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Abstract

The main objective of this thesis is to study the behavior of black objects in

external fields, for example black holes and black strings in 4 and 5-dimensional

spacetimes respectively. In particular, to analyze how external fields affect hori-

zons and the internal structure of such objects, to study their properties, and to

understand how the spacetime fabric works.

The thesis contains three chapters. In Chapters 1 and 2 we study the interior

of 4-dimensional static, axisymmetric, electrically neutral and electrically charged

distorted black holes. We analyze how external static and axisymmetric distortions

affect the interior of such black holes. In particular, we study the behavior of the

interior solution of an electrically neutral black hole near its horizon and singularity.

The analysis shows that there exists a certain duality between the event horizon

and the singularity. As a special example, we study the interior of a compactified

4-dimensional Schwarzschild black hole. In the case of an electrically charged black

hole, a similar duality exists between its event and Cauchy horizons. The duality

implies that the Cauchy horizon remains regular, provided the distortion is regular

at the event horizon.

Extension of the general theory of relativity to higher dimensional spacetimes

brings a large variety of black objects whose boundary, the event horizon, may be

of a complicated structure. One such object is a black string. In Chapter 3 we

discuss the so-called Gregory-Laflamme instability of 5-dimensional black strings in

a spacetime with one compact dimension and their topological phase transitions.

Here we consider black strings with electric or magnetic charge. Linear static

perturbations of these objects indicate the presence of a threshold unstable mode.



An analysis of such mode shows that an electrically charged black string is less

stable than a neutral one. The situation is opposite for a magnetically charged

black string. An analysis of 5-dimensional extremal black string with electric

charge shows a continuous spectrum of unstable threshold modes.

The results presented in this thesis may have applications in the theory of

classical 4-dimensional black holes and in the modern theoretical models of higher

dimensions.



Preface

The physical objects we shall discuss in this thesis are black holes and black
strings. These objects are solutions of the Einstein theory of general relativity. We
shall discuss static black holes and black strings in asymptotically flat (or analyti-
cally extendable to asymptotically flat), predictable spacetimes. The characteristic
feature of such objects is their boundary, which is called the event horizon. Any
physical object, for example, a particle, which travels in the future direction outside
such a black object and crosses its event horizon cannot return back to the same
region of space. The black hole event horizon is a spatially compact null hyper-
surface. The event horizon of a black string is a null hyper-surface, which may
be not spatially compact. Here we consider two known types of black holes, the
Schwarzschild black hole, which is one-parameter solution of the vacuum Einstein
equations, and the Reissner-Nordström (RN) black hole, which is two-parameter
solution of the Einstein-Maxwell equations. The parameter of the Schwarzschild
black hole is its mass. The parameters of the RN black hole are its mass and
electric (or magnetic) charge. Black strings are higher dimensional black objects.
We shall discuss 5-dimensional black strings with electric or magnetic charge. The
objective of this thesis is to study such black holes and black strings distorted by
static external fields.

We begin with a 4-dimensional Schwarzschild black hole, which is the simplest
black-hole solution of the Einstein equations. This solution is vacuum, static,
spherically symmetric, and asymptotically flat. It is of Petrov type-D. The black
hole has a spacetime curvature singularity located behind its event horizon. The
singularity is spacelike and topologically R

1 × S2 (see, e.g., [51]). The interior of
the black hole represents an anisotropic universe collapsing towards the black hole
singularity.

The Schwarzschild black hole is stable against external gravitational perturba-
tions. The evolution of linear gravitational perturbations shows the presence of
quasi-normal modes in the black hole radiation spectrum. According to the Is-
rael uniqueness theorem, the Schwarzschild black hole is the only vacuum, static,
asymptotically flat solution which has a regular, simply connected event horizon
[77]. Such properties of the Schwarzschild black hole make it quite an interesting
object to study.

Recent astronomical observations and their analysis suggest that each galaxy,
including our Milky Way, may contain at its center a supermassive black hole
which strongly interacts with external matter (see, e.g., [28, 35]). To study proper-
ties of such a black hole, especially its interior structure, is a formidable problem.
At the beginning it is better to start with less complicated model. Namely, to
study how the interaction of the Schwarzschild black hole with external matter



and fields affects its properties. This question is important not only from astro-
physical point of view. Studying the interaction of black holes with surrounding
matter and fields allows us to understand deeper their thermodynamic behavior,
what is particularly important in connection with string theory. In addition, black
holes play an important role as backgrounds for quantum fields. Finally, analysis of
black hole solutions may let us understand some geometrical and causal properties
of spacetime within the scope of general relativity. However, due to the nonlinear
nature of the Einstein equations, study of black hole interactions is a very com-
plicated problem, which, in most cases, is tractable only numerically. To find an
exact, analytical solution which describes the interaction of the Schwarzschild black
hole with external objects seems to be possible only for highly symmetrical mod-
els. But even such idealized models allow us to draw some important conclusions
about properties the Schwarzschild black hole. One of such cases, representing
the Schwarzschild black hole distorted by static, axisymmetric gravitational fields
due to remote masses, we consider in Chapter 1 of the thesis. We study how such
type of distortion affects the Schwarzschild black hole interior. To do this, we ask
the following questions. Does the distortion change the topology of the singularity
of the Schwarzschild black hole? How does such a distortion affects the maximal
proper time of free fall from the event horizon to the singularity? Does the event
horizon of the distorted black hole have regions of high spacetime curvature, and
if so, what is their location? This question is important for study of the validity of
the semiclassical approximation which is used in the analysis of the Schwarzschild
black hole quantum evaporation. As it is well known, such an approximation leads
to the information paradox (see, e.g., [52, 103] and references therein). In addition,
a compactified Schwarzschild black hole can be considered as a topological phase
in the black string − black hole topological phase transition, which we discuss
in Chapter 3. Studying the analytical model of the 4-dimensional compactified
Schwarzschild black hole, which is a particular type of distorted black hole, one
can analyze whether the classical theory of general relativity can properly describe
the merger points of the topological phase transition, where the spacetime curva-
ture is extremely high. Finally, one can ask if there is any relation between the
distortion of the event horizon and the interior of the Schwarzschild black hole.
To address this question more clearly, we remind the reader that the interior of
the Schwarzschild black hole is a dynamical region; thus, a distortion of its event
horizon can be considered as initial Cauchy data for the corresponding dynamical
evolution. Chapter 1 of this thesis clarifies some of these questions.

In Chapter 2, we study the interior of a distorted 4-dimensional RN black hole.
The undistorted RN black hole is a static, spherically symmetric, asymptotically
flat solution of the Einstein-Maxwell equations. It has many properties similar to
those of the Schwarzschild black hole. Namely, it is of Petrov type-D. It radiates
the quasi-normal modes; however, they are always both gravitational and electro-



magnetic. The Israel uniqueness theorem for the Schwarzschild black hole admits
generalization to the RN black hole. Namely, the RN solution is the only static,
asymptotically flat solution to the Einstein-Maxwell equations, which has a regu-
lar, simply connected event horizon [78]. However, due to the presence of electric
charge, the interior of the RN black hole is remarkably different from that of the
Schwarzschild black hole. The principal difference is that the RN black hole has an
inner, Cauchy horizon, which is a null hyper-surface beyond which predictability
of evolution based on the past initial data breaks down. The RN black hole curva-
ture singularity located in its centre, behind the Cauchy horizon, is topologically
R

1 × S2 (see, e.g., [51]). However, in contrast to the Schwazschild black hole, this
singularity is timelike. The singularity can be avoided by timelike and null curves.
A maximal analytic extension of the RN spacetime, which makes it geodesically
complete, results in an infinite sequence of new universes which may be explored
by adventurers who succeeded in crossing the Cauchy horizon (see Figure 2.1).
However, crossing the Cauchy horizon causes its perturbations and, as a result, is
fraught with danger. An analysis of the Cauchy horizon stability against gravita-
tional perturbations, in particular, the mass inflation phenomenon, suggests that
the spacetime curvature grows infinitely near a perturbed Cauchy horizon [107].
Thus, it is important to understand what types of perturbations, if any, preserve
the regular Cauchy horizon. For example, does the Cauchy horizon of the RN black
hole distorted by certain external axisymmetric fields remain regular? This is the
main question among others we address here. In Chapter 2, we discuss the interior
region of such a distorted RN black hole which is located between its event and
Cauchy horizons. We ask the following questions. Is there any relation between
the distortion of the event and Cauchy horizons of the RN black hole? How much
does the distortion affect the maximal proper time of free fall from the event to
the Cauchy horizon of the RN black hole? Do the horizons have regions of high
spacetime curvature, and if so, what is their location? Answers to these questions,
which we present in Chapter 2 of the thesis, may help us understand physical prop-
erties of the RN black hole, which is very similar in its internal structure to the
rotating (Kerr) black hole which is a more realistic candidate for an astrophysical
black hole than the Schwarzschild one is.

