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Abstract

The technique of Simultaneous Localization and Mapping (SLAM) has been

widely studied and used in autonomous vehicles. The SLAM algorithms can

construct the map from an unknown environment and at the same time, esti-

mate the robot position. These are fundamentals of the autonomous robots,

for example, the navigation module can be applied on the built map to ac-

complish self-driving. With the growing demand for the SLAM, researchers

are asked to develop high-performance SLAM solutions with respect to better

accuracy, and efficiency in both computational time and space.

This thesis explains several commonly-adopted SLAM algorithms at first,

including mandatory background and mathematical derivations for these SLAM

algorithms. Multiple Filter-based and Graph-based SLAM algorithms are de-

rived, simulated and compared in the thesis, including Kalman Filter (KF),

Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), Particle

filter and Graph-based SLAM.

Finally, the important Kidnapped Robotic Problem (KRP) is studied. The

KRP occurs when the robot is deliberately moved to another place without

location knowledge or it loses its location information due to malfunctions.

This research introduced a modification on Augmented Monte Carlo Localiza-

tion (AMCL) and Cartographer to help robots recover from KRP. Enhanced

methods are tested on saved real-world data and compared in the thesis.
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Chapter 1

Introduction

In recent years, autonomous mobile systems including autonomous robots and

vehicles gradually become a reality, and their applications steadily grow, show-

ing impacts in our daily life. As one of the key technical components, the

Simultaneous Localization and Mapping (SLAM) problem plays an essential

role in autonomous mobile systems. The SLAM algorithms have the ability to

process limited sensor data to accurately and effectively construct a map of the

unknown environment with the robot location. Over the years, SLAM algo-

rithms are continuously enhanced to have better accuracy and computational

and spatial efficiency, so that they can even run on many low-cost devices. In

the near future, it is highly anticipated that autonomous robots and vehicles

will be cheaper, more reliable and widely deployed.

There are many different SLAM approaches in the existing literature,

and they are divided into two major categories, filter-based and graph-based

SLAM. This thesis is focused on investigating SLAM in these two categories.

Specifically, how SLAM operates using different sensors and incorporating real-

world environment data. Different methods are reviewed and studied to un-

derstand their pros and cons. Finally the Kidnapped Robotic Problem (KRP)

and its recovery is studied using SLAM approaches as it is a common and chal-

lenging problem in practical applications. In this thesis, procedures of SLAM

and KRP algorithms are discussed in detail, with simulation and real-world

experimental data to demonstrate and compare the performance of different

approaches.
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1.1 Literature Review

The past decades have seen rapid and exciting progress in SLAM related re-

search with many implementations. Works are mainly focused on improving

the accuracy of estimating the map and robot poses, and computational effi-

ciency.

The concept of Simultaneous Localization and Mapping (SLAM) was first

introduced by [57], and then the paper [36] proposed to use multiple servo-

mounted sonar sensors and extended Kalman filter (EKF) to extract environ-

ment features and track the robot location. After that, the Lidar sensor came

into play, and the SLAM algorithms became more robust and reliable. There

are challenges for the EKF-SLAM and other KF based SLAM algorithms.

First, they impose fundamental assumption on Gaussian distributions; the

second challenge lies in the approximation accuracy of linearization; and the

third one is due to the correspondence between sensor data and features. On

the other hand, the particle filter based SLAM, which is another well-known

filter-based method, is able to handle some of the challenging problems.

Different from EKF-SLAM, which utilizes features for mapping, the PF-

SLAM adopts occupancy grid maps. For a SLAM problem, the particle filter

[13] [31] [49] uses particle distribution to represent probability distribution.

Monte Carlo Localization (MCL) [11] is a direct application of particle filters

to robotic localization. It is one of the most commonly used approaches be-

cause its formulation is straightforward and it is relatively easy to implement

with good performance. In [61] the mixture proposal distribution was pro-

posed for particle resampling to make the MCL more robust and accurate.

The adaptive MCL [17] [16] was developed in which particle set number is

adjusted to achieve fast convergence and computational efficiency. The Aug-

mented MCL [19] incorporating an exponential filter was applied to solving

the Kidnapped Robotic Problem (KRP) for which the global localization was

used to recover KRP. Moreover, PF filter using 3D liDAR data was reported

in [63]. In [55] visual-based PF-SLAM was introduced, in which features from

the scale-invariant feature transform (SIFT) were used. In addition to the
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more conventional methods, artificial neural network (ANN) approaches have

recently been applied to SLAM. For example, [1] proposed to use the convo-

lutional neural network (CNN) to sample the particles. Although filter-based

SLAM algorithms have been extensively studied, there are certain obstacles

that are inherent to the approach and are not easy to overcome. For example,

no matter how accurate the estimation is, filter-based SLAM schemes usually

suffer from increasing errors accumulated from every iteration.

Another main category of SLAM approaches are graph-based. In this

method, a graph is constructed where nodes represent robot and landmark

poses, and sensor measurement connecting two nodes are called edges/constraints.

Then optimization is applied to update the nodes poses by minimizing the er-

ror and reducing the contradiction between constraints. This way it helps

graph-based SLAM to mitigate effects of sensor noise and accumulated es-

timation error. The graph-based optimization task can be converted to a

(nonlinear) Least Squares (LS) problem. The work in [40] was among the first

that proposed graph-based SLAM formulation and map refinement by global

optimization. Then Gutmann and Konolige [23] presented a method of local

registration and global correlation (LRGC), which performed loop closure de-

tection with every new sensor input. To minimize constraint network error,

Dellaert and Kaess [12] presented exploit sparse matrix factorization to solve

LS optimization in SLAM, and later on Kaess etal. [30] used QR factorization

to compute and solve the graph optimization. In some cases, robot motion

dynamics and odometry are unknown, hence many approaches are proposed

to utilize purely sensor data to estimate constraints and relative pose between

nodes. The paper [14] firstly proposed to use Iterated Closest Point(ICP) [3]

to estimate the relative pose between two range scans. The TrICP [8] used

the Least Trimmed Squares approach along with ICP operation to achieve

improved robustness and accurate motion estimation. The Random sample

consensus(RANSAC) [15] is frequently applied on point clouds and image fea-

tures to find the optimal motion estimation. Another important research topic

is focused on reducing the time cost of detecting loop closure. For example,

DBOW2 [18] applies the method of bag-of-word [56] to divide image features
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into pre-trained clusters and number sequences are generated to represent

the image features, since matching the number sequence is much faster than

matching full image features. Similarly the work in [27] used histogram-based

matching for 2D-LiDAR scans to increase the speed of loop closure detec-

tion. To achieve real-time scan matching for loop closure detection, [26] used

a branch-and-bound scan (BBS) matching approach.

Currently there are multiple open-source SLAM packages made available

to the general public through collaboration of developers in this area. In

addition, most packages have built extension libraries for the ROS platform,

which can be modified and tested conveniently by researchers. For PF-based

SLAM, the Gmapping tool [20] takes 2D-LiDAR scans as inputs and generates

an occupancy grid map, which can be output as a gray-scale image. The

AMCL [19] package is available which uses 2D-LiDAR data as inputs and

generates maps to perform global and local localization. The Cartographer

[33] is capable of performing mapping and localization for 2D and 3D laser

scans, and it uses a scan-matching approach for odometry estimation and

BBS for loop-closure detection. For visual-based SLAM packages, the ORB-

SLAM2 [43] uses ORB features for mapping and localization, and it can take

both monocular and stereo camera images, as well as RGB-D camera images

as inputs. The RTAB-Map [34] is another popular SLAM algorithm based

on incremental appearance-based loop-closure detector and it also supports

RGB-D, stereo, and LiDAR data.

1.2 Motivation and Thesis Structure

In recent development of SLAM, many new techniques have been utilized

in SLAM algorithms and they join forces to deliver improved performance.

There are various modifications to the more traditional approaches and the

existing literature is rich. By focusing on two main important types of SLAM

methodologies, this thesis provides a detailed study of SLAM theories and

applications, and it also serves as a learning road map for the author.

This work first provides a detailed explanation of various background knowl-
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edge used for tackling the SLAM problem. For example, Bayes filtering basics,

Kalman filter, and its extensions, particle filters, least-squares, and robot mo-

tion models are reviewed. This helps to understand and prepare knowledge for

most SLAM algorithms. There are many modifications to filter based SLAM

methods which are developed in earlier years. This thesis demonstrates the

implementation of Extended Kalman Filter (EKF) SLAM, Unscented Kalman

Filter (UKF) SLAM, and Particle Filter SLAM. In addition, to better un-

derstand filter based SLAM algorithms, we provide simulation programs and

simulation result to compare performance of the EKF and UKF based SLAM.

The Graph-based formulation and optimization are commonly adopted in

most advanced SLAM algorithms in recent years. In this thesis, the various

implementation and optimization approaches for graph-based SLAM are intro-

duced. In addition, an application case study is performed that shows how to

implement the ORB feature-based SLAM algorithm for autonomously docking

a vehicle.

In the last part of the thesis, detection and recovery methods for Kid-

napped Robotic Problem (KRP) are studied. The KRP occurs when a robot

loses its location information. It is known that the Augmented Monte Carlo

Localization (AMCL) method can detect and solve kidnapping problems by

tracking the sudden drop of particles’ average weight and then performing a

global localization to estimate the robot’s new pose. We propose a new method

to assist in solving the (KRP) in the Monte Carlo localization approach. The

proposed work improves the AMCL by adopting the idea of the global/static

Costmap. The Costmap aided AMCL algorithm is able to recognize those

absolutely wrong particles and then randomize them to enhance the speed of

recovery from the localization failure. Furthermore, we implemented a KRP

detector and loop-closure based KRP recovery on the Cartographer platform.

Simulations are carried out on different maps and real-time data to validate

and demonstrate the proposed methods’ performances.

To summarize, in Chapter 2, general background on the methodologies used

for SLAM problems is reviewed. Chapter 3 includes various filter-based SLAM

approaches. The Graph-based SLAM and its demonstrations are described in
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Chapter 4. Chapter 5 discusses the KRP and its solution. Finally, Chapter

6 closes this thesis by summarising the work presented and discussing the

potential future work.
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Chapter 2

Background and Preliminaries

This chapter introduces important background knowledge for understanding

the SLAM problem. The following section starts with an introduction to

the basic Bayes filter, the foundation of filter-based SLAM algorithms. After

that, commonly used filter techniques are presented, including the Kalman

Filter (KF), Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF),

and Particle Filter. In addition, the nonlinear Least-Squares (LS) and its

solutions are also reviewed, which provide practical solutions to optimization-

based SLAM. Finally, the ground robot motion model is derived.

2.1 Bayes Filter

Filter-based SLAM algorithms are built upon the concept of Bayes filter. In

brief, the Bayes filter recursively updates robotic states by its prediction and

values of the actual measurement. In Probabilistic Robotics [60], an example

(Fig. 2.1) is given to illustrate the localization of a mobile robot using the

probabilistic approach. Before any measurement, the robot position probabil-

ity bel(x) is assumed to be uniformly distributed; and suppose that the robot

takes the first sensor measurement next to a door, then this sensor reading

suggests that the robot has a higher probability p(z|x) near doors. Notice

that this distribution has three peaks, each corresponding to one of the doors.

Then the robot belief is updated based on the current measurement, as it

becomes the product of the measurement probability distribution and the pre-

vious belief. After that, the robot moves and takes more measurements. At
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the same time, its belief iterates, and the robot gets higher probability and

better confidence as to where it is.

Figure 2.1: Mobile robot global localization using Markov localization, [60]

2.1.1 Basics in Probability

Gaussian distribution function

A scalar random variable x following a Gaussian distribution (i.e. normally

distributed), x ∼ N (µ, σ2), its distribution function is written as follows,

where µ is its mean and σ2 is the variance:

p(x) = (2πσ2)−
1
2 exp{−1

2

(x− µ)2

σ2
} (2.1)
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When x is a vector, x ∼ N (µ, Σ), where Σ is the positive definite covariance

matrix, the multivariate Gaussian distribution is given by,

p(x) = det(2πΣ)−
1
2 exp{−1

2
(x− µ)>Σ−1(x− µ)} (2.2)

Theorem of total probability

The rule of total probability is fundamental to relate marginal probability and

conditional probability. Let the marginal probability be denoted as p(x) of

x; the conditional probability denoted as p(x|y) of x for a given variable y.

The discrete and continuous expressions for the total probability theorem are

shown as follows:

p(x) =
∑
y

p(x|y)p(y) (2.3)

p(x) =

∫
p(x|y)p(y)dy (2.4)

Bayes’ Rule

Bayes’ Rule is used to update the belief with new measurements (or evident).

The following equations show the discrete and continuous Bayes’ rule based

on total probability equations.

p(x|y) =
p(y|x)p(x)

p(y)
=

p(y|x)p(x)∑
x p(y|x)p(x)

(2.5)

p(x|y) =
p(y|x)p(x)

p(y)
=

p(y|x)p(x)∫
p(y|x)p(x)dx

(2.6)

The conditioning Bayes’ rule with additional event z can be expressed as:

p(x|y, z) =
p(y|x, z)p(x|z)

p(y|z)
(2.7)

p(x, y|z) = p(x|z)p(y|z) (2.8)

2.1.2 Probabilistic Generative Laws

Probabilistic laws govern the recursively updated states and measurements.

The state at time t, xt is conditioned on all past states, measurements, and

control inputs. Because of the measurement and input uncertainty, the states
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are generated in a stochastic fashion, and its probability distribution can be

written in the form:

p(xt|x0:t−1, z1:t−1, u1:t) = p(xt|xt−1, ut) (2.9)

where x0:t−1 represents the past states, z1:t−1 represents the past measurements

and u1:t incorporates the control inputs (the current input ut is included since

the robot is assumed to first execute the control action before obtaining the

measurement). It should be noted that the previous state xt−1 is a sufficient

statistic of all previous controls and measurements till the time t−1. Therefore,

the state probability distribution of xt can be calculated based on the previous

state xt−1 and the current control input ut.

Similarly, the measurements can also be written as the probability distri-

bution form. In particular, the current state xt is sufficient in predicting the

measurement zt, therefore we have,

p(zt|x1:t, z1,t−1, u1:t) = p(zt|xt) (2.10)

p(xt|xt−1, ut) is also called the state transition probability, which specifies how

the state evolves over time with control input ut. Also p(zt|xt) is called the

measurement probability, which is the probability transformation specifying

how the measurement zt is generated from the state xt.

2.1.3 Belief Distributions

In reality, the robot or its environment states cannot be observed directly, but

they can be referred by available data (e.g. measurements and control inputs).

The belief is introduced to represent the internal knowledge of states, based on

conditional probability distributions. Belief distribution, denoted as bel(xt), is

posterior probability over states conditioned on the available data. It can be

written as:

bel(xt) = p(xt|z1:t, u1:t) (2.11)

where xt is the state at time t; and z1:t and u1:t are available measurements and

control inputs up to time t, respectively. As the belief takes the measurement
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zt at time t, we can also define the probability before incorporating zt, denote

as bel, also called the prior probability.

bel(xt) = p(xt|z1:t−1, u1:t) (2.12)

The process of computing the prior bel through the previous posterior and

control input, is usually called prediction. Calculating bel(xt) from the bel is

called correction or update.

2.1.4 Derivation of the Bayes Filter

The Bayes filter is the most commonly used algorithm to recursively calculate

beliefs. The steps of using Bayes filter is shown in Algorithm 1.

1 Bayes Filter Algorithm (bel(xt−1), ut, zt) ;
2 for all xt do

3 bel(xt) =
∫
p(xt|ut, xt−1)bel(xt−1)dxt−1 ;

4 bel(xt) = ηp(zt|xt)bel(xt)
5 end
6 return bel(xt)

Algorithm 1: Bayes-filter pseudo algorithm

The line 3 of the algorithm is the prediction step, in which prior bel(xt)

is calculated by the integration of product of state transition probability in

Eq.(2.9) and the previous posterior bel(xt−1). The line 4 is the update step,

where the posterior bel(xt) is calculated by product of measurement probability

in Eq. (2.10) and prior bel(xt) at time t with a normalization constant η. The

detailed derivations are briefly explained in the following.

First of all, apply the theorem of total probability to bel(xt):

bel(xt) = p(xt|z1:t−1, u1:t) =

∫
p(xt|xt−1, z1:t−1, u1:t)p(xt−1|z1:t−1, u1:t)dxt−1

(2.13)

where p(xt|x1:t−1, z1:t−1, u1:t) = p(xt|xt−1, ut) based on Eq. (2.9) and

p(xt−1|z1:t−1, u1:t) = p(xt−1|z1:t−1, u1:t−1)

since xt−1 does not contain the information of ut from future time (Markov

assumption). Furthermore, p(xt−1|z1:t−1, u1:t−1) = bel(xt−1). Finally the pre-
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diction equation can be written as:

bel(xt) = p(xt|z1:t−1, u1:t) =

∫
p(xt|ut, xt−1)bel(xt−1)dxt−1 (2.14)

Then apply the conditioning Bayes rule on Eq.(2.11), the equation expends

to as follow:

bel(xt) = p(xt|z1:t, u1:t) = p(xt|zt, z1:t−1, u1:t) =
p(zt|xt, z1:t−1, u1:t)p(xt|z1:t−1, u1:t)

p(zt|z1:t−1, u1:t)

= ηp(zt|xt, z1:t−1, u1:t)p(xt|z1:t−1, u1:t) (2.15)

With Eq. (2.10) and Eq. (2.12), the posterior distribution is simplified as:

bel(xt) = p(xt|z1:t, u1:t) = ηp(zt|xt, z1:t−1, u1:t)p(xt|z1:t−1, u1:t)

= ηp(zt|xt)belt (2.16)

2.2 KF, EKF and UKF

For a linear or nonlinear dynamic system, assuming that the measurement

and system noises are Gaussian, the Bayes filter can be extended and im-

plemented as the Kalman filter (KF), Extended Kalman filter(EKF) and Un-

scented Kalman filter(UKF). The KF applies to the linear system and mea-

surement models, while EKF and UKF can handle nonlinear system and mea-

surement models. They are briefly reviewed in the following.

