Y

‘National Library

Al

: *+ Bibliothéque nationale -
of Canada du Canada
C - Canadian Theses Service ~ Service des theses canadienne$
ot ~w'a, Canada / \

K1A ON4

N

‘A

~'NOTICE

The quality of this microform is heavily dependent upan the
quality of the original thesis submitted for microfilming.
Every effort has been made to ensure the highest quality of
‘reproduction possible. '

If pages are missing, contact the university which granted
the degree. : o
Some pages rdy have indistifct prfif especially if the
if the university sent.us an inferior photocopy.

_origirtal pages were typed with a.poor typewriter ribbonor - '

lished tests, etc.) are not filmed.

-R'eproduc'lion in full or in part of this microform is governed -

by the Canadian Copyright Act, R.S.C. 1970, ¢. C-30."

NL-339 (r. B&/04)

Préviously copyrighted materials (j’c'mr‘nal articles, pub-"~

AVIS .

La qualité de cette microforme dépend grandement de 1a. -
qualité de la these soumise au microfilmage."Nous avons
tout fait pour assurer une qualité supérieure de feproduc-
tion. - :

Sil manqué des. pages, veuillez communiquer avec
l'universite qui a conféré le grade.

La qué_lvité d'impression de certaines pages peut ldisser a
désirer, surtout si les pages originales ont été dactylogra-

- phiées a l'aide d'un-ruban usé ou si I'université nous a fait

parvenir une photocopie de qualité inférieure.

“Les ddcuments qui font déja l'objet. d'un droit d'auteur

(articles de revue, tests, publiés, .etc:) ne ‘$ont pas
microfiimés. Sl L -

La reproduction, méme partielle; de cette micrdforme est.
soumise a la Loi canadienne sur le droit' d'auteur, SRC

1

1970, ¢. C-30. .

e v ‘ . ’/‘I - ,“ !
‘ » The University of Alberta
] v ’ x
v . ..
p .
r A HYBRID STRUCTURE FOR THE REPRESENTATION
« & OF SPATIAL DATA
, \
. ‘ f'- . ’ ‘ :
-) . ? . . ! .
.] by o4
: , - , @ Zhou XiaoYou
A)
‘ h
A thesis
submxtted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree
of Master of Science
. , !
Department of Computing Science -
- ~
) - g
R : -
' Edmonton, Albenzi_ E
, - Fall, 1988 ‘
-« h { -

F

Permission has been granted
to the National Library of
.,Canada to microfilm this
thesis and to lerd or sell
copies of the £ilm.

The author (copyright owner)
has reserved other
publicatlon rights, and
neither the
extensive extracts from it

may be printed or otherwise'

reproduced without hig/her
written permission.

thesis' ndr’

ISBN .0—315~45636—1

. . i V-]

L' autorisation a été accordée

-3 la Bibliothéque nationale

du Canada de microfilmer
cette thése et de préter ou
de vendre des exemplaires du
film. ‘
’.‘

L‘auteur (titulaire .du droit
d'auteur) se, réserve les
autres droits de publication:

ni.. 1a thése ni de 1longs .
extrajits -de celle-ci ne -
' doivent @&tre ‘imprimés ou

autrement reproduits sans son
autorisation écrite.

.

N

» .) ’ ' . 1 b
') THE UNIVERSITY OF ALBERTA . -
1 R ~
RELEASE FORM 2\
/
- NAME OF AUTHOR: Zhou XiaoYou o |
. TITLE OF-THESIS} A Hybrid Structure for the Representation of Spatial Data PP ' ‘ PN
Lok [
DEGREE FOR WHICH THIS THESIS WAS PRESENTED: Master of Sciénce
YEAR THIS DEGREE GRANTED: 1988
; Permission is hereby granted to The University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific research pur-
poses only. ' v ' = »
‘ " The author reserves - other publication rights, ‘and neither the thesis nor extensive exfracts
from it may be printed or otherwise reproduced without the author’s written permission.
N\ . a0\ s voe o >
* (Slgncd) eees e Tedtsesnteetanttitteeiireentinuranenans
Permanent Address: : .
Harbin Shipbuilding Engineering Institute
Harbin, Heilong Jiang, China. -
Daied a7 Tt 45 |
o _a‘.‘i e /
S : ;-4
™
i i N #
X

v .r_ Q
, . THEUNIVERSITY-OF ALBERTA . - -~ . 7
. o FACULTY OF GRADUATE STUDIES AND RESEARCH' . , T

B hd . ¥ -
T * . N . R .
. - ~ I - > - : . .

L N . . o ! PR j
. , .) - - :
‘v C . '. : ¢ EN ~ u R

e

Tho undemgncd ccmfy that they have read and recbmmcnd to the Faculty of Graduate o
@ 4
'. tlldlCS and Resmmh for aeceplance a thesns enmled A Hybrid Structure for the Representat:on of

Spatml Data submmed by Zhou anoYou in pamal fulﬁllment of the requuemenls for the degree of Mas

‘ter of Scfence

. : , %

N 5 b
i
. i)
’
ke)
i
~ R
e - (7 {, [
............. U'(' .-/.....’CL\/.
- a -
o
.. Date Y 39
4
Fry i
k"4
"\\ s

~

bl

&

iv

Y

- ABSTRACT AL
'l‘lus Thesis mtroduces a hybnd structure, an R/Q tree, /far represenung reglons and presents algo-
mhms for mampulanon of data encoded by R/Q trees. The proposed structure aims at representmg reglons)

eﬂicxently in terms of computanonal comple:uty, memory réquuemems and extendxblllty The followmg '

results are presemed. The t case cost of construcung an R/Q tree is bounded by O.(N, +N 2/M). Where \

Ny isqthe nu ber of .meximal hnear quadtree blocks in the image, N is the number of the ObjeCtS in the

e

irnage, and M is - of entries per R-Tnee node The cost of tx‘anslanon and rotanon ofa negxon is 1

d.lSk access and T dlsk accesses respectwely, where T is the/ umber of nodes in the tree. In addmon the .
'cost of vanous region operauons such as union, mtersecuon and oLher geomemcal properues of the regions ‘»

is compaxable w1Lh that of linear quadtrees On the other hand Ll\le structure of RAQ trees make them excel-

lent devices for. object onented spaual seamh as well 'I'he storage utilization of an R/Q tree is 69% which is;' w

the same as for a B-tree Funhermore R/Q trees lend themselves 10 compact strucmres in terms of slorage'

requlremems Many prev1ous algonthms for ﬁndmg ﬁxed-radms near nexghbor and nearest nelghbor can be

‘extended with an R/Q tree to fnore general cases and 1mplemented eﬁimently The point in object query

AN

problem :an also be easxly solved usmg an R/Q tree.

e

- ” P - . a . v : AR

. : .7 Acknowledgements
. I.am indebted Fér advice and guidance to my supervisor Dr. Wayne A. Davis. His fl‘cnowledge and -

experience has guided me throughout thxs\ research, ' C

- I'would ike to thank the members pf my examining committee, Drs. S. Caba‘y, .B. Joe, and A. Peter-

y ‘ son, for their valuablc comments and su&ésu‘onsand for their time spent in reading this thesis. ¢
I would also like to express my appreciation to the Department of Computing Science for technical
* , . ‘ ¥
and financial support. o S
S ;) , ' . i .
yﬂ} Finally, I also would like to thank Duan Zhen Rong, my wife, who contributed in a great many ways,
and my parents who were encouraging and supportive at all times during this endeavorr :
i .
5
Y I 4 Y
‘ \
R ' !
Y ‘\".\‘f -] "
1 .
» 7
: E |
/—k‘i‘- I :r
® %

y
) " Table of Contents
. //‘
Chapter R - - | Page
Chapter 1: INTRODUCTION oo - 1
“Chapter 2: BACKGROUND ..o 5
. 2i Definitions and Notation N 5
2.2, Quadtrees: a Hicrﬁrchical Data Sﬁrgcture for Region Rcé;rescntation eieeeseneene10)
2.2.1. The Quadtfec Region Representation ' 10 -
2;2.2:\ Poi‘nterless"QEad‘trces et en s e s s et s ‘ 15
2.2.3. The Modified Liqcar Qpadtree-Approaéh — - 16 -
2.2.4. File Sc;hcrﬁes for Linear Quadtrees SRS 23
2.2.5. Conclusion and DiSCUSSIONS “......vroeceoecrvsce s S 28
o
2.3. R-trees: a D‘ynamic Irlxdex Structuré for Spatial Seazchingcoovoemereerreen 31
PSR U 3 (030 1o o 31
2.3;.2. R-tree Index Strucn;re ... 33
24 CONCIUSIONS e — N i 38

 Chapter 3: A HYBRID DATA STRUCTURE: £ N RIQTREE ... i 30

"3.1. Definitions and Conventions e snas e e eeenee e et S A 39

RN ’ v
Ny ~
B) ,
= . vii .

3.2. Construc’tin_g an R/Q tree ... ' : . A |
3.3. Al.gori’thms for Maintain‘z!xncc an RIQUTCE oo - 47
3.34. Algorithms for Maintaining of an R-tree ... oo 48
3.3.1.1. Insertion st ettt e et s e e 48
33.1.2. Delenon \ s e 50
3.3.2. Algorithms for Maintainjng AB Tee e S W 51
. _ »VQ ‘ b‘ | ») » o
3, 3 2.1, Inseruon SN NS riemeenestsenes et sseeseseanee] .. 52.
- 3.322. Dcleuon ... 53
3 4. The Cost of Constructmg'and Mamtammg anR/Q tree ..., Yorerlumeesessnenn, 54
34.1, The COSt of Constructmg an R/Qree v B i, 55.
i . ,) - S
| : 3:4.2. -Thc‘?Cos; of Mzijngaining an R/Q tree - I

. 3.5. Conclusion ..., ereeseemeseessomsess e

Chapter 4: ALGORITHMS FOR MANIPULATING AN R/Q TREE SR 64)

4.1. Algomhm for Region Search ‘ S 64

‘, "'.B | ‘ . L. . AI' .

4.1.1. Pom in Object Query e gaanseerese e e, e eneee e e 66
4.1.2. Fixed Radius ™~ "trNc'1ghbor F1r1d1ng .. Q7

4.1.3. Nearest Nelghbor Fmdmg oo, 70

C A',.s. ‘ 0. N
& [o "
) . .' I . . . E . ’\ .. o
¥] > . ' - : : . .
. , - N .t \‘\"..J [ad s .
~ . 4.2. Region Transformation — e 72
. 4.2.1. Region Translation ... e st 72
- . . “) ! '\ bl
4.2.2. REZION ROAON oo v ess s eeeeeeeie e, 73
'4.2.2.1. Rotation of an R-tree Node R AR e s et 75
4.2.2.2. Rotation of 4 QUadtree NOGEooocoreeooeeooooooooooo 16
, P >))
o 4.3.5Set-thco\ren'c OPETALONS ..ooveeeeeeeereie e eeeeseeee e seoeoeeeeees 77
. { | \
4.3.1. UNON OPETAUON ...cooeeeeeereeeessesmeseesnreesoesseressees st esooeesees oo : 78
4.3.2. Intersection Operationwn..... e e 79
o 44 CONCIISION oot eseree e e e 7%
Chapter 5: CONCLUSIONS ... OSSR 80
Bibliography et e e 84
Appendix A: The Storage Utilization of R-Trees ... VSO)
- Appendix B: Combarisons Between an R/Q tree a’nd a B/Q 0¢e v, 99
' . - . o

’ U "

,

- . '\
List of Figures :
o \

" Figure Page
2L ARCGION ot S .6
2.2 The Region'in Binary Array Represjentation k 7

' ' R S .
2.3 Regular Decomposition of the Region in Figure 2.1 oo 9

24 fThe Quadtree of the Region in Figure 2.1 e et sttt st ee e et oo 11
2.5 A Child-sibling Binary Tree of the Quadtreé in Figure 2.4 . et 14
2.6 MOTLON SEQUENCE. .ot oo 18
2T ADRATES oo e beeesleniionn, 34

. < B . w . J . ‘v) : B ,) . .
2.8 A Possible Spatial Relationship Among R-tree Nodes in Figure 2.7 35
3.1 AnR/Qtree of Figure 2.8. et s bt eee e e oo 40
t J ‘ “
) - ’
A
‘x' : ¢ .

=]

~/

: ”orgamzes the interior of a reglon by defining a region as a set of blocks of 1 by m rectan- '

W

Chapter 1- ’) > \

INTRODUCTION

L g - » '
This thesis is concerned with a data structure for representing regtons As regrons

are dlstrlbuted in 2 (or more) dimensions, spai. 1 data structures which aim at represent-’

3

7mg regtons effectively in terms. of computauonal complex1ty, memory space require-

vector, raster, and block.. A chain code representauon aJso known as the Freeman-' '

ments‘ and extensrbthty[41-43] are recetvmg mcreasm-g attention from researchers in

image processmg, pattem recogn1t10n cartography, computer graphrcs geographxc mfor-"‘

mation systems and robo*’ ~s[52].

.4l
!

’ ‘There are a numb‘er of methods for representing regions[14 52] among Which: are

Hoffman cod.e [42) specifies the poundary ofa regton relative to'a glven starting point; -

as a sequence of “unit vectors in 8 prmc1pal drrectmns This method i 1S very compact in
. /

'terms of storage requtrements and is also very eﬁic1ent in detectmg features of the boun-.

/

~ dafy, such as sharp. turns or éoncavmes However, a chain code representauon does not

facilitate the deterrmnatton of properues such as shape, and it is also difficult to perform

Tegion set operattons such : as union and mtersecuon A scan hne representatmn model_

gles. The prtmary drawbaé:‘li’hf this raster data structure is that it is a wasteful use of com-
v e

puter storage due to its /‘lé_ of storing redundant data. A block representation is a

ctass of data structures that treats reglons as a union of rectangular blocks that fnay over-

N
- lap. A data structure called _medral axis transformatiomMAT) or skeleton[39, 51]

¥

represents regrons as a umon of maxrmal square blocks by specifying ‘their centers and
radu Data structures such as binary trees [6,8] represent regrons as mafumal rectangies
RS & I

¥

A

P~

and of particular interest is the quadtree originated by Klinger[26,28].

A quadtree is a vanant on the maximal block representanon It requlres that blocks
be disjoint and have sides of lengths that are powers of two and at standard locauons An .
advantage of a quadtree is its hierarchical structure which lends itself to a compact
. reprcsentanon It is also qulte efficient for a number of tradmonal 1mage processing
operatlons 1nclud1ng finding centroxds labeling connected components, computmg per—
imeters and set properties[24,56]. Furthermore, it is a dynarmc structure in that it adapts
its shape gracefully in response to the external demé.nds such as insertion and deletion of
quadrants and can be easily converted into other representations such as chain codes, ras-

ters, binary arrays, and medial axis transforms [48-51].

~Early work on quadtrees represented the hierarchical relauons among quadrants and
subquadrants through the use of explicit pointers. rHowever, mn many real world applica-
tions, images may be so large that the space requirements of their quadtree representation
exceeds the andount of available memory. The result is that the image must be stored on
disk with poruons processed in main memory as needed There are two reasons why the
traditional pomter based quadtree structure is corsidered inappropriate for such apphca-
tions. First, a large portion of the pointer based quadtree storage space is taken up by
GRAY nodes and pomters Secondly, as pointer based quadtrees do not take memory
paging into account [23] the need of followmg a chain of pointers from the root to the
desired node may lead to a larger number of page accesses than are acceptable in an

interactive environment. . -

In an effort to overcome the problem and to further reduce the storage space, there

have been studies to represent a quadtree in a linear structure and use a B-tree file struc-

4

ture in orgamzmg the data [1,2 53] While a hybrid structure of a quadtree and a B- tree

3

for region representation is a significant improvement over.the original pointer Bascd
quadtrees, it does not conveniently support high' level object oriented searéh [23,47].
Howévcr, the problem of how to organize data in external memory so as to facilitate sub-
sequent retrieval, especially high level object oriented search, is crucial in most large

databases used in geographic information systen{s, computer aided design (CAD), ctc.

Efficient spatial search requires a more advanced indexing technique than a 'B-tree.
One file structure which is an excellent specd -up device for hxgh level object oriented
spatial search is an R-tree [23,47]. The distinct feature of an R—trec is that non-atomic
objects are treated as individual entities, upon which the index is constructed, thus being
convenient for hlgh level spatial search. In addition, R-trees are baswally a natural exten—‘
sion of B-trees [23, 47). The logarithmic height of thelr tree structure and their the .
- dynamic nature make them very attractive. The primary disadvantage of R-trees is that

they'do not address the issue of how to structure low level primitives.

From thi's perspective, this thesis develops a data structure with the fdilo\iring
features: (1) The data structure should consider both a high level organization and a low
level repreééntation, i.e., the structure. shouldizfacilitz;te subsequent oi)eradonv for both
high and low level spatial data. (2) It should be compact. (3) It should: be dynamic and

able to adapt its structure automatically in response to external demands such as insertion

and deletion.

- The thesis begins with an introduction to the ‘problem of the representation of
;egions and the recursive decomposition of images is bricﬂy revicwcd along with quad-
tree and I ¢z~ quadtree representauons A dynamic mdex structure for spanal searching,
an R-tree s also presented. In Chapter 3, a hybrid structure for region representation is

proposed and shown to be superior to a linear quadtrec structure with a “B-tree
&

_mcorporated Shapter 4 investigates operauons on images usmg the proposed structure.
A number of algonthms are presented in detail to effectively support these opcratlons.
The last chaptcr prcscnts the conclusions an}suggcstmns for further research.

- | =

Chapter 2
BACKGROUND

\

‘ ‘Thié‘,chaptcr covers two topics which are foundations of the rastof chis thesis. Sec- -
tion 2.2 contains some basxc dcﬁnmons and tcrmmology for rcglﬂn repn.sentatlons and

introduces quadtrees as a data structure for reglon rcprescntauon with empha515 on a

3‘

linear quadtree. The issues of spatial data searching and data structures: for _handlmg_{ .

niulti-dimensi‘onal data are discussed in Section 2.3. In particular, R-trees are described H

" in detail.

~ 2.1. Definitions and Notation B I ~

e

Deﬁniti{)n 2.1:' An image is a 2* by 2" array of unit square pixels each of which can

assume one of 2 values, where n is called the resolution parameter of the image.

Definition 2.2: An image is called a b'mary image when its pixels assurr-xe either 1 or O_“ :
values. A pixel'ts said to be BLACK if it has the value of 1, otherwise it is sa1d to be
"WFITE (
- ‘
Wlthout loss of generality, only binary images will be cons1dered in this thesis since

all the algonthms can be easily extended to nonbmary Images.,

Definition 2.3: Thc region of a bmary 1mage is composcd of all BLACK pixels, and the
" background of the region is composcd/of all WHITE pixels.

Example: The region shown in Figure 2.1 is represented by the 2° by 2° binary array in - |

-, et v l)
N - ’

Figure 2.2, where 1 and'0 ¢orrc§pc5nd :'to BLACK and WHITE pixels, respectively.

A
(; o \
$ \ .
',.f\ - ‘e \
L. ™ .
' s
» .
e e
e ‘r.‘
{ -
{ p

¥

S

Rt

Figure 2.2 The Region in Binary Arfay Representation
< <

,/.

Definition 2.4: Let (i,j) represent the locauon ofa plxel P ina glven image, where i and j
are the respecuve column and row positions of p. P has four horizontal and vemcal

neighbors located at: (1 L), (,5-1), (1,J+1) and (i+1,j). 'I'hese pixels are called the 4-

nelghbors of p, and are sald to be 4- adJacent to p..