In Chapter 3, we discuss black strings which are solutions of higher dimensional
theory of general relativity. Consideration of higher dimensions has at least two
reasons. One is mathematical. We want to understand deeper the mathematical
structure of general relativity. In other words, we want to understand, using the
language of general relativity, how the spacetime fabric works. Another reason
originates from attempts to solve the hierarchy problem, which is a hot issue of
modern theoretical physics. In attempts to resolve the hierarchy problem, modern
theoretical models suggest that our world may have large extra spatial dimensions
(see, e.g., [6, 8]). If such a suggestion is true, we may have an interesting possibility



of mini black hole production in the future LHC experiments.
In a higher dimensional spacetime a large variety of topologically different black

objects may exist, for example black holes, black rings, black branes and black
strings (for a review see, e.g., [66]). So the rich variety of higher dimensional black
objects makes their study especially interesting. Black branes and black strings are
low energy solutions of string theory. Infinitely long black branes and black strings
are unstable against small gravitational perturbations. The classical instability
of black branes and black strings, the so-called Gregory-Laflamme instability, is
analogous to the Jeans instability of gravitating systems. In addition, there is an
interesting relation between the gravitational instability of black branes and black
strings and the off-shell instability of the corresponding Euclidean black holes,
known as gravitational instantons.

Here we consider a black string in a 5-dimensional spacetime which has one large
compact spatial dimension. A spacelike cross section of such a black string horizon
has topology S2 × S1. In contrast, a spacelike cross section of the corresponding
compactified 5-dimensional black hole horizon has the topology of a 3-dimensional
hyper-sphere, S3. As we mentioned before, the black string and black hole can
be considered as different topological phases of a topological phase transition di-
agram. Black strings, as well as black holes, are thermodynamic systems, which
have temperature and entropy. Using a global thermodynamic argument, one can
show that for a fixed asymptotic size of the compact dimension there is a critical
value of mass of a neutral black string below which such a string becomes thermo-
dynamically unstable, and may likely undergo a topological phase transition to the
corresponding compactified black hole. Such thermodynamic instability is closely
related to gravitational instability of the black string.

In Chapter 3 of the thesis, we shall study a black string with electric charge,
which is a solution of 5-dimensional Einstein-Maxwell equations. We consider
linear, static gravitational perturbations and search for a threshold unstable mode.
We are interested how the presence of an electric charge affects the black string
stability. This is the main question we address here. Such a problem was already
considered for black strings with magnetic charge and with, or without, dilaton
field. As it was illustrated, magnetic charge tends to stabilize black string. Thus, it
is important to understand the role of black string parameters in its thermodynamic
and dynamic properties. Here we study dynamic and thermodynamic properties
of a 5-dimensional electrically charged black string and compare our results with
the properties of a 5-dimensional magnetically charged black string. In addition,
we consider an extremal 5-dimensional black string with electric charge and study
its linear, static gravitational perturbations.

This thesis is organized as follows.
In Chapter 1, we discuss a 4-dimensional distorted Schwarzschild black hole.

In Section 1.3 we discuss the Weyl solution representing a distorted Schwarzschild



black hole and focus on its interior region. In Section 1.4 we discuss properties of
the distorted black hole solution and establish duality relations between the black
hole horizon and singularity. In Section 1.5, we discuss how the black hole distor-
tion affects the maximal proper time of free fall of a test particle moving along
the axis of symmetry from the horizon to the singularity. An asymptotic form
of metric near the black hole horizon and singularity is obtained in Section 1.6
and Section 1.7 respectively. Special examples of exact solutions and their prop-
erties are considered in Section 1.8. In Section 1.9, we consider properties of the
interior and singularity of 4-dimensional compactified black holes. Section 1.10
contains a summary and discussions of our results. Additional technical details
and calculations used in this chapter are collected in Appendixes A, B, C and D.

In Chapter 2 we consider a 4-dimensional distorted electrically charged black
hole. Section 2.3 of this chapter collects the results concerning the charged dis-
torted black hole solution generated by the Harrison-Ernst transformation. We
present these results mainly in order to fix the notations which we use in the main
part of this chapter. In Section 2.4, we establish special duality relations between
properties of the outer (event) and the inner (Cauchy) horizons of the charged
distorted black hole. In Sections 2.5 and 2.6, we study the Gaussian curvature
of the horizon surfaces and present their isometric embedding diagrams. In Sec-
tion 2.7, we discuss how the black hole distortion affects the maximal proper time
of free fall of a test particle moving along the axis of symmetry from the outer to
the inner horizon. In Section 2.8, we establish a relation between the spacetime
curvature invariants near the black hole horizons and their Gaussian 2-dimensional
curvatures. We summarize and discuss our results in Section 2.9. Necessary details
are included in Appendix E.

In Chapter 3 we discuss the Gregory-Laflamme instability of a 5-dimensional
black string with electric charge. In Section 3.2, we present the metric of the
5-dimensional electric black string and discuss its properties. In Section 3.3, we
consider the static S-wave perturbation of the charged string and derive the cor-
responding master equation. In Section 3.4, we integrate numerically the master
equation and construct the critical curve in the topological phase transition dia-
gram. In Section 3.5, we derive a similar curve using the global thermodynamic
equilibrium argument. In Section 3.6 we study the static S-wave perturbations
of the 5-dimensional extremal electric black string. In Section 3.7, we discuss and
compare the phase diagrams for the electric and magnetic black strings. Section 3.8
contains a discussion of our results.

A summary of the results derived and future perspectives are presented in the
Conclusion.

The results presented in this doctoral thesis were obtained during the course of
the author’s Ph.D. program at the University of Alberta between September 2005



and August 2009. The thesis is based on the following published papers in peer
reviewed journals:

1. Interior of distorted black holes,
Valeri P. Frolov and Andrey A. Shoom, Phys. Rev. D 76, 064037
(2007); arXiv: 0705.1570.

2. Interior of a charged distorted black hole,
Shohreh Abdolrahimi, Valeri P. Frolov, and Andrey A. Shoom,
Phys. Rev. D 80, 024011 (2009); arXiv: 0905.0178.

3. Gregory-Laflamme instability of 5D electrically charged black strings,
Valeri P. Frolov and Andrey A. Shoom, Phys. Rev. D 79, 104002
(2009) arXiv: 0903.2893.



Acknowledgements

I am very much grateful to my supervisor, Professor Valeri P. Frolov, from
whom I learnt much more than I could imagine, for his inspiration and encourage-
ment, for fruitful discussions and advices, and for his constant support during my
Ph.D. program. It has been a great privilege to be his student and to work with
such a True Master. I am very much thankful to Professor Don N. Page for his
humanity, for his enthusiasm to discuss physics and many other things, for his ad-
vice and encouragement, and for his illuminating and lucid explanations of delicate
strands of physics. I am very happy that I had an opportunity to communicate
with a person of such intellect and knowledge, that is always a very enjoyable and
fascinating journey of mind. I would like to thank Professor Richard Marchand for
his kindness and enthusiasm to discuss interesting aspects of physics. It has been
a very enjoyable time to be his student and to learn form him many interesting
details of statistical physics. My cordial thanks to Professor Sharon Morsink for
introducing to me basic physics of neutron stars, and to Professor Dmitri Pogosyan
for his interesting lectures on Cosmic Microwave Background radiation.