2.2.1 Kalman Filter (KF)

Given a linear state equation with states xt at time t, the normally distributed

noise εt ∼ N (0, Qt) and input ut:

xt = Atxt−1 +Btut + εt (2.17)

the term Atxt−1 + Btut is the mean of the posterior state xt, denoted as x̄t.

The following shows a linear measurement model with normally distributed

measurement noise σt ∼ N (0, Vt):

zt = Ctxt + σt (2.18)
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Based on the Markov assumption and Bayes filter, the well-known Kalman

filter algorithm [60] can be derived. In the following x̄t is the prior state

estimation and x̂t is the posterior state estimation. Matrix Σ̄t and Σ̂t are the

prior and posterior error covariance matrices, which represent how accurate

the state estimation is.

1 Kalman filter (x̂t−1, Σ̂t−1, ut, zt) :
2 x̄t = Atx̂t−1 +Btut;

3 Σ̄t = AtΣ̂t−1A
>
t +Qt;

4 Kt = Σ̄tC
>
t (CtΣ̄tC

>
t + Vt)

−1;
5 x̂t = x̄t +Kt(zt − Ctx̄t);
6 Σ̂t = (I −KtCt)Σ̄t;

7 return x̂t, Σ̂t

Algorithm 2: Kalman filter algorithm

2.2.2 Nonlinear State Estimation

For a general nonlinear system and nonlinear measurement model,

xt+1 = f(xt, ut, nt) (2.19)

yt = h(xt) + σt (2.20)

where f is a nonlinear function of states xt, input ut and the process noise

nt, which includes disturbances and modeling errors. The output yt is the

observed value, which contains measurement noise σt. It is assumed that all

noise vectors are normally distributed and have zeros mean. For such a system,

state estimation is more challenging and usually involves approximations.

Linearization

In practice, often sensors are non-ideal and perfect system models do not exist,

hence the state estimation or observation of the system can be considered as

an uncertainty transformation problem. Given a random vector x with mean

x̄ and covariance Σxx. The random vector y has a relationship with x as,

y = f(x)

where f(.) can be taken as a transformation and the output y has the mean ȳ

and covariance Σyy. If f(.) is linear, e.g. f(x) = Ax, and x follows Gaussian
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distribution, then the output y will also follow the Gaussian distribution, and

ȳ = Ax̄

Σyy = AΣxxA
>

However in many cases, e.g. SLAM problem, the models (e.g. a robot motion

model) are mostly nonlinear. Let f(.) be a nonlinear function, and x = x̄+δx,

where δx is zero mean Gaussian with covariance Σxx. We need to find the

mean of the uncertain output y and its covariance Σyy, with an uncertain

input x. We can rewrite the equation using the Taylor series expansion. For

simplicity, the scalar case is considered at first,

f(x) = f(x̄+ δx) = f(x̄) +∇fδx+
1

2
∇2fδx2 + · · · (2.21)

Where the ∇nf represents the nth order derivatives of the function f with

respect to x. Let E(.) denote the mean value. So the mean of f(x) or ȳ can

be written as

ȳ = E[f(x)] = E[f(x̄)] + E[∇fδx] + E[
1

2
∇2fδx2] + · · ·

= f(x̄) +
1

2
∇2f Σxx + · · · (2.22)

By truncating the terms with order higher than 2, the linear approximation

of ȳ is obtained as

ȳ = f(x̄) (2.23)

Then one can compute the covariance Σyy. Now we consider the general mul-

tivariate case,

Σyy = E[(f(x)− ȳ)(f(x)− ȳ)>]

= E[(∇fδx)(∇fδx)>] (2.24)

= ∇fΣxx(∇f)> (2.25)

where ∇f is called the Jacobian. It should be noted that in many practical

situations linearization introduces significant approximation errors.
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Unscented Transform

The Unscented transformation is another estimation method for nonlinear

transformation of random variables [29] [62] [28]. Compared with the lineariza-

tion method, which only captures the first order of the Taylor series expansion,

for the Unscented transform, the mean and covariance of input x and output y

are corrected up to second-order , which means the Unscented transform has a

better performance than the first order linearization. In short, the Unscented

transform uses given mean and covariance to find a set of sigma points to

represent the discrete probability distribution. Then it applies the nonlinear

transformation to propagate each point, and the transformed points represent

the discrete probability distribution for the transformed random variables.

Given 2n+1 sigma points in vector X xi with weights Wi and
∑2n

i=0Wi = 1,

its mean x̄ and covariance Σxx have following properties:

x̄ =
2n∑
i=0

WiX xi (2.26)

Σxx =
2n∑
i=0

Wi(X xi − x̄)(X xi − x̄)> (2.27)

Sigma points and weights are chosen as following [29] [62]:

X xi
0 = x̄

X xi
i = x̄+ (

√
(n+ λ)Σxx)i for i = 1, · · · , n

X xi
i = x̄− (

√
(n+ λ)Σxx)i−n for i = n+ 1, · · · , 2n

Wm0 = λ/(n+ λ)

Wc0 = Wm0 + (1− α2 + β)

Wi =
1

2(n+ λ)

Wmi = Wci =
1

2(n+ λ)

(2.28)

where n is the dimension of x and the scaling parameter λ = α2(n + κ) − n.

α ∈ (0, 1] is a small scaling factor for the spread of the sigma points around

x̄, and κ is a secondary scaling factor which is usually set to 0. The value

of β is related to the distribution of x and β = 2 is the optimal choice for
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Gaussian distribution. Furthermore, Wm and Wc denote weights for mean and

covariance, and the square root of covariance matrix Σ is calculated through

the Cholesky factorization. For the ith sigma point, the column vector of

Cholesky factorized covariance matrix is used,

SS> = Σ

Hence the subscript i of the sigma point i denotes the ith column of S. The

transformed output mean and covariance can be expressed as following:

X y = f(X x)

ȳ =
2n∑
i=0

WiX yi

Σyy =
2n∑
i=0

Wi(X y − ȳ)(X y − ȳ)> (2.29)

2.2.3 Extended Kalman Filter

The EKF adopts linearization to orignal KF algorithm and the general EKF

algorithm [60] is shown in Algorithm 3:

1 Extended Kalman filter (x̂t−1, Σ̂t−1, ut, zt) :
2 x̄t = f(x̂t−1, ut−1);

3 At = ∂f(x,u)
∂x
|x=x̂t−1 ;

4 Ht = ∂h(x)
∂x
|x=x̄t ;

5 Σ̄t = AtΣ̂t−1A
>
t +Qt;

6 Kt = Σ̄tH
>
t (HtΣ̄tH

>
t + Vt)

−1;
7 x̂t = x̄t +Kt(zt − h(x̄t));

8 Σ̂t = (I −KtHt)Σ̄t;

9 return x̂t, Σ̂t

Algorithm 3: Extended Kalman filter algorithm

For the line 2 of the algorithm, the states mean x̄t is predicted using the

state transition function f with the mean x̄t−1. For the prediction of the

covariance Σ̄t from line 5, it depends on previous covariance mean Σ̄t−1 and

the linearized motion dynamic At. Similar as the state updating, line 7, the

non-linear observation equation is also linearized such that Ht is obtained for

output mean transformation. In EKF, due to the first order linearization at

the local estimated states, such approximation errors may lead to sub-optimal
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solutions and sometimes divergence, for example, initial state estimation is not

close to the true value.

2.2.4 Unscented Kalman Filter (UKF)

The UKF method is a modification of EKF, which replaces the first-order

linearization with the Unscented tranformation. The first step is to choose

sigma points around states and their weights using Eq.(2.28), for example, the

state of parameter x at time t-1, with 3 sigma points,

X x
t−1 = [x̄t−1 x̄t−1 ±

√
(n+ λ)Σt−1]

Assume there are 2n sigma points used for each transformation, the UKF

algorithm 4 can be modified from EKF as following steps:

1. The state prediction in line 2 of EKF becomes

X x̄
t = f(X x

t−1, ut) (2.30)

where X x
t−1 is the sigma points for system states, where

x̄t =
2n∑
i=0

Wm
i X x̄

i,t (2.31)

2. The covariance prediction in line 5 becomes

Σ̄t =
2n∑
i=0

W c
i (X x̄

i,t − x̄t)(X x̄
i,t − x̄t)> +Qt (2.32)

Where Qt is the process noise covariance.

3. Then for the estimation step, the output equation will be updated as

X y
t = h(X x

t ) (2.33)

and its mean

yt =
2n∑
i=0

Wm
i X

y
i,t

the matrix Ht is the output transfer matrix,the output covariance is

Σyy = HtΣ̄tH
>
t =

2n∑
i=0

W c
i (X y

i,t − ȳt)(X
y
i,t − ȳt)> + Vt (2.34)

17



4. In the line 6, we are able to rewrite Σ̄tH
>
t as

Σ̄tH
>
t = E[(x−x̄)(x−x̄)>]H>t = E[(x−x̄)((x−x̄)H>t )] = E[(x−x̄)(y−ȳ)] = Σxy

Then for the UKF, Σxy becomes

Σxy =
2n∑
i=0

W c
i (X x̄

t − x̄t)(X
y
t − yt)> (2.35)

Using the Eq.(2.34) and Eq.(2.35) the UKF gain can be written as:

Kt = ΣxyΣ
−1
yy (2.36)

5. The UKF state update equation is

xt = x̄t +Kt(zt − yt) (2.37)

6. For the UKF state covariance update, we start with the EKF case

Σt = (I −KtHt)Σ̄t

= Σ̄t −KtHtΣ̄t

= Σ̄t −Kt(Σxy)
>

= Σ̄t −Kt(ΣxyΣ
−1
yy Σyy)

>

= Σ̄t −Kt(KtΣyy)
>

= Σ̄t −KtΣyyK
>
t (2.38)

Finally the UKF algorithm is obtained.

1 Unscented Kalman Filter (x̂t−1, Σ̂t−1, ut, zt) :

2 X u
t−1 = [ūt−1 ūt−1 ±

√
(n+ λ)Σu

t−1]
3 X x̄

t = f(X x̂
t−1,X u

t )

4 Σ̄t =
∑2n

i=0 W
c
i (X x̄

i,t − x̄t)(X x̄
i,t − x̄t)> +Qt

5 X y
t = h(X x̄

t ), ȳt =
∑2n

i=0W
m
i X

y
i,t

6 Σyy =
∑2n

i=0W
c
i (X y

i,t − ȳt)(X
y
i,t − ȳt)> + Vt

7 Σxy =
∑2n

i=0W
c
i (X x̄

t − x̄t)(X
y
t − yt)>

8 Kt = ΣxyΣ
−1
yy

9 x̂t = x̄t +Kt(zt − ȳt)
10 Σ̂t = Σ̄t −KtΣyyK

>

11 return x̂t, Σ̂t

Algorithm 4: Algorithm of Unscented Kalman filter
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2.3 Particle Filter (PF)

The particle filter has been used to solve SLAM problems [60], it uses a set of

particles (samples) to represent the posterior distribution of certain stochas-

tic process given noisy observations. The particles can represent a much

broader category of distributions (e,g, non-Gaussian) than those with para-

metric forms. Hence PF can be considered as an alternative non-parametric

implementation of the Bayes filter. In the SLAM problems, it has been widely

used in mapping and Monte Carlo localization.

In the particle filter, particles x represent samples on posterior distribu-

tions. The particle filter algorithm is shown in Algorithm 5, where there are

M numbers of particles in particle set X at time t:

Xt = x
[1]
t , x

[2]
t , · · · , x

[M ]
t (2.39)

1 Particle-Filter (Xt−1, ut, zt) :
2 X̄t = Xt = ∅ ;
3 for m = 1 to M do

4 sample x
[m]
t ∼ p(xt|ut, x[m]

t−1) ;

5 w
[m]
t = p(zt|x[m]

t ) ;

6 X̄t = X̄t+ < x
[m]
t , w

[m]
t > ;

7 end
8 for m = 1 to M do

9 draw i with probability ∝ w
[i]
t ;

10 add x
[i]
t to Xt

11 end
12 return Xt

Algorithm 5: Particle filter pseudo algorithm

1. In line 4, the particle x
[m]
t at time t is generated by the state transition

distribution p(xt|ut, x[m]
t−1) based on the previous time particles x

[m]
t−1 and

control input ut. As the density distribution of the Xt−1 can be seen as

the approximation of bel(xt−1), the prior probability distribution bel(xt)

can be represented by the density distribution of X̄t. This step can be

referred to as prediction step of Bayes filter.

2. Line 5 calculates the importance factor or called weight of each particle,

denoted by w
[m]
t . Weights incorporate the measurement information into
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the particle set, precisely, the weight of a particle x
[m]
t equals to the

probability of obtaining measurement zt under this particle.

3. The second for loop (Line 8 - Line 11) is called resampling or im-

portance sampling of particles, which implements the approximation

of update step to get the distribution close to posterior distribution

bel(xt) = ηp(zt|xt)bel(xt). In order to change the distribution of par-

ticles from bel(xt) to bel(xt), we transform particles in X̄ to another

particle set X with same size according to posterior distribution. The

detailed procedures are discussed in next section.

2.3.1 Resampling

The resampling step can be seen as an update step of the Bayes filter, it uses a

set of particles and their weights to generate a new set of particles with equal

weights. The new particle set is used to represent the posterior distribution.

Assume that we attempt to convert the probability distribution from g to f .

The distribution function f is called target distribution to represent the de-

sired distribution, and the g is called proposal distribution. In particle filter, f

corresponds to the posterior belief bel(xt) and g is the prior bel(xt), while the

probability distributions are approximated by particle density distributions.

Given a particle set Xt with M number of particles, x1, · · · , xM , the approxi-

mation of proposal distribution g can be performed using Xt. Specifically the

cumulative probability of any subset A of the distribution g (area under g

within the range) is approximated by the particle percentage in the range. If

M →∞ the probability of particles fall in set A equals to the integral of g.

1

M

M∑
m=1

I(x[m] ∈ A)→
∫
A

g(x)dx (2.40)

Furthermore, to get the transmission between f and g, every particle can

incorporate a weight w

w[m] =
f(x[m])

g(x[m])
(2.41)
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Then combining these two equations, the set of weighted particles in A is

approximated to the integration of f in A[
M∑
m=1

w[m]

]−1 M∑
m=1

I(x[m] ∈ A)w[m] →
∫
A

f(x)dx (2.42)

The transmission does not change the density of particle set, but assigns weight

on each particle. We can also rewrite the Eq.(2.42) as

[
M∑
m=1

w[m]

]−1 M∑
m=1

I(x[m] ∈ A)w[m]

=

[
M∑
m=1

w[m]

]−1 M∑
m=1

I(x[m] ∈ A)w[m]MM−1

=

[
M∑
m=1

w[m]

]−1 M∑
m=1

w[m]MI(x[m] ∈ A)M−1 (2.43)

From the Eq.(2.43), the factor M−1 can be seen as an average weight as-

signed to each particle and w[m]M number of particles are used as the weighted

particles. Hence the number of particles after resampling is proportional to

the weight. In the following, two common resampling schemes are introduced.

Naive sampler

To implement resampling, naive resampling method [60] provides a straight-

forward solution. It firstly generates a random number between [0, 1] for every

particle, then within the normalized cumulative weight c, searches for the

weight range that the random value is placed at.
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1 Naive-sampler (X̄t, wt) :

2 Xt = ∅; c[0] = 0;
3 for m = 1 to M do

4 c[m] = c[m−1] + w
[m]
t ;

5 end
6 for m = 1 to M do
7 r = rand(0; 1) ;
8 i = 0 ;

9 while c[i] < r and c[i+1] > r do
10 i = i+ 1 ;
11 end

12 Xt = Xt+ < x̄
[i]
t >

13 end
14 return Xt

Algorithm 6: Naive sampler pseudo algorithm

Low variance sampler

The low variance sampling method [60] is more commonly used for resampling,

Algorithm 7 depicts an implementation of a low variance sampler.

1 Low-variance-sampler (X̄t, wt) :
2 Xt = ∅ ;
3 r = rand(0;M−1) ;

4 c = w
[1]
t ;

5 i = 1 ;
6 for m = 1 to M do
7 u = r + (m− 1) ∗M−1 ;
8 while u > c do
9 i = i+ 1 ;

10 c = c+ w
[i]
t

11 end

12 Xt = Xt+ < x̄
[i]
t >

13 end
14 return Xt

Algorithm 7: Low Variance Sampling pseudo algorithm

2.4 Least-Squares Estimation

The least-squares approach is widely used in various estimation problems by

minimizing the sum of the squared errors (MSE).
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2.4.1 Linear Least Squares

Consider a system of linear equations written in a vector form, y = Mx + nd

where ŷ = Mx is the ideal output vector, x represents system states, nd is

output error vector and M is the transformation matrix. With the given mea-

surement y, and an information matrix S containing weights of uncertainty,

the goal is to calculate the best estimation of states x∗, respect to the cost

function Jy.

x∗ = arg min
x
Jy (2.44)

where Jy is the sum of the weighted square of errors,

Jy =
1

2
(y − ŷ)>S(y − ŷ) (2.45)

To achieve an optimal estimation, the derivative of cost function at the optimal

point equals zero and function needs to be convex up.

