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Abstract

The singular perturbat}oﬁ method is used for designing
ﬁul;ifate contfollers for two time-scale. systems. Two
methods are proposed. In the fifst method, fast andlslpw -

controllers are designed. based’ on system'decompositiow in
v a- rl . .
. x . .

the =<continuous-time ~domain. 'The -slow subsystem is

discretized at- a relatively lew sampling rate and the fast

subsystem is discretized at a higher sampling ;éte. " In the

second method, "the design is based on system decomposition

~

in the discrete time domain. The latter is quite useful in

‘establishing the stability of the complete 'éystém'

(controller+plant).

A -partial 'control for the fast subsystem 1is also
suggested. o

Tw? numgrical examples are given to A}ngtrate -tpe
proposed methods. |

Another result‘reborted in this thesis is a new method
for designing lower order Kalman:filpers for a class ;f two
time-scale systems. Stability of this Kaimaﬁ filters also

proven. .

iv . g
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Chaptg;11

'IntroductiOE

"

1.1 Background ~
Two Eimg‘scalé sysfeﬁs oftén occur iﬁ;nature, due to
the presence of small parasitic parameters, Many systems
in praééical applications have two time-scale property. LN
e.g.. electrical c1rcu1ts(Chow, }982) bower \ |

systems(Avrgmovlc, 1980), (Sastry, 1980, 198}), {Chow et al,
1983), (Cori et al, 1884), nuclear ;eactor systems (Asatani
et al,1977), scheduling systems(Delebecque et al,1978),
(Tenetzis, 1980) {(Stewart, 1983), chemical kinet%s;(Bobigud
et al, 1980), (Brauner,_1978), economic models(Pepbnides et
-al, 1983), and_bopulation biology mod;ls(Lakin etxél, 1981)
Thig tHesis considers the coﬂt;ol of such systems. A
multirate discrete-time control strategy is proposed. qu
design methods are given. It will be shown®that the
multirate control of two time-scale‘systems has two main
advéntages over other trgditional controller design
technigques such és pole placementnby means of state.
feedback. They,are
1. The dimensional ity of the control prob?em s decreased
2. The practical_implementation of the controller is
simplified ‘
‘—In treating this top1c, the s:ngular perturbation -

method is found to be quxte useful This method prov1des a .

mechanism for._designing 19ﬁér order controllers for systems



possessing two time-scale property. -
The singular perturbation method has matured over the

past two decades. It is well documented in two survey

L 4 .

papers (Kokotovic et al, 1976) and (V.R. Saksena et al,
."1984). ' . | -

The research on multirate systeﬁg has become very
popular in recéﬁt years.  See (Amit, 1980), and (Glasson,
1980, 1981, and 1984) for a detailed d;scussion and felevant‘
references. Very often, systems are é;sé}ibed by high
order models which include phenomena covering a wide range
oF éharacte%istic frequencies. :The two time-scale system
is onektypical example. A multirate controller structure
ailows the designer to implemehti;equired control stfategies_
for such systems wiihout‘exceisive computationgl Burden..
For instance, %R aerospace aifcraft applications onboard
computationél compacity is often.a limiting factor. The

basic idea of multirate technigque is to control.the 'fast’
.,phenomena at a 'fasti‘éampling Ea;e and to control thé '
'slow’ phenomena at a 'slow' sampling rate.

By examining the motivation. for the multirate control
method®and the singular perturbation method, one finds that
these two methods héve something-i; common . They are both
motivated by thekdivefsity of time-scales in practical

. - R o )
control systems. The diffeYence ié;::f7 wvhile multirate
control is valid for any kind of sys ; the ;inguiaf' |

'péfturbation method is valid onl| ﬁﬂigSystéms with two-

time~scale property. Interestingly enough, when the

1



multirate control method is applied to the systems with two
time-scale property, the design procedure is significantly
simplified. /

The singular perturbation method has been applied:bj
other researchers to the control of two time-scale systems

— = =

. . 4
successfully.- Attempts have.also been made to apply the
- . - :

—singular perturbation method to the estimation of states in

tyo time-scale systems: Bup so far applications have been

»e
- - limited because of the requirement that one of the

subsystems should be quite fast so that the 'fast' subsystem
~will converge much more quickly than the 'slow' subsystem -

(Haddad, 1976; Mahmoudt 1982z2).

1.2 Objéctiveé of thesis’

As discussed.earlier, oné of khe objectives of this
thesis is tq‘develop techhigues, for dggigéing a multirate
lcontroller.EOr two time-scale systems.  Another objective

in this thesis is to deyelop a prgcedﬁre for designing slow
land fagt fiitérs for two time-scalé‘discreée systems, in

which the usual aéymptotic stability condition will not be
requiréd. .$he technique available at present time for
.’desigﬁing faét‘and élow filters.for two time-scale systems
requires asymptotic stablilty of the fast subsystems and is
oﬁly for continuous systems. | |
| 1SHEheéis is organized as follows: In chaptef_z*_a
) b}iéf'rgview of sihgu;gr perturbation method for continuous

- and discrete multitime-scale systems is given, In chapter
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3, a discretization procedure as well as controller design

-

* . -
methodology for systems with ;wo-time scale property is

discussed. To back up the theoretical results-, some

guantitative investigation is carried out in Chapter 4.
"The construction of slow and fast filters is discussed in-
chapter 5. Summary and conclusion appear in chapter 6.

list of references is alsoc included.



Chapgef.z

The singular perturbafion method for two time-scale systems

Ty

»

2.1 Introduction
-« I

PR

*. In this chapter, we will first present some basic ideas
of two time-scale continuous and discrete-time'éysfemé.

Then some majof“degomposition methods wili be reviewed.
Properties.of such systems will be discussed next. We will
finally discuss the composite control and estimation of two
time-scale systems. This review féllows c¢losely the

excellent survey paper by Saksena et al(1984). Some later
- ‘ -]

development is also included.

2.2 The singular perturbation method

-

*

The singular pertﬁrbation theory, a traditional tool of
fluid dynamics and nonlineafﬂmechanics, embraces a wide
variety of dynamic.phenomena posgessing slow and fast moées.
its assimilat;bn in control theory is recent and rapidly- -
developing.:

s .
al and

The theory of singular perturbation for initi
boundary value problens and for st#bility determination was
established in the 19é05,-when it became a means for
simbliﬁying computation of optimal trajectories. .It was
ép@n'discovered that singular perturbations are preseﬁt in
most classical and moderﬁ control systems which are based on

reduced order models since these models disregard high

f?equency "parasitics". Thisiled to research with

5 7 ) T



A .
applications of time-scale methods to control systems.

More recently, the singular perturbation hetbod-has

also been used for modeling’and control of dynamic networks

and certain types of large-~scale systems. This versatility

of singular perturbation meghods is due to their use of
time-scale properties that are common to both linear and

nonlinear dynamic systems.

AW

2.2.1 Two Time-Scale Systems

2.2.1.1 Continuous Systems

Many multitime scale Systems can‘be modeled by the

set of nonlinear differential eguations N
}.{!=f(X1,X2,U,t) .-\) . 2"1
)
Y
i2-’=G(K'I'rxi.;rurt) ,. ) R . 2_2

v

where the n,*diménséonal vector X, is predéminantly "slow’
and the n;-dimensional vector X, is predominantly 'fast’.
The fastotrgnsiénts are suberimposed on a ilowly va;yinq
'quasi-éteédy state,' that is }|%,|]<<|[X:|]. One way of
modeling such systems is to let g=hG. The gmall parameter

h is a speed ratio of the slow and fast phenomena.

Equation(2-1) and (2-2) become

~

-
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. ’ '
.i1=f(x1,22,u,t) - . . 2-3
hﬁz=g(xl1 IXZ rur't) - . 2-4

This is a generally accepted mathematical model and is used
extensively in studies involving singular perturbation .
methods. The linear system corresponding to (2-1) and

(2-2), obtained by linearization, is

X, A B ][X, F

+ U 2-5

X;

¢ Dp'llx. G’
It can be rescaled to the form of (2-3) and (2-4) by letting

C=hC', D=hD', and G=hG'.

b

The choice of the value of small parameter h and the h

A BilX, F

=

: U . 2-6
C D/1X; Gl-

determination qf slow_and fast states need some insights

into the systems to be modeled. This is the challenge

-

which faées the person carrying out the modeling task. The

i

basic principles useful in modeling of singularly petturbed

systems have been discussed by Kokotovic(1981 and 1982).

They will not be discussed here since such a discussion is

beyond the scope of this brief review.

2.2.1.2 Linear Systems
‘Time-scale properties of time-invariant systems

are decided by thé;g_eigenvélues. A definition of two
S _ '
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- T T T '
where X'=(X, ,X2") and ¥

-

time-scale linear systems is as follows. The

system(2-5) is said to be a linear two time-scele

system if it can be transformed 'into an upper

triangular form

Y, _{F, B ] Y,
¥ 10 F2)1Y2
through a linear transformation . f
X=TY h .

. . s

TE(Y, ,YE) and the following

condition is satisfied

Max |N(F.) [<<Min|A(F2) ]

~ -

where A{F,) are the eigenvalues of the matrix F, and

similarly A(F:).  EBEg.(2-9) implieglthat the largest

eigenvalue of .matrix F,. I1f the above condition is°
satisfied, T can be found by using a transformation
. ' 1)
(Narasimhamurthy, 1977; Anderson, 1978; Avramovic, -1879;
S . B

O'Malley, 1982; and Phillips, 1983) .

k)

Z=KZ+LX1

}

J .

J

eigenvalue of matrix F,; is much smaller than the smallest

2

2-9

i
3

' - v .
wherne L is n.xn,; dimensional matrix. This changes eqg.(2-5)



9
» Y
to ‘ ~ b
X,] [A-BL - - B X, 3
. 1= : -2-9b
' Z ) LA-D'L+LBL-C' - D'-LBJlZ ==
1f L satisfies the algebraic Riccati eguation
- - 'y
-D'L+LA+LBL~-C'=0. 2-10,
we then get .
Y 2
e
I 0 "
T= o
-L 1 -
v T _ .
To completely separate the slow and fast subsystems we let
Y=X,+MZ <2-11
-which yieldes
T - [¥)] [a-BL (A-BL)M-M(D'-BL)+B][¥Y] -
. = | 2-11a -
. 2z) [0~ D'-LB z
If M satisfies -
_ ' v
(A-BLYM-M(D'-LB)+B=0 - 2-12

[

where D=D'-LB.

complete separation is achieved and we get

" [A-BL 0)(Y

0 DllzZ

This complete and exact decomposition is a

—

L



very useful tool for modeling 4£w0 time-scale systems. It

dées not however pr vide Useful format for the conirol
pfoblem:due to the fact that it does. not separate contfols
that contain both fast and slow states of the system. In
other words, two subsystems areﬂgiill coupled. although it
is claimed(Phillips, 1983) that this decomposition is
accurate for both the control and the modeling problem;

The following approximate decomposition ﬁethod provides
a clearer and more meaningful relation between original ‘
state variables and new state variables{(Othman et al, 1585).
Formally letting h=0 in eq.(2-6) provides(dropping the
control) : - - ’

%,=(A-BD 'C)X, 27713

t"\:

if matrix D is non-singular. Define
- -1 : : :
) X:=-D CZ, 2-14

X;=X.-&, | 3 2-14a

where X;is called quasi-steady state of X; and xf.is‘callea'

‘the boundary layer (Kokotovic 1976) which satisfies equation’

hKf=DKf H | ’2- 15

In this decomposition, L=D_1C, and M=0(h). If h is very

. //
small, they are the first order solutions of eq.(2-12) and



11
(2-10). . . _ - .