Last but not least, I thank to the members of the Theoretical Physics Insti-
tute, as well as to my colleagues, teachers, and friends, Shohreh Abdolrahimi,
Massimo Boninsegni, Patrick Connell, Long Dinh Dang, Dan Gorbonos, Ritu-
parno Goswami, Stepan Grinyok, Werner Israel, Faqir Khanna, Burkhard Kleihaus,
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List of Symbols and

Abbreviations

Here, we present some symbols and notations, and give definitions which are used
in the thesis. Other notations and definitions are explained in the text.

Abbreviations

The abbreviation const is used for ‘constant’. The capital D is used for ‘dimen-
sional’, e.g., 4D should be read as 4-dimensional. The number of dimensions is
denoted by D, if arbitrary. The gravitational constant in a spacetime of arbitrary
dimensions is denoted as G(D). In particular, in 4D spacetime the gravitational
constant is denoted as G(4), which we write as G.

Units

The following units convention is used in this thesis: c = ~ = kB = 1. In Chapters
1 and 2, we take G = 1, and in Chapter 3 we take, for convenience, 16πG = 1.
Here, the fundamental constants are [4]:

the gravitational constant: G = 6.67428(67)× 10−11 kg−1m3 s−2

the speed of light in vacuum: c = 299792458 ms−1

the reduced Planck constant: ~ = 1.054571628(53)× 10−34 kg m2 s−1

the Boltzmann constant: kB = 1.3806504(24)× 10−23 kg m2 s−2K−1

The Planck distance is

lP l =
√

~G/c3 = 1.616253× 10−35 m.

The Planck time is

τP l =
√

~G/c5 = 5.391241× 10−44 s.



Symbols and sign conventions

The signature of the spacetime metric gαβ is: (− + + · · ·+), i.e., it is +(D − 2).
The time coordinate index is 0: t ≡ x0.
Balance of indices and the Einstein summation convention are assumed.
The following special symbols are used:

∼ order of magnitude estimate

≈ approximately equal

≡ identity

i =
√
−1 imaginary unit, if it sits on the baseline

a→ b a goes to b

a←→ b a goes to b, or b goes to a

f |x=a value of f = f(x) evaluated at x = a

|a| absolute value of a

Re {a} real part of a

∧ wedge product

v ·w scalar product of vectors v and w

T αβ = diag(T 00, ...) represents a geometrical object T αβ,

whose off-diagonal components are zeros

⌊x⌋ the floor function of x, which is the largest integer

not greater than x

Γ(x) the Gamma function

δ(x) the Dirac delta function

H(x) =

{
1, x > 0

0, x < 0
the Heaviside step function

Basic definitions

Components of geometrical objects are defined with respect to a coordinate basis,

e.g., T β1β2···
α1α2··· . In a local orthonormal frame these components are T β̂1β̂2···

α̂1α̂2··· .
Antisymmetrization of indices of a tensor T β1···βm

α1···αn
is defined by square brackets

as follows:

T β1···βm

[α1···αn] =
1

n!

(
alternating sum of T β1···βm

α1···αn
over all permutations of αi’s

)
.



The Kronecker symbol δ β
α is

δ β
α = δβα =

{
1, if α = β

0, otherwise.

The partial derivative with respect to coordinate xα is defined by comma in front
of subscript α as follows:

f,α ≡
∂f

∂xα
, f,αβ ≡

∂2f

∂xα∂xβ
, etc.

The Lie derivative of a tensor T with respect to a vector field v is defined as
follows:

(LvT ) β1β2···
α1α2··· = vγT β1β2···

α1α2··· ,γ − T γβ2···
α1α2··· vβ1

,γ − T β1γ···
α1α2··· vβ2

,γ − · · ·
+ T β1β2···

γα2··· vγ,α1
+ T β1β2···

α1γ··· vγ,α2
+ · · · .

The covariant derivative of a tensor T β1···βm
α1···αn

is defined by the symbol nabla,

∇γT
β1···βm

α1···αn
= T β1···βm

α1···αn ,γ + Γβ1

δγT
δ···βm

α1···αn
+ · · ·+ Γβm

δγT
β1···δ

α1···αn

− Γδα1γT
β1···βm

δ···αn
− · · · − ΓδαnγT

β1···βm

α1···δ .

Here, the Christoffel symbols Γαβγ are

Γαβγ =
1

2
gαδ(gδβ,γ + gγδ,β − gβγ,δ) .

The main conventions for geometrical objects are these adopted in [94]. Namely,
the Riemann tensor is

Rα
βγδ = Γαβδ,γ − Γαβγ,δ + ΓασγΓ

σ
βδ − ΓασδΓ

σ
βγ .

The Ricci tensor is defined by Rαβ = Rγ
αγβ. The Ricci scalar is R = gαβRαβ = Rα

α .
The Einstein equations are (G(D) = 1)

Gαβ = Rαβ −
1

2
gαβR = 8π Tαβ ,

or

Rαβ = 8π

(
Tαβ −

1

D − 2
gαβT

)
, T = gαβTαβ .



Here, the energy-momentum tensor Tαβ is defined by

Tαβ = − 2√−g

(
δ(
√−gΛm)

δgαβ
−
[
δ(
√−gΛm)

δ(gαβ,γ)

]

,γ

)
,

where Λm is the Lagrangian density of matter. For our purposes it is sufficient to
consider the energy-momentum tensor whose components in a local orthonormal
frame are given by

T α̂β̂ = diag(ε , pi) , i = 1, ..., D − 1 ,

where ε is the energy density, and pi’s are the (D − 1) principal pressures. Here,
we define the following energy conditions.
The null energy condition is that for any null vector nα, Tαβn

αnβ > 0, i.e.,

ε+ pi > 0 , for any i.

The weak energy condition is that for any timelike vector kα, Tαβk
αkβ > 0, i.e.,

ε > 0 , and ε+ pi > 0 , for any i.

The weak energy condition implies the null energy condition.
The strong energy condition is that for any timelike vector kα, Tαβk

αkβ >
T

D−2
kαkα,

i.e.,

ε+ pi > 0 , and ε+
1

D − 3

D−1∑

i=1

pi > 0 , for any i.

The strong energy condition implies the null energy condition. It does not, in
general, imply the weak energy condition.
The dominant energy condition is that for any timelike vector kα, Tαβk

αkβ > 0,
and Tαβk

β is not spacelike, i.e.,

ε > 0 , and pi ∈ [−ε, ε] , for any i.

The dominant energy condition implies the weak and the null energy conditions.
It does not, in general, imply the strong energy condition.

The corresponding averaged energy conditions can be defined by integrating
the null energy condition along a null curve, and by integrating the weak and the
strong energy conditions along a timelike curve (for details see, e.g., [120]).



The Weyl tensor is given by

Cαβγδ = Rαβγδ −
2

D − 2

(
gα[γRδ]β − gβ[γRδ]α

)
+

2

(D − 1)(D − 2)
Rgα[γgδ]β .

The Kretschmann scalar is

K = RαβγδR
αβγδ = CαβγδC

αβγδ +
4

D − 2
RαβR

αβ − 2

(D − 1)(D − 2)
R2 .
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Chapter 1

4D distorted Schwarzschild black

hole

1.1 Introduction

The uniqueness theorem proved by Israel [77] tells us that the only static vacuum
black hole solution of the Einstein equations in an asymptotically flat spacetime
is the Schwarzschild one. In the application to a real astrophysical problem this
solution, even in the absence of rotation, is highly idealized. For instance, the
presence of matter, e.g., in the form of accretion disk, distorts the metric. If a static
distribution of matter is localized outside the black hole horizon, the spacetime in
the vicinity of the horizon remains vacuum. We call such a solution a distorted

black hole. The metric near the horizon of a general (not necessary axisymmetric)
static distorted black hole was studied in [44].

