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Abstract

The recent success of deep neural networks has exposed the problem of model trans-

parency. The need for explainability is particularly critical in sensitive domains. In

addition, regulatory frameworks for the “responsible” deployment of AI are emerging,

creating legal requirements for transparent, explainable models.

There are many approaches to explainability, including the distinction between

top-down methods. Such as adapting existing logical models of explainability to deep

learning and bottom-up methods (e.g., augmenting the “semantics-free” networks

with fragments of semantic components). However, there is the challenge of how a

deep network can learn multi-level representations or create explanation support on

demand when requested. Here we describe our development and experiments with

building interpretable deep neural networks for Natural Language Processing (NLP).

We focus on learning interpretable representations to generate reliable explanations

that give users a deeper understanding of the model’s behavior. These representations

offer feature attribution, contrastive, and hierarchical explanations. We also show the

effectiveness of our approach to model distillation and rationale extraction.
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Chapter 1

Introduction

1.1 Motivation

The lack of eXplainable AI (XAI) tools to examine complex machine learning mod-

els makes them less trustable, especially in high-stakes decisions. For example, a

medical diagnosis model is responsible for human life. One might be skeptical of the

predictions or not trust its results. Such predictive models are considered black-box

because they cannot explain their predictions in terms “humans” can understand, nor

can they explain the overall behavior of the decision-making process.

To demonstrate the importance of interpretations, researchers at Vanderbilt Uni-

versity developed a tool to identify cases of colon cancer from patients’ electronic

records [1]. Although the model performed well at first, the researchers eventually

discovered it was making predictions based on the fact that patients with confirmed

cancer cases were sent from a particular hospital rather than clues from their health

records. The example shows the importance of XAI systems when deploying machine

learning models. Another example is from [2], they observed that a neural network

was focusing on the word “portable” within an x-ray image rather than the medical

information, which showed that the model was not using the appropriate reasoning

approach to analyze x-ray images.

Some nations are taking the lead to avoid such a potentially harmful outcome. One

such attempt is with EU General Data Protection Regulation (GDPR) introduced in
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2018, which requires justification for algorithmic decisions [3].

1.2 The Deep Learning Era

Recent advances in machine learning focus on building sophisticated neural network

models known as Deep Learning. The primary appeal of deep learning is that a

predictive model can be constructed automatically from a suitable volume of labeled

inputs. In an increasing number of demonstration applications, the staging of a deep

learning exercise needs only to outline the details of the supervised learning prob-

lem in terms of input data and leave the creation of the predictive classifier to the

deep learning system. The fundamental improvement of current deep learning meth-

ods is that, unlike earlier, more shallow network layers, deep learning automatically

identifies the appropriate stratification of a predictive model [4]. Therefore, finding

appropriate multi-layer structures of a supervised classification problem has produced

significant advances in AI systems.

Because many components of Artificial Intelligence systems include classification

tasks, it is easy to imagine that the construction of an accurate predictive model is

essential to overall intelligent systems. It is relatively easy to confirm whether a classi-

fier performs well when classifiers are well-defined and straightforward categories, e.g.,

classifying hand-written digits. Nevertheless, there are more complex classification

problems, e.g., classifying complex proteins and their potential docking targets into

potentially active pairings. So it is difficult to determine how a deeply learned classi-

fier reasons, mainly when predicting unexpected pairs. Deep networks represent their

data input by transforming it into complex weighted networks that are difficult for

humans to comprehend or debug. These methods tend to create black boxes because

they represent data derived from annotated samples in high dimensional complex

spaces [5].

Deep learning has achieved impressive performance in various classification tasks

in vision and natural language processing (NLP) applications. However, this im-
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proved performance comes at the cost of what has been called “explainability,” which

broadly indicates an inability to debug or explain classification outputs. There are

many situations where domain “semantics-free” learning of predictive models fails or

creates nonsensical predictions. So, despite tackling challenging tasks beyond human

capabilities, deep networks come at the cost of model understanding.

1.3 Explaining Black-box Models

Explanations of black-box models not only help end-users understand the predictions

of these sophisticated models. In addition, some nations impose legal requirements on

machine learning algorithms (e.g., deep networks) to provide interpretations for each

prediction (e.g., GDPR). Our work focuses on filling the gaps by building interpretable

deep networks.

1.3.1 What is an Explanation?

An explanation is the interpretable description of the model prediction on a specific

instance in vocabularies that end-users can understand. An explanation focuses on

finding the evidence from the input to justify the black-box prediction. The terms “in-

terpretation” and “explanation” are generally used interchangeably in the literature

on NLP interpretability.

1.3.2 Generating Explanations from a Black Box

There are two approaches to generating explanations for a black box: 1) modifying

or complementing an existing architecture to support interpretation and 2)using a

post-hoc approach to generate explanations for a pre-trained model.

1.3.3 Types of Explanations

Existing deep networks enable a limited level of abstraction because of how they

encode information from datasets. As a result, explanations can vary depending
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on the task. For example, in computer vision research, saliency (e.g., a heat map)

highlights the most discriminative pixels a network uses for a single prediction. In

NLP, the task is more challenging; however, most work focuses on feature attribution.

Feature attribution is defined as the scoring (or ranking) function that maps portions

of the input to scores that communicate an aspect of importance about the prediction.

Feature attributions aim to convey which parts of the input to a model decision

are essential, responsible, or influential to the decision. Other techniques focus on

extracting a rationale (a subset of text extracted from the input) to justify the model’s

prediction.

1.4 Post-hoc Explanations

Post-hoc means one can create a method to explain each prediction of a pre-trained

deep model. Post-hoc relies on prior knowledge of a deep network behavior. For

instance, Local Interpretable Model-agnostic Explanations (LIME) [6] claims that it

can explain any model (including deep networks), regardless of its underlining archi-

tecture. LIME is one of the prominent explanation frameworks in current literature.

An issue that has consistently appeared in the post-hoc explanation of deep networks

is the faithfulness of interpretation, i.e., how to provide explanations that accurately

represent the true reasoning behind the model’s final decision. Interpretations that

are untrustworthy or unfaithful are useless because they do not help humans make

decisions. In this dissertation, the faithfulness of an explanation depends on how well

the generated explanation approximates the prediction of the black-box model.

1.5 Inherently Interpretable Models

Another direction for solving the challenge of interpretation focuses on constructing

inherently interpretable models. For example, building deep models that can learn

interpretable representations and are also capable of providing faithful interpretations
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[7].

1.6 Thesis Statement

In this dissertation, we focus on addressing the following problems (see Figure 1.1).

Faithfulness

Making sure that the 
explanations reflect the 
actual decision process

Levels of abstraction

We need multiple levels of 
explanations not only rely on 

single approach

Computation complexity

Existing approached are 
computationally expensive

Memory intensive

Deep models employ large 
number of parameters making 
them difficult to deploy

XAI techniques challenges in deep networks

Figure 1.1: The four challenges we address in this manuscript.

1.6.1 Computational Complexity

Some of the existing post-hoc approaches are computationally inefficient, e.g., the

method proposed by [8] takes up to one hour to produce a result (heat-map or feature

attribution for a single instance). Similarly, LIME [6] is computationally expensive.

It involves training an interpretable model to explain a single instance. Training such

a model is resource-intensive. Computational cost is a serious problem, especially

when making predictions in the high stakes domain, for instance, using clinical notes

to predict hospital readmission with discharge summaries.

1.6.2 The Problem of Faithfulness

Post-hoc methods do not provide faithful explanations of the underlining model, as

they attempt to mimic the behavior of a pre-trained model. If the explanation is

wrong, then we cannot trust the explainer. If we cannot trust the explainer, we cannot

trust the black-box model. The question remains, how faithful is the interpretation

of the underlying decision-making model? Employing post-hoc methods to explain

deep learning models might result in a misleading justification of the prediction due
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to the prior assumption about the model’s behavior. A helpful study on why post-hoc

methods do not provide faithful explanations can be found in [5]. The faithfulness

weakness suggests the need for building interpretable deep learning models. We need

new representations to support the model’s explainability. Therefore, we optimize

a neural network classifier for meaningful explanations and high predictive accuracy

(constrained optimization problem).

1.6.3 Limited Levels of Abstractions

Existing approaches to deep learning explainability are limited to providing feature

importance only as an explanation. However, sometimes feature importance might

fail. For example, consider a sentiment classifier that predicts the sentiment of a prod-

uct review from a given text. The attribution of “bad” and “very bad” to classifying a

review as (negative sentiment) must be completely different. In addition, “very bad”

is semantically stronger than ”bad.” Most existing techniques cannot create such an

explanation, nor can they improve abstraction. These weaknesses suggest the need

for multiple levels of abstraction [9].

1.6.4 Memory Intensive

Neural networks tend to be deep, with millions of parameters. For example, GPT-2

[10] needs over 1.5 billion parameters. As a result, they are computationally intensive,

making it difficult to deploy in real-world applications. Therefore, there is a need to

learn interpretable models that are computationally efficient.

1.7 Contributions

Motivated by these points, we propose multiple methods to address each limitation

and leverage strengths from a different perspective.

• First, we propose Locally Distributed Activation vectors (LDAV). LDAV allows

the building of interpretable deep networks without changing their underlining
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architecture. The LDAV vectors are learned concurrently with neural networks.

LDAV explains the form of feature attribution (e.g., provide feature importance

to each token w.r.t predicted class). In addition, LDAV vectors work with pre-

trained Transformers to facilitate explainability.

• Second, we introduce Rationalizing Neural Networks via Concept Clustering

(RANCC). RANCC explains its predictions by extracting a rationale from the

input sentence. A rationale is the subset of the text’s interpretable features

(words). Unlike traditional post-hoc explanations, RANCC is interpretable. It

provides explanations along with predictions. RANCC can work with many

representation layers for predictive models.

• Third, we also extend the idea of LDAV and present a new approach for enabling

deep networks to provide contrastive explanations.

• Fourth, we introduce a self-distillation approach (an extension of the LDAV).

We present a new technique to concurrently learn a lightweight, interpretable

version of the black box.

• Fifth and finally, we present an approach to generate hierarchical explanations

from neural networks without introducing additional parameters.

1.8 Thesis Outline

In Chapter 2, we provide an overview of the fundamental concepts of XAI. For in-

stance, we explore the importance of XAI and the difference between interpretability

and explainability. We also discuss the trade-off between explainability and accu-

racy. At the end of Chapter 2, we review the popular related works for both post-

hoc and interpretable models and the existing evaluation metrics. In Chapter 3, we

provide motivation and discuss the limitation of existing related work on feature im-

portance for deep learning models. Then, we introduce LDAV as an effective solution
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for building interpretable models. We test the usefulness of LDAV on traditional deep

learning models and pre-trained transformers. In Chapter 4, we propose RANCC for

constructing interpretable neural networks. Chapter 5 extends LDAV to contrastive

explanations. We discuss the proposed technique, present the new evaluation metrics

and demonstrate the proposed method’s effectiveness. In Chapter 6, we extend LDAV

and introduce a new approach for self-distillation. We also present extensive experi-

ments to demonstrate the effectiveness of using the idea of LDAV for distillation and

model interpretability. In Chapter 7, we introduce SFFA, a new interpretable model

based on the proprieties of the deep model, and show its effectiveness in generating

hierarchical explanations. Chapter 8 summarizes the dissertation’s contributions and

discusses the current limitations and future works.
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Chapter 2

From Black-boxes to Intrinsic
Models

2.1 Background

Research on making deep learning models more interpretable and explainable is re-

ceiving much attention. One of the main reasons is the application of deep learning

models to high-stake domains. In general, interpretability is an essential component

for deploying deep learning models. For instance, XAI can be used to address a

variety of problems: (i) the detection of biased views in a deep learning model, (ii)

the evaluation of the fairness of a deep learning model, (iii) faithfully explaining the

predictions of the classifier, i.e., the construction of accurate explanation that ex-

plains the underlying causal phenomena [11] and (iv) the use of explanations as a

proxy for model debugging, which allows researchers/engineers to construct models

better or debug existing models. On the other hand, the European Union introduced

the General Data Protection Regulation (GDPR), focusing on the privacy of users’

data. The importance of the GDPR arises from the surge of failures of these models.

Similarly, the Defense Advanced Research Projects Agency (DARPA) announced a

new initiative called Explainable Artificial Intelligence (DARPA XAI) in 2016 [12],

focusing on approximating explanations to end-users. In this chapter, we first provide

a sketch of the big picture of the field and then dive more into details as the central

area of interest. We also touch on the existing evaluation metrics for XAI.
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2.1.1 Definitions in XAI

Explainability and interpretability are sometimes used interchangeably in the litera-

ture [13]:

• Biran and Cotton [14]: Define interpretability as the degree to which end-users

understand the underlining factors used by the model to make a prediction.

• Miller [9]: Assumes that interpretability and explainability are equal.

• Lipton [11]: Defines interpretable models within two groups: transparent mod-

els, which to some degree are comprehensible to the user, and post-hoc inter-

pretable models, which are systems that try to explain a black-box model using

alternative approaches.

• Doshi-velez and Kim [13]: Define interpretability as the ability to explain/pre-

sent in understandable terms to humans.

On the other hand, Rudin [5] suggests that models that provide their own expla-

nations can be classified as interpretable models. Hence, in this thesis, we follow

Rudin’s definition and build inherently interpretable deep models for NLP.

2.1.2 The Trade-off Between Interpretability and Accuracy

According to DARPA, there is a trade-off between accuracy and interpretability [12].

This assumption implies an inverse correlation exists between the accuracy and in-

terpretability of classifiers—for instance, a high accuracy indicates less meaningful

explanations and vice versa. Rudin [5] disagrees with the trade-off; there are no stan-

dard units to measure such a difference, and neither is there any standard in data

science application. As a result, the claim is not universally valid and not always the

case, as we will show in the following chapters.
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2.2 Key Metrics

Evaluating the quality of an explanation is a challenging task. Unfortunately, we

cannot rely on humans to assess the generated explanations from a pre-trained neural

model. In general, interpretations are supposed to be faithful to what the model

computes. We define a faithful explanation in the context of NLP as follows: an

explanation method is faithful if it can identify the discriminative features used by

the model. In the followings, we discuss some of the standard metrics used in our

experiments:

Degradation test evaluates the faithfulness of the features used by the model for

text classification. The degradation test measures the local fidelity by incrementally

deleting words according to their attribution score for the predicted class. For each

test data instance, we mask the top u words (by using a unique token <pad>) based

on the attribution score. Then, we observe the change in the model’s prediction

compared with the original prediction when no words are removed. The degradation

score can be defined as follows:

Degradation-score(u) =
1

m

m∑
i=1

(ŷ(i)u = ŷ(i)), (2.1)

where m is the total number of test samples, ŷ(i) is the predicted label on the i-th

test data when no words are masked, and ŷ
(i)
u is the predicted label when u words

are removed. A higher drop indicates the capture of more informative words, which

leads to a better explanation for the model’s prediction. This metric has also been

used in previous work [15].

Change in log-odds score calculates the change in the model’s probability of

the predicted class when the top u words are masked. Lower log odds indicate that

masked features are more critical in model prediction. This metric is also used in
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some previous models’ interpretation [16]. The log-odds score is defined as follows:

Log-odds(u) = 1
m

∑m
i=1 log(

p(ŷ|xu)i
p(ŷ|x)i

), (2.2)

where p(ŷ|x)i is the probability of the predicted class when no tokens are deleted in

the test sample i, and p(ŷ|xu)i is the probability of the predicted class when u features

are deleted in the test sample i.

Switching point evaluates the sufficiency of salient tokens to conform with the

model prediction. We mask features in the order of their importance, e.g., first x1,

second x2, ..., and last xn, where x1 is the token with the highest importance for the

predicted class and xn is the word with the lowest score. Finally, for each test, we

measure the number of words that need to be deleted before the prediction switches

to another class, normalized by the number of words in the input [15].

ERASER is another approach to measure the faithfulness of the explanations and

proposed by [17]. Deoung et al. [17] propose the following metrics:

Comprehensiveness measures whether all required model features to make a

prediction are selected by the attribution method. For example, given x, the new text

input is defined as x̂ = x−z, where z is the set of relevant tokens identified as salient

within the text. Let fθ(x)ŷ be the network’s output for class ŷ, the comprehensiveness

score is defined as follows:

Comprehensiveness = fθ(x)ŷ − fθ(x̂)ŷ (2.3)

A higher score implies that the identified feature tokens in z were more influential in

the model’s predictions, compared with other words.

Sufficiency evaluates whether the identified salient tokens have enough informa-

tion to trigger the model to predict the same label as using the full text:

Sufficiency = fθ(x)ŷ − fθ(z)ŷ (2.4)
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A lower sufficiency score implies that the explanations are more adequate for a model’s

prediction. Please note that, comprehensiveness and sufficiency metrics are similar

to ROAR [18], but do not require re-training.

Cohesion Score The cohesion-score [19] measures the synergy of words within a

text span to the model prediction by shuffling the words to see the probability change

on the predicted label. Given a salient span x(a,b], we randomly select a position in

the token sequence x1, ...,xa,xb+1, ...,xm and re-insert a word. The process is re-

peated until a shuffled version of the original sentence x(q) is constructed. Intuitively,

the words in an important text span have strong interactions. By perturbing such

interactions, we expect to observe the output probability decreasing. The cohesion

score is defined as follows:

cohesion = 1
a

∑a
i=1

1
100

∑100
q=1(p(xi|ŷ)− p(x(q)

i |ŷ)), (2.5)

where x
(q)
i is the qth perturbed version of xi. We repeat the experiment 100 times.

Only salient spans are considered in this evaluation. Higher scores are better, which

means the identified spans are more critical than others for predicting the label.

2.3 Related work

We dive more into model explainability as the main focus of our work. We divide ex-

isting interpretation methods into five categories: feature attribution, rationale-based,

hierarchical explanations, contrastive explanations, and counterfactual explanations.

Please note that many interpretable and transparent models exist in the literature,

such as decision trees and rule-based systems. However, this thesis focuses on deep

neural networks applied to NLP text classification tasks.

2.3.1 Feature Attribution

We define feature attribution as the scoring (or ranking) function that maps portions

of the input to scores that communicate some aspect of their importance in making a
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prediction. In other words, feature attributions aim to convey which parts of the input

are important, responsible, or influential to the decision. Most related work has fo-

cused on identifying attribution using post-hoc approaches such as back-propagation,

model-agnostic, and learning-based attribution techniques. In the following, we dis-

cuss each method in detail.