∂Jy
∂x
|x∗ = 0

∂2Jy
∂x2
|x∗ > 0

The optimal solution for given output y can be readily calculated as follows,

∂Jy
∂x
|x∗ = 0

⇒ 1

2

[
−M>Sy − (y>SM)> +M>SMx∗ + (x∗M>SM)>

]
= 0

⇒ −M>Sy +M>SMx∗ = 0

⇒ x∗ = (M>SM)−1M>Sy (2.46)

To test the convexity we have

∂2Jy
∂2x
|x∗ = M>SM > 0 (2.47)

2.4.2 Nonlinear Least Squares

Given a system of nonlinear equations with unknown states x, n number of

nonlinear functions fi(.), i = 1, . . . n, and also n number of predicted measure-

ments ŷi and real measurement yi

ŷi = fi(x) (2.48)
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For example, the state x can be the robot’s position which needs to be esti-

mated, and for a 2-D case, the states contain position and angle information

x ∈ R3. ŷi can be the measurement from the robot position to the ith land-

mark, which at least has the information of angle and distance, ŷi ∈ R2. yi

is the real transformation between the robot and the landmark, which can be

calculated from GPS or other localization tools, in this case, yi ∈ R2. The

error function can be expressed as

ei(x) = yi − fi(x) (2.49)

And the cost function is the sum of squared error, which is

e′i(x) = ei(x)>Siei(x) (2.50)

F (x) =
∑
i

e′i(x) =
∑
i

ei(x)>Siei(x) (2.51)

Where F (x) is the global cost, Si is the information matrix, ei(x) is a scalar

denotes the squared error of ~ei(x). In order to find the best states estimation

x∗, the following optimization needs to be solved:

x∗ = arg min
x
F (x) (2.52)

Because of the nonlinearity, a good initial guess (x0) is necessary to avoid a

local minimum after the optimization procedure. An iterative local lineariza-

tion is used to linearize error terms around the current guess. The first-order

approximation of the error function is given as,

ei(x+ ∆x) ≈ e(x) + Ji(x)∆x (2.53)

where Ji(x) is the Jacobian,

Ji(x) =
∂ei(x)

∂x
(2.54)

Substitute Eq. (2.53) into Eq. (2.50) we get

e′i(x) ≈ (e(x) + Ji(x)∆x)>Si(e(x) + Ji(x)∆x)

= e(x)>Se(x) +
(
∆x>Ji(x)>Sie(x)

)>
+ e(x)>SiJi(x)∆x

+ ∆x>Ji(x)>SiJi(x)∆x

≈ e(x)>Se(x) + ∆x>Ji(x)>SiJi(x)∆x+ 2e(x)>SiJi(x)∆x

≈ Ci + 2b>i ∆x+ ∆x>Hi∆x (2.55)
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where,

Ci = e(x)>Se(x) (2.56)

Hi = Ji(x)>SiJi(x) (2.57)

b>i = e(x)>SiJi(x) (2.58)

Then subbing in Eq. (2.55) of global cost function to obtain:

F (x+ ∆x) =
∑
i

e′i(x)

=
∑
i

Ci + 2b>i ∆x+ ∆x>Hi∆x

=
∑
i

Ci + 2(
∑
i

b>i )∆x+ ∆x>(
∑
i

Hi)∆x (2.59)

For further simplicity, we use

C =
∑
i

Ci

H =
∑
i

Hi

b =
∑
i

b>i

F (x+ ∆x) = C + 2b>∆x+ ∆x>H∆x (2.60)

Finally, by applying the simplified global cost, and setting its first order deriva-

tive to zero, we obtain

∂F (x+ ∆x)

∂∆x
= 2b+ 2H∆x = 0

H∆x = −b

∆x∗ = −H−1b (2.61)

Finally, the optimal state estimation is equal to

x∗ = x+ ∆x∗ = x−H−1b (2.62)

where x is the estimated value from the last iteration when implemented.
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2.5 Robot Motion Model

In this section, the kinetic model of a two wheel ground robot is introduced.

This dynamic model is used in subsequent chapters for various tests and

simulations. Assume that a robot moves from a pose A =
[
xt yt θt

]
to

B =
[
xt+1 yt+1 θt+1

]
, see Fig. 2.2. Pose A and B share a center C, around

which the robot rotates. Let the distance between the wheels be D and the

distance from C to the center of the robot be R. Finally, two wheels have

the same angular velocity w with respect to C, which is also the robot motion

angular velocity. From above, we obtain the following equations,

Figure 2.2: Two wheels ground robot motion

{
w(R− D

2
) = vl

w(R + D
2

) = vr
(2.63)

Where vl and vr denote the linear velocities of the left and right wheel, respec-

tively. Let v denote the linear velocity of the robot. We can rewrite Eq.(2.63)

as the following,

vl(R +
D

2
) = vr(R−

D

2
)

R =
D(vl + vr)

2(vr − vl)
=
v

w
(2.64)

where

vr − vl = wD or

w =
vr − vl
D

(2.65)
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and

v = wR =
vl + vr

2
(2.66)

When the distance from A to B is short, the transformation between pose A

and B can be approximated by:

∆x ≈ v cos θt∆t

∆y ≈ v sin θt∆t
(2.67)

where θt is the angle. Then the approximated motion model can be expressed

as: xt+1

yt+1

θt+1

 =

xtyt
θt

+

v cos θt∆t
v sin θt∆t
w∆t


w =

vr − vl
D

, v =
vl + vr

2

(2.68)

The approximation in Eq.(2.67) only valid when the robot motion satisfies

the small signal assumption, meaning that a small change of velocity causes

a small change of distance, and a better assumption has to be made if the

approximation does not stand. In this case, R and C are constant, which can

be used to calculate the position of the center point C:

Cx = xt −R sin θt, dxt = xt − Cx = R sin θt

Cy = yt +R cos θt, dxt = yt − Cy = −R cos θt

dxt and dyt denote the positions along the coordination system where origin is

at C. While the angular velocity w is the input, the pose B can be computed

by the rotation transformation:[
dxt+1

dyt+1

]
=

[
cosw∆t − sinw∆t
sinw∆t cosw∆t

] [
dxt
dyt

]
(2.69)

Finally, we obtain the motion model Eq. (2.70) with inputs as the velocity v

and angular velocity w:

27



xt+1

yt+1

θt+1

 =

cosw∆t − sinw∆t 0
sinw∆t − cosw∆t 0

0 0 1

dxtdyt
θt

+

 Cx
Cy
w∆t


=

cos (w∆t)R sin (θt) + sin (w∆t)R cos (θt)
sin (w∆t)R sin (θt)− cos (w∆t)R cos (θt)

θ

+

xt −R sin θt
yt +R cos θt

w∆t


=

xtyt
θt

+

− v
w

sin θt + v
w

sin (θt + w∆t)
v
w

cos θt − v
w

cos (θt + w∆t)
w∆t


(2.70)

There are other motion dynamics, such as the four wheel model, etc. In

practice, we can directly adjust motor current or voltage to control its speed.

To estimate the robot motion, the motor encoder values are usually used to

compute the robot odometry. The encoder data contains the motor or wheel’s

rotation angle, and with the use of the rotation angle and wheels dimensions,

we can estimate how far and which direction the robot has traveled and com-

pute the new robot location.
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Chapter 3

Filter-based SLAM

There are three main features in SLAM, namely mapping, localization, and

planning. When a robot drives in an unknown environment, the mapping

algorithm uses sensor collected environment data to generate different maps,

for example, topological map or grid map. The localization algorithm is for

the robot to estimate its position in a given map. The robot uses combined

information from localization and mapping as the foundation for navigation.

When the map and locations are known, the navigation algorithm calculates

the best path to the destination. In this chapter, map representations and

measurement models are at first given in the 2-D case, and then how they are

used in filter based SLAM algorithms is discussed. EKF, UKF, and particle

filter based SLAM are introduced. Finally MATLAB simulation results of

EKF and UKF SLAM are reported.

3.1 The Map

In a 2-D scenario, the mathematical representation of the map and robot posi-

tion are introduced in two ways. One approach is to combine the robot position

and detected landmarks in one map vector. This representation is commonly

used when object features are used for sensor measurement. Because of the

limited feature number (much less than sensor observations), it is possible to

use all of features during the calculation. Another approach is to use occu-

pancy grid map, in which each grid cell is associated with the probability of

the cell being occupied.
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3.1.1 Feature Map

Let a 2-D map M contain the robot and n landmarks states, and the robot

state has its location x, y, and orientation θ. The ith landmark states include

its location Lix with respect to the x-axis and Liy to the y-axis. The following

are vector representations of the map states M and its covariance matrix P

M =

[
R
L

]
=



x
y
θ
L1
x

L1
y

· · ·
Lnx
Lny


(3.1)

The error covariance matrix P has dimension of (3 + 2n) × (3 + 2n) and is

written as

P =



σxx σxy σxθ σxL1
x

σxL1
y
· · · σxLnx σxLny

σyx σyy σyθ σyL1
x

σyL1
y
· · · σyLnx σyLny

σθx σθy σθθ σθL1
x

σθL1
y
· · · σθLnx σθLny

σL1
xx

σL1
xy

σL1
xθ

σL1
xL

1
x

σL1
xL

1
y
· · · σL1

xL
n
x

σL1
xL

n
y

σL1
yx

σL1
yy

σL1
yθ

σL1
yL

1
x

σL1
yL

1
y
· · · σL1

yL
n
x

σL1
yL

n
y

...
...

...
...

...
. . .

...
...

σLnxx σLnxy σLnxθ σLnxL1
x
σLnxL1

y
· · · σLnxLnx σLnxLny

σLnyx σLny y σLny θ σLnyL1
x
σLnyL1

y
· · · σLnyLnx σLnyLny


or simply

P =

[
PRR PRL
PLR PLL

]
(3.2)

3.1.2 Occupancy Grid Map

It is sometimes difficult to use the feature map to represent objects. First

of all, features of a uniform structure tend to be complex. Furthermore, the

four most important factors cannot be effectively handled by the feature map

[60]. First, when the robot is exposed to a broader environment, it is more

challenging and slower to maintain the map. Second, the considerable noises

from sensors or the environment affect the result significantly. The third factor

is the perceptual ambiguity, the map should have more confidence when the
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sensor data matches the map information. Lastly, the accumulated odometry

error can generate a wrong map. The occupancy grid map can address these

four problems well. The basic idea of the occupancy grid map is to arrange

the map into a number of grids and use probability to present the occupied

grid’s confidence. The occupancy grid map representation is very convenient

for post SLAM processes. For example, after the EKF SLAM, we can use the

maximum likelihood of grids to optimize the robot pose. Also, some SLAM

algorithms directly use the inverse sensor model to update the occupancy grid

map, for example, Monte Carlo localization [11], etc.

The probability of an occupancy grid map M is computed as the sum of

the probability from each grid cell Mi. The probability of a grid been hit phit

or missed pmiss can be computed by the inverse of the measurement model.

Another way is to assign the probability phit or pmiss to grid points been hit or

missed. For example, Fig. 3.1 demonstrates the hits and misses for a 2D-scan.

For every hit, the closest grid cell is inserted to the hit set, and then missed

grids are those intersecting the rays between the scan origin and the hit point.

Figure 3.1: A scan and grid map associated with hits and misses

The grid cells probability is updated by the following steps:

odds(p) =
p

1− p
(3.3)

Mnew(x) = clamp(odds−1(odds(Mold(x)) · odds(phit))) (3.4)
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where the grid point x has been observed and we update the old grid proba-

bility Mold(x) by the odds for hits or misses, and the function clamp(x) does

the following:

if (x > pmax), x = pmax; if (x < pmin), x = pmin

3.2 EKF-SLAM

One common solution to the 2D SLAM problem is based on EKF , see Algo-

rithm 3. In this section, EKF based SLAM for the 2D case is discussed. The

feature map is used to implement EKF-SLAM, and it is assumed that the data

association is known for landmarks, and every landmark is independent.

3.2.1 Initialization and New Landmark Observation

Let the robot is initially placed at the origin of the map with no uncertainty,

where the robot states R and covariance matrix PRR are initialized as zero

vector and matrix.

R0 =

x0

y0

θ0

 =

∅∅
∅

 PRR0 =
[
∅
]

(3.5)

Assume landmarks’ positions are unknown initially, so the landmarks’ states

and the covariance between the robot and landmark PRL and PLR are set to

zeros. Also, the landmark auto-covariance matrix is set to be infinite identity

and covariance between landmarks to be zero because landmarks are assumed

to be independent of each other, i.e.

L =
[
0 0 · · · 0

]>
PLL =

∞ · · · 0
...

. . .
...

0 · · · ∞

 (3.6)

Landmarks are not observed initially. When a new landmark is observed, a

fixed covariance can be assigned to the landmark. Another way to incorporate

a new landmark is to recalculate the landmark states and covariance upon its

observation. Also, the map and covariance matrix dimensions expand when-

ever a new landmark is observed. For the robot considered in this chapter,
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when the sensor detects a new landmark, it returns values of the range and

the angle. Received range and angle can be used to calculate map states. The

landmark observation function can be written as:

ŷ = h(M) (3.7)

where the Map M includes the robot states and landmark states: M =

[R> L>]>. The new landmark is computed from the reverse of the obser-

vation function, which can be expressed as,

Ln = g(R, ŷ) (3.8)

After the nth new landmark is added to M then the new map states become,

Mnew =

[
Mold

Ln

]
(3.9)

The new covariance matrix becomes,

Pnew =

[
Pold PXnLn
PLnXn PLnLn

]
(3.10)

The auto-covariance of landmark states PLnLn and the covariance between

new landmark sates and existing states PLnMold
are appended to the existing

matrix.

For convenience, let the Xn = [R> ŷ>]>, where R contains the robot states

and we use sensor measurement z here to approximate ŷ ≈ z. The landmark

auto-covariance can be computed by following

PLnLn = E[(g(Xn)− ḡ(Xn))(g(Xn)− ḡ(Xn))>]

ḡ(.) is the mean of the output function g. By using the first-order approxima-

tion of the Taylor’s expansion, we can compute the landmark location and its

mean as:

Ln = g(Xn) = g(X̄n + δXn) = g(X̄n) +∇g(X̄n)δXn + · · ·

L̄n = ḡ(Xn) = E[g(X̄n) +∇g(X̄n)δXn + · · · ] ≈ g(X̄n)
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The covariance matrix can be rewritten and approximated as:

PLnLn = E[(g(Xn)− ḡ(Xn))(g(Xn)− ḡ(Xn))>]

≈ E[∇g(X̄n)(δXn(δXn)>)∇g(X̄n)>]

= ∇g(X̄n)PXnXn∇g(X̄n)> (3.11)

The gradient of Xn is

∇g(X̄n) =
[
∂g
∂R

∂g
∂y

]
(3.12)

The covariance matrix PXnXn can be extend to:

PXnXn =

[
PRR PRy
PyR Pyy

]
(3.13)

Furthermore, assume that new landmark’s observation and robot states are

independent, which means PRy = PyR = 0. Also, the covariance for the

measurement Pyy can be assigned as the measurement error covariance V .

The covariance PLnLn for new landmark states becomes

PLnLn = ∇g(X̄n)PXnXn∇g(X̄n)>

=
[
∂g
∂R

∂g
∂y

] [PRR
Pyy

] [ ∂g
∂R
∂g
∂y

]
=
∂g

∂R
PRR

∂g

∂R

>
+
∂g

∂y
V
∂g

∂y

>
(3.14)

Finally, the covariance between the new landmark and robot is:

PLnXn =
∂g

∂R
PRL (3.15)

PXnLn = P>LnXn (3.16)

3.2.2 Prediction

Consider that landmarks are stationary, then the map Mt at time t is:

Mt = F (Mt−1, ut, nt) =

[
f(Rt−1, ut, nt)

Lt

]
yt = h(Mt) + σt
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where u, n, and σ are the input, process noise, and the measurement noise,

respectively. The EKF prediction step from the Algorithm 3 is expressed as

follows,

M̄t = F (Mt−1, ut) (3.17)

P̄t = AtPt−1A
>
t +NtQtN

>
t

The linearized transformation model A is invariant to landmarks and can be

written as:

At =
∂F (M,u, n)

∂R

∣∣∣∣
Mt−1

=

[
∂f(R,u,n)

∂R
0

0 I

] ∣∣∣∣
Rt−1

(3.18)

where Q is covariance matrix of the perturbation n and

N>t =
∂F (M)

∂n
=

[
∂f(R,u,n)

∂n

0

]
Finally, substitute At, Pt−1 and Nt into the error covariance matrix,

P̄t = At Pt−1 A
>
t +NtQtN

>
t

=

[
∂f(R,u,n)

∂R
0

0 I

] [
PRR PRL
PLR PLL

] [
∂f(R,u,n)

∂R
0

0 I

]>
+

[
∂f(R,u,n)

∂n

0

]>
Q

[
∂f(R,u,n)

∂n

0

]
=

[
∂f(R,u,n)

∂R
PRR

∂f(R,u,n)
∂R

> ∂f(R,u,n)
∂R

PRL
(∂f(R,u,n)

∂R
PLR)> PLL

]
+

(
∂f(R, u, n)

∂n

)>
QRR

∂f(R, u, n)

∂n

(3.19)

3.2.3 Estimation

Use estimation step from EKF Algorithm 3,

Kt = P̄tH
>
t (HtP̄tH

>
t + Vt)

−1

Mt = M̄t +Kt(zt − h(M̄t))

Pt = (I −KtHt)P̄t

where the Jacobian Ht = ∂h(M)
∂M
|M=M̄t

, V is the covariance matrix for mea-

surement noise and K is the Kalman gain. zt represents the sensor measured

value and ŷt = h(M̄t) is the estimated measurement computed by observation

model.