If the distribution of matter outside a black hole is axisymmetric, the metric
of the distorted black hole allows a detailed description. The reason is that the
vacuum metric outside the matter is the Weyl solution. This metric contains two
functions of two variables. One of these functions, which has the meaning of the
gravitational potential, obeys the linear Laplace equation in a flat 3D space, while
the other can be obtained from it by a simple integration. Axially symmetric
distorted black holes were studied in several publications (see, e.g., [22, 34, 50,
79, 80, 99, 106]). Such axially symmetric distorted black holes arise naturally in
the models were one of the (large) spatial dimensions is compactified. For the
general discussion of such solutions in higher dimensions see, e.g., [67, 97]. In 4D
spacetime, such compactified black hole solutions admit the Weyl form of metric.
The properties of 4D compactified black holes were studied in [11, 40].

In the previous studies of distorted black holes the attention has mainly been
focused on the properties of the black hole exterior. However, any distribution of
matter in the black hole exterior region distorts the metric not only outside the
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black hole, but also in its interior. Our purpose is to study this effect. Namely, we
consider the interior of an axially symmetric distorted black hole. In particular, we
study the structure of the spacetime in the vicinity of the black hole singularity.
We start with an analysis of a general axially symmetric solution which is static
outside the black hole and has a regular horizon. The external metric is determined
by the solution of the 3D flat Laplace equation for the corresponding gravitational
potential. The latter can be uniquely characterized by its multipole moments. We
demonstrate that these multipole moments determine both the shape of the horizon
of the distorted black hole and the spacetime structure near its singularity. As a
special example, we consider an application of the obtained results to the case
of the compactified black hole. For such a black hole the distortion multipole
moments are fixed by the regularity condition of the compactified spacetime, and
they depend only on the ratio of the black hole size to the size of the compactified
dimension. We discuss the internal structure of compactified black holes. The
main results presented here were published in [45].

1.2 Schwarzschild spacetime

We begin with a short review of the Schwarzschild spacetime (an excellent de-
scription can be found, e.g., in [22, 43, 72, 94]). The Schwarzschild solution is given
by

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θ dφ2) . (1.1)

It is the static, asymptotically flat, spherically symmetric solution of the vacuum
Einstein equations, which has one parameter, M . For r > 2M this solution repre-
sents spacetime outside a spherically symmetric distribution of electrically neutral
matter which has zero net angular momentum. For large values of the coordinate
r the gravitational field of the matter becomes weak and can be compared with
its Newtonian description. The comparison shows that the parameter M > 0 is
the gravitational mass of the matter. For r > 2M the coordinate t is timelike; it
measures proper time of observers resting at asymptotic infinity (r → +∞). The
coordinate r is a measure of the surface area 4πr2 of spacelike 2D surfaces defined
by r = const > 2M . According to the Birkhoff theorem, the Schwarzschild solution
is unique: any spherically symmetric solution of the vacuum Einstein equations is
locally isometric to the Schwarzschild solution. Algebraically, the Schwarzschild
solution is of Petrov type-D, i.e., the Schwazschild spacetime has two double prin-
cipal null directions: the only non-zero Weyl scalar is Ψ2 = −Mr−3.

If the matter of mass M has collapsed within the surface r = 2M , which is
called the Schwarzschild sphere, then a closed trapped spacelike 2D surface S
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forms in the region r < 2M surrounding the matter. By definition, ingoing and
outgoing null geodesics orthogonal to S always converge at S . This is the result
of a gravitational pull, which is so strong that even outgoing light rays are dragged
backward. As far as the matter cannot travel faster than light, it will eventually
contract to a smaller and smaller volume. The existence of a closed trapped surface
implies that the spacetime singularity forms in the region r < 2M (see, e.g., [72]).
The final stage of the collapse is the Schwarzschild black hole described by the
metric (1.1), where

t ∈ (−∞,∞) , r ∈ (0,∞) , θ ∈ [0, π] , φ ∈ [0, 2π). (1.2)

This metric is singular at r = 0 and at r = 2M . It has additional trivial coordinate
singularities at θ = 0 and θ = π. Calculation of the spacetime invariant, the
Kretschmann scalar,

KSch = RαβγδR
αβγδ =

48M2

r6
, (1.3)

shows that the singularity at r = 0 is true spacetime singularity. An analysis of
the metric and null geodesics near the singularity shows that this singularity is
spacelike and topologically R

1 × S2 (see, e.g., [51]). The singularity at r = 2M
is just a coordinate singularity: the spacetime invariant (1.3) does not diverge
there. This singularity indicates that the Schwarzschild coordinates (1.2) do not
cover the whole the spacetime manifold: there are two disconnected regions de-
fined by r ∈ (0, 2M) and r ∈ (2M,+∞). Using different coordinates one can
present the Schwarzschild metric in a form which is not singular at r = 2M . In
other words, one can extend, by an appropriate choice of coordinates, the exterior
Schwarzschild manifold r ∈ (2M,+∞) beyond the Schwarzschild sphere r = 2M .
One of such well established, maximal, time symmetric extension is given by the
Kruskal-Szekeres coordinates (see, e.g., [94]),

u ∈ (−∞,∞) , v ∈ (−∞,∞) , θ ∈ [0, π] , φ ∈ [0, 2π), (1.4)

where

for r > 2M

{
u = ±

(
r

2M
− 1
)1/2

er/4M cosh
(

t
4M

)

v = ±
(

r
2M
− 1
)1/2

er/4M sinh
(

t
4M

)
,

(1.5)

for r < 2M

{
u = ±

(
1− r

2M

)1/2
er/4M sinh

(
t

4M

)

v = ±
(
1− r

2M

)1/2
er/4M cosh

(
t

4M

)
.

(1.6)
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The Schwarzschild metric (1.1) in these coordinates reads

ds2 = −32M3

r
e−r/2M (−dv2 + du2) + r2(dθ2 + sin2 θ dφ2) , (1.7)

where r = r(u, v) is defined by

( r

2M
− 1
)
er/2M = u2 − v2. (1.8)

Obviously, the metric (1.7) is regular at r = 2M . The spacetime singularity r = 0
is defined in the Kruskal-Szekeres coordinates by v2 − u2 = 1. In fact, there are
two singularities defined by

v = +(1 + u2)1/2 , v = −(1 + u2)1/2. (1.9)

This is the result of the maximal analytic extension of the Schwarzschild spacetime
manifold, which is achieved by the choice of the Kruskal-Szekeres coordinates,
which give the ‘complete picture’. The original, Schwarzschild coordinates (1.1)
cover only part of the extended manifold, and, as a result, reveal only one spacetime
singularity at r = 0.

To demonstrate the causal structure of the Schwarzschild spacetime (1.7) we
apply the conformal transformations

v + u = tan

(
T + R

2

)
, v − u = tan

(
T −R

2

)
, (1.10)

which map the spacetime (1.7), (1.4) into the corresponding Carter-Penrose con-
formal diagram, which is illustrated in Figure 1.1. The spacetime singularities are
presented by the segments

T = ±π
2
, R ∈

(
−π

2
,
π

2

)
. (1.11)

This diagram demonstrates causal connections between the different regions, hori-
zons, infinities and singularities of the Schwarzschild spacetime (1.7). Here, the
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following Penrose definitions are used:

I− is past timelike infinity corresponding to t→ −∞ and finite r,

I+ is future timelike infinity corresponding to t→ +∞ and finite r,

I0 is spacelike infinity corresponding to r → +∞ and finite t,

I
− is past null infinity corresponding to t− r → −∞ and finite t+ r,

I
+ is future null infinity corresponding to t+ r → +∞ and finite t− r.

(1.12)

The regions I and I ′ are asymptotically flat. They represent two distinct but

Figure 1.1: Carter-Penrose conformal diagram of the Schwarzschild spacetime.
Each point in the diagram, except for the six vertices, represents a 2D sphere (θ, φ)
defined by (T ,R) = const. Radial null geodesics are the lines T ±R = const.

identical universes, each of which is located on one side of the Einstein-Rosen
bridge, which evolves so rapidly that no null rays can pass through it [94]. Thus,
these universes are causally disconnected.