: ,;'V// . e
2.2.2 Discrete Systems \

‘iﬁ recent years, considerable ﬁfqg#gss has been made in
the analysis, modeling and control of discrete. two
time-scale systemé. -After some difliculties in the initial
stages, some convenient ané;geﬁéral forms of discrete’ wo
time-scale systems have been.developed.'

The first model which does not defife’ the explicit

-
singular perturbation parameter h is given by

Mahmoud(1982a,b)

X,(k+1) A B')1[X,(k)
= . g 2-16
X, (k+1) C' " D'Lix,(k) -
If eq.(2416) is. transformed into.diaanal form, we get
alk+1)] [Fy 0)[n{k)
1= 2=-17
A5 (k+1) 0 Fol1$(k)

. . R .
where the eigenvalues of matrix F, are located near the
unity and the eigenvalues of matrix F,; are located near the
origin of the z-plane. This model is inconvenient to use

because it does not define the singular perturbation

parameter _explicitly. Phillip5(1980? used scaling by mearis
of h1-jBfB', hjC=éﬁ and hD=D', where 0<j<l1. Notej/that h is
e;plicit here. ° This model is conservétive but easier to -
‘use. -~ Some specific cases of the model proposed/
in(Philljpé, 1980) have been studied by Rajagopalan ft

al(1981), Kando et al(1983), Naidu et 2l(1982) and Syrcos et
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al(1983). Nevertheless, such models are defined in terﬁs
of convergence and their'actuél use is limited.

The formulation which seems to be.most suitable for
control applications is that in‘wﬁich the discretization
interval is chosen to be compatible with fastest time-scale .

of the continuous system. Consider the system (2-6) which

is customarily called slow time-scale version of singularly

perturbed system; the corresponding fast time-scale version

is obtained by scaling 7=t/h, then

-

X, {7) ha hB] [X,(7)

C D

22{(7) x:(f)

This continuous model is discretized at a fast sampling rate

compatible with the fast time-scale. We get the discretef

model (Blankenship, 198%; Litkouhi et al, 1982)

X,{(k)
X, (k)

X,{k+1) (I,+ha,) hB,

xz(k+1). C, D,

. where I, is an n,xn, identity matrix. . This does not

require an asymptoticaily stable fast subsystem because the
slow subsystem exhibits the slowness explicitly as a result
of the presence of small parameter h. ° !

Decompositioﬂ technigues are also available for
discrete two time-scale syséems discu;sed above. Howéver,-
since they are similar to those for continuous sys;ems, they

will not be reviewed here.

2-18 -



'1978; Saberi ef'al, 1981). A similar result was also
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2.3 Stability - : ’ LN

. In order ‘to check the stability of original system

" (2-5):ror’ (2-6), it is sufficient if the stability of

decoupled systems (?-13) and-(2-15)'is-examinedg if

syste£?2-+3) and (2-15) é;e asymptoticaii;—;table, then —
there!exiétsla >0 such that for all h<h+, system (2-5) or

_72—6) is asymptoticalf?*stable.(Kokotévic et ai,.1976). A

similar result is also available or nonlinear systems(€how,

——

_obtained by (Phillips, 1980) for discrete -systems.

2.4 Control Law Designs
The decompositibn of a two time-scale system into fast
“3nd slow subsystems has made it possible to design two N

independeht édntrolleré for the two_subsystems. Control

g
» -

laws can be désigned by either using pole placement or rL
6ptimal'c¢ntrol‘te§hnigués. The fast and slow‘controls are N
thén'cbﬁbinéd into a compqsite control law. Numerous
aigo:ithms have been develépeé for both continuous and_..
@iscrete systems, e;gf, Suzuki et al(1976)» Kokotovic et
31(19765, Chow‘et al(1976,a,b), Porter(1976, 5978),
Philiiés(LQBO, 1981}, Mahmoﬁé(fSBZb), Othman ;t al(1985), —

‘and Litkouhi et al(1983, 1985). It is a vast topic and

. therefore only an outline of some basic ideas is presented

here. . o -~
By means of decomposition,stwo time-scale systems can -~

. be decomposed into a slow and fast subsystems, given by
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A —
xs(t)=Asxs(t)+BPU{t) . - 2-20
Ze(t)=AgX; (t)+B,U(}) | o221
Suppose that the controls are given by »*
.qs(t)=x1xs(t) _ 2i22
~ Ug(t)=K X (t) . 2-23
‘Then,
‘ Uc=Us(t)+Uf(t) =K1Xs(t)+KzXf(t) ) 2-24
./ﬂ : . - |
is the composiﬁe control that affects both slow and fast
—
subsystems. The c%osed—loop system becomes *
X_) [A_+*BoK,  BoKa x.]-
Sl=| S St : 2-25
Xf BzK; Af"'B__ZKZ

»

,xz/J(r~ “
However, this system is expressed in terms .of X, and X;.

Replace them by original state variables X; and X; using the

relation . ., “ N X =

=y

xs=x1 and Xf=X2—D—1[C+BgK,]K,

Y

T . ~ d
which_}s obtained by using approximate decomposition in the
closed-lobp‘systém. We then have a realizable composite

control given by



-‘._'1 : )
- U¢=K1X1¥K2[x%"n (C+B.K )X, 2-26

Thié*rcéults in a élosed-loop system, It can be shown that
the the cioséd-loop_sfstem can be decomposed into two .

subéystems(slow‘and fast) whose system matrices are

. : Y

respectii%ly. The proof can be found in (Suzuki et al,

1976). ‘ ﬁonsequentiy, K, and K; can be used/for separate - /
slow and‘fast eigenﬁalue‘pf;;ement, gtabilizatgon and
optimal.controla Thishapproach was ‘first proposed- by

Suzuki et al(1976) and Chow et al(1976a).

. If matrix D is asymptotically stable, a reduced order

system canfbe formed and a lower order controller can be
designed'for the system. FPor discrete systems, the
approach is similar.

1 4

-~
2.5 Linear filtering of two time-scale linear systems
‘Linear filtering of tyo-time*scale linéar.systemS'has
received some attention during-ihe past ten years. Here,

we outline the approach given by Haddad(1976) for continuous

.

two time-scale systems.

Consider .the linéar.system
Xy (t)=A, X, (£)+A, X3 (£)+G,W(t) 2-27

hXa (t)=A; X (t)+A, X (£)+G2W(t) 2-28

K
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N

where W(t) white process'noise. Tp fifdd the reduced order
system (2-27) and (2-28), we formally .let h=0 in eq. (2-28),

o

and we have
- -1 , | -
X2==Azz . [A2:%,+G.W] - 2-23
Here we suppose that the ‘matrix A:: is non-singular and
aSymptotically stable. If A,» is not asyaptotically
stable, X.will not represent X, in the mean"square sense.’
o e . .

since- the covariance matrix of X, will be ‘unbounded.

- Suppose the measurement is given by

y(£)=CyX, (£)+C,X, (£} +V(t) 2-30

where V(t) is white noise. Substitute X by X.;in eg.(2-30)

and (2-27) and we have

| Xy (£)=A X, (£)+W_(t) o 2-31
y(t)=C X (t)+v_(t) . 2-32
where i
) =1 e e :
'AS=A11"A12A22 Az . . 2-33
-1
CS=C1-C2A22 A21 . _ 2-34

-

The covariance of W, and V, can also be obtained. As a
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result of the decomposition, the process and measurement
noise become correlated. This difficulty can be resolved
by adjoining the output equation to the sfaté equation
(2-31) through. a adjoining matrix (Bryson et al, 1975}.

The problem thn’becomes_a standard Kalman filter problem.

The fast state variable can be estimated by
e L4 . '

- -1 g :
‘ X,="RA22 Az:X, 2-35

"~ ' Y
where %,is the estimate of state variable X,.

— b . ' - . -

e m——

.

¥



. Chépter 3
Multirate Control of Two-Time-Scale Systems
3.1 Introduction

One of the two objectives of this thesis, namely to

develop a multirate control strategy for two time-scale
’_systeﬁs, will'be pursued in this chapter. In this task, it
is assumed that the fast subsystem can be discretized and
controlled at a fast sampling rate, and.the slow subsystem
can be discretized_and controlled at a comparatively low
sampling rate. Such an assumption is.consistent with
Shannon's Sampling Theorem if the original system can be
viewed ;; having two time-scale property in termf’éf its
natural fréquencies. "It is also consisténf with the "
~ concept of 'roughness' of digitally controlled systems(Katz,
.1974, 1981; Franklin et al, 1980).

Roughness Function(RF) is defined as the‘weightéa sum
of the squares of the abrupt changes in;the state
derivatives or in the control inputs. When continudus .time
plants are controlled by digital controllers; a Zero-order
Hold(ZOH) is used to reconstruct a piecewise continuous
‘signal. The abrupt action of the_ZOH'at high sampling rafe.
is reduced and smoothed out by the~inherent filtering
pféperties of the various electromechanical actuators.
However the tendency on the part of.désigners to shorte& the

actuator time constants to satisfy various time response

criteria diminishes the effectiveness of the actuators to

18
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act as filters and consequently, even at a highjsampliﬁg
rate, the action of the control is likely to be abrupt. On .
the other hand, the designers have to cémp:omise between
high sampling rate and computational capacity in|hand.
The selection of the éampling.raée for a digital

control system is'a compromise among many factors.  The

basic motivation in lowering the sampling rate is cost. &

-
.

_ decrease in sampling rate means more time aéailable for the
control calcilations, henée a small computer should be
adequate for a given control function. | Another way of
statiné this is: mé:e control capability is available for a
given computer. These economic arguments indicate that a
suitabie engineering choice is to chose the lowest sampling
‘rate péssible that meets all performance specifications.
Shannon}s Sampling Theorem and the consid ation of

roughness establish the lower limit for the samp

t of

* \ *
view. By decomposing the system into a slow and fast

~which should-be as low as possible from .economic pol

- subsystems, one can use lower sampliné rate for part of the -
system. = Consequently, a multirate control strategy is a
better choice. )

Two approaches will‘be used . in develoﬁing the control
law, In the first approach, the decomposition of the given
'continuous:time two time-scale system is carried out first.
The discre;ization is then performed on the slow and fast
subsystems. Separate cbntrollers are designed for the two

-

subsystems. . In the second approach, the given system is
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: : : o | /ng‘;)‘
\ '
first discretized and then decomposed into slow andxfast
discreie timé Subsystems. ' The controller design §ol}ows
this step. Thé second method is.useful_iq establbshing_the
stability of.the entire system (élant+contréller).

iy L . .