Definition 2.5: A path from pixel p to pixel q is a sequence of dlstmct plXClS

CP=popl1 ..., Pr=q, such that p,, is 4-ad3acent to Pty where 1<m<n.
\ : f

Definit'on 2.6: If,“p and qé:;re 'two BLACK pixels of a region, then p is said to be con-

d '.',ﬂ ‘r’j ‘

.

~

4 e

Yy

nected to q if there is a path from p to q consisting entirely of pixels of the region. *
. . ‘ . o
Definition 2.7: For any BLACK p1xe1 p, thc set of pixels connected to p is called a con-
nected cdmponent of the rcglon If a rcglon has only one component, thcn it is called

"connected". ' A B

[P

;

Clearly, a naive v;*oy for rcprcsentmg an image is to use an array of pixels. ThlS.
method is meﬁiment both in terms of space and time complexmes Smce most 1magcs'are
composed of a collccuon of rcglons it is more efficient to represent an image by specify-
ing its rcg1ons. The most studied approach to region representation is based on the suc-
cessive subdivision of the image array into four equal sized quadrants Wthh is similar to
the d1v1de and conquer method [3]. If the array does not consist entirely of 1’s or entirely
of 0’s, it is tttlen subdivided into quadrants subquadrants etc., until blocks are obtained
that con51sﬁt entirely of 1 s or entirely of 0’s, i.e., each block is exthcr contamcd entirely in
Lhe. region or is disjoint from it. For cxample Flgurc 23 1is the decomposmon of the
regmn shown in Figure 2.1. In this case the i image is decomposed i into 13 blocks and the
maximal blocks A, B, C, D, E and F are totally contained in the region whereas the

remaining blocks are d1$Jomt from it.

A

9
' -
C (
s
D S
A B -
\ .
F
N ~ B e
E
d 7/
‘ G '
v b
" S {,leigure-z.‘?g_ Regular Decompositio'ralyof the Region in Figure 2.1
The recursivé decompbsition of ’an image produces: blocks.' that must have standard
sizes (power of 2) and posmons tis clear that representing a region in terms of blocks i is .,
much more cornpact Lhan bx md1v1dual plxels To do so, the followmg deﬁnmor;E\@:e
necessary:
N\ ,'_7/

1

Definition 2.8: A block is said to be; BLAGK'if it contains only BLACK pixels, WHITE
if it contains only WHITE pixels, and/GREYlf it contains both BLACK and WHITE

pixels.

10

The four sides of a block are referred as to its North, Eﬁst South and West s1dcs or N, E,

S and W for shorL And let OPSIDE(T) be the side opposite to T, e. g., OPSIDE(E)=W.
¥

- Definition 2.9: Two blocks P and Q are said to be 4-adjacent along the 51de T of P if side
T of P touches the OPSIDE(T) of Q.

3

Definition 2.10 BLACK blocks P and Q are said to be connected if there exists a path

- consisting entirely of BLACK pixels from™a pixel of P to a pﬁcl of Q.
, : =

\ \
~2.2. Quadtrees: a Hieg‘archical Data Structure for Region Representation

)

~ This iecu'on }acals with the terminology, deﬁnitions and an overview of quadtree

data st;ucturEs_[12].

2.2.1. The Quadtree Region Representation S
The‘r\ecursive nature of the previous decomposition process facilitates a hierarchical
type of data structurc for its representation. One such data structure called a quadtree

/

was proposed ongmally by Klinger [26, 28]
Definition 2.11: A quadtree isa directed edge and node labeled tree in which

-

(1) Leaves are labeled from the set (WHITEBLACK}. . \) .

(2) Nonleaves are labeled GREY:

v

(3) Edges are labeled from the set {NW, NE, SE, SW.

(4) Each node is either a leaf or has four childten, with the four out-going edges labeled
differently. N

(5) Atleast two leaves of the same parent must be assigned different labelings.

J

As an ex‘ample,‘Fiogure 2.4 demonstrates the quadtree for the reg'on in Figure 2.1,

. q —)
where the symbols O,], and i represent GREY1 WHITE and BLA ZK nodes, respec-
tively. Note that the terms blzék and node will be used interchangeably throughout.

g '.Figurc 2.4 The Quadtree of the R. ~1on in Figure 2.1

Quadtrees structured with explicit pointers are called pointer based quadtrees. A
poiﬁter based quadu'ce. stores each node as a record containing six fields. Thé first five

fields contain pointers to the nodes FATHER and four SONs each of which corrésponds '

e

12

‘to the four quadrants The sixth field descnbes the contents of the block of the image

whxch the node represents.

Let N be the total number of nodes in a quadtree. B the number of BLACK nodes,
w the number of WHITE nodes, and G the number of GREY nodes. Then N=B+W+G.
Knuth [30] has shown that the following relations are true for quadtrees:
J - N=4G+1=(4(B+W)-1)/3,
B=3G-W+1,. _
W=3G-B+1, " b
G:(B+W->1)/3.}
In other words, there are nearly one third as many GREY nodes as there are BLACK and
WHITE nodes together. o

- AN ‘
There are two reasons that a pointer-based quadtree structure is considered inap-
propriate for many applications, especially large images. First, a considerable amount of
' ' VN
. Vg s
overhead is associated with it since a large po'r'aon of the pointer-based quadtree’s

storage space is taken up by GREY nodes and pointers. Furthermore, only GREY nodes

eifecuvely use their four pointers to thelr four sons, whlle BLACK and WHITE nodes

have pomters to empty records Second individual leaf nodes within a pointer-based
quadtree are located by following a chain of pointers from the root to the desired node,
which can require many pointer references for large i images. As there may be little rela-
tiénship between the ordering of nodes in the tree and their ordering on the disk, this can

lead to an intolerable number of disk accesses when searchmg and updating t* » tree.

Two simplé modifications can be made to the traditional pointer-based quadtree
structure to alleviate the above problem. Either introduce two different kinds of records -

for terminal nodes and nonterminal nodes -or implement a quadtree as a child-sibh'ng

€

13

binary tree. As an example of the later case the tluéqgrec in Figure 2.4 is represented as a
ciiild-siblirig binary tree in Figure 2.5. Both methods will greatly reduce the number of
pointers per node from five to two on the average{12]. ﬁow,;:vc;r, the first ,apprc;ach results
in a quadtree that is no longer composbd of the same record types and therefore opc;ﬁ—'
tions must be performed differently wﬁcn nodes differ and the second approach mquires

two steps of references on average in reaching a father or child node, thus worsening the

second previously mentioned difficulty.

Totally eliminating quadtree pointers together with removing all GREY and

WHITE nodes is a better solution. It will also lead to a smaller number of nodes relative
2)

to the total number of nodes in the quadtree. The resulting data structure is called a linear

quadtree which is reviewed in next section[19]. o vl

/

»
CF

14

N
o

Ca data structure was propOsed [19] called a hnear quadtree which i is pointerless and stores

A s
\

AN

2.2.2. Pointerless Quadtrees
- \ .'

As is discussed in the last section, the problern W1th a pomter—based quadtree is that -

it has a con51derab1e amount of overheadassomated wrth it. To overcome this drawback

only BLACK nodes. (» . o

A Lmear quadtree encodes its BLACK nodes by a base 4 number, called a location

code or key, that corresponds to a sequence of directional codes that locates the leaf

along a path from the root of the quadtree. In addmon the length of the directional codes

spectﬁes the level of the decomposmon process.
Suppose the d1recnon codes for SW NW SE, and NE are, O 1, 2 and 3, respec-
tively. '

)
~

As an example, the linear quadnee representanon for the region in Fxgure 2 1 is the

followmgsequence

,

120, 122, 31X, 30X, oxx 21x 20x!

Wthh correspond te the BLACK nodes A, B, C D, E, F, and G, respecnvely, of Fignre
2.3. o ST

“Another effort for a pointerless quadtree is ret/erred to as'a DF- expres&on by intro-

‘ducing the BNF notation into the quadtree structure [52]. Thus, an mternal node in a

- quadtree corresponds to an operator m a DF- expressxon and the Wwhole quadtree 1s-;

represented in the form of a traversal of the nodes of the quadtree

! Where X represents a don’t care.

16

For example using a DF-expression, the quadtree in Figure 2.4 is encoded as follow
(WWW(W - = B(CWDWEFWGW.

- where ’(’ represents an internal node

2.2.3. The Modified Linear Quadtree Approach

Although the linear quadtree as origi-nal_ly proposed has many advantages over a
pointer-based quadtree, it suffers from the quatermnary encoding of its nodes and is less

efficient in supporting many algon'thmé for the manipulation of regions-, see [12,19,52].

On the other hand, a DF—express1on although more efficient spacew1$e than a hnear

quadtree, suffers from i 1ts nonlinearity and is less efficient in terms of _computational com-

plexity.

Mathematically, a block can be umquely represented as a 3-tuple </ ,12,s> where I
the position of the block along the X-axis ; I, is the posmon of the block along the Y-
axis, and s is the parameter for specifying the size of the block. Obwously, to encode the -
blocks of a quadtree by a set of 3- -tuples is awkward since to retrieve a data item, a search
must be performed in a multi-dimensiona}l parairhériﬁc space.

The central idea of a' linear quadtree is to represent a region as a collection of
BLACK nodes each of which corresponds to a quaternary code key. Thus, the original
three dmenswnal parametric space is transformed mto a one dimensional key dgace.
Such a transformation is made possible since blocks, Wthh are resultants of the regular
subd1v151on pOssess many qualmes such as: standard sizes and positions, d15101nt etc. A

general technique to transform a pomt in a multl dimensional space into a one dimen-

sional key'space is called Morton_ _Sequencmg {371.

v ’—&'\\

17

In order to introduce Morton Sequencing, the following conventions, which will be

adopted throughout this thesis, are necessary:

Definition 2.12: For tWo integers I and J given by

a1 n-1 :
I1=Y (1;*2", and J=3 (:32), where I, Jie (0,1},
i=0 i=0]

a=-1 -
SHUFFLE({ J)=3 (I, * 2+J;)* 4 .
. i=0
Deﬁnitioh 2.13: For an integer S=s5,,; - - - 5o, Where 5,¢{0,1),
/ - \\
Ve

r n-1 - n-1 .
EVEN(S)=3 52*2' and ODD(S)=3 sz * 2. \
i)) i) N \
. \ . . .
~ The above three functions are used frequently, therefore SH, EV, OD will be used
as abbreviated versions of SHUFFLE, EVEN and ODD, respectively.

Given a 2" by 2" image, there are a numiber of ways to assign consecutive integers to
the pixels. Morton Sequencing[37], however, is the best means of capturing the nature of

the recursive decomposition described in the previous chapter.

Definition 2.14: Morton sequéhcing is the assignment of integers to an array of 2* by 2»
pixels, such that the integer assigned to a pixel p with coordinates (I,J), where I and T are

the column and‘row position respectively, is SH(,J).

Exomple: Figure 2.6 shows a 23 by 2* Morton sequence.

26

@
9
(2

\

\

-~
-~
-~
-
-~

1

3

&> (®
TORONOE ORGS0

{3

~ -

18

Figure 2.6 Morton Sequence. '

*

Using a Morton sequcnce there are a number of ways to represent a block obtained

by the recursive decomposition method. For' example, the followmg method can be

i

~

14

I

19

chosen:

Definition 2.15: The key of a block or node with 2* by 2* pixels is the key of its left bot-
tom pixel, where dis called the resolution parameter of the block. y
It is now easy to show that the two-tuple <K s> un_iqucly represents a block, where

K and s are the key and resolution parameter of the block, respcctively. 5

Deﬁmtlon 2.16: vaen a block Q, its subleck with label i is called the ith subblock of Q
and denoted by Q; if Q; is obtained by one subdivision of Q, where ik {0,1,2,3)}.

The quadrant labeling shown below will be assumed.

V'

113
012

<

Example : For the image in Figure 2.2, the entire block £ is represented as <O 2>, and G

by <32,1>.

The following lemmas[12] grasp the essence of Morton sequencing:

Lemma 2.1; For any two nodes <X ,5,> and <K,,5,> where <K1,51>eQ; and <K ,,s,>€Q; for -

some node Q, if i<j then K <K

Proof: See [12]. -

Lemiaa 2.2: For any two nodes <Ks;> and <K,s,> where s1>s4, then either <K|s5y>

20

.

contains <K,,s,>, or the intersection of <Ky,5,> and <K ,.5,> is eqmpty. ' & '

Proof: See [12]. | '

N\

t :
Lemma 2.3: For any two nodes <X ,s> and <k ',s'> such that K#K', <K's'> is contained in

<K 5> iff K <K' <K+4‘ -

- Proof: Let the cootdinate of the SW corner of block <K s> be <X,yY> and the coordinate

of the SW corner of block <X's'>be <X'Y'>.

=> §ince K <K'<K+4*, the SW cormer of block <K's'> is contained in block <K s>, by
the definition of Morton sequence. Again, since K <X, <K ,s> cannot be contained in

<K's'>. Therefore, <K's'> is contained in <k S >, according to Lemma 2.2.

<= if <K's'> is contained in <k s>, theh the coordinate of the SW corner of the block
<K'.s'> is contained in <K s>. Thus K=SH(X ¥)<K'<K +4* is true.

QE.D.

-Lemma 2.4: Let B,,...B, where B;=<K;s;> be a sequence of bloeks ordered in ascénding

key order which represents a region, and let <K ,s> be a search area in block form If the
intersection of <K s> and the region By,... B, is nonempty then there exists a sequence _

of consecuuve blocks B,, By where 1sa<b<n, which mtersect <K 5>, Furthermore for
4

any block <k <K; s5;>, where j<a or j>b, the intersection of <k s> and <K;,s;> is empty.

<.

Proof: First, Let 'K¢K~ for i=1,....n. If the intersection of <K.,> and B,,...,B, is

nonempty, thcn there ‘exists one block B; such that the mtersecnon of <K s> and B; is

noncmpty By Lemma 2.2, elther <K.s5> contains B; or vice versa.

+

Suppose e is the intégcr which satisfies: -

K<Ken ife=0
K<K <K,, ifO<e<n
K, <K if e=n.

Case 1: k, <K <K,+4* and e>0.
\ Block <K.s> is coptained in block 5,,by Lemma 2.3. Again, for any block
\B§J #¢, the intersection of 8; and <K s> is cmp“t;j (if B; intersécts <K s> then /
B; also intersects B, which is impossible since blocks obtained by recursive {
subdivision are basically disjoint from one anomer_).“Thuﬁ‘z' a=b=e.
Case 2: K <K<K +4* and e<n.
| Block B,.; is contained in block <K ,s>. Let h be the largest integer which

satisfies K,y <K+4', then block B,....B, are all contained in <K s>, by

Lemma 2.3.
:¢ I

If there is a block B; which overlaps <K.s> and i<e then <K.s> is

,\totally contained in B; by Lemma 2.2, using the fact that K, <K .
However, this implies that B; contains B,,, which is impossible.

On the other hand, for any block B;,. where i>e+h, the intersection of B,

‘afjd <K s> is empty since K;2K +4°
Therefore, a=e+1 and b=e+h.

Alternatively, if there exist a intefer j, 1<j<n, such that K=K is’

satisfied, i.e., block B ; intersects <X 8>

-Suppose block <k s> is contained in block B/, then similar analysis of

the case 1 yields, a=b=j.

22
- , - i
\ (L : Otherwise, suppose h is the largest integer which satisfies
- . - L
\ ’ . K <Kj,<K+4', then a=j and b= j+h, according to the analysis of the case 2.
Q.E.D,

Suppose q#qo. -+ +1qn-1 15 the linear quaternary code of a block, then the correspond-

ing Morton code <K",\s> can be calculated as follows:

{.. -

0 if ¢ does not contain the don't care sign X
= n—m+1 if the first don’t care is ar mth position

. m-1
K Zq *4—l+n—-m+l - /
i=0 . -

For instance, the linear quaternary code ©of block D in Figure 2.3. is 30X, while its Mor-”

tonxode is <3* 42+0* 4,3-3+1> which is equal to <48,1>.

- On the other hand, given a Morton code, U(orresponding linear quaternary code

can also be easily calculated.

It is not all that surprising, that there are variations of linear quadtrees [12, 19]. For

instance, if the- blocks in a region are encoded as Jinear quaternary codes and are sorted in

‘ascending key order, then a set of lemmas which parallels Lemma 2.1-2.4 is also deriv-

- able from the linear quadtfec; both representations POsses some properties such as being

easy to change in resolution in their representation (or to.scale a block by a power of 2),

being able to convert eﬁicie’hﬂy to and from quadtree representation, etc.

AN

. Although, there are similarities between the two reépresentations; the linear quadtree

as specified in [12] has two advantages over its counterpart[19]: space efficiency and

1mproved execution umc To see the first advantage necessitates a comparison between

thc storage requirements- of the two encoding methods. As reported in [19], each

pu——

S

o - . » 23

-

- BLACK node needs 3n bits. By contrast, the proposed encoding scheme 'requires
(2n+logn) b1ts for each BLACK node, where 2n /-ﬁnts are used for stormg the key and
(logn) ‘bits for the resolutlon‘parameter of the node. The second advantage is achleved by .
using the explicit key and resoluuon parameters in developlng an cfﬁc1ent algorithm as
shown in [12]. In fact, many algorithms reported in [12] are shown to be supenor to their °

~counterpans where the region is represented as a traditional pointer-based quadtree and
as the linear quadtree originally proposed On the other hand, the linear quaternary
encoding scheme is invaniant with the coordinate system while the othcr encoding
scheme is dependent on the coordinate system since the Morton sequencmg will be
changed if the coordinate system is different. This implies that the transfermation
between two different coordinz‘tte systems requires that the whole item be changed if the

alternative format is used. However, a linear time algorithm can be used, to perform the
. . ™~

translation [12]. ' !

2.2.4. File Schemes for Linear Quadtrees ‘

An important fact of linear quadtrees is that although they are very efficient in terms
of space complexity, more often than not they are too big G be‘kept in main memory
(1,13,53], and most algorithms for mampulanng a linear quadtree r12 20,64,53] require

both sequential and random retrieval from the linear quadtree file.

Thus, given a sefuence of sorted blocks, some means must be found to organize it

so that insertions, deletions, and information retrieval may be performed eﬁiciently.

To be effective, a file organization scheme should allow both random and sequentiai

access to records in the file and be able to support dynamic file maintenance. With the

24

\

advent of direct access storage devices, several efficient file. organization schemes have
"€ |
emerged (a survey of the basics is contained in [52]). Among them, balanced tree organi-
e

zation and hashing schemes have been the most successful.

ThvreA have been studies to represent a quadtree as a linear quadtree and usla a B*-
" tree file structure in organizing the data [1,2,53]. An important feature of B-trees is thét
they gracefully adapt tﬁeir shapes in response t'c; insertion and deletion of records and
suppjrt retrieval of a record with O (logn) disk accesses, where n is the number of records
in the file. The pnmary dlsadvantagc of B-trees 1s that-there is no 1mpl1ed connection
between data buckets in physical storage and regions in the search space and arecord in a
B-treke is located by following a chain of pomtcrs from the root to the desired node. Thus,
although the logarithmic cost of a B-tree is attractive compared with the 0 (n) of sequen-

tial files, it is still far greater than the 0 (i) of direct access mcthods.