Region II is the Schwarzschild black hole interior. It represents an anisotropic
collapsing universe of infinite spatial volume, which expands in the spatial t di-
rection and contracts in the θ and φ directions. Each point in this region in the
diagram represents a closed 2D trapped surface. The radial coordinate r is time
like in this region. Thus, the propagation in the black hole interior towards its
singularity is time evolution. Particles moving along causal lines and entering the
black hole interior can never escape outside, as they can never move backward in
time.

Region II ′ is region II with the reversed direction of time. This region is the
interior of the white hole. It represents an expanding anisotropic universe, which
can never be entered from the outside by causal particles. Particles moving inside
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of the region inevitably escape with the flow of time. Each point in this region
represents a reversed-in-time closed 2D trapped surface. Thus, all particles in
region II ′ came in fact out from the singularity in their past.

The Schwarzschild spacetime cannot be mathematically extended beyond the
spacetime singularity (1.9), for the singularity does not belong to the spacetime
manifold. In the language of general relativity, a spacetime singularity is the
region where physical laws break down. It is common to reckon that the classical
description of spacetime in the regions of a very high (Planck) curvature, where
K ∼ l−4

P l , is invalid, and should be replaced with a quantum one.
In the following sections we shall discuss the Schwarzschild black hole distorted

by external, static, axisymmetric gravitational fields. We shall study how such
distortions affect the black hole interior.

1.3 Metric of a distorted black hole

The Israel uniqueness theorem [77] states: among all static, asymptotically flat vac-

uum spacetimes with closed, simply connected equipotential surfaces ξ2
(t) = const,

where ξ(t) = ∂t is a timelike, surface-orthogonal Killing vector, the Schwarzschild

solution is the only one which has a regular event horizon ξ2
(t) = 0.

Here we shall study how a Schwarzschild black hole is modified by the presence
of static, axisymmetric external distribution of matter. There are two possible
ways how to consider sources of such external matter. The first way is to include
the sources into the Einstein equations; then the corresponding spacetime will not
be vacuum. The second way is to move the sources to asymptotic infinity; then
the corresponding spacetime will not be asymptotically flat. In both the cases the
Israel uniqueness theorem is not applicable, and the corresponding black hole may
have a regular horizon and differ from the Schwarzschild one. Here we consider
the second way and study the spacetime at the vicinity of the black hole horizon.
Such a solution is called a local black hole, which was studied in [50]. Our goal
is to study the interior of such a local black hole. Following [50] we present the
metric of a local black hole in the Weyl form

ds2 = −e2Udt2 + e−2U
[
e2V (dρ2 + dz2) + ρ2dφ2

]
, (1.13)

where U = U(ρ, z), V = V (ρ, z), and the coordinate ranges are

t ∈ (−∞,∞) , ρ ∈ (0,∞) , z ∈ (−∞,∞) , φ ∈ [0, 2π). (1.14)

The Weyl spacetime has two commuting, orthogonal, surface-orthogonal Killing
vectors: ξ(t) = ∂t, which is timelike, and ξ(φ) = ∂φ, which is rotational and space-
like. In a general case, static, axisymmetric vacuum solutions can be written in
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the Weyl form (for details see [50]).
In principle, there might exist two types of local black holes which horizon

surface is sphere or torus [50]. According to results by Hawking [71], the surface
topology of a stationary 4D black hole must be a two-sphere, provided the dominant
energy condition is satisfied. In addition, black holes with toroidal horizon surface
violate topological censorship [37]. According to the theorem by Jacobson and
Venkataramani [81], a black hole event horizon topology must be a two-sphere
if it is stable for a long time and the averaged null energy condition is satisfied.
Numerical simulations of formation of a temporarily toroidal horizon support this
point of view [2, 76, 113]. Here, we shall consider only stable, spherical black holes.

To begin with, let us present the Schwarzschild metric (1.1) in the Weyl form.
Matching the metrics (1.1) and (1.13), we derive for r > 2M :

US(r, θ) =
1

2
ln

(
1− 2M

r

)
, VS(r, θ) = −1

2
ln

(
1 +

M2 sin2 θ

r(r − 2M)

)
. (1.15)

The relation between the Schwarzschild (1.2) and Weyl (1.14) coordinates is

ρ =
√
r(r − 2M) sin θ , z = (r −M) cos θ , r > 2M. (1.16)

Using the following transformation:

r = M +
1

2
(l+ + l−) , l± =

√
ρ2 + (z ±M)2, (1.17)

we derive

US(ρ, z) =
1

2
ln

(
l+ + l− − 2M

l+ + l− + 2M

)
, VS(ρ, z) =

1

2
ln

(
(l+ + l−)2 − 4M2

4l+l−

)
. (1.18)

Thus, the external region of the Schwarzschild black hole can be presented in the
Weyl form.

So far, the Weyl form does not appear very suitable for a description of the
Schwarzschild spacetime, for it covers only its exterior region. However, power-
ful properties of the the Weyl form are manifested in the corresponding vacuum
Einstein equations

U,ρρ +
1

ρ
U,ρ + U,zz = 0, (1.19)

V,ρ = ρ(U2
,ρ − U2

,z) , V,z = 2ρU,ρU,z. (1.20)

Here, Eq. (1.19) for the U metric function is the Laplace equation associated with
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the 3D flat metric
dl2 = dρ2 + dz2 + ρ2dφ2, (1.21)

and it is the integrability condition for the other two Einstein equations (1.20).
Once the solution U is known, V can be determined by simple quadratures. The
Laplace equation for the potential U does not, in fact, correspond to the Newtonian
limit, and it can be considered as a Euclidean map of the corresponding nonlinear
equations.

An analysis of the Schwarzschild solution in the Weyl form shows that US
corresponds in Newtonian theory to gravitational potential of an infinitesimally
thin rod of length 2M and the uniform mass density 1/2 which is located in a
fictitious flat 3D space. The location of the rod in Weyl coordinates is given by
ρ = 0, and z ∈ [−M,M ]. The rod corresponds to the Schwarzschild black hole
horizon. One can use the Poisson equation corresponding to the Laplace equation
(1.19) with the source due to the rod, and apply the method of Green’s function
to construct

US(ρ, z) =
1

2
ln

(
l+ −M − z
l− +M − z

)
. (1.22)

This is another representation of the Schwarzschild solution US which is equiv-
alent to (1.18). Such a construction seems to violate spherical symmetry of the
Schwarzschild solution. However, taking the appropriate Newtonian limit of US,
one can see that US leads to the Newtonian potential of a spherically symmetric
mass distribution (see, e.g., [110] and [30], p. 65-84).

We shall study the interior of a distorted Schwarzschild black hole. To do
this, we have to consider the inner region r ∈ (0, 2M) of the Schwarzschild black
hole. However, this region in the Weyl coordinates corresponds to an imaginary ρ
coordinate, and contains an additional coordinate singularities. Thus, an analytical
continuation in (ρ, z, φ) coordinates is not suitable for us. Instead of (ρ, z, φ)
coordinates we can use prolate spheroidal coordinates (η, θ, φ) related to the Weyl
canonical coordinates in the following way (see, e.g., [126]):

ρ = M
√
η2 − 1 sin θ , z = Mη cos θ, (1.23)

where
η ∈ [1,∞) , θ ∈ [0, π], (1.24)

and M is the mass of the Schwarzschild black hole, which defines location of focal
points of the prolate spheroidal coordinates. Thus,

dρ2 + dz2 = M2(η2 − cos2 θ)[(η2 − 1)−1dη2 + dθ2]. (1.25)

The spherical Schwarzschild coordinates (r, θ, φ) are related to the prolate spheroidal
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coordinates (η, θ, φ) as follows:

r = M(η + 1) , θ = θ , φ = φ. (1.26)

Using (1.23)-(1.25), we write the Weyl metric (1.13) representing the Schwarzschild
black hole in the following form:

ds2 = −e2USdt2+M2e−2US

[
e2VS(η2 − cos2 θ)