For SLAM problems, assume there are n numbers of different observations zt
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are collected and n number of measurement estimation h(M) are computed.

Therefore, the EKF filter updates n landmarks one by one during an update

process. For example, when the ith landmark is observed, the Jacobian matrix

H becomes,

H =
[
∂h(M)
∂R

0 · · · ∂h(M)
∂Li

· · · 0 · · · 0
]

(3.20)

3.3 UKF-SLAM

In this section, the implementation of UKF for SLAM is discussed. Similarly,

the feature map representation is used.

3.3.1 New Landmark Observation

Similar to EKF-SLAM, the observation model, formulation of states and land-

mark map can be obtained as in Eq. (3.8)-(3.10). In the following, we discuss

how to compute the covariance matrices by using the unscented transforma-

tion. Applying the unscented transformation, the covariance PLnLn can be

computed through the Eq.(2.27) for each landmark Ln,

P̄LnLn =
2n∑
i=0

W c
i (X Ln

i − L̄i,n)(X Ln
i − L̄i,n)> (3.21)

where

X Ln = g(XXn)

L̄n =
2n∑
i=0

Wm
i X Ln

i

XXn = [X̄n X̄n ± (
√

(n+ λ)PXnXn)1 · · · X̄n ± (
√

(n+ λ)PXnXn)]

(3.22)

Given the measurement noise covariance Q, and assume the independency

between robot and observation, the covariance PXnXn can be written as

PXnXn =

[
PRR ∅
∅ Q

]
(3.23)

To calculate the P̄XnLn , start with equations:

P̄XLn =
2n∑
i=0

Wm
i (XXn

i − X̄i,n)(X Ln
i − L̄i,n)> (3.24)
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where

X Ln = [L̄n L̄n ± (
√

(n+ λ)PLnLn)1 · · · L̄n ± (
√

(n+ λ)P̄LnLn)n] (3.25)

Where the P̄LnLn is calculated from Eq.(3.21).

3.3.2 Prediction

Assume landmarks are not moving all the time, the prediction step will only

update the robot states and leave landmarks states not changed. Use the robot

covariance matrix PRR to generate sigma states

XRt−1 = [R̄t−1 R̄t−1 ± (
√

(n+ λ)PRR)1 · · · R̄t−1 ± (
√

(n+ λ)PRR)n]

where n is the size of covariance matrix, and for the robot states n = 3. The

weights are calculated through Eq.(2.28). The prior states are computed by

the following equation:

XRt = f(XRt−1 , ut) (3.26)

Its average is

R̄t =
n∑
i=1

Wm,iXRt (3.27)

Then apply the Eq.(2.32) and add the control input noise to predict the UKF

covariance P̄RR:

P̄RR =
∑
i=0

Wc(XRt−R̄t)(XRt−R̄t)
>+
∑
i=0

Wc(X ut−ut)(X ut−ut)>+Qt (3.28)

Where for convenience we combine the input noise with the process noise to

estimate Q =
∑

i=0Wc(X ut − ut)(X ut − ut)> + Qt The PRL and PLR can be

computed in two ways. First approach simply set PRL and PLR to be zeros.

The better one is to apply UT to calculate PRL and PLR.

P̄RL = E[(XRt − R̄t)(X L − L̄)>] (3.29)

Lastly, the landmarks covariance are kept same

P̄LL = PLL (3.30)
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3.3.3 Estimation

During the estimation step, the observation equation takes the sigma points

from all changing states (robot and observed landmark states). The computed

prior covariance matrix will be used for sigma points calculation.

XMt = [M̄t M̄t ± (
√

(n+ λ)P̄ )1 · · · M̄t ± (
√

(n+ λ)P̄ )n]

The sigma points of the observation are,

X y = h(XMt)

and its mean is

ȳ =
2n∑
i=0

WmX y

the output error covariance can be computed as

Pyy =
2n∑
i=0

Wc(X y − ȳ)(X y − ȳ)> + V

where V is the measurement noise covariance matrix. Next, the covariance

PyMt between the prior map states M̄t and measurement y.

PyMt =
2n∑
i=0

Wc(X y − ȳ)(XMt − M̄t)
>

K = PyMtP
>
yy

Lastly, the updated map Mt and covariance Pt becomes:

Mt = M̄t +K(zt − ȳ) (3.31)

Pt = P̄ +KPyyK
> (3.32)

3.4 Simulation of EKF/UKF-SLAM

The simulation for EKF-SLAM and UKF-SLAM is developed in Matlab. Num-

bers of landmarks are generated, and a robot drives in a circular motion using
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the two-wheel ground robot motion model described in Chapter 2. During

the simulation, robot paths and landmarks are estimated using EKF, UKF

and the pure motion model. In addition, the trajectory and landmark er-

ror are computed and presented. The Matlab program can be founded at

https://github.com/linjianxiang/SLAM_simulations.

3.4.1 Two Wheel Ground Robot

In the simulation, the two-wheel ground robot motion model given in Eq.

(2.70) is used. This subsection describes how robot model is integrated into the

feature map. With control input ut = (vt wt)
>, the motion model f(xt−1, ut)

is given as,

R =

xtyt
θt

 = f(xt−1, ut) =

xt−1

yt−1

θt−1

+

− vt
wt

sin(θt−1) + vt
wt

sin(θt−1 + wt∆t)
vt
wt

cos(θt−1)− vt
wt

cos(θt−1 + wt∆t)

wt∆t


The map M is represented by the following equation,

Mt =



xt
yt
θt
L1
xt

L1
yt
...
Lnxt
Lny t


= F (Mt−1, ut) =



xt−1

yt−1

θt−1

L1
xt−1

L1
yt−1
...

Lnxt−1

Lny t−1


+Fx

− vt
wt

sin(θt−1) + vt
wt

sin(θt−1 + wt∆t)
vt
wt

cos(θt−1)− vt
wt

cos(θt−1 + wt∆t)

wt∆t



In this case, we assume all landmarks are stationary, but only robot states

change with time. To reduce computation burden involving matrix calcula-

tions, the matrix Fx is introduced to ensure only changed states are used for

calculations, which saves a significant amount of computation time,

Fx =



1 0 0
0 1 0
0 0 1
0 0 0
...

...
...

0 0 0


(3.33)
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Furthermore, let the estimated output observation be ŷt = h(Mt) = [r φ]>

and the sensor measurement equation is shown as follow:

yt = h(Mt) + σt

Initialization is conducted according to Eq. (3.5) and (3.6).

Prediction for Two-Wheel Ground Robot

To perform the EKF prediction in Eq.(3.17) and (3.19), we need to calculate

the Jacobian matrix At and covariance matrix. From two-wheel robot motion

kinetic model,

At =
∂f(R, u, n)

∂R
=

∂

∂(x, y, θ)>

(xy
θ

+

− v
w

sin(θ) + v
w

sin(θ + w∆t)
v
w

cos(θ)− v
w

cos(θ + w∆t)
w∆t

)

= I +

0 0 − v
w

cos(θ) + v
w

cos(θ + w∆t)
0 0 − v

w
sin(θ) + v

w
sin(θ + w∆t)

0 0 0


=

1 0 − v
w

cos(θ) + v
w

cos(θ + w∆t)
0 1 − v

w
sin(θ) + v

w
sin(θ + w∆t)

0 0 1


(3.34)

For simplicity, we redefine the motion noise covariance as

Q =

(
∂f(R, u, n)

∂n

)>
QRR

∂f(R, u, n)

∂n
(3.35)

The prediction step can then be performed as shown in Eq.(3.17) and (3.19)

and EKF Algorithm3.

Estimation for Two-Wheel Ground Robot

The sensor model observes the ith landmark at the time t, i.e.

yit = [rit φit]
>

The first time the sensor observes the ith landmark (range and angle), land-

mark states (navigation frame location) can be calculated by the reverse ob-

servation function: [
Lix
Liy

]
=

[
xt
yt

]
+

[
rit cos(φit + θt)
rit sin(φit + θt)

]
(3.36)
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In the Eq.(3.36), rit and φit are measured range and angle value, position xt, yt

and orientation θt are estimated robot states at time t. The estimated output

for ith landmark at time t can be calculated by:

h(Mt) =

[
rit
φit

]
=

[ √
(Lix − xt)2 + (Liy − yt)2

arctan((Liy − yt)/(Lix − xt))− θt

]
(3.37)

After having the measurement model, the output Jacobian matrix H can be

calculated,

H =
[
∂h(M)
∂R

0 · · · ∂h(M)
∂Li

0 · · · 0
]

where

∂h(Mt)

∂R
=

∂h(Mt)

∂(xt, yt, θt)
=

− (Lix−xt)√
(Lix−xt)2+(Liy−yt)2

− (Liy−yt)√
(Lix−xt)2+(Liy−yt)2

0

Liy−yt
(Lix−xt)2+(Liy−yt)2 − Lix−xt

(Lix−xt)2+(Liy−yt)2 −1



=

[
− (Lix−xt)

rit
− (Lixy−yt)

rit
0

Liy−yt
(rit)

2 −Lix−xt
(rit)

2 −1

]
(3.38)

∂h(Mt)

∂Li
=

∂h(Mt)

∂(Lix, L
i
y)

=

 (Lix−xt)√
(Lix−xt)2+(Liy−yt)2

(Liy−yt)√
(Lix−xt)2+(Liy−yt)2

− Liy−yt
(Lix−xt)2+(Liy−yt)2

Lix−xt
(Lix−xt)2+(Liy−yt)2


=

 (Lix−xt)
rit

(Liy−yt)
rit

−Liy−yt
(rit)

2

Lix−xt
(rit)

2

 (3.39)

Substitute the Eq.(3.38) and Eq.(3.39) into H

H =

[
− (Lix−xt)

rit
− (Lixy−yt)

rit
0 · · · (Lix−xt)

rit

(Lixy−yt)
rit

· · ·
Liy−yt
(rit)

2 −Lix−xt
(rit)

2 −1 · · · −Liy−yt
(rit)

2

Lix−xt
(rit)

2 · · ·

]

To reduce the computational time, the modified algorithm uses a transfor-

mation matrix Fx to only update the robot and current observed landmark

states,

Fx =


1 0 0 · · · 0 0 · · · 0
0 1 0 · · · 0 0 · · · 0
0 0 1 · · · 0 0 · · · 0
0 0 0 · · · 1 0 · · · 0
0 0 0 · · · 0 1 · · · 0


>
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The matrix Fx has dimension of 2n × 5 and the ith landmark observation is

located at the (3 + 2(i− 1))th row of the matrix. (i starts from 0)

HFx =

[
− (Lix−xt)

rit
− (Lixy−yt)

rit
0 (Lix−xt)

rit

(Lixy−yt)
rit

Liy−yt
(rit)

2 −Lix−xt
(rit)

2 −1 −Liy−yt
(rit)

2

Lix−xt
(rit)

2

]

Up to this point, equations for applying EKF-SLAM algorithm to motion

model (Eq.(2.70)) are derived.

3.4.2 Parameters

There are many parameters to be tuned in the simulation and some important

ones are listed as follows.

• iteration: number of iterations that the robot runs

• dt: time interval

• map.map length: length of the squared map

• map.landmark number: number of landmarks

• map.random landmark: randomize or fixed landmarks

• q: control noise standard deviation

• v: measurement noise standard deviation

• u v: robot velocity

• u w: robot angular velocity

3.4.3 Results

To test and compare performance of the EKF and UKF schemes, simulation

is performed in two experiments, and results are obtained.
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Figure 3.2: The plot on the left shows estimation results at the time when only
one landmark is observed. The right one shows the iteration when landmarks
are observed.

Figure 3.3: Robot and landmark position after 200 iteration

Experiment 1

The first experiment runs 200 iterations and the robot input speed u v =

1, angular velocity u w = π/10. Also, there are 20 landmarks used, and

noise standard deviations are set as q = [0.1; π/18], v = [2, π/18] for control

and measurement respectively. In the beginning, no landmarks are observed.
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Figure 3.4: Estimated robot position and landmark position error

For each iteration, one landmark is added to the states until all of them are

detected. For example, the left of the Fig.3.2 shows the beginning of the

SLAM process when only one landmark is observed. The right image from the

Fig.3.2 also shows how confident the landmark location is in the early stage.

The ellipse represents the covariance P from EKF and UKF algorithm.

After 200 iterations, the landmarks’ locations converge and are shown in

Fig.3.3. By pure motion model result, the estimated landmarks (green) are far

away from the true landmarks (red). Furthermore the EKF or UKF SLAM

achieves similar performance. This can also be seen from the robot and land-

mark Mean Squared Error(MSE) plot in Fig.3.4.

Experiment 2

In this experiment, we compare the performance of EKF-SLAM and UKF-

SLAM. The input noise is doubled to q = 2 × [0.1;π/18], which is about

20% of the input magnitude. After 200 iterations, the SLAM estimated map

and the recorded robot path are shown in Fig.3.5. Fig.3.6 shows the MSE of

robot position and landmarks. It is clear that the UKF-SLAM in general is

better than EKF-SLAM with less estimation errors in both robot poses and

landmarks. It is clear that for EKF-SLAM the relative large error can build
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Figure 3.5: The left image shows the location of the estimated robot and
landmark location. The right image shows the robot’s true and estimated
path.

Figure 3.6: Robot and landmark error

up and cause divergence as shown in Fig.3.5 and Fig.3.6.

3.5 Particle Filter Based SLAM

In this section, the application of particle filters to SLAM problem is dis-

cussed. The particle based SLAM algorithm is one of the most popular SLAM

algorithms in robotics since it is easy to implement, and most importantly

it handles non-Gaussian distributions. Furthermore the algorithm has better

45



robustness to uncertainties and errors.

From the particle filter algorithm given in Algorithm 5, the core idea of

particle based SLAM is that each particle x
[i]
t carries a grid map and a robot

state (pose and orientation). Then the measurement model is used to evaluate

particles and reallocate ‘bad’ particles accordingly. Finally, the low variance

sampler (Algorithm 7) is used for the resampling step. In addition, during the

localization processes, each particle represents only the robot state.

There are many differences between the particle filter based SLAM and

Kalman filter based SLAM. The former can handle non-Gaussian noises in

either system or sensor measurements, and thanks to the grid map and beam

measurement model, it does not require information on landmarks and land-

marks correspondence. This makes the particle filter SLAM algorithm easier

to implement and faster than the Kalman filter based ones, especially when

the built map is getting bigger.

3.5.1 Measurement Model

In order to generate proper weights for each particle, the measurement needs

to return the possibility of the current particle being correct. Most sensors

generate more than one measurement value at each time. For example, when

using a range-bearing laser beam sensor, each measurement contains a number

of range and angle values generated. Assume there are K number of laser beam

values from each measurement zt at time t.

zt = {z1
t , · · · , zKt } (3.40)

Then the measurement probability can be calculated as the product of the

probability for each laser value

p(zt|xt,M) =
K∏
k=1

p(zkt |xt,M) (3.41)

Beam model of range finder

No matter how good a sensor is, its measurements usually are subject to var-

ious errors. For a range sensor, measurement noise, unexpected object, ran-
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dom unknown sources of noises, and detection failure are four common types

of possible measurement errors. They should be considered when calculating

p(zt|xt,M)

• Due to measurement noises, the observation is not 100% match of the

constructed grid map, where the observed hit point may not be located

at the same occupied gird cell of the object. To evaluate the possibility

phit(z
k
t |xt,M) of a laser beam hit the object, a narrow Gaussian distri-

bution with standard deviation σhit and mean z̄t is assumed. z̄t is the

mean location of the closest object to the robot along the laser beam.

To calculate z̄t, the ray casting is used, which is very computationally

expensive (to accelerate the process, this step is typically pre-computed

and saved for after use). The measurement probability can be expressed

as:

phit(z
k
t |xt,M) =

{
ηN (zkt , z̄

k
t , σ

2
hit), if 0 ≤ zkt ≤ zmax

0, otherwise
(3.42)

where zmax is the maximum sensor range, and variance σ2
hit need to be

tuned. The normal distribution follows the equation

N (zkt , z̄
k
t , σ

2
hit) =

1√
2πσ2

hit

e
− (zkt −z̄

k
t )2

2σ2
hit (3.43)

And the normalization factor η is the inverse of the area under the dis-

tribution

η =

(∫ zmax

0

N (zkt , z̄
k
t , σ

2
hit)

)−1

(3.44)

• While running the SLAM algorithm, there can be an unexpected object

moving around. These objects can block sensing and cause wrong mea-

surements. In fact, the closer the object is, the smaller the likelihood of

having an unexpected object, and for this reason an exponential distri-

bution is used to tackle this situation. However, unexpected or moving

objects are not considered in our model.