Propagation-based methods

This line of work relies on a back-propagation algorithm to compute the gradient of

the output of the model’s prediction with the input vector. The result is then used to

construct a saliency map, which masks irrelevant features from the input [20, 21]. For

example, Arras et al. [22] applied the layer-wise relevance propagation algorithm to

explain the predictions of a complex non-linear deep model using feature attribution

as shown in Figure 2.1.

Back-propagation methods generally rely on the partial derivatives of the input

w.r.t to the output. We find the attribution scores by multiplying the embedding

with the gradient [23–27]. Another related approach uses partial derivatives to inte-

grate over a linear interpolation path [28], where users define the path. One can also

redistribute the prediction score from the output layer to the input layer, layer by

layer, using relevance propagation [29]. Other approaches have relied on the compu-

tation of an L2 norm to obtain contribution scores [30].

Model Agnostic

Another method for feature attribution is the so-called model-agnostic approach.

One of the popular methods for model interpretation is called LIME [6]. LIME

approximates the information flow of a given deep network in the input neighborhood

with an interpretable classifier (e.g., a linear classifier). It provides an interpretation

in the form of feature attribution (see Figure 2.2).

LIME trains a classifier on randomly drawn samples with gold labels to provide
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Figure 2.1: Heatmaps for input documents obtained from a deep neural network using
layer-wise relevance propagation. Positive contribution are mapped to red and negative to

blue. Figure from [22]

Figure 2.2: Feature attribution: Explaining the classifier’s prediction using the LIME
algorithm. From the figure, the model predicts that a patient has the flu and LIME

highlights the most discriminative features (e.g., symptoms) from the patient’s history.
The highlighted features serve as the key factors used by the model to predict flu. Figure

from [6].

feature attribution. However, one issue is that LIME relies on a Gaussian distribu-

tion for sampling and ignores the correlation between features. On the other hand,
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Lundberg et al. [31] proposed to use Shapley values to quantify the importance of

a given token. Lundberg et al. also presented faster approaches to Shapley values,

“kernel SHAP, TreeSHAP” for approximating Shapley values. Both approaches pro-

vide feature attribution. Other methods focused on perturbation-based techniques to

approximate feature attribution [32].

Learning-based Attribution Methods

Another line of work has focused on building models to learn feature attributions.

For example, [33] employed mutual information to learn essential features from a

classifier, as shown in Table 2.1. However, it assumes access to the output model.

As a result, it learns the attribution score from a pre-trained model. In contrast, our

model learns feature attribution concurrently when training a black-box model.

Table 2.1: Learning to explain using feature attribution: The scores are learned via a
model in a post-hoc manner. Figure from [33].

The discussed approaches generate feature attribution in a post-hoc approach.

They are only sometimes reliable in providing faithful explanations.

2.3.2 Inherently Interpretable Models

One popular approach for building itnerpretable models is based on rational extrac-

tion. The model explains its predictions by generating what is called a “Rationale” [7,
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34–41]. The cited methods extract a subset of tokens as the rationale, then feed them

to a deep network to make a prediction. In general, rationale extraction methods

consist of two models: (1) a generator to extract the rationale, and (2) an encoder to

make a prediction using the extracted rationale. However, existing rationale-based

methods rely on using a complex function to extract rationales from the text. Other

methods in literature for building inherently interpretable models focused on adding

an interpretation layer on top of any existing NLP deep model. The interpretation

layer identifies multiple spans and then aggregates the information using trainable

weights [42]. The weights associated with each span provide attribution scores for

words and phrases (see Figure 2.3). Other ideas focused on concurrently learning fea-

ture attributions and concepts while building the deep network for text classification

[43]. Please note that interpretable models are sometimes quoted as self-explainable

models.

2.3.3 Hierarchical Explanations

Previously discussed methods provide interpretation in the form of feature attribution.

Recently, XAI research focused on identifying feature attribution using hierarchical

explanations. There has been much recent work on developing hierarchical explana-

tions in the context of NLP. Hierarchical explanations (see Figure 2.4) are essential

because traditional feature attribution techniques do not capture the interaction be-

tween the tokens.

For instance, Chen et al. [19] proposed a post-hoc approach to generate a hierarchi-

cal explanation for text classification. The proposed method employs Shapley values

for feature attribution and interaction using a bottom-up approach. Similarly, Singh

et al. [45] use contextual decomposition scores to aggregate features based on their

interactions. Note that hierarchical structure is intended to provide representation

support for explanation at multiple levels of detail (cf. [46]). Unlike our technique,

[45]’s work is post-hoc and suffers from finding faithful explanations.
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Figure 2.3: A self-explainable deep network which provides feature attribution. Figure
from [42].

Other methods for hierarchical explanation use the back-propagation approach; for

example, [47] extends the integrated gradient method to feature interaction. However,

back-propagation methods suffer from noisy gradients. Other ideas for hierarchical

explanation employ a decision tree [48] to generate hierarchical explanations in a
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Figure 2.4: Comparing hierarchical explanations with feature attribution. As we can see
from the Figure, LIME(a) and CD [44](B) cannot identify the interaction i.e., they only

provide word-level and phrase-level explanations. In general, from hierarchical
explanations, we obtain a set of features in each time-step. Figure from [19]

post-hoc approach. Some other methods focus on applying a post-hoc approach to

learn about interactions inside Transformers [49], which is a different objective from

ours. We focus on constructing self-explainable Transformers for text classification.

2.3.4 Contrastive Explanations

Studies in philosophy and social science show that humans, in general, prefer con-

trastive explanations, i.e., the explanation of an event is based on explaining the

fact (p) in contrast to another event (q) [9, 50, 51]. Here “p” represents the model

prediction, and “q” represents an alternative class we would use for a contrastive

explanation. In general, contrastive explanations provide an answer to ”why p and
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not q?” questions (see Figure 2.5.) The majority of existing post-hoc techniques are

only limited to providing answers to ”why p?” and cannot provide answers to ”why

p and not q?”—for instance, gradient-based methods. Contrastive explanations are

relatively new in NLP [52]. Our work focuses on building an inherently interpretable

model that can support answers to both kinds of questions: “why p?,” and “why p,

not q?..”

Figure 2.5: An example of a contrastive explanation obtained from [52].

Jacovi et al. [52] proposed a post-hoc approach that relies on a projection matrix

to devise explanations. Similarly, [53] used SHAP to generate a contrastive explana-

tion. Our approach is different; we propose an intrinsic neural model which supports

answers to ”why p?” and ”why p and not q?” questions rather than relying on post-

hoc approaches. In the context of contrastive explanations, we focus on finding the

difference in the attributes that could distinguish the prediction ”p” from the foil ”q.”

Other ideas for hierarchical explanation employ a decision tree [48] to generate hier-

archical explanation in a post-hoc approach. Some other methods focus on applying

a post-hoc approach to learn about interactions inside Transformers [49], which is a

different objective from ours. We focus on constructing self-explainable Transformers

for text classification.
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2.3.5 Counterfactual explanations

Counterfactual explanations consist in generating text as a counterfactual example. In

general, counterfactual explanations seek to identify a minimal change in model data

that “flips” a predictive model’s prediction, which is used for explanation. Watcher

et al. [54] introduced the concept of unconditional counterfactual explanations. For

text classification, [55] proposed a method to generate counterfactual text from a pre-

trained model for the finance domain. In addition, Hendricks et al. [56] proposed a

technique to find evidence for the target class but not present in the foil class to learn

a model to generate counterfactual explanations for why a model predicts class “p”

instead of “q.” However, their approach was mainly designed for computer vision.
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Chapter 3

Locally Distributed Activation
Vectors for Guided Feature
Attribution

3.1 Introduction

Deep neural network (DNN) models have become crucial tools in NLP and define

state-of-the-art on various tasks. However, DNN predictions are difficult to interpret

and understand. An immediate consequence is that quantifying the contribution of

individual features is a challenging fundamental task in NLP and explainable AI re-

search. In most related work, whether implicitly or explicitly, an explanation’s role in

NLP text classification is to reveal which words and phrases are the most salient for

the final prediction [57]. Our goal here is to uncover faithful feature attributions from

deep networks, thus revealing, as accurately as possible, the most influential features

used by the model to make a prediction. Moreover, unlike traditional XAI methods,

we optimize a deep network model for faithful attribution and high prediction accu-

racy (see Figure 3.1). As a result, we design an inherently interpretable model for

learning an attribution-specific representation called an “activation vector” for each

label. Each activation vector focuses on identifying the salient features used by the

model for a specific class. The main contributions are as follows: (1) We propose a

method to identify feature attribution concurrently while training a black-box to ex-
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plain the predictions faithfully; and (2) Our method outperforms traditional post-hoc

techniques.

Input 
X

Locally distributed 
activation vectors

Output 
̂y

Explanatio
n about  

̂y

Neural network sentiment classifier

Embedding BILSTM

The movie is great

The movie is great

Negative sentiment

Figure 3.1: Example of our proposed model. We modify the network’s architecture to
support interpretation. Our approach allows deep neural networks to provide explanations

in the form of feature attribution.

3.2 Proposed Method

We call our method Locally Distributed Activation Vector. Here, we explain

the ideas and methods used to construct deep interpretable networks. A locally

distributed activation vector (LDAV, activation vector) encodes the knowledge learned

by a deep network for a text classification task, with a focus on interpreting the

predictions (see Figure 7.1). We can also use an LDAV to conduct hypothesis testing

on the role of attributes in any classification, for example, whether blood pressure is

a critical factor in predicting kidney disease. Moreover, the activation vectors work

with most of deep learning architecture, including Transformer, GRU, and LSTM

methods. The activation vectors only require access to the embedding layer and the

output layer. Also, the LDAV vectors require training the entire neural network and

they do not work with pre-trained models. For notation, we denote scalars with
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Figure 3.2: We use the activation vectors (LDAVs) to faithfully interpret a model’s
prediction. We edit the structure of the neural network to learn intermediate

representations which are then used as a proxy to generate feature attribution. We obtain
the embedding features and then feed the result to the neural network for classification.
During training, we minimize the cosine distance between the activation vector of the
predicted class and the corresponding sentence vector (see dotted line (a)). In addition,

we also maximize the distance between activation vectors (see (b)). Please note that, LDAV
vectors are constructed simultaneously during the training of the entire neural network.

italic lowercase letters (e.g., x), vectors with bold lowercase letters (e.g., x), and

matrices with bold uppercase letters (e.g., W ). In the text classification task, an

input sequence x1, ...,xl ∈ Rd, where l is the length of the input text, and d is the

vector dimension, is mapped to a distribution over class labels using a parameterized

neural network (e.g., a BILSTM). In general, for text classification, we feed x1, ...,xl

to the network to obtain the context vector h. The model predicts the label by

feeding h to an output layer. The output y is a vector of class probabilities, and the

predicted class ŷ is a categorical outcome. To faithfully interpret the neural network’s

prediction using relative importance, we rely on information encoded by the LDAV.

Moreover, the deep model learns k distributed activation vectors zj (j = 1, 2, ..., k),

where the knowledge learned by the network to predict ŷ is encoded using zŷ ∈ Rd

and k represents the number of classes. We concurrently update each zj during neural

network training. Our intuition is that the “locally distributed activation vector” for

a given class is trained to emulate the average word embedding of all the instances

predicted for that class while being maximally different from the LDAVs of the other

classes.
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3.2.1 Objective Function

Here, we discuss the steps for altering the optimization problem of the text classifier

for faithful interpretation. Unlike traditional attribution methods for text classifica-

tion, our optimization objective now includes new terms for interpretability. The loss

function for the deep network is defined as follows:

Cross-entropy

Traditional text classification models employ cross-entropy loss to penalize incorrect

classification defined as follows:

L1 = −
1

k

k∑
i=1

ȳi log(yi), (3.1)

where yi is the output for class i, ȳ is the one-hot encoded vector. For example,

ȳ = [0, 1, 0] indicates that the input belongs to the second class.

Towards Faithful Interpretations

We use back-propagation to learn the LDAV activation vector zŷ. During training

the network minimizes the distance between each feature xi that triggers the class

ŷ and the activation vector zŷ. So, the distance between semantically salient tokens

and the activation vector is short. To faithfully model distance between xi and its

corresponding zŷ, we propose the following hybrid distance approach:

Term 1. Minimizes the cosine distance between the sentence vector of x and the

corresponding zŷ, i.e., it minimizes the distance in high dimensional space as follows:

L2 = ρ1

(
1− x̂ • zŷ

∥x̂∥ ∥zŷ∥

)
(3.2)

where x̂ is the sentence vector obtained using a pooling operation (i.e., calculating

the average of the embedding vectors) of all word vectors x1, ...,xl and ρ1 is a weight

coefficient.

Term 2. Maximizes the distance between the activation vectors so that the dis-

tance between zŷ and words contributing to ŷ is minimum. Also, the distance between

25



zŷ and features of other classes is maximum. Doing so ensures that words closer to

their corresponding zŷ have a higher importance w.r.t. the predicted class and vice

versa. One possible solution is to maximize the pairwise squared distance of z1...zk.

We denote the loss as L3, which is the sum over distances. ρ2 is a weight coefficient.

L3 = ρ2

(∑(
k∑
i

k∑
j

(
zi − zj

)2))
(3.3)

Overall, the proposed optimization objective forces the network to learn features

where unrelated words are orthogonal, and features that have semantic relatedness

are co-linear. The final loss is defined as :

L = L1 + L2 − L3 (3.4)

3.2.2 LDAV Score

The score mainly relies on the Euclidean distance, i.e., how far a given token is from

the corresponding LDAV vector. Because the range of Euclidean distance is from

to positive infinity, and 0 represents identical points, i.e., the smaller the distance

between the word in the input and the corresponding LDAV, the higher the importance,

and larger distances represent less importance. However, because we are interested in

feature importance, we convert the distances into scores, i.e., higher scores indicate

higher feature importance. Note that “standard score” is defined as the distance

between a data point and the mean using standard deviation [58]. In general, Z-

scores can be positive or negative and the signs indicates where the score is below or

above the mean. Because, it is easy to interpret the values in the standard score, we

converted all the distances into feature importance scores using the Z-score formula.

Please note that we did not use the inverse of the Euclidean distance because of

the range of the values. Given a deep interpretable network trained with LDAVs, the

objective now is to quantify the contribution of xi to the model’s prediction ŷ using

zŷ, by calculating the distance between xi and zŷ. To calculate the attribution score,

we propose to use a Euclidean measure:
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α (xi, zŷ) =

√√√√ d∑
j=1

((zŷ)j − (xi)j)
2 (3.5)

The LDAV score is calculated as follows:

LDAV score(xi, zŷ) = −
(
α(xi, zŷ)− µ

σ

)
, (3.6)

where µ and σ are the mean and standard deviation (std) of α(x1, zŷ), ...,α(xl, zŷ),

respectively. In addition, the LDAV score is the normalized contribution score of xi

on the prediction of ŷ. A higher LDAV score indicates higher feature importance. We

also tried the cosine distance for the attribution score and showed good attribution

scores. However, using Euclidean distance showed a little better score. So, we used

the Euclidean distance. The reason can be as follows: While the angle between vectors

is important for Term 1, the magnitude of a vector is essential for feature attribution.

3.3 Experiments and Analysis

We focus on the following objectives: 1) ensure explainability does not affect predic-

tive accuracy, and 2) ensure the constrained optimization problem provides faithful

feature attribution.

3.3.1 Datasets

Here is the list of the dataset used in our experiments:

IMDB reviews were proposed by [59] for sentiment classification from movie

reviews. It consists of two classes, i.e., positive and negative sentiments.

AG news was proposed by [60] for researchers to test machine learning models for

news classification. It consists of four classes (sports, world, business, and sci/tech).

DBpedia ontology classification dataset proposed by [61] consists of 15 non-

overlapping ontology classes.

27



Kaggle US Consumer Finance Complaints: dataset contains consumers’ com-

plaints about financial products and services to companies for response, obtained from

consumer finance web-pages [62].

A summary of the datasets is shown in Table 3.1.

Dataset Train Test Vocabulary size Length classes

IMDB ([59]) 25000 25000 10000 50 2

Kaggle consumer finance ([62]) 60125 6681 52943 60 11

DBpedia ([60]) 63000 5600 50002 32 15

AG news ([60]) 102080 25520 59706 20 4

Table 3.1: A summary of the datasets used in evaluation.

3.3.2 Implementation Specification

The LDAV is implemented on two popular architectures, namely Bi-directional Long

Short Term Memory with attention mechanism (BILSTM) [63] and a Transformer ar-

chitecture [64]. The dimension of the embedding vector, LDAV, and the context vector

is 128, based on the cross-validation using {64, 128, 256}. We used the Adam opti-

mizer with a learning rate of 0.0001 based on the cross-validation from {1e−4, 1e−3, 1e−2}

and the batch size of 256 from {128, 256, 512}. We used 0.9 for both ρ1 and ρ2. We

have tried different values for ρ1 and ρ2 with interval 0.1 between [0, 1]. We train for

a maximum of 250 epochs with early stopping if the validation score has not been

improved during 10 consecutive epochs. We report the results based on the average

of 5 runs. We compare the LDAV method with seven baseline methods: IntGrad [65],

SHAP [31], LIME [6], Occlusion [66], ϵ-LRP [67], Grad*Input [21] and Saliency [20].

3.3.3 Interpretability Does Not Affect Predictive Accuracy

The proposed constrained optimization problem to support a model’s explainability

does not sacrifice the performance of the deep neural networks, as shown in Tables

3.2 and 3.3. Moreover, our approach forces the identification of semantic similarity
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between sentences, which means sentences in a specific category are close to each

other in the embedding space and far from sentences in different categories.

BILSTM Proposed

Dataset Accuracy F1 score Accuracy F1 score

AG news 0.88 0.88 0.88 0.88

DBpedia 0.90 0.84 0.94 0.88

IMDB 0.79 0.79 0.81 0.81

Kaggle-CF 0.81 0.67 0.82 0.67

Table 3.2: BILSTM performance on four datasets. The BILSTM is from [63]

Transformer Proposed

Dataset Accuracy F1 score Accuracy F1 score

IMDB 0.76 0.76 0.78 0.78

Kaggle-CF 0.78 0.59 0.79 0.66

AG news 0.88 0.88 0.88 0.88

DBpedia 0.91 0.85 0.94 0.88

Table 3.3: Transformer’s performance on four datasets. The Transformer baseline is from
[64]

3.3.4 Quantitative Evaluation

We evaluate the faithfulness of the feature attribution obtained by post-hoc ap-

proaches and LDAV and compare performance. We followed the current practice stan-

dard evaluation techniques to evaluate faithfulness and adopt the metrics introduced

in Chapter 2. We note that human evaluation might not be the best metric for eval-

uating the faithfulness w.r.t. the black-box [68]. For example, a human annotation

may not correlate with the salient features used by the neural network.