[
dη2

η2 − 1
+ dθ2

]
+ (η2 − 1) sin2 θ dφ2

]
,

(1.27)
where

US =
1

2
ln

(
η − 1

η + 1

)
, VS =

1

2
ln

(
η2 − 1

η2 − cos2 θ

)
. (1.28)

The vacuum Einstein equations (1.19), (1.20) in the prolate spheroidal coordi-
nates take the following form:

(η2 − 1)U,ηη + 2η U,η + U,θθ + cot θ U,θ = 0, (1.29)

V,η = N
(
η [(η2 − 1)U2

,η − U2
,θ] + 2(η2 − 1) cot θ U,ηU,θ

)
, (1.30)

V,θ = N
(
cot θ [U2

,θ − (η2 − 1)U2
,η] + 2η U,ηU,θ

)
. (1.31)

Here, N = sin2 θ(η2 − cos2 θ)−1. According to [50] the Schwarzschild black hole
distorted by external sources is defined by

U = US + Û , V = VS + V̂ , (1.32)

where Û and V̂ are the distortion fields. The corresponding metric representing an
axisymmetric Schwarzschid black hole distorted by an external, static gravitational
field is

ds2 = −η − 1

η + 1
e2Ûdt2 +M2(η+1)2e−2Û

[
e2V̂

(
dη2

η2 − 1
+ dθ2

)
+ sin2 θ dφ2

]
. (1.33)

Because of linearity of the Laplace equation for U , the distortion field Û solves
the same equation

(η2 − 1)Û,ηη + 2η Û,η + Û,θθ + cot θ Û,θ = 0. (1.34)
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The equation for V̂ can be derived using Eqs. (1.30), (1.31) and (1.28),

V̂,η = N
(
η[(η2 − 1)Û2

,η − Û2
,θ] + 2(η2 − 1) cot θÛ,ηÛ,θ + 2ηÛ,η + 2 cot θÛ,θ

)
,

(1.35)

V̂,θ = N(η2 − 1)
(
cot θ[Û2

,θ − (η2 − 1)Û2
,η − 2Û,η] + 2ηÛ,θ[Û,η + (η2 − 1)−1]

)
.

(1.36)

In what follows, we shall study properties of this metric, focusing on the distorted
Schwarzschild black hole interior.

The black hole horizon H is defined by

H : η = 1 , θ ∈ [0, π]. (1.37)

Following [50] and [22] in order to guarantee regularity of the distorted black hole
horizon we choose Û to be finite and smooth in the vicinity and on the horizon
H. Thus, we have to find a regular solution to Eq. (1.34). This equation allows a
separation of variables Û(η, θ) = F̂ (η)S(θ), which gives

S,θθ + cot θ S,θ + λS = 0 , (1.38)

(η2 − 1)F̂,ηη + 2ηF̂,η − λF̂ = 0, (1.39)

where λ ∈ R
1 is the separation constant. Since the polar points θ = 0, π are

regular, the function S(θ) must be finite at these points. The solutions of this
eigenvalue problem are the following:

λ = n(n + 1) , S(θ;n) = Pn(cos θ) , n = 0, 1, . . . , (1.40)

where Pn(cos θ)’s are the Legendre polynomials of the first kind (see, e.g., [3], p.
331). Expanding Û over the complete set of the Legendre polynomials Pn(cos θ),
we derive

Û(η, θ) =
∑

n>0

F̂n(η)Pn(cos θ) . (1.41)

Since at the horizon surface Û must be finite and regular, one must omit solutions
of Eq. (1.39) that are infinitely growing at η = 1. Thus, we obtain the following
regular solution for Û :

Û(η, θ) =
∑

n>0

anPn(η)Pn(cos θ), (1.42)

where an are the expansion coefficients, which we call the Weyl multipole moments.



CHAPTER 1. 4D DISTORTED SCHWARZSCHILD BLACK HOLE 11

For a given value of Û on the black hole horizon H, the Weyl multipole moments
are defined by

an =
2n+ 1

2

∫ π

0

dθ sin θ Û(η, θ)|η=1Pn(cos θ) . (1.43)

Equation (1.39) has another class of solutions represented in terms of the Leg-
endre polynomials of the second kind (see, e.g., [3], p. 331). However, this class
of solutions diverges at η = 1, and hence, does not represent a regular horizon. A
particular type of such solutions representing the exterior gravitational field of a
static deformed mass with axial symmetry was considered in [110] and, in a differ-
ent form, in [90]. Here we consider the distortions of the type given by Eq. (1.42).
It is convenient to present the solution (1.42) in a different form, which allows to
derive a solution to equations (1.35) and (1.36) in a closed form,

Û =
∑

n>0

cnR
nPn (η cos θ/R) , R = (η2 − sin2 θ)1/2. (1.44)

The coefficients cn’s define the distortion field Û . We shall call these coefficients the
Weyl multipole moments, or briefly, the multipole moments. The relation between
the Weyl multipole moments an’s and cn’s is given in Appendix A. The relation
of the Weyl multipole moments to their relativistic analogues was discussed in
[118] for the Schwarzschild black hole distorted by an external field. The general
formalism, which includes both the Thorne [119] and the Geroch-Hansen (see [48,
49, 65, 110]) relativistic multipole moments is presented in [117]. For a relation
between the Thorne [119] and the Geroch-Hansen relativistic multipole moments
see [10, 61].

The solution to Eqs. (1.35), (1.36) for Û given by expression (1.44) was pre-
sented in [15],

V̂ = V̂1 + V̂2, (1.45)

V̂1 =
∑

n>1

cn

n−1∑

l=0

[
cos θ − η − (−1)n−l(η + cos θ)

]
RlPl (η cos θ/R) , (1.46)

V̂2 =
∑

n,k>1

nkcnck
n+k

Rn+k [Pn (η cos θ/R)Pk (η cos θ/R)

−Pn−1 (η cos θ/R)Pk−1 (η cos θ/R)] . (1.47)

Here V̂1 is linear and V̂2 is quadratic in the cn’s.
Expressions (1.44)-(1.47) guarantee that the distortion fields Û and V̂ are

smooth and finite at the horizon. Geroch and Hartle [50] demonstrated that if
Û is a regular smooth function in any small open neighborhood of the horizon H
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(including H) determined by expression (1.37), which takes the same values, u0,
on both ends of the segment (1.37),

Û(η = 1, θ = 0) = Û(η = 1, θ = π) = u0, (1.48)

then the solution is regular at the horizon, and describes a distorted black hole.
This is the black hole equilibrium condition. We can rewrite this condition in terms
of the multipole moments. Using Eq. (1.44) and the property of the Legendre
polynomials,

Pn(±1) = (±1)n, (1.49)

we present the equilibrium condition in the following form:

∑

n>0

c2n+1 = 0, (1.50)

and one has
u0 =

∑

n>0

cn =
∑

n>0

c2n . (1.51)

If the distortion source obeys the strong energy condition, u0 has to be non-positive
[50]. Thus, a static, axisymmetric, distorted black hole is at equilibrium if the sum
of the coefficients of the odd multipole moments of the distortion field Û vanishes.
The black hole equilibrium conditions (1.50) and (1.51) can be presented in terms
of an Weyl multipole moments as follows (for details see Appendix A):

∑

k>0

a2n+1 = 0 , u0 =
∑

n>0

an =
∑

n>0

a2n . (1.52)

The equilibrium condition implies local flatness (absence of conical singularities)
along the symmetry axis of the black hole. Namely,

V̂ (η, θ)|θ=0 = V̂ (η, θ)|θ=π = 0. (1.53)

Because the metric (1.33) is regular at the distorted black hole horizon η = 1,
we can do analytical continuation of the metric and consider the values η < 1.
One can check by calculating spacetime invariants that the spacetime (1.33) has a
spacelike singularity at η = −1. Thus, the distorted black hole interior corresponds
to η ∈ (−1, 1).