• A laser sensor shoots out a laser beam and calculates the range from

the returned beam. When the map is too large for the sensor to re-
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ceive returning beams, or a light absorbing objects may also weaken the

returning beams, the sensor in this case generates a maximum range mea-

surement value. In this thesis, we only consider the exceeding maximum

range case and model this as a narrow uniform distribution centered at

zmax

pmax(z
k
t |xt,M) =

{
1, if zkt ≈ zmax

0, otherwise
(3.45)

• The range sensor may generate random noise in measurements, we model

is as a uniform distribution spread over the entire measurement range

prand(z
k
t |xt,M) =

{
1

zmax
, if 0 < zkt < zmax

0, otherwise
(3.46)

Then, combine these four types of distributions with normalized weight pa-

rameters to get the measurement probability

whit + wunexpect + wmax + wrand = 1 (3.47)

Figure 3.7: Beam model probability distribution

Then the measurement model can be implemented by the following beam

range finder model algorithm [60], and its distribution shows in the Fig.3.7

1 Algorithm beam model (zt, xt,M) :
2 p = 1 ;
3 for k = 1 to K do
4 pk = whit ∗ phit(zkt |xt,M) + wunexpect ∗ punexpect(zkt |xt,M) + wmax ∗

pmax(z
k
t |xt,M) + wrand ∗ prand(zkt |xt,M) ;

5 p = p ∗ pk
6 end
7 return p

Algorithm 8: Range finder model pseudo algorithm
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3.6 Discussions

In this chapter, several common filter based SLAM algorithms are described

and discussed. The Kalman Filter based SLAM algorithms were developed

earlier, and have been studied and improved over the years. For small number

of features they do not need much computational resource to achieve online

SLAM. However, they have some obvious disadvantages compared with the

more recent particle filter (PF) based SLAM scheme. First, KF SLAM can

only apply a limited number of features/landmarks because it needs to run

the KF update step for all sensor observations, which is time-consuming. For

example, a standard LiDAR sensor collects more than thousands of laser mea-

surements for each scan and the sensor takes many scans within a second. It

is computational exhaustive and difficult to run in real-time. In addition, the

number of sensor measurements also bring out the problem of correspondence.

All of the features/landmarks information is saved in a state vector, and each

state corresponds to a specific map feature/landmark. While the robot moves,

it needs to identify whether the sensor value is for a new feature or a specific

existing feature. This step is complicated using only raw measurement data,

such as range and bearing value or images. The KF based SLAM algorithms

usually involves a data pre-processing step to extract features from a cluster

of data points and find corresponds to the existing states. On the other hand,

the particle filter directly takes laser scans to update the occupancy grid map.

When compared to the PF-SLAM, another disadvantage is that the KF-

SLAM only tackles Gaussian distributed noises. Also, it needs to apply ap-

proximation algorithms (linearization or UT) to nonlinear systems to ensure

the Gaussian assumption. On the other hand, PF-SLAM can handle complex

multi-model probability distributions, which provides a much better estima-

tion of the robot pose. Because of the characteristics of Kalman filter, a

large change of observation error would significantly affect the SLAM result.

Lastly, the KF-SLAM cannot handle the global localization problem and re-

cover from localization failures, for example, the kidnapped robot problem (to

be discussed in Chapter 5). Conversely, the PF-SLAM algorithms can solve
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these problems. For example, by applying the Adaptive and Augmented Monte

Carlo Localization (AMCL) algorithm, which uniformly distributes particles

to the map while processing the global localization, the localization failure can

be detected. This work is discussed in Chapter 5 in details.

Finally, the cumulative error from each filter step is a problem for both

of the algorithms. To handle that, the Graph-based SLAM is introduced to

apply minimize the error using all the past robot position (path), which will

be addressed in the next Chapter.
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Chapter 4

Graph-based SLAM

The filter based SLAM recursively estimates state values by using only its

value from the last step. Differently, the Graph-based SLAM solves full SLAM

problem, which calculates a solution for past poses and all features on the map

simultaneously. The graph-based SLAM problem can be separated into the

front and back end process. The front-end is sensor related, which collects

sensor data and computes a relatively accurate map and robot pose. The front-

end process combines a number of algorithms, including feature detection,

data association, data fusing, and filters, etc. Then it constructs an abstract

representation of the map called a graph, which has two key components,

nodes and constraints (edges). Nodes contain landmarks and robot poses

information. Constraints connect nodes (robot poses and landmarks) by robot

motion dynamics and encode the sensor measurement between two nodes while

the robot is moving. However, the error between expected node positions and

constraints keep growing because of the sensor and motion noises. Therefore,

the graph SLAM back-end process is designed to periodically reconfigure nodes

to maximize the graph consistency with the measurements. In other words,

the back-end process optimizes the node positions to get minimized graph

errors. Fig.4.1 shows the structure of the graph SLAM process.

In this Chapter, basics of graph-based SLAM are introduce at first. Then

the graph-based SLAM using visual data is addressed, and a case study of the

visual SLAM is included.
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Figure 4.1: The relationship between front-end and back-end of the SLAM.

4.1 The Pose Graph

For the graph-based SLAM, the robot and landmark poses are modeled by

nodes, and then edges are constructed between two nodes, which can be

thought of a rope tying all nodes together. This section only addresses the

pose-graph, where only robot pose is modeled for a SLAM process. Each edge

consists of a probability distribution over the rigid-body relative transforma-

tions between the two poses, and a covariance associated to the transforma-

tion. For example Fig.4.2 shows the pose-graph representation of a SLAM

process,[22]. Every node in the graph corresponds to a robot pose here, and

nodes are linked by edges computed from motion estimation and loop-closure

constraints.

For a pose-graph, a predicted node pose is calculated using the motion

model and the previous node position. Because of the noise, the predicted loca-

tion is not equal to the predicted one. Therefore, the back-end of graph-based

SLAM attempts to minimize the total error between predicted measurement

and observed measurement for all tied nodes.

Let x = [x>1 . . .x
>
T ]> be a vector of nodes from time 1 to T , where the ith
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Figure 4.2: A pose-graph representation of a SLAM process, the arrow between
nodes xt and xt−1 is a regular constraint. The edge between xi and xj is a
loop-closure constraint, [22]

node xi contains the robot location ti and orientation θi.

xi = [ti, θi]
>

The Fig.4.3 shows the relationship between the graph components, and we

use xi and xj as an example. Let zij and Ωij denote the observation mean

and information matrix between node i and j, respectively. In this case, the

measurement zij is a transformation that makes the observation from i to

j to have the maximum overlap, which is computed through environment

matching algorithms. Also, ẑij is the predicted measurement between nodes,

which is normally computed through relative transformations (motion model

and odometry, etc.). For example, by relative transformation that can be

computed from an adjacent pose, the pose of node xi and xj are able to be

computed sequentially. The error between two measurements can be computed

as:

eij(xi,xj) = zij − ẑij (4.1)

To minimize the sum of error function for all < i, j >∈ C, where C contains
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indices for an existent constraint (observation) z. The global cost function can

be written as:

F (x) =
∑

<i,j>∈C

e>ijΩ
−1
ij eij (4.2)

and the optimal solution for the nodes is:

x∗ = arg min
x
F (x) (4.3)

which can be solved by using the non-linear least-squares method.

Figure 4.3: Aspects of an edge connecting node i and node j. The error eij
depends on the displacement between the expected and real observation, [22]

To make the calculation of the relative transformation easier, we convert

from Cartesian coordinates to Homogeneous coordinates at first. Let f be the

function transform from Cartesian to Homogeneous. Then the Eq.(4.1) can

be rewritten as:

eij(xi,xj) = f−1(Z−1
ij (X−1

i Xj)) (4.4)

where Zij = f(zij), Xi = f(xi) , Xj = f(xj) and

f(xi) =

[
Ri ti
0 1

]
=

cos(xθi ) − sin(xθi ) xxi
sin(xθi ) cos(xθi ) xyi

0 0 1


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where R is the rotation matrix, t is the translation between x and y coordi-

nate. Then the error function for pose-pose and pose-landmark constraints

are obtained:

Pose-Pose edge:

eij(xi,xj) =

[
R>ij(R

>
i (tj − ti))− tij
θi − θj − θij

]
(4.5)

Pose-Landmark edge:

eij(xi,xj) =
[
R>i (tj − ti)− zij

]
(4.6)

For the pose-landmark error function, the angle is excluded from observation

(zij ∈ R2×1) and error function, where in this equation xi is the robot pose

node and xj is the landmark node.

Graph SLAM Optimization

The non-linear least-squares optimization is used to find the optimal node

poses to minimize the measurement error according to Eq.(4.3). A good initial

guess for the robot’s nodes (position) x̆ is computed from the front-end of the

graph-based SLAM (x from Fig.4.2). Therefore, the error function (4.2) can be

approximated by Gauss-Newton or Levenberg-Marquardt algorithms. Taking

the first order of Taylor expansion from the error equation and approximate

around the initial guess x̆, the error function becomes:

eij(x̆i + ∆xi, x̆j + ∆xj) = eij(x̆+ ∆x) ≈ eij + Jij∆x (4.7)

Then refer to Section 2.4.2, we are able to compute the optimized nodes poses

iteratively. During the computation, the Jacobian and Hessian matrix of the

error function is sparse since it only depends on the states of two nodes. For

example, the Jacobian of the error function is derived as:

Jij =
(
0 · · · 0 Aij 0 · · · 0 Bij 0 · · · 0

)
(4.8)

Where Aij and Bij are the derivative with respect to xi and xj, respectively.

Because of the sparsity, only the non-zero part is cooperated during the opti-

mization computation.
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4.1.1 Loop Closure

To further improve the graph-based SLAM, the loop closure technique is intro-

duced to generate more constraints between the current node and its surround-

ing nodes, when the robot revisits a place, for example, the constraint between

node xi and xj can be generated through loop closure algorithms. The ex-

hausted method computes the likelihood between observation for a node with

all other nodes, and find the best ones to construct loop-closure constraints.

For example, while using LiDAR sensors, [45] proposed a multi-resolution scan

matching algorithm for loop-closure detection. To reduce the computational

cost, the work in [26] used a branch-and-bound approach to accelerate the

loop closure search. The details of laser scan loop closure detection meth-

ods are addressed in section 5.2. When a valid loop-closure is detected, pose

transformation is estimated as a loop-closure constraint.

For the visual based SLAM approaches, ORB-SLAM [42] uses the com-

bination of ORB feature and bag of words method to accomplish real-time

loop-closure and SLAM process. The details of visual based loop-closure are

introduced in later sections.

4.2 Graph-based SLAM Simulation

This experiment is aiming to simulate the optimization (back-end) for the

graph-based SLAM problem. Hereby we use pure odometry and EKF, UKF

SLAM algorithms to pre-calculate the good guesses for robot pose. The

EKF/UKF SLAM testing benchmark is successfully developed and presented

in Section 3.4.

This simulation is the extension of the filter based SLAM simulation in Sec-

tion 3.4. Before applying the optimization, the pose-graph is first constructed

by adding edges between two adjacent poses when the robot moves. Then im-

itate loop closure by adding edges between random nodes and the first robot

node, since the pure EKF/UKF algorithm cannot detect loop-closing and scan

matching algorithms are not developed in the simulation.
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Figure 4.4: Estimated robot paths

Experiment 1

Similar to filter based SLAM experiments, the first experiment runs 200 iter-

ations and the robot input speed is set to be u v = 1 m/s, angular velocity

u w = π/10 rad/s. Also, there are 20 landmarks used and the noise standard

deviation q = [0.1;π/18], v = [2, π/18]. The result of the EKF-SLAM is used

to build the pose-graph. In addition to the edges between adjacent nodes,

ten loop closure edges are added between the first node and other ten random

nodes. The loop-closure measurement is set to be the true distance between

the random node and the first node. The estimated robot path is shown in

Fig.4.4. The red line is the true robot path; the green line is the computed

through motion model; blue is the estimated path from EKF-SLAM, and black

is estimated path from UKF-SLAM. Finally, the pink is the optimized path,

which is closest to the true path. For better clarity, Fig.4.5 shows the zoomed

robot path and the global error during the pose-graph optimization process.
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Figure 4.5: The figure on the left shows the zoom in robot path. The figure
on the right shows the convergence of the error.

It is clear that the global cost converges with in 2 steps and the optimized

robot trajectory is almost identical to the true path.

Experiment 2

To better visualize the effect of the optimization algorithm, larger noises are

added to the system. The control input is kept the same, and the input and

measurement noises are doubled. Similarly the EKF-SLAM result is used to

construct the pose-graph, and the result for the estimated path shows in the

Fig.4.6. The optimized path is forced closer to the true path, even when the

EKF estimation is not relatively accurate.

Overall, due to the optimization process, the graph based SLAM has better

performance than the filter based SLAM algorithm. In practice, the loop

closure detection and optimization processes are executed for every number of

SLAM steps to ensure the map and robot poses are optimized in real time.
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Figure 4.6: Estimated robot paths

4.3 Visual SLAM and Application

In this section, the visual based SLAM approach is introduced based on using

monocular camera data. This approach is applied to a platform for agricul-

ture equipment’s docking task 1. In the following, the visual odometry (VO),

image feature extraction, motion estimation, and bag of visual word (bovw)

algorithms are introduced at first.

4.3.1 Visual Odometry (VO)

Contrary to wheel odometry, VO is not affected by wheel slip or other ad-

verse conditions. Also, it provides a relatively accurate trajectory estimation

1Special thanks to Prof. Hong Zhang (Computing Science, UofA) for sharing the image
datasets for this case study. Permission has been granted to include images and results in
this thesis
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and more dimensional information compared with wheel odometry. The VO

process can be divided into five ordered steps. Image sequence → Feature

detection → Feature matching → Motion estimation → Local opti-

mization. If additional loop-closure detection step and global optimization

step are included in VO, it performs visual SLAM. Here we mainly study

the monocular VO, in which both relative motion and 3-D structure must be

computed from 2-D bearing data.

The VO algorithm uses a sequence of images set as input. Image fea-

tures are extracted by some visual feature extraction algorithms like ORB

[51], SURF [2], etc. Then extracted features are matched between images,

and good matches are applied to the motion estimation algorithm. Finally,

for the Visual SLAM the loop closure and optimization step added to reduce

the global error accumulated overtime through local frame-to-frame motion

uncertainty.

To perform the feature matching step, hereby the Brute-Force Matcher is

used to match features between images, which takes the descriptor (vector of

numbers) of a feature in the first image and calculates the Euclidean distance

to all other features vectors in the second image. Then the closest one is

chosen to be the matched feature. After computing all the matches, the RAN-

dom Sample Consensus(RANSAC) algorithm is used to remove outliers and

the motion between two images is calculated by the five-point or eight-point

method, [24].

The relative scale [53] is unknown for a monocular camera. In this section,

scales are extracted from the given wheel speed data. The relative scale can

also be computed by the scale of the distance between two keypoints in different

frames. The distance between the first two camera poses is usually set to one.

When a new image is received, the relative scale and camera pose with respect

to the first two frames are determined using the trifocal tensor or external

sensor’s knowledge, etc. This method usually has to consider the scale drifting

problem, especially when more images are added to the dataset. The loop-

closure optimization is used to handle the scale drifting problem.
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Image Features

.5

Figure 4.7: ORB feature matching

.5

Figure 4.8: SIFT feature matching
.5

Figure 4.9: SURF feature matching

Image sequences are recorded from a docking process for agriculture equip-

ment. Unlike the 2D/3D LiDAR scans, it is challenging to incorporate full

image information (every pixel) to the SLAM algorithm. Using features is

much faster than using all pixels and also more robust to noise and light.

First of all, we need to find the best feature extraction algorithm for the

dataset. There are three feature extraction algorithms tested, including ORB,
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SURF, and SIFT feature algorithms. The Fig.4.7-4.9 show comparison of the

feature extraction performance on a same pair of images. The green lines

are image feature matches. It is clear that the ORB technique demonstrates

a better performance in capturing features on the equipment. Also, by the

characteristics of ORBs [51], it is more robust to image rotation noise and

faster than SURF and SIFT. Therefore the ORB features are used for later

developments.

Relative Transformation Estimation

Epipolar geometry is used to describe the relations between 3D points and their

2D projections at two camera poses. These relations can be characterized by

epipolar geometry if the camera can be approximated to a pinhole camera

model. For example, [58] provides an example of two cameras looking at the

same point X, see Fig.4.10.

Figure 4.10: A 3D point X can be seen from two cameras at OL and OR in the
world coordinate. The XL and XR are the projections of the X on two cameras
image planes. Let eL and eR be epipoles, and the line pass through {XL, eL}
and {XR, eR} are epipolar lines lL and lR, the points X1, X2, XL, XR, · · · and
camera lenses positions OL, OR lies on a plane called the epipolar plane, [58].

Assume that the world reference system is associated with the left camera

originOL, and the right camera offsets the left by a rotationR and a translation
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T . In this case, projection points on the left camera plane remain ML =

KL

[
I 0

]
and points on the right plane need to use the transformation to

change coordination MR = KR

[
R t

]
, where KL and KR are camera intrinsic

matrices. MR and ML represent the projection matrix with dimension (3× 4)

and map 3D points into the camera frame.