Baseline details Here we describe the baselines used in the evaluation.

Grad*Input is the gradient of the output w.r.t. the input, followed by multiplying

the input with the gradient.
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Integrated Gradient (IntGrad) calculates a path integral of the model gradient

to the input from a non-informative reference point.

Layer-wise relevant propagation (ϵ−LRP) is a layer-wise relevance method,

which focuses on redistributing the relevance.

LIME focuses on creating an interpretable classifier by approximating it locally,

with a linear model.

SHAP employs game theory to estimate feature attribution.

Saliency uses gradient of the output neuron with respect to the input.

Occlusion employs perturbation techniques to learn feature attribution in a post-

hoc approach.

Degradation Test

We measure the local fidelity by incrementally deleting words according to their

attribution score for the predicted class. A higher drop indicates the capture of more

informative tokens, which leads to a better explanation for the model’s prediction.
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Figure 3.3: Change of degradation score when words are masked on the BILSTM. Lower
scores are better.

Figures 3.3 and 3.4 show the results of degradation scores in different explanation

methods as a function of masked words. Interestingly, the LDAV captures informative
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Figure 3.4: Change of degradation score when words are masked on the Transformer
model. Lower scores are better.

words for the model’s prediction better than traditional attribution methods. For

example, IMDB has a steep decline in the curve when removing the top 6% of essential

words, meaning that the classifier uses a smaller context. Similarly, the AG news and

DBpedia classifiers employ a subset of the features to predict the label. We arrived

at the same conclusion for the Transformer tested on DBpedia and AG news.

Change in Log-odds Score

In this experiment, we analyze the change in the model’s probability of the predicted

class when the top u tokens are masked. As discussed in Chapter 2, lower log odds

indicate that masked features are more critical in the model prediction. This metric

is also used in some previous models’ interpretation [16]. Our approach achieves the

lowest scores in Figure 3.5 and 3.6.

Switching Point

The switching point test evaluates the sufficiency of salient words to conform with

the model prediction. We mask tokens in the order of importance score, e.g., first, x1,

second x2, ..., and last xn, where x1 is the word with the highest importance for the
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0 5 10 15

−20

−15

−10

−5

0

% of masked words

lo
g
-o

d
d
s
sc

o
re

IMDB

0 5 10

−30

−20

−10

0

% of masked words

L
o
g
-o

d
d
s
sc

o
re

Kaggle-consumer-finance

Proposed SHAP ϵ-LRP Saliency
IntGrad Occlusion Grad*Input

Figure 3.6: Change of log-odds score when words are masked on the Transformer. Lower
scores are better.

predicted class based on the LDAV score and xn is the word with the lowest score. We

measure the number of words that need to be deleted before the prediction switches

to another class (the switching point), normalized by the number of words in the

input, as proposed by [15]. Our model (LDAV) employs fewer words for classification

on DBpedia and AG news with the BILSTM architecture and IMDB and Kaggle data

with the Transformer (see Table 3.4). As a result, LDAV identifies more accurately the
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ordering of essential words.

Transformer BILSTM

Method IMDB Kaggle Method AG news DBpedia

IntGrad 0.17 0.12 IntGrad 0.13 0.27

SHAP 0.26 0.08 SHAP 0.13 0.27

Occlusion 0.24 0.2 Occlusion 0.19 0.38

e-LRP 0.23 0.18 e-LRP 0.23 0.41

Grad*Input 0.23 0.18 Grad*Input 0.23 0.41

LIME 0.21 0.18 LIME 0.21 0.26

Saliency 0.41 0.42 Saliency 0.72 0.64

LDAV 0.11 0.06 LDAV 0.12 0.24

Table 3.4: The % of words that needs to be deleted to change the classifier’s prediction.
(e.g. 0.11 means 11%.)

Eraser

Here we use another alternative metric to evaluate our approach. Moreover, the eraser

provides two different terms for faithfulness: comprehensiveness and sufficiency. Here,

we use comprehensiveness to evaluate if all tokens needed to make a prediction are

selected (see Chapter 2). A higher score implies that the removed words are more

influential in the prediction.

Table 3.5 shows the comprehensiveness score in terms of Area Over the Pertur-

bation Curve (AOPC) of different attribution techniques. The comprehensiveness

was calculated at various percentages, 10%, 13%, 16%, 20%, 23% (IMDB, Kaggle con-

sumer finance) and 15%, 21%, 28%, 34%, 40% for (DBpedia, AG news), and the AOPC

is reported.

3.3.5 LDAV for Pre-trained Transformers

We also show the integration of LDAVs with pre-trained language transformer models.

We evaluate the effectiveness of LDAVs on two datasets: IMDB and AG new. We use
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Transformer BILSTM

Method IMDB Kaggle Method AG news DBpedia

IntGrad 0.122 0.008 IntGrad 0.014 0.009

SHAP 0.146 0.01 SHAP 0.011 0.01

Occlusion 0.065 0.01 Occlusion 0.009 0.005

e-LRP 0.081 0.005 e-LRP 0.012 0.005

Grad*Input 0.081 0.005 Grad*Input 0.012 0.005

LIME 0.113 0.007 LIME 0.012 0.028

Saliency 0.008 0.001 Saliency 0.001 0.001

LDAV 0.151 0.011 LDAV 0.0179 0.02

Table 3.5: Comprehensiveness scores of different explanation techniques with the
Transformer and BILSTM in terms of AOPC.

the RoBERTa encoder [69], a robustly optimized version of BERT. We incorporate

LDAVs into the RoBERTa encoder and make the optimization trainable in an end-

to-end fashion by modifying the objective function to learn LDAVs along with the

classification task. The model was trained on an NVIDIA GeForce RTX 3070 8

GB GDDR6. We used two metrics, degradation score and comprehensiveness (using

different percentages 1%, 5%, 10%, 20%, 50%). The results in Figure 3.7 and Table

3.6 show that our method captures the influential features used by the model in the

pre-trained transformer. For instance, we showed that removing ∼ 4% of the words

can significantly affect the model’s predictive power.

Random Proposed Random Proposed

IMDB 0.011 0.047 AG news 0.021 0.036

Table 3.6: Comprehensiveness in terms of AOPC on RoBERTa.

3.3.6 Natural Language Inference

We also evaluate our approach on a structured classification task, i.e., natural lan-

guage inference (NLI). Given a premise sentence x(p) and a hypothesis sentence x(h),
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Figure 3.7: Degradation score on the RoBERTa model.Lower scores are better.

the objective is to predict their relation ŷ, which can be one of the following: {neutral,

contradiction, entailment}. We use the Stanford Natural Language Inference (SNLI)

dataset [70] for model training. The dataset consists of 408, 579 samples for training

and 9, 824 for testing. We build the model using the Decomposable Attention network

(DA) [71].

Decomposable Attention network with LDAV Like other tasks, we create an

LDAV for each of the three classes. During the training, we updated the neural network

following our proposed method. Because we have two inputs (premise, hypothesis),

Equation 3.1 will be modified to consider information from both sentences when

learning the LDAVs. To encode information: 1)we first compute the premise sentence

vector x̂(p) for x(p), and the hypothesis sentence vector x̂(h) for x(h); 2) inspired by

the idea of [72], to extract relations between x̂(p) and x̂(h), we use the element-wise

product x̄(p,h) = x̂(p) ∗ x̂(h); 3) minimize the cosine distance between x̄(p,h) and the

corresponding LDAV vector.

Moreover, the element-wise product encodes the interaction between the premise

and hypothesis sentences. In general, multiplication can catch similarities or discrep-

ancies. The performance of the DA predictor with LDAV was relatively similar to
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the original DA achieving an accuracy of ∼ 84%. We first predict the relation to

calculate the attribution score of each word in the premise and hypothesis. Then

we use the corresponding LDAV of the predicted class. For instance, to compute the

attribution score for the token x
(p)
0 using Equation 3.4: (1) We calculate the token

vector representation as x̄
(p)
0 = x

(p)
0 ∗ x̂

(h) given the hypothesis sentence; (2) calculate

the attribution score x̄
(p)
0 . We use the same approach for the hypothesis.

Result . Initial results are shown in Figure 3.8 in terms of degradation score and

log-odds demonstrate the effectiveness of our approach in more structured/complex

tasks such as NLI. LDAV outperforms traditional post-hoc explanation methods by

faithfully finding the most salient features used by the model to predict the relation.

Similar to previous experiments, we have also used the comprehensiveness metric on

the DA network using different percentages (10%, 20%, 25%, 30%, 35%) in Table 3.7

and showed that our proposed method is better than post-hoc approaches.
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Figure 3.8: Change of degradation score and log-odds when words are masked on the DA
network. (SNLI dataset). Lower values are better.
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Method AOPC Method AOPC Metho AOPC Method AOPC

IntGrad 0.136 Grad*Input 0.13 SHAP 0.19 Saliency 0.09

Occlusion 0.13 LIME 0.02 ϵ-LRP 0.13 LDAV 0.34

Table 3.7: Comprehensiveness in terms of AOPC.

Sentence world sports business science/tech

Corona virus 0.66 -1.14 1.72 -0.79

Corona virus infection -0.65 -0.73 0.35 1.67

Sentiment classification -0.58 -1.22 0.36 1.42

Sentiment analysis -0.3 -1.49 1.06 -0.79

Table 3.8: LDAV scores on AG news for hypothesis testing.

3.3.7 Qualitative Results

Instead of visualizing salient words for qualitative analysis, we take a different ap-

proach by testing the hypothesis. For example, consider a binary classifier for kidney

disease identification. End-users might be interested in understanding whether or not

low blood pressure or the combination low blood pressure+heart disease has

a high correlation with kidney disease. Our approach allows evaluating any combina-

tion of features without feeding it to the classifier. Note that a feature can be a single

word or a phrase. We use mean-pooling to calculate the sentence vector of a phrase.

In Table 3.8, we analyze the BILST trained on AG news. From the table, sentiment

analysis is correlated with the “business news” class based on the high LDAV score.

However, sentiment classification is associated with the “science/tech” class. Another

interesting observation is that the model encodes the perspective that corona virus

is correlated with “business news” and “world news,” and the highest contribution

goes to the “business news.” However, corona virus infection is correlated with

the “science/tech” class, most probably due to the word infection.

3.3.8 Analyzing Features in Sentiment Classification

The LDAVs can also be used to measure whether the sentiment classifier uses specific

phrases that indicate the author’s sentiment towards the movie (e.g., ”great perfor-

37



mance”, ”wonderful story”) or not. We used the dataset proposed by [73], which

contains a list of salient phrases for each class (e.g., positive and negative).

Experiment we compute a sentence vector for each list. Given the two sentences,

we calculate the LDAV score using the LDAV vectors constructed when training the

model on the IMDB dataset. The LDAV vector representing the positive sentiment

has a score of −1 w.r.t. the sentence vector from negative phrases list while it has

the score of 1 w.r.t. the positive sentiment list. Similarly, the LDAV of the negative

class has the score of 1 and −1 for the negative sentiment list and the positive list,

respectively. The result shows that each constructed LDAV from IMDB captures the

positive and negative concepts, respectively.

3.3.9 Runtime

We evaluate the computation time of each explanation method on two architectures

(BILSTM and Transformer). In Table 3.9, we compare the average runtime of 500

samples in seconds. SHAP and Occlusion remain expensive compared to other tech-

niques. LDAV achieves the lowest time ∼ 1e−4 as it only requires feeding the input to

the model followed by calculating the LDAV scores. We used TensorFlow running on

an Ubuntu machine with an Intel Core i7 CPU at 3.60 GHz and Nvidia GPU with

6GB memory.

3.3.10 How Correlated are LDAV Vectors

We found that the LDAVs are not correlated. We calculated the correlation coefficient

between the LDAVs for a deep network trained on IMDB to validate our assumption.

In Figure 3.9 we show the correlation coefficient between LDAVs of classes. All the

negative values imply that each learned vector negatively correlates with others. In

conclusion, the model is learning discriminative features that do not relate or overlap

with features from other classes.

38



Model Methods DBpedia Model Methods IMDB

BILSTM

IntGrad 8.8

Transformer

IntGrad 9.0

Occlusion 191.4 Occlusion 252.7

SHAP 881.4 SHAP 976.6

ϵ-LRP 1.3 ϵ-LRP 1.5

Grad*Input 1.4 Grad*Input 1.7

Saliency 1.6 Saliecy 1.7

LIME 0.3 LIME 0.4

LDAV 0.0001 LDAV 0.0002

Table 3.9: Average runtime for each input in seconds on two architectures: BILSTM
(using DBpedia) and Transformer (using IMDB)

(a) AG news. (b) IMDB.

Figure 3.9: Correlation analysis between LDAVs trained on a BILSTM.

3.3.11 Ablation Study

Loss terms. We conducted an ablation study to understand the impact of each loss

term on interpretation. Here, we remove one term from the loss function and evaluate

using a switching point metric to assess the quality of the explanations. We found that

the proposed terms effectively capture the salient tokens used by the classifier 3.10.

Moreover, in Table 3.10, we show the minimum percentage of tokens required to be

removed from the input so that the prediction changes to another class. For instance,

0.63 means we must remove about 63% of the tokens to switch the prediction.

Analysis of learned representations To see how well LDAVs capture the semantic

difference between classes, we analyze the change of the embedding vectors. In other
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Loss Deletion Loss Deletion Loss Deletion

Remove L2 0.63 Remove L3 0.66 No Removal (LDAV) 0.23

Table 3.10: Ablation study for the proposed loss terms.

words, we compare the embedding vectors without learning LDAVs and the embedding

vectors after learning LDAVs. To do so, we perform two experiments: one is to project

the average of all word embedding vectors (x̂) in each input without learning LDAVs

into two dimensions using principal component analysis (PCA). The other is to project

x̂ after learning LDAVs into two dimensions using PCA. The results of the projections

on AG news and IMDB are shown in Figures 3.10 - 3.13.

Figure 3.10: PCA to two dimensions using x̂ without employing LDAVs. X-axis and y-axis
refer to the principal components (dataset: AG news, Model:BILSTM).
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Figure 3.11: PCA to two dimensions using x̂ without employing LDAVs. X-axis and y-axis
refer to the principal components (dataset: IMDB, Model:BILSTM).

As we can see in Figures 3.12 and 3.13, the embedding vectors of the input texts

after LDAVs are training tend to be clustered collinearly depending on the predicted

class. However, in Figures 3.10 and 3.11, the embedding vectors without using LDAVs.

Figure 3.12: PCA to two dimensions using x̂ after employing LDAVs. x-axis and y-axis
refer to the principal components (dataset: AG news, Model:BILSTM).
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Figure 3.13: PCA to two dimensions using x̂ after employing LDAVs. x-axis and y-axis
refer to the principal components (dataset: IMDB, Model:BILSTM).

The intuition here is that the optimization objective with LDAVs (ideally) forces

the network to learn embedding representations where inputs of different classes are

orthogonal, and inputs belonging to the same class are collinear.

3.4 Conclusion

We have presented a method to learn locally distributed activation vectors (LDAVs)

that can be adapted to interpret neural network predictions faithfully. The LDAV

vectors are jointly trained with the deep model to provide feature attribution along

with the model’s prediction. We found that learning intermediate representation as

a proxy for feature attribution is computationally efficient and also provides faithful

explanations. Our method outperforms traditional post-hoc techniques in revealing

the classifier’s most discriminative features for a given prediction. It also avoids the

often misrepresented trade-off between interpretability against classification accuracy.
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Chapter 4

Rationalizing Neural Networks via
Concept Clustering

4.1 Introduction

There has, alternatively, been attention to models’ attempts to learn rationales con-

currently with the classification task. For example, Lei et al. [7] proposed a neural

network architecture for text classification which “justifies” its predictions by select-

ing relevant tokens in the input text known as “rationales”. However, the proposed

method is computationally expensive. This section presents a simple and efficient ap-

proach to extracting a rationale while learning the classifier. Moreover, the proposed

method groups similar rationales into distinct groups.

4.2 Proposed Method

We call our modelRANCC -RationalizingNeuralNetworks viaConceptClustering.

This section explains the ideas and methods in RANCC: (a) how to build an inherently

deep network model for text classification (e.g., a model that provides a rationale con-

currently with the prediction), (b) how to learn concepts of interest from the training

data simultaneously. The overall model is shown in Figure 4.1.
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Figure 4.1: Block diagram of our method. A text instance is fed into the embedding layer.
The rationale is extracted from the text instance and forwarded to the next layer to

predict the target class. The loss is computed and used to update the entire network in an
end-to-end approach. Note that the black arrows indicate the steps of our approach, and

the red arrows indicate the process inside any recurrent network.

4.2.1 Steps for Building RANCC

In a text classification task, an input ordered sequence x = x1, ..., xl is mapped to

a distribution over class labels using a parameterized θ neural network architecture

(such as a Long Short Term Memory network or LSTM), i.e., F(x; θ). Usually, the

input to F is in sentences or short paragraphs. The output y is a vector of class

probabilities. The target class yi ∈ y is a categorical outcome, such as a sentiment

class like “positive review.” The distribution over the labels is defined as y|x ∼

Cat(F(x; θ)).