——

"3.2 Controller Design Based on Continuous Time-Decomposition

\

3.2.1 System Decomposition

Ay

Consider a two-time-scale, continuous-time

-

-

. . % i
invariant{alsc called singularly perturbed) linear system: -

L

R1(t)=x11X1(t)+X1232+§1U(t) ‘ 3-1

»

h&o (£)=K, K, (£)+K, 2K, (£)+B,0(E) 3-2

where
Z, and X; a;é ni, n: dimensional state vectors for
slow and fast supsystemsgggspectlvely, n,+n;=n where
n is the dimension of the syééem. u(t) is an
m-dimensional control vector, and h>0 is a small
singular perturbation parameter.

The system (3-1) and (3-2) satisfies the following

conditions.

u

1.0 Xia 'is non-singular.
2. Biy, B12, &z,, and ﬁzz.are bounded.

3. Max[|eig(E,,-Ky2Ksz Kaq)|l<<Minl|eig(O)|]

Pl
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4. If Re[ezg(ﬁzz)]>0 : R

then Max |[Re(elg( B2z )]l/Mlnl[Im(elg(Azz)]|<<1 0.

These conditions are imposed for practical reasons.
Condition 1} is required to decomposehﬁhe éystem into two
subsystems; Condition 2)‘15 dpe'to the féét_that all
matrices are dependent on the parameter h |
fhedre%ically(xokotovic at el, 1976); Condit{on 3) ensures
that the fast and slow subsystems are grouped into (3-1)'53&
(3-2) explicitly; and condition 4) somewhat weakens
condition 3), but is useful from a ﬁractical point of view.

Partition-the control vector U(t) into two subvectors
U, and U, where U, and.U@upave dimension m, and mz
respectlvely and m,+m.=m, Several approaéhes are posszble.
One choice is to treat U,; and Uz as the fast and slow
‘ conérols, respectively and use them_ to make upbthe composite
control for the system, Another choice is tojuse both U,
and U, for slow subsystem and use only one of them for the
.fast_subsystem. Also by assigning different values to m,
and m;, different control structur®s can be generatad.

As shown later, the fast subsystém does not contribute
very much to the over all cost if regulator deéign is used.
ihis means that it is not necessary to employ all control
variables to the fast subéystem.

. It is alsodtrue that different controls play different
roles in different parts of the system. No matter which
choice is made, let us assume that Ut stands for fast

Ry

control and U_ stands for_siow control. ,Then the system w

. .



(3-1) and (3-2) become

i1=311k1+§1232+31|Us+§1sz \ 3-3
hx;=x:1X1+Kzzxz+gz1Us+Eq2Uf 3-4
‘. : ’“‘ -

whg;e
Us is an m{if all contfols are used for the fast
iggﬁbsystem) or mz(if only part of controls are used
for the fast subsystem) dimensional control vector,'

U, is an m dimensional control vector. 8,,, B,;, B

~— ~.,, and : ~

B;2 are matrices with appropriate dimensions.

L

"
=i
»

. The controls are chosen such that

Ug (£)=Ug (kT2) if KT,St<(k+1)T, 3-5
Us(t)=Us(kT,) if kT,St<(k+1)T, o 3-6
where T.=hT,. AT

In studying the system {3-3) and (3-4), we find that
the corresponding discrete-tim -mq§e1 is ‘'not available in.
thé.slow time-scale if the matrix %,, is not an
asyﬁptoticélly stable matrix. If;we discretize the
éfgtem(B-S) and (3-4) with a large .sampling period, the

discrete model loses its two time-scale property explicitly
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’

‘if the mat;ix 2., is not an asymptotical | stable matrix.
This causes difficulty in stuéying the slow version of the
system. However, it will been shown later that the slow
discrete version of (3-1) and (3-2) can be'obtaingd by
éonsf&ering the closed-loép fast subsystem. As”é fesult;
it is more convenient to decompose Epe system in
continuous-time comain, and discre?fie it ét a slow sampling
ate. ' ' . -
We assume that X,;- has reacﬁed sEeady state(called
quasi-steady state by Chow,1§74) and Ug has vanished when
considering the slow subsystem (3-3). This assumption is
~ not valid if 'the two time-scale system is aefined in terms
of high and low fréquencies. _ However, the fast subsystem
does possess 'fastness' in termsdof cbnvergence if control
efforﬁ is applied to the fast subsfstem. ' This can be
explained as follows: Consider two independent systems.
One has two imagihary modes with period T, and the other has
two iﬁaginagy modes with period T,. Controllers for these
two systems are designed using the same cost function
specified in continuous-pime domain. The speed; of

o

convergence of two systems will be proportional to. the
natural frequencies of two ﬁystems if two systeﬁs are
controlled continuously. We justify this argument by

~considering two separate systems:

R(t)=ax(t)+Bu(t) | 3-7
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hy (t)=Ay(t)+Bu(t) . 3-8

where x and y are n-dimensional vectors and u is a

m-dimensional control wvector. We use the cost function

—

J(Z)=1/2I (zTQz+UTRU )AL _ ' 3-9
0

where Z can be eitherix or y.

In solvihg the problem (3-5) and (3-9), we can obtain a
state feedback gain matrix K, if the pair (A,B) is
stabilizable.  For the problem (3-8) and {(3-9), a feedback
gain K; can similarly be obtained. To £ind the relation
between K, and K., we define a streched time;scale
(Tikhonov, 1952, Kokotovic,1968) r=t/h and substitute it into

eq.(3-8) and eqg.(3-9). We obtain
i(r):hy(f)+Bu(r) 3-10

J(z)=h/2j (zTQz+UT§U)dr 3-11
0 .

[}

-

This leads us tc¢ the conclusion.that the optimal conérol
_ problem using (3-8) and (3-9) in streched time-scale r is
idéntital to tﬁe optimal problem (3-7) and (3-9). It means
that K1=K;.

In the closed-loop configuration, the two systems have -
the same time ratio h as they have in the open~loop

configuration. We also ndtice in this that the cost of



T
system.(y) is h times of that of system (x). This is used

in the subsequent sections.
- Applying the trénsfdrmations in eqg.(2-9a) and (2-11)

(with appropriate changes in ﬁotations)

~ en=Ep+LE, }, ' 3-12

- 1
1

where L is chosen such that

A,,L-hiZ,,+hLA,,L-&,,=0 ' ' 3-13

and

E=X,+My . 3-14

. where M is chosen such that

fan Y

(hx11'hx12L)M‘M(Ké2+th1z)+hK12=0 ’ 3”15

to eq.(3-1) and (3~2),we get(dropping U, and U;).

E=(X, ,-E,,L)¢ , S 3-16

ﬁ=(xzz+th1¢)n ' . .‘ .'. T 3-17

\ ) ' :
This transformation converges if the norm

. condition(Kokétovic, {976) is satisfied. It has been

e



o -

stated that the above transformation can,achie&é ahy
accuraéy required both for control and modelling problem.-
As matter of fact, it is not quite true." In the control
prgplem, the two subsystems are coupled not only by state
variables,_but also by control variables.. The

transformation only separates state variables, not the

control variables.

Instead of the 'exact® decomp051t10n discussed above, a

more meanlngful and clearer decomposztlon is adopted in this

thesis. In studying the slow subsystem, we assumg that the

-

fast subsystem driven by slow state variables and controls
has reached its steady state and the fast control has

vanished. This steady state is-called guasi-steady state.

A%

Then eg.{3-4) becomes ) v

Ao X +R;.X,+8,,0 =0 3-18
or

- o~ -1~ ~ —:I - .

Xz =—Az2 AjX:-A., EzzUs , ' 3-18

" Substituting EZ.for X, into eg.(3-3), we get

31.=[§1 1-3,2]5:1;2-152 1 131 "'[31 1‘51 2322-132‘ ]US - 3-20 .

In the short term, it is assumed that X,{(t) and Us(t)

e

are constaﬁf and .we define xf=xz-2=; then, we have

&$
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“,_ th=x22xf+gz 2Uf
B - : - .

o+
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3-21

- Equation.(3-214 is called boundary layer equation(0'Mally,

. \\\v 1969;_Chan§, 1972). - In this approximate decomposition

< " -, ) .- . o -14- .
method, we replace matrix L and M by L=Az;> Az, and M=0, it

is accurate to thefdegree o(h). ° As discussed earlier,

using accurate L and M will not result in any better -

:decomposit{on. It-énly shows that small éigenvalﬁes of the

s Y% . ) .
system are ckose to the eigenvalues of matrix

.' ~ —1-‘\.' ' ’ - .
i . (XRy,-E,2Kz2; A:;,) and large ‘eigenvalues are close to those

of (X::). The discrete form of eq.(3-20) is

x,{(k+1)T,}=A,x,(kr,)+B,Us(kT,)

where ' .
{311‘31;322—1321}T1
A1=e .

FhY

. - : ‘ _-1~
N o BA:I“e{Ki1'x1zxzz Azy}t

0 {311'312x22-1g2'1}dt

Al
-

The discrete version of (3-21) is
. I's

Ze{(1+1)T5 =R &g (1T,) 43,0 (1T5)

where

3-22

3-23

3-24

3-25
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A =eh22/BTz > o 3-26
I 3-27
and . o - . L.
X2X2-X, | 3-28

‘3.2.2_Multirate controller design . -

In the- preceding subséctidn, a given continuoﬁg‘sygfem
is decompqsed Tirét and the ;ubsysféms have beeﬁ .
discretized. , Th§ next'step in ‘the design probiém-is't&
design separate controllers for the 'slow and fast
'subsystems. ' The controllers are designed using eithér pole
piacement or optimal cont;ol feghnique. -

Considering eqg(3-22), if thglgontr;ller fér the slow -
subs&stgm is designed using optimal technique, the pair
(A,,B,) has to be stabilizable. This means the that
uéstable modes of matrix A, .are cont;ollag}e*}' The cost
function Eo be minimized is- ' -

3=4/2) A%, (T, )QR, (3T,)% U (3T,) RU_(iT,)] 3-29
©1=0 -

SMJ

s



where Q is an n,xn; sy;;;?ric,-positive semi-definite
‘matrix, and R an mxm symmetric, positive definite matrix. "
1f pole placement technique is used, the modes of A,

that are to be relocated must be controllable. In this

céée, the feedbégk gain C; is chosen such that . -

SpEC(A1+B1C1)=(p1,pz pesay pn1) ' .3—30 —y

. - - - .
where Py,Pz seevs I are desired locations of eigenvalues

\_/_/ .

of the closed loop slow subsystem. These eigenvalues are
at the slow time scale. -~
Whichever design'technique is used, the controller has

the form

. Us(kT1')=C1X1(kT1) . . 3

31

As far as the fast subsystem is concerned, the design
procedure 'is exactly the same as the slow controller design.
If regulator design technique is used, the controller has

the form:

Uf(sz)=szz(sz)+szzz—1xz131(kTg)+ *

czxzz'1B=,US(sz) . 3-32-

where C, is chosen® such : haay



thaf

is mi

30...