Consider the simplest case, let the camera parameters be 1 and the camera

intrinsic matrix

KL = KR =
[
I 0

]
The rotation matrix R is orthogonal and the coordination transformation is

ML =
[
I 0

]
MR =

[
R t

] (4.9)

Then the location of XR on the left camera coordination system is X
′
R, and

XR = RX
′

R + t

X
′

R = R−1(XR − t)

= R>XR −R>t

Furthermore, the left camera coordinate of XR at R>XR − R>t and OR at

R>t lies in the epipolar plane, and apply the cross production to compute the

plane normal vector.

R>t× (R>XR −R>t) = R>t×R>XR = R>(t×XR) (4.10)

Since the point XL is also on the epipolar plane, which is perpendicular to the

R>(t×XR), then their dot product is equal to zero,

(R>(t×XR))>XL = 0

(t×XR)>RXL = 0
(4.11)

Recall that the cross product term can be rewritten into a dot production term

by the following format, let a and b represent any two vectors:

a× b =

 0 −az ay
az 0 −ax
−ay ax 0

bxby
bz

 = [ax]b
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Apply this expression to Eq.(4.11) to replace the cross product into matrix

multiplication:

(t×XR)>RXL = 0

([t]xXR)>RXL = 0

X>R [t]>xRXL = 0

X>R [t]xRXL = 0

(4.12)

Let the matrix

E = [t]xR (4.13)

where it is called the essential matrix [37], and the Eq.(4.14) is called copla-

narity constraint.

X>REXL = 0 (4.14)

The essential matrix is a 3× 3 matrix and has five or six degrees of freedom,

depending on whether or not it is seen as a projective element (with well

determined scaling). The rotation matrix R and the translation vector T each

has three degrees of freedom, in total six. However, if the essential matrix

is considered as a projective element, one degree of freedom related to scalar

multiplication must be subtracted, leaving five degrees of freedom in total.

The essential matrix has rank 2.

det(E) = 0 (4.15)

A real non-zero 3× 3 matrix is an essential matrix if and only if satisfies the

following important cubic constraints [25]:

EE>E − 1

2
trace(EE>)E = 0 (4.16)

When the intrinsic matrix KL and KR are not identity in the Eq.(4.9), for all

pairs of corresponding points they have following constraints

X>RFXL = 0

X>RK
−>
R [t]xRK

−1
L XL = 0

(4.17)

Where the matrix F = K−>R [t]xRK
−1
L is known as the fundamental matrix.

The essential matrix and fundamental matrix have similar properties. For
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example, they can compute the epipolar lines by using XL and XR. The

epipolar line on one image frame can be calculated by the product of essen-

tial/fundamental matrix with the projected point on another image frame,

for instance, lR = EXL or lR = FXL. The matrix production of essen-

tial/fundamental matrix with the epipoles are equal to zero, EeL = EeR =

0 and FeL = FeR = 0. These properties are beneficial when the essen-

tial/fundamental matrix is computed and used to estimate the corresponding

point’s location from another image.

Eight-point Method

The knowledge of the essential matrix and fundamental matrix allows us to

estimate the relative transformation between two camera poses. To find these

matrices by using a few corresponding points is challenging. The fundamental

matrix has eight degrees of freedom. In [24] an improvement is proposed to

solve the fundamental matrix by using eight corresponding points. Hereby we

provide a brief introduction to the eight-point method. For given correspond-

ing points XL and XR and its fundamental matrix F:

XL =

xlyl
1

 , XR =

xryr
1

 , F =

F11 F12 F13

F21 F22 F23

F31 F32 F33

 (4.18)

Inserting these equations to the constraint Eq.(4.17), and rewritten as:

xrxlF11 + xrylF12 + xrF13 + yrxlF21 + yrylF22 + yrF23 + xlF31 + ylF32 +F33 = 0

(4.19)

this can be simplified to a matrix multiplication af = 0, where:

a =
[
xrxl xryl xr yrxl yryl yr xl yl 1

]
f =

[
F11 F12 F13 F21 F22 F23 F31 F32 F33

]> (4.20)

Given a set of N matched point, a set of linear equation can be obtained

as the form:

Af = 0

A =

a
1

...
aN

 (4.21)
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The fundamental matrix is determined only up to scale, to give a constraint

||f || = f>f = 1. To avoid the solution of f = 0, rank{A} ≤ 8, since F

has 8 degrees of freedom. Because of noises in the measurement, the matrix

A can be of full column rank (i.e. 9). To solve this, we can apply a least-

squares optimization to the system to minimize ||Af ||. The Singular Value

Decomposition (SVD) can be used to solve the least-squares problem and find

the fundamental matrix F .

Five-point Method

With the knowledge of the camera intrinsic matrix, it is sufficient to use five

feature point pairs to compute the essential matrix. Although the implemen-

tation is not straightforward since it involves various non-linear equations, the

five-point algorithms are more commonly used. Hereby we briefly introduce

how this method works. Similar to the eight-point algorithm, a linear system

for essential can be written as:

Qe = 0 (4.22)

where

q =
[
xrxl xryl xr yrxl yryl yr xl yl 1

]
e =

[
E11 E12 E13 E21 E22 E23 E31 E32 E33

]> (4.23)

Similar to the matrix A from Eq.(4.21), the matrix Q is built from five matched

points and it is a 5×9 matrix. For using a given Q, the solution to the essential

matrix E can be written as a combination of its null-space:

E = xE0 + yE1 + zE2 + wE3 (4.24)

where Ei, i = 0, 1, 2, 3 are null-space bases calculated from Q by either SVD

or QR factorization. For scalars x, y, z, w are defined only up to a common

scale factor, so let w = 1. Given the null-space bases, the essential matrix

E is hence determined by some (x, y, z). To compute these parameters, we

substitutes the Eq.(4.24) into Eq.(4.16) and performing Gaussi-Jordan elim-

ination with partial pivoting to obtain a coefficient matrix corresponding to

the 20-dimensional vector:
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[
x3 x2y x2z xy2 xyz xz2 y3 y2z yz2 z3 x2 xy

xz y2 yz z2 x y z 1
] (4.25)

To compute the essential matrix, in [48] it is proposed to use the 13th order

polynomial, but in [44] an improved solution is proposed, in which a 10th order

polynomial is used to compute essential matrix.

The RANSAC algorithm is usually incorporated with the motion estima-

tion process, which makes the estimation more efficient and robust to outliers.

For example, for a five-point algorithm, the RANSAC searches for a good five

feature point pairs, in which the estimated transformation/rotation is valid to

most of the other feature pairs.

Rotation and Transformation Recovering

The transformation T and rotation R between two camera poses can be cal-

culated [25] by using SVD,

E = UΣV> (4.26)

where U and V are orthogonal 3 × 3 matrices and ,the Σ contains singular

values of the essential matrix E, which has the following form because the

essential/fundamental matrix has a rank 2.

Σ =

s 0 0
0 s 0
0 0 0


Then we define an orthogonal matrix D as:

D =

 0 1 0
−1 0 0
0 0 1

 (4.27)

and based on the Eq.(4.13), the essential matrix can be reformulated as:

E = [T ]xR = UΣV> = UDΣU>UD−1V> (4.28)

The the transformation and rotation can be computed by T = UDΣU> and

R = UD−1V>.
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Random Sample Consensus (RANSAC)

The RANSAC algorithm [15] is proposed to manage a dataset with a large

proportion of outliers. The traditional sampling techniques use as much data

as possible to get rid of outliers and obtain an initial solution. The RANSAC

uses the smallest set possible then proceeds to enlarge this set with consistent

data points, and it has the following steps:

1. Randomly select a minimum number of required points to estimate the

parameters of the model

2. Determine the number of points from the dataset fit with the computed

model with a preset tolerance value

3. If the fraction of the number of the inliner points over the dataset ex-

ceeds the predefined threshold, re-estimate the parameters using all the

identified inliers and then terminate.

4. Otherwise, repeat the step 1 to 3.

For camera motion estimation one can use the RANSAC algorithm to it-

eratively search for the best group of five/eight feature points to calculate the

most robust transformation between camera poses. For example, the five-point

algorithm is iteratively applied to five randomly selected samples to generate

its hypotheses. The first group of feature points satisfies the RANSAC re-

quirement is selected as the solution.

Visual Bag of Words (vBow)

The visual bag of words [56] [18] is a simplified representation of images, and it

converts image features to a dictionary of words. The vBow is commonly used

for image classification and matching by comparing vBow between different

images. We use the vBow during the loop closure process, to quickly search

for well matched images.

To train the vBow vocabularies, image features from all images in a dataset

are extracted using feature extractor algorithms, for example, ORB, SIFT, etc.
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The feature descriptors are multi-dimensional vectors, and we make clusters

from the descriptors using clustering algorithms like K-Means, Mean-shift, etc.

The center of each cluster will be used as the visual dictionary’s vocabularies,

and up to this point, the vBow training is completed.

Next, to use the trained vocabularies, descriptors of the image can be

represented by vocabularies and then construct a histogram of the number of

vocabularies’ in the image. To find the best matched image, the similarity

cost of vocabulary histogram can be computed through Euclidean distance,

and cosine similarity, etc. Finally, matches with costs smaller than a threshold

value are considered as good loop-closures and can be added to the pose-graph

as loop closure constraints.

4.3.2 Visual SLAM Experiments

Figure 4.11: Flowchart of the ORB trajectory builder (VO)

The visual SLAM algorithm is tested on a self-implemented program,

which can be found at https://github.com/linjianxiang/mono_camera_

docking. Several algorithm libraries are developed, including ORB feature
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extraction and matching, visual odometry estimation, vBow, loop-closure de-

tection, pose graph and optimization. Because of the time limitation, the

program only generates the trajectory of the camera pose, without the esti-

mated map (for example a feature map). The map point matching and bundle

adjustment are missing, therefore the relative scale is not implemented in this

experiment. In fact it needs to compute the distance between map points in

different image frames to determine the scales, hence a map is required for im-

age frames to find the same map points. In addition to that, the loop-closure

can be detected but it also needs scales to build edges. The flowchart of the

current program process is shown in Fig.4.11

Figure 4.12: Example of the equipment docking process. For this dataset the
equipment is driven from position where image 1 is taken to where the image
4 is taken.

During the experiment, our program takes given image series, and the

equipment wheel speeds, where images are taken by a monocular camera in-

stalled on the agriculture equipment. The camera collects images while the

equipment is manually moved to the docking station and then slowly docked

at a specific position without any collision, see Fig.4.12.

The equipment’s trajectory is generated from docking image sets, and the

relative scale is extracted from the equipment speed data. It should be noted

that there is not a ground truth to evaluate the performance of the program.

But the agriculture equipment motion can be observed from image sets, show-
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Figure 4.13: 3D and 2D trajectory generated from the docking image series

Figure 4.14: The image shows good ORB matches (filtered by RANSAC).
ORBs on the equipment are filtered out for both top and bottom matches, and
only ORBs on a white house from the background are remaining to compute
transformations.

ing that the equipment moves from initial location to the docking area without

much direction adjustment, so we intent to see a similar motion from the con-

structed trajectory. For example, one of the built 3D/2D trajectory is shown

in Fig.4.13, where the red dots from −20 to 0 on 2D x-axis indicate that the
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equipment is moving towards the docking station. Moreover, for the last part

of dots, the equipment is closer to the docking station so it slows down with

more motion adjustments. The motion estimation seems difficult during this

part, mainly because the matching algorithm captures most background ORB

features, see Fig.4.14. Since good matched ORBs are sometimes from the

background of the image, which is far away from the camera, and their size in

images varies only slightly while equipment is moving. Other than that, there

are situations when the equipment is stationary, and an object moves into the

scene. This also generates the wrong motion for the camera poses.

4.4 Discussion

Figure 4.15: The ORB-SLAM system flowchart,[42]

From the above experiment, it is seen that wrong trajectory estimation can

occur because of the background and unexpected moving object. Increasing

the number of ORBs, and RANSAC’s tolerance threshold could help reduce
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the effect of background and moving objects. Also, constructing a feature map

and applying bundle adjustment to it can also help to mitigate the problem.

Another solution tested is to apply an object detection algorithm to only

capture the docking station part in the image2. The result of detection is shown

in https://www.youtube.com/watch?v=k-ZmleC9v4o. Then ORBs located

within the bounding boxes are applied for matching. But it is possible that

only a small amount of ORBs are located in the bounding box, especially when

the camera is far away. This can be solved by applying pre-docking, a different

method used when the machine is far away from the docking station. Overall,

building an optimized map is a game changer and should be consider in the

future work of this research.

The visual SLAM processes’ fundamental libraries and their interfaces are

developed and tested, including ORB feature extraction, ORB feature match-

ing, keyframe detection, Visual odometry estimation, vBow, vBow loop-closure

detection, and pose graph optimization. For future development, image points

can be constructed as a map and use the map to compute the relative scale and

loop-closure constraints. Depth estimation algorithms for monocular images

could also be helpful, for example, [21] uses unsupervised learning to estimate

depth. In addition, point culling algorithms are needed to remove redundant

points and bundle adjustment (BD) algorithm to adjust the camera poses.

The flowchart originally given in ORB-SLAM [42] Fig.4.15 provides a sys-

tematic overview of image feature based SLAM algorithm. In our development,

we closely follow this flowchart, and most of the algorithms from the Tracking

and Loop-closing process are implemented in this project, but the Local Map-

ping module will need to be developed to complete a full SLAM problem. The

keyframe detection library can be applied to reconstruct image frames, ensur-

ing scene content changes between each keyframe. Furthermore, this process

enables running the SLAM process for a lifelong time with excellent robustness

and generates a compact and trackable map. In addition to that, the loop-

closure detection is achieved by matching the current image vBow with the

2special thanks to Siqi Yan for helping with the implementation of yolo-v3 [50] for object
detection
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vBow database, and then compute constraints between these frames. Finally,

the optimization algorithm is applied to reconstruct the optimized pose-graph.
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Chapter 5

Kidnapped Robotic Problem

The Kidnapped Robot Problem (KRP) refers to the case when the system loses

knowledge of the true position of a robot, which is teleported to an arbitrary

location, [60] [64]. To recover from KPR, a proper approach should first detect

the kidnapping event and then apply a global localization algorithm to retrieve

the robot’s true pose.

Normally there exist two kinds of KPR, real kidnapping and localization

failures. The real kidnapping means that the robot is taken to another position

due to a significant drifting from the original path; the localization failure

occurs when the system has the wrong belief of a robot pose. For example,

unmodelled objects can cause a localization algorithm’s failure.

The global localization is useful when a robot does not know its pose,

for which the Monte-Carlo method is proposed, namely the Monte-Carlo Lo-

calization (MCL) method, [10] [60] [59]. In such an approach, particles are

uniformly distributed on the map. The best-matched particle is determined

as the robot’s hypothetical pose based on control data and sensor data. In

addition, vision based global localization algorithms have been developed. In

[54], a vision sensor is used and the particle filter is applied to match specific

image features. In [52], clusters of particles are used to localize the robot glob-

ally. Furthermore, several algorithms are proposed to detect the kidnapping

event. In [7], the detection of kidnapping events is achieved by comparing

the maximum current weight and weight changes of particles against certain

threshold values. In [9], increment of entropy is used to detect kidnapping
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event.

One advantage of the Monte-Carlo Localization (MCL) is due to that it

can handle non-Gaussian distributions. Nevertheless, the MCL sometimes

cannot effectively recover the KRP, because of characteristics of the particle

filter used in MCL. In many cases, KRP may not be recovered if the map is

complex and when there exist many areas of the map that are not covered by

particles. One useful MCL approach is the so-called Augmented Monte-Carlo

Localization (AMCL) [60], in which extra particles are randomly generated

and added to the map when the average weight drops drastically so that the

true pose region is likely to be discovered by new particles.

In Section 5.1 a new improvement is proposed to assist in solving the

kidnapped robot problem (KRP) in the Monte Carlo localization approach.

It is known that the Augmented Monte Carlo Localization (AMCL) method

can detect and solve kidnapping problems by tracking the sudden drop of

particles’ average weight and then performing a global localization to estimate

the robot’s new pose. The proposed work improves the AMCL by adopting

the idea of the global/static costmap. The costmap aided AMCL algorithm is

able to recognize those absolutely wrong particles and then randomize them

to enhance the speed of recovery from the localization failure. Simulations are

carried out on different maps to validate and demonstrate the performance

improvement using the proposed method.

In Section 5.2, a graph-based method is given to detect the KRP event

using an average filter on scan matching. Then, in order to recover from KRP,

the proposed method generates a new map which is merged with the existing

one upon the loop-closure detection.

5.1 Application of Costmap to Monte Carlo

Localization

To improve the KRP recovery performance further from original AMCL, an

algorithm is given based on the costmap [39], and it is applicable to all MCL

based localization approaches. The proposed approach can recycle invalid
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particles before calculating weights. Specifically, the global costmap recognizes

invalid regions on the map, and particles in those regions are regenerated.

When a complex map is used and/or not enough particles are generated in the

localization, the costmap based method can achieve considerable performance

improvement. Another advantage of the costmap is that it can be readily

incorporated into any particle filter based algorithms. For example, integration

of the costmap in Augmented MCL is presented, and the result is shown in

the simulation section.