Hashing mcthods[13] on the other hand, orgamzc data by exploring relationships
/éetwccn data buckets in physical storage and data in the search space. If a ﬁle is static,
‘hashing allows a record to be remeved with one disk access, in general. Tradmonal hash-

. Ing methods, however, are not useful for two reasons:

(1) The storage allocation for-the hash table 1s static. That is the size of a file n‘mst be
' esumated In advance and the storage space must be allocated_for the whole file at
once. Th:IS a high estimate of the data volume results in w;stc space Whll(; a low
estimate of the data volume results in either a costly reorganization of the whole file

through rehashing or the attachment of overflow buckets, which slowly degrades the

0 (1) access time characteristic of hashing toward O (») in the worst case.

(2) The sequential retrieval of data in key order is rather difficult with ﬁ'aditional hasﬂ-

]

i o . | .\

. 25

ixig methods since little kx‘lowledge is known as to where the next key is. Given a
sequence of spatial data encoded as a linear quadtree, the result of Lemma 2.4
implies that range search cannot be performed efficiently unless the retneval of data
in ascendmg key order can be performed eﬁﬁcxently In other words, traditional
hashing methods do not conveniently lend then{elves to ramrge search.

Recently, however, several dynamic hashing approaches have been developed.

s,

Dynarmc hashing schemes can be categorized into two classes. The first class o\i\/

dynamic hashing has a file space expansxon operation when an overﬂow occurs. This
class inciudes virtual hashing by Litwin [33] dynaxmc hashmg by Larson [31] and exten-
dible hashmg by Fagin et al. [16]. To maintain the relationship between split buckets and

the remalmng buckets, indexes are usually used.

~

The second class of dynamic hashing avoids splitting until the global storage utili-

zation factor exceeds a predefined upper threshold. Therefore, records that overflow are

chained in a set of overflow buckets. Then, in case the global storage utilization factor

1

. exceeds the threshold, some buckets are split into a large address space No index is -

necessary for this class of dynamic hashing. This class mcludes linear hashing by Litwin

[34] and mterpolatlor based index mamtenance by Burkhard [9]
Y

-

Among various approaches of particular interest, extendible hashm"g'o)r 1ts£)vanat10ns
is chosen as the main implementation paradlgm because it is neat, easily parametnzable
and completely determmed by one hash’ funeudn Wthh may or may not be order preserv-
‘mg [58]. For example, an extendlble hashing with a buddy system partition strategy

incorporated can be described as follows

4

ey

26

~ Suppose a hash funcuon h maps the key space K onto an address space A The dis-

, tmct feature of the scheme 1s that 4 is an order preserving function. That is sphts A
into m blocks defined by m+1 boundanes ao O by constmctmg a hash table of size

m to estabhsh the correspondence bctween data bucketS\and blocks To make the hash

function dynamrc the hash table must be extendible to have a vanable number of vari- -

able sized blocks. Thus, if a data bucket overflows due to the amval of new data the
'buddy system is invoked and the agddress space is halved. As the result the key space is
divided into a regular grid of intervals corresponding to storage areas called buckets The
multrdunensmnal version of this idea is called the cell method [7,8,13]. Smce this
scheme can orgamze the data buckets in key order and the partition of search space into
cells is always ‘at the midpoint of an interval and alternately perpendicular to the X and Y

| axes, the shape of cells is compatible with that of quadtree blocks.

~ The extendible hashing method was inteuded to retrieve’data associated with a

i

given key with two disk accesses: one access to retrieve the desired part of the d1rectory)

_and another to retrieve the data bucket that contains the given key..

If data is distributed uniformly over the study area, the above scheme requires two
disk access to locate a record. In the worst case. when data is distributed unevenly over
the study area, with the above approach, the hash table will become large and unwieldy.
In fact, in the WOTSst case, the size of the dlrectorycmay reach to O(n), where n is the

number of records in the file.

Linear hashing methods on the other hand, do not use an explicit d1rectory Instead
of resolving collisions by splittipg ;the overﬁow address they resolve the overflow condi-
trons by chammg the overflow address. Bucket splitting is performed in a system?fﬂc

t

way, when the global storage utilization factor exceeds a predefined upper threshold[34]

27

The advantages of a linear hashing scheme afc offset by two major disadvantages:
unbalanced data bucket occupancy and a possible léng chain of overflow bucketsy Non-
umform dlstnbuuon of data may force it to keep many overflow buckets as well as many
underﬁlled pnmary buckets at the same time. In addmon the overflow chain may
degradc the time bound for retrieving data associated with a given key from 0 (1) towards
O (n) in the worst case, where » is the number of records in the file. In addmon a linear

hashing scheme does not support order prcservmg address transformations eﬂicmntly

[34,58].

" A better hashing scheme called the adaptive cell rr;ethod [13] provides a comprom-
ise in the tradeoff between éxtendible ‘hashing methods‘and linear has‘hingvbased'
niethods, namely, the tradeoff between the overhead of maintaining a large directory and
the advantage of balancing bucket _cSccupancy. This‘mcthod,v although it alleviates ﬂ:}e~
problems in ‘both extendible hashing methods and linear hashing methods, doés not

-improve thatime bound for retrieving data associated with a given key in the worst case.

In conclusion, the selection of a ﬁle scheme is domain dependent. If the distribution
of data is nonimiforrh then a B*-tree ﬁle scheme is the better choice since it supports
- retrieval of a record with,0 (logn) disk acces.ses,' where n is the number of records in the
file, which is supérior\t'(‘) the intoferable O (n) disk accesses which may occur if a hashing
‘method is chosen. How'cver, many simulation resullts [13,34] show that the probability of

this worst case happening in practical data is expected to be exceedingly low. Thus, the

above mentioned hashing schemes seem to be preferable in most cases.

28

2.2.5. Conclusion and Discussions ' : /\7

Four different variations of quadtrees have been presc&ted in this section, namely,

the pomter-based quadtree the hnear—quatcmary quadtree, the DF-expression, and the
' modified hnear ‘}a tree. The traditional pointer based quadtree is shown to be inap-
proprxate for large images. On the other hand, a linear quadtree represents a quadtree asa
sequence of terminal nodes 1n a specific order, while nontermmal nodes, or even WHITE

- nodes of the quadtree are omitted, and pointers are replaced by keys (and resolution

~ parameters). Thus the spaual efficiency is greatly 1rnproved

Linear quadtrees also conveniently lend themselves to efficient spatial data process-
ing. For example, when dealing with spatial data retrievals, exact matching is almost
'1rnposs1ble For instance, it.is not possible to store all the potential points that may be
requested for a point-in- po\lygon problem. Instead, the pomt-m polygon problem is
solved by refemng to the mformatron in the neighborhood of the given point. Hence spa-
tial search can be characten_zed as traversals referring to each node and more often than
not these references involve information frorn the node’s neighbors. To be eﬁ‘eotive itis -
_desired that the data structure for regron representation preserves locanon That is,
blocks th,at are near each other in the study area should also be near each other in the
representatlon, with a high probab1l1ty of being stored in the same physical disk block in
the ¢ase of large 1magcs From Lemma 24, itis. clcar when orgamzed as a sequential
file, usmg elther a B-tree scheme or a hashmg scheme, linear quadtrees meet this require-
ment. Furthermore, the topologrcal order of the quadtr, s compatible wrth the order of |
the keys of the blocks from Lemma 2.1 When the keys of the leaf nodes are listed in -
ascendmg key order, the resultmg sequence is in the same order as a depth-first traversal

of the quadtree blocks More important, this feature allows the quadtree topology to be

. .29
obtained from the keys by using modular anthmeuc rather ‘than_following a ;hmn of

* pointers and makes the conversion between a quadtree representauon and a hnear quad-

tree representation very sunple [12,19].

Advantages of quadtrees are offset by two main drawbackS' firstly, quadtrees do not

convemently lend themselves to high level obJect onented searg\hmg, secondly, they are'

shift vanant

T

The first problemmis caused by the regblar decomposition process. As a result, ..
objects in the study area are partitioned into small pieces. Thus, to: ret:rieve a whole object
it is necessary to search for all the pmmtxves To alleviate the drawback several struc-
tures have been reported in the llterature For instance, the concept of a forest of quad-.
trees is proposed by Iones and Iyengar{26]. tA forest of quadtree spemﬁﬁi quadtree asa
collection of subtrees. The main idea & forest of quadtree 1s to utiliz€ a Grey node to
indicate the contents of its subtrees. i.e, an internal node i is said to be of’ ype GB if at
least two of its sons are BLACK‘?)be type GB. Otherwise the node is said to be GW. It '

turns out, the nurnber of maximal GB blocks for each object is con51derablly smaller than

the number of max/unal BLACK blocks for the same object. By usmg a directory, the

location of GB blocks can be detemuned._ _ ’

Another related structure called a field tree is attributed to Franlc[18] A ﬁeld tree 1s{.7
a vanauon of a quadtree The whole image in a field tree corresponds to the root of the
tree. The root node 1s subdivided into four quadrants as is in a quadtree. The ma1n
dJﬁ'erence is that the subquadrants in a field tree are t!ﬁn tmnslated in both x and y direc- |
tions by 1/4*)thc size of its parent node (thus nine subblocks are requlred to cover the

parent node). Because of thls orderly translation of the levels of a ﬁeld tree, a small

d,polygon split by a cell boundary on level i is enclosed by a cell at level 1+l or 1+2 a

- 30
small polygon centered in the study area is never split by cell boundary, etc.[18].

However both structures' as originally proposed do not take paging and I/O
‘buﬁ'enng into account. Moreover, a forest of ‘quadtrees only partially allev1ates the need
for the reconstruction process and a ﬁeld tree is not very useful for handling images

which containing large objects.

The second d1ﬁicu1ty of being sensitive to shift stems pnmanly from the fact that in
order to obtam a quadtree a grxd of specific resolution is placed on the image and the
region is encoded as a set of maximal blocks. As the result of this technique, blocks must
have standard sizes (powers of 2) which are position dependent. A prime example can be
found in [15] where a spatial complex1ty analySIS is provided for a reglon of size 2%x2*

appeanng in a 2"x2" array.

Efforts to overcome this drawback have been reported in the hterarure smce 1982. A
data su'ucture 1nvented by Samet [51], calied Quadtrees and Medml Ax1s Trahsform)
encodes the skeleton of the quadtnees and the resulting data is less sensitive to shifting. A
method for normahz:mg quadtrees with respect to tmnslatlons was reported in [32]. This
method offers an optimal solution to the problem in a sense that it requires the Ieastl

I3

‘ amount of space and is shift i 1nvar1ant

A

31

2.3. R-trees: a Dynamic Index Structure for Spatial Searching /

2.3.1. Preliminary

Regions are areas in a two dimensional space and are not well defined by points.
For example, a map contains many regions of non-zero size in two-dimensions. A com-
mion operation on an 1rnage is a search for all connected regions in an area, for example
~ to find all objects within 10 miles of a particular point. This kind of spatial search occurs.
frequently in computer aided design, geographic-data applications,_ -computer graphics
and robotics. It is, therefore, important to be‘a.ble to perform this kinc »f spatial search-
ing eﬁﬁciently._ : H

The above spatlal searching is often called an object oriented search. In general the
type of p1ctor1a1 object may be a "point", as cities in a map, or a "line segrnent as for a

highway, or “"region”, as in an island. -

To simplify' the discussion, a pictorial object is deemed to be equ1valent to a "con-
nected region”. This limitation, however does rot lose generality since all the algorithms .

can be extended to allow richer criteria in segmenting objects.

The primary concern in organizing spatialriiata in a file is the efﬁciency of access
Many studies have been performed on access mechanisms for multi-dimenrsional data,
but most focus on pomt data. Spatial access to“point data in a k-dimensional coordinate
space is analogous to. multi-key access to records with composite keys in the sense ihat
coordinates can be used together as a key. Access to vector data or reglon data, however

is more problematic because exact-match queries are almost nnpossrble. In other words,

no predetermined keys corresponding to access are kniown a priori to a query.

32

A numbcr of - Tuctures had been proposed for handling multl dlmcnsxonal spatial
data, among whic.. there are cell methods [7.,8, 13] quadtrees, k-d trees [6, 8], k-d-B trees
[41], index intervals [61], and grid files [35]. These tcchmques are shown to be inade-
quate in retnevmg objects of nonzero size in an multi- dimensional envuonment[24] For
cxamplc, many approaches are based on the principle of subdivision of the image, i.e.

'cell rncthods quadtrees, grid files, k-d trees, k-d-B trees etc. As a result, objects in the

study area are partmoned into small pieces. These techniques are very useful for a

number of low level spatial data processing algorlthms such as: sct operahons point-in-
nolygon and low levcl range search. However, the absence of an ability to index spatial
objects of nonzero size directly based c:. the analog form of the spatial objects is a

‘significant dlsadvantagc As the result, a high level query usually requires the whole file

to be retrieved. For i instance, the problem of finding all Ob_]CCtS which are contained in a’

given rectangular area requires an elaborate reconstrucuon process of the spatial objects

from the low level primitives. In addition, a data structure such as a k-d tree and a k-d-B
tree are useful only for point data; index intervals cannot be usedvin multiple dimensional

cases.

7

Reccntly, however, a new data structure callcd an R -tree[24] has recelved mcreusmg- .

attention. An R-tree is essenually an mdex based on spanal locatlon Its capablhtlcs in
dealing thh advanced queries, including dynamlc computanon of the spatial relationship
between ObJCCtS pagmg and I/O buffermg, labels it as an excellent index scheme for high

level spatial data retrieval. o S

33
2.3.2. R-tree Index Structure

The underlying assumption of an R-tree is that there is a spatial database which con-
sists of a collection of tuples representiné spatial objects, and each tuple has a unique

identifier which can be used to retrieve it.

" An R-tree is composed of leaf nodes and nénleaf nodes with a distinct node called

the root. As defined by Guttman [24], leaf nodes of the R-tree contain entries of the form:
A T uple ~identifier), S

where tupl.e-identiﬁer refers to a tuple in the database and-I is an n-dimensional rectangle

which is the bounding box of the spatial object index:
g

Here_n is the dimension and J; is the closed bounded interval [a,b] describing the extent
of the object along dimension i. Alternatively I; may have one or both endpoints equal to

-

infinity, indicating that the object extends outward indefinitely.

On the other hand, non-leaf nodes contain entries of the form:
(I ,child —boimer)
Where chzld—pomter is the address of the successor node in the next: 2] of the R-tree and

I is the minimal rectangle which bounds all rec wgles in the descendent node’s entries.

Let M be the maximum number of 'ehtries that fit in one node' and let m<M 2 be a
parameter spemfymg the minimum number.of entries in the node. Nodes in an R-tree
- corresponding to dl\SlS pages of reasonable size have values of M that produce good per—

formance so that a spatial séarch needs to visit only a small number of nodes,

To make an R-tree into a dynamic structure that needs no periodic reorganization

and to atilize the spatial relationship efficiently, the following requirements are irripose'd:

r

9]

)

.Gy

4

®)

(6)

Every leaf node contains between m and M index records unless it is the root.

For each index record (7 suple —identifier) in a leaf node, I is the smallest rectangle that

contains the n- dlmcnsmnal data object rcprcscnted by thc indicated tuple.
,._/

—

Every non-leaf node has betwccn m and M children unless it is the root.

For each entry ¢/ .child—pointer) -in a non-leaf node, 7/ is the smallest rectangle that

&

contains the rectangles in the child node. _

The root node has at least two children unless it is a leaf,

All leaves appear on the same level.

~Figures 2.7 and 2.82 show the structure of an R-tree and 111ustrate the containment

~

and overlapping relauonshlp that can exist between its rcctangles

1 R -~

R3 R4 RS

[«
~

9 R10|] R11R12 R13 R14 I5R16] | RI7TRIBRIO

T T T T

Figure 2.7 An R-tree

35

™

IiRG

el rolraholrelradtrnlebebebate oo fetadeie 8|
\ FommTm T gEs==areeEs 1 !
: “ 1 ' |
, Iy 1 \
: __ | _
! b

M
g h % L

Yo i + |
oo H 2 4 | |
0O {1} (e | |
g h| v _ !
. e I o |
L ™~) “

ot |
e R T
||||||||| zzz=kzzzzzX-zzzzozozmsmdsccooosoomm-mm - _
e Rt Sk 1 9 _ !
108 N\] I X !
| o, | i | _
| Y] | t | !
| & L _ . |
1] 1 X !
! ' | !]
! <t] _ | !
' — L\\ X '] i

1\ o | '
7R = 2~ 2 R J 0 !
B i “ 1
. - - -t = - ———————— — o= = = = = B =]
||||||| '

f i P S -
» \& " | “_ “_
o= ———— T T “ ; L
I I ' [h i
— 1 1 ") __ __
— V\\ ! ! ! i
=BT e ! H h I
| f X I] _
1 S | X 1 H h
! R _. { ! \O it __
| ! i = gt !
! N N ! | & H |
<t ! I m | “ T i
! U e o N S at i
_rhﬂlJ ||||||| i e ittt 9 \ i
! ! I : , I 1
! oo | ! \ ool : !
= L < v 1 Lo _ !
.R.llWUhm.l.nuuuuuuu |||||||||||||| I T = ___
i I 3\ O BN n
! 1 — |
I (. (!
S S . TPy i

-leaf block is the smallest rectangle that contains the

, block R2, R6 and R15 share a same left bottom corner.

Figure 2.8 A Possible Spatial Relationship Arriong R-tree Nodes in Figure 2.7

2 According to requirement (4), any non

rectangles of its children. For instance

36

. When a spatial organization on a relation is defined, an R-tree is a height balanced
tree constructed the same way a B-tree is for indexing: The only difference between the
two is that the spatial relationships ;unong the objects represented by the relation tuples
may not necessarily be part of the values stored in the tuple itself and thus they must be

provided extemally For this reason R- trees are described as a mgher-dlmensiqnal gen-
4 .

L.

eralization of B-trees [24, 47]

On the other hand, at first glance, an R-tree may be considered to be very similar to

a traditional pointer-based quadtree. In fact, they are both trees composed of nodes

. ‘Tepresenting two-dimensional rectangles (or squares) with each internal node bounding

all the space represented by all descendent nodes; both are hierarchical in nature and

pointer-based in structure.

There are, however, many significant features which distinguish an R-tree from a
tradidonal 'pointer-based4quadtree Firstly, an R-tree is more flexible. For example, as
previously menuoned blocks in quadtrecs are disjoint and have standard sizes (powers of
2) and positions due to a gnd that is imposed on the 1mage dunng the hierarchical
decomposmon process. These requirements are no longer needed in an R-tree. Secondly,
an R -tree 1s dynamic and height balanced and the Storage organization of an R- tree is
based on a B-tree. On the other hand, traditional pomter-based quadtrees are unbalanced
and they do not take Fpagmg of secondary rnemory into account. Thus, an R tree is better
in dealing with paging and I/O buffering [5,,11,24,4’7]. The most important feature that
distinguishes R-trees from quadtfees is the fact that, at the leaf level, the former stores
full and non-atomic spatial objects whereas the Iatter‘ may indiscriminately decompose
the objects into lower level pictorial primitives. In 'addition, tae corresponding rectangle

of each node in an R-tree is the minimal rectangle which bounds all the data objects in all

N

\

37

descendent nodes. Such features provide-R-trees with the ability of higher level ochct
oncnted search. A similar search with a quadtrec requires an elaborate reconstruction

process of spaual objects from the lower level pmmtlves ‘ '

An R-tree have many advantages over traditional pbinter—bascd quadtree that are
desirable both in theory and in practice(e.g., high level object oriented search). They can-
not, however, be applied .to image representation in current digital computer systems
since at the termmal level an R-tree stores full non-zero size objects which may possess

different shapes. In other words an R-tree i is a data structure for index purposes only.