==} .
qf=1/22 :[XfT(sz)Q,Xf(kT2)+UfTRfo(sz)]' 3-33
: k=0 : S

nimized. Q1 1s an n.xn, symmetric, positive

semidefinie matrix and R; is mxm symmetric, positive

defin

chosen such that

Where

eigen

ways:

ite matrix.

I1f the pole placegent is used, the feedback gaiﬂ C: is

§ - ,

Spec(A2+B2C2)=(Q1, Q2reee, qnz) ' 3-34

Gir Qzr ove 9o are*deesired locations of the
values of closed-loop fast subsystem.

Equaiion (3-32) can be implemented in two different

Method 1: Direct implehenfation of eg.(3-32). Here
it is necessary to measure X.(t) at the fast sampling

rate. THis may be a disadvantage of this method

© gince it measures the slow variable at a fast

sampl ing rate.
Methad 2: Another method of implementing the fast
subsystem controller is to measure X,(t) at tﬁé slow
sampling rate. The error caused by this may be
tolerable bécause X (t) changes very slowly compared
to X:(t). This is also consistent with the
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assumptton that—X.(t) is constant when the fast
subsystems is considered. In‘this method, a great
tdeal of-on-]ing/computationaf time-wirf‘be saved if
‘the Order of slow subsystem is high. '\

A simpler form of eq.(3-3é),resu1ts

: b " ) o~ -‘ Lmd L ud -1
. . f@&:(wt)=c2x2(lT2)-C2A22 1A2 1X1 ' (1T2)+C2A22 N B

~21C1X1'(1T2) =C22X2*C21X1'(lT2) 3-35

where

<

X,"{1T.)=X,(kT,) 1f kKT ,S1T,<(k+1)T, 3-36

-

In the selection of the cost funétion J when the
regqulator design approach is used or in thé selection of
eigenvalues of closed-loop system ﬁhen pole placemeht
technique is used, it Q@st be ensured that the closeailoop
system possesses two-time scale-proéérty.besides other

requirements, in terms of time separation etc.

3.3 Controller design using discrete time domain

decomposition

3.3.1 Discrete timé decomposition in fast time-scale
While 'continuous time domain décompositidn discussed in
previous section is straightforward, it is difficult to

prové the stability of resulting control system. In order
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to overcome this difficulty, another method is proposed in
‘this section. ' |
. .

It is difficult.to obtain an explicitly efpressed slow
time-scale.discrete analég of system (3-1) and (3-2) if the 1
fast subsystem is not asyﬁbtotically stable. In this ‘
section, it is proposed to first design a coﬁtroller for .
fast subSystem that will sta&ilize it and.éhen transform the
fast version of the system into a slow one.

“Notice that eq.(3-1) -and (3-2) describe the system in a
.slow time scale. By defining r=t/h, we get the modified |

form of eq.(3-1) and (3-2) as given below

%,(7)=h&, X, (7)+hE,,X,+ h¥,Q(r) 3-37

A

A

X3(r)=K; &, (7) + KpoX,(r) + ¥,0(r) - 3-38

This time-scale transformation does nof affect the original -
singularly'perturbed nature of the system. The discrete

. { .
analog of (3-37) and (3-38) is obtained by sampling (3-37)

and (3-38) at r=0,T,2T,..., or t=0,hT,2hT, .. v - ~ “

a

X (n+1)=(1 1+ha, )xt (n)*hA1zxz(ﬂ)+h31U(n) ‘ 3-39

”»

xz(n+1)=A2,x,(n)4Azzx,(n)+a;§)n) o 3-40

——
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. This is tfue whether it is obtai;;d by exactly-calcuiating'
the matrix exponential or by using approximatﬁon(Blakenship,
198ﬁi. _ The physical ﬁeaning of‘th{s discrete model is that K
éhe slow eigenvalues of the system are lécated near the
unity while the the fast eigenvalues are located elsewhere
in the z-plane; > |

Thé-fbllowiﬁg.assumptioﬁs are usefull
1. Only partial controls are used for the fast.subsystem.
. This means that some ;omponents of Ug are forced to be

zZero. .

2. U(n):Us(n)+Uf(ﬁ)

For convenience, we express (3-39) and and (3-40) as

. x.‘ (n+1.)5(1_1+hA11)X1 (h)+hﬁ1zxz(n)+h31 1U8(n)+

hB1sz(n) ' : ~3-41

. Ea(n*1)=Az:X, (n)*+A22Xs (n) 4B, U (n)+ ByoUg(n)  3-42

B

Following the technigue used for continuous systems, the

it

decomposition transformation(Kokotovic, 1975)

~

y:?x . | . - 3-43 '

' where
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1 [T hM

and P =

I‘hML -hM]

L -L I-hLM

is applied to eq.(3-47) and (3—&2),_wheré L and M are naxn, .

quap,in; matrices satisfying the conditions

a .
- v . o . .
Az1fL"AzzL"‘hL(A1t'jth):O v ' ' 3-44
A,2+M-MA;,+h[A,;-A,;LIM-hMLA,,=0 © 3-45

M and ‘L exist-if h is small and norm

v -

" . condition(Kokotovic,1975) is satisfied. However, There is

no great advantage in using (3-44) and (3-45) compared to

its first order approximation given by
-1 oL
M=-2,,(I:-A;:) 3-46

-1 : )
L=-(12'A22) A21 . 3-47

Hérereq.13—4é) and (3-47) will. be used, which ihpiigs that
we are assuming that the sl§w phéhomena remain constant
while the fast phenomena are being considered and the fast
-trans;gpt vanishes by the time the slow ,ran31ent is
considered. . ThlS transformatlon can achleve the same

.

accuracy as the transformation (3-44) and (3-45). The

resulting decomposed system is given by
'Z1(n+1)=(1,+hA )X, (n)+0(h)X¢ (n)+hB_U_(n) 3-48

Kf(nﬂ)=Azzxf§p-)+Bzsz(n} 3-49
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It:should be noticed that Us may not have the same dimension

as U,. -Also note that

. ". ”1 . - By
AS=A11_—A.12(12‘A22) AZ} : 3-49a
. -1 ’
BS=B11'Atz(IéfAzz) Bz, . 3-4Sb
. . . . . ‘
Xf=X2‘zz - i 3-4%9c¢
e
.. .

'3.3.2 Fast controller design '

Since our objectiye is to”design a multirate
controller (two rate controller) for the system, eq.(3-48)
and. (3-49) can be used“to design a fast controller for the
fast subsystem, thét is to obtain K¢ such that Ug=KgZe.
This can be done if the pair(A::,B..) is stabilizable. Kg
is chosen such that the matrix (Azz;Bzsz) is an

asymptotically stable matrix. i.e., f)

| ACAz2+Ba2Kg) [<1.0 SR 3-50 -
Usf can be expressed as
Ug (n)=F X, (n)+F.X; (n)+F5U_(n) . 3-51

“where F,, F;, and F; can be obtained. :

,’ -

-
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Substitute (3-51) into eq.(3-48) and (3-49) to get
| i (n*1)3(I1,+hA1)Z, (n)+hAsX, (n)+hB U (n) -°  3-52
Xz(n+1)=Aax1(n)+An32(n) + BzUS(n) 3-53

where A,, Az, Ais, A;, B,, ahd B, can be calculated. Eq.
(3-52) and (3-53) still retain the structure of a .
two-time-géale system. Notice that A, is an asymptotically’
stable matrix due _to the presence of fast.control effort. -

-

This is-a very useful result. .
3.3.3 Discrete time decomposition in slow time-scale

One model used by Phillips{1980) and Rac et al(1981)
for discrete two-time scale systems is —

-

X, (k+1)=AX, (k) +hBX; (k) *B,U(k) S 3-54

Xz(k+1)=CX1(k)“'thz(k)"'BzU(k) ‘ . . 3-55

-
“

W

It is feported in the literature--a ?h.D thesis by
Litkouhi(léBB), this is the analog of slow‘vefsion of
singularly perturbed system (3-1) and (3-2) if matrix Z;,; is
an asympépticalzy stablé matrix. Inspecting éq.(3-54)'and
-(3f55), a very interesting feature can be observed, i.e.,.if”

“is already in_a decomposed form. It means that the fast



‘state variable X,(k) has little affect on. the behavior of

slow subsystem..__The'discretizagion process has also_
yielded a‘éecomposed model of the system. It has been
shown that_(3-52) and (3-53) can be transformed into the
form (3-54) and'(3-55) by propagating (?-52)_and (3-53) and -
as;pming that Us(n) remains conétant during the propagating

interval, i.e.t
Us(n)%Us(kl) if klsn<k(1l+1) . ) 3-56
where k={1/h] and [x] is defined as the:largest integer that

satisfies [x]sx.

‘We have achieved a slow version of system(3-1) and

(3-2), but without requiring that the matrix A.. be an
(3-2), b : 0y

asymptotically stable matrix by stabilizing it. In other

" words, we desig.a a fast controller first for the® fast -

subsystem %n the fast time-scale. Consegquently, we are =

-

*able to,stuay two-time4§cale discrete systems in the

slow~t1me scale in an explicit form.

- ' To capture the separation property of eq (3-54) and®
(3-55), we introduce the linear transforma;zon(?) (Kando et
ai7-1983: Syrcos et al, 1983; Naidu et ai, 1982;,Philiips,
1980) z(k}=PX(k), where | -

- -

20 (k) =LX (k)X (k)17 | 3-56b

‘and .
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I+KL K - I -K
P= and P = .
K I . ~L 1 +£_.K
where L and K satisfy
4 _ P
hDL-LA+hLBL-B=0 - ' 3-57
hK{D+LB)-(A-hBL)K+hB=0 - . 3-58

If A is non-singular and matrix A, B, C, and D are bounded,

and h is small, then we have the following first order

approximation .
L=-BA" '+0(h) | . | 3-59
K=ha” 'B+O(h?) | 3-60

Since the fast subsystem is already a well damped
system, we focus our attention only to the slow subsystem in
' subsequent discussions, Using the first order solution of

(3-57) and (3-58), (3-59) and (3-60), results in T .

Ss(k+1)=AsXs(k)+BsUs(k) ' "3

61

where .

