's then so is ‘P implies Q' (or *p=>Qv), Conjunctlon and
dlsjunctlon are defined to have an arbitrary nu-ber of
components — if 'Pf, %Qf_  apnqd-*'R' are wfn's sp'is their
conjunction ('PEQER') or disjunction (*PIQIR"). Figureb2.3‘
v'asserts 'If Pred is a dog and Bruce is a cat, then Pred

chases Bruce'. 1In the previous notation of Schubert,

: - — - S m e ahe
@'( --:O. ™
. e

\
| CONSEQ

(crases)

PRED

pusrd

ARG2

Flgure 2.3 [((FPred DOG] € [Bruce CAT]]
=> [Fred CHASES Bruce]]

implication was generalized to have an arbifrary number of
‘antecendents "nd consequents, vhere the antecedents and -
consequents are regarded as conj01ned prop051t10ns.

However, since it uay be de51red to disjoin antecedents or

1. The necessary operator is used to distinguish betveen
contingent truths (e.g. crowvs are black) and necessary
» truths~1e o crows are blrds)
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consequents, the blnary fora of 1lplicat10n vill be retaxned
here. Conjunctlon or disjunction of antecedents or
consequents is shovnvby forling explicit conjunctive or

disjunctive networks.

2.1.1.3 Quantifiers

‘Selanfic netwvorks have often suffered from weak or non-

existent methods of quantifying variable nodes within
networks.2 It is ¢lear that a representational schema must
incorpe%ate some method of quantification since S0 many

propositions about world knowledge nake'explicit'dse of

?

quantifiers (e.g. Every child has a mother and a father).

Schubert'(JsfS) allows arbitrary eqbedding of
quantifiers vithin the scope of network operators and .
connectives, so that nefvorks need not be translafed to ‘a ‘
brenex form.3 The eysten eOnsists of two components, first,
a method of diStingdishing'between‘existentially quentified
and uniéereally quantifiedwnodes, and eecond, a method of

>indicating the dependencies of.quantified nodes embedded

_uithin‘the scope-of other quantified nodes and operators.

2. §Chubert (1975) and Cercone (1975) both describe several
- other methods of incorporating quantifiers into semantic
netvorks. Among those discussed are Isard & Longuet-

Blgglns (1971), Simmons & Bruce (1941), Palme (1971) and

Anderson & Bowver (1973) .- .

3. More important than relieving the neceSSLty of

: converting proposition$s to prenex foram, allowing
quantifiers to be embedded within the scope of modal
operators (e.g. necessarily) preserves the distinction
‘betveen transparent and opaque modal contexts (see Quine
1960 and Schubert 1975) .

ol
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In the graphic form, universally quantified nodes are
drawn ns broken circles, renderlng ‘them distlnct from

existentially quantified nodes vhich are. dravn as closed

circles (see figure 2.4). The scope dependenc1es of

Figure 2.4 Universal and Existential Nodes .

-

/

quan;ified nodes are indicated by';'forl'of grapnical‘
'Skolenization; u51ng scope 11nks (SCP llnks are drawn as
'--o->').' Por each ‘set of a_j_cent quantlfiers SCP links
Hlll be dravn from governing unlversally quantlfled nodes to
each of. their exlstentlal dependents. Other quantlfled
nodes wlthout 1nned1ate1y adﬁacent governlng quantifiers
have their dependence indicated by a SCP link from the

prop051t10n node - of the- netvork 1n ‘which they are embedded.

D

The resulting systel of scp links follovs a path of
vdecrea51ng scope from nodes of maximum scope (i.e. nodes
-with no 1np;nglng scp link) to the nost_deeply nested nodes.
Figure 2.5 shons a netwvork prbposition with with enbedded
‘véuantifiers, nhich states 'fer every human, there _
necessarlly exists sonethlng that is the nother of that

hunan'
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\Pignre 2.5 ¥x((x HUnKh]-=5 (ady( ¥ MOTHER-OF x ] ]

- " ’

;e ; . . - :

The representatlon as discussed so far is essentlally
eq01valent (v1thout the nodal operator ‘necessary!') - tova
flrst order predicate logic (cf. Rogers ;971). The
1nterpretat10n intended is one where generlc concepts are
predlcates whose dxten51ons are subsets of the domain of

‘ indlv1duals over which all ot:e~ concept_nodes representing

constants and variables range.

.

2.1.1.4 Time SR ° )
aPolloving the example of'ﬂcCarthy 12 nayes k1969),'
Schabert’ assigns a central role to time by associatlng time
argulents vith all ‘phy¥sical? predlcates. Up to tvo time
1nd1cators are alloved to be bound vlth the use of each
generlc concept. These tlle argulents can}be used to
1nd1cate t he t1le (1nstant or 1nterval) that a prop051tlon

: 1f in effect. Prop051t10ns vlthout attached tlle arguments
b .



may. be intgrpreted as timeless (i.e. time independent) or
permanent ;{.e. holdingvfof all times). One or two
arguaents indicate a par€icular ingtant (oneé) or interval
(tvo) a particular proposition is, was, or will be in

effect. This version of the notation wvwill indicate time

Iargulents vith TINEARG links (dravn as 'e= = s & >') which

vill be labelled to indicate argument order. Time nodes may
be quantified to indicate universal moments of time.

Assuming °*x*' and 'y' are people, and 'z' and 'w' are moments

‘of time, figure 2.6 states *everybody loves somebody for

some period of time’'. Conéept nodes representing time can

TINEARG & _ = TIMEARG2

ARG2 -

-..........'..'.

P

- Pigure 2.6 ¥xdydz-«(r LOVES<z,w> y]

« - ’ . U
. Vo

u

-
be used togethet uith*'fine* predicates {e.g. BEFORE, AFTER,.
DURING) to assert propositions about relative moments and

intervals of tile_(see Cercone 1975, Cefcone & Schubert 1975

for a more detailed discussign). e T

ot

[~
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2.1.1.5 Truth and Credibility .
I

"It does not trouble people nuch that their -
heads are full of. incomplete, inconsistent, and,-
uncertain information. With little trepidation’
they go about drawing rather doubtful conclusions
from their tangled mass of ‘knowledge, for the most
part unaware of their reasonlng. The very N
tenuousness of the enterprlse is. bound up with the
¢ power it gives people to deal with a language and

-a world full of ambiguity and uncertalnty (Collins

et al., 1975, page 383) . .

The vague anduuncertaln naturex¢f human knowledge
CQCoupled wlth man's unique ability to regson wlth such
knoyledge is a coqplex and poorlyfunderstoodngacet of human
fintelligence." Indeed, much of man's iﬁtellectual ~ability
might be attrlbuted to this 'power' to operate Hlthln vague

and uncertaln contexts. It seems natural that a formal

representatlon of the vagaries and uncertainties of
knowledge would provide Artificial_Intelligence research-

with a formiéab;e tool for artificial reésqﬂing systems. A

o

brief reviewﬁef some of“the Artificial Intelligence

llterature uhlch 1nvest1gates the representatlon ‘an'd

understandlng of - belief and vagueness follows belqv. 'This

djscussion provides a background'for a.proposal which
incorporates a model of végughess and credibility into

, . )
semantic networks.

. ) ‘ - ‘
"In general, vagueness has been identified with degrees

. ik :

of .truth and modelled with various formalisms based on



2.1.1.5 Truth and Credibility : ' L | 18
L\ . . . N

> k4
. f
multl valued loglcal systems, especially fuzzy loglc.
Although Galnes 8 Kohout (1977) state that the general
'llterature of fuzzy system theory has had 'little 1mp&ct' on
the llterature of Art1f1c1al\1ntelllgence, some work has
been reported (e.g. Lee & Chang 1971 Lee'1972 Kllng 1974,
LeFaivre 1374; 1976, 19%7) and others have admltted to the
" potential utilit§'of>such systeﬁg(e.g. Bobrov & Wlnograd
176, Hendrix'1976) of~such sygtems. While degrees of truth
have usually been 1nterpreted and manlpulated in an ad hoc .
way in Art1f1c1al Intelllgence, they have been thc‘subject
of formal study by loglclans and mathemat1c1ans (e.g._Rossez.
& Turquette 1952, Ackerman 1967). This formal-background :
»has'bee; a precursor to the development of some proézammed
models of‘fuzzy systems. For example,_Kling (1974) énd. |
" LeFaivre (1974) use a value on the 1nterval (o, 1] to
~~represeut the truth value of a frop051t10n stated in a
‘ PLANNER'(Kling) or LISP—like (LeFaivre) notation. Both use
the s;andard 'min® and 'max’ rules for comblnlng truth
.values over conjuncts and dlsjuncts of prop051tlons,‘and
1nd1cate two alternatlves in the choice of a detarhment rule
for computlng truth values of fuzzy 1nferences. "hat is,
for tvwo proposltlons *p* and 'p=>qf we want te derive a.

truth value for the consequent *q'. One alternative is that

of Lee:(1972) vhich uses

"4, See Gaines & Kohout (1977) for. a comprehen51ve survey of
fuzZy systems literatlre, as well as a short. discussion
of its gene51s and evolution. _ S ’
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T(q) = min(T(p),T(p=>q)}.
Thus the truth value of a chain of implications is the truth
value of the 'weakest-link'. Goguen's (1968) alternative

uses.

v T(g) = Tqp) T(p=>q),

' consequently thé t:uth value of « chain of implications

decreases with the length of the chain.

Kiing~(1974) and LeFainé (127&)'botﬁ imply that the
se%ection of a rule for computing the truth values in
Qetachment is domgin dépehdent.; More Specifically,'the
ég}ection depends on the prédicates and their,arguménts
within a(domaig. For example;'consigerfthe predicte 'NEAR'.
The assertions"Vancouver‘is NEAR fictoria"and 'the moon is:
NEAR the‘eafth' maf be equélly true, but theyvqleérly imply
different framés of referehCe. NEAR in- this case ks»really'
a c¢omparison with égme reference»dis{ancé. Succeésive |
applications of'the transitivify.of.NEAR uill,résuit in- a
more or less true proposition as long as thé‘locations‘of
objects.involved in fhe;proposition.are vifhin the reference
disﬁancé'SPécifiedlor implied. Once they are fugthér.apart

A3

than this refepencé distance, further transitive deductions

) -

are false, but neither Lee's nor Goguen's scheme will assign

zero truth value if all intermediafe truth values are non-

- )
zero. : ‘ //
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Degrees of belief'(i;e.'credibilities), like degrees of
truth, have also been used heuristically in some Artificial
Intelligence systems (e.g. Schank & Rieger 1974). Hovever,
Within Artificial Intelligence more ettention has been
devoted to 1nvestigating the representation and structure of
"belief Systems!* (e.g..Abelson_1973, Becker 1973, Colby
1973, Kulikowski 1974, Weiss 1974, Shortliffe §& Buchanan
1975, Schmidt'G Sridharan_1977a;b). Theigeneral-motivation
for investigating 'belief systems' is the assumption that an
1ntelligent system must be able to refer to a model of its
own beliefs and those of its conversatlonal partners in

order to exhibit 1ntelligent behav1our in the real vorld

Becker (1973), Shortliffe & Buchanan 1975y, Fulikowski
(1974), and Weiss (1974) all prOpose Systems which use
various probability models to represent what can be
1nterpreted as a model of uncertain or 1nexact knowledge.
Becker (1973) discusses a cognitive model for 'encoding
.experiential 1nformation' based on the application of
pattern driven 'schemata', a kind of event ~-based 1mplication

‘rule. A confidence wveight attached to each schena 1ndicates
the frequency of its success (how often a match of the
antecedent resulted in the match of a donsequent) and 1s

used as an a priori probability to predict ‘how successful

the next application of that schema will be.

. Shortliffe & Buchanan (1975} develop the .notion of a.

‘certainty factor' (CF) as the basis for an 'inexact!?



nprobabilistic systems (e.g. Carmap 1950, Hempel 1965).' The
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reasoning model operating within an anti-microbial therapy
program (MYCIN).” They arque that when a system's body of
knowledge becomes large, a Bayesian probability model based

on a priori evidence becomes unmanageable bécause of the

large numbers of statistical dependencies which must be
analyzed. They propose the use of-axheuristic system of

*evidential strength' based on an analysis of several formal

program's knowledge is encoded in production rules (a form

, of 1mp11catLon rule) which consist of a set of antecedents

(cllnlcal facts) and a consequent or. diagnostic hypothe51s.