Unsupervised rationale extraction

We define a rationale as a subset of text extracted from the source document of

the task, which provides sufficient evidence for predicting the correct output. Our

approach assumes that an explanation of a black-box’s prediction is useful if it relies

on a small number of tokens (a rationale), where each rationale relates to parts of the

text that are semantically consistent across multiple texts. Given an input sequence

x where xi, a word in the sentence, is represented as a fixed size vector where xi ∈ Rd,

and d is the dimension of embedding vectors. For each sequence, we first extract a

rationale to be used by the downstream classifier. We feed x to a ϕ(x) ( a convolution

operation over the embedding matrix). The convolution layer learns v feature maps
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Z = {Zi}vi=1, whose shape is l × d × v. For instance, in the case of a movie review

input of length 50 tokens and feature dimension of size 100, the convolution produces

50× 100× v feature maps. The stride of the convolution filter is set to one, padding

is set to ’same’ and the number of filters is set to 128. This choice of filter has

the intuitive impact of learning more meaningful representations which could then

be used as a proxy to extract the rationales. We then aggregate all feature maps

to obtain a single matrix Z̄ ∈ Rl×d. The aggregated feature map matrix has the

following properties: 1) each row represents a word from the input sentence, and 2)

if the feature values on a row are larger than average, then the corresponding word

has a better chance of selection. Finally, we compute the score for each word to be

selected in the rationale using Softmax as follows :

σ(w)i =
ewi∑l
j=1 e

wj

, (4.1)

where wi = (Z̄i)
l
i=1 is the sum of the row i in Z̄ . We uncover the rationale τ by

selecting l̂ tokens τ ∼ p(σ(w)1..., σ(w)l|x) which produces the rationale τ ∈ Rl̂×d.

Note that the user defines the length of the rationale l̂. During the test phase, we

make predictions based on the most likely assignment for each τ i using argmax. Note

that p(σ(w)1..., σ(w)l|x) also provides a measure for feature importance.

Uncovering Concept Vectors

We aim to group τ into concepts of interest (i.e., to transform rationales into mean-

ingful concept groups) concurrently with rationale extraction. Let β ∈ Rl̂ denote

the probabilities of the selected tokens. Given τ , let us suppose that an analyst is

interested in a concept representing negative sentiments in movie reviews and wants

to know whether the rationales used by the classifier are discriminative. Grouping

rationales give the analyst a better understanding of how the model encodes discrim-

inative features from the raw embedding. To learn concept vectors, we first initialize

a matrix of weights C ∈ Rm×d, where m is the number of target concepts and ci ∈ C
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represents the concept vector for the target yi ∈ y. We aim to find a concept of in-

terest (i.e., a row in the matrix). To find the concept vector cs, we obtain τ̄ through

multiplying the values in the i-th row of τ by βi. We feed the rationale to an LSTM ψ

i.e., ψ(τ̄ ) to obtain a latent representation Ĥ ∈ Rl̂×d, ĥi ∈ Ĥ . Finally, the last state

ĥl̂ is fed into a non-linear layer with parameters δconcept ∈ Rd×m which produces a

score for every concept. The output is a vector yconcept of probabilities and we extract

the corresponding concept vector cs using argmax.

4.2.2 Learning Rationales

The objective function aims to learn the following tasks: a) learning a rationale from

text input; b) grouping rationales based on concepts.

Learning Rationales

The loss function for the rational extraction aims to maximize the scores of salient

tokens. In general, the loss maximizes the log probability of the selected tokens that

lead to a correct prediction:

Lrationale = λ

(
−

s∑
i

Ai log p(β|x)

)
, (4.2)

where β is the probabilities of the selected tokens, s is the batch size, λ is used

to weigh the importance of this loss, and Ai is a scalar. For example, a scalar Ai

could be 1 if the model predicts the correct class label for x using the rationale τ and

0 otherwise. We used a custom gradient to pass the updates through the selection

step in the rationale extraction layer. The custom gradient function works as follows:

first, assign a gradient of 1 to each selected xi, and 0 otherwise. Please note that we

also use cross-entropy to learn the classification problem.

Grouping Rationales

Each concept vector should correspond to semantically consistent rationales. We

assume that every class and rationale has only one concept of interest. We use a loss
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to minimize the distance between each rationale and the concept vector:

Lgroups =

{
1− τ̂ •cs

∥ø̂∥∥cs∥ , if s = yi

0, otherwise
(4.3)

where • is the dot product operation, τ̂ is obtained by taking the average over the

columns of τ̄ and s is the index of the predicted concept vector cs. This loss is only

applied if the prediction at the output layer is correct given the rationale τ and the

concept vector cs; otherwise, the loss is zero. Every rationale τ is grouped around

its concept by computing the mean (x-axis) and the standard deviation (y-axis) of

(cs + τ̂ ) from every rationale.

4.3 Experiments

Our primary intent is not predictive accuracy but instead building a deep inter-

pretable network, and the experiments can be summarized as follows: 1) we show

how RANCC outperforms the baseline for rationale extraction; 2) the effectiveness of

using RANCC for feature importance, and 3) we show how RANCC can be used to

group rationales; The hyper-parameters used for the experiments are shown in Table

4.1.

Optimizer Adam

Text length 50 tokens for IMDB, 20 tokens for AG news

Learning rate 1e− 3

Embedding dimension 300

Concept vector dimension 300

Cell LSTM

LSTM Hidden dimensions 300

Scalar A 1.0 if correct class prediction, 0.0 otherwise

Batch-size 256

Table 4.1: Hyperparameters used in the experiments.
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4.3.1 Evaluation

When rationalizing neural networks’ text classification prediction, our goal is to per-

form as well as systems using the entire input text while using only a subset of the

text, leaving unnecessary tokens out for explainability.

Rationalizing text prediction in sentiment analysis. We use the IMDB dataset

for evaluation. We compare our approach against [34]. For evaluation, we calculate

the accuracy as a function of the length of the extracted rationale [34]. Figure 4.2

shows the performance for various percentages of selected text. Our approach outper-

forms the work of [34], achieving a similar accuracy as the baseline system by using

only the top 10% tokens. The results show that RANCC captures better discrimi-

nating features than the baseline.

Rationalizing text prediction in news classification. We use the AG news

dataset [60] to test the performance on topic classification. The dataset consists of

127600 samples divided into 4 classes. We split it into training set 80% and testing

set 20%. Figure 4.2 shows the results on AG news, and RANCC outperforms the

baseline and [34] by identifying better discriminative features.

4.3.2 Faithfulness: Are “Relevant” Features Truly Faithful
to What The Model Computes?

Goal. Verify whether the identified salient features are “faithful” to what the model

computes. Standard techniques for evaluating the importance rely on observing the

effect on the model’s prediction after removing a salient token. In this subsection,

we evaluate the faithfulness against post-hoc explanations by comparing the feature

importance approximated by our approach and that of the post-hoc methods. We

use the AG news dataset and IMDB and split the data into training and testing sets.

We compare our method with several competitive algorithms for feature importance

scoring on black-box models, including gradient-based methods such as ϵ-LRP [67],

Grad*Input [21], and Intgrad [65]. Model-agnostic such as LIME [6].
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Figure 4.2: IMDB test accuracy (left) and AG news test accuracy (right) for various
percentages of extracted text. Baseline refers to the LSTM network trained on the full

text.

Change in log-odds ratio. Similar to the metric used in the previous chapter.

Figure 4.3 shows the results of the change in the log-odds ratio experiment on the

AG news dataset. Note that Grad*Input has the same performance as ϵ-LRP.

Our method achieves the lowest log-odds ratio (the biggest change in log-odds ratio)

when removing salient features from the text input. For example in Figure 4.3, the

log-odds score of RANCC when removing the top 20% features from IMDB is −3.185

and the log-odds score from the best performing baseline (IntGrad) is −2.069. Our

approach considers maintaining accuracy and explainability; therefore, RANCC could

correctly capture the important features affecting the prediction output compared to

the baselines.

4.3.3 Visualizing Concepts

Results on IMDB are shown in Figure 4.4. As we can observe, our approach provides

better results than t-SNE [74] and PCA. The grouping results on AG news are also
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Figure 4.3: Change of log-odds ratio for various percentages of extracted rationale. Lower
log-odds scores are better.

shown in Figure 4.4(the four classes in the dataset representing four concepts). Our

work does a better job of revealing the natural classes in the data than t-SNE and

PCA. Thus RANCC is better at accurately generating distribution and partitioning

the data.

(a) RANCC:IMDB. (b) PCA:IMDB (c) t-SNE:IMDB.

(d) RANCC: AG news. (e) PCA: AG news (f) t-SNE:AG news.

Figure 4.4: Groups of correctly classified rationales using concept vectors for both IMDB
and AG news using RANCC, PCA and t-SNE.

.
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4.4 Conclusion

We have presented a new approach for building interpretable deep models. The pro-

posed neural framework automatically extract sufficient text fragment from the input

as the model’s justification to each predictions. We demonstrated the effectiveness

of the proposed method in identifying the rationales without any explicit rationale

annotations. We found that our proposed approach provides faithful explanations

compared to existing methods.

51



Chapter 5

Contrastive Explanations

5.1 Introduction

Most existing related research has focused on identifying feature attribution (e.g.,

possible causal attributes) to explain the prediction of a black-box neural network.

This type of explanation is defined as answers to “why-questions”, which are generally

thought of as causal-like explanations [75]. Existing techniques to why-questions rely

on using a post-hoc approach to identify the causal attributes for a single black-box

prediction. Post-hoc methods generally do not always provide accurate explanations

[5]. There are many possible reasons for this limitation; for instance, feature attribu-

tions typically suffer from noisy gradients in back-propagation techniques [76].

On the other hand, a contrastive explanation provides an explanation for why an

instance had the current output (fact) rather than a targeted outcome of interest (foil)

[77] e.g., ”why p and not q?”. In this section, we extend the LDAV and propose a deep

interpretable network that provides feature attribution and contrastive explanations

(see Figure 5.1). We also propose three metrics to evaluate the faithfulness of the

contrastive explanations.

5.1.1 Contrastive vs. Counterfactual

The evolving discussions of explainable AI (XAI) have articulated several distinguish-

ing aspects of explanation (e.g., [9]), including a difference between contrastive (e.g.,
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Figure 5.1: An example of the proposed interpretable deep neural network model with
answers to ”why p?” and ”why p and not q?” questions. Here we visualize the top salient

attributes.

what made the difference between the students who failed the exam and those who

did not fail?) and counterfactual (e.g., will we reduce climate change if we reduce fuel

consumption? ) explanations. Contrastive explanations are different from counterfac-

tual explanations [78]. Contrastive and counterfactual reasoning generally emphasize

different aspects of causation[79]. In counterfactual reasoning, we focus on instances

where the salient causal attributes are absent (missing from the text). In contrast, in

a contrastive explanation (our focus here), one considers the difference in attributes

between two predictions. The difference between the two approaches is in the knowl-

edge support required for the explanation. For instance, a counterfactual explanation

focuses on the question of “What if?,” while a contrastive explanation focuses on “the

difference.”

5.2 Proposed Method

We propose a neural network architecture that provides a classification task and an

explanation. We jointly optimize the network for both classifications and faithful

explanations. In classification, an input sequence x1,x2, ...,xl ∈ Rd, where l is the

length of the text input and d is the vector dimension, is mapped to a distribution

over class labels using a parameterized neural network (e.g., Multi-head attention).

In general, the contextual vector h́ ∈ Rd is passed to a linear layer with parameters
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W ∈ Rd×n which provides a probability distribution over n classes. The output y is

a vector of class probabilities of dimension Rn, where n is the number of classes. The

predicted label p of the text input is the index of the maximum element in y, i.e.,

p = argmaxf(x), ∀k ∈ [1, n]. Here, k iterates over the probabilities, and f(x) denotes

a neural network. During training, an empirical loss (e.g., cross-entropy) J (p, y′
, θ) is

minimized using gradient descent, where y
′
is the ground truth label and θ represents

the network’s parameters. We propose to augment the network to provide two types

of explanations “Why p?” and “Why p and not q?.” To do so, we first define a

randomly initialized centroid vector for each class and then use the centroid vector

as a proxy to explain the black-box prediction. For instance, if the neural network’s

prediction is class 1, we use the centroid vector representing that class to calculate

the scores for why p?. For contrastive explanation, we find the difference between the

scores of the centroid vector representing the predicted class and the centroid vector

representing the contrast class (e.g., the centroid vector for class 2). The centroid

vector of label p pulls the weighted sentence vector of the text input x1,x2, ...,xl

closer. In the following, we discuss the steps for augmenting a neural network with

the centroid vectors.

Let cj(j = 1, 2, ..., n) be a collection of randomly initialized centroid vectors, where

cj ∈ Rd is a vector representing label yj. We propose a new objective function,

centroid-loss, to effectively explain the neural network predictions. Our solution en-

hances the discriminative power of the deeply learned features in neural networks.

Specifically, the deep network learns a centroid cj (a vector with the same dimension

as an embedding feature) of each class. In the course of training, we simultane-

ously update the centroid vector and minimize the distances between the embedding

features and their corresponding centroid vector.
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5.2.1 Joint objective

Recall that a supervised learning algorithm input is a set of training instances and

the corresponding label. The goal is to learn a function that accurately maps input

examples to their desired labels using cross-entropy. Here we extend the idea of

the LDAV to provide contrastive explanations. Given the prediction p, the model

learns cp ∈ Rd to pull the sentence vectors representing class p closer. Intuitively,

we minimize the intra-class variations while keeping the features of different classes

separable. In the following, we discuss the optimization objective of our proposed

network.

Cross-entropy: term one in the optimization objective function is the standard

loss function for classification. We denote this loss as Lcls.

Attractive term: term two focuses on minimizing the cosine distance between the

sentence vector and the corresponding cp. Let X be a matrix consisting of embedding

vectors [x1,x2, ...,xl] and the sentence vector of X is x̂ ∈ Rd. Let, w̄ ∈ Rl be the

importance scores, where each:

w̄i =
xi • x̂

∥xi∥ ∥x̂i∥
, (5.1)

where w̄i is the importance score of word i, and x̂ is the sentence vector of the input

X. Term two minimizes the cosine distance between the weighted sentence vector

x̄ of each input with the corresponding centroid vector cp. The sentence vector is

defined as follows:

x̄ = X

(
e(w̄)∑l
i=1 e

(w̄i)

)
(5.2)

From equation 5.2, we obtain the weighted sentence vector by multiplying the values

in the i-th row of X by w̄i followed by calculating the sentence vector x̄ ∈ Rd. We

define the loss of term two as follows:

Lattr = 1− x̄ • cp
∥x̄∥ ∥cp∥

(5.3)
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Term two is the second loss of our proposed optimization objective. We call this term

“attractive loss” similar to [80].

Repulsive term: term three (the third term in the overall loss function) focuses

on maximizing cosine distance of x̄ from other centroid vectors, i.e., cj, where j ̸= p,

so that cosine distance between them is maximum. We call this term “repulsive loss”

similar to [80]; we denote the loss as Lrep.

Pairwise term: term four in our objective maximizes the pairwise distance matrix

of the centroid vectors. For the distance, we proposed to use the squared euclidean

distance, and we denote the loss as Lpair.

Overall loss is defined as

L = Lcls + (λ1Lattr)− (λ2Lrep)− (λ3Lpair) (5.4)

where (λ1, λ2, λ3) are the coefficients. The hyperparameters (λ1 : 1000, λ2 : 10, λ3 :

1000) are essential for minimizing the intra-class variation (to reduce the variance

within the same class). Specifically, terms 3 and 4 focus on keeping the features of

different classes separable, and term 2 focuses on minimizing the intra-class distances.

All of them are essential to our model. We refer to the combination of the newly added

terms as the centroid loss, i.e., term 2, term 3, and term 4.

5.2.2 Explanations

We seek to identify a feature with a causal impact on the model prediction decision

process. We follow [81]’s definition of intervention: an intervention is an idealized

experimental manipulation carried out on some variable x which is hypothesized to

be causally related to changes in some other variable p. Any intervention on the

text input using attributions on the prediction p is a causal process that changes the

model prediction. Therefore, if the intervention changes the model prediction, it is

probably due to the adjustment in the causal space of the text input. We will use the

idea of “intervention” to understand the effectiveness of our approach for both why
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p? (discussed in the previous chapter) and why p and not q?.

Why p and not q?: Given any text instance, a classifier predicts p and a the

LDAV vector cp. A p-contrast question is of the format “Why [predicted-class (p)] not

[desired class (q)]?”. We limit our search space by specifying the desired class to a

single alternative. Given the text input, we estimate attribution scores for “p” using

cp. For the desired class q, we calculate the attribution scores of the text input using

cq. Please note that here we also use cosine similarity. We find the attribution scores

for contrastive explanations as cc = cp − cq, where cp is the attribution score for the

predicted class p obtained using cp and cq is the attribution scores for the foil class

q obtained using cq.We follow the intervention approach in “Why p?,” to find the

candidate attributes for the contrastive explanation.

5.3 Experiments

To effectively evaluate our approach, for contrastive explanations, we rank each at-

tribute by how contrastively applicable it is to the model for choosing “p” against

“q.”

5.3.1 Setup

Datasets. We adopt the IMDB datasets [59] (train:25000, test:25000 samples) with

binary labels, AG news [60](train:102080, test:25520 samples) with four classes to

evaluate the quality of the contrastive explanation. We hold out 10% of the training

examples as the development set. We limit the input length to 50 for IMDB and 20

for AG news.

5.3.2 Evaluating Why p and not q?

We skipped the evaluation of feature attribution because we discussed it in Chapter

3. To evaluate the faithfulness of contrastive explanations, we propose the following

metrics:
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Contrastive overlap score (COS) (%): We calculate the overlap (%) between

the sets of causal attributes of “Why p?” and “Why p and not q?. Lower % indicates

more difference between the explanations of “Why p?” and “Why p and not q?.

Contrastive confidence score (CCS): For CCS, we analyze the change in the

probability of the contrastive class “q.” We remove the attributes that distinguish

“p” from “q” in order of their importance until the model’s prediction is flipped to

another class. Please note that we estimate the scores using ”why p and not q?” We

calculate the difference in the probability of “q” before and after the intervention.

An increase in the probability indicates an informative contrastive explanation.

Contrastive gain (CAG): Measures the quality of contrastive explanations com-

pared to non-contrastive explanations. Here, our explanations for the question “why

p?” will be called non-contrastive explanations. Given a prediction “p” and foil “q,”

we measure the change in the probability score of “q” after removing salient features

using attribution-scores obtained from “why p?” and also from “why p and not q?”

explanation. We use our approach as the baseline for “why p?” because our method

outperformed [16]. For the “why p and not q?” explanation, we used the method

described in Section (3). A higher contrastive gain indicates that the method is bet-

ter in answering “why p and not q?” questions. In summary, the contrastive gain

measures the change in the probability of the foil class after removing some features.

Results

We use the AG news dataset to evaluate the contrastive explanation method. For

contrastive overlap (COS), the results in Figure 5.2 show that most contrastive ex-

planations do have fine-grained differences from “Why p?” questions. The result

suggests that the model is not using the same reasoning for “Why p?” when an-

swering the contrastive questions. We observed that, for multi-class problems, there

are fine-grained differences between “Why p?” and “Why p and not q?” compared

to a binary problem such as sentiment classification where there might be a higher
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similarity between the two explanations.