.3

<

AS=A+hBCA-1ébk£=1 T 3-62

“
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'Bs=(1—-hcs)B,+hA'1BBz+o(h=) - A 3-63

and

-

%, (k)=X_(k)-hA" BE, L 3-64

-

*

Furthering our éppréximation, we formaily let. h=0 in (3-625,
(3-63) and’ (3-64). It proves that A{(A) approximates th;
_slow;eigenvélues of original system to the deéree o{(h).

fhis formally shows that system(3-55) apd (3-54) is already"
‘in decomposed form. It is also sﬂﬂnn that we do not have
to design a fast controller fi;st.(j?Instead, we éniy need
tdlfind a stabilizing feedback gain for the fast subsystem.
The choice of this sfabilizing feedback gain haé no

sign{ficant effect on the slow controller design.

X ———
A
-

3.3.4 Slow controller design E v

Ii the pair(As,Bs) is stabfiiéable, then the éiog
controller can be designed such that

.USQE)=KSX,(k) ) : . - 3-65

and the matrix h‘=(£+Ble) is an asymptotically stable
matrix. -. K_ can-be detérmined by using either pole
placeﬁent or optimal control technique;-

To 1nvestlgate stability of the control system, we

substztute U (k) into {3- 54) and (3- 55)



Xy (k+1)=A'%,(k)+hBX, (k) | 3-66

Z2(k+1)=C'X, (k)}+hDZ, (k) o C L3-8

Matrix A' and C' cam'be obtained.  The stablllty of (3-66)
and «3-67) is guaranteed by the followlng theorem.
Theorem: If matrix A'=(A+§,Ks) is an asymptotically stsble
matrix, there exists hf>0, such thatifor all 0<h<h+, the

_system (3-66) and (3-67) is an‘symptstiCally stable system

and

%, (k)=A"Z%, (k)+0(h) - . 3-68

'Eroof: The theorem can be proved simply.py réapplying the

—

transformation (P).

3.4 Conclusion‘

-~

In-this thapter, the modequg and multirate~control‘of‘
two time-scale systems have been discussed. The -
relationship of two models currently used for discrete time
sfStems has been given. The discrete models are derived
for systems described by a group of dlfferentlal equatlons.
Two deferent discretization and’ decomp051t10n methods for
control&er design are proposed. In the flrst method the
system-is decomposed in continuous time dom;in; the fast and
slow ‘subsystems are thenldiﬁsretized;at different sampliné

rates. This method is straightforward and simple:” In the

second method,. the given system is discretized at a fast

. -~
¥
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.-‘P’ ’ < . : . ] ] , /

sampling rate and then the fast gontroller is designed in
. N
the fast time-scale. The system is transformed into the

slow time-scale. ‘The controller design procedure has been

pﬁt into a theoretical framework and the stability of

overall system has been proven. A partiél confrol strategy

is proposed for'thé.fast subsys%sgb_;d_

\

!

4



. Chapte;: 4
Quantitative'Investigatién of Multirate Control of Two
) Time-Scale Systems
, .

4.1 Introduction

The results .of some guantitative investigation are
reported in this chapter. l |

The primary objective is to demonstrate the theoretical
results’'discussed in‘chpatéf 3. In éﬁapter 3, two
controller design methéds were presented, one using
'decomposition in continuou; time domain and the other using
decomposition directlf in ‘discrete tiﬁe domain. In this

chapter, @;\ﬁall give two examples to illustrate the two
methods. o , -

It should be emﬁhasize@lthat singuiar perturbation
method is an approximation method; consequently, soﬁe

-

degradation in Performance can be expected to traditionai
coﬁtrol methods such as optimal control method. The )
relationship between sampling fate and performance ._J
degradation will be éxamined. '

In chapter 3, we have given a theorem which states that
there exists a small parémeter h* such that f;r all h<h+y
the control system designed is asymptotically stable. It
is believed that the small p;;ametef h' s depeﬁqent on the
system and related to fhé polg locations as well. We will
illustrafe_this relation through an éxample.

. (’"ﬁ“. . | -

42 =



4.2 Cost function transformation -

A linear system and cost function are often given as.

%=AZ+BU - e

‘- - T o, 0T ' - : .

J=1/2J [X QX+U RUJAL 7 _ . o 4-2 -

<0 . :

where Q is an nxn sym@etri&, positive'semi-définiﬁe ﬁétrix,
R is an mxm symmetric, positivefdefinite matrix, A is an nxn
matrii, B is an nxm matrix} X is n-dimensionél state vector
and U is m-dimensional‘conﬁrol vector. It is-assumed that
system (4-1)‘cén be partitioned into the form (3-1) and
(3-2). o -~

-<In practical application, control and state-weighting'

matrices in cost function are\often chosen to- be diagonal.

Without 1051ng generality, we stume that the cost function

have the following form

Lo . .
J=1/2J [X,TQ1X14UTRU+XzTszz]dt . 4-2a
0 . ) .

where Q, and Q, are n,xn, and n,xn, positive, semidefinite

and symetric matrices, and R is mxm positive definite and

. . . . . T
symetric control weighting matrix. XT=[X1T,X= ]T and

. U=U_+U, are state variables and contrdl, respectively.

The cost function J is transformed info discrete form

for the following three different control structures.



ron
4.2.1 Standard LQR desigﬂ
If this control method is used, the cost function is\\
transformed as follows S .
S T T, . g T, . )
JT=1/22 [XTT)PX(iT)y+22" (AT)RULITY+ U (iT)YRU(iT)]
i=0 g
4-2c
wﬁere ‘
\.
i - ) .
Q‘:J [GM\.Q]TQEA(T t)dt 4-3
0 - .
LT o R . @
e | (T t’JTQJ AT Vpa1ae | -4
_ 0o 0 '
S T oy £ a(me | '
ﬁ?é:_j [[J AT q)qu]T‘QJ AT p)E}dp]dt«“R . 4-5
S 0 Y0 S 40 .
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and

"and T is sampling period.

( AV *. y .
432.2 Singular_perturbation'method, LOR design with all
controls used for the fast subsystem

The' singqular perturbation method provides a very

flexible control structure decided in accordance with

practical applications and system dynamics for digitally
controlled systems. Sometime, it is not neccesary to apply
all control variables to the fast subsytems.

As given in chapter 3, X,(t) can be replaced by its
quasi-steady state'i, -
. )

. . =1

Ra(t)-Kiz Koo (8)-Kza 'BaU(E) 46

¥

If the closed-loop system has two time-scale property, the
above assumption is reasonalbly accurate.

In designing the slow subcontrol system, we let U=Ug+U,

-
-

and
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Ug=0 formally, and substitute X; in eq.(4-2a), by Z:from

eq.(4ﬁ6l,'theﬁ we have

o0

_— T T, T ' _ _
g5-1/2J0[x, stf+Ps-R;Us+ZKi MSUS] 4-7
-where ' w -
QS=Q1+[Azz Az:17Q2K22 Az, ) 4-8
S ~ -1 '
Ms=[A22f R2,)0Q:X,: B:, - 4‘9:.
and .
5 e T o -1 |
Rs=[Azz B2117Q28;, H:,+R . 4-10
Define §s=[X1T, UST]T, then we have
£.=h X, - 4-11
& .
where
~
T -1
Ar1mAr2822 Az, B,1-Ki2Kz2 B2,
A_= B : .
Slo - 0 4-12

The cost function can be rewritten as-



J;1/2J0 stxsdt . - 4-13
where
Q. M N
) [
 Bss” Mg R
s s -

" The discrete form of the system and the cost function

sampled at the sampling rate 1/T, are -

%, (k+1)=A,X, (k)+B,U_ (k) | a4
1;/; [Z,7(K)Q. X, (k)+2% T(k) U_(k)+ "
Jp = kZO ‘ Qp %1 1 Mp Usg
o T (K)Ry U (K)] | e

where A,, B,, QTi; My and Ry can be determined by the

following identities

A B, .
] 25T A 4-16
0 I
- ,_ . -
. . "4-"“ .
' Qr M. T. - -3 . ‘
i ‘J {*ﬁ T, t]]Q JTit] g 417
’ jﬁi_ ' Qe . _
. . ?V ;::- h‘ ‘ . ) . '
qg".' . ? .

In short terpfrun, the cost contr1buted by the fast

E@%c red to%_the slow &subs_stem as
5 1y:~. 15.312 Q- e |

'subsystem 1s veﬁzw
&
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given in chapter 3. For simplification, we assume that the
slow state variables and controls be zero in considering the
fast subsystem. - Then we have the cost function for the

fast subsytem design as >

Jf=1/2J0[xqu,xf+UfTRUf]dt o | 4-18

and the fast'subsystem

Then J_ can be transformed into a discrete form in exactly

the same way as for the slow subsystem.

Sh

4.2.3 Singuiﬁ; perturbation method, only part &f control
variables are used for the fast ~subsystem

-AS dlSCUSSEd dlfferent sontrols play different roles
for different parts of sygéé;s to be controlled.-

In this formulation, it is somewhat the same as for the
case 1in ﬁhich all controls are used to ;ransform the cost
function for slow and fast subsystems._ stever.
differences occur in the"matrix ¥, ana control weighting
matrix'R. In the fast cost function transformation, ¥., is

replaced by its columns and R is replaced by its

sub-diagonal matrix. .

‘\" . ‘ LA

wg g AR EE Y I g
5 oo ]

-‘,;-é 3 . “‘{'..

. .'\’,-"!"":

./ -
: w
e ' N ‘



4.2.4 Example .1

;  To. illustrate the ﬁheoretical résultét.it is better to
have a physical system iﬁ'hand: In this_éimulation, we use
a spring-mass system given in fig. 4.1,

\

. X5 X;._____ Vv
=~ T ! L/
/
L/
cly al; . .;
2
dUy U, 2
. 7
. : Ki 4 - ,
' ) ‘ Ky
— ‘ 23 m %
/|
L/

TTTTTT 7T 7T TT 777777

Fig. 4.1 A mass-s:pring system
, .

o

If we define X,=X, and X.=X,, we have the state space

Pl

equation
) N
<]
| LR A v \l[/ )
- ' : 0 o u,
Xy _ --ml"'-:—"‘ Q %-:- [} X, [+ ! . !; |
— . I a =
X, o o o x ™ Ay . 'I
! ’ e 0
[c 2 b d U,
.. -k o --u-— — - —
H ,-;—l&-f-:--:-—‘& ) -..n_“.l.._i_:, o Al % M mg_‘l . ml mli-\ /
oL e '
4=20



'Examining the system,'we tind that the system has two pair
jmagipary eigegvaluest - Throuéh the‘control or parametefs
ki, kz, my and my, we cah have the system in two timee-scale
form. In this simuletioﬁ, we let m,=1kg., m,=0.05kg.,
k1=6.5nt/m,lkz=1nt./h.,'eﬁd'a%b=de1 and' ¢c=0.  The
time-scale separatéon'is ebout-h=1/6.. As. suggested in -
(Powell et:al,-1§80J, we ehgése ‘the fest samblin? rate as
seven times the highest frEqueques'aed the ilow.sampling

" ‘rate to-be nine tiﬁes the slow frequencies of tEe open-loop
sfstem for the multirate centro}.