«

To test a hypothe51s, the mlnimum CP of-its antecedents is-

multlplled by the CF attached to the production rule to

arrive at the hypothesls CF, whlch is then compared -wi+h an

empirically determined validation threshold,

In a p*cgram for dlagn051ng glaucomas (CASNET),
Kullkowskl (1974) and Weiss (1974) utllize a 'causal
network' of pathophysiological states connected by weighted
causal arcs as a basis for reasoning about more or less

credible information., Fach state represents a clinical
. . )

- fact, and has an attached strength value which is used~in

conjunction‘with an accentability threshold to guide a
causal reasonlng mechanlsm through the associative net.
This casual reasonlng system determlnes 'adnlssable paths?
of causation in a network of states, then each state in an

admissible path receives a 'status value' determined as a

function of its evidential strength and the product of the
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veights on causal arcs leading to that state. This value
indicates the relative degree of confirmation or denial of
the hypothesis represented by that state.

The MARGIE system-:of Schank et dl.'(1975) iﬂcludes_what
hay be‘interpteted‘as a measure of credibility., Internal
oonceptualiistiohs {propositions) hate an attached -
'STRENGTH; value on the'interval {0,1] indicating the
‘system's degree of bellef of that conceptuallzatlon., The
'*Conceptual Memory"' component of the systenm uses.'lnference

molecule! dependent rules to arrive at STRENGTHs for

inferred conceptualizations.

iy
<

There is often somelconfhsion:in decidipg whether a
proposed system is a model of belief (i.e. subjective
credibility) or a model of vagueness (i;e; conceptual
*fuzziness),'especialiy in systems that model one or the
'other but_not both. LeFaivre (1977) has shown how the .

" essential componentQ of the 1nexact reasonlng systems in
both CASNET ‘and MYCIN can be modelled in his FUZ2ZY
‘ programnlngvlanguage, since FUZZY simply attaches a'vélue to
- statement“and allows the user to interpret the value any
wvay he wishes. As LePaivre says,

The term 'Z-value'! was chosen so as not to

give any semantic connotations to the usage of

this numeric modifier, since it can. represent a

conventional truth-value, a fuzzy set grade of

membership, a degree of certainty or belief, a

-simple weight, or anything else the user wlshes

(LeFaivre, 1976 page 1071) .-

of cour se attachlng a 51ngle value on the interval [0,jJ'to

a proposition can be interpreted as representing a truth
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value or degreé of subjective bélief, but.not both. For
Artificiaf Intelligence, both are necessary since any
_vadequate understanding systen mﬁst be gble fo represemt not
only the vaguenéss ihherent in feal vorld'conceﬁts, but also

the uncertainty of its beliefs about then.

‘Thé.nofation pr0posed here models bofh‘creQibility'and
fuiziness by attaching'a credibility»distributibn function
‘ Qver truth‘valués to edch network proposition. For‘exalple,'
suppose-the discrete distribution over, truth values in

figure 2.7 was attached to the propositon
{ Fred YOUNG].

The concept young can be interpreted as a distribution of of
. degrees of truth ovef.agés.. ihérefdfe the credibiiify ’
”distribﬁtionbof truth'vaiues says spﬁething abqﬁt Fred's
~likely age. Forlexample,~singe the cfedibility of zero
truth vélue'is 0.35, there is a 3S_pereeﬁt likeihood that “
Fred is éome age which is ﬁd; coﬁsidered,‘youngﬁ at all
(say, > 40). ‘Or,.since the credibility of truth value 0.7
is 0,05; theré-$é a 5 perceht chancé ;hag Fred's degree of
tyoungnesst' is 0.7 (say,'25 - 30{. .Tﬁis idéa seemns similar
to zadeh (1977), alihough at the time of this writing

further detailsiof his 'PRUF' system’vere'notvavailable.
- ' . = . :

For pragmatic reasons, each,credibiiity function over
truth values will bé represenfed as. a 'staircase! typé of

discrete distribution function (i.e. constant except for a
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Figure 2.7 A discgete credibility distribution

flnlte number of upward jumps) Fp(t), vlth steps arbltrarlly
chosen at ( ' T o
t ;-o.o, 0-1, 0.3, 0.5;10.7, 0.9, 1.0 |
such thut.‘ o - ' ' o
Fp(t) = P( T(p) < t)
vhere FPp(t) is the probability that the truth value of

proposition p, T(p), is less than or equal to t. (see flgure

| 2.8). At each step t, the probablllty that the truth value

is £ t is the sum of the probabllltles Qf.the previous

- stéps._
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‘Figure 2.8 .A discrete cumu1ative credibility distribution

~ Using these diétributions in conjunction with féasoning
processes requlres rules for combining dlstrlbutlons over
truth- functlons. For example, for independent prop051t10ns
'p' and *q' tae comblnlng ruleé for for 'qu' *pég*' and

wp' can be dnrlved as follov5°
Rule D (logiéal disjunction)

FPYQ(t) = P(T(pVq) <t) .. (1)
= P(Lax{T(p),T(q)} S t) . (2)
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P(T(P) < t & T(q < t) : (3)

P(T(p) = t) P(T(q) "< t [} T(p) = t) 4)
Assuming *p*' and tq¢ independent we have

FPVq(t) = P(T(p) < t) P(T(q) < t) B )

= Fp(t) Pq(t). ) (6)

Rule C {logical conjuncfion)

FPEJ(t) = P(T(pég) < t) | M
= P(min{T(p),T(q)} < t) e
= PATA(P) S t | T(q) = ¢ | (9)

P(T(P) S t) + P(T(q) < t)

- P(T(p) <t & T(g) < t) (10)

Fé(f)‘f‘Fq(f) - FpVq(t) R v}11)
again gssuming 'p"aﬁd tqt indepehdent,.

=.Fp(§) + ?q(tr -‘Fp(t) Fg(t). o 12y .
Rule N (logicallnegationj

Fp(t) = P(T(~p) < t) o (13)

= P(1 - T(p) < t) ° T (14)
= P(T(p) 2 1 - ¢) . | (15)
=1 - P(T(p) < 1 - tj o -0 (18)

,. t’

A
-
]

1 - P(T(p)
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¢+ P(T(p) = 1 - t) 7
=1 - Fp(1 - t) + P(T(p) =1 fﬂt) (18)

~

A rule for implication can be derived as

Fp=>g(t) = P-~pVq(t). . ‘ »(19)
B L0 . 'l N
Ruies for detachment can be derived similarly to correspond
to either the definition of Goguen (1968) or Leev(1972).
Examples of distributions derived from application of these

rules are found in Appendix 1..

The belief in a proposition gan be verbalized by
examining‘the_credibility distribution in question at a
pq;ticﬁlar truth Qaiue (say,O;S),and mapping fhe'credibility
value at that éoint onto a sef of descriptive terms similar.

to the set given in table 2;1_belov."For example, if the

r 3
| C o ' : r
[ 1.00 = Pp(0.5) => tcertainly not® |
[ - 0.80 < Fp(0.5) < 0.99 => fprobably not? {
[ 0.60.< Fp(0.5): < 0.80 => *perhaps not! (
| 0.40 < Pp(0.5) < 0.60 => tuncertain® -
{ 0.20 <. Fp(0.5) < 0.40 => *perhaps’ |
[ 0.00 < Fp(0.5) < 0.20 => *probably* |
{ . 0.00 = Pp(0.5) => 'certainly' {
I . , SN

L ;

‘Table 2.1 A Credibility Interpretation

cumulative credibility distributiqn of figqure 2.8 was

attached to the proposit.on 'it will rain tonigﬂt!; vhen
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~queried 'will it rain tonight?', a system might appeal to

the interpretation of table 2.1 to answer 'probably not'.

If the step function Pp(t) has reached the value 1.0
before tﬁ= 0.5, tbe system believes the proposition is
neceosarily.falée, that is tfuth vaiues greater than or -
equal to 0.5 are_not at all possible. Alternatiéely, if
Fp(t) is 0.0 up to and ~including t = 0.5, the proposition is
1nterpreted as belng necessarily true, 51nce 1t has no.
probability of having a truth value less that 0. S This
interpretation is useful when ve wvant the systei to accept a -
proposition by fiat.l For example, we might require tﬁe

system to accept the proposifion

¥X((Xx DOG] => (x MAMMAL]]
‘as true by definition. 1In this vay, meaning postulates and
other necessary truths can be installed by hand, vithout -

fear of their being interpreted 'as falsifiable,



Chapter 3

Organizing Knowledge in.Selantic Networks

uch a matter of retrieving
enough contextual \information to delimit a ‘small
enough space of me carry out some sort of
remory search...ve get a good deal of savings in.
search time by 'indexing information in terms of
the context in which ve store the information - .
or, better yet, in terms of the context in which:
ve expect to have to retrieve the information
(Rumelhart, 1976, page 358).

Retrieval is

“3.1 Introdoction

The tern 'knouledge systems' within'Artiflcial.
Intelllgence generally refers to theories that attempt to
1mpart the ‘ability of *knowing' to a lachlne. ~Assn11ng that'
knowledge and the use of knovledge 1s a vital conponent of
huwan 1ntelllgence, ‘it is natural to de51re an analogous
conponent for‘lachlnes. Recent research in Art1f1c1al
Intelllgence has stressed the developlent of .organizational
‘theories of'knovledge such as_ScriPts (Abelson 1973, Schank
1975¢c, Schank & Abelson 1975), Frames, '(Minsky 1974), |
Sdhenétn, (Bobrow & rman 1975). This trend nore or less

- succeeds a‘previous omne that produced various .-

‘representational schemata for machine knowledde like the

-

29 ‘ -
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Semantic Networks of Quillian (19685, the PROGRAMMAR.
érocedutesﬂof Winograd (1972), the Predicate Calculus Systen
of Sandewall (1971a);'and the Rroduction,Syster éf.Negel} &
"~ Simon (1972). Many of these répreseptations have providéd a
facility for representing only relatively silple units of

. Xnowledge léke a ngtu:al language sentence or a basic rule

of inference. Thus the current interest in extending the
representations with superi-posed organizations follovs fron
a desife to store ;nd retrieve increasingly coﬁplex -
knowledge structures. The>felative’size and complexity of
'the_knqyledge‘donains in exisfing khovlgdge-bésed systemé'
(e.g. Carbonell 1970, WOOGﬁket al. 1972, Bobrow et al. 1977)

imply that more sophisticated structures must be deveioped-

N . i ) g - . ‘ .
before an artificial system can function usefully in a real

world domain. 1In generai, solutions for organizing large . ¢

<

. 3
and complex knowledge domains emphasize schemes which make

"each item of knowledge easily éccessible‘in the contexts or

situations in which it is needed. This implies the need for
a context-sensitive mechanism for classifying a\pody of
knoviedge.

Y

3.2 Semantic Fetwork Organizationms

'

. .Many vriters (e.g. Quillian 1968, Schank 1972, Anderson

»

& Bower 1973, Norman & Runeihart§1975) have shown how

I3

: v
semantic networks can provide an elegant . .representation for

kﬁovledge, but recently, the organizational capabilities of

such -~etworks have been questioned. Bobrovw (1975) indicates
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that "Predicate calculus and semantic network

'representations tend.to.impose only @ local organization on

the world," which might imply that such notations are notl

suitable for rep:oventing higher level organizational

structures. Ironically, although many of the most popular

knowledge organization‘structures'arevdescribed as being

built of such things as declarative de§cription5‘

';e.g. frames, schemata) or eplsodes (e.g. scrints, plans),'

they can ultlmately be v1ewed as a kind of network as’

"indicated by Kgy~(1976) speaklng on the frame-drlven

' dielogue system GUS: ’

«..n0¥W the contents of these slqots in the
dialogue frames (and in lots of oOther frames that
< exist, in the system) are typically other . . mes.
These structures recurse to.great depth. UL
..course they .are not simply tree s*ructures, but
they are circular and they point to one another;
they're' networks (Kay,,1976 ‘page 355). o

It seems then, that some of the " flavour' of semantic
. . ’ ) N
networks is inherent in these\iarger units of knowledge;

although many ‘'of them are not expllc1tly constructed w1th a

e [}
"‘network notatlon. ‘

0

Loieme

One hlgher level structure exp11c1tly developed with a

"*form of semantic network is the 'scrlpt' of AbEISOD and

Schank The base representatlon for scrlpts 1is Schank'

' (1972) Conceptual Dependency (CD) notatlon, a ty%e\;f

semantic network. "CD.is used to bulld 'conceptuallzatlons'
g .
which ‘become the basic un1ts:for constructlng 'actions' or .