Figure 5.2: Overlap score between ”why p?” and ”why p and not q?” questions. ”0.0”
means that we did not consider the contrastive explanations when ”p” and ”q” are the

same (X-axis: refers to why p? questions and Y-axis: refers to why p and not q? questions

For (CCS), results shown in Table 5.1 indicate the effectiveness of the proposed

losses in finding contrastive information, i.e., there is an increase in the score of the

foil ”q” when removing the features that distinguish ”p” from ”q.” Similarly, we

World(q) Sport(q) Business(q) Sci/Tech(q)

Class(p) Before After Before After Before After Before After

World 0.05 0.22 0.05 0.41 0.01 0.33

Sport 0.07 0.45 0.01 0.35 0.04 0.21

Business 0.06 0.38 0.003 0.16 0.13 0.37

Sci/Tech 0.02 0.32 0.04 0.12 0.13 0.52

Table 5.1: CCS: Empty cells mean we cannot find a contrastive explanation for the same
class, i.e., the foil should be different from the predicted class. The highlighted cells show

the scores of the foil after removing the salient features.

show the scores of other classes when using the (CCS) metric. We re-trained the

same model again on AG news and re-calculated the CCS. The results are shown

in Table 5.2. We can see that when the foil q is set to ”business” and evaluated

with different classes (p) such as ”world, sport, sci/tech .”The probability score for
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the ”business” is > than other classes when using why p and not business.? Figure

World Sport Business(q) Sci/Tech

World(p) 0.2 -0.8 0.4 0.1

Sport(p) 0.3 0.1 0.5 -0.8

Sci/Tech(p) -0.7 0.1 0.4 0.1

Table 5.2: We compare the scores of other classes when evaluating the CCS for the foil.
Here the foil is the business class.

5.3 compares our non-contrastive explanations and contrastive explanation methods

(CAG). We use the AG news data and plot the results for different “why p and not q?”

questions. The results in Figure 5.3 indicate that the contrastive explanations better

capture the features that contribute prediction of “, not q” than non-contrastive

explanations, especially when there are more fine-grained differences. The results

show that non-contrastive explanation is not consistently achieving high contrastive

scores when top features are masked. Instead of tracking the change in probability

Figure 5.3: Contrastive gain as a function of removed tokens. A higher gain indicates that
the method was better in capturing contrastive information. Attribution refers to our

non-contrastive method.

score of “q” after removing salient as in contrastive gain, we calculate the AOPC

using different percentages (25%, 30%, 35%, 40%, 45%). The results are summarized

60



in Table 5.3. The contrastive explanation has the highest AOPC compared to our

non-contrastive explanation method.

P Q AOPC(non-contrastive) AOPC(contrastive)

World Business 0.04 0.065

Business Sci/tech -0.001 0.002

Sci/tech World 0.304 0.341

Sci/tech Business 0.056 0.058

Sport Business 0.05 0.052

Sport Sci/tech 0.006 0.009

Table 5.3: Contrastive gain (CAG): Evaluating the effectiveness of using contrastive
explanation when there are fined grained differences. We use different percentages

(25%, 30%, 35%, 40%, 45%) to calculate the AOPC.

Highlighting why p and not q? questions: We show qualitative results for

interpreting the model predictions using our proposed approach; for example, answers

to the “Why p?” and “Why p and not q?” questions are shown in Table 5.4. These

results show that the model implicitly learns the contrastive information when making

the prediction.

Contrastive explanations applied to sentiment classification. For a con-

trastive explanation, if there are no fine-grained differences between “p” and “q”, then

the same reasoning used for “why p?” will also be used to answer “why p and not

q?” questions. We observed this behavior in binary text classification. For instance,

we found that the model uses the same reasoning for both questions (see Table 5.5).

We attribute this observation to the fact that “why p and not q?” cites the causal

difference between p and not-q, i.e., consisting of a cause of p and the absence of a

corresponding event in the history of q. We also found that explaining “Why p and

not q?” is not the same as explaining “Why q and not p?.” In the case of sentiment

classification, we found that these two questions provide different answers, consistent

with the work of [82]. To validate our sentiment classification observations, we now

focus on the overlap between “why p and not q?” and “why q and not p?.” We
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Text World Sport Business Sci/tech

record shown mutilated body
found iraq kidnapped aid worker
margaret hassan british official
say still believe british irish citi-
zen dead(P:World,Q:others)

iraq dead hassan kidnapped

search war begin today software
giant microsoft unveils test ver-
sion new search engine looking
remarkably like one chief rival
google. (P:Sci/tech,Q:others)

engine mi-
crosoft

engine version

version desktop search tool com-
puter run apple computer mac op-
erating system google chief ex-
ecutive eric schmidt said fri-
day(P:Sci/tech,Q:others)

desktop apple schmidt mac

inflation dozen nation shar-
ing euro slowed initially es-
timated september company
reduced price lure customer
store offsetting record energy
cost.(P:World,Q:others)

store infla-
tion

price lure

Table 5.4: Contrastive explanations on AG news.

use the IMDB dataset and calculate the overlap between the attributes (a minimum

subset of the attributes required to flip the prediction) of “why p and not q?” and

“why q and not p?.” The similarity ratio was zero, meaning the explanations are

entirely different.

5.4 Conclusion

We have shown that LDAVs can also be used to provide contrastive explanations. In

general, contrastive explanations are different from feature attribution, they mainly

focus on the difference in attributes between two predictions. Contrastive explana-

tions can provide additional insights into non-contrastive explanation, resulting in a

better understanding of the neural model predictions. We have proposed a neural
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Text Highlight

the story is enjoyable and easy to follow this could have been eas-
ily messed up but the actors and director do a great job of keeping
it together the actors themselves are fantastic displaying wonder-
ful character and doing a terrific job gotta find a copy somewhere
(P:positive,Q:negative)

fantastic

this performance that should elevate the film to a platform where it
a place on the best ever lists of courtroom dramas however despite
its apparent obscurity sergeant still remains a taut and compelling
examination like a book that you just can’t put down highly recom-
mended (P:positive,Q:negative)

recommended

imagined in my mind what i saw on screen was slightly different how-
ever it wasn’t enough to make me dislike the mini series i recommend
this for anyone who has read the novel you will not be disappointed
if you have 8 out of 10 stars (P:positive,Q:negative)

8

provide someone to at well one must do something beside during this
film the movie is being sold on vhs now by people on e bay spare your-
self the expense and the waste of time a comedy without a laugh a
musical without a memorable song or dance (P:negative,Q:positive)

waste

Table 5.5: why p and not q? Contrastive explanation is the same as why p? explanations
in binary sentiment classification.

network architecture capable of provide contrastive explanations along with feature

attribution. We have also proposed three metrics to evaluate contrastive explanations.
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Chapter 6

Self Knowledge Distillation

6.1 Introduction

Pre-trained Language Models (LM) are being used in many NLP tasks (e.g., [83,

84]). The BERT system is one of the recent advances in NLP [85], which learns

contextualized representations from a large-scale text corpus. BERT models can

be fine-tuned with a task-specific layer to tackle application-specific problems such as

text classification. Nevertheless, these LMs rely on hundreds of millions of parameters,

making them difficult to train and deploy. Knowledge distillation is a training pipeline

that poses loss in training a small model (student) from the knowledge of a pre-

trained large model (teacher) [86]. The goal is to compress a teacher into a smaller

model (student) while employing fewer parameters than the teacher. In general, a

knowledge distillation technique minimizes the errors between the soft targets of the

teacher and the student. Various research has devoted effort to compressing large

networks to accelerate inference, transfer, and storage. One of the earliest attempts

focused on pruning “unimportant” weights [87]. Other methods focused on modifying

devices to improve floating point operations [88]. In contrast, some works have focused

on quantizing neural networks [89]. However, the main drawbacks of the methods

mentioned are: (1) they only work with pre-trained networks; (2) the compressed

models are in general black-box; and (3) they require additional computation, such

as training student models. Inspired by the idea of LDAVs, we build an interpretable

64



lightweight Vector Space Model (VSM) concurrently while training the black box.

6.2 Self Knowledge Distillation

In a text classification task, an input sequence x = x1, ..., xl, xi ∈ Rd, where l is the

length of the input text, and d is the embedding vector dimension, is mapped to a

distribution over k class labels using a parameterized θ deep network. The output y

is a vector of class probabilities, and the predicted class yj is a categorical outcome.

We focus on learning a VSM from a black box. We refer to the deep network as T and

the VSM as S. As shown in Figure 7.1, the deep model learns a Class Semantic Vector

(CSV) vj ∈ Rd for each target j, e.g., a vector with the same shape (same length) as

the embedding vector. The class semantic vector and the LDAV are similar. However,

the objective is different; we use the semantic vectors as the core representation for

the vector space model. Here, we show how we can use the CSV to build an effective

vector space model.

Black-box

Embedding

Feed 
forward Linear

VSM

Representat
ion layer

Output

Cross-entropy VSM loss

Learn CSVs vectors 
 concurrently  
when training  

the black-box model
Classes

Test 
sample

CSV 1

CSV 2

Vector Space Model (VSM)
A compressed version  

of the black-box

Classifier

Computationally efficient
Small in size

Accurate

Explanation
N-gram- 

feature importance
Faithful- 

explanations

Positional 
encoding

Figure 6.1: Learning a VSM concurrently when training the black-box using class semantic
vectors. The model training is similar to the LDAV method presented in Chapter 3. After

training the model we use the CSV vectors to construct a vector space model.

We provide the following details for learning a vector space model: (a) how to

transfer the knowledge from T into S concurrently, and (b) how to explain the pre-

dictions of S. Neural networks learn by optimizing a loss function to reflect the true

objective of the end-user. For S, our objective is to generalize in the same way as T .

We will show how we learn S concurrently with an LSTM and then discuss how it can

be generalized to different types of architectures. The last state hl ∈ Rd is fed into

an output layer with parameters W ∈ Rd×k which provides a probability distribution
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over k classes.

Neural network classifiers in general use the cross-entropy loss to penalize miss-

classification as Lclassifier = − 1
k

∑k
j=1 rj log(yj), where r ∈ Rk is the one-hot rep-

resented ground truth and rj is the probability (0 or 1) for class j. We use the

embedding space as the base for encoding the semantics. We encode the knowledge

from T into a k-CSVs vj ∈ v. The dimension of each vj is equal to the dimension of

the embedding vector xi.

These semantic vectors have the following properties: (1) Each vj encodes the

knowledge of class j from T ; (2) These vectors serve as the core representation

for building the vector space model; (3) By using cosine similarity, we compute the

contribution of each word in x with the corresponding vj to the class j; (4) These

vectors add another level of abstraction by explaining the feature importance of a

phrase; (5) The weights of the CSVs are randomly initialized, (6) The semantic vectors

can be viewed as centroids to define the boundaries for the VSM and (7) The CSVs can

enable end users interact with the model.

Given the text sequence, we use the LSTM network to obtain a latent represen-

tation from the sentence embedding. We reformulate the optimization of T to learn

the CSVs concurrently as follows:

(6.1)L = Lclassifier + λ1

Representation︷ ︸︸ ︷(
1− x̄ • tanh(vj)

∥x̄∥ ∥tanh(vj)∥

)
−λ2

( Contiguity︷︸︸︷
D

)
where D is the pairwise distance, j in term 2 is the index of the predicted class

with the highest probability, x̄ is the sentence vector, and {λ1 : 0.9, λ2 : 0.9} are used

to weigh the importance of the proposed terms. In what follows, we discuss the new

terms added to the optimization problem.

Document representations: The second term of Equation 6.1 is the second loss

function we use, which encodes the information of semantically consistent sentences

in a single vector vj. Intuitively, the desired property forces the distance of sentences

belonging to the same class j to be close to each other and further away from sen-
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tences belonging to other classes. An obvious way to learn semantic information is

to minimize the cosine angle between the sentence vector x̄ of the input sentence x

and the corresponding class semantic vector vj. The sentence vector is average of the

embedding vectors of the input. The vector vj captures the semantics of consistent

inputs to encourage semantic consistency. This step is essential for the VSM as it

encodes the knowledge from the black box.

Contiguity hypothesis: Sentences in the same class form a contiguous region

and regions of different classes do not overlap. To learn a VSM, we enforce that the

CSVs do not overlap with each other. We maximize the pairwise Euclidean distance

between these vectors using the third term in Equation 6.1.

6.2.1 Vector Space Model

The Vector Space Model (VSM) is a model for representing text document as vectors

of identifiers. Documents and queries are represented as vectors. Here the CSVs are

the documents of the VSM and queries are the test sentences (e.g, x.) The classification

of a query is based on similarities determined by the deviation of angles between each

document and the query vector. The VSM is based on the semantic vectors v learned

via back-propagation when training T . The VSM has k vectors, where k is the number

of classes in the corpora. A query is computed as the sentence vector x̄ of x. In

general, decisions of many vector space models are based on a notion of distance. For

an unclassified query x̄, we determine distance with a CSV vj by computing cosine

distance between x̄ and vj. The predicted class is the index j of the vj with the

shortest cosine distance. The proposed classifier is easy to understand as it relies

only on semantic vectors and cosine distance.

6.2.2 VSM Explanations

The vector space model provides two levels of explanations for text classification: (1)

Word feature attribution, and (2) End-user interaction.
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• Feature attribution: We define feature attribution as the scoring (or ranking)

function that maps portions of the input to scores that communicate some

aspect of their importance in making a prediction. In other words, feature

attributions aim to convey which parts of the input are important, responsible

or influential to the decision. To find the attribution of each word w.r.t. a

predicted class yj, we calculate the cosine similarity between each xi and the

nearest class vector vj. A word with high semantic similarity with vj means

that it is important for the prediction.

• Phrase importance score: Word feature importance is sometimes insuffi-

cient to explain a model’s prediction. The end-user might also be interested in

querying the classifier to answer different types of questions. For example, in

the situation where the model shows the feature importance (in sentiment clas-

sification) of each individual word “not,” “too,” and “bad,” an end-user might

also be interested in the importance of the phrase “not too bad,” which cannot

be calculated just by merging the three different feature importance values. To

obtain the feature importance for a phrase, we find the phrase vector (the av-

erage of the word embedding vectors) and then compute the cosine similarity

w.r.t. the nearest CSV vj.

The proposed technique can be adapted to a variety of architectures such as Bi-

LSTM, GRU, and RNNs, as it requires access to only the embedding layer from the

network and the Softmax layer.

6.3 Experiments

Here we focus on evaluating the effectiveness of our approach in learning a lightweight

interpretable classifier.
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6.3.1 Datasets

We train the model using IMDB, AGnews, and DBpedia datasets (similar to the previ-

ous chapters). We also include the HealthLink dataset in the evaluation. HealthLink

constructed by Alberta Health Services, Canada. It contains a set of text transcripts

written by registered nurses while talking with callers to the Tele-Health service in

real-time. It consists of 2 classes (“go to hospital” and “home care”), and each class

can be sub-categorized into sub-classes. This dataset will be available based on re-

quest. The summary of the datasets is shown in Table 7.1.

Data set Classes Max length Train size Test size Vocabulary size

IMDB 2 50 25000 25000 10000

HealthLink 2 20 60475 15119 23174

DBpedia 15 32 5600 63000 50002

AGnews 4 20 102080 25520 59706

Table 6.1: Summary of the datasets used in our experiments

6.3.2 Baselines

We compare our approach with several models for text classification including Trans-

formers [64], IndRNN [90], BLSTM [63], hierarchical attention [91], LSTM [92] and

GRU [93].

Transformer employs a multi-head self-attention mechanism based on scaled dot-

product attention. We use only the encoder layer, and average the new representations

before arriving in the classification’s output layer.

IndRNN is an improvement over RNNs, where neurons in the same layer are

independent of each other and connected across layers. We use the last hidden state

as the feature vector.

Bi-LSTM employs an attention-based bidirectional mechanism on the LSTM net-

work, which captures the salient semantic information (word-attention) in a sentence.

These attentions enable the network to attend differently to more and less critical con-
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tent when learning the representation. The last hidden state is used for classification.

Hierarchical attention provides two levels of attention mechanisms applied to

the word and sentence level. In this work, we use a sentence level-attention mechanism

applied on a Bi-LSTM. The feature vector for classification is based on aggregating

the hidden representation values.

LSTM and GRU process the input word by word, and the last hidden state is

used as the feature vector for classification.

6.3.3 Network Configuration and Training

We tokenize sentences and use the top N words that appeared in every instance for the

vocabulary size. We did not use any pre-trained embeddings, and thus we randomly

initialized the embedding layer. We also randomly initialized the CSVs. We did not

use hyper-parameter tuning on the validation as we are not focusing on achieving

state-of-the-art predictive accuracy. Instead, we aim to show that our method can

achieve similar/better performance to the black-box and provides a better explanation

than existing approaches. The dimensions of word embedding, semantic vector, and

feature vector (at the output layer) are 128. For training each network, we use the

Adam optimizer with a batch size of 256 and a learning rate of 0.0001.

Performance

We trained six different models (architectures) on four datasets. We have tried dif-

ferent values as the weight of each proposed loss term. The results in Table 6.2 show

that our semantic distillation approach captures more helpful information from the

training data than the baseline black box. Our VSM outperforms the black-boxes on

all datasets, achieving better performance than the black box. The new optimization

problem does not affect the performance of the black-box model (see BBO (Black-Box

with our new Objective function) in Table 6.2).