- 'Unfortunately, the traditional quadtfoe cannot be easﬁy extended to include an R-
tree like index mechanism. Since the objects are decomposed into primitivés in quadtree
representation and primitivcs are grouped together to form a upperlevel block by qua-
drants, a block in a quadtree cannot boum'd‘\a{l the objects which intersect it. This implies
that many nodes in a quadtree are not useful for object indexing of objects. Thus an extra

index file needs to be built that is separate and distinct from the quadtree and this index

requires considerable space.

Finally, the height of an R-tree containing N index records is bounded by [log.N1-1,
since the branching factor of each node except the root is at least m. Empirical résults in

[24,47] show that R-trees are excellent speed-up devices for spatial searching. The main

reasons for this are as follows:

(1) The storage organization of R-trees is base_d on B-trees which le;d themselves con-

veniently to deal with paging and disk I/O buffering [5,11,24].

(2) The data objects of interest are accurately represented in a form analogous to thexr

3
spadal nature which is very useful for efficient and direct spatial search based on the
o

38

/ ;i?x,alog form of spatial objects. . Y A

s

(3) - The dynamic nature of R-trees makes it possible to adjust the overall organi;au'on

of the tree so that the' resultmg R tree 1s denser with less ' coverage and "overlap ,

achleves significant efﬁmency in terms of space and time complexity [24,47].

2.4. Conclusions

The problem of region representation and the problem of spatial data search;’ng have
been presented. Quadtrees and R-trees have been shown to be useful for region represen-

tation and for indexing spatial data objects that have nonzero size respectively.

In the following chapter a hybrid structure called R/Q tree is proposed which com-
bines the features of R-trees and quadtrees for r‘eglon representatlon and spaual searchmg

purposes. <

N

Chapter 3

-

A HYBRID DATA STRUCTURE: AN R/O) TREE
' §
o
. :
b

The purpose of this chaptcr'is two-fold. The first is to intli'oducc’ the hybrid R/Q
tree, aril the second is to establish a foundation upoq‘? which algorithms will be developed
in subsequent chapters. A computation i:nodel will be used in the analysis of the asymp- _
totic time bound of the algorithms; This rqodel requires disk-like secondary storage andhl
images stored on it with portions_of the ciaté, as needed, processed in main mcmory.

. Since the /O ol;éradons to be performed are a dominant factor of disk-based algorithms,

the number of pages accessed during an algorithm provides a measure of its cost. -

-

3.1. Definitions and Conventions

>

Definition 3.1 An R/Q tree is an R-tree. built on top of a sejuence o7 linear quadtrees

with each linear quadtree organized by either a B*-tree or a hashing scheme. . o
: L N v 1
_ Example 3.1 Figure 3.1 shows the structure of an Q tree.
-:1\:; s v L

¢ -

-
-

_ E : L ; : 1 ! -
f 3 4V/:5———_/ \6; o .
8 9' 10 512 13‘.14. 15 lfG ﬁBRIQ\\
v b T T T
3 ‘R-u’eelevel
O Qudmeelevel [T e
B-tree Scheme Hashing Scheme
_______________ L
oy o [,
| [K 4T
T OO o1 e
AR R AR | -
| A
-y ; ' L
***** LITTT 17 W_Ll.l [|----]
TTT TV TIIT

to Sequential List

to Data Bucket

Figure 3.1 AnR/Q tree of Figure 2.8.

D

3)

!

- 41

The following conventions are adopted in this thesis:
N ,

Each leaf node except the root in the R-tree cont%ins entries of the form:

(I suple ~identtfier) '

where tuple —idensifier is a pointer to the root of the B*-tree of the object and I is a ~

two-dimensional tmmmal rectar}gle which bounds its constittent data objects:
1= OJ 1) . : }

Here 1, and I, are the coordmates of the bottom-left vertex and the top- nght verte,x
of the m1mmal rectangle relative to the bottom-left vertex of the minimal rectangle
of the. father node respectively. Let the relative coordinates of I; be [Al;,Al,1. Then
the absolute coordinates of 7;, [a/, ,aI,-,-] are deﬁned\re{ursi\'{ely as followsi

(a) lalix ,aI,,] (Al ALy] if the node is the root.
(b) lal;, aliy 1=[Al; +afl, Al +aﬂ,] 1f the node is not the) root
wherc [aﬂ,,aﬂ,] are the absolute coordmates of the bottom-left vertex of the

mlmmal rectangle of the father node.

The advantage of this small modtﬁcatlon in R-trees. will be shown in the next

S
chapter.) 1

b

A non-leaf node except the root in an R-tree contains entries of the form: =

)

(I ,child—pointer)

“where I'is defined as specrﬁed in (1) and the chlld -pointer is deﬁned the same as a'
standard R-tree. | ' o

A root node is defined the same as a standazd R-tree.

The secondary index file which uses a B*-tree structure can also be specified simi-

larly except the first parameter of the entry for each_ node is the key and the second

!

L{,
T 42

defined in Chapter 2. Furfﬁcrmore all feaf nodes form a linked list in which the nodes

are sorted in ascending key order. This linked hst of leaves is referred to as the sequence

/
set of B*-trees [11].

Pl

Using PASCAL-like syntax, Ieaf and non-leaf nodes of an R-tree with M entries can
be defined as follows: SN

—
N

type ENTRY = record

XLY1,X2,Y2: integer;
POINTER: integer;
end;

NODE =.record
CLASSd(Icaf non-leaf);

DESC: array [1...M] of ENTRY;
VALID: integer;
end;

4 B
Similarly, leaf and non-leaf non-leaf nodes of a B*-tree with K entries can be
defined as follows: ‘

' y
type ENTRY = record - ') o0
- KEY: mteger
POINTER: integer;
end;

NODE = record

CLASS:(leaf,non- Ieaf) F
DESC: array [1...K] of ENTRY

VALID: integer; e
end; o :
~The POINTER field of a leaf node is usefl for storing the resolution parameter of the

block and the last entry can be used as thc pomter of the sequence set.

\
!‘\ .
parameter of the leaf nodes is the resolution m‘teroij the corresponding block as.

-~

rh

3.2. Constructing an R/Q tree

)

/

Construcnng of an R/Q tree from the ongmal array description of the Image consists

of four phases:

/

Phase 1. Partmon the whole i 1mage mtolseparate objects, each 1d<23nt1ﬁed by a minimum

boundm g rectangle. \

The following algorithm [12] can be used in this, phase:

'\'\\

Procedure ARRAY- TO MLQ(E,key,s)
begin
if s=0 then
if Eisa BLACK p1xe1 then
begin _ - .
add pair <key,s> to LIST; ' : S
return(BLACK); '
end
else return(N ONBLACK)
else
begin
for i:=0to 3 do
“color[i]:=ARRAY-TO-MLQ(E; ,key+1*4**(s 1) s-1);
if color[i] is BLACK, 0<i<3, then
begin ‘ S '
replace the last 4 pairs in LIST by <key,s>; -)
return(BLACK); - ({f -
end - * R
. else retum(NONBLACK); . : .
T . end; ' ' S :
v;-if:fa; - end.

’ﬂ‘}ns procedure takes as input three parameters E, key and S, where E is a 2 by 2* bmary

Y, key and s initially correspond to zero and n, respecnvely The algonthrn examines
each pixel value ofathe binary 1rnage in Morton sequence order If a p1xe1 is BLACK,
then its two- tuple representation is formed and added to LIST whlch is initially empty. It
then. recursively merges the four small BLACK nodes correspondmg to the .last four

two-tuples in LIS a bigger BLACK node. Upon termination of the algorithm, LIST

contains-all maximal BLACK nodes.

Phase 2. Generate, for each separate object a linear quadtree description that is centered
. ; :

1.
/

on the object. - “‘

4

Many criteria, Wthh depend on domain knowledge, can be applied in this step;
_ however to 51mp11fy the dlscussmn objects are identical to connected components of the
image. Thus, there are two things that need to be done in thls step. First, label the con-
nected components of the image, using the algonthm given in [12]. Second, for. each con-

nected component calculate .the normahzed linear quadtree description with respect to

translation. o : : \
B ' |

\
The advantage of the proposed approach is that it 1§ 51mple and can generate the
desired descrlpuon in reasonable tlme ‘with a tolerable amount of space In addmon it is

also less sensitive to data error.

%

An alternative approach could place the ‘object to the left bottom most corner ie.
the m1n1ma1 value of the X- coordmate and the Y—coordmate of an connected component
are Xp, and Yo, respectively. The desued linear quadtree descnpnon is obtainable by
translaung the X in and ¥ o, positively. A procediire named TRANSLATE cian be used to
‘achieve this purpose [12]. | .

’ _ ~
There are, of course, some other heuristic rules sumlar to the one suggested herein

that can be chosen for normahzmg purpose.

: Phase 3. Organize the data for each linear quadtree by a hashing scheme [13] or by a 8*-

tree. 2

Case 1: B*-tree scheme:

45

‘Igorithms for manipulating B-trees can be found in {5,11]. Since B*-trees are vari-
- ants of B-trees, the corresponding B*-tree algorithms can be easily constructed. As a
matter of fact, B*-trees can be constructed by means of inscrtion similar to inserting an

index record to an R-tree. The later algorithm will be bresented later in this chapter.

Case 2: hashing scheme:

The construction of. a hashing file can be done 'by insertion. For example, with an
extendible hashing scheme, starting with a single bucket. If a data bucket overflows, the
corresponding block in the address space is halved, a new data bucket is added, and the

directory is opdated to reflect the changes being made [13].

Phase 4. ‘Organize the separate objects into an R-Tree.

Alth.ough R-trees are natural extension of B-trees, they are more dlfﬁcult to cope
W1th The difficulties- are caused by the two main phenomena of R-trees: coverage and
overlap, as illustrated in Figure 2.8. Coverage is defined as the ‘total area of all the
| minimal bounding rectangles (MBRs) of all R-tree vnodes et the same level and overlap is
defined as the total area co/ntained‘ within two of more MBRs of the nodes in R-tree.
Efficient R-tree sear_g:hi_ng demands that both. overlap and coverage vbe rniniriﬁized,

although overlap seems to be the more critical of the two.

" An interesting question is: Given an arbitrary set of data Ob_]CCtS cana’ zero overlap |
R- tree always be obtained? It was proved that for pointer ObJCCtS at the leaf 1eve1 the
answer 1s yes [53] Unfortunately, it was also shown that a zero overlap R-tree does not
always exist when the data objects have nonzero sizes. Thus, at best, it is possible to

minimize the overlap, but the issue of coveré{ge remains. The simultanepus minimization
v e

-

S~

of both coverage and overlap is a complex task.

46

An algoriihxﬁ, call PACK, proposed in [53] addresses both of these problems by
grouping nearest neighbors of a spec1ﬁed node at each level in formmg a higher level
node. The result of this technique is that all descendent nodes of any node in the R-tre
are relatively close to one another in spanal posmon hence both coverage and overlap
can be minimized. Smce optimal gronpmg requires considering*M items 51mu1taneously,

\
which could be combinatorially explosive, PACK produces as output a near-optimal

v

packed R-tree. ’ o 9

Ve

To pfcsent the algoﬁthm, assume all nodes are packed as full as poséible and ez;ch
node contains M entries. Also assume that the total number of data objects is a power of
M This would be hlghly unlikely in any real application, but this assumption makes it
possible to d1$pcnsc W1th the trivial special cases of one pardally-filled node for leftover

entries per lcvcl.

Algox‘itllm PACK isa rccursive“ procedure. Its sole argument is DLIST, a list of data.
objects to be packed. NN iS—a nearest neighbor function which takes two _arguments.
NN(DLIST D returns the itemn in the list DLIST which is spatially closest to item I and
bas the addmonal effect of deletmg that item from DLIST The algorithm is:

3 Uy -.
. s ot ot

~

Sl

47

Procedure PACK(DLIST) - .
begin T
if DLIST contains M objects then C- 'y
begm ' . Wl
“Allocate a pointer to a new R-tree node, No; S
Cause pointer of No to poypt to m:ms of DLIST;
return(No); R
. . end R ¢
€lse ‘ T
begin
Order objects of DLIST by some spatial criterion;.
NLIST:={};
‘ While DLIST i 1s not crnpty do:
. begin
' 1{1]:=first object from DLIST
DLIST:=tail(DLIST);
for i:=2 to M do
IG:=NN(DLIST,I[1]); ot
‘Allocate a new R-tree node, N1; :
Cause pointers of N1 to point to I[1},...,.][M];
APPEND(NLIST N1)
, end; S
. rctum(PACK.(NLIST)), *
end; - (" : -
end. : o Jon

»It should be m¢ uoned that at the leaf level the pomters point to’ 'Lhe root of the B* tree

obtamcd from Phase 2, and the rmmrnal boundmg rcctanglc of the corrcspondmg Ob_]CCt

-obtained i in Phase 1 of the algorithm. -

O

3.3. Algorithms for>Main‘tain:-ance an R/Q tree

In this sectiqn the problém of maintaining an R/Q tree index structure for a dglnarni-‘
cally changing random accessf file 1s c6n§idered._ At the quadtree level, changing is
equivalent to node insertion and deletion. At‘the R—'trecllevcl however, changing low
level primitives may not necessarily result in delcnons or 1nscrt10ns of ObJCCtS although |
the spatial propernes of the ob]ects and the spatlal relatlonshlp among objects are subJect

to change. To prevent gradual dctenorauon in an R-tree,— however, the dc;’letlonAand

A

48

Y
insertion algorithms to be explained are apphed to adjust the R-tree whenever the low

level primitive changcs

Of the two dlﬁ'erent approaches fo oriamzmg low level primitives, the hashing
| scheme is simpler than the B*—u;e hc me. The procedures for mamtammg a dynamic
hashing file can be found in [13,16]. In thc following it is assurncd that the index file for

the low level primitive is a B*-tree.

3.3.1. Algorithms for Maintaining of an R-tree

This section follows a set of algorithms for maintaining an R-tree during and after

update of the tree.

3.3.1.1. Insertion »

Inserung index records for new data values is 51m11ar to insertion in a B -tree in that
new index records are added to the leaf nodes. Nodes that overﬂow are split, which then
propagates up the tree.

[N

2
Thc main proccdure is called INSERTION and is invoked with a pointer R to the

root of the R-tree and a new index entry E. Step 1. calls a procedure CHOOSELEAF to
select a leaf node in which to place E. CHOOSELE AF finds the path from the root to
the leaf node that needs the least enlargement to include E and thcﬁ properly modifies the |
lmmlrnal bounding rectangle of the nodes along the path. Procedure SPLITNODE is

~ invoked whenever an attempt is made to -add a new entry to a full node containing M

entries. Similar to a B-tree, it is necessary to divide the collection of M+1 entries

"W/

49

_ between two nodes in such a case. Procedure ADJUSTTREE propagates node splitting

in the R-tree until either the root is reached or there is space where the split node can be

installed. § \

\

. #rocedure INSERTION(RE)
Y begin . _ g y
& .. L:=CHOOSELEAFR E); -
if L.VALID<M then

be \
: % E into L; \\
L.VALID:=L.VALID+1;
end ' '
else o b
begin ‘
(L,LL): -SPLITNODE(L E); . -
(D,DD):=ADJUSTTREE(R,L ,LL);
~ifR.*=D then
/ ’ begin '
N Create a new node N;
\ Install D and DD into N
Set pointer R point to N;
end;
end; \
end. -

Procedure ADJUSTTREE(R,N,NN)
begin
if N<>R." then
if FATHER(N). VALID<M then
begin
Install NN into FATHER(N);

/ FATHER(N). VALID =FATHER(N).VALID+1;
- return(N,NN);

> end -
. ' :o élse h
auj‘ e begm
v (L,LL): —SPLITNODE(FATHER(N) NN)
rctum(ADJUSTTREE(R L,LL));
end;
else retum(N ,NND;

end.

50

s ol

3.3.1.2. Deletion i

Deletion regnoves an index record E from an R-tree. It is an inverse operation of

insertion and is also similar to deletion in a B-tree.

The main procedure, I?ELETION, takes as input two parameters R and E, whefe R
\f__/ is a pointer which points to the Thotof the R-tree and E is the index record to be deleted.

SETREE is mvoked Procedure CONDENSETREE eliminates L from the R-tree and
relocates its entries if it has too few entries. Then the node elimination is propagated

upwards as necessary and all covering rectangles on the path. to the root are adjusted

accordingly. ‘ _ (\JJ/T
'

Procedure DELETION(R E)
begm
: L:=FINDLEAF(R E); _
" if L=NIL then return; R
“ RemoveE from L; .
L.VALID:=L.VALID-1; ' ’ ’
CONDENSETREE(R L)
if R.".VALID=1 then Set R point to the child of R
end.

3.3:2. Algonthms for Mamtamm

51
-7
Procedure CONDENSETREE(R N)
begin
Q:={};
while R. <>N do)
begin T
F:=FATHER(N); . ' o
if N.VALID <m then
- begin

Remove entry which pointer to N from F
F.VALID:=F.VALID-1;
Add NtosetQ;

}Send .
else adjust entry which pointer to N in F tightly;

?

end;
while Q is nonempty do o R
begm . %?
N:=first node from Q; L
Q:=tail(Q);]
Reinsert all entries of N into R- trese:”
end;
end.

aBtree

At a very high level descripu’on of the algorithms, the 'a.lgon't'hms for maintaining an

R-tree are the same as for maintaining a B tree. In fact, the index of an R-tree is con-

structed the same way. as for a B-tree except in the case of an R-tree the spatial relation-

shipé among the objects are explicitly stored, see Chapter 2’. Again, the only difference
between a B*-tree and a B-tree is at the leaf level where a, sequential linked list is con-

structed for a B*-tree..

It is much more difficult to maintain an R-tree than to maintain a B*-tree of the same

size. To see the differences compare the procedure INSERTION and DELETION as
. ; , _

3 Keinsertion is similar to procedure INSERTION except entries from higher-level nodes must

be placed higher in the tree, so that leaves of thexr dependent subtrees will be on the same level as
leaves of the main tree. ‘)

1.(

52

fallows: ' ~ ' -

3. 3 2.1. Insertnon : (

. .
The ma.l.ﬁ;ocedure IN&RTION fora B%e is exactly the same as that described

'in a B*-tree is simply a icey
search The same operation on an R- tree as in Section 3.4.1, requires adjusting the cover-
mg rectangles along the pfth frem the root to the leaf node Since the path is not unique,
extra effort must be made in seiiung the best path for an R-tree. Again, NODESPLIT-
ING in a B;tree is a trivial operation but the same operation in an R-tree is rather
difficult since the division should be done in :> way that the resulting two new nodes have
least coverage No efficient optimal splitting algorithm has been reported yet. ,A linear-
cost algonthm proposed by Guttman [23], however, was shown to be fast, and the
| . slightly worse quéihty of the splits did not noticeably aﬁ"ect the search per_fonnance.

The subroutine ADJUSTTREE is the same with respect to operations related to

entries.

X

i

53

3.3.2.2. Deletion

A

+The main procedure DELETION for a B*-tree is aljo the same as th?descnbed in

Section 3.4.1; o 4 !