'eplsodes' " These episodes are comblned in a cause~effect

structure to represent a "predeternined, Stereotyped

<™\
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sequence of actions"ucalled a'script;' Scripts are intended
to be a specialized frame (cf. Minsky 1974) useful for
understandi;r episodic knowledge like "going to a -
’restaurant". They are not intended as a tool for ofganizing

'knowledge in general.

luch of the research directly involved with predicate

-

calculus and semamntic network type notatlons has been done
w1th1n the context of natﬁral language understandlng (e. g.
<Sandewall’1971 Palme 1971 Schank 1972 Simmons 1973
Cércone 1975).‘ Thls work has emphaslzed the constructlon of
network expre551ons to represent 1solated natural language

concepts and utterances, with less empha51s on developlng

»

:technlques for organlzlng these structures 1nto larger units

:of knowledge. The relatlvely fever examples ‘of research

~ -

almed specifically at the 'bottom up' developmentrof

-~

'organlzatlons for §%mant1c networks have emphas12ed the

organization of. represented concepts. . For example, Winograd o

3

(1975) dlscusses a 'generallzatlon' h1erarchy uhlch can be
used for organizing concepts 1nja structured knowledge

- model.. The strycture is essentially a sub?concept/super-

’

concept hlerarchy in vhlch the concept nodes are v1ewed as
'frames' The 'frames' are used as. attachment p01nts for

‘knowledge about that concept,'ln ‘fact each 'frame' is

o

actually a collectlon of facts descrlblng the concept being

i

.represented. uylopoulos et al, cﬂ975) develop an

organization of semantic.networks in the 'frame' tradition,

calling their corresponding structure a 'scenario®'.
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Scendrios iTe composed of *concepts', 'characteristics'
(prdperties of concepts), and 'events! orgénized by cauéal '
and temporal connectives to form regresent@;ipns of
stereotypic'knowledge. This knowledge is organized around
two basic structural qubonénts,‘namely the 'IS-A"

hierarchy,'and the *PART-0OF' hierarchy.:

oy

[

’

Other efforts ﬁo impose organizations on sematic
networks have beén made iﬁ ordervfé exténd'their expressive
power. For instance, Hendrix (19?5) extends a semantic
netwopk'by incorporating a notion of partitioning in order
tb represent quantification and modal contexts. ‘These
construétions are alréadyfhandied by the notation'discussed
' in Chapter 2. |

v

Many of these recent proposals for exfending-the

organizational power of semantic networks.provide methods

for assembling. propositions into larger uhits,-bht little

effort.is déiozri/fo organizing the collections of facts

associated withlfeach concépﬁ in the network (i.e. those

facts' wvhich can be said to be fabouf' the concepts). 'The

next portion of this chapter is directed at.de#eloping such

,

an organization.
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3.3 The Symbol-Mapping Problenm

The *Symbol-Mapping problem' is actually a spate of
various problems that arise in the following situation
described by Pahlman (1975):

Suppose I tell you that a certain animal--
let's call him Clyde-- is an elephant. You accept
this simple assertion and file it away with no
apparent display of mental effort. And yet, as a
result of this simple transaction, you suddenly
appear to kmow a great deal about Clyde. If I say
that Clyde climbs trees or plays the piano or .
'lives. in a teacup, you will immediately begin to
doubt  my credibility. Somehow, "elephant" is
serving as more than a mere label here; it is, in.
some sense, a whole package of properties and
relationships, and that package can be delivered
by means of a single IS-A statement (Fahlman,
1975, page 7). '

Prom an Artificial Intelligénce point of view, thé'problem
is one of organizing a systém's_factual knovledge so tha£
_ﬁhen it is told *Clyde is an elephant', every other fact
 known about elephants becoﬁes immediately a%pessible to it
from the concept. node 5Clyde'. ‘Fahlman's solution iniolvés
the use of'parallel hardvare elements to répresent conéepts
(e.qg. Eiephant) dnd relaﬁions (e.g. IS-1) between‘cqnceptsFA
Eéch'hnit can store 'marker-bitsi vhich can be prbpagated in
parallel through a netgork of such elements in order to very
vguickly berform s;arches and‘intérSegtions on large—conéepf
" and relation classes. Thié provides the efficient access
nécessary to:solve the basic problem with a ninimdm_of

organizational overhead. ' o T

3

Serial approaches emphasize various organizations of

conceptual properties, and generally attempt to provide:
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efficient concept-based access of known properties.
McDermott (1975&) Suggests organizing properties of cohcepés
into 'packets' or 'contgxts' simiiar to the‘devices
available in PLANNER, CONNIVER or QA4. When an instance of
a concept is instantiated (e-g. when *Clyde the élephént' is
aéserfed)'the cofresponding packet’ of properties, in this
case the 'eleph;ﬁt‘backet',,is atfaChed'to Clyde by some
form”pf yariable.binding or indexing. This makes all known

elephant properties.accessible from the concept Clyde.

Moore's (1975) scheme focusses on the use of an 'IS-A?
taxonomy to organize the facts associated with particular

COncepts (see figure 3.1). For example, since ELEPHANT is

PHYSOB

N

"ALIVE

BN

ANIMAL - o

MAMMAL

..
A b

) R ELEPHANT

Figure 3.1 Part of Moore's Is-a taxonony -

classified under MAMMAL, assecting 'CLYDE TS-a ELEPHANT®
’impliesfah inheritance qf knqvn properties from all the
other nodes in the ISs-a taxonomy. Efficieht accessvbf
inhe:ited properties is facilitated by attaching a 1i$t of
subsuming class concepts to each constant (i.é. extensional

objéct)'or'variable'(i.e. intensional object) about which

14
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propérties have.been asse:ted.‘ For example

(qécuhyﬁspgcg ?x/PHSYOB)'

asserts thét all pﬁysical 6bjects'bccgpy-space._ Aéserting
(CLAS%{&LYDE ELEPHANT)

. attaches the class list *PHYSOB ALIVE ANIMAL MAMMAL

-

ELEPHANT' to 'CLYDE', and the task of verifying the fact
(OCCUPY-SPACE CLYDE/PHYSOB ALIVE ANIMAL MAMMAL ELEPHANT)

is 1éf£ to a pattern hatchef. The rules for matching
variables (e.g‘-'?x'), coﬁstanté (e.g. CLYDE)“and claés
listsvdetermine which inherited_propérties‘can be gerified,'
by the matcher, thus makiqg it the key to the iholeESCheme's
success. .The key to the matcher'éiefficient opefation
~pivots on how quickly it can find the assertions it is
1o§king for, therefore noore.ptoposes that dssertions be
grongd-in hierarchical buckets by-clas§ lists, then the
class Iists éad be used to index the desired assertion
Buckets. When a 5ucket becomes to large to search
efficiently, it'is-subdivided ihto_more‘nanageable sub-
buckets aé specified by the‘next‘sub—concept attached to the
assertioﬁs of the large‘hucket. For exaaple, subdi;iding
the bucket fo: asseftions about the 'PHYSOB' class might

Q

tesult in sub-buckets for the assertions abbut the 'PHYSOBJ
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ALIVE' class, and the 'PHYSOB NOT-ALIVE' class. This
subdividing process can carry on down the class hierarchy to
only the depth of constants, at which point the organization

would resemble a more or less balanced 'IS-A*' hierarchy.

3.3.1. Symbol-Mapping in a_Se-antic Network

Symbol-Mapping in a. semantic netwofk is greatly aided
by imposing a sub-concept super-concept (Is-A) hierarchy on

the network concepts.! Within'the semantic network, one .

concept is a snpgr concept of another concept if the set of’

'propertles attached to the former is a subset of the
propertles attached to the latter. Therefore 'MAMMAL"is a.
super-concept of. 'ELEPHANT' since the set of 'YMAMMAL'"

-properties is a subset of the set of ‘ELEPHANT' properties.

" Now, after asserting fClyde is an elephant', the colour
of Clyde can be seatched for as follovs- The concept node
"Clyde' is accessed, and all attached prop051tlons are
scanned sequentlally for one vhlch indicates the colour of
Clyde.‘ Should such a.prOperty not be found for Clyde, the
class concept 'ELEPHANT® is.accessed; and ite attacned

properties are again‘searched sequentially for a colour

1. The sub-concept/super-concept structure is actually part
of the semantic netwvork, although it can be discussed as
being distinct from it. 1In general, a sub- :
concept/super-concept relation between generic concepts
can be asserted as '¥x({x P] => {(x Q]]', or 'P*' is a
sub-concept of *Q'. Asserting that *'[x P]' does not
mean that 'x' is a sub-concept of 'P', but that 'x' is
an instance of the class 'P', and that *x' inherits the
properties of *P*' and its super-concepts. :
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proposition. This process continues until either all the
ex1sting super concepts' properties have been checked, or a
CQlour pr0p0s1t10n has been found. Notice that the sub-
concept superrconcept (S/S—CONCEPT) structure simply directs
an exhaustive search for a colour property attached to each
of thr super-concept classes of which Clyde is a member, but’

it does- little to increase the efficiency of locating

' relevent information about the colour of Clyde. What .we

. would like is to be able to ask the question 'is there a

colour prop051t10n attached to Clyde?', and if the answver is

no, proceed'up the S/S-CONCEPT hierarchy, asking the same

question of each successive'Super#concept.

3.3.2 hTopic Preuicates, ‘
Topic predicates will provide a tool for classifying
atomic netvork prop051t10ns into similar categories or,
topiCs. TOplC predicates will take prop031tions as
argunents to form topic prop051tions whose truth value
represents the degree to vwhich the prop051ton argument
belongs to .that topic.. Topic assertions are triggered when
a topically claSSified predicate is recognized in an 1nput
prop051tion. The topic c1a551f1cation is based on the
&etinit@on of sub- top1c/super~top1c relations between topic
nodes, for example table 3.1 defines the 'texture' topic to .
con51st of the sub tOplCS 'smooth' 'bunpy', iragged' and,
'shiny' Each topic node (those appearing in 1over;case'

type) has a correspondiug first-order’predicate (appearing
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{smooth SUBTOP .texture}
{bumpy. SUBTOP texture}
{ragged SUBTOP texture}
{shiny SUBTOP texture}

= e s e e o - o

[

L

Table 3.1 The *texture! topic

in upper-case type) which is included by definition in tﬁat
corresponding fopic.- Thérefore 'texture® topic asSertions
can be triggered by any of ﬁhe first-order predicateé
*BUMPY*, 'RAGGED',,'SHiNY', or 'TEXTURE'. Attaching the
first-order 'triggér"predicates in this way keeps.the.tdpic
relations consisteni; since only tobic predicates mav

participate in a 'SUBTOP* relation.

The éub-topic lists fbr tvo different fopics'need not
be disjoint. Por instance, thebtopic"colour', like the
topic 'texture'.miy also have a sub-topic 'shiﬁy', siﬁce
‘shiny.objects tend to haye ill-defined colours
(e.g. consider a mirror), sov'shipineés' substitutés»for
colour (see tablé 3.2). When the corfespondihg first-order
éfedicaté YSHINY' is used in a prOpdéition,-thét propositidn
is-classified under the 'texture! topic‘aﬁd the 'colour®

topic.

Topic propositions formed with a proposition containing
a'topic's cérrespondingvfirst-order predicate are assigned.
unit credibility. For example a 'sﬁooth' topic proposition

. . »
vhose proposition argument uses the first-order predicate
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e

T

{

| {red SUBTOP colour}

{ {green SUBTOP colour}
| {blue SUBTOP colopr}
{ . * .

f : e

| - [}

I
|
L

{shiny SUBTOP colour}

e e e e em e e e e o

Table 3.2 A partial definition for the 'colour' topic

" SMOOTH* woold Have a truth distribhtion function_Fp(1.0) =
1.0 and Pp(t) = O.D‘foF‘all-t < 1;0. Since'propoéitions
ciassified.under a topic are alsoﬂincluded in that tooic's'
super-topic categories, if is more intereétiﬁg’to consider
tﬁe degreo to which é,topic proposition satisfies it super-
topic classification. The topic defining statements.are
theoselves propositions, therefore tooic'categories can be
'fuzzifiéd' by attaching a truth distribution to each sub-
‘topic (or super-topic) definition.2 Whon a proposition is
categorized by a topic-predicate, the attached truth
distribution gives the degree to which the classified
proposiﬁion'satisfies_its‘topic catogoty. As previously

stated, if the truth distribution function Fp(t) is 0.0 up

2. Note that the concept of a fuzzy topic predicate is

) similar to the- concept of a fuzzy set (cf. zZadeh 1965).
Note also, that topic predicates resembile *linguistic
variables' conceived by zadeh (1974), although the
interpretation intended is not linguistic, but
epistemic. LeFPaivre {1977) shows how fuzzy sets and
linguistic variables can be - :p-2sented in his :
programming language PUZZY, ard is examples indicate
‘that fuzzy. topic predicates <o. & as well be
accomodated, _ _
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to, ahd'includiné t = 0.5, a proposition isvintefpreted as
'being,necessarily true. The defihitions of the two fuzzy
topic predicates in table‘3.3 have ali the trufh values for
their,distribtuion functions accumulated at one of thé

values t = 0.7, 0.9, 1.0. 1In a propositional data base,

//’

FP(t)=1.0 & Fp(x)=0.0 ¥x < -t => P (T (p)=t)=1.0

(red SUBTOP colour} Fp(1.0) = 1.0
‘{green SUBTOP colour} Fp(1.0) = 1

.0
{blue SUBTOP colour} Fp(1.0) = 1.0
. o

r
( 1
| |
{ [
i |
( |
l {
I |
{ . |
| L . - N
1 {dark SUBTOP colour} Fp(0.9) = 1.0 .
| {shiny SUBTOP colour} Fp(0.7) = 1.0. |
l ‘ |
| I
| !
| [
| |
l |
{ {

{smooth SUBTOP texture} ‘Fp(1.0) = 1.0
{bumpy SUBTOP texture} Fp(1.0) = 1,0
{ragged SUBTOP texture} Fp(0.9) = 1.0
{shiny SUBTOP texture} Fp(0.9) = 1.0

[1 ) s

Table 3.3 Two fuzzy topicdpredicates

classifying asserted éropésitions vith the fuzzf ;opic
predicates"texture' aﬂd ‘colour' not only provides two
viewpoints of the con¢ept 'SHINY', bu{ also indicates which
of the asserted ptopositiong'is the bést representétive of
each topic categofy. If all that has been assertedAAhout an
Object is that if is 'DARK' and '§HINY". an accéssind
iechanism can immediately infer thaf 'DARK' is a be£ter‘
indicator of célour than 'SHINY"'. in genéral,“overlap in

the definition of Bany such topics can provide alternate
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viewpoints of the same concept to varying degrees of
relevance as indicated by the éredibilityvdistributions of

the topic predicate definitions.