Parameters. We compare the number of parameters used by our nearest neighbor
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IMDB AGnews Dpedia HealthLink

Transformer [64]

F1 Precision Recall Accuracy F1 Precision Recall Accuracy F1 Precision Recall Accuracy F1 Precision Recall Accuracy

Black-box 0.7703 0.7703 0.7703 0.7703 0.8794 0.8798 0.8796 0.8796 0.8653 0.8655 0.8655 0.927 0.6642 0.6645 0.6641 0.6647

BBO 0.7785 0.7787 0.7786 0.7786 0.8831 0.8836 0.8835 0.8835 0.8799 0.8802 0.8799 0.943 0.6887 0.6896 0.6887 0.6894

VSM 0.8117 0.8187 0.8187 0.8187 0.9038 0.9039 0.9041 0.9041 0.8806 0.8811 0.8809 0.9438 0.7216 0.722 0.722 0.7216

Attention-based Bi-LSTM [63]

Black-box 0.7961 0.7993 0.7966 0.7966 0.8887 0.8888 0.887 0.8888 0.843 0.8443 0.8434 0.9037 0.6706 0.6706 0.6705 0.6708

BBO 0.798 0.7999 0.7983 0.7983 0.8929 0.8941 0.8928 0.8927 0.8772 0.8774 0.8772 0.9399 0.6704 0.6705 0.6706 0.6705

VSM 0.8025 0.8025 0.8025 0.8025 0.8956 0.8955 0.896 0.896 0.8812 0.8816 0.8815 0.9445 0.7207 0.7207 0.7209 0.7208

IndRNN [90]

Black-box 0.776 0.7761 0.776 0.776 0.8773 0.878 0.8769 0.8769 0.8763 0.8765 0.8765 0.9391 0.6808 0.6814 0.6813 0.6808

BBO 0.7805 0.7858 0.7814 0.7814 0.8845 0.8847 0.8847 0.8848 0.8845 0.8889 0.888 0.9515 0.6808 0.6814 0.686 0.6869

VSM 0.8018 0.8022 0.802 0.802 0.9025 0.9026 0.9028 0.9028 0.8887 0.889 0.8889 0.9524 0.7162 0.7184 0.7174 0.7164

Hierarchical recurrent net [91]

Black-box 0.7917 0.7919 0.7917 0.7917 0.8845 0.8855 0.8846 0.8846 0.847 0.8475 0.8467 0.9073 0.6708 0.6708 0.609 0.671

BBO 0.7808 0.7844 0.7813 0.7814 0.8874 0.8876 0.8874 0.8876 0.8709 0.871 0.8709 0.933 0.6829 0.6833 0.6833 0.6829

VSM 0.8146 0.8146 0.8146 0.8146 0.9013 0.9013 0.9016 0.9016 0.8794 0.8796 0.8797 0.9425 0.7156 0.7158 0.7159 0.7157

LSTM [92]

Black-box 0.745 0.7456 0.7452 0.7452 0.8711 0.8712 0.8714 0.8715 0.6597 0.7187 0.6445 0.6905 0.5922 0.6155 0.6044 0.6006

BBO 0.7461 0.7488 0.7466 0.7466 0.8745 0.875 0.8745 0.875 0.7993 0.8129 0.797 0.8593 0.6127 0.6718 0.6717 0.6712

VSM 0.7912 0.7913 0.7912 0.7912 0.9005 0.9005 0.9009 0.9009 0.8657 0.8667 0.8662 0.928 0.7171 0.7178 0.7177 0.7171

GRU [93]

Black-box 0.748 0.7493 0.7483 0.7483 0.8709 0.8708 0.8711 0.8712 0.6537 0.7006 0.6442 0.6902 0.6106 0.6266 0.6187 0.6165

BBO 0.74483 0.753 0.7493 0.75 0.8847 0.885 0.8851 0.8906 0.8193 0.8123 0.812 0.875 0.6478 0.6572 0.6522 0.6562

VSM 0.8069 0.8069 0.8069 0.8069 0.9046 0.9047 0.9049 0.9049 0.8831 0.8834 0.8833 0.9041 0.7154 0.7159 0.7158 0.7154

Table 6.2: Comparison of our test performances with the baseline neural architectures on
four datasets. The VSM classifier achieves better performance than the black-box models.
For the black-box models, we followed the implementation proposed by the authors of

each baseline.

classifier and that of the black-box approach using the HealthLink data in Table 6.3.

The number of parameters used by the VSM is less than that of each black box. Our

model relies only on the embeddings and the CSVs. The number of parameters of

the proposed classifier is the same for all architectures. Our model also reduced the

inference time from 0.037− 0.085 seconds to 0.007 seconds, as shown in Table 6.3.

6.3.4 Interactive Explanations

Because we have evaluated the faithfulness of feature attribution in Chapter 3, we

only focus on interactive explanations in this experiment. In some cases, end-users are

interested in understanding the contribution of phrases instead of words. In addition,

an end-user might be interested in understanding the contribution of a word/phrase

w.r.t. other classes, not only to the predicted class. Results are shown in Table

6.4. Our method can identify the contributions of phrases instead of words and

provide evidence w.r.t. other classes. For example, using the feature attribution,
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Method # of parameters # of dropped parameters Inference time

Transformer

Black-box 3049602 0.085

VSM 2966528
83074

0.007

IndRNN

Black-box 2991490 0.037

VSM 2966528
24962

0.007

Attention-based bi-LSTM

Black-box 3229826 0.056

VSM 2966528
263298

0.007

Hierarchical recurrent network

Black-box 3114754 0.039

VSM 2966528
148226

0.007

Table 6.3: Number of parameters used for black-box and our proposed model and the
inference time.

“bad cough” has a stronger semantic contribution than “cough” w.r.t. the label

“going to the hospital.” Similarly, the difference between “mild chest pain” and

“chest pain.” In sentiment analysis, “good” contributes to positive sentiment, while

“not good” contribute to negative sentiment. Also, note that “very good” contributes

more importantly to a positive sentiment than “good.”

Example Pos Neg Example Home care Go to hospital Example Home care Go to hospital

Good 0.756 -0.752 Cough -0.984 0.984 Fever 0.933 -0.932

Not good -0.151 0.144 Bad cough -0.993 0.993 Bad fever -0.962 0.952

Very good 0.877 -0.878 Cough+sore throat -0.995 0.995 fever+headache 0.929 -0.929

Sucks -0.607 0.607 Chest pain -0.959 0.958 Cold 0.168 -0.170

Not sucks 0.688 -0.681 Mild chest pain -0.861 0.861 Cold+chest pain -0.934 0.934

Just sucks -0.825 0.828 Chest pain+high blood pressure -0.991 0.991 Cold+fever -0.532 0.961

Sucks but very good 0.255 -0.262 Breathing -0.968 0.968 Blood pressure -0.980 0.980

Heart-warming 0.335 -0.3444 Breathing difficulty -0.992 0.991 Bad blood pressure -0.990 0.990

Heart-warming+entertaining 0.538 -0.54 vomiting+breathing -0.883 0.883 High blood pressure -0.981 0.981

Table 6.4: Explaining word/phrase contributions. The models are trained on IMDB and
HealthLinl datasets. For phrase importance, we claculate the avergae of the embedding

tokens and then using the class semantic vectors to calcualte the score.
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6.4 Conclusion

We have explored an approach to knowledge distillation concurrently from a black-

box model to produce a simple, interpretable classifier. The distilled model relies on

the idea of the locally distributed vectors. We found that for simple classification

problems, the model outperforms the black-box model. We have also shown that the

proposed method is computationally efficient and employs less number of parameters

as compared to the black box.
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Chapter 7

Hierarchical Explanations

7.1 Introduction

In the past two years, several studies have focused on tackling hierarchical expla-

nation rather than only individual feature attribution [19, 94–96]. One issue that

remains, however, is that existing feature interaction techniques are based on post-

hoc approaches. For example, a post-hoc approach such as in [19] used cooperative

game theory ideas to generate interpretable explanations for higher-order interactions

from a pre-trained black box. However, dissociating the model’s prediction from its

feature attribution can lead to explanations of poor quality. On the other hand, inter-

pretable models typically incorporate an explanation representation layer into their

architecture to support the provision of explanations for their predictions as an alter-

native to the post-hoc approach. Unlike previous studies on feature interactions, we

propose learning interpretable representations to generate hierarchical explanations.

Hierarchical explanations are essential to understand a deep model’s decision-making

process. Consider the following negative review for sentiment classification ”a waste

of excellent concert.” Looking only at feature attribution might not tell us how words

and phrases interact with each other and are composed together for the final predic-

tion. However, using hierarchical explanations, we can see how the features interact

with each other and thus give users a better understanding of the model predic-

tion. The main contributions is three-fold: 1) We introduce a deep model capable
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of learning interpretable representations, 2) The learned representations can be used

to generate feature and phrase attributions to each prediction, and 3) Can also be

used for hierarchical explanations. Our approach provides comprehensive picture of

how different granularity of tokens interacting with each other within the model (see

Figure 7.1.) Moreover, we address the limitations of the LDAV method: 1) We first

address the problem of learning context-aware sentence vector, 2) We do not intro-

duce additional representations such as the LDAV for each class; but instead rely on

the proprieties of the network, 3) We focus on a challenging problem, i.e., feature

interaction and hierarchical explanations.

Figure 7.1: An example of the proposed deep model . We train a deep network for
predictive accuracy and faithful explanations. The color of each token/phrase corresponds

to the importance score.

7.2 Soft Faithful Feature Attribution

Here we present SFFA: Soft Faithful Feature Attribution, an effective approach to

learn interpretable representations from deep nets, which can be used as a proxy to

generate hierarchical explanations. We consider the example problem of predicting

the sentiment of a textual movie review. Note that our approach does not require

model re-training. In the following, we discuss how SFFA is integrated with deep

networks to provide hierarchical explanations.
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7.2.1 Background

Let x = (x1, ...,xm) be a sequence of tokens of length m, for an input text. We use

xi ∈ Rd to denote the feature embedding that represents the ith token of the sentence,

where d is the feature vector dimension. We consider probabilistic predictions and

consider the prediction as a probability vector. The final layer W k×d of a typical deep

model takes the context vector (obtained from Step 4 in Figure 7.2) to yield a vector

of probabilities, where k is the total number of labels. This probability interpretation

is implicitly informed by the statistical distribution that is approximated by the deep

learning method. The output y from the model is a vector of class probabilities, and

the predicted class ŷ is a categorical outcome. The output of the network is defined as

the inner product between the latent representation (e.g., context vector) andW . Our

problem is to learn an accurate predictor and to generate hierarchical explanations.

The SFFA model consists of a predictor {(·), and an explanation interaction generator,

which are jointly trained. In the inference phase, each part can be invoked on-demand:

to either predict the label {(x) for a new instance x or alternatively, to construct a

prediction’s hierarchical explanation.

Token Embedding

x1 x2

×

. . . xm

+ Positional 
Encoding

Linear 
Transformation(

Raw embeddings Embeddings from (2)

x3

)

Representations

Output

Cross-entropy Explanations

Losses

(1)

(2)

(3)

(4)

(5) (6)
(8)

(7)

Sentence vector: Mean-
pooling

Figure 7.2: An example of the proposed intrinsic deep network model. The steps are
summarized as follows: (1) Obtain the token embedding of each token, (2) Add the

positional encoding information to each token, (3) Further modify the embedding using a
linear transformation, (4) The representation layer over the new embedding features (e.g.,

CNNs, Multi-head attentions, LSTMs), (5) Output layer over the context vector to
predict the class label, (6) Minimize cross-entropy to penalize incorrect predictions and

update the network’s weights, (7) Mean-pooling to obtain the sentence vector and, finally,
(8) Apply the additional loss function to learn discriminative embedding features and use

only the gradient to update through steps 1, 2 and 3.
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7.2.2 Softmax Layer

The features extracted by a deep network are provided to a Softmax layer. The

output of the fully connected layer is the multiplicative product of the weights (in-

ner product) and the previous layer’s output, plus bias. This is followed by using

a Softmax activation which produces the probability for each class (these probabil-

ities will sum to 1.) Cross-entropy (aka Softmax loss) is used to penalize incorrect

predictions based on available ground-truth data. The cross-entropy is the sum of

the negative logarithm of the probabilities. Consider the binary classification and we

have a sample x from class 0. The Softmax loss goal is to force W T
0 x > W T

1 x (i.e.,

∥∥W 0∥∥ ∥∥ x∥ cos(θ0) > ∥∥W 1∥∥ ∥x∥| cos(θ1) ) in order to correctly classify x [97].

In other words, the objective of determining the Softmax loss is to push features

in the same class to be closer, and to further separate samples from different classes.

This makes the inter-class variances larger and intra-class variances smaller. We aim

to use W 0 and W 1 to learn discriminative token embedding features. We also use

W 0 and W 1 as a proxy for feature attribution and hierarchical explanation. One can

think of W i as a centroid vector of class i. Intuitively, during training, we use W 0

and W 1 to minimize the intra-class variations.

7.2.3 SFFA: Soft Faithful Feature Attribution

In this subsection we discuss the proposed deep model. We aim to learn effective

embedding representations, i.e., identifying methods to optimize the inter-class dif-

ference (separating features of different classes) and reducing the intra-class variation

(making features of the same class compact). The network’s structure is summarized

in Figure 7.2. SFFA makes two important changes to the network’s architecture: 1)

order-aware sentence representation, and 2) addition of a new term to the loss func-

tion. In addition, SFFA generates hierarchical explanations based on the embedding

features and thus our goal is to learn interpretation-specific representations at the

embedding layer.
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Order-aware Attribution

One approach to learning interpretation-specific representations is to minimize the

distance between the samples belonging to the same distribution in the latent space.

For example, one could compute each sentence’s mean-pooling and then minimize

the distance between the sentence vector and the corresponding centroid vector of the

positive class. However, the problem with using mean-pooling as a proxy to represent

the sentence vector is that it does not consider word order when computing the mean-

pooling. We propose injecting information about each token’s absolute position. We

add the positional encoding signal and then use element-wise multiplication as follows:

x̃i = (PE(i) + xi)⊙ xi (7.1)

where PE(i) is the positional encoding vector [64] of token xi at index i. Let, x̃ =

(x̃1, ..., x̃m) be the new sequence embedding features. The sentence vector x̄ ∈ Rd of

x̃ is defined as the mean-pooling of the embedding features. The sentence vector is

essential in learning the discriminative embedding features. As we can see, the mean-

pooling of the embedding features will change, based on the position of the tokens.

Consider the following examples for sentiment classification: ‘I don’t like the actor,

but I really like the movie’ and ‘I like the actor, but I really don’t like the movie’. The

proposed approach will reflect the different meaning of these two sentences according

to the position of their tokens.

Proposed Losses

Recall that the Softmax loss will push training data in the same class to be closer, and

increase separation of samples from different classes. We exploit this property and

apply the cosine distance over the sentence vector x̄. The loss is defined as follows:

Lembed = 1− x̄ ·W ŷ

∥x̄∥ ∥W ŷ∥
(7.2)
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where W ŷ is the ŷ-th column of W . During training, we use the stop-gradient op-

eration which stops the accumulated gradient from flowing so that we do not compute

the derivative of the above loss for the given weights W .

The overall objective function of the network is based on combination of two losses:

L =
Lembed

λ
−

k∑
j=1

rj log(yj) (7.3)

where r ∈ Rk is the one-hot represented ground truth, rj is the target probability (0

or 1) for class j, and λ is a scaling factor. The value of λ is between {0.000001, 0.8}.

We have experimented with different values for λ and we found the optimal value is

0.0006. 0.0006 is used as λ in the experiments. Let Lc be the cross-entropy loss. The

back-propagation for the embedding δL
δxi

for each token is given by

δL
δxi

=
δLc

δxi

+
δLembed

λ

δxi

(7.4)

7.2.4 Feature Attribution and Interaction

In general, feature attribution focuses on estimating a contribution score for each

token, to the model prediction. Here we describe the steps to find feature attribution

and phrase attribution scores. Recall that the sentence vector provides a contex-

tualized mean-pooling measure. It heuristically captures the intended semantics of

the sentence. Equation 2 pushes the sentence towards the class vector W ŷ , which

indirectly forces the salient tokens to be close to W ŷ. For a given token x̃i ∈ Rd, the

attribution score is:

Φ(x̃i,W ŷ|ŷ) =
x̃i ·W ŷ

∥x̃i∥∥W ŷ∥
(7.5)

Equation 7.5 is the cosine similarity between x̃i and W ŷ. The cosine angle is used

to validate whether the token x̃i is pointing roughly in the same direction as W ŷ. A

higher score indicates that the angle between W ŷ and x̃i is smaller. Similarly the
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phrase attribution score is defined as:

Φ(z,W ŷ|ŷ) =
z ·W ŷ

∥z∥∥W ŷ∥
(7.6)

where z ∈ Rd is the pooled-mean of the phrase/span (x̃1, ..., x̃n) and n is the total

number of tokens in the span.

7.2.5 Hierarchical Explanation

In addition to feature and phrase attribution, SFFA’s network can also be used to

generate hierarchical explanations, i.e., it can segment a text recursively into phrases

and then words for explanation. Similar to the work of [19], we use a top-down

approach to partition the tokens into subsets. The hierarchical explanation exploits

these multiple levels, where each level consists of multiple subsets (except level 0).

We divide each subset into smaller text subsets according to the positions of the

low interaction. The interaction score between two subsets (left,right) is defined as

follows:

ϕ(s̄1, s̄2,W ŷ|ŷ) =
∣∣∣∣ s̄1 ·W ŷ

∥s̄1∥∥W ŷ∥
− s̄2 ·W ŷ

∥s̄2∥∥W ŷ∥

∣∣∣∣∣, (7.7)

where s̄1, and s̄2 represent the mean-pooling of subsets 1 and 2, respectively.
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Algorithm 1 Top-down approach for hierarchical
explanation

input : Token embedding x̃ ∈ Rm×d, W ŷ ∈ Rd

Initialize the first subset S ← []{x̃(0,m]}
Initialize the hierarchy H = [S]
for level ← 1 to m− 1 do

Initialize minimum score sc = 2
foreach s ∈ S do

if |s| =1 then
Continue

end
l ←− |s|
Initialize scores ρ = ∅
for st← 1 to l do
α←− ϕ(sub(0,st], sub(st,l],W ŷ|ŷ)

ρ.add(α) Add interaction score

end
if min(ρ) < sc then

ξ ←− argmin(ρ) index

sc←− min(ρ) score

s(t) ←− s

end

end

s(l) ←− s
(t)
(0,ξ] Get left subset

s(r) ←− s
(t)
(ξ,:] Get right subset

Γ←− ∀e ∈ S, e ̸= s(t) Find other subsets except picked one

Γ←− Γ ∪ {s(l)} Add left subset

Γ←− Γ ∪ {s(r)} Add right subset

S ←− Γ Start from this subset

H.add(S)
end
output: H

The main algorithm for partitioning the tokens into different text spans is summa-

rized in Algorithm 1. The objective is to segment any subset which contains more

than two words. The split is based on finding the minimum interaction between two

subsets using Equation 7.7. We search all possible subsets, then pick the partitions

to split which result in the minimum interaction score between the two subsets.
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7.3 Experiments

SFFA is evaluated on text classification problems with three different deep learning

architectures: an attention bi-directional LSTM (Attbilstm) [63], a convolution neural

network (CNN) [98], and RoBERTa [69]. Each deep learning method is applied

to three benchmarks: IMDB [59], YELP [99], and AG news [60]. Similar to [19],

we focus on sentiment classification (IMDB, YELP), and in addition, we focus on

document classification (AG news). For evaluation, we rely on proxy metrics and

human evaluation to demonstrate the effectiveness of SFFA in identifying faithful

explanations.