5.1.1 Partical Filter & Monte Carlo Location

The Bayes filter (Section 2.1.3) is the foundation of filter based SLAM al-

gorithms. Particularly, the MCL algorithm adopted in this research is built

upon the particle filter introduced in Section 2.3. Denote bel(xt) as the prior

probability distribution before incorporating observation, and bel(xt) as the

posterior probability distribution over robot states conditioned on the avail-

able data. In MCL, the posterior bel(xt) and prior bel(xt) are represented by

the set Xt and Xt with M number of weighted particles at time t.

bel(xt) = {x[i]
t , w

[i]
t }i=1,...,M (5.1)

where x
[i]
t represents the state of the ith particle at time t, and w

[i]
t is the

importance factor or weight of the ith particle at time t.

The standard MCL algorithm follows exactly the same structure as the

particle filter in Algorithm 5. Each of the particle contains information of

its current pose and a 2D-scan. This is different from particle filter mapping

application in which each particle has information of the whole map. From the

algorithm, the first for loop generates the weighted prior distributed particles.

Based on the motion model, each particle utilizes control inputs and previous

particle states (line 4) to compute new states at time t; then, the sensor mode

is used to calculate the weight wt of each particle (line 5). The sensor model

uses measurements and each particle’s environment to calculate the probability

of a particle located at the right place. The second for loop is called particle

resampling. Base on the importance weights, the resampling acts similarly
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as the updating process, which renders a particle distribution close to the

posterior bel(xt).

5.1.2 The KRP and the Augmented Monte-Carlo Lo-
calization

The kidnapped robot problem (KRP)

Due to computational complexity, usually, the number of particles used in the

MCL algorithm cannot be chosen as arbitrarily high. Certain areas of the

map may not have enough particles covered. When the KRP happens, the

true robot pose may be the absence of particle coverage. A global localization

method must respond faster and more frequently when a true pose is out of

particle distribution. For demonstration, a simple map called Maze is adopted

to simulate robotic kidnapping, shown in Fig.5.1. The black line indicates

the true obstacles, while the pink blocks are the generated costmap (by con-

sidering the robot’s physical size). The idea of costmap will be explained in

the subsequent section. Fig.5.1 clearly shows the kidnapping event when the

robot’s true location is out of the posterior distribution of all particles (marked

by red arrows). As another example, a complex map called Willow is used in

the simulation, for which the part of the map is shown in the Fig.5.2.

Figure 5.1: The blue block shows where the robot is located on the map; red
arrows are particles. Because the KRP, the true location is out of posterior
distribution. The figure also shows the generated costmap (pink block).
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Figure 5.2: Part of the willow map

The AMCL algorithm

In the following, the Augmented MCL method and how it solves robotic kid-

napping or localization failure problem is described. The Augmented MCL

suggests to use exponential smoothing with weights wfast and wslow to detect

drastic decay of the averaged weights wavg. The more the average weight de-

creases, the more likely the robot kidnapping event has occurred. When the

sensor measurement no longer matches the environment data, a much smaller

importance weight is calculated by the sensor model for each of the particle.

Often particles’ weights drop because the robot drives itself into a different

(new) environment. For example, when a robot is driving through a door,

particles behind the true pose can have a large weight drop. For the exponen-

tial smoother, larger weight wfast responds faster to change of wave than the

smaller weight wslow.
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1 Algorithm Augmented MCL(Xt−1, ut, zt)
2 static wslow, wfast ;
3 X̄t = Xt = ∅ ;
4 for i = 1 to M do

5 sample x
[i]
t = motion model(ut, x

[i]
t−1) ;

6 w
[i]
t = measurement model(zt, x

[i]
t ,map) ;

7 X̄t = X̄t+ < x
[i]
t , w

[i]
t > ;

8 wavg = wavg + 1
M
w

[i]
t

9 end
10 wslow = wslow + αslow(wavg − wslow) ;
11 wfast = wfast + αfast(wavg − wfast) ;
12 for i =1 to M do
13 if with probability max{1− wfast/wslow, 0} then
14 add random pose to Xt
15 else

16 draw i with probability ∝ w
[i]
t ;

17 add x
[i]
t to Xt

18 end

19 end
20 return Xt
Algorithm 9: Augmented Monte Carlo localization pseudo algorithm

The Augmented MCL is given in Algorithm 9 [60]: it shows that when

a significant drop of wave is detected, the AMCL algorithm generates new

particles randomly to globally search for the robot location. The number of

randomized particles is proportional to the weight drop (line 10, line 11), and

the ratio 1−wfast/wslow represents the percentage of randomized particles. If

it is required to have a fixed size of the particle set, the Augmented MCL will

randomize part of particles arbitrarily when the average weight drops.

Challenges of the AMCL algorithm

In the AMCL algorithm, there exist performance trade-offs dependent on the

choice of αfast and αslow. The algorithm can perform randomization more

frequently if αfast is much larger than αslow (according to the exponential

smother). However, at the same time, particles around the true pose may be

chosen to be randomized and redistributed to another location. On the other

hand, if the αfast is chosen to be close to αslow, then it requires a much larger

weight drop to trigger the randomization. This is not likely to be effective
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in solving KRP because there are not sufficient particles being randomized.

Hence proper parameter tuning is required in AMCL for acceptable perfor-

mance.

Figure 5.3: The plot shows the weight change before and after a kidnapping
event. The weight is always low after the kidnapping event. The weight change
before the robot is kidnapped is due to the change of environment.

Furthermore, based on the simulation result of the AMCL, one can observe

that in the step right after the robot is kidnapped, a sufficient amount of par-

ticles are regenerated. This is because the average weight decreases extremely

fast at this step, meaning that the ratio 1−wfast/wslow is large and the prob-

ability to randomize particles is high. However, if the true pose is not found

at this step (i.e. particles are not near the true pose), in this case both of

wfast and wslow are low, which possibly result in a low ratio 1−wfast/wslow or

equivalently a low probability of randomization as shown in Fig.5.3, then in

the subsequent steps there will be insufficient amount of particles generated,

possibly leading to the localization failure.

5.1.3 The Proposed Monte-Carlo Localization based on
Costmap

The Costmap Monte-Carlo Localization (CMCL)

Inspired by the idea of static costmap, this section proposes two improved al-

gorithms to solve the robotic kidnapping problem. Originally, the costmap is
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used in robotic path planning. Based on the world map and sensor data, dif-

ferent cost values are assigned to different map grids, hence the name costmap.

Usually, the inflated costs are calculated based on the specified robot radius,

and the inflation propagates the cost values from obstacles/occupied cells. Fur-

thermore, the cost decreases with distance. For example, within the distance

of the robot radius, if cells in the grid map are closer to the occupied cells (e.g.

obstacles), they are assigned larger cost values. During the path planning, the

algorithm can choose the path with the lowest cost to determine the robot’s

optimized motion.

In this section, a binary costmap is adopted for simplicity (but without loss

of generality), in which the inflated cells have the same value (e.g. 1). In the

proposed algorithm, to implement the static binary costmap, at first the given

map is convert to a binary map (with 1’s or 0’s). This map serves as a mask

to identify the occupied and unoccupied grids (regions). Then the algorithm

proceeds to calculate the averaged values for cells around unoccupied grids

(those with value 0). If the value is larger than a given threshold, then the

algorithm changes the grid value to 1. The number of layers of cells to be

inflated is smaller than or equal to the robot’s radius divided by the grid

length.

The costmap algorithm utilizes the map and the knowledge on the robot

size to generate blocks around obstacles as inflated-cost region. Specifically

those blocks represent the region that the robot is likely to collide with the

obstacle, which is referred to as invalid zones. For example, in Fig.5.2 and

5.1, the black lines represent the original map, and the pink region represents

the map inflated by the given robot radius, and the blue block represents the

footprint of the robot. To avoid collision, the footprint of the robot should

never intersect with the black lines and the center point of the robot should

never cross the pink blocks. In the localization step, when the robot’s location

is lost, the proposed Costmap-MCL randomizes the absolutely wrong parti-

cles (e.g. those in and crossing the invalid zones based on costmap), instead

of regenerating random particles solely from the prior distribution. When a

randomized particle is generated around the true robot pose, it is likely for
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the SLAM algorithm to re-identify the robot position.

Particles’ poses before and after using the motion model (for updating)

can be calculated. However, whether a particle has crossed the invalid zone

cannot be observed directly during this updating process. To solve this prob-

lem, in the algorithm, the path of a particle is divided into a number of short

intervals. For convenience, the particle’s short path interval is assumed as a

straight line between the poses before and after applying the motion model.

The end poses of these shorter paths are consecutively calculated and checked

to determine whether they are located in the invalid zone (i.e., collision). The

higher the updating frequency of the particles, the fewer paths are needed.

1 Algorithm Costmap-MCL ( Xt−1, ut, zt)
2 X̄t = Xt = ∅ ;
3 for i = 1 to M do

4 sample x
[i]
t = motion model(ut, x

[i]
t−1) ;

5 if Costmap[i] is invalid then

6 randomize pose for x
[i]
t

7 end

8 w
[i]
t = measurement model(zt, x

[i]
t ,map) ;

9 X̄t = X̄t+ < x
[i]
t , w

[i]
t > ;

10 end
11 for i =1 to M do

12 draw i with probability ∝ w
[i]
t ;

13 add x
[i]
t to Xt

14 end
15 return Xt

Algorithm 10: Proposed Costmap-MCL pseudo algorithm

In Algorithm 10, the pose of a particle represents its own belief of the true

location of the robot. When there is localization failure and the robot keeps

moving, wrong particles will eventually across the invalid region or out of the

map. Using the costmap, invalid particles can be firstly identified. The pro-

posed algorithm can then regenerate these particles before the resampling step

in any of the Monte-Carlo localization approaches.
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Augmented Costmap Monte-Carlo localization (ACMCL)

In this section, the costmap is incorporated in the Augmented MCL for lo-

calization failure recovery, which is called the Augmented Costmap MCL

(ACMCL) and shown in Algorithm 11. One key difference of this algorithm

from the existing AMCL is that the costmap condition is checked before up-

dating particles’ importance weights. If a particle is deemed invalid, it will be

randomized (line 8), and the invalid particle set is represented by Xc. A invalid

particle is recognized if it locates or has crossed invalid costmap region. For the

rest of the valid particles, the same procedure/treatment as in AMCL is ap-

plied. In addition, the randomized particles are not included in the calculation

of the average weights, in order to prevent them from varying too much af-

ter randomization, which may cause failure of the exponential smoothing filter.
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1 Algorithm ACMCL (Xt−1, ut, zt)
2 static wslow, wfast ;
3 Xc = ∅ ;
4 X̄t = Xt = ∅ ;
5 for i = 1 to M do

6 sample x
[i]
t = motion model(ut, x

[i]
t−1) ;

7 if Costmap[i] is invalid then

8 randomized pose for x
[i]
t ;

9 Xc = Xc+ < x
[i]
t > ;

10 else

11 w
[i]
t = measurement model(zt, x

[i]
t ,map) ;

12 X̄t = X̄t+ < x
[i]
t , w

[i]
t > ;

13 wavg = wavg + 1
M
w

[i]
t ;

14 wslow = wslow + αslow(wavg − wslow) ;
15 wfast = wfast + αfast(wavg − wfast) ;

16 end

17 end
18 for i =1 to M do
19 if with probability max{1− wfast/wslow, 0} then
20 add random pose to Xt
21 else
22 X̄t = resample model( Xt, wt) ;
23 end

24 end
25 return < Xt,Xc >
Algorithm 11: Augmented Costmap Monte Carlo localization pseudo al-
gorithm

5.1.4 Simulation Result

In this section, simulations are performed by using the two maps shown in

Fig. 5.1 & 5.2, and comparison results are presented. Usually, localization

algorithms are evaluated by two different performances, namely the position

tracking and localization failure recovery. For evaluation purposes, the dis-

tance between the hypothetical position and the true robot position is used to

measure the tracking and recovery performance. Simulations are run on the

Robotic Operating System (ROS), where the algorithm modification is imple-

mented and applied to the existing AMCL library. The two maps (one simple

and small, and one complex and large) are used. In addition, in the simu-
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lation settings, the noisy odometry model is used for the robot motion, and

the maximum likelihood laser beam sensor model is used as the measurement

model.

Fig.5.4 depicts the convergence of the AMCL and the proposed ACMCL

on recovery from KRP, using the maze map. One thousand particles are

used in both algorithms. It can be seen that the error between the detected

pose and the true pose converges to zero for both algorithms, but it is clear

that the proposed ACMCL takes much fewer steps to converge hence the

improved recovery performance. Furthermore, for clarity, the comparison of

Figure 5.4: The plot shows the convergence of Augmented MCL and proposed
ACMCL method for KRP recovery

average convergence steps to recover from KRP using the maze map is also

shown in Table 5.1. In this case, five different numbers of particles are used

in five simulation cases. It can be seen that when there are fewer particles

provided, the Augmented MCL performs poorly, while as particle number

increases, its convergence steps decreases. However, in all simulation cases,

the proposed ACMCL demonstrates a superior convergence performance as it

converges much faster than the Augmented MCL.

To further validate the performance, the more complex willow map is also

used. Usually for bigger maps, a sufficiently large number of particles are

needed to guarantee global localization. In this case, the particle recovery ratio

instead of recovery (or convergence) steps is used to assess the performance.
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Converge steps after KRP
Particle
Number

500 1000 1500 2000 2500

Augmented
MC

379 108 104 72 67

ACMCL 50 50 24 28 18

Table 5.1: The table lists the steps needed for converge in the event of robotic
kidnapping using the maze map

It is known that the localization recovery of MCL-type algorithms depends

on how frequent the particles get randomized. The best case scenario is to

randomize as many particles as possible when localization fails. Therefore,

Table 5.2 shows the recovery ratio of Augmented MCL and ACMCL in two

different maps. For both maps, the recovery ratio for AMCL is only 0.8%,

meaning that in every step approximately 0.8% of particles are randomized

in order to relocate the true pose. On the other hand, the propose ACMCL

algorithm performs 5 times better than AMCL in the simple maze map, and

more than 10 times better in the more complex willow map.

Particle recovery ratio
Map Maze Willow
Augmented
MCL ratio

0.8% 0.81%

ACMCL ratio 4.7% 8.5%

Table 5.2: The table shows the particle recover ratio for the Maze and the
Willow map

Since both algorithms adopt the same particle filter settings as well as

the same measurement and motion models, they should have similar robotic

position tracking performance. The proposed method modification is use-

ful to particle filter based localization algorithms for the improved recovery

performance in the kidnapped robot problem. After incorporating the static

Costmap to identify and regenerate invalid particles, the proposed algorithms

gain much faster convergence speed and better recovery ratio compared to the

existing AMCL algorithm, especially when the map is complex and/or fewer

particles are used in the particle filter. However, the proposed method still
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takes many steps to detect and recover KRP and it cannot perform mapping

and solving KRP at the time.

In the next section, a more efficient graph based approach is introduced

to solve both KRP and mapping, which is faster but computationally more

expensive with more computer memory storage required.

5.2 Loop Closure Approach

Figure 5.5: Flow chart of the KRP recovery based on loop-closure

The kidnapped robot problem (KRP) can also be thought of as a multi-

session SLAM problem [35], which deals with the robot being moved to another

location without knowing it. The multi-session SLAM also includes the situ-

ation that the robot is moved to a location where it cannot get the relative

position to the given or pre-built map. This is called the initial state problem
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(ISP), and can happen during SLAM mapping process. To solve the ISP, a

new map is initialized with default reference. When the robot runs into a

previously visited location, the transformation between two maps needs to be

calculated and then merged into one map.

The previous section introduced the particle filter based approach to handle

the KRP. It requires a map to re-localize the robot when the KRP happens

and takes many iterations to converge if the map is large. In this section,

our interest is to use the knowledge of loop-closure to handle the multi-session

SLAM and KRP.

The global loop closure algorithms are used to detect the visited locations,

where the detection algorithm uses scan matching approaches to achieve. For

example, Besl and Mac Kay [4] proposed iterative closest point (ICP) for

point-to-point matching. The major problem of the global loop closure lies in

the fact that when the map gets bigger, the matching becomes more compu-

tationally expensive. There are many research works focused on handling the

computational problem to speed up the matching process. For visual based

SLAM, image feature extraction approaches are proposed, for example, SURF

[2], SIFT [38], and OBR [51] are popularly used to extract image features,

which are introduced in the previous section. Furthermore,in [41] features

from the laser scans are extracted for matching. To further reduce the time

cost, the fast Digital Bag of Binary Word (DBoW2) [18] is used to obtain

descriptors along with ORB feature detectors [42]. Moreover, [27] developed

histogram based matching to loop closure detection and [26] used branch-and-

bound approach to accelerate the loop closure search.

To find the transformation between two maps, [5] calculates the maximum

overlap between occupancy grid maps, but it is computationally exhausted.

[6] proposed to use a new set of constraints to merge pose-graph between two

maps. The global loop closure algorithm also calculates the transformation

from the current location to a map. This transformation can be used to merge

maps when the robot encounters a previously-visited location. Integrating

these solutions into a graph-based SLAM [47] to minimize locally accumulated

errors will further increase the accuracy of the merged map.
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Google’s Cartographer provides a viable implementation for robotic appli-

cations, [33] [26]. It is reviewed in details in the following. Then how to use it

for a multi-session robot problem is discussed. Fig.5.5 shows the flow chart of

the proposed method to handle the KRP as the multi-session SLAM.

5.2.1 Google Cartographer Overview

Figure 5.6: Schematics of Cartographer, [33]

The Cartographer is a SLAM package which can apply to 2D and 3D laser

scans across multiple platforms and sensor configurations. The program and

its insides can be found on https://google-cartographer.readthedocs.

io/en/latest/evaluation.html. It has the overall SLAM structure shown

in Fig.5.6. The Cartographer uses the idea from [26] for 2D-LIDAR data,

which uses the Branch and Bound scan-matcher (BBS) to achieve the real-

time loop closure.