3.3.3 Topic Hierarchies

The sub-topic/super-topic (S/S-TOPIC; relations‘can be
used.to define arbitrary hieraréhies of tqpics«whiqh
correspoﬁd to heuristic claséifiéations of‘prdpgsitioual
knowledge; Such hierarchieé imply an inheritance of
categorized knowledge similar to fhe'inheritance of )
properties‘iﬁplied by a sub-conqépt/supef-éonceptl(IS~A)
Organizatioh. The_definf ‘on of the 'appearance' topic in

table 3.4 imﬁlies-fhatAitemé of knowledge classified under

R )

Fp(t)=1.0 8'Fp(x)=0.Q’Vx,< t => P(T(P)=t)=1.0 .

|

|

. - {

{structure SUBTOP appearance} Fp(1.0) = 1.0 {

{(colour SUBTOP appearance} Fp(1.0) = 1.0 [
| :

|

(

n o

{texture SUBTOP appearance} Fp (0.9) 1.0
{pattern SUBTOP appearance} Fp (0.9) 1.0

rf______;q

LT

Table 3.a‘ The 'appearance' topic

the"célour' topic are also items of kgowledge'ébdut' o
"appearancef, This‘enables‘a partiallyffilled structure
(vhich will usually be the case) tb’proviée_access‘fo

classified knowledge from any -topic lefel -,only a simple

inference must be made to access propoéitions from any one
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of a topic's sub-topic or super-topic categories.

The purpose of defining t§pic hieraréhies is to ilpdse
a classification on a body of propositions in order to
provide efficient access of topically-relevant proﬁositioné
(fOr a givén query.~bThiS‘e£ficiéncy depends on how well a -
topié hierérchy ‘covers*® the domain of knowledge beinQ
ciassified. To keep the access time of propositons within a
reasonable range.(é.g. approximate1j constant with respect
to fhe number of‘propositions classified), the topic
hierarchy must be sonevhét balanced; it should have
aéproximately the iane number of propositions under each
category.. AttelptingAto'iaintéin such.'a balance Qill
‘usually result in'topics at agf level of tﬁe‘structure being
of different levels of genetality. For exanple; consider
the partial topic hiefarchy for orgénizing factual’knoiledgé
about p* =zical objects givén in figure 3.2. In this
hierarchy bo™~h 'appéaraﬁce' and 'behaviour' appear as topic
predicates at the same level, but the sub-topics attached to
the fappearance' topic vi;l élassify'propositions to a’ |
greater depth than those_gttached'to the 'behavidur' topic.
A similar notion appears_in,the(Syﬁbol-uéppgng problem
solution propos?dby Moore (1973). Assertions about
concepgs are stdred in assertion buckéts, and Qheh'a Sucket
beéomes toollargé«to search 'efficicently' it is sub-divided
into more nanageabie sﬁb-bucketé. ‘Therefore the sub-bucket

structure attached to each concept may not alvays have the

| same depth.
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used-fo.
functi0n<::::::::
how-used
) evoked ‘
behaviour<<::::::j
spontaneous

disposition ' .
: ' pattern

’ shape
structu:e<::::::
size

;appearance
S colour

texture
¥4

N _ .
~Figure 3.2 - A» partial topic hierérchy’
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3.3.3.1 concept-based Topic Hierarchies

. s, :
Now reconsider the Symbol-napping problem assuming that

the prop051t10ns attached to each concept are classified by
an approprlate topic hierarchy. A search for the colour of
‘_Clyde again hegins hy accessing‘the 'Clyde} concept, but
rathet than lookihg at each proposition attached to Clyde,
the 'colour' toplc of Clyde cad 1mmed1ately be checked for a
colour prop051tlon. If one is not found, the super—toplc
structure of the.generic clasges in which Clyde is a member
(e.g. ELEPHANT) are used to, direct”a similar search of
toplcally cla551f1ed kné%edge.. If the toplc'hlerarchles
attached to each concept are roughly balahced the acCess://’\i>
time for a particular cla551f1ed proposition about a‘
partlcular concept 9111 be approx1mately proportional to the
logarithm of the number of propositions 'known' about that
concept. Afhe combined otganizationaltpower of the S/s~ |
CONCEPT and S/S-TOPIC structure should provide for a
signiticant reduction in proposition'access time. .

t

;ﬁavinq topic hierarchies attached to each eemantic
network concept requiref that the system determine Which
concepts a proposition is *about!? hefore it can be
classified under tho;e conCeots"topic sttuctures; The

problem'ie one of finding the concept foci of a proposition.

The notion of a concept focus is 51m11ar to the 'tOplC
concept' notion of Charniak (1972, T973 1976), which he -
uses as an access and attachment p01nt for knovledge about

that concept. Pattern-driven 1demons' (i.e. antecedent
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theorems in PLANNER) are attached to each topic concept and .

[y

1nvoked by 'base-routlnes' when the concept 1s recognized 1n

an asserted proposition. The demons then make logical

- deductions about thefconcept within the current context as

instances of,generic concepts (e.g.'Fted, ball17), or

infefreq from the asserted proposition; Topicvhierarchies
provide a similaf access and ettachment point fo; knowledge,
and since they are concept-based( the cencept foci of a
proposition must be determined before thax pfopestion can be

correctly classified. ..

' There are basically two types of. concept foci that can
appear in a proposition; ‘individual concept foci,  and

generic concept foci. This'distinction is made by

¥
¢

determining-how predicative arguments in a proposition are

quant;fied.'LIﬁdiiiduai‘concept argument's’' are recognized as -

unquahtified appearances of named arguments denoting

existentially quantified arguments denoting an unspecified

~individual. For exemple, in the proposition

.

3y[{ Fred LIKES y ]

1

both 'Fred* and 'y* denote 1nd1v1dual nodes in tt *emantic'

aéhetvork.‘ Slnce they are the concept foc1, the PLc,vsition

»i11 be cla551f1ed under the topic hlerarchles of both.

Pred', -~d a newly created, unnamed node representlng some

indiv: al.

The : st informative cue for recognizing the generic'

.
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foci of a proposition is the presence of universally
quantified arguments denoting sets of individuals in the

domain. For instance, the proposition
¥X((x BEAR] & (x WHITE]] => (X POLAR-BEAR]]

has onlyvone unlque argunent, and since lt is universally
.quantlfled the prop051t10n nust have generic foci, _The
prop051t10n is about all *BEAR! thlngs, all *WHITE' things,.
and all ‘POLAR BEAR' things, therefore it will be cla551f1ed
' under the toplc hlerarchy of each of those generic concepts.\
It may seen somewhat counter intuitive to classify the |
prop051tlon as knowledge about 'HHITE' perhaps because of.
the different nature of that adjectlval concept as compared'
to the nogn concepts *BEAR' and 'POLAR-BEAR'. One seldom
considers knowledge abont "WHITE' things since they
generally have 11ttle in common. Conversely, noun concepts
like 'BEAR! and "POLAR~ BEAR' 1mply a larger set of
consequences (€.g. they are mamnals, have claws, “etc, ;,\Qg
the- prop051t10n seems potentlally more valuable for
egognlzlng a 'BEAR' or a 'POLAR-BEAR'; bnt relatlvely less'
vvaluable for recognlzlng a 'WHITE' thing,. However, thls
‘does not provide a basis for dec1d1ng that the propos1t10n

-

1s not knovledge aboat the concept ‘*WHITE"®. SR

-~ There are cases vhen a concept may have both 1nd1v1dual

, and generlc foc1. For example, the proposition.
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¥x((x HUMAN] => (Fred LIKES x]]

surely says something about ‘Fred*', but also makes reference.,
to the set of all 'HUMAN' things and “the set of all thlngs.
which are the 'LIKES' of 'Fred'. A general rule for
determining the foci in such situations would be as follows:
first determihe how each argument is quantified; any
individuals are concept foci.. The appearance of aé least
one unlversally quantified arqume ¢ 1nd1cates the presence
of generic foci; the generic foci will be exactly those
predicates which have a unlversally quantlfled argument. By

this’ rule,,the concept foci of the above proposition are

~'Pred', 'HUMAN', and *LIKES'.
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Chapter 4

Utilizing Knowledge in Semantic Networks

4.1 Introduction

Demonstrating the use of topic hierarchies requires

both a propositional data base (PDB) for constructing and

maintaining a body of propositions, and a computational

model of the topic hierarchy structure which can be

.integrated with the PDB system. This chapter describes such

T~a PDB system, and fllustrates the design and operation of a

~.. - ’
topicorganization which can be used to classify and

.

e

¢ : \

retrieve praﬁosiyions'stored'in'the PDB.. o

----- mm—

" 8.1.1 Efficiency of Retriéiﬁl@\\ ‘ ' L \

Efficiency of retrieval will-gltimatély depend on how

oo

many propositions must be examined before the 'right one' is \\

found. If the number of prOpbsitions is very-small,”%he
organizational overhead involved in-maintaiﬁing a té}iq
structure might result in a loss of efficiency, but then it
is doubtful that such a small body of,knowledgé wbﬁidibe'

very useful in a real world environment. - _ . -

49



. 4.1.1 EfficiencY of Retrieval ' - s0

ideally, the hierarchical organization should have its
.categorieed propositions distributed more or less evenly in
-order to maintain the same number of propositions under each
topic. Maintaining a nearly balanced structure will keep.
tue‘access time for a proposition approxiuately logarithmic
vith respect to the number of propositions classified. 1In a
‘statdc topic hierarch}, the balance of the structure is
determined by the distribution.of predicates‘and arguments
'appearing in the input propositibns.‘ Whether or not the
-structure remains balanced will depend on hov well the ) \
predeflned topic structure 'covers' the ant1c1pated body of
input prop051t10ns.» This suggests that a self-adaptive
Structure vou;d‘be.valuable, although the ourrent model'

makes no attempt to investigate that possibility.

4.2 The PDB Framework

A'PDB systen has been programmed to provide a facility
‘for’ constructing and malntalnlng a semantic network data
base which, in turn, vlll prov1de a substructure upon which
an S/S -TOPIC structure .can be superimposed. The descrlptlon
of the PDB systen vhlch follows clearly demonstrates hov an
actual implementation could be prograumed. The status of
the currently impleuented prototype sysrem is discussed in
Appendix‘},'and some actual 'dialogue'-iith the system‘is

given.

Before dlcus51ng examples thch denonstrate the use of

the organlzlng devlces, a brief descrlptlon of - the PDB 1s'

e
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necessary. The-descripiion is intended only to familiarize
the reader with the basic PDB components and their

. 13 .
interaction with the organizational structures.

q,2.i'lTﬁe PDB Network Structure

ﬁaéh node in the semaﬁfic ngtwork is represented by a
unique fecord consisting of‘varioué fields depending on thé
type of node (proposition, prédicéte, constant, or variabie)
being represented. All 1inksvto other nodes are represented
by ;'LINK record'gonsisting of type and pointer fields.