4.3 Resultnénd discussion' .
Slmulatlon results are shown in fzg &.2-11. Fig. 4.2
shows the placement of two masses; fig. 4.3 g1ves the
contral history when all controls are used for the fast
subsystem. .Fig. 4.4 illustrates the plecemeht of two
masses and fig. 4.5 shows“tﬂe control Qaraeles when only U,
is used fo; the "fast subsystem. Figl_4.6 and fig. 4.7 show
the placement and the control when the standard LOR control
is used. “It is observed that degradation exists in the
singular berturbation method compared to the sténdaﬂé LOR
de51gn since it is only an approximation method. If
partial control strategy is appl1ed the computational time
is 51gn1f1cantly reduced. I1f the computational'éompacit§ .
.is fixed, we.can use faster sampling rate for the system.
In'term of cost, we have listed the costs for ditferent

control strategies in the following tables.
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T to the over all cost.

52 -

As shown in table 1 and 2, degradation occurs when two

control metths(Partial fasthcontrol and full fast control

using .the singular perturbation method) are used,

to the standard LOR design method.

this is that-the cost functions

control methods are not exactly.

approximation in transformation
singular perturbation method.

assumed that the fast subsystem

the changes 4n the slow control

in fatt\rlt 1s underestlmated 51nce

compared
One'of_the'reasons for

used for the different - o
the same since we have used - ‘ij
of thelcost functioh.for_the

In this transformationf we .*- &_
does not contrlbute too much

-4-1

will disturb the fast

subsystem contlnuously untzll ‘the slow subsystem is

converged Another reason for

'51ngular perturbatlon method is

~the 51ngular perturbatlon parameter h 1s very small.

this example it is not as small

the degradatlon s not very large. = o ’

AS calculated

-

the degradatlon is that the,

based on the assumptlon that
In‘

as it should be. However, ot

Sy

the computatzonal time 1if partlal

control is used is almost half ‘of that if LQOR control is

used.w

o .

pertubatlon method and only partial control used,
overall cost does not® 1mprove very muych.

_we slow down the sampling rate in LQR deszgn

:ncreases‘51gn1f1cant1y.

- perturbatlon method is a useful

/
+

If we 1ncrease the sampllng rate for the s1ngular

the
. In contrast if -

the cost

It implies that the singular

method to design near

'optlmal controllers for two tlmeﬁsnale systems if the

computatlonal capacity is limited.”
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4.4 Examﬁle 2 -

This sectidn is designed to illustrate the second
multirate controller desién method for'singulgfly perturbéé
. systems. Wifh a numerical examplefana design methoa in
hand, we can show validity of the method and design
procedufé. - We will aiSo investigate the félati9nshib
between.pole location and time-scald) ratio giat gives a
marginally stable closed-loop system..'ii

I ’ .

4.4.1 System -

The system Served as an example is given as

¥=AX+BU - o o : 4-21

T,7T T

and

whei'e. Y=[ﬁ1!r,h22 ] ’ _x=[X1T'XZT] ’
0.40 -0.3 .0.4  0.10 " [(1.00  0.50
ac|=0-27 -0.5 0.4 0.60 5-[0.60  0.70
0.4 0.2 0.0 =-0.62|  °|0.80 0.60
0.5 0.3 0.62 0.0 0.40  0.90

These four poles locate at [0.17,j5.8], [0.17,-j5.8],
[-0.677)}, and [0.24] in the s-plane with h=d.1.

4.4.2 Results and Discussion
Since the open-loop system has a-pair of bending modes
that have frequecy f=1Hz., we sample the system in fast

™
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time-scale at T=D.lsec(i.e., ten times of the highest

natu%al,frequéncy) and-propagatiﬁg.interval is n=10. The

;dﬁiécrete analog of (4-21) (that 4s in fast time-scale)

X(n+1)=aZX{(n)+BU(n) : :4-22

(1.0497 -0.026  0.0407 -0.003
A= 0.0026 0.9635 0.0543 0.0432
0.2313 0.0909 0.8231 -0.578
0.6010 0.3267 . 0.6008 0.8224

[0.1181  0.0630
5. |0-0884° 0.1056}

0.6512  0.3072| -
[0.6596  0.0558) ST

it is élear that eq.(4-22) can Bg easily séaiﬁé;tb-fﬁe form
of’(3F39)_and‘£3—40). The small paFamefgf}h;ﬁi1x‘ -Té
illgstrafg'tﬁe accuracy of the transforﬁé;ibﬁ‘(3-43), we
obtain the eigeﬁvalues of the discrete system (&{22 as = -
p1}2=(0:8507, tj0.5586)(fast modes) and q,;0.1102%6and'
g2=0.93453. As discussed in Chapter 3 the fast éigenvalugs .
can be épproximated by the eigenvalueé of matrix A;z. The
eigenvalues of matrix A,, are
N]'j=(0.82279,:j0.55865)
It can be seen that P, , are very close to A, ,.
In designing the fast gpbsystemﬁ we specify thé control

index as Q.=diag(1.0, 1.0) and Ry=diag(1.0, 1.0). The

ideal eigenvalues of the fast subsystem are

7=(0.36546,+50.20463)
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"The mégnitude of the eigenvalues is very small compared to
the magnitude of Qigenvalues-of the slow subsystem. In
fact, difference exists between ."ideal' and 'real’. The

real fast modes are

ﬂ2=(0.36182;ij0.24765) _

It is an very good approximation of 7. To show the effect
of fast controls on the slow subsystem, we substitute the
fast controls.into the system, the closed-loop System have

‘two slow modes

g.=1.0224 and §,=0.9445

- From these data,.we conclude that the fast controls have
very little effect on the slow subsystem.
The new system after.substituting'the fast controls f\\\

into eq.(4-21)

X(n+1)=A X(n)+B,U_(r) | 4-23
where ' W .
1,0093 -0.050 -0:026. =-0.025
-0.014 0.9503_ -0.008 -0.009 R

-0.000 -0.046) 0.4623 -0.671| 279
0.5357... .0.2520 0.0764 . 0.2686



0.0998 -0.014
5,=10-1143-  0.0648 —

1710.5228 -0.131

1.0349 ' 0.8294
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The slow version of eq.(&—zé)‘aftet propogating at an

-

As is seen, eg.(4-24) is in the form of eqg.(3-54) and

(3-55).

Inspecting the eigenvalues of the system in slow-

" interval K=10 o
- . . R , < ~
X(k+1)=ASX(k)fBSUs(k) . 4-24
\
where
1.1135  -0.367 -0.046 0.0096
A' -0.112 0.6581" -0.006 020017 and
s{-0.817 . =-0.119 0.0411 -0.007 :
0.6771 -0.014 f0.032 - 0.0072) ,
. [0.5716 -0.1881
B _10.7581 - 0.4988"
ss |[-1.290 -1.530
1.8826 1,008

time-scale

\

=1.2209, q_,=0.5984, and

qu s2

~  Pg3 4=(0.00038,230.00046)

H

. 4 .
we say that the fast subsystem is dead beat and, thus has no-

Y

influence on the slow subsystem. o . - -
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i,

In designing the slow subsystem, the control index is
given as Qf=diag(1.0,1;0) and R;=diag(1.0,1.0). ‘The over
‘all closed-loop system is

-

X (k+1)=A X (k) o 4-25

where

0.67T18 -0.225:. -Q.046 0.00S6
_[-0.046 ~ 0.2949 -0.006 " 0.0017
ss” |-1.596 1.0018 ~ 0.0411 -0.007

- 10.6168 -0.746 -0.032 0.0072

N

and the eigenvalues of Ass are

.;p1 2 3 4=0.74?0, 0.2631, -0.0563, 0.0015
The clo§ed system is an'asymptotically stablé'one, and the

fast subsystem is almost deadbeat in the slow time-scale.

4.5 Stablity, Separation Ratio and'Polé Locations

As giveﬁ in Chapter 3, there exists h' éuch that.the
overall control system (3-66) ana (3-67) is asgmptoticélly
stable for ali\h<h+. The algorithm for finéing h+ is not
available. However, it ha§ beeﬁ shown that it has some
relation with pole locations of control systems. For
‘convehience, we will use the fast version (3-39) and (3-40)
of singularly perturbed systems and fix the magnitude of
fast subsyétem and change ‘it along a circle centered at ;ﬁé
origin. As matter of fact, we c#n not adjust the fast ;

modes exactly; therefore we adjust the modes of matix As,

»
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instead since they represent. the fast modes very closely Jif

h ig very small. The result}is shown in Table. 3.

68

‘Table 3. - - ¥
- Real(p) | 6.2 6.0 5.5 | 5.0 4.0 3.0
“largest. . 1. "
.Stable h 0.03 0.09 .11 0.15| 0.2 0.5

" As is shown in table 3, the larger the unstable fast

éigenvalués are(real éarts), the smaller -the paramgter:h is
required for a stablizing control. It is_commén?;j
requirement for system have fast responsé;'less overshot,
and less settling time; therefore, the speed separation

ratio must be much smaller than,h+; It is guite

unrealistic to have such system designed using the singular

perturbation method. Cbnsequently, we require that the

- fast eigenvalues have large imaginary part.

4.6 Summary

In this chapter, we have demonstrated the two

controller design methods and investigated the relation

=

Qetwéen pole locations and the parameter h'.



.Chapter 5

State estimation of two time-scale discrete systems

5.1 Introduction _
Rs'diSCussed rn chapter 2, consiaerable progress has
been made recently in the development of the singular
perturbatfon method "in control theory. The development has
focused on the control of two timé-scale systeﬁs suoh as

optimal control and eigenvalue placement through state

.feedback However, state varlables of systems are not

always d1rectly accesible for feedback in practical .,
appllcat1ons. In the standard control system, an observer

or Kalman fllter is constructed in. order to obtain the
~

estlmated state varlables. Estimation of states in two

time-scale systems, can be achieved by constructing two low.

oroer observers or Kalman filters for the slow and fast
subsystems(Haddad,1976; and Altshuler et.ai, 1978).  The -
work By Haddad has laid the foundation for the soIution of
the filtering problem in two time-scale systems;

However, it is required that the fast subsystems should
be asymptotzcally stable in the approach 1.e.,\ﬁast
subsystem converge more qulckly than the slow subsystem.

In other words, the - n ezgenvalues of the system should be
q_pgble of being grouped 1nto two groups: n; are located
near orlgxn(for contlnuous systems) and near the unrty(for
dlscrete systems) which represent the slow modes; Slmllarly,‘

n; are located at the left of the s-plane(for continuous

~

69
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s$ystems) or near the origin on z-piane(for'discrete

systems). In practice, it is more common to have systems

- -

.that d6 not have a fast convergent fast subsystem. The

main objective of this chapter is to propose a method of

'designing lower dimension filters in duch cases.