Let us emphasize that Eq. (1.34) for the distortion field Û in the interior region
η ∈ (−1, 1) is of the hyperbolic type, in accordance with the general property
of black holes. Namely, the direction to the singularity in the interior region is
the direction to the future, and the evolution of the metric in this region obeys
dynamical equations.
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In what follows, we consider the dimensionless form of the metric dS2, related
to the metric ds2, [see Eq.(1.33)],

ds2 =
M

κ0
dS2 , κ0 =

e2u0

4M
, (1.54)

where κ0 is the surface gravity of the distorted Schwarzschild black hole. For the
dimensionless metric dS2 we define

T = κ0t , U = Û − u0 . (1.55)

One can write the metric dS2 in the form

dS2 = −4
η − 1

η + 1
e2UdT 2+

1

4
(η+1)2e−2U

[
e2V̂

(
dη2

η2 − 1
+ dθ2

)
+ sin2 θ dφ2

]
. (1.56)

In the next section, we shall study the metric (1.56) and its properties. In order
to obtain the corresponding characteristics of the ‘physical’ solution (1.33), it is
sufficient to use the scaling transformations (1.55).

1.4 Duality relations between the horizon and

the singularity

In this section, we describe special symmetry relations between the Schwarzschild
black hole horizon and its singularity. As we already mentioned in the previous
section, the spacetime (1.56) has two Killing vectors corresponding to the T and
φ coordinates, ξ(T ) and ξ(φ). Thus, the essential part of the spacetime geometry
is confined to the (η, θ) plane. The metric on this plane is defined by (1.56) for
T = const and φ = const,

dΣ2
+ =

1

4
(η + 1)2e−2U

[
e2V̂

(
dη2

η2 − 1
+ dθ2

)]
. (1.57)

To study the geometry of this plane it is customary to define

η = cosψ , ψ ∈ (0, π), (1.58)

for η ∈ (−1, 1) corresponding to the black hole interior. The metric (1.57) takes
the following form:

dΣ2
+ =

1

4
(1 + cosψ)2e−2U+2V̂

[
−dψ2 + dθ2

]
. (1.59)
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Figure 1.2: Carter-Penrose conformal diagram for the Schwarzschild black hole
interior, the (ψ, θ) sector. The arrows illustrate propagation of three future di-
rected null rays. Points A and B connected by one of such rays are symmetric
with respect to the central point C(π/2, π/2).

Thus, ψ is a timelike coordinate. The Carter-Penrose conformal diagram presented
in Figure 1.2 illustrates the geometry of the Schwarzschild black hole interior. The
lines ψ ± θ = const are null rays propagating within the 2D plane (ψ, θ) defined
by (T, φ) = const section of the 4D Schwarzschild spacetime (1.56). Three of such
rays are illustrated in Figure 1.2 by the arrows. For example, one of the rays
starts at point A on the horizon H, goes through the ‘south’ pole at θ = π, and
terminates at point B, at the singularity. Note, that this diagram is different from
the usual Carter-Penrose diagram for the radial sector (t, r) of the Schwarzschild
black hole (see Figure 1.1).

Consider a transformation RC representing the reflection of coordinates (ψ, θ)
with respect to the ‘central point’ C in the black hole interior region

RC : (ψ, θ)→ (π − ψ, π − θ). (1.60)

This transformation determines a map R∗
C between functions defined in the interior

region and on its boundaries

f ∗ = R∗
C(f) , f ∗(ψ, θ) = f(π − ψ, π − θ) . (1.61)
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Using expressions (1.44)-(1.47) we obtain

U∗(ψ, θ) ≡ U(π − ψ, π − θ) = U(ψ, θ), (1.62)

V̂ ∗
1 (ψ, θ) ≡ V̂1(π − ψ, π − θ) = −V̂1(ψ, θ) , (1.63)

V̂ ∗
2 (ψ, θ) ≡ V̂2(π − ψ, π − θ) = V̂2(ψ, θ) . (1.64)

It is easy to see that coordinates of the points A and B are related by the
reflection RC . Thus, the transformation RC determines a map between functions
on the horizon and on the singularity. Now we demonstrate that for the distortion
fields U and V̂ this is a symmetry transformation. In other words, the values of
U and V̂ on the singularity, ψ = π, are determined by their values on the horizon,
ψ = 0.

Using Eqs. (1.62), (1.44), and the properties of the Legendre polynomials (1.49)
we derive

U(π, π − θ) = U(0, θ) =
∑

n>0

cn cosn θ − u0. (1.65)

Expressions (1.44)-(1.47) and (1.49) give

V̂1(ψ, θ)|ψ=0 = −(1− cos θ)
∑

n>1

cn

n−1∑

l=0

cosl θ

− (1 + cos θ)
∑

n>1

(−1)ncn

n−1∑

l=0

(− cos θ)l = 2U(0, θ), (1.66)

V̂2(ψ, θ)|ψ=0 = 0. (1.67)

Thus, using Eqs. (1.63) and (1.64) we have

V̂ (π, π − θ) = −V̂ (0, θ) = −2U(0, θ). (1.68)

The above expressions (1.65) and (1.68) allow one to establish special symmetry
relations between the horizon and the singularity. We call the relations (1.65),
(1.68) the duality relations.

Let us denote
u±(θ) =

∑

n>0

(±1)ncn cosn θ − u0. (1.69)

As we shall see below, this function defines boundary values of the distortion fields.
It is easy to check that

u±(θ) = u∓(π − θ) , u±(0) = u±(π) = 0. (1.70)
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Expression (1.70) implies that the functions u+(θ) and u−(θ) transform into each
other under reflection with respect to the point θ = π/2. This transformation
property is directly related to the properties of the distortion field U . Namely,
using Eqs. (1.65), (1.69), (1.70) and (1.44), we derive the following boundary

values of U [see Figure 1.3]:

U(ψ, θ)|ψ=0 = u+(θ), U(ψ, θ)|ψ=π = u−(θ), (1.71)

U(ψ, θ)|θ=0 = u+(ψ), U(ψ, θ)|θ=π = u−(ψ). (1.72)

Figure 1.3: Boundary values of U for the interior of the distorted black hole. The
dashed line, ψ = 0, is the horizon, and the dotted line, ψ = π, is the singularity.

Analogously, using Eqs. (1.68), (1.71), (1.70) and (1.53) we derive the boundary

values of V̂ [see Figure 1.4]

V̂ (ψ, θ)|ψ=0 = 2u+(θ), V̂ (ψ, θ)|ψ=π = −2u−(θ), (1.73)

V̂ (ψ, θ)|θ=0 = 0, V̂ (ψ, θ)|θ=π = 0. (1.74)

The boundary values of the distortion fields U and V̂ define symmetry properties
of the metrics on the black hole horizon and at the singularity. Thus, the distortion
fields calculated at the singularity are expressed through those calculated on the
horizon. This fact greatly simplifies the study of the spacetime structure near the
singularity. We return to this point in Section 1.7.
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Figure 1.4: Boundary values of V̂ for the interior of the distorted black hole. The
dashed line, ψ = 0, is the horizon, and the dotted line, ψ = π, is the singularity.

Using expression (1.42) one can present expression (1.69) in the following way:

u±(θ) =
∑

n>0

(±1)nanPn(cos θ)− u0. (1.75)

Obviously, all the relations presented in this section hold for (1.42). We shall use
both the presentations of Û throughout this thesis. Referring to Appendix A helps
to switch from one representation to another.