The function of the subroutine FINDLEAF is essentially the same as its courtterpart
FINDLEAF described in Section 3.4.1. except the finding of the desired node in a%gﬁ-
tree is simpiy' path ﬁnding in which backtracking is not required. Whereas the same task
for an R tree requires an exhaustive depth first search due to the overlappmg problem

exrsurrg\m R -trees.

The procedure CONDENSETREE ira B*-tree is, however, quite different from the.
one described in Section 3.4. 1.¥hsdy, ther\ex,is no such operation like adjusting the cover-
ingurectangle in a B*-tree. Seeondly, the disposing of under-full nodes in a B*-tree is
done by mergmg two or more adjacent nodes, therefore reinsertion 1§ not needed. A B-
tree like approacfi is possible for R-trees, although there is no adJacency in the B-tree
sense: an underfull node can be merged with whlchever sibling W111 have its area
increased least or the orphaned entries can be distributed among srbhng nodes. Two
problems are associated with this approach: it causes nodes to split and makes an R-tree

o

deteriorate [23]. e :

&4,

On the other hand, if the key to be deleted also appeared in an intemal node of the
B* -tree, then the index needs to be adjusted properly Funhermore extra attention mus
L
be pald to take care of the linked, hst at the leaf level of the B*-tree. Each adjustrm

operation, however, requires at most one additional page in and one additional page u..

3 . ~

"‘r\’

54
3.4. The Cost of Constructing and Maintaining an R/Q tr§

To anal;re?:e the cost of constructing and mamtmmng;u; R/Q tree and the algorithms
for manipulating an R/Q tree, it is necessary to know how many pages must be
transformed from bulk stcrage to main memory and how many pages must be wntten
onto bulk storage. For this analysis the {ollowmg assumptlon is made: Any page, whose
content is examined or modified during a single retneval insertion, or deletion of an
entry, is respecttvely fetched or paged out exactly once. It will become clear ¢ aring the
course of this section that a page area to hold max { hg hg }+1 pages in main store is
sufficient to accomphsh this. A more powerful paging scheme L.e. virtual memory using
the LRU pagmg algonthm [1 1] w111 of course, decrease the number of pages Wthh must

be fetched or p-ed out. For the sake of simplicity such schemes will not be analyzed.
Suppose the number of objects in the image is N, the number of pixel»dn the image
isN, the number of blocks in the description of the 1th obJect is B [i], and the number ofv‘\‘ _
)n
blocks & the unage is N,,, 1.e. Ny= }:B (z) Let M and K be the maximum number of

entries that will fit in one node in the R-mee and a B*- tree and let m<M /2 and k<K /2 be the
parameters specifying the rmmrnum number of entries inga node of the R-tree and a B+

3 .
tree respectlvely L F

LY
X,

Clearly, the height of the R-tree hg is bounded by [log,N1~1 and the height of the i:th.
B*-tree hgpiy 1s bounded by [log,B[i1]-1 . Tl@heightof R/Q tree, therefore, is atbmost .

\
P

hk:*'hg, where hB = maX{hg“ }, i=1,...,N.

- Denote vby fmin(f ma) the tmnlmal (maximal) number of pages fetched, and by

W min(Wimax) the minimal (maximal) number of pages written.

ol .
1
f

3.4.1. The Cost of Constructing an R/Q tree

The cost of constructing an R/Q tree is the total cost of the four phases:
The cost of phase 1:

Suppose the inpuf array of pixels is a sequendal file in Morton order, and LIST is
actually a sequential file in reversed Morton order so that the opcration_mérge of the last

four nodes in algorithm ARRAY-TO-MLQ can be done efficiently. 1

Theorem 3.1: Procedure ARRAY-TO-MLQ constructs ari MLQ, at a cost bounded by

O (M,), where N, is the number of pixels in the image.

Proof: Let F(4*) and W(4") be the number of pages fetched and the number of pages
wn'tten as required by procedure ARRAY-TO-MLQ to generate an MLQ. Clearly,
when n=0, F(1)=W(1)=1. If n>0, F(4*) (W) i is the total number of pages fetched (writ-

*. ten) in the four calls of ARRAY TO-MLQ on an array of size 4%} % plus at most 2 pages

in and 2 pages out for the operation: replace thc last 4 pairs in the LIST by <key s> in the .

R

algomthm under the assumpuon of our pagmg scheme: That is, . ' ¥

F(4")= 4F(4“ D42, n>0
W(4")=4W(4*1+2, n>0

"ghe iL‘heorern follows by solving the recurrence.

" l”“‘;‘

QED.

The cost of phase 2: 4

.

7 “Case 1: B*-tree scheme

2

& 56

o

4\\;{ The cost of building a B-tree from a list of pfe-soned Ng data is propomonal to the
maximum number of nodes i in the B-tree whlch is bounded by O ,) since a recursive
procedure similar to ARRAY-TO- -MLQ can be used for the initial construcnon purpose
and the cost of the algorithm can be estimated similar to Theorem 3 1 for procedure
ARRAY-TO-MLQ. | "

@
Case 2: hashing scheme

L4

The worst case analysis of any hashing scheme is discouraging. However, since the
WOrst case is rare and the construction'is 2 global process, the cost of this phase 1s equal-
o' AxN, rathier than wxn,, where 4 (W) is the average (sWorst case) cost for msertmg a
-record into a hashmg file. Again; the average cost for inserting a record into a hashing file
‘tends to be bounded by a constant [58): Thus the construction of the hashing file is
bounded by O(V,). ‘ vt i

(=

The algorithm for labeling connected components given an linear quadtree descnp-

tion of the region can be found i in [12] It is d1v1ded into three steps. The first step is to °

d1§c0ve§*all pos51b1e adjacencies between any pair of nodes. To do so at most the .
’ ﬁnchnv of four nelghbors 1s required for each node. Hence if a B*-tree scheme is adopted,

B) the maximum number of pages fetched in Step 1 is 4h, where h is the height of the B- -tree -
g’if: 5 1 | and is ‘bounded by O (logeNy). If a hashing scheme is adopted. then the number of pages

‘%‘n fetched In Step 1 can ‘be bounded byaO(l) The second step, however establishes a set of
' J bottom up trees for each set of connected components This is achleved by usmg the well
known UNION-FIND algonthm [3]. That is, whenever a adjacency is discovered *
between two nodes, their gorresponding equivalence classes will be merged to form a
larger equivalence class, where nodes i in the same equivalence class are connected. Smu-

lar to the analysis in [1] the number of pages in and the number of pages out ¢ are all

“a,

{ \ B s

bounded by 0O (N, Iong).. Step 3 finds the normalized linear quadtree description for each
connected component. The normahzed linear quadtree description, as dmcussed in Sec-
ton 3.3, can be obtained by a smgle translation in blocks, if a heuristic normahzmg
method is adopted. Translation may cause splitting and merging in blocks, dut in e
WOrst case, simply assume blocks are split into plxels and the normalized linear quadtree)
1s constructed from a set of p1xels in Morton sequence. By Theorem 3.1, it is not difficult
to see, that the number of pages in and the number of pages out during thencourse of nor-

malizing can never exceed O N,).
Theorem 3.2: The cost of phase 2 is bounded by OW,)

Proof: The last step is the dominant factor contributing to the entire phase and is

bounded by o(v,). - /

Q.E.D.

‘The cost ofmthe phase 3:

Theorem 3.3: The cost o_f phase 3 is bounded by 0 (N+N,,). p

f

" Proof: Construcung of the B*-tree for object i requires at most O BuD, by the analysis of

Phase 2. Thus the total cost is bounded by O (N+N,), where N is the number of objects m-

the 1mage and Ny = EB [i]is the total number of pnrmuve blocks.

l=1

a4 | . - N ‘ : . s Q.E.D.
. o S | E
The cost of phase 4:

Lemma 3.1: The numbe'rq of pages at level hz—i, where i=0,..hz -1, 1s N/M**, where N is a _

power of M. . N

. . . .) 58.
Proof: (By induction)
If i=0, then since e‘zﬁh page can store M records,. N records require N/M bégcs.
Thus, the conclusion is true.

Suppose, the conclusion is true for o< <k, where k <hz—1. The following shows that

it is also true fori=k. "

Since each entry in a node at the level ha—k pomts to a nodc at the level hR—/c+1 and
there are exactly\M/enmes per node, the number-of pages requ1red at the level hp—k is

N

/M

equ.d to the number of pages at level hr—k+1 divided by M. That is =N IM*+L,

Z»
Therefore, the lemma is proved.

QED.)

Theorem 3.4: The cost of phase 4 is bounded by O WM).

Proof: The algorithm PACK constructs an R-tree in a bottom up fashion. At the level
he—i, it packs a group of M nodes which are spatially close to each other to form a node
at level hR—x 1. Each such operatlon requires a scan of the entire DLIST which reqques
O (NIM** pages in, by Lemma 3.1. Again, by Lemma 3.1 the number of pages in level
hg—i—1 is. N/M‘+2 Therefore, to form the DLIST at level hz—i-1, O(Nz/M‘“”) nodes are
paged in and O (W/M*!y nodes are paged out. In other words, the number of pages in and
. the number of pages out are bounded by O(NYM™Y. The cost of constructing an R-tree

is, therefore, bounded by:
_l :
0 E'(Nz/M"”)]=0 (NZ/M).
i=0 : :

QED.

g :
" L .
Y 59

, . v

4

Theorem 3.5 The cost of constructing an R/Q tree is ‘ﬁéﬁhded by 0 (7‘»’,,+Nf/M).

P
Proof: Directly derivable from Theorems 3.1-34. . . N

l L
‘ v\r »9.

Remark: the first term is an upperbound of the cost for const@%;m;g a lu:rcar quadtree %d
the second term is the cost for, constructmg a packed R-tree. Usmg a techmqne proposcdx.
recently by Samet[53], the cost of the firsttterm can further be reduced t&" 0(N,,) This is

achieved by processing the image in raster-scan (top to bottom, left to right) order ang

always forming the largest node for which the curren;*’% pixel is the upper leftmost pix: '.
Thus the necessity of merging smaller bI‘ccks- into a larger block is avoided. Extra
memory. specé; (approximately vl fo a 2"x2" image) is needed to achieve this goal.-
Interested readers arg referred to [53] for a etailed algorithm. Therefore, in general, it is
not diffscult to see that the cost of. c structing an‘R/Q'tree can be bourrded by

O (Ny+N?*M), not including the cost of segmentirfé of the objects in the region.

- ‘ . .'
3.4.2. The Cost of Maintaining an R/Q tree
_ | | r |
Since it is hard to theoretically establish an expected caSe analysis for a hashing

scheme due to the difficulty in constructing a representative dita model, the cost of main-

* taining an R/Q tree will focus on the B*-tree scireme for organiz/i,h g low level primiti\-/es...

e

Cost of Insertzon in an R-tree. From the procedure INSERTION it is clear that the

least wotk is requlred if no page sphmn g occurs, and:

fmgn—hk , Wm,'n=hR+1.

Most work is required- if all pages in the retrieval path including the root page a}e
‘ Y

60

- . *
split in two. Since the retrieval path contains 4, pages and a new root page must be writ-

ten, resulting in:-

fmu=hk; Wmu=2}lg +1.

s

Cost of Deletion in an R -tree. Fust searching the desired node in which the index
record to be deleted is contained rcqu1res an exbausuvc depth first tree search for all sub-
trees overlapping the record. Second, all under-full nodes caused by entry dclenw need
to be remscrted as described i In subroutine CONDENSETREE

The lqast work is needed if there is at most one node that overlaps the index record
at each level oftthe R-tree and there is no under-full ‘node? after the deletion, then

flmin=hR; Wm=hR+.l.

Thc most work is required if there are overlaps and under-full nodes. The following

bound results:

f =0 (N), where N is. the number of objects.
On the other hand, deleuon cdi cause under-full nodes The deposmg of under-full nodes
as described in Secuon 3.4.2 necessitates reinsertions, since each under-full node has
exactly m-1 ch11dren which must be reinserted, the deposing of an under-full node at
levcl i of the R-tree needs at most (2 +1)x(m~1) pages out, by the worst case analysis of
insertion. Assuming, in the worst case, that one under-full node is encountered at each

~level of an R-tree during the course of condensmg the trce Thcn
/ M=l
Wona= Y, (2 -1)x(m-1).
) i=0

Thus, W nax=hg (hg =1)(m - 1).

L)

* A node is said to be under-full if the fanout is less than m.

61

Cost of Insertion in a B*-tree.' Suppose_ the height of the B*-tree is h, then
fuihi wazel, and N
fo=h+l; woo=2h+2.
This is because; in the case of a'B" tree no adjusting ({f the coverage of the nnmmal
B oA

bounding rectangles is needed except at most.one more page to be fetched and one more

page’written for the sequential linked list at the leaf level of the B*-tree during the course

of insertion.

Cost of Deletion in a B*-tree. For a successful deletion the least amount of work is
- -) ' ' - '
required if no node merging is required, then
S min=h; Wain=1.

-

A maximal amount of work must be done if aﬁ nodes in the retrieval path will become

3
under-full. This requires:

Foax=2h; Wonu=h+2.

Including one extra page to be fetched and written to A‘updz{te the sequential linked list.

‘N

The analysis of the cost of mamtammg an‘ R/Q tree 1s based on how a pr1rmt1ve unit
operatmn impacts the R/Q tree due to the hybnd structure of an R/Q tree. For example,
consider the problem of i msertmg a: block mto a quadtree dCSCI‘lpUOH of an Ob_]CCt Since,
in general, the mmrmal boundmg rectangle of the ob_]ect W111 be enlarged as a result of
~ the operation, the current placement of the mdex record may become bad after updating.
To prevent detenoratlort in an R-trée, three steps are requlred ﬁrst delete the object to be
"changed from the R-tree, then msert the block into the B*-tree and ﬁnally reinsert the ,

i]
object accordmg to the new spatlal condmon The cost of the operatlon is, therefore the

total cost of the three steps. P .
. '.\v/\ -~

‘x\(.

62

{3.5. Conclusion

In this chapter, a hybrid data structure R/Q tree is proposed for region rcpr;senta-
tion. The proposed R/Q trees are very powerful structures which allow both high level
object oriented search and low level primitive manipulations with reasonable space cost.
An R/Q tree is especially good for applications in which images are Iargc and high level
search is needed. Good cxamples include: geographic mformanon systcms image pro-

cessing, pattern recognmon computer graphics, etc. The main Jusnﬁcamon for such

appl!,cauons ‘ ;-
e A - « \.
(ﬂ) A, Imeafr quadtree should be used to allevrate problems associated with tradmonal

pomter—based quadtrees.

(2) An index file must be bu11d for the linear quadtree desgx&puon for the reglon so that

rnsert delete and retrieve operauons can be done eﬁicwntly

Constructing a set- of index files for each object instead of constructmg one mdex

file for whole image has the followmg advantages>: . ‘

1). The size of each 1nd1v1dua1 mdex file is mucLh smaller in comparison with the size of
the mdcx ﬁle for the whole image. An obvious advantage is that the maintenance of
the 1ndcx mc bccomes easier and more eﬁicwnt For example, it is possible that all 7
nodes ‘orr a path to be updated from the root to a leaf or -even the whole index file
can rc51dc in main memory This will greatly help in 1mprov1ng the performance of

the algorithm.

\

. e
5 An example is contained in Appendix \A2 in which a comparison 1s made between two
different approaches with respect to the selected data.

o

o

oy

63

-~

2). Index files for each object act as a "window" of the whole image. This localization
property provides expermse to minimize the number of disk accesses for a _given
e

query within the window since only only those parts of the data which are spatially

relevant to prbcessing the query are retrieved.

3‘5. The data distribution for each object is expected to be unifoxm since "dead space" in
the image is clipped and the uxi‘:\@llting data pattern of each object is somewhat like a
local "plateau” with respect to the distribution. “Thus, a direct file scheme such as

hashing, can be adopted to-‘achieve efficient data representation‘in most of cases.
; ‘ 4

The idea of building an R-tree on top of the index files for each object to form a
hybrid structure further enhances the power of the representation since the hierarchical
nature of an R/Q index structure makes it a more efficient index scheme since the secon-

dary index not only speéds up the retrieval but also provides information for high level

ﬁ operauon as explamed in the next chapter. In addmon since at the' quadtree level objects

are encoded in a standard form an R/Q tree is very. useful for a number of apphcanons

such as pattern recognition, image translauon etc.

The cost of constructmg an R/Q tree is bounded by O (Ny+N?*M) in the worst case,
not including the cost of segmentmg the objects. Thls suggests that an R/Q tree is appli-
cable in most of cases. However, in comparison with the linear quadtree with a B*-tree
orgamzatlon an R/Q tree has two drawbacks: it is not helght balanced and mamtenance

as presented in this chapter, is morc dlfﬁcult Thus for some applxcatlons an R/Q trée

may not be a good choice.

Py

i3 ’ T

Chapter 4
ALGORITHMS FOR MANIPULATING AN R/Q TREE
b
This chapter contains a set of algorithms for the mampulauon of R/Q trees. In par-

tcular, an algorithm for finding all objects which mtersect a g1ven rectangular area is

presented in Section 4.1. As a direct apphcauon of.the algonthm, two nelghbor ﬁndmg L

algonthms are developed: ﬁxed radius- near nelghbor searchmg and nearest nexghbor‘_ -

finding. In addition, an algonthm for testing whether a pcnm xgs Wlthln a reglon
represented by an R/Q tree is’ provided in Section 4.3. Eﬁ’iment algonthrns for translauon 2

and rotation of a region are given in Secnon 4.3 and 4. 4 Two sét- theoretlcal Operauons:_ .
are presented in Sections 4.5 and 4.6, where the 1mportance of the hybnd Structure is
demonstrated An analysis of the performance of these algonthms supports the statement
that R/Q trees increase the efficiency of region operatnons i)artlcularly those operatxons ‘

o dhich relate to high level object oriented search.

4.1. Algorithm for })’egion Search.

. Finding all objects which intersect a given rectangular area is a fundarnental opera-
tion in systems uhg spatial data such as computer aided design (CAD) and. geographical
information systems [23,46]. 1t is also a cornerstone of many other operations such as
neighbor finding, rnembe‘r-ship testing, and others, which will be discussed in the follow-

ing sections! Th? algorithm for region search by Guttman [23] is as follows.

65

Procedure SEARCH(R,E)
begin
LIST:=(};
for i=1 to R. VALID do
begin

Cas
IéDESC[l] overlaps E and R.CLASS="nonleaf:
add SEARCH(R. DESC[l] POINTER,E) to LIST;
R. DESCIi] overlaps® E and R.CLASS="leaf’:}
add R.DESC[i] to LIST;
:otherwise:
do nothing; "
end of case
return(LIST);
end;
end.
-

The procedure SEARCH is invoked 4ith a node, R, and a region, E, which
coﬁespond to the root of the R tree and the rectangular area to be searched respectively.”
The algonthm examines each entry of the node R in sequential order and recursively

explores promising subtrees. The objects of i 1nterest are obtained at the lcaf level.

The performance of SEARCH can best be evaluated in terms of the number of
pages visited per object retrieved. In the best case, every promising subtree does not lead
_to a dead end' Since the number of nodes in a balanced'trcc is t;aunded by 0 (8), where B

is the number of leaf nodes in the tree. It is, therefore, not dlfﬁcult to see that the pro-

cedure SEARCH retrieves Q ob]ects with 0(Q) dJSk access in the best case.

~Inthe worst case, on the other hand, promising subtrees lead to dead ends. Hence, in
ren'ie;}ing a single object, SEARCH may require 0 V/M) disk accesses, where N is the

‘number of objects in the study area and M is the maximum nurnber(y of entries per node.