State estimation in_dissyete~time systems will be
considered in this chapter..;,Extensién of the method to ‘i
continuous time systems is straightfdrward. . We will follow D
the same sequence as was adopted }n‘chpten‘B. Systéﬁ
decomposition will be discusged'first and followed by the
téchnique fbr'ﬁi;ter desigﬁﬁ\\ '

5.2 Modeling and decomp051t1on vf two time scale systems for.

~
1

filter de51gn ' o

As in the e of controller design, there are two ways .

of modeling two time-scale discrete systems, namely, fast

o . .
amd slow versions. We adopt the fast version of the two

time-scale system since it does not require that the fast

. . 3
subsystem should be asymptotically stable. Consider the

system
- , X,(k+1)=(I,+hA11)K;(k)+hA12X2(k)+hw1(k) 5-1‘
xz(k+.1)=A2.,X1-(k)+,A“Xz(k)+Wz(§c) & _;-.5—2 _
.\!%(~
and
;(k3=C1X1(k)+CngZk) - ' ; .- L 5e3
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where x,(k),;xz(k), an§‘y(k) are.n,, n., and m slow$\Cast
state vectors and measurement, respectively; A::, Aiz Aza,
B o

Azz,/c,, and Cz are constant matr1ces with approprlatq\\ \

dimensions; I (i=1,2,...) stands for n,xng dlmen51onal

o o | N 4
identity matrix. _ . o

-

ELW, (k)W (1) 1204 16 (k-1) T e geg
E(W (KW (1)1=0228(k-1) =7 55
E[W1(R5Wz (1)]=Q125tk;1) )  .::i:;2 . I 5-6

In studfing the-sjstem‘(SﬁT)j;we can reasonably assume

that X,(k) is constant., And let

-

R (k)=n(k)+GX, (k) R 57 -
. -- . . . ' .//_’/’
: i . ' '/"\ . . .
where . ' "/// \\,;is o '
. ‘ ) -.". - - ‘ -
ﬂ(k‘*‘1) Azzﬂ(ki4+Wz(k) \ R 5-8
\ : |
N ,
: ‘ -g\.
and T . ‘ S
G=(I§'Azz)—1Azj S ' : 5-8

: ) S i & ' .
The only approximation involved is that-we assume tha 1 (k)

is constant, which quite accurate if © is sufficiently"
- / R . . N
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small. If matrix A, is not an asymptotically stable, 7(k)
does not gohvergelat‘all. In coﬁtrol” ;oblems, n(k) does

convefge if fast control effort has beéi‘aéplied. In this
casé, we can ign?re the definite effect of n(k) and, a

instead, replace it by (Iz‘Azz)~1Wz(k). However in

'

estimation problem, n{k) can not be ignored if the matrix j

) : §
‘AzzriS"ndEwasymptotically stable. If this 1s the case, two
subfilters can not be designed independently.

Substitute,x?(k) and (k) into eq;(5-1) and (5-2), we'

havé | ‘ ’ {
i .
Xy (k+1)=(11+ha_) X4 (K)+ha, o7 (k) +hH, (k) 5-9
n(k)=Rzon(K)+Wa (k) ~5-10
. \ . . -4
v ) ¢
and .
yek)=C" X, (k)+C' 27(k)+V(k) & N R
where
) e
R AS=A1if312(Iz‘Azz)F]Az1 5-12
» o ’

-n _—1 \' P
] c' 1=C1+C2(12—A2 ) .A21 and C'2=Cz
| o~
In studying the covariance of state.variables of fast-and
slow subsystems, we can model théh as hP; and P:, '
respectively, 'which can be deddtgd by assuming that thelq;
matrix A;, 15 asymptotically stable. En:considering the

!



.

estimation error covariance, this assumption can be relaxed
further.

It can be easily proven that
;e

x,(k+1)=[1+hAs]x,(k)+h5,;n(k)+hw,(k)+o(h=) 5-12a

and

2{k+1)=Az29(k)+0(h) - - '5-12b

=1

: x:l('k)z"(I-Azz) A21X1(k)+Azzﬂ{k)'+0(h) . 5-12¢c

The decomposition is a partial decomposition discussed in

-

chapter 3.

5.3 Filter Desig®

In the design of filters for ﬁéow and fast subsystems,
[ ] + .

it is observed that thq slow filﬁer;can not be desighed_

‘priof to ‘the designing of the filter for the fast subsystem

due to the‘;fgsence df fast state variables in both state
and butput'equation§.~'.Alﬁhough the slow state variable
X,(k) is also present in the megsﬁrement equation, the
estimated valde can be used. ‘Jﬁ is feasible to design the
fast,fiiter first for fast subsystems. Since the process
noise input to the sld;-subsystemsiis h tiﬁes.of the noise
input to ihe fast subsyﬁtem, we can model the state

covariance of slow subsystems as hP;.



"5.3.1 Fast filter design

Rewrite the decomposga‘system(s;Q), (5-10) and (5-11)

Y : : |
x1(k+1)=(11+hAs)X1(k)+hA1zﬂ(k)+hv1(k) . 5-9 .
J ' _ _
ﬂ(k)'—"Azzﬂ(k)d‘Wz(k) - : 5-10
and
y(k)=C' X (k)+C'2n(k) + V(k) - - 511

Since Cov[X,(l}?=hP,,?the covariance of estimated error of
slow subsyst;ms will behave similarly. Therefore we
substitute the estimateé value of X,(k)(this,ineluding the
estimation of X,(k) before or aftér measuremént) as its real
value in the estimation of n(k) without considefing the
ﬁncértainty involved. The estimated value of X,(k) is not
yet known. Howevef, as will be.seeﬂ, this will not present
any difficuities. B | -

Define

4

g (k) =y(k)<C}X, (k) L §5-13

I1f the estimated or predicted value of X;(k) is used, y'(k)
' . - : y *
is a known value. A Kalman filter can therefore be
generated if the pair (Azz,Cz{ is detectable. The filter

equations are

T =F (k) Kz (y* (k)=C,7(k)) ; ~ 5-13
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&
7(k)=hso7(k) % 5-14
" . V Y R . . B

| T P - .o L
Kz=MzC; (C:M:C: +R) 1 . v .. 5715

T -1 .
P2=M'2"‘.M2C2 (C2M2C2T+R) CzM; 5-16

v - T . . .|‘r . .

Mz=A2:PAz; +Qz2 5-17

- where P, is steady state covariance of estimated fast state

variable 7(k) after measurement and M. is steady stdte

covariance of estimated n(k) before the measurement. If

- the detectability.condition is satisfied, the matrix

Az=Azz - K2C2A;, l : : 5-18 -
is asymptotically stable. The estimation error is then
given bf

ex(k+1)="K,Cle (k)+(A.,-K2CoAzz:)e,(k)+W (k)
. s -
_sz(k) o 5-19

&

Although [|e;(k)|]| is very small compared to ||ez(k)}||,

e, (k) ;ontéins a componenent that is driven by e,(k), that

" could affect the slow filter design significantly.

®

-5.3.2 Slow filter design.

Since it is quite inconvenient to study the slow filter

in terms of natural state variables, we will study the slow
- . »

- — - . Y
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filter in terms of error’variables.

-

Suppose we have a slow filter .

X,(k+1)=(1,+hAs)+hAtzﬁ(k) + hK}[;(k+1);C;R,(k+1)—
- sz-?(k+1)] =(I 1+hAs)z1 (k)+hA1z;}'(k)

+hK,[Cle,(k)}+ CoA.ze,{k) + V(k+1)] . 5-20

with error e,(k)=%X,(k)-%,(k), that satisfies .

e, (k+1)=(I+hAs)e1 (k)+hA12e2(\k)}hK1[C',e.1 (k)"’

Ca2Az2e2(k)+V(k)] . 5-21
 and
E_z(k+1)":-KzC;et(k)'_"(Azz'ch:zAzz)Ez(k)';'wlz(k)“'

RoV(k+1) 5-22

Since the matrix [Azz-KzCzAzzl ié_a5ymptotitally-stable, and -
the small parmameter. is also.présent in eg.{(5-21), the
systems (5-21) and (5-22)- still represent a two time-scale
system. Consequently, we.can, as iﬁ the'casg of contin&ous
systems which approximates the fast state va}iabie'by its
quasi—stéady stéte(ﬁaadad, 1976), approximate e (k) by its
éteady state and éome noise éerms. | |

‘ ' ' N ‘
- ‘ =1
ez(k)=-(I-A22+KzC2A22) KzC‘Q](k)(I-Azz"’ .

| chzA;r)-1[Wz(k‘1)‘ KzV(k)JE,f

=Gie, (k) +GoWz (k=1)4GsV (k). 5-23
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If we substitute e;(k) by ez(k) in (5-21),, we have
N ey (k+1)=[I+h(A_+2,,G,) Je, (k)+ hA,@g@;(fk&ﬂ-i
hA,,V(K)+ B
hW1(k)"hK1{(C‘}"‘AzzCzG'l)31(k)+C262W2(k'1)+
- C2GyV(k)+ V(k+1)} "5-24
This_is equivialent to the estimation problem ~ .
Z(k+1)={I+hA,)Z(k) + W, (k) . 5-25
withlmeasurement
U(k)=C 2(k) + V_(k) ‘ | . 5-26
where R
. " st-=A1zG2Wz(k"1) + ~W1(k) + A~|2G3V(k) | 5-27
. : il
vs=c2-c;,w2(k-'2) + C2G,V(k-1) + v(k) 5-28
.and . ) . - 1

N5

A1=As + A1sz and ‘Cs:-—c‘t+A22CzG‘1

S
] B q
L]

As given in eq.(5-27) and (5-28), the noise term Wy (k)

and. V_(k) are not white at’all.” Nevertheless, we can

< ; P ‘ .{b r : ‘ F.h
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assume that thegiggg_white‘SEnce the correlation time is .
only one sampling period which'is yery short compared to the
time-scale of slow subsystem. To design a Kalman filter,

ve need the following variables

h : - ) L 1
1 . T . o .
i \ | E[st(k)v ?(k)]=G’R=RC% \ 5-29
\\ . . . -
) E[st(k)]=0,land E[stk)3=9
\ . T - T
COV['W'sx(k)]=A12G2Q22(A12G2) * Q4 + A1z‘3:R(A1253)
‘=Q1 . ) 5'30
- \ — '
L COV{VS“‘{)]=C2G2Q22(C2G2)T + R"'CzG;R(C:G:)T
' ’ =R | 5-31

A ’

Introducing thé uUncorrelating procedure in(Bryson et al,

1975)

\ Z(k+1)=(I+hA1.)2(k)_+hwsx-(k)th[U(k)-CsZ(k)-VS(Ik)]

, =(1+A_ ) 2(K)+hW_ (k) +hU (k) r 5-33
{\ ] V a hl .
where ' “
ASS=A1-DCSl, . | - -5-34
‘ -1 T T
cOv[Ws(k)=QS=Q, *+ DR.D .- G,RD -DRG; . 5-35

To find the matrix D, Let
o p)
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E[W_(K)V®_(K)]=0 ' 3-35
s s T _ ' a
We then have
-1

p=-R__ 'R L - 3-35b

Two appprod&thes are possible to design the slow filter for
the slow substystem. We.could follow. the procedure similar
to that proposed for controller design(Hoppensteadﬁ_et al,
1877) and to éséociéte eq.(5-33) with a‘differential
equation. Alternatively, we use a slow timé scale .n=kh.