) ~

%.2.1.1 Propositions

Each proposition node is represented by a PROP record

consisting of five basic fields, four of vhich are list

pointers. The single scalar (atomic) fie is the assertion

time of the proposition as given by the PDB's internal
o A ' 7

clock. This field imposes a chronological ordering on

! - L ’ o | : ?

asserted propositions, and can be used as an aid to various |

¢

_ _ . : I
kinds of inferring techniques (e:g. see Schank & Rieger

1974) . The propositibnalaargument-list'(PARGLIsr)'is a list,’
.of LINK feCords'pointing to tﬁé arguménts of'fhe. .
grobbsition,‘ For each-atomic.propositioh; thelE;RGLIST
‘consists of a PRED typelLINK to a generié concept and a sét.
;éf otdéred ARG type LINKs to the_argulents of'the prediéate,.
- The PARGLIST of a compound proposition haské LOGICAL type
LINK to the appropriate-dperatof ('~' or 'm') of.connective

("=>%, "1, or '8')»foilowed'by LOGICAL type LINKs to the
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various éonstitqent propositions. 'For imblications, sub-
cdﬂpouhds‘aqe"otdered‘antechent,'theh'consequent; Lists of
disjuvcté and conjﬁncts are sorted by thé index of the first
predicite node (i.e. generic cbncépt) féund in»each'
suPjupct. This helps the systeh to determihe if two
differenxly ordered disjunctions or conjunctiohs are
equivalent. For example, if the predicates *DARK' and
'YORSE'! appear in the internal di¢tionary in thatAorder,.the
asserte€d conjunct |

~

({Jack HORSE] & {Jack DARK])
vill b® stored as

({Jack bARK]‘5 [Ja¢k‘ﬁ6ﬁSﬁ]]

| The scope inclﬁsion list (SCPLIST) is a (poésibly
emptg) list .of SCOPE type LINKs pointing to qdantifigd nodes
‘iudludﬁa vith thé stpe of the ptoposition:(as describedvin
ChabteX 2, Section 2.2.1 3). The remaining list field is
‘the- back LINK iist (PBAKLIST) uhicﬁ‘is.nade up of LINK
records é;inting'froh,subbconpdund"PBOP nodes to their -
parent pfoposition nodes. This list can be used to
decepmine if a propcgition is ianOmevay.iodified.by
éﬁotyer, for e#aﬁple a parent ?roposition that.qegates thé'
'suDDrQPositioh,~o; indicateSqthat it is a conséguent of
anothé? ﬁ}oposition,"etc..f | |

the credibility distribution list (CREDLIST) is a list



4.2.1.1 Propositions ' : . 53

.of numeric values defining the credibility and truth of the
proposition. The current version of the PDB systeﬁ

maintains a seven-valued dlscrete distribution as descrlbed

in Chapter 2, Section 2.1.1.5.

4.2.1.2 Generic Concepts

All generic concept nodes (i.e.- those that can act as
predicates) are represented by CONCEPT-reccrds, Each
tONCEPT record consists of four fields, two of which arse€
lists. The atomic fields include a _pointer to the concept's
dlctlonary entry, and 'a count of the ‘number of tlmes the
concept has been used as a predicate. The predlcate use
count (CPREDCNT)Yprovides a siapleAheurlstlc for deciding
‘_uita which of.severai generic classes a search for a multi-"
class refereat sheqlc begin.‘ for example, a search for the

referent 'x' in the proposition
([x BALL] & (x BLUE]]

might beéin Sy detereining whether each objecr in the BLﬁEa
-class'is also in thelBALL class, or vice versa. If the
CPREDCNTS indicate there are more BLUE objects than BALL.
Aobjects, the search should naturally begin by exanlnlng each
‘object in the BALL class (1-e. because there are fewer of

them) and'deternine if any of them'are-BLUE.

_ The predlcate usage llst (CPREDLIST) consists of LINKs

p01nt1ng to each prop051t10n in which an 1nd1v1dual concept
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appears as a predicate. This list delimits the set of
individual concepts included in tne'class defined by the
generic concept. Its function may be pre-empted by a
‘speeial topic in a PDB,which’uses a superimposed topic

organization.

In a PDB model ‘without a superimposed topic structure,
the CDBPLIST prov1des an attachment point for prop051t10nal
knouledge about the proper use of the generlc concept as a
predlcate.. For example, the fact that the relation concept ‘
NEAR is transitive could be represented by tne,proposition

~

VxVsz[[[x.NEAR Y) & (y NEAR x]] => [x N.BAR x)].

Since thls 1nformat10ndls in semantic netuork forn, it can
be 1nterpreted wlth the same tools used to 1nterpret all ©
other knowvedge: stored in the PDB. ' This means a general

reasonlng mechanlsm can be used to reason about’ predlcate
'usage.“'In a PDB system with an 1ntegrated toplc o ' b'ﬁb\;
organization, the prop051tlons attached to the CDEPLIST Ray.

be class1f1ed under a, 'spe01al' topic for such knowledge.

This notlon_wlll be elaborated later.

4.2.1.3 Individual and Variable Concepts

Both 1nd1v1dual and variable concepts are represented
by NODE records con51st1ng of three flelds, one deallng with
the quantlfiéatlon apparatus, another with dictionary .

access, and the last with the NODE record's usage as an
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argument in propositions.

Individual concepts (e.g. Fred, ball7) have dictionary
links and a NULL séope list (NSCPLIST) indicating that they

are existentially quantified instances of generic concepts.

)
'

wvhich can be referred to by name. Variable nodes do not

&

. ' ‘ s
Wentries and can be referred to:only by/%heir

ké propogitions in which they were

NSCPLIST of existentially quantified

e g . |
" 6LL, vh¥le universally quantified variables
have a (poésibly.empty) NSCPLIST consisting of SCP' type

variables 1is

'IINKS”to any eiistentially_dependent variable nqdes. Bofh
-variable and constant NODE records have amn attached list of
LINKS to propositionms in. which they épge@r,és arquments |
(ﬁARGLIST). "This list deliﬁits-the propo;itional‘knoylgdge
" the syétém *knows' about a’pérticular concept at amny given
moment. ‘Once'again, a PDB system with an eqbeﬂded topic_
organizatidn may choose ko‘retain the‘NARﬁLIST entries for
pfopositiqhs which cannot be topically-classified, or
alternatively, mafvclassify then undér'a special

'miscellaneous' topic.

4.2.2 The PDB Organizational Structure

A tobic hierarchf may be éﬁperimppsed on the PDB by
'organizing>each conc;pt's baék 1igks into separate'
categorieslqr.lists, one fof each topic'cont;ining
classified proposigions,in vhich the conqept'apéearé as.é_

;conceptlfocﬁs. It is unlikely that any topic classification
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scheme vill be compiete, and propositions:which simply
cannot be classified by topic can'either be added to a
miscellaneous topic, or made accessible through the
CPREDLISTs and NARGLISTs of the individual comcepts. In
.systems usiné se;eral different kinds of tcpic hierarchies
te.g. one for knowledge about physical objects, one for
‘knovledge about actlons, one for knouledge about events,
etc.) there may be con51derab1e.overlap in the lists
representing the topic‘classifications Since topic

predicates' sub-topic lists need not be mutually exclusive,

The toplc organlzatlon has two components, a predeflned

toplc hierarchy (e.q. the toplc hierarcay ,n Chapter 3.

figure 3.2), and a topic access skeleton attached to each
CONCEPT or NODE record under which propositions have been

classified. - o . .

The‘tcpic hierarchy'is represented by a set. of TOPIC
- node records whose sub¥topic and.super—topic reiations are
represented by SUBTOP and SUPTbP links. Each TbPIC node '
consists of a d1ct10nary index .and two (p0551bly empty)
.llsts for the SUBTOP .and SUPTOP llnks. Each.llnk contains a
p01nter to a TOPIC.node, and a pointer to-a credibility |
dlstrlbutlon vhlch represents the truth dlstlbutlon of the
'deflned relatlon. Each generic concept (i. e.. flrstvorder
predlcate) vhlch has a correspondlng topic predicate 9111
have a 'trigger' link p01nt1ng to the toplc node in
questlon. A topic node can then be accessed via its

predlcate 'trlgger' or by its dlctlonary entry, then the
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\

topic hierarchy can be traversed by following that topic's

list of connecting links. : - ' o 53

Each nodeAin a ‘topic access skeieton‘is a list of
propositions which have been classified by the corresponding
topic node in the topic hierarchy. Assertion or‘retrieval
of a proposition is done by'classifying the proposition in

the topic hierarchy, then perforaming the appropriate

‘operatlon ti.e. 1nsert10n or retrleval) on the list located

at the corresponding topic access skeleton.node..
N

Each topic access skeleton is represented as a linked
list structure 'isonérphic'.to the topic hierarchy, and
therefore need not be fully speclfled for topics under vhlch
prop051tlons have not been classified. Representing partial

rather than conplete topic access skeletons saves storage,

‘but still allows access to proposxtlons through the

appropriate sub toplcs. .When a prop051t10n 18 classified
under a topic for vhich a focus concept's access skeleton

does not have an entry, the oouplete branch of the

’skeleton s new topic will be lnstantlated. For exa-ple, if

all that is’ 'knoun'_about the concept 'Fred' 1s that it is
spotted, the topic access skeleton for 'Fred*' would be

something‘like figure 4.1.

‘ue that in figure 4.1, the prop051t10n about 'Fred'

being 'SPOTTED' has not been cla551f1ed under ‘the

correspondlng 'spotted' topic. category. In general, if a i)

topic predlcate has no sub-top1cs, it can be deleted fron
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-
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. texture pattern structure colour

(Fred SPOTTED] = o o

Figure 4.1 A partial topic access skeleton for 'Fred!

»

N

the tOplC access skeleton since it will have at nost one

entry.” It can still be accessed in the topic hxerarchy, and

only“need appear 1n the topic access skeleton if a sub~top1c

P

is added to 1t.. - . \
. { B

The fopic hierarchy can be made to accohmodate

'spec1a1' topxcs vhich will categor ze. other kinds of

J

‘knovledge about concepts. For example, as'prev;ously
nention%d, the CDEPLIST of c°ncept.p;o§erties could be made
'a special topic in qfder to ﬁake concept usage information -
generally accessiﬁle. A 'nlscellanequs' !opic for attachang
prop051tlons chh cannot be c1a551f1ed vonld replace the

function of the CPREDLIST on predlcate nodes, and the

NARGLIST on individual nodes. -
_ _ N . - | N
Topic access to S/S-CONCEPT infornation‘caﬁ be .
facilitated by adding 'sub-concept‘ and 'super—concept‘
toplcs to the topic structnre. A super»gq?cept (or~suh5

concept) predicate can: be defined .in teréé?of a semantic

-
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network, then can be used to trlgger the cla551f1cat10n of

\S/S CONCEPT assertlons. For example,‘lf the following

[s3
prop051t10n deflnesﬁa\bredlcate 'SUBCON' as

. ¥P¥Q[[ P SUBCON Q] <=> [(u¥x[(x P] => (x QJ]JJ.

R

then the propositisn

(DOG SUBCON MAMMAL ]

‘Hould be class1f1ed under the !sub- concept' ‘topic of

L

'HAHHAL' and ander the super-concept of 'DOG' . Note that
‘if necessary, the predica ">. CON' can be‘lnterpreted.

within the_logic of the semantix network since the

connective '<=>' could be c~fined as a combf&ation of

Y

implications.

BT

4.2.3" PDB Utilization

The two major functional components of the PDB are the
cla551f1cat10n system and the retrleval system. Slnce the
two are difficult to dlsengage, their functlons will be
dlscussed in terms of the utlllty sub- systems which they

~'.mploy. The. descrlptlon of these utgllty components wlll be

; somewhat styllzed sxnce the system does not always ea51ly

e — e

decompose 1nto separate unlts.h Identlfylng the separate

S

'L modules is more a matter of recognlzlng the current functlon

of the operat10na1 system rather than -solatlng dlStlnCt

P
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structural components. This is more a consequence of the
level of descrlptlon being dttempted rather tham of a non-- -

?modular approach to the programming of the PDB.