7.4 Summary of Datasets and Implementations

The summary of the benchmark datasets is shown in Table 7.1. We use 10% of

the training data as the validation set. The networks were trained on an NVIDIA

GeForce RTX 3070 8 GB GDDR6. The reported results were based on the average of

2 runs. Links to the public datasets: 1) IMDB, 2)YELP, 3) AG news and 4) SNLI.

Number of parameters for Attbilstm is: 1) IMDB:3, 624, 706 , 2) YELP:3, 624, 706 ,

3) AG news: 16, 342, 788, for CNN: 1) IMDB:3, 361, 282 , 2) YELP:3, 361, 282 , 3)

AG news: 16, 079, 364, for NLI: 1)8054020 and RoBERTa: 1)IMDB:82, 710, 530 , 2)

YELP:82, 710, 530 , 3) AG news: 82, 712, 068. The average inference time (prediction

and generating attribution scores) for Attbilstm on YELP(input length: 50, number

of samples: 1024) is 0.000868 second. For a CNN trained on AG news, the average

inference time is 0.0008495 seconds. We used Tensorflow version 2 for implementing

the proposed approach. All datasets used in the experiments are publicly available.

We manually checked a few samples from the datasets for offensive contents.

Training details The embedding vector and hidden layer feature vectors were set

to 256. We use Adam optimizer with a learning rate of 0.0001 and a batch size of

512. W was experimented with different values of λ (0.001 for sentiment classification

82

https://keras.io/api/datasets/imdb/
https://www.yelp.com/dataset
https://www.kaggle.com/datasets/amananandrai/ag-news-classification-dataset?select=train.csv
https://nlp.stanford.edu/projects/snli/


Datasets Labels Average length Train Test

IMDB 2 50 25000 25000

YELP 2 50 110400 27600

AG news 4 20 102080 25520

Table 7.1: Summary statistics for the benchmarks. Dataset language: English.

and 0.00001 for AG news and SNLI). We train for a maximum of 800 epochs with

early stopping if the validation-set score has not improved in 20 consecutive epochs.

Moreover, performance evaluation between the alternative deep networks, with and

without SFFA, is shown in Table 7.2. We found that performances are almost similar

with no significant degradation.

Attbilstm CNN

IMDB YELP AG news IMDB YELP AG news

Baseline (without SFFA) 0.792 0.89 0.88 0.797 0.856 0.876

SFFA 0.79 0.89 0.88 0.79 0.853 0.886

Table 7.2: Model’s accuracy on three benchmarks

7.4.1 Token-level Evaluation

We focus on local fidelity, and use proxy metrics for evaluation. We adopt two metrics

from related work: log-odds scores [16] and ERASER [100].

We calculate the AOPC for both comprehensiveness and sufficiency using a variety

of token percentages (u values): 5%, 10%, 15%, 20%, and 25% for IMDB and YELP,

and 25%, 35%, 45%, 55%, and 65% for AG news.

Results we compare our method with several baselines, such as LIME [6], IntGrad

[65], L-Shapley and C-Shapley [33], and HEDGE [19].

The log-odds experiments for Attbilstm are shown in Figure 7.3. The results show

that our approach better captures faithful features essential for the final prediction

compared with traditional post-hoc techniques.
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Figure 7.3: Log-odds as a function of masked tokens trained on Attbilstm.

Figure 7.4: Log-odds as a function of masked feature trained on CNN.

Similarly, the CNN’s results for log-odds are shown in Figure 7.4. SFFA outper-

formed post-hoc methods in both metrics. Table 7.3 compares the scores by different

explanation methods for ERASER. We found that SFFA results in a significant im-

provement in both comprehensiveness and sufficiency for sentiment and news classi-

fication.
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SFFA L-Shapley C-Shapley IntGrad LIME SFFA L-Shapley C-Shapley IntGrad LIME

Attbilstm IMDB CNN IMDB

Comprehensiveness 0.643 0.4136 0.127 0.423 0.459 Comprehensiveness 0.476 0.438 0.418 0.408 0.375

Sufficiency 0.020 0.083 0.101 0.061 0.185 Sufficiency −0.134 -0.125 −0.118 −0.115 0.014

YELP YELP

Comprehensiveness 0.631 0.406 0.394 0.402 0.439 Comprehensiveness 0.513 0.468 0.466 0.472 0.207

Sufficiency 0.110 0.266 0.268 0.150 0.234 Sufficiency −0.138 −0.133 −0.32 −0.141 0.011

AG news AG news

Comprehensiveness 0.721 0.295 0.259 0.483 0.291 Comprehensiveness 0.684 0.212 0.167 0.351 higher 0.275

Sufficiency 0.003 0.07 0.089 0.031 0.103 Sufficiency −0.021 0.134 0.162 0.044 0.111

Table 7.3: Eraser benchmark scores: Sufficiency and comprehensiveness are in terms of
AOPC. Lower scores are better for sufficiency and higher scores are better for

comprehensiveness.

7.4.2 Hierarchical Explanations

Here we focus on evaluating the quality of hierarchical explanations. We adopt the

cohesion-score metric proposed by [19] to evaluate the salient spans identified by

each method. Given a salient span x(a,b], we randomly select a position in the token

sequence x1, ...,xa,xb+1, ...,xm and re-insert a word. The process is repeated until a

shuffled version of the original sentencex(q) is constructed. Intuitively, the words in

an important text span have strong interactions. By perturbing such interactions, we

expect to observe the output probability decreasing. The cohesion score is defined as

follows:

cohesion = 1
a

∑a
i=1

1
100

∑100
q=1(p(xi|ŷ)− p(x(q)

i |ŷ)), (7.8)

where x
(q)
i is the qth perturbed version of xi. We repeat the experiment 100 times.

Only salient spans are considered in this evaluation. Higher scores are better, which

means the identified spans are more critical than others for predicting the label.

Results Table 7.4 compares the cohesion score between SFFA and HEDGE on

three benchmarks using a CNN and an Attbilstm. The results indicate that SFFA is

better at capturing the interaction and identifying salient subsets from the sentence

than using a post-hoc approach. The advantage of this approach over post-hoc is

that explanation-specific representations are learned directly by the deep model and

without an intermediate model.

85



Methods Models IMDB YELP AG news

Cohesion-score

HEDGE CNN 0.092 0.079 0.052

Attbilstm 0.071 0.055 0.023

SFFA CNN 0.129 0.113 0.094

Attbilstm 0.099 0.191 0.052

Table 7.4: Cohesion scores between SFFA and HEDGE. Higher scores are better.

7.4.3 Human Evaluation

Our human evaluators were undergraduate and graduate students from computing

science (a total of 10). For both SFFA and HEDGE, we consider only the most

important span/phrase from each sentence as a proxy for each model’s explanation

(please note that this is not the full sentence). Similar to [19], we focus on sentiment

classification and provide sentences from IMDB and YELP.

We ask evaluators to predict the type of the sentiment from the provided explana-

tion [15] from “Positive,” “Negative,” “N/A”, where “N/A” means that the evaluator

cannot predict the sentiment from the provided explanations. An example of the form

used for human evaluation is shown in Figure 7.5.

Figure 7.5: The GUI used for human evaluation experiment. The review and the subset
with the highest interaction is provided to the user to predict the sentiement.
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The model used in this study was trained using an Attbilstm. We randomly picked

100 reviews from the two benchmarks. We measure the number of human annotations

coherent with the model’s prediction and then define the coherence score as the ratio

between the coherent annotations and the total number of examples [19].

Results Table 7.5 compares the coherence score between each of SFFA and HEDGE

explanations and the human annotation. SFFA outperformed HEDGE achieving rel-

atively better scores which suggests that it is better aligned with human annotation

at identifying important spans from the reviews.

Methods Coherence score

HEDGE 0.51

SFFA 0.8136

Table 7.5: Human evaluation of SFFA and HEDGE with Attbilstm on IMDB and YELP
benchmarks.

7.4.4 SFFA for Pre-trained Transformers

We also applied SFFA to language models to generate faithful explanations. We eval-

uate the method on three benchmarks. We use RoBERTa [69]. We incorporate SFFA

for Transformers by allowing gradients from the explanation-related loss function to

pass through the token embedding. The output layer is fine-tuned for the downstream

classification task. Due to page limits, we only report the results on ERASER for

token-level evaluation. We limit our experiments to Shapley-based methods because

of challenges with baseline implementation. For hierarchical explanations, we again

use the cohesion-score metric to evaluate the quality of the generated spans.

Results The performance comparison is summarized in Table 7.6. Table 7.7 com-

pares ERASER’s scores on three benchmarks against Shapley-based methods. SFFA

outperforms post-hoc methods in both metrics achieving better scores. Moreover, the

cohesion scores for RoBERTa are shown in Table 7.8.
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IMDB YELP AG news

Baseline without SFFA 0.838 0.916 0.9074

SFFA 0.8401 0.915 0.8924

Table 7.6: RoBERTA: Model’s accuracy.

SFFA L-Shapley C-Shapley

IMDB

Comprehensiveness 0.506 0.192 0.146

Sufficency 0.085 0.166 0.159

YELP

Comprehensiveness 0.497 0.204 0.187

Sufficency 0.073 0.172 0.166

AG news

Comprehensiveness 0.535 0.128 0.127

Sufficency 0.035 0.125 0.125

Table 7.7: ERASER benchmark score: Comprehensiveness and sufficiency are in terms of
AOPC. Results are based on RoBERTA’s model.

Methods Models IMDB YELP AG news

Cohesion-score

HEDGE RoBERTa 0.117 0.096 0.006

SFFA RoBERTa 0.151 0.131 0.032

Table 7.8: Comparing the cohesion scores between SFFA and HEDGE for RoBERTA.

7.4.5 Ablation Study

To further understand λ in the SFFA objective function, we plot the log-odds score

as a function of λ. We use the AG news and IMDB trained using a CNN, mask the

top five tokens from each sample, and then analyze the change in the log odds. The

results in Figure 7.6 show that the smaller value of λ means a lower log-odds score.
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Figure 7.6: Log-odds as a function of λ on AG news. We found that the smaller the value
of λ, the better the faithfulness of the explanation.

7.4.6 Qualitative Results

Here we provide additional examples of hierarchical explanations from a sentiment

classifier (see Figures 7.7 - 7.11). They show that SFFA is capturing meaningful spans

(each color in the subset represents the importance score for the token/phrase to the

final prediction.) The hierarchical explanation illustrates that the model is capturing

the most salient span with the minimum number of tokens.

7.4.7 Discussion

The importance of concurrent supervision If we rely on the SFFA as the pri-

mary signal, the resulting learned token embedding features would have meaningful

representations that can be used to faithfully explain the network’s prediction. The

visualization of the learned embedding features in Figure 7.12 shows good discrimi-

nation of the embeddings with a clear geometric interpretation. The SFFA approach
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Figure 7.7: An example for negative sentiment classification. Numbers on the right bar
represent the range of the scores based on the color.

Figure 7.8: SFFA for Attbilstm on a negative review. The model correctly captures the
salient interaction not really funny.
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Figure 7.9: SFFA for Attbilstm on a negative review. The model correctly captures the
salient interaction just sucks.

Figure 7.10: SFFA for Attbilstm on a positive review. Then negation token not was
important for the model to predict the positive sentiment.
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Figure 7.11: SFFA for Attbilstm on a negative review. Most salient span is not worth.

forces the features of the same class to form a unique cluster, enabling it to be used

along with cosine similarity to obtain attribution scores. The results show that there

was no significant difference between deep net training with and without the proposed

loss; it implies that the models were neither shallow nor linear.

Compared to existing methods Our method does not use complex models to

learn explanations nor does it use post-hoc techniques to learn feature attribution.

The proposed method is built on the main properties of the deep network, more

specifically the Softmax loss. SFFA improves the representations of the embedding

layer and thus enables the deep net to generate faithful explanations compared to

post-hoc approaches.

Rationalization methods This work is different from existing methods on ra-

tionalization methods. It forces deep networks to learn representations that can be

used as a proxy for hierarchical explanations. Thus, comparing with rationalization

methods is challenging because of the generated output and the objective, plus the
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need for more relevant metrics. We also believe that such evaluation is not fair.

Order-aware Attribution Although positional encoding enables capturing the

position of the tokens, calculating the mean pooling for the sentence vector does

not really consider the order of the tokens. Hence, the proposed remedy tackles the

problem without sacrificing performance.

Feature interaction We use the idea of interactions to generate hierarchical ex-

planations. Note that the hierarchical structure emerging from the rationale iden-

tification provides the basis for guiding the explanatory interaction at several levels

of detail. So the feature interaction can provide a subset’s interaction score (e.g.,

what is the interaction score between two tokens), but the hierarchical explanation

automatically discovers the highest interaction between tokens in a given sentence.

Consider the example of predicting the sentiment, ”a waste of a good story” (pre-

diction: negative). With feature interaction, one could randomly pick a subset and

find the interaction. However, with hierarchical explanation one can automatically

identify the highest interaction in the sentence

7.5 Conclusion

We have introduced a new intrinsic neural model which does not require additional pa-

rameters to generate an explanation. The network learns an appropriate interpretation-

specific representation. We have demonstrated the effectiveness of SFFA in learning

faithful interpretations compared with traditional post-hoc approaches. Our approach

does not use existing predefined properties in the literature but instead relies on the

structure of the deep model. Additionally, we extend our idea to generate hierarchical

explanations using a top-down approach.
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Figure 7.12: Distributions of the learned token embeddings (right) and their
corresponding weight vector (left) from the output layer after using our SFFA.
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Chapter 8

Conclusion and Future Work

In this chapter, we summarize our contributions, limitations, and future directions

that could be addressed moving forward with our conclusions. Throughout this dis-

sertation, we have investigated eXplainable AI related work as a remedy to model

understanding using explainability.

8.1 Summary of Contributions

To summarize the thesis, we contribute the following:

• Interpretable neural networks: Chapter 3 introduced an approach to con-

structing a deep interpretable network. Our approach is based on theories from

contrastive learning methods. We showed that learning interpretable models

provides more trustworthy interpretations than post-hoc approaches. In doing

so, we did not observe any significant degradation in the model’s performance

when constructing interpretable models. In Chapter 4, we proposed an ap-

proach to learning a rationale as the model’s explanation of its predictions. In

all chapters, we found that building inherently interpretable models always pro-

vides a more faithful explanation than those based on mimicking a pre-trained

model’s behavior.

• Contrastive explanations: In Chapter 5, our results showed that we could

use LDAV to provide contrastive explanations, i.e., answers to “why p and not
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q?” questions. This type of explanation is also essential when non-contrastive

explanations are not helpful. We proposed proxy metrics for faithfulness eval-

uation to evaluate the quality of contrastive explanations.

• Self-distillation: In Chapter 6, we introduced an approach for self-distillation,

i.e., learning an interpretable model while training the black box. Our results

showed that we could learn a vector space model (VSM) concurrently with the

black box. In addition, the VSM employs fewer parameters than the black-box; it

only relies on k vectors. Hence, the VSM is a lightweight version of the black box.

Our results suggest that a deeply learned model can be compressed into a set

of vectors (only using ∼< 50% of the original parameters) without sacrificing

performance for document classification.

• Hierarchical explanations: As discussed in Chapter 7, deep networks learn

from higher-order interaction between the input features. Thus, feature inter-

action is as important as feature attribution. Unlike existing post-hoc methods,

we proposed an interpretable model to learn representations from the network’s

property to support hierarchical explanations.

8.2 Discussion

Here we discuss the challenges with visualization, interaction, and the importance of

multiple explanations.

8.2.1 Visualization

We found that visualization is critical to the success of an XAI technique. Here we

discuss a few points about visualizations:

• There is no single solution to the best visualization result; it mainly depends

on the explainee (end-user) and the task. As a result, providing multiple visu-

alizations overcome the belief bias in the explainer.
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• The explainee tries to understand how the model reasons by analogy to their

knowledge. Some of the leading causes why end-users might not fully under-

stand the predictions of a model are as follows: 1) the complexity of the sentence

structure affects how the explainee perceives the information, 2) the complexity

of the task, 3) the quality of the explanation generated by the model, and 4)

overall understating of the model’s objective.

• We must also investigate how explainees respond to different visualizations for

feature attribution. We must recognize the importance of visualization. A

robust explanation method can only be fully utilized with proper visualization.

8.2.2 Interaction

We showed that end-user interaction is helpful for an XAI method. End-users in-

teraction enables them to study how a model analyzes the attribution and how the

attributions can influence the prediction.

8.2.3 The Need for Multiple Explanations

We should focus on building multiple levels of explanations to meet end-users expec-

tations. Doing so allows end-users to switch between different types of explanations

to gain meaningful insights.

8.3 Limitations

Here we discuss the existing limitations of the proposed methods.

• Limited abstractions. One of the main limitations of an XAI approach is

the limited levels of abstraction. This limitation is not due to the explanation

method but rather to the model being explained (e.g., a deep neural network).

The quality of the expression language of the proposed methods is subject to

the vocabulary used to learn the downstream task. The dataset (a proxy for
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representing the world) is the primary source of knowledge for training a su-

pervised model. Suppose the model does not access external resources about

the world for training. In that case, the explanation is limited to the input

only. Humans generally provide better explanations as they can access external

knowledge about the world compared to a learned model.

• Computational cost. We observed that it took more learning time (5x slower

than the model with proposed solutions) because of the constraint added to the

loss function.

• XAI. Our current contributions are limited to feature attribution, contrastive

and hierarchical explanations. However, many other possible dimensions exist

for a model’s explanation, including counterfactual explanations, rules extrac-

tion, and beyond.

8.4 Future Work

For our future work we leave two research questions:

• Proxy Metrics: Majority of existing works mainly focus on evaluating the

plausibility of the explanations and ignore the faithfulness. We think that it is

important to distinguish between plausibility of an explanation and the faith-

fulness of an explanation.