We will adopt the first apﬁroach here. We shall associate
.a differential equation which characterizes the asymptotical
behavjﬂk;of incremental motion of slow variables with the
respect to the small parameter:p and sampling pé?iod. The’
solution of (5-33) is sought in the time-scale t=hk-and this

_equation can be rewritten as

Z(t+h) - Z(t)=hA__Z(t) + hW (t) ' 5-35¢
. . . 55 5 ) ". k4

-

Divide both sides of equation (5-35¢c) by h and taking the

. limit h-->0.0, yields

az(t)_ Lo -
dt _ASSZ(t)+WS(t) . . '5 36a
with the measurement equation -* .
N : .
- ult)=C 2(t) + v (t) ‘ g ~ 5-36b

fa
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The following'condition has to be satisfied. 3

The pair (Ass,cs) must be detectable in continuous sense.

" Ifythis condition is:satisfied, -the slow filter can be

devised as

- -
-
-

a

is asymptotically stable in continuous sense. And for

-small h, hAc+I is asymptoticélly stable' in discrete sense.

in this filter design, we see tht the slow filter is

[
.

ar(t) _ ' o .
at  “Pgellt) + K, [U(£)-C_Z(t)] 537
where -
/ )
- -1 .
Ky=PC_ R ﬂ  5-38
Vs LSO I _ )
AggP1+P1A  +Q_~P C_R_ C_P,=0 5-39
.As is given by eq.(éfzo), we have the slow filter. in -
discrete~time domain, in natural state
b .
~ 31(k+ﬁ)=(1+hAs)x1(k)+hAgzﬁ(k) +hK1[Y(k)'Cﬁxz(k)*.
C2Az.7(k)] 5-40
If the detectability condition is satisfied, the matrix
- * ! -' '_1
A,'K:CS=A11+A1;(I-A22) 1Az1‘K1{C1+Cz(I‘Azz) Agq-
. -1 , .
CaAz2(I-Az.+K2C2A22)  K:z[C, :
. . -1 ' :
+Co (I-Az2) Az1]}=A_ 5-41)
-

!

p——

Ny
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ilndependent of slow filter.
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dependent of the fast filter.. The fast filter is

It is noted(not proof) that the term of 7(k) can be f-*
neglected in LOG or stochastic problem in eq.(5-40),51nce ;;3'
E[7(k}} will‘vanish very guickly compared to the slow_ététe-

variable X,(k). It means it- has littleiaffect'on the

‘estimation of state varaible X,(k) .

In this case, the method dev1sed for de51gn1ng iower
order £ilters does not only result in the lower order
design, but also qlves some 51mp11f1catlon_1n pract1ca1
iﬁp}ementation of ‘control §ystems. Some computational-time
can be seved as well.. R | .

L]

5.4 Stability ‘r -/ : ~
- Fn filter or_controller design, system stability is a
S 7

basic basic requirement. In this section, our main purpose

is to prove that the fllters designed in the/precedlng

/ \ >

section is stable for some small h. '\1
~

Define

I ’ -
- x:(k)=(I'Azz)
/

-1A2121(k)+ﬁ(k) . . | 5'42

In subseguent discussions, we use

e:(k)=x:(k)'x&ﬂk) ) - . 5~43

~-instead of 5(k)-7(k) since it is-more oonvenient. To find
A : ponvenie

the law which the estimation error-foiiows, we need_theg\
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following in terms of the estimation error.

Y(k+1)"‘C;i1‘Cz;)(k*‘i‘_)‘;[c;'CzAzz(I'Azz.)-.lﬁz'l131(]{) "_'

. CaAzze, (k) + O(h) 5-44 "

where Z:(k) is defined as

Xy (k+1)=(I+hA )X, (kT+ha, .5 (k) S 5-45
and %(k), n(k), and ,(k) are given -in eqg.{(5-13), (5-14),
and (5-40), respectively. 1In order to prove .stability of
the filter problém, we drop all noise terms as we éroéede
because they do not affect the stability of the over. all

problem. ‘ Then, the i errof//,gj(k)=xl(k)-x1 k) and

Y

e:(k)=X,(k)-%;(k) are governed by/

. Lo
e1(k+J)={I+h[311'K1C§+K1C2Azz(T“Azz) Az1J}ez(k)+

h[A;2-K,C2Az,]e, (k) o - 5-46
.éz(k+1)=[Az‘-K2C1+K2CZA,3(IéAzz)'1A,,]e,(k) +
(Azz_chzA-z‘z)ez'(k) . 'a’ . L . 53-_4-7

}

~

~
] - -\ R -
. . : -9 . - ’
Ez(k+1)=[(Azz-KzC€Az;’£(I'Azz) A;,-KZCHe,(‘k‘) *
. - . (Azz"ch:zAzz)Ez(k) . . ' - 5-48

= ‘ -

a

To ensure the stability, we apply the decomposjsion
technigque sincé eq.(5?46) and (5-48) are still in two

. - . a

¢ . .W
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t}me—scalewiorm. 1f the decompoéed sysfem is'staﬁle, the -
orzglnal system will -be stable for some small h . Sinéé the

matrlx (Azz'Kz 2Az2) is asymptotlcally stable, we can, in
* 4

" long term run, agproximate ez(k) by e;(k), where

82 (K)=[-(1-A22+K,C2hz2)  KaCl+(I-Az2) Az, Jes (k)

~

-~ 5~49
Substitute e, (k) "in eq.(§—46)_by Ez(k), we have
e; (k+1)y=(I+ha_)e, (k) 5-50
If we define ei(k)=e.(k)-e,(k), 'we have .
e'z(k%:(Azz‘KszAzz)eé(k) ;9 - " 5-

51.
- "

~ Due to the fact that matrix AA is asymptotﬁbally stable in
\:\- S tﬂe continﬁous{sense,and mafri# (Azz‘KzCzAzzB is. .
- aSymptotically stable in disclete sense, ?? have the
follow1ng theorem* ' . . _{j‘ e o lfg B
Theorem 2. 1f the pa1r(A C.) is deteciable in the
continous sense and the paxr(Azz,Cz) is detectable 1n the .
dﬁgprete sense, there exists a h such that for all 0<h<h

. thﬁpSlOW £11£er (5- 40) and the fast £11ter (5-]3) and (5-14)

are asymptotlcally stable. ' - - ) f;

_,{;7—-fj~<'
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5.5 Reduced order filtering of two time-scale systems .
-In the study of the linear filtering of two time sgale
systems we do not require matrix Aaa to be asymptotically
stable. In some practical applications, matrix Az:’ is.

-

'asymptotically.stable: in this case, the filter design can
be further simplified. In this type of system, ehe fast
subsystem converge much more quickly than the slow

subsystem. If matrix Az, is asymptotlcally stable, K:(k)

can be';eplaced, in 1on?/;erm run, by its quasi-steady state

< -1, - s =1 = '
x2=(I—A22) 1A2‘1.X1(k)+(I_A22) Wz(k-I)a,.. . ‘Y 5-52

. R
In this expression, we.u5e'Wz(k-1) instead of.Wzik)‘because .
that xz(f) doee not depend on ﬁz(k)‘at all. In the

‘continuous cese, we do not have this"

‘eq. (5-52) 1nto eq.(5- 1) and (5- 3) “we hav

filtering problem .

L

’ X1 (k+1}=€I+h[A1'1-‘"A‘12(I—AI22)-

o T ALIA) TRIk-TNE() . 5-53
. ' R ~ - S o
- E - Vs ) LT L '

. TE
y(k)=[c1+cz(IfA?fj_1]XT(k}+ﬁ S
N O S B A S SIPe 10 | 5~54"

-

o o o0 . " - .. .. . g -
Consequently, a zedu §§-9quf-ﬁ§1§er can be designed by

L A .
applying uncorrelating technigue and cqnside;ing'the
. ] _ .

'slowness' of the-slow:subsysth. By u51ng the e p§e551bn; 'gggA

*.

. (5-52), X, can be estimated. However t n not be. used.

-

=~ - .- L i A . . - " v
/ oL b - ’ S ' .o K

f:.fi
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to alternate the fast dynamics of the system since it only

reflects the slow part of the system.

5.6 Summary

In this chapter, we have studied linear filtering of
two time-scale discrete systems. The reguirement that the
fast subsystem be asymptotically stable has been relaxed.

-
-

T . b

N ‘\\

. .

ti



Chapter 6 . .
1 Conclusion

The contributions of this thesis have beer mainly
twéfoid. » .

First, two multirate controller desigﬁ techniques for
two time-scale systems are‘pfesented, 1)mpltir$te controller
design based on system decompositon in continuous-time *
domain in which systems considered are continuous, linear,
and two ;ime—scale;~systems are decomposed into a fast and a
slow subsytems; the fast subsysteh is discretized at a high
sampling rate and the slow subsytem is discretized at a low
sampling rate; and two controllers are independently
designed for the slow and fast subsystems, respectively; and
2)multirate controller design based on system decomposition
in the discrete time domain in which the system considered
is discrete, linear, two time-scale obtained by discretizing
the continuous system at the sampling rate which is
compatible with the fast time-scale: fasﬁ controller is
designéd at the fast time-scale; then a slow the system in
slow time-sca}e is obtained by system propogating and the.
slow controller is designed in the slow time-scale. The
second method is used to prove the stability of the control
systems. | -

Partial control for the fast subsystem is aiso
suggested. . .

Second, a technigue for designing lower ordegy filters

for discrete two time-scale systems is also investigated.

86
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Two lower diménsion filters are described for the systeg.
The stability of the filters is also proven. The siﬁbﬁiﬁr
perturbation ﬁethod used in treating tﬁe topics mehtioned
abbve is an approximation method. ﬁegradation exists in-.'
the'control sysé\m designed using the method given. Two
numerical examples are giveq_}o illustrate the method and
the degradation. It is shown that the degradatio;.is
tolerabie. The designer has to make his or her own choice
between thé degradation and computational capaqity
available. - _ ‘

In ghé'multirate control design,proposed by
Glasson{1880), a periodical Ricéatti equation has to be
solved, and in the multirate control design prSposed by
Amit (1980), equivalent single rate discrete system and cost
function have to be established, which is a tedious task to .
be performed in terms of programming. The methods proposed
in this thesis are relatively simpler. The drawback
howéver is the.requi;ement that the system should possess
two time-scale property. | --

Further research can be done on the stochastic contrgl
of two time-scale or multiple time scale systems,'to
deveelop a metho%/bhich does not require an asymptotically

stable fast sqbs&stem.
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