6 In general, d1ﬁ°ercm predJcates such as covers (or is covered by), etc. can be used to suit a par-
ticular query, see 4.1.2 and appendxx A2 For some queries, the low level primitives need te e
further searched for. i

-\‘-_

/

[P

66

Therefore, the time complexity of SEARCH is a function of E due to the tree struc-

ture of an R-tree. For example the best case happens when E covers an area that is . -

significantly large in companson with the whole 1mage and the worst case can only ;'-.
occur when E covers an area that is con51derably smaller than the whole image. This is

because as the amount of data retrieved in each search i increases, the cost of processing

nodes higher in the tree becomes less s1gn1ﬁcant

Although performance in the worst case is rather dlscouragmg, the chance of the
worst case happening in pract1cal data is expected to be rare. Empmcal results in [24]
show that the number of pages accessed to retneve quahfymg records decreases as the
amount of data retrieved in each search 1ncreases The low cost per qualifying record
when retnevmg 3% to 6% of the data shows that an R-tree is quite effective in narrowing

the search space.

The procedure SEARCH can be conveniently used for many spatial search algo-
rithms such as Point in Object Query, Fixed Raa'zus Near Nezghbor F mdmg, and Nearest
Nezghbor Finding. . : .

.'.L

7o

4.1.1. Point in Object Query

In storinlg descriptive data asSociated with a specific geographical point, it often

' becomes necessary to 1dent1fy the region that contams the pomt - This problem is often

described as the pomt in polygon problem [13]; however a similar and n}ore general

problem, Pomt in Object Query, is necessary in vanous computatlonal algonthms for
geometnc data. ane examples of the use of the algorithm occur in hidden line and sur-

face removal., X

R .
Protedire POINT-IN-OBJECT(R,POINT,0)
| CHST:=();

'I'llc‘:i):}'o':?c:edure POINT-IN-OBJECT, takes as input three parameters: R, POINT,
and O. Where R is a pointer which point"sTo the root of the R-tree, POINT is the index
record which corresponds to the point of interesi(sincc point is a special case of rectan-

gle), and O.is the object to be_tested.

4.1.2. Fixed Radius Near Neighbor Finding

»

The fixed-radius ‘near ncigh‘bor problem deals with objects within a constant
radius of one another in a multi-dimensional space. It is precisely formulated as fbl- |
lows: given a set F of N points in a k dijxlensional Euclidean space; enumerate, all pairs
of objects within a specified distance ‘oi‘ each other. This problcm'arisés in a number of
applications such as molecular graphics, cluster analysis, decoding noiéy data, and ofh-

ers [7].

[N

In the following, an algorithm by Bentley, J.L. et. al. [7] for timé solution of the

problem is presented and it is shown how an R-tree can be used to speed up and extend o

the algorithm.
. ;

A crucial concept of the algorithm is a "cell". Partition the k dimensional space

T

into hypercubes of side d called cells of radius d. In-doing so', associate each cell w1th a

| | - 68

k-tuple of integers. fhat-is the point (X,,...,X,) is in cell (IXd] I_X,/xl’), where

[X] is the floor of X. ‘
\

Procedure FR-SEARCH(D,R,S)
begin
LIST :={);

Determine the indexes, (I1,J1),d2,32), of sells i: ‘which
(x1,y1), the left bottom corner of S, and 52
(x2,y2), the right upper corner of S, are containe: ’
for i=I1to 12 do .
for j=J1 to I2 do ,
Cli,j1:==SEARCH(R,E); :
{where E is a search area corresponding to cc . (i,j).)
for i=I1to I2 do N
for j=J1 to J2 do \
append (CHECKPOINTS(i,j,C,D)) to LIST;
return(LIST); :
end

Procedure CHECKPOINTS(i,j,C,D)
begin '

LIST:={};

for every pair <X,Y> of points in C[i,j] do
~ ¢ add <X,Y> to LIST as a near neighbor pair;
> forevery cell K among 8 neighbors of C[i,j] do

- begin '

for every pair of points X in Cfi,j] and Yink do
if Distance(X,Y) <= D7 then

add <X,Y> to LIST as a near neighbor pair;
end; .

. rewmn(LIST); - o y
end : __
The z'ilgorithm takes, as input, three parameters: the search radius D, the root of the
R-tree, and the study area S. First it puts the points of the study area S into cells accord-
ing to their spatial location. It then checks the closeness of any pair of points between

two adjacent cells (since the distance measure adopted guarantees that any pair of points

within the same cell is a near neighbor pair).

7 The distance measure here is that of "
sion of point X is denoted by X; then
Distance(X .Y)={rsl‘as§l Xi—-Y; i

maximum coordinate” metric. That is if the i-th dimeny-

69

. -3 '
The original algorithm{7], however, constructs cells by using either an array, AVL
trees, or a hash table. The d'rawb'acksvof each approach are: An array structure, although
very efficient in terms of time complexity 7], is not useful for large images; an"AVL

structure does not take pag.ng into account and is not efficient for range search; a hash

, ,
‘-(tfyle may become awkwar. if the data distribution is uneven.

On the other hand, an R-tree ié disk oriented and is a dynamic data structure for
“indexing spatial objects. For point data, a near optimal conﬁguratlon of the R-tree pro-
vides very eﬁicxent performance In terms of both time and space complexity. This state-
ment is supported by two facts. First, a near optimal R-tree with respect to coverage can
generally be obtained by applying packing techniques as discussed in Chapter 2. Second,
zero overlap at the leaf level of a R-tree can theoretically be obtained by rotating the

orientation of the major axes, according t6 the Zero Overi;ap Theorem in [47].

More importantly, the above algorithm can be extended to finding fixed-radius near
neighbors for objects of .nonzero size in a number of aspects. For example, the above

algorithm can be used to solve problems such as: - , '

(1) Given a set F of N objects of nonzero size in a k :hmcnsmnal Euclidean space,

enumerate all pairs of objects within a spec1ﬁcd distance of each other from their

* borders. “

(2) Given a set F of N objects of nonzero size in a k dimensional Euclidean space,

enumerate all pairs of objects within a specified distance of each other from their

centroids.8

8 A minor modification must be made on the statement marked t in the ~rocedure SEARCH so
that only those objects whose centroids fall in E are picked up.

70

The above problems, however cannot be solved efficiently if the previous

approaches are adopted because object oriented scarch is requzred for every cell.

4:1.3. Nearest Neighbor Finding
The problem of nearest neighbor finding first originated as follows:

(P1) [Closest pair.] Given a set F of N points in K- dlmensmnal space find the rmmmum

dJstancc betweenr any two points in F.

To solve this problem it is necessary to solve an intermediate problem. The follow-

ing concepts are nacessary to specify the second problem

Deﬁmtxon 4.1: A hyperr‘u e is nonempty if it contains at least one point in F. The dis-
tance between any pair of nonempty hypercubes, X, Y, is defined as follows.
' D(X,Y)= mm{Dlstance(v)lvex J‘ey}

where the Distance function is defined as before.
The second problem can now be presented:

(P2).[Closest sub-hyperCI}be pair.] Given a. hypercube which is decomposed into a set of
" sub-hypercubes, find the minimum dJstance ‘between any two nonempty sub-

hypercubes.

The second problem can easily be solved, using the procedure FR-SEARCH. How-
ever, the subroutine CHECKPOINTS must be modified to the following:

71

Procedure CHECKPOINTS(i,j,C,D)
begin ,
-if C[i,j] is emptythen return(D);
MD :=2*D;".

for every cell K among 8 neighbors of C[i,j] do B

if K is nonempty then ‘ -

begin »
for every pair of points X in C[i,j] and Y in K do
if Distance(X,Y) < MD then
MD := Distance(X,Y);
© end; .
return({MD});
end

Furthermore, to simplify the algorithm assume that the variables C, 1, 12, J1, and J2 in

2

<

the procedure FR-SEARCH are global variables.

. The algorithm is given as procedure NN-SEARCH. It takes as input three parame-

. .) o
-ters D, R, and §, where D is radius of the subdivision, R is the root of the R-tree, S is the °

5 %

pset to the Diameter(S).
-3 .

, 1e1(S) then D := (Diameter(S))/2 ;
M := min(FR-SEARCH(D,R,S));
for i=I1 to 12 do
for j=J1 to J2 do
begin
Case ,
:D >M and CI[i,j] contdins more than 1 point:
M := min{NN-SEARCH(M,R E), M} ;.
:D <=M and C[i,j] contains more than 1 point:
«M := min{NN-SEARCH(D/2,R E) M} ;
:otherwise: '
do nothing;
end of Case; ’
{where E is a region corresponding to cell C[i,j]}
end; .
return(M);
end.

&

The technique employed in NN-SEARCH is' that of divide-and-conquer [3]; the

method is similar to one previously used by Yuval[63]. The procedure N%SEARCH

72

divides S into a set of subregions, then the shortest d1stance between any pair of subre-
gions (P2) is calculated, ‘using tb procedure FR-SEARCH. The minimum dlstance

between any two points is then obtained by solving (P1) recursively for each Subregion. 4

SLmﬂar to FR-SEARCH, the “We"dre NN- SEARCH is supenor to its previous
counterpart in f number of aspects such as bemg more efﬁcxent and able to’ deal with

objects of nonzero size.

Sy

3
\ ‘

4.2, Region Transformation '
: \

Two algonthrns namely translauon and rotation, for the transformation on regions
rrepresented as an R/Q tree are developed in this section. Both translation and rotation by

a multiple of 90° can be done very efficiently due to the structure of R/Q trees.

vy
anfy

4.2.1. Regjon Translation : o o o g

Since an R/Q tree is essentially an R-tree built on top of a set of quadtrees reglon ‘
) translatlon 1nvo“lwes tmnslatmg the R-tree and the quadtrees. - |

v

£y

\ However since all quadtrees are normalized with respect to translatxon . thegiescrip-
tion of each quadtree remains unchanged after translation. Furthermore since the coordi-
nates of the MBR of the lower level of the nodes in, the R-tree is defined by using. the
address relauve to their parent nodes and the rvIBR of any node bounds all its descendent
nodes see CRapter 3, me only MBR to be rnodlﬁed after translauon is that of the root

nodeoftheRtree S " - \ S s

73

. .
e
& ' i [

It is now clear that the translation of a region represented as an R/Q tree can be done

by one disk access.

4.2.2. Region Rotation

Rotating a point (/ /) by a clockwise angle a about the origin produces a new point

@' Jy:

I'=I coso+Jsin a, .
[J ' Isin otJeos a S SR

Sincc both the R-tree and the quadtree are constructed by nodes parallel to the major

axes, the rotation of a reglom representcd as an R/Q 'tree is dlﬂicult Fortunately, the size |

of a node either in the R.tree or in a quadtree is ihivariant under rotation by multiples of

90° about the center of the imé.ge. Thus, decomposing a quadtree node into smaller ones

-

oo - , . t)
and reconstructing the whole R-tree is not necessary. In the following, an algorithm for -

- rotating®an R/Q tree by 90° about the center of the image is dev'elop%d.

‘ : <
The rotation of point (7) by 90° about the center of the image is achieved, however,

by three processes infequencc: translate the origin to the center-of the image; rotate Qy

Y

pixel by 90°, using formula (4.1); translate the origin back. = f

SRS VR

Step 1. rranSlating th‘e;_orig'in to the center of the image

<,

Lct thc resolution of the i unage be n. After translatmg the ongm to thc center of the

o 1rnagc coordinates (/) become: (X Yy glgn by

b

L . ’)

X=[—2"_1 g N))) /
Y=yt o PP _ (4.2)

kb

- »

Step 2. Rotating 90° in a clockwise direction . .
a)

Let (X"Y") be the ne'w pixel genera'ied by (X .Y), then by (4.1) :

X'=y)

rex | | 4.3)

Step 3. Translating the origin back

. Let ¢'J") bé the new pixel generated by (X',v", then
¥ ' °) _ '
I'=x"s20-1 , »
[J =Y'+2n - @
Combining the results of (4.2)-(4.4, yields the formula for rotating a point (/ /) 90°

around the center of the image as follows:

= - R - :
[J =27 : @.5)
The rotation of a block, on the other hand, is achieved ‘by rotating ever); pixel inside

the block. However, since a block is determined solely by its vertex, only the vertex

-,

need be con51dered

Let P be a block to be rotated and Q be the new blocklgenerated by rotatmg P. Let
Plb, PI: Prb, and Prt be thc left bottom corner left top corner, right bottom corner, and
right top corner of P respectively., Then the clockwise rotation of 90° about the center of

the image maps Plb Plt, Prb, and Prt onto Qit, Qrt, QIb, and Qrb respectlvely

X
A

75
4.2.2.1. Rotation of an R-tree Node

By Definition 3.1 each nbode in an R-tree contains entries in which the first part is

' the smallest-rectangle that’ spaﬁally covers the child node (or the object), with éach
minimum bounding rcétanglc represented as a four tuples (x1,Y1x 2,Y2), where (X1,Y1)
and (X2,Y2) are the left bottom corner and tﬁc right top comer of the corresponding

minimum bounding rectangle.

Suppose (X1,Y1,X2Y2) is the description of the minimum bounding rectanglé for
node P and (X1,Y1'X2,Y2) is the description of the minimum bounding rectangle for
node Q, then ,

X 1'=Qlb,
=Prb, (By (4.5))
=Y 1. '

Y I=Qlh, | v |

=2-Prb, (By (4.5))

=2*-X2.

X2'=0rt, R -

=Plt, (By (4.5)) . 4
) =Y2. - o |

> '))))
' Y 2'=Qrt, \

2Pl (By (4.5))

=2-X1 -

/,..;yk X

4.2.2.2. Rotation of a Quadtree Node

4

Unhke R-trees, a node in a linear quadtree 1s represented by its key* together with

the resolution parameter By Deﬁmtlon 2.12-2.15, the coordinates of the left bottom

pixel of P is
(Plb, ,Plb, =(OD (P.KEY),E\;' (P.KEY)).
Then:
Qlb.=Prb, (By (4.5)) \
=Plb,
=EV (P.XEY))

Qlb,=2"-Prb, (By (4.5)).
v , 2
Since Prb, is 2°~1 pixels apart from Pib,: g
' 2 - - y
Qlb,=2"-2"—OD (P.KEY)1’ » v

&

Thus, . 7
QKEY=SH (EV('P KEY)28 25— OD(PKEY)+1)
'QRES=P RES,

The foHowing algorithm rotates a region by 90° in a clockwiee direction around the
center of the image. The algorlthm conélsts of two parts con'espondmg to two procedure
called ROTATE and ROTATEI[12] The i input of the _procedure ROTATE is the root . |
of the R/Q tree and an mteger correspondmg to.the resoluuon of the image. It generates -

o the new R-tree nodes recursively and at the leaf level of the R-tree invokes ROTATEI to

_generate the new quadtree nodes.

SRGI

WIRC

77

Procedure ROTATE(R,n)
“begin
for i=1 to R. VALID do
begin
Temp := R.DESCI[i]. X1;
R.DESC[i].X1 :=R. DESC[I] Y1;

. RDESC[i].Y1 := 2%* - R.DESC[I]
R.DESCJi].X2 := R.DESC[i].Y2;
R.DESCIi].Y2 := 2**n - Temp;
if R.CLASS="leaf’ then

ROTATE1(R.DESCYi]. POINTER,n)

gise |
ROTATE(R.DESC[i]. POINTER,n);
; end -
. end.
"@ u ’ o ‘/.
e Proced—ure ROTATEI(Head n)
P begin
L Q-liste={};
while not eof do '
PO begm .
L | = NEXT%(Head); 43 LIy
AT @&EV(NKEY)M %
J 1= 2%%n 2 2%*N RES %'_?, (N KEY)+1 + oﬂ"set(Y)
add pair <SH(,J),N.RE8¥to Q-list;
reconstruct B-tree or hashing ta,ble from Q-list; .
¢ end; . . '
. 4.3. Set-theoretic Op_érations -

Diregt s anal search on plctorxal databases often requires erfonmng set operauons
;ﬁ P q P

Bda "
Fi
Rl

ane examplesm spatiaI databases and (CAD) appl1cat10ns [471.

SR

© Set operations may«occur éither N the prumnve level or, at the object level. In the
former case, a set of primitives for represenu g Ob_]CCtS is obtained by the union (mter- ‘
secqpn) of two reglons Smce the low level structure of an R/Q tree 'is that of a lmear

quadtree th@?et\ operanon algonthms for lmcar quadtrees dlrcctly support éﬂiment set

operatlons for an R/Q tree at the pnrmuve level and these algorlthrns can be ea511y con- ‘

e

78

'S

structed from the algorithms in [12,36].

In the following, however, the set algorithms are presented at the object level The

problem is pre01scly formulatcd as follows:
4

i ——
— leen two sets of pictorial objects, find the union (intersection).

L

&

4.3.1. Union Operation

.

The R/Q tree representation is especially efficient for performing the union of
several sets of spatial objects since only the high level structure, the R-tree, needs to be

examined. ' ,

‘Let R1 and R2 be R-trees for each set of spatiil objects. The union of the two trees

is obtained by the following procedure termed UNION. For any given root of an R-tree,

. R, the function NEXT-O(R) returns tﬁc next objects in the R-tree. Since the order of the _
: objects.i 1s ot important, the function NEXT-O can' be accomplished simply by following
a chain of linked lists. Furthennore the test condmon for the while loop can also be per-

formed efﬁmently, using the algonthm SEARCH

Procedure UNION(RI R2) -
begin A
wlgle not eof(Rl) do
egin -
- O :=NEXT- O(Rl)
if O is not in R2 then
INSERTION(R2 O),
end; , *
rerum(RZ) LT
end _ S N

79
4.3.2. Intersec’ti‘()'n"()peration

Interscctton of two sets of plctorxal ochcts can bc accomphshcd by a slight
rnodJﬁcauon of thc prev10usly statcd algonthm umon Thc same ochcts in both sets are

3 picked up, then proccdure PACK is used to construct an R- tree for them.

Procedurc INTERSECTION(RI ,R2)
begin
LIST :={};
while not eof(Rl) do
begin
O := NEXT-O(R1);
if O is in R2 then
. add O into.LIST;
end;
rcturn(PACK(LIST))
‘end

4.4. Conclusion

1
In summary, a set of algorithms has been developed in this chapter to justify the .

proposed data structurz;.‘ ;Tvgg issues are addressed in this chapter: the spatial data segrch
and mampulatlon “THe followmg three main characteristics of an R/Q tree supports the
‘ achlevcrnent of the goal bemg able to efficiently support the retrieval of spatial data, the

- hybrid nature of the structure and faciliting a compact reglon representanon

-

[

—~r

’
A

.Cha_pter §
CONCLUSIONS (5

~ This thesi¥is.goncerned with data structures for spatial data and in particular search
and mampulauon Two types of data structures, one for region representaﬂon and another
for spatlal data search were reviewed. In the first class, data structures such as cham
codes, medial axrs transforms and quadtrees were discussed with emphasis on linear

quadtrees. Furthermore for large 1mages two file schemes a B*-tree and order preserved

| extend1ble hashing (or its vanatle%zs) for organizing a linear quadtree were presented and

compared Hashmg schemes we@shown to be superior to B*-tree schemes for most

‘cases since they save memory space on one hand, and allow- 0 (1) direct access in

. retrieval of a record on the other hand. A B* -tree, however IS shown to be useful when

data distribution is uneven since it suppons

-accesses in the worst case, where n 1s)the numbc taf the records in the file. In the second

class data structures such as cell methods q k-d trees, k-d-B trees, index inter-

yals, and grid files were shown to be inadequ’é' >4 several respects for handling object

_oriented spatial searches for mulu dimensional spatial data of nonzero size. On the other

hand, R-trees were shown to be a better chorce for such applications.
- _, \n‘
If spatlal data of nonzero size is distributed in a mult- d1mensronal space then the

second type of su'ucture should also be able to represent regions, In other words a dara

structure which handles features of both types is'mandatory. For this reason, a hybrid

data structure caUed an R/Q tree for region representanon has been presented, and vari- -

ous operanons on muges have been developed 10 suppon the data strucrure.