#.2.3.1 Encoding Propositions , ’ o

Prnpositions are entered in an ‘English-like' infix
form of predacate‘calculus uhlch is transformed 1nto the

,1nterna1 Semantlc network representatlon descrlbed in

\(‘
kY

.Chapter 2. g ‘ S

Y R

’L; 'Curredtly, when a prop051t10n 1s entered the concept

A Vnodes in the propos1tlon are created 1f they cannot be found

| '

@ yln the system's 1nter 11 dlctlona:y. An vnquantified

arqument - is assumed to be the name of an individual concept,

and .if it does not exlst 1t is created as specified. All
quantlfled arguments are entered as new varlahles of the

approprlate " 'pe (1.e. ex1stent1al or unlversal).'

r

Predlcates may be optlonally entered as recognlzed on’ 1nput
or predeflned by hand and verlfled upon 1nput. The 1nput N
syntax 1ncludes a functlonal notatlon which permits

reference to an 1nd1v1dual concept by its part1c1pation in .
T~

l;an atomlc network propositlon._ For instance, the functxonal T

b

= express1on S

'(FATHER-OE Fredj
is a.functional'reference to the FATHER-OF Pred, whoewer he

magﬂbe. The;system currently allows functlonal reference to

,_ 2
\?x
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eiisting nodes, but will not create new nodes which are
implicitly defined. 'In‘general, the decision ;o_create‘a
nevw node will require a more cautidus appréach{ since
indiscriminant cr. .uv.on oif nev nodes could quickiy léad_to

data base inconsistrs -~ y. Por example, if the prqusﬁggon

R

W

b ©

( sally SISTER-OF Fred] -

4

1
~ e T e
o

- . .
[ - «

has been asserted, the the functional references j &
(FATHER-OF Sally)
(FATHER-OF Fred) - ‘
| a W

L

o
-refer to the same father, but reasoning:is required to /.1
recognize this fact in ‘order to refrain from creating twvo

new NODE records.

Credibility distnibutions;#%e specified by including a
'T** within a proposition, following the specified

arquments, viz.

S '
) . .

( Pred CHASES Bruce T*].
- ’ . - O

The parser removes the 'T*! froﬁ the proposition, and

° * i

: _promptS‘the user /[for the appropriate values defining the

] v
\f\fzaﬁhia;§ée'c:ed%bilitydistribution-as»described in Chapter:

~

5.

‘2,'Section\§?ﬂmj¥

- j — _ ‘
The inpdt.éyntax permits.compounds of arbitrary number .
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of disjuncts or'conjuncts (¢e.g.. A & B & C 8..;), and any

proposition may appear as an arqument, for example

( Fred BELIEVES ( Bruce CAT]].

‘ v N N .
Propositions can be assigned external labels on input which
can be used to refer to that pr0p051t10n for the remalnder

 of the input session. PFor example, the proposltlon f

(Fred DOG =P1]

may be'subSequently referred to as ':P1', and used in ‘

further inputs, viz.

-
( Bruce KNOWS :P1].
. o o ' %
This syntax is merely for convenience, Since it avoids

reentering lengthy statements.

All predicﬁte calculhs statements appearing in the text
of this the51s are- examples of prop051t10ns which the PDB's

‘parser can transfora 1nto the semantlc network notatlon. A qg

complete descrlptlon -0of the syntax for constructlng

prop051t10nal forms is given 1n Appendix 2.

o

4
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4.2.3.2 The Classification and Retrieval Systems

After the PDB parser has correctly parsed‘an input,
either the cla551f1cat10n Or retrieval system takes control.
The PDB clas51f1cat10n and retrieval components can be :
thought of as goal- orlented control structures, differing

only in the actions they take upon achieving (as is

'pos51ble) their primary goals. From this viewpoint, the

TBARY g

prlmary goal of eachﬂsystem mlght be descrlbed as isolating
the locatlon of a prescrlbed prop051t10nal form in the PDB
semantic network Hav1ng accompllshed this,. the respectlve
system proceeds either to 1nsert new 1nformat10n in the
network, or to extract 0ld information 51tuated at the .
1solated locatlon. The ultimate recourse for the retrieyal,

System is fallure- after. all the inferring methods for

iinterpretlng the prescribed prop051t10nal form have been

unsuccessful in locatlng relevant 1nformat10n, the retrleval
system must re51gn. Alternatlvely, class1f1cat10n never

falls completely since prop051t10ns will alvays be made

ES /

accessrble through their constltuents or a 'mlscellaneous' o
topic even if they cannot be topically- class1f1ed

1Sy

-

Therg;are four more or less dlstlnct components which

'tme cla551ficat10n and retrleval control mechanlsms can

utlllze to. manlpulate a propos1t10nal form. These include

“C“

nthe focus finder, the proposition matcher, and the s/s-topic

~and S/S-CONCEPT maintenance routines; Since the decision to

PAY
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use any of these'utilities rests with the supervising
control structure, the relative 1evel‘of reasening
sophisticatien achieved is largely dependent on theercision
making machinery of the controlling sfstem. Within the
current version of the PDB, no attempt has been made to‘
build a more globally motlvated control structure uhlch

could oversee the de01510ns made by $he cla551f1cat10n and -

retrieval subsystems. K

The focus finder's purpose is to receive a preposition
and sonstruct an ordered list of its coneept‘foci. In doing
so, tne rocus finder maf call upon the services of’tne
prop051t10n matcher or the S/S-CONCEPT and S/S- TOPIC
routines. - The built- -in plan for finding foci beglns at the
atemisvproposition level,vﬁgere the quantification of o
arquments gives a first inﬁgéation'of vhether the
proposition hes generic or‘individual focus. Atdnic;
prop051tlons wlth 1nd1v1dual focus can 1nmed1ate1y be passed
'to‘the S/5-TOPIC malntenance routlnes to 1n1t1ate
class;flcatlon. Prop051t10ns with possible generic foci

-must be further processed,according to the rules given +in

Chapter 3, Section 3.3.3.1.

The basic function of the S/S-CONCEPT and'S/sfrbple
malntenance routines is to verlfy queries about the ex1st1ng
relatlonshlps between top1c or concept nodes, and to make
additions and de¢letions to each structure as approprlate.

. For example,vthe focus flnder might’ query the 5/S5- CONCEPT

structure to determine if 'BEAR' is a subconcept of



8.2.3.3 Utility Components - . 65

'HAHMAL'; or the retrieval system'could interrogate the.S/S-
TOPIC hierarchy for the super-topics of the *cdlour' ‘topic.
The’proposition‘matcher provides a basic¢ pattern-

' » .

matching utility to be used as required by the
classification and netrieval control'systems. ‘For
c;assification} the matcher is a convenient,(and necessary)

tool fo; comparing predicates du;ing classification; and for

confirming the eguivalence.of.propositions.' In retrieval,’
the matcher is used to'facilitate péttern-directed access of
vpropositions. Only syntactic matching is done,'but
»univensally and'existentially quantified variables can be

‘used to match sets_and 1ndlv1dual nodes respectlvely.

Compound prop051t10nal forms are matched by deconp051ng the
compound 1nto atomic components, then reconpos1ng each
.matched subprop051t10n until a mlsmatch is encountered or
the proposition has been fully reconstructed. The matcher
can be 1nstructed to retain the partlal results of such a
,reconstructlon match for p0551ble 1nterpretatlon by other
components of the system. This 1s po%entlally useful for
pattern dlrected back tracklng, an 1ssue not further pursuedp/

in the current systenm. o

4.2.3.4 Examples

The operation of the PDB classfication and retrieval

systems can be made clearer with a few examples. Consider

<

- —

the following dssertion:
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P2 ].

([Bruce CAT =PO ] & (Bruce rURRY =p1 |

The PDB parser constructs temporary parser tables
representing the three propositions PO, 'P1, P2 and each of

their predicates and arguments. The assert module begins by

\attemptihg to associate all the specified concepts with

existing concepts~in the senanric network. As mentioned
above, the Systenm creates’new nodes for arguments only if
they cannot be located in the internal dlctlonary. ane the
locations of all predicates and arguments have been founu

the pr09051t10ns are 1nser ed into the network beglnnlng

sw1th ‘the most deeply nested.‘ In this case the order of

1nsertion will be PO, P1, and P2. As a simple method of
1mprov1ng the eff1c1ency of search the syntactlc form of
each propos1t10n is used to derive an 1ndex to a propc ition
reference vector through vhich propos1t10ns can be retrleved

by their form. For example, the two forms

~

(0 18C 16 cvn ]
L1 01

wlll be stored in- different 1ndex 'buckets'. This indexing

scheme is a 51mple version of the co-ordlnate 1ndex1ng used

“in PLANNER (Hewitt 1971) and Qa4 (Rullfson et al. 1972).

Note that although the proposltlons have been 1nserted

into the PDB netvork they have not yet been asserted. At
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by sequentially scanningnthe proposition bucket indexed by

the form‘

(C 1&c 11

If compound constituents of propositions vhere asserted as,
they vere 1nserted logical contradlctlons could arise, as
would happen if both dlsjuncts in the propositon

({Fred DOG] OR [-v[l?red\DOG]]
o were asserted. In general proposltlons are t con51dered-
to be ‘asserted untll they have been c1a551f1ed by the topic
hlerarchy mechanlsm.. The cla551flcat10n procedure begins by
checklng to see 1f the prop051t10n can be split 1nto«
separately classifiable Sub-propositiOns. Thls is
determined on the basis of quantlfler scopes, and_the types
of loglcal operators and connectlves. In this caszfthe.
pProposition is made up of two distinct conjuncts, so thej
mayjbe classified separately.. The focus finder.indicates
lthat the concept focus of both prop051t10ns PO and P1 is
'Bruce', SO an attempt 1s made to cla551fy the two'
prop051tlons under the toplc access skeleton of thel'Bruce"
concept. 051ng the topic kierarchy for phy51ca1 objects . )
given 1n chapter 3, figure 3.2, PO cannot. be class1f1ed, but
‘P71 can be 1nserted under the 'dlsp051tlon - appearance _
texture - furry' branch of Bruce's toplc access skeleton,

The propos1tlon PO is a551gned to a 'mlscellaneous' topic /5
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{see figure 4,2).

disposition - niscellaneous
appearance .
texture

[ Bruce FURRY ] . { Bruce CAT]

Figure 4.2 A partial topic access skeleton for 'Bruce!

When the parser recognizes a query, thé retrieval
"system is givéq control immediatelj after the parser tables
have beeﬁ'édnstruéted and before any insertions are done;,
Three basic fypes'of‘query are recognized, the functional

query, the topiq_guery; and the propositional query..

A funct10na1 v"ery is 51mp1y passed to the function

>

evaluator to attenm, . evaluatlon. For example, to evaluate‘

the function .

(FATHER-OF #red)?

- . ’

the fundtion eﬁaldatpr attempts to match the proposition

i i ) .
B

/
J

# 9x[x PATHER-OF Fred] _ _

. ) . . . 3
- - -



) (. . ‘«/'»/ .

and if successful, retyurns the name of the concept node

bound to the variable concept 'x'.

A‘topicvquery is used to‘specifyAa Tetrieal of the
pPropositions cla551f1ed under a-particular toplc in a
concept's . toplc a§2ess skeleton. The syntax for initiating
a retrleval of all prop051t1uns about the 'colourf of

'Clyde' wvould be
Clyde; colour

The retrieval process is as £ ' ows: After t Pser

reco?hlzes the statement as a toplc query, a procedure'
travels downvthe'SUBTOPIC links from tﬁe 'colour' topic of
Clyde s toplc access skeleton addlng categorlzed

prop051tlons to a. llst of relevant prop051t10ns.

The last typeﬁof .query vhich'can initiate a retrieval
process is a more general form uhlch is spec1f1ed as an_
arbitrary prop051t10nal form with-an appended l?'; QThe‘
retrieval systen searches the PDB and attempts to find valld
blndlngs for any quantlfled varlables specified in the
query. . As an example, consider the process initiated by_the'
proposition | |

I¥ily TATIL ] § [y PART-OF Ffred]]?

Upon recogn121ng the proposition a4s a query, the parser

passes control to the query routlne. The focus finder is

¥
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used to‘detenmine that the foci of this proposition are‘the

individual concept 'Fred* the existentially quantified

variable fyf. Becausetthe statement is a query, the system

is looking for a valid binding‘for 'Y', and since 'Fred' is

the only other concept focus, the loglcal place to "search

'flrst 1s"Pred's toplc structure. Nelther sub compound

» contalns a topic paﬁ.}cate, so the’ 'mlscellaneous' topic

must be scanned for‘a proposition which matches ) Y.

-

3Y(y PART-OF Fred].
If a match is found, the 'y* i, bound, and the proposition

(¥ TATL] ' I
must be found before the query can be answered (in this

instance the bound value of the variable 'y! is used).

If thls process falls, the process is repeated for the
concepts 1n vhlch 'Fred' is a member.e These concepts are
found by scannlng the 'nlscellaneous' topic of 'Fred' for
unary predlcates 1nd1cat1ng that 'Fred' 1s a member of a:
partlcular class of concepts. If the proposxtlon can be
‘matched with any of the prop051t10ns attached to any of
these class concepts or thelr super concepts, the system can ’

deduce the proposition

Iv((y TAIL] é [yipanw-op Fred]].