The SLAM process firstly inserts laser scans into a submap at the best-

estimated position, where the estimation is calculated by local scan matching
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algorithm. Because the local scan matching applies only on recent scans, the

error of pose estimation accumulates in the world frame. To handle the lo-

cal errors, pose graph optimization is regularly running. Also, all completed

submaps and scans are used for loop closure detection, and for this the BBS

is applied to accelerate the searching. If a sufficiently good match is found, a

loop closing constraint is added to the optimization problem. The optimization

runs every few seconds to ensure loops are immediately closed when revisit-

ing a location. By using the branch-and-bound approach and pre-computed

grids per completed submap enables the real-time computation of loop closure

detection, which is faster than using added new scans.

Local scan matching

The local scan matching calculates the optimal pose and transformation be-

tween the current LiDAR scan and the submap. The submap M is a small

chunk of the world, and it is constructed by continuously align new LiDAR

scans and submap coordinate frames. Let the origin of a scan at 0 ∈ R2 and

scan points be H = hk=1,...,K , hk ∈ R2. Also let the submap pose transforma-

tion ξ = (ξx, ξy, ξθ) and Tξ represent the transformation between scan frame

to submap frame. To transform a scan point pose p from the scan frame into

the submap frame, the following is used,

Tξp =

(
cos ξθ − sin ξθ
sin ξθ cos ξθ

)
︸ ︷︷ ︸

Rξ

+

(
ξx
ξy

)
︸ ︷︷ ︸
tξ

(5.2)

The submaps take the form of probability grids and the grid value is set

between [pmin, pmax], and each grid has the resolution of r. Whenever a scan is

inserted to the probability grid map, a set of hit and a disjoint set missed are

computed. For every hit, the grids located closest to the hit point is added to

the hit set. For every miss, the grids between the hit point and original point

are inserted into the missed set. Each grid in either hit set or missed set is

assigned with probability phit and pmiss. When a new laser beam is observed,

the probability value updates by the following,

odds(p) =
p

1− p
(5.3)
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Mnew(x) = clamp(odds−1(odds(Mold(x)) · odds(phit))) (5.4)

where the function clamp(x) does:

if (x > pmax), x = pmax

if(x < pmin), x = pmin

To minimize the local error, the algorithm needs to find the optimized relative

pose from the scan pose to the current local submap, which is equivalent to

finding a scan pose that maximizes the probabilities of hits in the submap. The

maximum probability can be represented by a nonlinear least-squares problem

arg min
ξ

K∑
k=1

(1−Msmooth(Tξhk))
2 (5.5)

The function Msmooth applies bicubic interpolation to get a smooth version of

the scan point probability values in the local submap.

Global loop closure

As scans are inserted into submaps, local error slowly accumulates. To min-

imize the accumulated error, [26] proposed to use the relative poses between

the scans and submaps to construct a pose graph and apply the Sparse Pose

Adjustment [32]. When a good match is found from local scan matching, the

global scan matching runs to find the loop closing constraints for the loop-

closure optimization.

The loop closure optimization can also be expressed as a nonlinear least-

squares problem, which can extend easily to take into additional constraints.

Let the submap poses be Ξm = {ξmi }i=1,...,m and scan poses Ξs = {ξsj}j=1,...,n.

The pose graph constraints take the form of relative poses ξij calculated

through global scan matching, and the associated covariance matrix Σij can

be evaluated, [46] or directly obtained through the covariance estimation of an

optimization packages, e.g. the Ceres 1 optimization library in Cartographer.

The residual E for a constraint can be computed in the following equations:

E2(ξmi , ξ
s
j ; Σij, ξij) = e(ξmi , ξ

s
j ; ξij)

TΣij−1e(ξmi , ξ
s
j ; ξij) (5.6)

1http://ceres-solver.org/
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e(ξmi , ξ
s
j ; ξij) = ξij −

(
R−1
ξmi

(tξmi − tξsj )
ξmi;θ − ξsj;θ

)
(5.7)

The nonlinear least-squares optimization is applied to minimize the error:

arg min
Ξm,Ξs

1

2

∑
ij

ρ
(
E2(ξmi , ξ

s
j ; Σij, ξij)

)
(5.8)

This paper [26] uses Huber loss function ρ to reduce the influence of outliers,

which normally appears when an incorrect constraint is added to the optimiza-

tion problem. Generally outliers come from wrong loop closure constraints,

bad sensor measurements, or sometimes unexpected moving objects, etc. The

Huber loss function is given as:

ρδ(a
2) =

{
1
2
a2, for |a| 6 δ

δ|a| − 1
2
δ2, otherwise

(5.9)

Where a2 denotes the squared error E2.

Branch-and-bound scan matching

The Branch-and-bound scan matching is applied to quickly find the best global

loop closure match. To find the best performance between the scan to the

map, the equation below is applied to compute an optimized pose ξ∗, with a

searching window W. Where the optimized pose can have the most matched

scan points hk with map grids. The Mnearest function maps the scan points to

the nearest grid.

ξ∗ = arg max
ξ∈W

K∑
k=1

Mnearest(Tξhk) (5.10)

To ensure the searching performance, the search step size should not be greater

than pixel width r. Applying the law of cosines to the maximum range dmax

scan point,

dmax = max
k=1,...,K

||hk|| (5.11)

The angular should not be larger than δθ,

δθ = arccos(1− r2

2d2
max

) (5.12)

The pixel width r is the horizontal and vertical step size and δθ as the angular

search step. After choosing a step sizes, a naive algorithm will search for the
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best matching score and pose ξ∗ by exhaustively computing the score for every

possible point in a searching window.

DFS Branch-and-bound scan matcher

1 Algorithm DFS branch and bound scan matcher (Xt−1, ut, zt) ;
2 best score = score threshold ;
3 Initialize the stack C = C0 and sort by score of each element in C0,

the maximum score at the top
4 for C is not empty do
5 Take out c from bottom of C ;
6 if score(c) > best score then
7 if c is a leaf node then
8 match = ξc ;
9 best score = score(c) ;

10 else
11 Branch out c into higher leaf nodes Cc;
12 Push Cc onto the stack C and sort by score of each element

in C0, the maximum score at the top ;

13 end

14 end

15 end
16 return best score and match ;
Algorithm 12: Pseudo algorithm for the loop closure searching for the
best matched scan

Figure 5.7: Pre-computed grids of size 1,4,16,64, [26]

To reduce the time of searching, the paper [26] proposed to use branch and

bound structure for searching. The main idea is to partition the total set of

feasible solutions into smaller subsets of solutions called nodes. These smaller
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sets of solutions can also be branched out to inner nodes until the best solution

is found. The depth-first search (DFS) algorithm is used for searching through

branches to quickly evaluate the matching performance of leaf nodes. Each

node in the searching tree is described by its position and the node at heigh

h has combined up to 2h × 2h number of possible solutions (translations and

specific rotation).

To increase the searching speed, grids are pre-computed for every height

h. Also, the pre-computed grids Mh
precomp only stores the maximum value

of the 2h × 2h box of pixels. Let pixels have length r and the equation for

pre-computed grid and node score is following:

Mh
precomp(x, y) = max

x
′∈[x,x+r(2h−1)]

y
′∈[y,y+r(2h−1)]

Mnearest(x
′
, y
′
) (5.13)

score(c) =
K∑
k=1

Mh
precomp(Tξchk) (5.14)

The BBS algorithm is shown in algorithm 12 based on [26] and the Fig.5.7

shows an example of pre-computed grids for different nodes height.

Kidnapped robot event detection and recovery

The KRP detection and recovery program is developed based on the Google

Cartographer package. At first, the Cere optimization package provides the

cost of local scan matching, then an average filter is applied to smoother the

local cost for every scan. After that, the kidnapped robot event is readily

detected as the dramatic cost increase. The pseudo code for the kidnapped

robot event detection is the following:
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1 Algorithm KRP detection (C, cnew, ylast)
2 Trigger = False;
3 Initialize T ; fsize;
4 C = C+ < (cnew) > ;
5 if size of C > fsize then
6 filtered value = average filter(C) ;
7 end
8 if filtered value > T × ylast then
9 Trigger = True ;

10 end
11 C.pop(first item) ;
12 return Trigger

Algorithm 13: Average filter for Kidnapped robot event detection

C is the list of local scan matching cost, cnew is the local scan cost for the current

scan, and ylast is the last average filtered value. Moreover, two parameters are

available for tuning, which are the kidnap trigger threshold T and the average

filter size fsize.

The recovery process is also built upon the existing Cartographer libraries.

When the KRP happens during the SLAM mapping process, the recovery

process is activated by following the flow chart in Fig.5.5. When the program

detects the kidnapped event, the original mapping process stops, and then

a new map is initialized and constructed by sensor inputs. After that, the

method applies the BBS loop-closure algorithm [26] until the loop closure is

detected. Then apply the scan matching algorithm to merge the current and

the original map to complete the recovery step. Specifically, the modified

program generates a new map and a new pose graph (the reference is not

set). When the loop-closure is detected between a node from the new map

and another node from the original map, the constraints are created between

them. Then, two pose graphs are connected and the optimization is applied

to relocate the second map and its submap positions.

5.2.2 Experiment

The KRP is tested on ROS integrated Cartographer library. The process

of KRP detection and recovery are developed upon the existing Cartographer

module [33], and the proposed program is made available to download, see link
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https://github.com/linjianxiang/cartographer-mapping-kidnap. A ROS

bag is used for testing, it contains range data collected from a low-cost Revo

Laser Distance Sensor on Neato robotics vacuum cleaners. For KRP recovery

testing, the bag was cropped to simulate KRP, for which the middle part of

continuous sensor data is removed.

KRP detection experiment

Figure 5.8: Local scan cost of two tests. The top figure shows the results
from the first test with kidnapped robot event occurring at 152th scan and
the bottom figure shows the results from the second test which does not have
kidnapped robot event

The modified ROS bags are firstly used to test KRP detection. The local

optimization costs for the KRP and KRP-free cases are shown in Fig.5.8. The

cost drastically increases around the 150th step, in which the kidnap event

has happened. Fig.5.9 shows the result of applying the average filter and

KRP detection algorithm (Algorithm13) to detect the kidnapped event and

estimate the time of kidnap. It is clear that the event is readily detected, and

from the estimation the event occurs at the 152th scan. After proper tuning,

the average filter is able to effectively and quickly detect the KRP event with

low very computational cost.
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Figure 5.9: This figure shows kidnapped event detection using the proposed
average filter, where the KRP happens at 152thscan

Figure 5.10: The original Cartographer: when KRP occurs, an unreadable
map is generated.

KRP recovery experiment

In this experiment, the capability of the KRP recovery is tested. In this case,

a new map is generated and merged with the original map when loop closure is

detected. The same cropped ROS bag is used for this purpose. Fig.5.10 shows

the result of using the original Cartographer algorithm, and the mapping fails

when a KRP happens. Because of the KRP, the robot does not know where it

is located but still keeps generating new grids on the original map, resulting
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Figure 5.11: The modified program: when KRP occurs, a new map starting
from the origin is generated.

Figure 5.12: The modified program: map merged when loop-closure is de-
tected. The green lines are loop closure constraints, and other colors are for
local scan matching constraints.

in an incorrect map.

Fig.5.11 shows the mapping process after KRP, when the modified Cartog-

rapher is used. When the KRP is detected, a new map begins to be generated

99



using the origin as the reference. At this moment, the map is still incorrect

since the relationship between the new generated map and the original is not

found yet. Then after a loop closure is detected between the current map and

a pre-generated map, a loop closure constraint is generated between two maps

and the new map is correctly merged to the pre-generated map, see Fig.5.12

as the result. Furthermore, the robot position is successfully identified from

the KRP, while both pose graph and map are well merged together. This

completes the recovery from KRP.

5.2.3 Discussion

In this chapter, detection of kidnapped robot problem and its recovery is

considered. AMCL based and the loop-closure based kidnapping recovery

algorithms are developed. The idea behind the AMCL based algorithms is

simply to remove bad particles and when KRP occurs, re-localize all particles

to the map and find the best one. The implementation is straightforward

for particle filter based KRP recovery because some of the MCL libraries can

be reused for the KRP recovery step (re-localization). In addition, only a

pre-generated map is needed for particle filter based localization and KRP

recovery. However, when the map is large or if the algorithm is applied to a

3D case, the number of particles needed will increase for a satisfactory KRP

recovery process.

For loop-closure based KRP detection and recovery, we use the Cartog-

rapher as a platform. It has better SLAM performance on either mapping

or localization, since the global optimization is performed on the map. Also,

the loop-closure based algorithm has a better KRP recovery solution based on

speed and consistency. As long as the map is built, the recovery can be com-

pleted immediately after the KRP event is detected, despite the map’s size.

On the other hand, in the particle filter based algorithm, it requires more steps

for the particle distribution to converge. More importantly, the Cartographer

can resolve KRP while working on the mapping process. As for disadvantages

of the loop-closure based algorithms, it is relatively more difficult to imple-

ment since it involves many conditioning processes to accelerate the SLAM.
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Furthermore, the Cartographer has to use the pre-built map, which contains

nodes, submaps and other information, for localization process.
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Chapter 6

Conclusion

One of the contributions for this thesis is to provide a detailed reference for

learning the SLAM. This thesis has presented and experimented with a number

of popular SLAM algorithms, which provides the reader with sufficient details

and insight to understand and re-implement explained SLAM algorithms. An-

other contribution is that the thesis proposed a costmap augmented particle

filter and a loop-closure based SLAM algorithm for solving the robotic kid-

napped problem.

In Chapter 3, we explain and test the filter based SLAM solutions include-

ing the EKF-SLAM and UKF-SLAM. They use the measurement of features

to update current states. The experiment result shows the convergence of both

algorithms on robot and landmark position estimation. Also, the UKF-SLAM

is more robust to the noise because of the better error covariance estima-

tion. Different from the feature map and KF based methods, applying the

pose-graph and loop-closure method further improves the mapping and robot

localization performance, which is introduced in chapter 4. Moreover, in Chap-

ter 4 the techniques for visual SLAM are introduced, including processes for

visual odometry and matching. Experiments of visual odometry are tested

on a series of docking images, in which the ORB method is used for image

feature extraction and camera pose trajectory is generated to visualize algo-

rithm performance. After that, in Chapter 5, we propose a costmap based

particle filter and a loop-closure based KRP recovery solution. The ACMCL

algorithm incorporates the costmap with AMCL method to add the capability
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to resample wrong particles detected by the costmap. At last the loop-closure

KRP detection and recovery method is developed on the Cartographer pack-

age, which generates a new map when the KRP is detected and merges the

map when loop-closure is detected.

6.1 Discussion and Future Work

For the KF based SLAM algorithms, the correspondence is one of the major

problems. As more feature detection and matching algorithms are invented

nowdays (LiDAR and camera based), we can include the feature detection

module to filter the data prior to KF-SLAM processes. Another disadvantage

for KF based SLAM is that the robot has to have an initial position to have

valid SLAM estimation, which means it cannot handle the global localization

problem. We can incorporate an external global localization model ahead of

the KF-SLAM solution.

The particle filter based SLAM is now among the most commonly used

method as it is easy to implement and at the same time can achieve excellent

performance when the map is small. Both filter based SLAM algorithms do

not handle the accumulated noise well, so in the future, we could implement

a global optimization module after the filter based SLAM process.

The visual SLAM implementation is not complete due to the time limita-

tion, where only trajectory estimation, visual bag of word, and loop-closure

matching are performed. The next step is to map the extracted feature points

and perform BBS as well as pose-graph optimization in the end. Furthermore,

the algorithms can be extended and use to other sensors like, depth camera

and 3D LiDAR sensor. Also, sensor fusing and application of ML on SLAM

can potentially improve the SLAM performance.

Finally, for KRP recovery solutions, we proposed the ACMCL, which aug-

mented the knowledge of the costmap to the AMCL to improve the recovery

performance. We can apply other methods to perform the global localization

process to accelerate the KRP recovery time. Also, adding additional sensor

information may help estimate the robot’s location, which would help with
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recovery speed. Next, the loop-closure based KRP recovery solution is intro-

duced, and it uses the scan matching cost to detect the KRP event and recover

the KRP when loop-closure is detected. The same method can be applied to

all graph based SLAM algorithms and modified for a multi-robot problem to

merge their maps and estimate the relative pose between robots.
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scale place recognition in 2d lidar scans using geometrical landmark
relations,” in 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2014, pp. 5030–5035. 4, 89

[28] S. Julier, J. Uhlmann, and H. F. Durrant-Whyte, “A new method for
the nonlinear transformation of means and covariances in filters and
estimators,” IEEE Transactions on Automatic Control, vol. 45, no. 3,
pp. 477–482, 2000. 15

[29] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear es-
timation,” Proceedings of the IEEE, vol. 92, no. 3, pp. 401–422, 2004.

15

[30] M. Kaess, A. Ranganathan, and F. Dellaert, “Isam: Incremental smooth-
ing and mapping,” IEEE Transactions on Robotics, vol. 24, no. 6, pp. 1365–
1378, 2008. 3

[31] K. Kanazawa, D. Koller, and S. Russell, Stochastic simulation algorithms
for dynamic probabilistic networks. 2
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