'I‘he hybnd dara strucmre has been deveioped based on both a linear quadtrec and an

R -tree.. R/Q trec.s are intended 1o’ combme thc best features of both, :md to have g more

80

"’-tneval of a record with 0 (logn) disk

T

) 5% ,;: ‘ 81

efficient representzh\i‘on in terms of both the storage requirement and in addition the cost J

for various operations. v

At low level, an R/Q tree retains the advantages of linear quadtrees, i.e., it is very
compact in tcytns of the storage reqmrement, and facilitates low level mﬁe operations as
well as)he calculauon of various geometncal properties of an object. On the other hand,
from the structure of an R-trce an R/Q trce can retrieve spatial data quickly according to
its spatlal location. Ernpincal results demonstrate that range search in an R/Q tree can be
performed efficiently. Therefore, at a high level description, an R/Q tree ;utperforms
previous data structures for region represcntation in the sense that it is capable of han-

—

dling regions which contain objects having nonzero size. For instance, By using an R/Q

. tree, many prev1ous algonlhms for point. data processing can be extended to deal with

spatial ob_]ects w1th nonzero size. In particular, the algorithm for fixed- radxus near neigh-

" bor searching is superior to the one proposed by Béntley [7]. By the same token, the

algorithms for nearest neighbor ﬁnding and'set operations share the same advantage.

<
Pl .

Another important featurc of the proposed scheme is that an R-tree represedts a

reglon as a collectlon of normahzcd qnﬁdtrces each of which corresponds an Jbgect in

: the reglon Many advantages are gained from the narure of this structure. | ¢

R

- First of all an R/Q tree is less scnsmve to the distribution of-data. Since most &f ;@. 7

dead space is not there, daLa dlstnbuuon for each object is expected to- be even. Furfﬁ
ermore, any non- umforrmty of the data dlstnbuuon aﬁ'ects the ﬁle stmcmre only locally _‘)

rather than for the enun, smdy area. Thus -An most cases a hashmg schemie can be

o orgamze the lmcar qmdm,e data

~ -

“

" ~

82

Sy

translation of a region represented by an R/Q tree can be accomplished by one Bisk
access as shown in Chapter 4, and object comparisons such as template matchmg and

pattern recognition can be performed efﬁ01ent1y
)

Finally, an R-tree entails space efficiency. The fact that in most cases a hashing
scheme can be adopted implies a considerable saving in space for constructing the index
which is needed if a B-tree scheme is chosen for the image. In addition, if the same
object appears at d1ﬁ“erent positions in the image, only one copy of the description is

necessary.

s

L)

As a disk oriented scheme, an R/Q tree is particularly useful in many real world
apphcauons where the spaual data is volummous since nodes in the R/Q tree correspond-
ing - disk pages of reasonable size can be chosen to produce; good performance. ‘With
~ smaller nodes, however R/Q trees should also be effective. as a main memory scheme
since CPU performance would be comparable with prev10us data structures.such as quad-

trees.

Although R-trees have many appealing advantages, they are not without problems
For instance, an increasing number of applications, such as mforma{lon Or reservation
systemns, reqmre concurrent access to a file system. Concurrency control is complicated
in R/Q tree structures because the root is a bottleneck shared by all access paths If a.pro- -
cess has the potential of modifying the data structure near the root (such as insertion or
-deletion in an R-tree), other processes may be slowed down by the adherence to locking
protocols even if they access d1$Jomt data. Another problem with the structure is that
. ~'some deterxomnon in performance during and %er update To prevent performance

detenoranon any modrﬁcanon mdde to the primitives of an Ob_]CCt necessitates a re-

insertion in the R-wree; furthermore, the delenon of an object in the regxon may involve

83

many re-insertions to take care of underfull nodes in the R-tree.. Thus, the maintenance

of an R/Q tree can bc difficult.

Future work can be divided into two general classes: theoretical developments, and

practical implementations. In the former category, the expected performance c;f an R/Q

. tree should be investigated. In édditior%, as hash methods have the property that access
paths to separate buckets are disjoint, th‘us allowing simpler concurrent control protocols,

the possibility of using a hzishing scheme to index spatial objects of nonzero size should

. als‘o be studied. The problem is how to represent a rectangular block as a k-dimensional

fﬁ;‘ key in a way that is convenient for range search ‘using a hashing scheme. In the later
- + category, simulation based on real data should be attempted.

' v
Pl . . ¥
1, .

.{\7-

(1]

[2]

Bibliography o

Abel, D.J. "A B-Tree Structure for Large Quadtrees", Computer Vision, Graphiés,
and Image Processing, Vol.27, pp. 19-31, Jul. 1984,

AAbel, D.J. and Smith J.L. "A Data Structure and Algorithm Béscd on a Linear Key

for Rectangle Retrieval Problem", Computer Vision, Graphics, and Image Process-

(3]

4

(5]

(6]

ing, Vol.24, pp. 1-13, Oct. 1983,

Aho, A. Hopcroft J. et al. The Design and Analysis of Computer Algorithms",

Reading, MA: Add{son -Wesly, 1974.

Bauer MA "Note on Set Operations on Linear Quadtree" Comp .:z- Visio_n

Graphzcs Image Process., Vol 29, pp. 248-258, Feb. 1985

Bayer, R. and McCreight, E Orgamzauon and Maintainnance of Large Ordered In-.
dices"; Proc. 1970 ACM- SIGFIDET Workshop on data Description and'Access,
Houston, Texas, pp. 107-141, Nov. 1970.

Bentley, J.L. ’\'}Multidimcnsional Binary Search Trees Used for Associative Search-

. ing", Communications of the ACM, Vol.18-19, Pp. 509-517, Sep. 1975.

(7]

(8]

Bentley, J.L. Fnedman JH. and Wllhams E H. "The Complexny of leed radius
Near Neighbor Searching", Inf. Proc. Ler., Vol. 6, pp. 209-212, Dec. 1977.

Bentley, J. L. and J. H. Friedman, "Data.Structures for Range Scarchmg r”ompur

ing Surveys, Vol. 11, pp. 397-409. Dec. 1979, .

84

. ' . 85

[9] Bwkhard, Walter, A. "Interpolatlon Based Tidex Maintenance", BIT, Vol. 23, pp.
%274-294 1983.

[10] Chang, S.K., and Kunii, L.K., "Pictorial Database Systems", JEEE Computer, Vol.
| 14, Nov. 1981,

[11] VComer, D. "The Ubiquitous B-tree", Computing Surveys, Vol. 11, pp. 121- 138, Jun.
9,

:

[12] Davis, W.A. an(i} Wang, X. "A New Approach to Linear Quadtrees"”, Technical Re-
pmﬂRM@iMwMWMM&mJ%i

[13] Davis, W.A. a.nd Haung, C. H, "File Organization Schemes For Geomrtric Data"
Technical Report TR 85-14 Umversny of Alberta, 1985

[14] Dyer, C.R., Rosenfeld, A. and Sarnet, H. "Region chresentation: Boundary Codes
from QuadUces", Co}nm. ACM, Vol. 23, pp. 171-179, Mar. 1980.

[15] Dyer, C.R. "The Space Efficiency of Quadm:es Comput Grfzphzcs and Image Pro-
cess., Vol. 19, pp. 335-438, Aug. 1982.

{16] Fagin,R., J.Nievergelt, N.Pippenger and H.R.Strong, "Extendible Hashing - A Fast
Access Method for Dynamic Files", ACM Trans. Mathcmatical Software, Vol.3,
No.3, pp. 209-266, Sep. 1977.

~
-

: . #
[17] Finkel, R.A. and Bentley, J',Lr. Quadtrees: a2 Data Structure for Retrieval on Compo-

site Keys", ACTA-Informatica, Vol. 4, pp. 1-9, 1974

86"

\{18] TREE", Beqcht Nr 71 E1dgcnoss1sche Techmsq:he Hoghschule (ETH) Zunch
watzerland 1983.

»

[19] Gargantlm I. "An Efﬁcwnt Way to R}epresent Prop;nes of Quadtrecs" Comm.
. ACM, Vol. 25, pp. 905-910, Dec. 1982.

[20] Gafgantim’, L. "Translation, Rotation and Superposition of 'Linear Quadtrees", Inr. J.

Man-Mach. Stud., Vol. 18, pp. 253-263, Mar. 1983, "

(21] Gargantini, I. "Detection of Connectivity of Reglons Usmg Lmear Quadtrees

Comp. & Marh. WzthAppI Vol 8 pp 319: 327 1982. “ -
; [22] GIHCSPIC R. and Dav1s W A. Tree Data Stmctures for Graphics and Image Process—
‘.r"'/‘ ing", Proc. Canadzan Man Computer Commumcanon Soczety Conference, Water-

oo, . Ontario, pp, 155- 162 , 1981,

23] Guttman A. "R-Trees: a Dynamxc Index Structure for Spaual Searchmg",bACM- _
- SIGMOD Proc. of Annual Meeting, Vol. 14, pp 47-57, 1984.

[24] Hunter, G.M. and Steiglitz, K. Operauons on Ixmges Using Quadtrees" IEEE
. Trans. Pattern Analy. &Mach Intell., Vol. PAMI-1, pp 145-153, Jul 1979

[25] Hunter, G M and Stexghtz K "Lmear Transformanon of Pictures Represented by

Quadtreee Comput Graphics and Image Process Vol. 10 pp. 289-296, Jul. 1979
. gJ ‘ : N
[26] Johes, L. and Iyengar, Space and. Txmc Eﬁiment Virtual Quadtrees” IEEE Trans.

Pattern Anal. Mach. Intell. » Vol. 6, No.2, pp. 244—247 1984!

’ e I o 87

,

[27] nger A. and Dyer, R.C: Expenments on Plcture chrcsentatlon Usmg Regular

Decomposmon" Comput Graphzc and Image Processmg,

Vol. 5, pp. 68-105, Mar.
1976. | .

~e

[28] Khngcr A., Rhodes, ML and Omolayole, J. Image Data Orgamzauon Proc of

Sﬂn Diego Bzomedzcal Sym Vol. 35, Ncw York: Academlc press, pp. 175 180,
‘
" 1976. . T L

~ [29] Klinger, A., Rhodes, ‘M.L and Omolayole,
Data-by Areas",
1982.

J Orgamzatlon and Access of Image
IEEE Trans. Pattern Analy & Mach. Intell, Vol 20 pp 72-81,

| *[30] Knuth; D.E. "The Art of Computer Programrmng"

Vol. 1&3, Addison-Wesley Pub-
lishing company, 2nd Edition, 1973

[31] Lamon, Per—Ake, "Dynamic Hashing" BIT Vol.18, pp 184-201, 1978

[32] Li; M. Grosky W L. and Jain, R. Normahzed Quadtrees with Respert to Transla-

tions", Compur. Graphics and Image Process Vol. 20, pp. 72-82, Sep 1979,

[33] L1tw1n , Witold, "Vu’tual ‘Hashmg A Dynaxmcally Changing Hashing", Proceedmgs

4th Internatzonal Conference on Very Large Bata Bases pp. 517- 523, 1978.
. , J

[34] thwm W1told "Llnear Hashlng ‘A New Tool for File and Table Addressmg"k

Proceedmgs 6th Internanonal C. onference on Very Large DataBases pp. 212 223
- 1980. R

.
i

- 88

[35] Nievergelt,J., H. Hmterberger an&K C.Sevcik, "The Grid File: An Adaptable, Sym-
" metric Mulukey File Structure”, ACM Trans. DataBase Systems, Vol. 9, pp. 38-71,
Mar. 1984. '

[36] Mark D.M. and Lauzon, J.P. "Lmear Quadtrecs for Geographic Informauon Sys-

tems" Proc Internatzonal Symposium on: Spanal Data Handlmg, Vol 2, pp. 412-'

430, Zunch Sw1tzer1and Aug 1984,

[371 Morton, G.M. "A Computer Onented Geodetic Datd Base and a New T'echmque in
Flle Sequencmg" IBM Canada Limited, U(zpublzshed Report, March 1966

-

[38] Peuquet D.J. "Data Structures for Spatial Data Handhng Internatzonal Symposzum
' on Spcyzal Data Handlmg, Bacﬁground Matenal to Workshop W2 Zunch Swrtzer-
land, 20-24, Aug. 1984, - . ‘

.

(39] Pfaltz, J.L. and Rosenfeld, A., Computer Representation Qf Planar Regions by their

3

Skcletons » Communicatioks of the ACM. Vol. 10(2), 1967, pp. 119- 122. 2

[40] Robinson, J.T, "The K-D B Tree: A Search Structure for Large Muludrmensronal
| Dynamic Indexxs ACM SIGMOD Conference Proc pp 10 18 Apr 1981 |

[41] Rosenfeld A and Pfaltz J. L, Sequentral Operanons in ngltal Picture Process- Lo
lng Journal ofthe ACM, Vol. 13, pp 471-496, 1976 R
[42] Roseneld,. A, and Kak, A.C,, "Digita} Piciﬁfe""ProgessinggmACadSsz'c Press, New

s

 York, 1976. N R e =T

89
[43] Roscnfeld, A, "g'ree Structures for Region Representauon" Comput Graphzcs and
Image Process., Vol. 11 » PP- 137-150, May .1980. . S °

[44] Rosenfeld A "Survey Picture Processing: 1981", Comput. Graphics and Image
Process., Vol. 19, pp. 35;75, 1982. B B

[45] Rosenfeld, A. "Survey Picture Processing: 1982" Comput Graphzcs and Image
Process Vol. 22, pp 339-387, 1983

[46] Roscnfeld A "Image Analysis: Progress Problems and Prospccts Proceedings of
the Oth International Conference on Pattern Recognztzon Vol 1, pp, 7-15, Munich, ,

Germany, Oct. 1982.

[47] Roussopoulos N. andLeifker, D. "Direct Spatial Search on Pictorial DataBases Us.-
| ‘ ing Packed R- Trees", Proc. of ACM—SIGMOD International Conference on
ManagementofData Vol. 14, pp. 17-31, May 1985.

"

)
L,

A ""/

4 7

(48] Samet, H. Reglon Representatlon Quadtrees ﬁorn Bmary Arrays", Compur.
Grap}ucs andImage Process., Vo} 13, pp. 88- 93 1980

[49] Samet, H. "Région Reprcsentaﬂon Quadt:rees from Boundary Codcs" C'otnm. ACM,
Vol 23 pp. 163- 170, 1980 2 o

[50] Samet, H "An Algorithm for Converting Raster to Quadtrees", IEEE Transaction

on PAMI Vol 3(1) Pp. 93—95 1981

- [51] Samet H. "Quadtrces and Mcd1a1 Axis Transforms Procedzngs of the 6th Interna-
tzonal Conference on Pattern Recognmon Vol.: 1, pp. 184—187 Mumch Germany, ’
Oct. 1982,

[52] Samet, H. "The Quadtree and Related H1crarch10al Data Structureskl Computiné
Surveys Vol. 16/)p 187-260, Jun. 19&4 | 4 -

. 4
. [53] .Shaffer, C. A. and Samet, }’I "Optimal Quadtree Constructior "Algorithms", Cpm-
puter Vision,\ Graphics and Image Processing, Vol. 27 -pp. 402-419, Oct. 1987. /

[54] Samet, H. and et. al., "Recent Devélopments in Linear Quadtree-Based Geographic |
hlformation‘,Systcms", Image And Vision Computing, Vol. 5, No. 3, PpP. 187-197,
1987. ' '

[55] Shapiro, L.G., "Data Structures for Picture Processing: A survey", Computer Gr&ph#
ics and Image Processing, Vol. 11, pp.162-184, 1979, |

\,,

1561 Shneier, M. "Note: Calculdtions of Geomctnc Propertles Usmg Quadtrecs" Corn;

put Graphzcs and Image Process, Vol. 16, pp. 296-302, Jul 1981

‘['57]' Stonebraker et al. 'Apphcatlon of Abstract Data types and Abstract indices”, En-

gineering Design and Applzcatzons Database Week, ACM-SIGMOD San Jose May
pp. 23-26, 1983. ‘ ‘

-y

. . . A
[58] Tamnnnen Markku‘ "Order Preservmg Extendible Hashmg and Bucket Tnes" BIT
Vol 21, pp. 419- 435 1981

N4

@'

91

[59] Tammoto S.L. "A Companson of Some Imagc Searching Methods", Proc. 1978

IEEE Computer Soc. Conf on Pattern Recogmtzon and Image Processmg, pp. 280-
286, Jun. 1978 '

)

[60] Tang, G.Y., , "A logmal Data Orgamzanon for the Database of Pictures an Alphanu-
' mencal Data," IEEE Proc. of the Workshop on chture Dara Del'erzptzon and

S

Management Asilomar, Cahforma Aug 1980

[61] K C. Wong and M. Edelberg, "Interval I—herachles and Their Appﬁcanon to PI'Cdl-

cate Files", ACM Trans. On Database Systems Vol 1-2, pp. 223- 232, Sep. 1977.
[\

[62] anht W E., "Some Average Performance Measures for Lhe B-tree", ACTA infor-
madtica Vol. 21, pp 541-557, 1985

\ [63] Yao A, "On Random2 3trees" ACTA mformatzca Vol. 9, pp. 159- 170, 1978

Lokl

v

Appendix A
_The Storage Utrllzatlon of R-Trees’

+

The storage utilization ratio of R—trees can be controlled by settu}g parameter m,
M2 J sms.M where M is the number of entries in each node To compare the storage utili-

zation of an R-tree Wlt{l a B-tree, however, a specral case: m=M 12 is studied. - o f

h Y
: Obviously, the minimum storage utilization is 50%(exclurﬁng the root) which is
" exactly the same as that of B-trees. In the following, an average performance measure for

- R-trees with respect to storage utilization is presented.

-

- The result of the storage utilization of .an R-tree is obtained with the-aid of the fol-
lowing lemma. - ‘ -

\ Lemma 1 Let Eandl be the number of external nodest and the number of mternal nodes

in an R -tree, a be the average fanout per mterna.l node The followmg relatlonshrp 1s true

‘ o (a—l)l-E 1

-

Y o i ; *

Proof Suppose the helght of the R tree is b, the number of node in the 1th level of the_
tree is N!, the average fanout per node among the nodes .from the 1th leveI is B,, and the

| average fanout among the node§ from the ﬁrst level to nh level is o.

s

Obviouslyﬂ,, X
\ 2BiN; . - ; ' L E
N . - L N
= , | PR o
Ni=BiiNi-, ' A S b - (EQ.Lb)
the lemma will be proved by induction on h as follows, o ' '
fa 0 ‘

Let h=2, then . - L .
¢ .
I=1 ‘
s
L . E= the fanout index of the-root node |

Smcc thcrc is only one internal node,

| \

Thérefog;,

Y

o = the fanout index of the root nodé

(-1 =a~1=E -1,

?