P
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. 4.2.3.4 Examples » { A

.

If each super-concept has been unsuccessfully searched, the

query cannot be answered.



Chapter 5
CONCLUSIONS

«..the body fills us with loves and desires
and fears and all sorts of fancies and a great
deal of nonsense, with the result that we
literally never get an opportunlty to think at all
about anythlng (Plato) .t

. &
5.1 significance

N . . A'
- Topic hierarchies and credibility .distributions are the
" two most salient featnres‘of this research. It has been

shoun how a topic hlerarchy structure can. be imposed on a

data base of prop051t10ns in order [ prov1de access to

top1cally~relevant prop051tlons abont a partlcular concept.

E}

Conblned vlth a snb-concept super COncept strnctnre, the
J - .
topic hlerarchy prov1des a ser1a1 (as opposed to parallel)

wy

solutlon for the Synbol uapp1hg problel.

It was argyed that‘i&presentations5for?the vagueness of
concepts and uncertainty of proposrtlons must be 1ncluded 1n
a serlons knovledge representation, ‘and a dlstrlbutlon of

‘(;

1. in Tredennick, H. (trans.), The Lag_ 1§ of Socrates& -

Pe901n Books, Harlondsvorth, England page 111.A %%ﬁ

‘

. o .'72 ) - -
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o organlzatlonal structures can be superlmposgand_” ' ‘ ”, KR .
i

«_between predlcate calculus and semant- 1'networks. «It‘

5.1 Significance . . . ‘ 73

- truth values was prOPOSed to represent those notions. It
was 1nd1cated how a systenm could verballze its credlblllty

dlStrlbutlonS L0 express an approprlate degree of skept1c1sm

‘about what 1t'knows, and how credibility dlstrlbutlons could‘

N \"
be combined over loglcal compounds of 1ndependent

VL‘
propOSitions.t Credlblllty d1str1but10ns vere' comblned with
topic prodicates to form fuzzy topic predicates, vhich]

) . f . . . K “_' )
subsequently‘provided'a facility for the fuzzy

classification of propositions.

The PDB system damonstrates the 'near- 1somorph1sm'

prov1des a general fac1lihy for con: 1 g:a data base of

-

prop051tlons 1n semantic uetworkvform +on which varlous“

a

proposed was

i.“‘ ;

\demonstrated. Although the tOplC organlzat

-

defined as a dlstlnct structure superlmposed upon tﬁe PDB,"-
R A . "

O e
“flthln the semantlc network notatlon.,
« ‘;)\"‘A . i he -
ThlS vould allow EPe system to 1nterpret ltS ovn; -

organlzatlonal knowledge¢ and’ po&entlc ly lead to adaptive
,self modlflcatlon.‘ thp thls~1s done, the distinctibn

between organlzed and organlzlng knowledge can be made only

f__on the ba51s of hov each blt of knovledge 1s used. Unless

i

the system has use of 1ts organizing knovledge, that

fknoyledge cannot be(cons1deredv'meta-knowledge! from the
system's point of view. . \,' g
> . R . o — o

L
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" . o

5.2 Plans for future research ,
. /
Topic hierarchies were developed as a sblution to the

'Symbol-napp§ﬁg‘problem, but their use is not specifically

..restric¥ed to organizing factual knowledge ‘about physical

f
- W

fhrgeneral, they can be used to define any type of

'heuristéc‘knovledge classification and therefore could
provide organizations for‘knowledgewabo&t other kinds of

é&;§epts like events, actiogns, etc.. Experlments with other
. ., ‘

'types of knowledge taxonomles (e g Charnlak 1975a). vould

naturally/lead to 1nvest1gatf%ns of mnltl taxpnomlc

ot - I f i“ '3’4‘ vA : \< 5

orgﬁnlzatlons and of thé 1nterac§}on betweenucla551f1catlon

“ ) R
g 2‘07"

hlerarchles, slnce an 1nte111gent syst,MCULll need to IR

.onganlze more’ than just mhowledge about phys1cal ob]ects.

wr

For example, it vlll have to 'know aboutﬂ<aCt10ns, events,

and abstract objects {e g.,numbers), and“toplc h1erarc1es :

for organlzlng that knouléﬁ”% wlll be necessary.i~Thls:H

Y

declaratlve type knowiedg gs only one aspect, 51nce the
53 } . \' < , & P -d e
complementary procedural Kﬁouledge about hov to use phy51cal

; objects, perform actlons, devSlop and mSe plans, etc.,-vlll

also beneflt from a topic organlzatlon; The 1nteract10n and

- -

use of. the declaratlve and procedural toprg hlerarchles

~

*should prov1de~a frultfu avenue of: research. .

Investlgatnng the p0551b111ty of self-adaptlve

organlzatlons is another major area of research._ In

“*\“5‘1

-partlcular, a self—organlzlng strategy wuld attempt to'

_malntaln balanced toplc hlerarchles by sg .ttlngvover51zed

. categorles and comblnlng under51zed ones._ This would . ~
. g - . ,

., " oL - . . .
o . . . v
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/‘ "
o | | .
require. the development of an adaptive clustering algorithm
. ) [ " S

' R / X . ' .
of‘some‘type which would form topic clusters as a function

of some 1dent1f1able feature or set.of features 1n the input

a

stream (e. g. co-occourence of predicates). Research and

|
results from the 11nguistlc 1nfornat10n retrleval 11terature

(e.g. Sparck—Jones & Kay 1973) are relevant tﬁzthls pursu1t.
Resultlng topyp hlerarchles capable of adaptlng to a

! % , .
Aparticular envlronmentvwﬁuld.also reduce_the effort

4

necessary ﬁo deflne context dependent organlzatlons by hand

o
o s .

. _ t 4""‘(
The development‘h"%

U e® n.,
.

,.)
'ng systems ‘and control

vt

structures 1s another v1tal area of research.y Thel§emant1c

. 0

n@tvork representatmon presented has much more expressxve
. ’ l"'»«( Fl Y ~

'pdwer than the current PDB can 1ntqlllgently utlllze

&
(e.g credgblllty dlstrlbutlons) 51mply because its coﬁtrol

N ‘\5 ‘\l

¢

structgrecns mlnlmal. Steps touard developlng A more

©

powerful co%Frol system 1nclude the constructlon Ofuf
1.;,

general purpose fuzzy reason@ng system.,,Ideally the system'

& K -‘

; 1vated, context sensxtlve plannlng

.

, components, 1nc1ud1ng the nsage of the. topic hlerarchles.

A . ‘ : R X
. /

-

¥

il
e .

ld havega globally—no
cggéonent yhlch quld oversee the operatlon of subordlnate G:

»

o !

1
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' Bxanples of Conbined Credibllity Distributions

.

'Appendix 1

The folloving table summarices the combination of

credlblllty dlstrlbutlons for the glven dlstrlbutlons D1 and

D2. The rules in Chapter tvo, Sectuon 2. 2.1 5 were used to

derlve the conblned distrlbution values.
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Appendix 2
L]

v . | ~ PDB Input Grammar

The terminal STRING can be any alphanumeric string“hade
up of the characters A - z, a - z, -, 0 - 9. For example,
the following are legal STRINGs: o

©, STRING }
- SUPER-concept17
' Fred-the-dog-who-lives-on-my-desk.
PDB-CONCEPT-002758.
bruce '
statement := function’
o _ ’ prop
query .
definition » : ‘ Ty
topicquery ~
4 : ;
query := prop?. -
prop 1= quént-grp ( prop-body ] :
quant-grp [ logop prop mod-grp ]
quant-grp ( prop impl prop mod-grp ]
‘quant-grp { disjunct mod-grp j :
quant-grp [ conjunct mod-grp ]
. label-use - i
S ,
topicquerfy . 2= STRING; STRING
_ _definition := {'STRING deftype stringlist }
deftype ‘ ‘* := SUBTOP '
' : SUPTOP
strincjlist := STRING ,
: ‘ - stringlist STRING
cogjhnct : := prop and prop
. conjunct and prop.: .
disjunct ~ := prop or prop’
disjunct -r prop(
function :=_func£ion-body )
prop-body := predicate-grp mod-grp
function-body ?#”funcfion-grp : - o

90 - C



predicate~-grp

- function-grp

" predicat , :?
. e

function-node
" node

-

mod-grp

truth-dist

quant-grp

’quant

timg-spécifier
logop .

‘and’

or

impl

not

nec

- label-use

label-assignment

!

)

quant-grp quant

&

91

function+«grp ‘truth-dist

- node preaﬁcate
" node predicate pnode -

node predicate node node

function-node
function-node node
function-node node node

STRING = . | {
STRING time-specifier '

(uptedicafé<
STRING * =~ :
function’ N -
prop

o /* optional field */
truth-dist o ;
label-assignment oo
truth-dist label-assignment

T*

/* optional field */
A* STRING

E*x STRING

< node > . .
< node , node >

not

‘"nec -

S

"sSTRING -

=STRING



_Appendix 3
_ s ,
PDB Progfal Examples

A prototype PDB model has been programmed to .
demonstrate the 'progrannability' of the topic hierarchy
organizatiom., The System was programmed in the cr
programming language, and runs under the UNIX. operating
System on a PDB 11/45 with 64K bytes of mainstore. The input
parser‘waS\vritten.with the aid of the 'YACC® compiler-
compiler also available undeq the UNIX systea. o

- The PDB program can maintain aﬂ} nuaber of fixed-size
data bases, each consisting of a-semantic network of ,
propositions and an optional superinposgd topic hierarchy
Structure. BRach individual data base is kept off-line, and
Rust be restored when in actuval use. The input parser
accepts all inputs constructed according to the grammar
given in Appendix 2, ‘although no. further action is taken for
function specifications or general Propositional gqueries
since neither a function evaluaxer nOoTr a proposition matcher
has been programnmed. e N ‘ -

. Procedures for qefining»ahd.5uperilposing a topic
hierarchy organization on the PDB have been programmed, and
an example of their operation is given below. classification"
is done by a focus-finder routine, an augment-topic-access-
' skeleton‘routine,‘and an as§ertfptOPOSitionéin-category.~

routine. _ . : x : E

Cuhdlatiye ¢redibility distributions’may be attached to
propositions~and topic_definitions, but' as yet, the
distributions are not utilized by the systen.

The prototype model does little more than demonstrate
hov a topic hiera¥chy organization could operate.: .
‘Internally, topic structures are represented as ‘linked lists
of integer indices. In a large *production® system this type
of data structure would eventually become inefficient iw -
terms of both time and storage. The further development of’
efficient computational structures for_representing topic
hierarchies would greatly benefit fronm some type of content

addressable, or psuedo content addressable (i.e.. hashed) = /
softvare and Bardware data structures, o \M/’//¥/

Examples

all cases, therefore the system does not proapt the user for
that value. ., : : : , SRR



*enter pdb system. - L.

*pdb

empty.

* dinput
*enter input mode.

*input clear. ’
A*x((x DOG] => E*yE*t[(y CAT] 5 [x CHASES(t) Y]] >

*x7?

Enter values

prob
+ prob
~ prob
- prob
prob
prob
*PDB
*PDB
*PDB
*PDB
*PDB
*PDB

*PDB-

*PDB
*PDB
*PDB
*PDB
*PDB
*PDB
. *PDB

at 0.07?
at 0.1?
at 0.3?
at 0.5?
at 0.7
at 0.9?
insert
insert
insert
insert
insert
insert
insert
insert
insert
insert
insert
insert
insert
insert

5]

for truth distribution:
0 ! .
0 A‘ ' .
2 )

3‘

.5 ' <
«5 L : A

‘UNNODEG000

internal d1ct10nary WORDOO68->DOG.
CONCEPT0000~>DO0OG

EXNODEOOO1

internal dictionary WORDOOOS >C§T
CONCEPTO001->CAT -

EXNODEQQO2

internal dictionary WORD0035- >CHA%ES .

"CONCEPT0002- >CHASES , .
PROPOCCD : -

PROPOCO 1
PROP000?2 -
PROPO0OO3 T .
PROPO00Y | .

" *insert A*x([(x DOG] => ExyExt({y CAT] & (x CB&SES(t) y]]
*CONCEPT FOCI: DOG EXNODE(QOO1 EXNODEOOO2 CHASES

*assert A*x{{x DOG}

_*input clear.

*?