• Improving the quality of visualizations: We need tools that can translate

the requirements from regulators into usable solutions. These systems should

focus on converting the results of XAI methods into useful tools. The cur-

rent visualizations are not ready where society can use and are far from the

certification of AI systems.
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8.5 Closing Remarks

Deep neural models generally identify patterns found in variables and the relations

among those variables. Unfortunately, the learned representations from these vari-

ables can be so complex that they can be difficult for humans to understand or

interpret. The complexity of learned representations creates a severe problem, espe-

cially when the variables we input into the deep model provide critical decisions. As

a result, the deep models are generally referred to as a “black box,” making it chal-

lenging for humans to answer crucial questions about the learned representation and

the prediction explanation. The need to answer these questions leads to the demand

for explainable AI: The ability to generate explanations for humans.

8.5.1 What Makes a Good Explanation

Explainable AI techniques should provide meaningful answers to their intended au-

dience and be easy to comprehend so that users can confidently come to a conclusion

or make a recommendation. However, the explanation might not meet the end user’s

expectations due to the nature of the learning models. However, plausibility is a

desired property. What matters is that the explanations need to reflect the actual

decision-making process used by the model to make a single prediction. Thus, the

vocabulary of the explanation must meet end-users expectations. For instance, an

explanation to a doctor might be completely different from the explanation of the

model’s developer. However, providing multiple explanation levels is challenging, as

discussed in the limitation section. This line of research requires the community to

investigate different visualization techniques.

8.5.2 When Explanations are Needed

Generating explanations is an expensive process that requires time and resources.

Nevertheless, it is essential to asses when the outputs of the models need to be

explained. Understanding the model’s prediction requires developers, stakeholders,
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and regulators to identify the risk associated with the model’s predictions.

8.5.3 Explanations as a Proxy for Model’s Debugging

In some cases, explainability might help significantly improve the model’s accuracy

against relevant benchmarks by tweaking the features without a deep understanding

of how the black box operates. Debugging deep networks using explanations will

help end-users identify weaknesses and enable researchers addresses biases in the

predictions.

8.6 Explaining pre-trained models

Explainable AI tackles complex problems, such as the faithfulness and plausibility of

the explanation. Therefore, the complexity of the problems results in a cloudy big-

picture regarding practical gain and different sub-problems’ expectations. We draw

the final closing remarks: 1) If we can build an interpretable model, this would be

the ideal solution, so we will not need a post-hoc approach. 2) To generate faithful

explanations for a pre-trained model, we provide a simple recipe to select the best

approach in Figure 8.1. We include only the most effective techniques from a personal

experience in terms of faithfulness.

Pre-trained
black box

Knowledge 
distillation

Gradient-based 
(Intgrad)

Shapley

Other model agnostic 
techniques

(1)

(2)

(3)

(4)

Generating explanations from
 a pre-trained model

Figure 8.1: Steps required to select an interpretation method for a pre-trained model.
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[13] F. K. Došilović, M. Brčić, and N. Hlupić, “Explainable artificial intelligence:
A survey,” in 2018 41st International convention on information and commu-
nication technology, electronics and microelectronics (MIPRO), IEEE, 2018,
pp. 0210–0215.

[14] O. Biran and C. Cotton, “Explanation and justification in machine learning:
A survey,” in IJCAI-17 workshop on explainable AI (XAI), vol. 8, 2017, pp. 8–
13.

[15] D. Nguyen, “Comparing automatic and human evaluation of local explanations
for text classification,” in Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), 2018, pp. 1069–1078.

[16] J. Chen, L. Song, M. J. Wainwright, and M. I. Jordan, “L-shapley and c-
shapley: Efficient model interpretation for structured data,” ICLR 2019, 2018.

[17] J. DeYoung et al., “Eraser: A benchmark to evaluate rationalized nlp models,”
in Proceedings of the 58th Annual Meeting of the Association for Computa-
tional Linguistics, 2020, pp. 4443–4458.

[18] S. Hooker, D. Erhan, P.-J. Kindermans, and B. Kim, “A benchmark for inter-
pretability methods in deep neural networks,” Advances in neural information
processing systems, vol. 32, 2019.

[19] H. Chen, G. Zheng, and Y. Ji, “Generating hierarchical explanations on text
classification via feature interaction detection,” in ACL, 2020.

[20] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional net-
works: Visualising image classification models and saliency maps,” arXiv preprint
arXiv:1312.6034, 2013.

[21] A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important features
through propagating activation differences,” in Proceedings of the International
Conference on Machine Learning, 2017, pp. 3145–3153.

[22] L. Arras, G. Montavon, K.-R. Müller, and W. Samek, “Explaining recurrent
neural network predictions in sentiment analysis,” in Proceedings of the 8th
Workshop on Computational Approaches to Subjectivity, Sentiment and Social
Media Analysis in ACL, 2017, pp. 159–168.

[23] A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important features
through propagating activation differences,” in International Conference on
Machine Learning, 2017, pp. 3145–3153.

[24] A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important features
through propagating activation differences,” in Proceedings of the 34th In-
ternational Conference on Machine Learning-Volume 70, JMLR. org, 2017,
pp. 3145–3153.

[25] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for
simplicity: The all convolutional net,” arXiv preprint arXiv:1412.6806, 2014.

102



[26] G. Montavon, W. Samek, and K.-R. Müller, “Methods for interpreting and
understanding deep neural networks,” Digital Signal Processing, 2017.

[27] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional net-
works: Visualising image classification models and saliency maps,” arXiv preprint
arXiv:1312.6034, 2013.

[28] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep net-
works,” Proceedings of International Conference on Machine Learning (ICML),
2017.

[29] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek,
“On pixel-wise explanations for non-linear classifier decisions by layer-wise
relevance propagation,” PloS one, vol. 10, no. 7, e0130140, 2015.

[30] Y. Hechtlinger, “Interpretation of prediction models using the input gradient,”
arXiv preprint arXiv:1611.07634, 2016.

[31] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” Advances in Neural Information Processing Systems, vol. 30,
pp. 4765–4774, 2017.

[32] M. Zeiler and F. R., “Visualizing and understanding convolutional networks,”
in European conference on computer vision, 2014, pp. 818–833.

[33] J. Chen, L. Song, M. Wainwright, and M. Jordan, “Learning to explain: An
information-theoretic perspective on model interpretation,” in International
Conference on Machine Learning, PMLR, 2018, pp. 883–892.

[34] J. Bastings, W. Aziz, and I. Titov, “Interpretable neural predictions with dif-
ferentiable binary variables,” in Proceedings of ACL, 2019, pp. 2963–2977.

[35] D. Pruthi, B. Dhingra, G. Neubig, and Z. C. Lipton, “Weakly-and semi-
supervised evidence extraction,” in Findings of the Association for Compu-
tational Linguistics: EMNLP 2020, 2020, pp. 3965–3970.

[36] S. Chang, Y. Zhang, M. Yu, and T. Jaakkola, “Invariant rationalization,” in
International Conference on Machine Learning, PMLR, 2020, pp. 1448–1458.

[37] M. Yu, S. Chang, Y. Zhang, and T. Jaakkola, “Rethinking cooperative ratio-
nalization: Introspective extraction and complement control,” in Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), 2019, pp. 4094–4103.

[38] D. Antognini and B. Faltings, “Rationalization through concepts,” in ACL/I-
JCNLP (Findings), 2021.

[39] M. Yu, Y. Zhang, S. Chang, and T. Jaakkola, “Understanding interlocking dy-
namics of cooperative rationalization,” Advances in Neural Information Pro-
cessing Systems, vol. 34, pp. 12 822–12 835, 2021.

103



[40] B. Paranjape, M. Joshi, J. Thickstun, H. Hajishirzi, and L. Zettlemoyer, “An
information bottleneck approach for controlling conciseness in rationale extrac-
tion,” in Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2020, pp. 1938–1952.

[41] M. Lamm et al., “Qed: A framework and dataset for explanations in question
answering,” Transactions of the Association for Computational Linguistics,
vol. 9, pp. 790–806, 2021.

[42] Z. Sun et al., “Self-explaining structures improve nlp models,” arXiv preprint
arXiv:2012.01786, 2020.

[43] D. Rajagopal, V. Balachandran, E. H. Hovy, and Y. Tsvetkov, “SELFEX-
PLAIN: A self-explaining architecture for neural text classifiers,” in Proceed-
ings of the 2021 Conference on Empirical Methods in Natural Language Pro-
cessing, Online and Punta Cana, Dominican Republic: Association for Com-
putational Linguistics, Nov. 2021, pp. 836–850.

[44] W. J. Murdoch and A. Szlam, “Automatic rule extraction from long short term
memory networks,” in Proceedings of International Conference on Learning
Representation (ICLR), 2017.

[45] C. Singh, W. J. Murdoch, and B. Yu, “Hierarchical interpretations for neural
network predictions,” in International Conference on Learning Representa-
tions, 2018.

[46] M.-Y. Kim et al., “A multi-component framework for the analysis and de-
sign of explainable artificial intelligence,” Machine Learning and Knowledge
Extraction, vol. 3, no. 4, pp. 900–921, 2021.

[47] S. Sikdar, P. Bhattacharya, and K. Heese, “Integrated directional gradients:
Feature interaction attribution for neural nlp models,” in Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), 2021, pp. 865–878.

[48] D. Zhang et al., “Building interpretable interaction trees for deep nlp models,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, 2021,
pp. 14 328–14 337.

[49] Y. Hao, L. Dong, F. Wei, and K. Xu, “Self-attention attribution: Interpret-
ing information interactions inside transformer,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, 2021, pp. 12 963–12 971.

[50] P. Lipton, “Contrastive explanation,” Royal Institute of Philosophy Supple-
ments, vol. 27, pp. 247–266, 1990.

[51] D. J. Hilton, “Conversational processes and causal explanation.,” Psychological
Bulletin, vol. 107, no. 1, p. 65, 1990.

[52] A. Jacovi, S. Swayamdipta, S. Ravfogel, Y. Elazar, Y. Choi, and Y. Gold-
berg, “Contrastive explanations for model interpretability,” arXiv preprint
arXiv:2103.01378, 2021.

104



[53] S. Rathi, “Generating counterfactual and contrastive explanations using shap,”
arXiv preprint arXiv:1906.09293, 2019.

[54] S. Wachter, B. Mittelstadt, and C. Russell, “Counterfactual explanations with-
out opening the black box: Automated decisions and the gdpr,” Harv. JL &
Tech., vol. 31, p. 841, 2017.

[55] L. Yang, E. Kenny, T. L. J. Ng, Y. Yang, B. Smyth, and R. Dong, “Gener-
ating plausible counterfactual explanations for deep transformers in financial
text classification,” in Proceedings of the 28th International Conference on
Computational Linguistics, 2020, pp. 6150–6160.

[56] L. A. Hendricks, R. Hu, T. Darrell, and Z. Akata, “Generating counterfactual
explanations with natural language,” In ICML Workshop on Human Inter-
pretability in Machine Learning, pages 95–98, 2018.

[57] J. Bastings and K. Filippova, “The elephant in the interpretability room: Why
use attention as explanation when we have saliency methods?” In Proceedings
of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural
Networks for NLP, 2020, pp. 149–155.

[58] D. S. Moore and S. Kirkland, The basic practice of statistics. WH Freeman
New York, 2007, vol. 2.

[59] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts, “Learn-
ing word vectors for sentiment analysis,” in Proceedings of ACL, Association
for Computational Linguistics, 2011, pp. 142–150.

[60] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional networks for
text classification,” in Advances in Neural Information Processing Systems,
2015, pp. 649–657.

[61] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional networks
for text classification,” in Advances in neural information processing systems,
2015, pp. 649–657.

[62] Kaggle, “Us consumer finance complaints,” Kaggle, 2016.

[63] P. Zhou et al., “Attention-based bidirectional long short-term memory net-
works for relation classification,” in Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 2: Short Papers),
2016, pp. 207–212.

[64] A. Vaswani et al., “Attention is all you need,” in Advances in neural informa-
tion processing systems, 2017, pp. 5998–6008.

[65] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep net-
works,” in Proceedings of International Conference on Machine Learning (ICML),
2017, 3319–3328.

[66] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional
networks,” in Proceedings of the European Conference on Computer Vision,
Springer, 2014, pp. 818–833.

105



[67] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek,
“On pixel-wise explanations for non-linear classifier decisions by layer-wise
relevance propagation,” PloS One, vol. 10, no. 7, e0130140, 2015.

[68] A. Jacovi and Y. Goldberg, “Towards faithfully interpretable nlp systems: How
should we define and evaluate faithfulness?” In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, 2020, pp. 4198–4205.

[69] Y. Liu et al., “Roberta: A robustly optimized bert pretraining approach,”
arXiv preprint arXiv:1907.11692, 2019.

[70] S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning, “A large annotated
corpus for learning natural language inference,” in Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing, Lisbon,
Portugal: Association for Computational Linguistics, Sep. 2015, pp. 632–642.
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Appendix A: Evaluating feature
attribution for the vector space
model

A.1 Faithfulness evaluation

We evaluate the effectiveness of the vectors space model in providing faithful expla-
nation and we use the following baselines:

• Random. A random selection of words from the input sentence.

• LIME is a model-agnostic approach which involves training an interpretable
model such as a linear model on instances created around the specific data point
by perturbing the data. We evaluated by training the linear classifier using ∼
5000 samples.

We show the effectiveness of our method in explaining the prediction on three ar-
chitectures (Transformer, IndRNN and hierarchical attention network) in Figures
A.1-A.6.

A.1.1 Automatic evaluation

We measure the local fidelity by deleting words in the order of their estimated im-
portance for the prediction, then evaluate the change in F1 score w.r.t. the predicted
class when no word is deleted. Results are shown in Figures A.1-A.2. A larger drop in
F1 indicates that the method could identify the words contributing most towards the
predicted class by our classifier. Through Figures A.1, A.2 and A.3, we can clearly
see that our approach is capable of identifying the most salient features better than
LIME.

A.1.2 Change in log-odds

This metric requires no knowledge of the underlying feature representation, and it
requires access to only the instances. Like the previous experiment, instead of tracking
the change in F1, we observe the change in the scores. We mask the top k features
ranked by semantic similarity, and zero paddings replace those masked words. We
then feed the input and measure the drop of the value between the target class’s
probability when no word is deleted and when k words are removed. Results are
shown in Figures A.4-A.6 reveal the effectiveness of our approach in capturing the
words that affect the classifier’s prediction. The experimental results show that our
method delivers more insightful explanations than LIME.
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Figure A.1: Change of F1 according to the number of masked important words. (Teacher
model: Transformer)

A.1.3 The effectiveness of using cosine distance in learning
discriminative representations for the VSM

We compare our proposed method’s performance with and without capturing the
semantic information second term in the loss function. Results depicted in Table A.1
show the effectiveness of using cosine distance.
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Figure A.2: Change of F1 according to the number of masked words. (Teacher model:
INDRNN)

Proposed Without semantic

F1 Accuracy Precision Recall F1 Accuracy Precision Recall

Dpedia 0.8806 0.9438 0.8811 0.8809 0.0425 0.624 0.0693 0.0582

Table A.1: The impact of the cosine distance on the classifier’s performance

A.1.4 Analyzing the features used by the VSM

We are interested in what kind of words contribute most to the class prediction.
For this analysis, we exploit the word-level sentiment annotation (Opinion Lexicon)
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Figure A.3: Change of F1 according to the number of masked words. (Teacher model:
Hierarchical attention network)

provided by Liu [73] to track the top 10 words whose importance was the highest
when predicting the sentiment class in the IMDB dataset. We evaluated the number
of words contributing to each of the negative and positive sentiments on 1000 movie
reviews. Table A.2 shows that our approach can identify more salient words that lead
to correct sentiment classification, i.e., our method can pick better sentiment lexicons
than LIME.
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Figure A.4: Change of log-odds according to the number of masked words. Lower log-odds
scores are better. (Teacher model:Transformer)

Proposed Lime Random

Positive sentiment 597 423 286

Negative sentiment 382 353 236
Table A.2: The number of words in each sentiment class for 1000 samples from the test set.
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A.2 Additional experiments

The mean and standard deviation of the proposed VSM model trained on three
datasets.

Dataset IMDB AGnews HealthLink

F1 0.8192± 0.0011 0.9033± 0.0004 0.7196± 0.0007
Table A.3: F1 score of the VSM trained using the Multi-head architecture.
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Figure A.5: Change of log-odds according to the number of masked words. (Teacher
model: INDRNN)
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Figure A.6: Change of log-odds according to the number of masked words. Lower log-odds
scores are better. (Teacher model: Hierarchical attention network)
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Appendix B: Additional
Experiments for SFFA

B.1 Degradation Score

Results are shown in Figures B.1, B.2, B.3, B.4, B.5 and B.6. In all the figures, our
SFFA shows the steepest decline, which means the best explanation for each model’s
prediction.

Figure B.1: Degradation score as a function of masked tokens on Attbilstm (IMDB).

B.2 Log-odds Score

Additional results on AG news and YELP for both Attbilstm and CNN are shown
in Figures B.7-B.10. In all the figures, our SFFA shows the steepest decline, which
means the best explanation for each model’s prediction.
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Figure B.2: Degradation score as a function of masked tokens on Attbilstm (YELP).

Figure B.3: Degradation score as a function of masked tokens on Attbilstm (AG news).
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Figure B.4: Degradation score as a function of masked tokens on CNN (IMDB).

Figure B.5: Degradation score as a function of masked tokens on CNN (YELP).
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Figure B.6: Degradation score as a function of masked tokens on CNN (AG news).

Figure B.7: Log-odds as a function of masked tokens on Attbilstm (YELP).
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Figure B.8: Log-odds as a function of masked tokens on Attbilstm (AG news).

Figure B.9: Log-odds as a function of masked tokens on CNN (YELP).
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Figure B.10: Log-odds as a function of masked tokens on CNN (AG news).

Results on RoBERTa are shown in Figures B.11, B.12 and B.13. SFFA shows
the steepest decline in all the figures. We have found the L-Shapley and C-Shapley
achieve almost similar log-odds scores for AG news dataset.
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Figure B.11: Log-odds as a function of masked tokens on RoBERTa (IMDB).

Figure B.12: Log-odds as a function of masked tokens on RoBERTa(YELP).
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Figure B.13: Log-odds as a function of masked tokens on RoBERTa(AG news). L-shapley
and C-shapley acheived similar scores in terms of log-odds.
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