" Suppose the formula is true for h=k- 1 it is necessary to prove it is also true for h—k .

Since an R-free is hexght balanced any node from ﬁrst level to (k l)th level is an -

1nternal node and all nodes at lcvel k are extcrnal nodes that is

. Therefore,

S =
(@-DI=3B;N;~I
=

k=2

" ,“‘EB/N +Bk-1Nk-1—EN —Nk_x AR -
R J=1 L j=1 :) .

a

J=1

L(&?}l) SN+ IN,,_I—-Nk 4 (BYEQ. La),
By 1nduct10n hypothesm : o

o ' (a—l)l’aﬁn?;;l—I+B,:_1Nk;.‘1-;Nf.,Aj.‘
Therefore, | _ N - _
’c\a;nz=rsk-lzv'k-a;-1—42,_v;—_1 §EQ Lo,

T

94

.

Suppose the R-tree has been generated from a sequence of random insertions. Let

“J n denote the number of obJects in the tree, and By, i=0,...;m, denote the expected

number of nodes of fanout m-+i on the botton1 level of the tree

- Suppose an insertion is to be naade randornly into "'the region, then the probability
of an object appearing at any posmon in the study area is equally hkely Funhermore
assume that-the probability of an Ob_]CCt close to any other object is the same. Although
the later assumpuon does not take the size and shape of .the objects into account, it
seems plausible because for large i Images the position of the ObJCCtS tends'to be a dom-
‘mant factor in determining the closeness of the spatial objects, and the size and shape

of the ObJCCtS are relatively less significant.

On the other hand, according to the procedure H\ISERTION in Chaptcr 3 the
obJect 1s always put into node, that will lead to the ledst eniargement This implies that
the objects that are spatially close to- each other will hkely be clustered together.

Hence, the probability’ that a random insertion will fall in a node of fanout i+m is |

(m+i (m+i)B;,

i -, by the assumption. Furthermore, a insertion will result in a decrease of 1 in .

' the number of nodes of fanout i+m, and increase of 1 in the number of nodes of fanout»

’ f‘m+1+1 In casc of}a spht the i 1nsert10n will resul: int a decrease of 1 m the numbcr of . o
nodes of fanout 7m and an increase of l'in 'the number of nodes of fanout m+1 and of |

11 1n the number of nodes of fanout m respectlvely

chce, have_ the following relationships folloev: S &
o 1 |
“ “ Boﬁ+1=3m+m(3m2m—30um)

1. ’
s BlJl+l.=BOA‘+n-—+l" [B‘m.2m—30nmv-:31.(m+1?_J .

N X : BiJH.l:Bi“*;‘lTl— [B,'_l;,! (m—l-H)—B,, (”I’H)] i=.2,...,m

b} ' _ .- . 4

95.
. s) . -
Denoting by B (n) the m+1 component vector Boa. ... ,B,,.,.?, the above €quations can be.
written in matrix notation as - . | R ‘ |
B(N)= [1+NLD'}B(N—I) | _ - - ®Q.2)

where 7 is the (m +1)x(r_rz,+1) idéntity matrix, and D is defined by -

o m —-(m+l) 0 o 2m
_D =10 ‘m+1 —m+2) --. @
0 B e 2m-1 ~2m |

., with zefoes elseiwhere,

To solve recurrence V), define am+1, component Qgctor b(n)=(bo. wesbmn) DY o ‘
B, | - -
n+l a \ 4 '
Equanons (2) and (3) yield to the followmg relatxon

- L C(EQ3)
; b(N.)= [I+Nl;1—(p—{)}b(N—1).

The charactcﬁstic polynomial C(X) of D-1is comﬁutcd to be

-

| C (l)=(-)”“"I(M-Zm +l) [H(}&m +i)—H(m +H)],

i=] N

1

Therefore as shown in [28], the elgenvalues are 0 and m other distinct va.lues havmg 7:

negative real parts and th. ‘(ISIS a column VeCtor u=(u,, . . . ,u,)T such that

Climb (n)=u | o ’ o - (EQ. l4)‘

| O-Nu=0.
That is: ‘ »
’ -—(m+l)u0+2mu,,,=0

Ho~(m+2)u \+2mu, =0

o | . © 96
"-;J ‘ (m+1—12/u,_1—(m+t+1)ﬁ,=0 for l<z$m
Solvin;g.‘thé,rccurrence yields
S S
- 2m@2m+1y
U(mH)m+i+1) ™
e sl . EQS)
AT im

On the othér hand, the total number of objects n satisfies the relationship is: -
=3 (m+i)Bi. -
) i=0 o
"Thus | ' . | :)

n
n+l

m T, Biul
e

n

5 (m+i)by =
i

n+l L

lim E(m +i)b;,.=2(m + =1,
e i=0

“Substituting’s; with equation (5) yields:

mom(@ml) %

1= ‘
S\m+ivn) 7 \

- 1
’ .- = 2m+1 -
' ‘ -2'."(*)u"',-‘_‘:’om+i+1

=2m (2m+1)(H 2m +-1'5—H (m+u,,,

where
. k 1 ’
 H@E=T, for izl
. i=] :
Therefore
e 1 ‘ |
" 2mQ@m+)H @m+)-H (m+1)] -~
and 4
U=~ 1 . :
' (m+i)(m+i+l)(H(7Jn+l)—-H(m+l)) : . ™
1 » i=1,..m. ' ' (EQ. 6)

| f‘°=(m+1)(2m+1)(H(2m+1)—H(m+1))

.-

. .) » ‘. . - B | (.
-v The storage utilization of of an R-tree is calculated by followmg forrnula '
car By :

-

Z(m-ﬂ)B‘,. L _— \
S— v" . . :
Qm):B,,.+2mR

i=0

where R _denotes the number of mtema.l nodes irv the R -tree, and o denotes is the ave

age number of fanout per mtemal n@ S

r.

‘Y\x

v
-

Hence, we have the following relationship, by Lemma 1. -

!

Nl

 (@-DR=Y8;,-1,

.
S Ba-1
=)

R= o-1 ' B

i

ao:.B SR
>:<m+z)a.. “ o |

S=,' ~— L))) * e) “‘v,;r, -
m’th+~L S .

i=0 ~,Q“1A '

-E(m+z+—)8,,

a-1 m(a—‘) @ R

7‘
2[lt—— 3B, -2 T
(+a JE " o

cL—l

Smce every node except possxbly the oot must contam at Jeast m- keys azm is ‘gen-

erally true for Iarge R “trees. Therefore

o ~ .—‘— 1 N
e ; OSAJI:IP»- (1—1 Sn.lnllTa- m-t =0 ‘ s T
' ;E(m—f—l'*‘l)B . o)
lim §=fim —0 S
AR e . L ZZBM , T v o R
. l=0 . . C T)
——}:(m+r H)b '
’ . m|=0 . o .
. =l (By EQ. 3)
N Y _ . '

25,
i=0

Therefore,

/

¥

Ve

v =lim
1N

LS meietyy .
LT Y s o
=lim;— —— ‘ (By EQ. 4) 3

D m
S im0

m+i+1 g
;'iim» i=0:m+i)(m+i+1)_, (By EQQ'S)
"7 2amY (i Ym+i+1)
o im0

‘.
S B
b)

i (m+i)

¢ =lim -

ety I 1
%E[(m#) (m+i+1)]

_HQm)>H(m-1)

N T

"*.(2m m (2m+1)]

D
~

oY

i HQ@m)Y-H(m-1)
= im = 2m+1)
Qm+1)

' =lim [H(M)—H(m—l)Lw;@;\) A

=in2,

=

N Iim S=In2=0.69315
LY. T

That is the storage utilization of an

“ oo : :

R—frees 1s comparable with that of a ~B—1tree[59].

3

98

(3

Appendix B
Comparisops Between an R/Q tree and a B/Q tree

" To hlghhght the ‘advantages of an R/Q tree in spatial search, two typical kmds of
orthogonal rangc query are consxdered with respect to .a selected data set. The com-
parison is made between an R/Q tree and a quadtrce with a B tree mcorporatcd (denoted.

as a-B/Q tree).

Con51der the data shown in Figure B.1-3 and a rectangular search area, I, in Figure
B.4. Suppose the R/Q tree and the B/Q tree are used as the implementation paradigm
respecttvely Also assume that the maximum fanout M and minimum fanout m are 3 and
1 respectively. This would be highly unhkely In any real application, but this assumption
makes the data structures possible to be handled manually Furthermore, to simplify the
dlSCUSSlOIl the Iow level quadtrees in the R/Q tree are not normalized. Finally, to be.con-
\ vincing, B/Q trees are adopted to orgamze the low level quadtrces in thc R/Q tree instead

of hashing schemes.

Followmg quadtree blocks are obtamed from the data
<0,1,C>,<4,1 C><80D><9OC><100D><11 OA>
<12 0, A> ,<13,0,B>,<14,0,A>,<15,0,A> ,<16,0,A>,<17,0,A>,
<18,0,B> <19,0,A>,<20,1,A>,Q4,0,B>,<25,2:>,<26,0,A>,
<27,0,A>,<28,1,A> <32, 1,D>,<36,0,A>,<37,0,A>,<38,0,D>,
<39,0,E>,<40,1,D>,<48,0,E> ,<49,0,A>,<50, O E> <51 J0,E>,

<52,1,A> <56 1LE>,<60,1,A>,

99

100

AlAAJAJA|A]ATA
k AlAJAJAA|A[A]A
A AlA|A|A|AJE|EIE
B AIB|/B|A|E|E|E[E
CICIB|A|A|E]|E|E
BE C|CIA|A[A[DIE[E
C ' - CICiC|A(D[D|[D|D
D c/c|p|p[p|D[D|D
‘ ,
(1) The Originél Data set (2)-An Array Representation
AAlA A[A A[A A
AAlA AlA AlA A
AlA|A|A|A|E]E E
A|B|B(A|E|E|E E i—i—ii
C C|B|A|A|E|E E | !
C CIA|lAJA[D|E E | !
CC|C|A|D D|ID D
CCDDDDDD
(3) A Maximal Block ’ (4) A Rectangular
Representation Search Area
e ;

v Figure B.1. An Data Set And a Search Area

)

The corresponding R/Q tree and B/Q tree, therefore, are contained in Flgure B.2 and
Figure B. 3 respecuvely In th1s example, the storage requirement for the R/Q tree is 20
pages while the storage requlrement for the B/Q tree 1s 19 pages.

o

= . ' e
101 .
hl .
1
43,.] . /. 60, f“‘n.‘
1
/ g ’ °
) . P18, | - . 52,1 12,
0 : 0 - 0
» - 3
e 24, 49, - 113,
~ 0 / 0 1]
J
l y
1 A 22 v 1 2
R 1.3) 11 > A A2 38, A Al 14,
2.4))") 2 0 i1 0
B .
0,1) | . 137, 15,
(7.7) 2= =28 1 _l0 »14 1 3]0
A) N
42) . : : 36, | . 16,
5.7) . 49 0 17 0
E. , . .
‘ y
R ' 21 . 1
‘ Jo.n 3 | /B s, 39, 27, W FT2
; | 7.7) R 0 0 0
b RI : , I 1
0,0) : 50 st| Yas 26, ‘ 19,
(7.3) - 0 .Jo
Bo 0 1
-1 50, 48, 5, 20,
0 0 0 0
9, D2 vy
2 0 .
0,0)
22 >4 38, .
C 1] .
0
2,0) AN
3) 0, =
D I o \ Figure B.2. The R/Q tree
S s '
DY,
-~ LA
10, .
- 32 0 \
T 8'
M 8] 0 N

. w - ’ ‘ *)
o . 102
= N »
4 -
L
.
Blil
. 8'
0
D
4,
1
l/
. 0'
-] B11~
Blrs 1
‘ c
O R TS
- 0
A\
12] T\ io,
0
D
9, |-
0
c.
1
13X
J1a,
(Ao | -
B221 B I
7 = . : v . A
13
2 0 1212 ’
4?2 E 17, 0
R 49,1 0 B
0 A 12,
s A 16, 0
o0 - 0 ' A
o |/ A
60 E 15,
22 . °
..51' B A
0 A
E 1]
52,
1| .
Al Figure B.3. The B/Q tree.
56, 0, | f ’
0 1 .
. A

_— S - 10
N . _ v
Following queries, in particular, are compared:

> 1).Find all objects contained in, - '
" 2).Find all objects intersect . . .
B i . |

. 9_ .,

Let_l' = {<6,0>, <7 O> <12, 15 <18,0>, <24.0>, <25,0>, <27,0>, <36, 1>, <48,0>,1<50,0>
} be the set of maxnﬁum blocks obtamed by decomposmg of I, see Figure B.4: Let
A'@ MBR (N) denote the set of blocks in se- 4 that ir-ersects MBR (N), where MBR(N) is the

MBR of node N in the R/Q trec. i.c. 1 @ MBR ()= {<7,0>,<12,1>,<18,05,<24,05}. .+

F= Query:

R/Q tree - o
. o
The search starts at the root node R Since the MBR of the first enﬂy of R intersects

I riode Rl is examined. Bemg a leaf node of the R-tree in the R/Q tree, R1 is treated

dJﬁ’eremly then itis a nonleaf nodegl e. node R). The following processes are performed

onR1: - -

¢)) Examine the first entry ot:R1° l

a Although I overlaps object A, MBR(A) does not contamed in I The fact that_
MBR(A) is the minimal boundmg rectangle of A implies that A cannot be
covered by I Thus the search failed. (

(2) Examine the second entry of RI:»

f
Since I covers R(B), object B is contamed in L. Therefore, B is a eandldate
(3) Examine the third entry of R1:
- This result is similar to (1), since I does not cove E completely, the search

failed.

f

7

- Upon ﬁmshmg the third entry of R1, thc process backtracks to an upper level. Therefore

the Second entry of R node is then exammed\Smce the MBR of the second entry of R
overlaps I, subtree R1 is.explored in the same fashion as previously described. If, how-

‘ever the intersection between the MBR of an entry and I is empty, then the whole subtree v

associated with the entry is 1gnored

kd
- By tracing, the search process, it is not difficult to see that the total number of disk -

access is 3 and the answer is'B. Note the low level description of the structure, the linear -

quadtrees in the R/Q tree; is untouched.

B/Ql"tre'e_:

Sin‘ce ptintitiyes are organized solely by their keys, the whole structure is 53 rmscel-
laneous collectlon ©of the primitives from the objects in the study area, see Flgure B4, As
the global object information i 1s needed for the solution of the problem completely recon-

4structmg the objects from their primitives or brutal searchmg is necessary. In other

words, the B/Q tree does not convemently lend itself to the query

, o/ - r
Second Query: :

R/Q tree: B '

In solving this problem, only local information is necessary | However, the global
information stored in the hlgh level structure, the R- -tree, can be effecnvely utilized to
narrow the search space or even to obtam the answer as well. On the other hand, since
objects may have arbitrary shape, the low level quadtree structures need to be searched in |

some cases. ‘To be specific, the statement marked T in the procedure SEARCH is
. :) 3 ‘

~ o S s

replaced by following piece of code: g

(ODIFE Covers more than one corner of :t,h-’e MBR of R.DESC[i], then add R.DESC[i]
o LIST; S R

2 IfE covers léss than two corners of thc(h/ﬂ?R‘ of R.DES\C[:i]V, \thcn~scarch the

quadtree level: R.DESC[i].PO,INT'ER.' If R.DESCYi].POINTER intersects E, then

add R.DESCTi] to LIST; ' ’-:.‘,\
(3) Otherwise do nothing. v - o : g

-

- - E)
i \

- If the low lévcl structure need to be searched, the following operatioris are recom-

. 3)
mended to increase the efficiency:)
- , : .

(1) Compute: A5 @MBR ® DESC [i1.POINTER).

(2)“li3irst Sort A in descending size order then in achhding key order.
1

(3

(3) For each block be) do

If b intersects the quadtree, R.DESC [i J-POINTER , then retumn success.

R/Q tree is explicitly in the leaf level of the R-tree, it can be used io eliminate any
unnecessar;seérch. On the other hand, (2) enables the search process to consider the B .

blocks in decreasing size order with a high probability of being successful,

In thi,(Eiamp[g/the search starts at the root R then all promising subtrees are
- explored one by one. In other words, the R-tree is explored in a depth first fashion. To

illustrate how the. quadtrees are explored, consider the process in which object D is
: T Il . .
.) '

a
“n

' L 106 -
" obtained.

Suppose the subtree rooted at R1 has alre been explored (thus, objects A, B, and

E have been obtained). Since R2 is the root of a promising subtree, it is éxamined:

Since ImMBR (D)#d, ‘R-l .CLASS=leaf and I covers less than two corners of MBR (D),
| where D=R2.DESC [1].P01NTER the- following operations are pérformed
’ 09} Compute A=TI" @MBR D): l-{<12 1>,36,1>).
) Sorr. x x={<12 1>,<36,1>). j? |
<i2 1> is chosen ﬁrst The succeeding search path in the quadtree 1s : ->D->D1. Since
<12,1> is ne1ther contamed in ®1.DESC[1] nor Dt. DESC[Z] DI1.DESC[2).KEY <12,
| and D is a leaf node D2i 1s explored through sequentail list. Again, beeause D2. DESC[l]
is not contained sin <12 1>, the interséction of <12 1> and obJect D is deemed to be
Empty, by Lemma 2 4 Therefore the first trial f S. Then the process backtracks to the
R-tree level where <36, 1> 1s chosen The sucfeeding search path ‘in the quadtree is :

“\
->D2 Since <36,1> is contamed in D2 DESC[] and D2 is a leaf node, D is a candidate.
:-\ <

The ObjCCt A, B C and E are obtamed sumlarly except-that the quaduee of Ob_]CCt B
is untouched “The algonthm terminates w1th the answer {AB C D,E} and the number of

‘ dlSk accesses is 12.

s]
1

Although the strategy proposed for the second phase usually leads to an efficient
solution, it is not always optimal. For mstance assume that the pointer of the sequentail
list of an Ob_]CCt is stored in the corresponding: leaf node of the R-tree e.g., R1. DESC[I]A_
has two pomters ‘one pom its t0 node A and the other points to All (the head of the
sequcntaﬂ list of object A) Then the query can be answered in 8 dlSk accesses ThlS is

achxeved by sorting blocks in the query rectangle in Morton scquence and searching low

d

107

level quadtrees along their sequential lists.

B/Q tree:

As pﬁ:wously dcscnbed the orthogonal range search in a quadtree is accomphshed
by searching the maximal blocks of‘the query rectangle However, since the quadtree is
constructed for the whole 1mage rather than for each object as an R/Q tree, little |
kn@(gvlcdge is lmown prior to a query Thus, to find all objects that intersect a glven rec-

tangular area, eyery block in the: qucry rectangle nccessnates a search in the tree. Obvi-

. ously, a B*/Q tree is awkward in dealing with this kind of qucry since both redundant

(when search Icads to a same object for more than once) and urclcvant (when block over-

| laps no object) searches may occur.

When searchmg for 1 in Morton Sequence order, and dsing a sequentail list, th«;
number of disk accesses is caculated tobe 11. It 1s not very difficult to see that this is also

I3 v,

thc minmum cost of the approach

¢

In conclu‘slon although bor.h)an I;{/Q tree and a 8*/Q tree are able to deal with the
second query type, an R/Q tree is believed to be superior. More importantly, an R/Q tree
structure facilitates subscquent operatwns such as performmg transfonnauons\se)t opera—

thl’lS etc.