~ *PDB

*PpB

*PDB

*PDB
*PDB
*PDB
*PDB
*PDB

insert
insert
insert
insert
insert
ihsert
insert
insert

((Pred DOG) & ( Pred BBLIEVES -x]] - 6_ K

EXNODEOOO3
internal dlctlonary WORD0082 ~->Pred
internal dictionary WORDOO47- >BELIEVES
CONCEPTO0003- >BELIEVES

PROP00OOS = ™
PROPO0OS6

"PROPO0Q7

PROPO00S

*insert [(Pred DOG] & ( Pred BELIEVES 'x]]

- *CONCEPT POCI: Pred ‘ N
*assert ([ Pred DOG] & [ Pred BELIEVES 'X]]
*input clear.

x7? .

end

*exit input mode,
* list
PROPOO00O

ARG1
PRED

PROPO0O0 1

ARG1

EXNOD
CAT

OHNOD

TIMEARG1

PRED
ARG2

- CHASE
EXROD

TIME 1
E0001

TINE 1
E0000 .
~ EXNODE0002
S
E0001

93
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-X]

=> E*yE*t[[y CAT] & [x CHASES<t> Y11 -XJ
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PROP000O2 TIME 1
ARG1 UNNODEOOOO

PRED DOG -
PROP0006 - TIME 2 )
"ARG1" Pred

PRED DOG -
PROP0O007 TIME 2 :
ARG1 Pred 4

- PRED . BELIEVES
ARG2 PROP00OS

PROPOQOY TIME 1
CREDIBILITY 0.00 0.00 0 20 0. 30 0.50 0.50 1.00"
SCOPE EXNODEQOQO1 EXNODEOOOZ
ANTECEDENT ;
PROPO0Q2 °
CONSEQUENT -
PROP00O03
PROP000S TINE 2
" ANTECEDENT
L PROP0002
CONSEQUENT ST
PROP0003 , ;
PROP0003 TIME 1 . . , \
CONJUNCTS : . , - . -
PROPO0OO1 , "
~ =PROP000O - ”
PROP0008 TIME 2 D
~ CORJUNCTS .
PROP0006
PROP00O7 -
* list 4
PROPOOOUY TIME 1
CREDIBILITY 0.00 0.00 0.20.0.30 0.50 0.50 1. oo
' ° SCOPE EXNODE0OO1 = EXNODE0002 .
ANTECEDENT ‘
PROP0002 - TIME 1
ARG1 UNNODEO000O
PRED DOG’
CONSEQUENT o
T PROP0003 TIME 1
CONJUNCTS '
PROPO0O1 TIME 1
ARG1 UNNODEQOOO
TIMEARG1 EXNODEQ0O?2
PRED CHASES S
h ARG2 ~ EXNODEOOO1
PROP000O "~ TIME 1
ARG1 EXNODEO0O0O1
PRED -~ CAT.
* list 7 , :
PROPOOO7 ‘TINE 2

ARG1  Pred
PRED BELIEVES
ARG2  PROP000S
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* save fred
*pdb saved in flle->fred pdb

* empty
*pdb empty.
* input

*enter input mode.
*input clear. : ‘ -
%72 [appearance SUPTOP colour, texture, patternj -
*PDB insert’ TOPIC->appearance
*PDB ‘insert internal dictionary WORD0092- >appearance
*PDB insert internal dictionary WORDO091->APPEARANCE
*PDB insert CONCEPT0000~>APPEARANCE
*PDB insert TOPIC->colour
*PDB insert internal dictiomary WORDO0O0O&->colour
*PDB insert internal dictionary HORDOOO 7~ >COLOUR
*PDB insert CONCEPT0001->COLOUR .
- *PDB insert TOPIC->texture )
*PDB insert internal dictionary WOR00086->texture
*PDB insert ernal dictionary WORD0OB5- >TEXTURE
*PDB insert %Toooz ->TEXTURE
*PDB insert PIC- ttern '
*PDB insert 1nterﬂal dictionary WORDOO77 >pattern
*PDB insert inter’nal dictionary WORD0076~ ->PATTERN
- *PDB insert CONCEPT0003- ->PATTERN

appearance SUPER-TOPIC-OF colour
Enter values for truth distribution:. N
prob at 0.0?. ’
prob &t 0.1?
prob at 0,.3?
prob at 0.5?
prob at 0.72
prob at 0.9?
appearance SUPER-TOPIC-OF texture
Enter values for truth distrlbutlon- -
prob at 0.0?
. prob at 0.17?
" prob at 0.37?
peob at 0.5?
pfOb at 0.7?
prob at 0.97? .
appearjpnce SUPBR-TOPIC OF pattern ' S
Enter values for truth distribution:
prob at 0.0? '
prob at 0.1?2 0 A .
prob at 0.3? 0 C ' ,
prob at 0.5? 0 : ' : .
prob at 0.72 .2 - '
prob at 0.,9? ,2
*input clear.
*? ({colour SUPTOP grey, dark, shiny}
*PDB insert TOPIC->grey
*PDB insert internal dictionary WORDO059- ->grey
- *PDB insert internal dictionary WORDOOSB >GREY
*PDB insert CONCEPT0004->GREY
*PDB insert TOPIC->dark

COO0OO00OQ

cooooco



*PDB
*PDB
*PDB
*PDB

*PDB

*PDB
*PDB

Enter values for truth distﬂibution-,fQi

prob
prob
prob
prob
prob
prob

insert
insert
insert
insert
insert
insert
1nsert
colour SUPER-TOPIC-OF grey

at
at’
at
at
at
at

0.0?
0.12
0.32
0.5?
0.72
0.97

internal dictiomary
internal dictionary:
CONCEPT0005->DARK .
TOPIC->shiny
internal dictionary
internal dictionary
CONCEPTO0006->SHINY

[>ReoN-NoNeoNa)
v

colour SUPER-TOPIC-OF dark

Enter

prob
prob
wprob
prob
prob
‘prob

at
at

‘at
at

at
at

0.0?
0.12?
0.32
0.52

0.72

0.9?

0
0
0
-.2
.2
.3

colour SUPER-TOPIC-GF shlny
Enter values for truth dlstr1but10n--

prob
prob
prob
prob
prob
prob.

at
at
at
at
at
at

0.07?
0.1?
0.3?

0.5?

0.72
0.92

0

0 : A
02‘, -7
«3

o4

)

*input clear.

x?
*PDB
*PDB
. *PDB
*PDB
. *PDB
*PDB
*PDB
*PDB

insert

insert
‘insert

insert
insert
insert

insert

insert

TOPIC->rough

‘internal dictionary

internal dictionary
CONCEPT0007->ROUGH
TOPIC~->smooth

internal dictionary
internal dictionary
CONCEPT0008->SMOOTH

texture SUPER-TOPIC-OF rough

Enter values for truth distribution:

_ prob
prob
_ probd
prob
prob
" prob

at
at
at
at
at
at'

0.02 0
0.12, 0
0.32° 0
0.52 0 |
0.72 0 - -
0.9?2 0

texture SUPER-TOPIC-OF snooth

Enter values

prob
prob
prob
prob

at
at
at
at

0.0?
0.12

0.32

0.5?

R
N Y

w0R0007u >dark

'HORDOO073->DARK
\\
//

WORDOOS7 >s,iny

AN

o

.alues for truth dlstribution-

{texture SUPTOP rough, snooth,'shiny}

WORDOO10 >rough
WORDO009->ROUGH

HORD0019->SHMOOTH

P

for truth distribution:

)

O0OQQOo

WOR00620;>snooth,

96



prob at 0.72 o
prob at 0.97? .1 ,
texture SUPER-TOPIC-OF shiny

§

. Enter values for truth distribution:

{

T

prob at 0.0? 0 >
.prob at 0.1? o .
prob at 0,37 -1
prob at 0,57 .2
prob at 0.7? .3
prob at 0.9? .3
*input clear.

*? (pattern SUPTOP spotted, striped)’

*PDB insert TOPIC~>spotted

*PDB insert internal dictionary WORD0089-3spotted
*PDB :insert internal dictionary WORDOOS

*PDB_insert CQNCEPT0009~>SPOTTED
*PDB‘insert.TOPIc->striped

*PDB insert internal dictionary WORD0043->striped
*PDB insert internal dictionary WORD0OO42->STRIPED

*PDB insert CONCEPT0010->STRIPED
pattern SUPER-TOPIC-OF spotted
Enter values for truth distribution:
prob ‘at 0.07?
prob at 0,12
prob at 0.3?
prob at 0.5?
" prob at 0.72 _
prob at 0.9? .

pattern SUPER-TOPIC-OF striped -
Enter values for truth distribution:
prob at 0.0? :

prob at 0.1?>
prob at 0.3?
prob at 0.57?
prob at 0.72
prob at 0.97
*input clear.
*? A*X((x ELBF ANT => (x GREY ]}
*PDB insert UNKC R0QO00

Co0ooopo

4

©oOooooco

*PDB insert internil diqtionary,WORDOO90->ELEPHAHT

*PDB insert CONCEPT0011->ELEPHANT
*PDB insert PROP0O0OO . »

*PDB insert PROP0OO1

*PDB insert PROP0002 .
*insert A®x({(«x ELEPHANT ] => [x GREY]]
.*CONCEPT POCTI: ELEPHANT GRERY
*TRIGGER TOPICS: grey - R
*assert A*x((x ELEPHANT J => (x GREY]]
‘*input clear.. , -

*? .[Clyde SHINY]

*PDB insert EXNODE00O1

"*PDB insert internal dictionary WORD0OOS53->Clyde

*PDB insert PROP0003
*insert (clyde SHINY]
*CONCEPT POCI: ‘Clyde

Q

¢

8->SPOTTED



T

*TRIGGER TOPICS: shiny » ° : , ,Jﬁy
*assert (Clyde SHINY ] : . '

*input clear. " , . -

*? Clyde;colour ' . ST
¥TOPIC categories scanned: colour grey dark shiny
*relevant propositlons- PROPOOO3 oo :
*input clear. . . U .
*? Clyde; appearance~ ' o )
*TOPIC categories scanned: appearance - colour texture '

,\ \

- pattern grey dark shiny- ~rough smooth potteﬂ,
g striped : : p . . ’
*relevant proposxt10n5° PROP0O0O3

*input clear. ' : ' -2
*? ELEBPHANT; texture o S © .-

*TOPIC categories scanned:- texture rough smooth shiny
*no relevant propositionsv S .
*input clear. '

*? PFLEPHANT; appearance . ‘ .

- *TOPIC categories scanned: appearance colour texture ‘
“pattern: grey dark shiny rough smooth spotted

striped
*relevant prop051t10us' PROPOOOZ
*input clear. ?

*? A*x(((x TOE] & (x PART-OF Clyde]] => [x SHINY]]

*PDB"insért UNNODE00O2

~*PDB insert internal dictionary WORDOOGZ >TOE BN

*PDB insert CONCEPTO0012->TOE

*PDB insert internal dictionary WORDOO71 >PART OP

*PDB insert CONCBPT0013 >PART-OFP v .

*PDB insert PROP0004G - {

*PDB insert PROP0OODS ’ . '

R 3:31):] insert PROP0QO6 ’ :

*PDB insert PROP0007

*PDB insert PROP00OS o _

*insert A*x(((x TOE] & [x PART-OF Clyde]] => (x SHINY]]

*CONGEPT POCI: TOE Clyde ' PART-OP SHINY

*TRIGGER TOPICS: shiny : ' :

*assert A*x[((x TOE] ¢ [x PART—OF Clyde]] => (x SHINY]]

*input clear. , _ o : %

. *¥2 - Clyde; appearance -

*TOPIC categorles scanned: appearance colonr v texture
pattern grey dark shlny EOugh smodth spotted
striped ' N T

*relevant propositions: PROPOOO3 PROPO0OS8

- *input clear. - '

~

*? end - . o ~
*exit input mode. ' : '

*  list

PROPIOO0OO TIME 5

_ARG1 UNNODEOOOO |
PRED ELEPHANT
PROP0001 TIME S , :
ARG1 - UNNODE000O o N
.PRED,. GREY : .

PROP0003 . TIME 6 ‘ 2



" ARG1 Clyde
PRED  SHINY _

PROP0004" ﬁ'TIué‘11_’

ARG1 ONNODEQOO2 .
PRED TOR L
PROP0OOOS , TIME 11

ARG1 . UNNODE0002
PRED  PART-OF

© ARG2 Clyge »
- PROR0007 TINE 11
ARG1 " UNNODE0002
-PRED  SHINY .

" PROP0002 TINE S°
ANTECEDENT -
PROP0O0OO
CONSEQUBNT '

. PROPO0O1
PROP0006 TIME 11
CONJUNCTS ‘ .

\ PROPOOOS
PROPO00S °

PROP0008 °  TIME 11,

ANTECEDENT

- PROPO0OO6 v ..

CONSEQUBNT.
PROPOOOT7

‘*exi:gpdb systel.

(s“

99