1.5 Free fall from the horizon to the singularity

It is interesting to check how distortion of the Schwarzschild black hole affects
proper time of free fall from the black hole horizon to its singularity. In the case
of undistorted Schwarzschild black hole of mass M , the maximal proper time is
πM (see, e.g., [94], p. 836). Let us consider, for example, motion of a test particle
of zero angular momentum which moves from the horizon to the singularity of the
distorted black hole along its symmetry axis. The dimensionless proper time of
this free fall calculated for the dimensionless metric (1.56), with the aid of Eqs.
(1.53) and (1.72) is given by

τ±(E) =
1

2

∫ π

0

dψ
(1 + cosψ)(1− cosψ)1/2e−u±(ψ)

[1− cosψ + E2(1 + cos θ)e−2u±(ψ)−2u0 ]
1/2

. (1.76)
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Here, ± signs are for θ = 0 and θ = π axes respectively, and E is the energy of the
test particle,

E = 2
η − 1

η + 1
e2u±(ψ)+u0

dT

dτ±
. (1.77)

The maximal proper time corresponds to E = 0. Thus, we derive

τ± = τ±(0) =
1

2

∫ π

0

dψ(1 + cosψ)e−u±(ψ). (1.78)

The dimensional proper time is 2Me−u0τ± [see Eq. (1.54)].
To illustrate how distortion of the black hole affects this time, we consider two

simple examples. As the first example, we consider the quadrupole distortion when
only a0 and a2 do not vanish. Taking into account that a0 = u0−a2 [see Eq. (1.52)]
one has

u±(ψ) = −3

2
a2 sin2 ψ . (1.79)

The integral (1.78) can be evaluated analytically,

τ± =
π

2
e3a2/4I0(3a2/4) , (1.80)

where I0(z) is the modified Bessel function (see, e.g., [3], p. 374). The plot of τ±
as a function of the quadrupole moment a2 is shown in Figure 1.5(a).

As the second example we consider the octupole distortion when only a1 and
a3 do not vanish. Because of the condition (1.52) one has a1 = −a3, and

u±(ψ) = ∓5

2
a3 cosψ sin2 ψ . (1.81)

To obtain τ± we used numerical integration. The plot of τ+ as a function of the
octupole moment a3 is shown in Figure 1.5(b).

1.6 Near horizon geometry

1.6.1 Shape of a distorted horizon

The form of the horizon surface for the metric (1.56) and the boundary values
(1.71) and (1.73) is determined by the following line element (see also [50]):

dσ2
+ = e2u+dθ2 + e−2u+ sin2 θ dφ2. (1.82)

Here, and in what follows u± ≡ u±(θ). This metric is obtained from the metric
(1.56) as the limit η → 1, (or ψ → 0), of the metric on the 2D section T = const,
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(a) (b)

Figure 1.5: (a): Quadrupole distortion: the proper time, τ±, as a function of the
quadrupole moment a2. (b) Octupole distortion: the proper time, τ+, as a function
of the octupole moment a3. The minimal value of τ+min ≈ 1.35 corresponds to
a3min ≈ −0.917. The similar plot for τ− can be obtained by the reflection a3 →
−a3. The dimensionless proper time for the Schwarzschild black hole is τ± = π/2 ≈
1.57.

ψ = const. The dimensionless horizon area is equal to 4π.
A natural measure of intrinsic curvature of a 2D surface is its Gaussian curva-

ture K. Gaussian curvature of a horizon surface was studied by several authors
(see, e.g., [38, 89, 114, 122, 123]). The Gaussian curvature of the metric dσ2

+ is
K+ = R/2, where R is the Ricci scalar curvature. It is given by the following
expression:

K+ = e−2u+
(
1 + u+,θθ + 3 cot θu+,θ − 2u2

+,θ

)
. (1.83)

As special examples, we consider the quadrupole and octupole distortions with
functions u+ given by (1.79) and (1.81), respectively. The Gaussian curvature for
these distortions is

K+ = e3a2 sin2 θ
[
1 + 3a2(1− 5 cos2 θ)− 18a2

2 cos2 θ sin2 θ
]
, (1.84)

K+ =
1

2
e5a3 cos θ sin2 θ

[
2− 10a3 cos θ(9 cos2 θ − 5)− 25a2

3 sin2 θ(1− 3 cos2 θ)2
]
,

(1.85)
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(a) (b)

Figure 1.6: Shape of the horizon surface of the distorted black hole. The embedding
diagram for the horizon surface can be obtained by rotation of the curves on the
plots around the vertical axis. The left plot (a) shows the rotation curves for the
quadrupole distortion of a2 = 1/12, line (1) and a2 = −1/12, line (2). The right
plot (b) shows the rotation curves for the octupole distortion of a1 = −a3 = 1/20,
line (1) and a1 = −a3 = 1/6, line (2). The region embedded into pseudo-Euclidean
space is illustrated in plot (b) by the dotted line. The rotation curves for positive
octupole moments a3 can be obtained by the reflection of the rotational curves in
plot (b) with respect to the horizontal axis at 0.0. The dashed lines in both the
plots are round circles of radius 1 corresponding to the Schwarzschild black hole.

respectively. For the quadrupole distortion the Gaussian curvature becomes neg-
ative at both of the poles, θ = 0 and θ = π, for a2 > 1/12. Similarly, for the
octupole distortion, the Gaussian curvature becomes negative at one of the poles
for |a3| > 1/20. It means that for these values of the multipole moments the
horizon surface of the distorted black hole cannot be isometrically embedded into
a flat 3D space as a surface of revolution (see, e.g., [38] and references therein).
For a2 6 1/12 (in the quadrupole case) and |a3| 6 1/20 (in the octupole case)
isometric embedding may be possible.

To construct the embedding we consider an axisymmetric 2D surface which is
parametrized as follows:

ρ = ρ(θ) , z = z(θ). (1.86)

Let us embed this surface into a flat 3D space with the metric in cylindrical coor-
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dinates (z, ρ, φ):
dl2 = ǫdz2 + dρ2 + ρ2dφ2, (1.87)

where for Euclidean space ǫ = 1, and for pseudo-Euclidean space ǫ = −1. Note,
that an axisymmetric 2D surface cannot be isometrically embedded into a 3D
Euclidean space as a surface of revolution if its Gaussian curvature is negative at
the vicinity of a fixed point of rotation [38]. However, a failure of the embedding
does not generally imply that Gaussian curvature of the surface is negative. The
geometry induced on the surface (1.86) is given by

dl2 = (ǫz2
,θ + ρ2

,θ)dθ
2 + ρ2dφ2. (1.88)

Matching the metrics (1.82) and (1.88) we derive the following embedding map:

ρ = e−u+ sin θ , z =

∫ π/2

θ

Z dθ, (1.89)

Z2 = ǫe2u+ [1− e−4u+(cos θ − u+,θ sin θ)2]. (1.90)

From Eq. (1.90) we see that if the expression in the square brackets is negative,
an isometric embedding into 3D Euclidean space as a surface of revolution is not
possible, and we should take ǫ = −1. The embedding diagrams of the distorted
event horizon surface for the quadrupole and octupole distortions are illustrated in
Figure 1.6. Note that the change in sign from ‘+’ to ‘−’ of the quadrupole moment
corresponds to a deformation of the rotational curve from oblate to prolate and
vice versa. The change in sign of the octupole moment corresponds to an overturn
of the rotational curve preserving its shape.

1.6.2 Kretschmann invariant

The Gaussian curvature discussed in the previous subsection characterizes the
shape of the 2D surface of the distorted horizon. In this subsection we study the
4D curvature of the spacetime near the distorted horizon. We demonstrate that
the 4D curvature is greater at the points where the horizon surface is sharper.

The components of the curvature tensor depend on the coordinate choice.
Hence, to characterize the strength of the curvature one needs to consider cur-
vature invariants. The simplest one is the Kretschmann scalar K = RαβγδR

αβγδ.
We demonstrate that there is a simple relation between the Kretschmann invariant
and the Gaussian curvature at the surface of the distorted black hole.

The function u+(θ), which specifies the geometry of the horizon surface, uniquely
determines the geometry of the black hole interior. In particular, one can obtain
expansion of U and V̂ at the vicinity of the horizon (see Appendix B). The first
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two terms of this expansion in the powers of ψ are

U = u+ −
1

4
u

(2)
+ ψ2 + . . . , (1.91)

V̂ = 2u+ −
1

2
(u

(2)
+ − u2

+,θ + 2 cot θu+,θ)ψ
2 + . . . (1.92)

Here and later we use the dots ‘. . .’ for the omitted terms of higher order in ψ. We
also defined

u
(2)
± =

∑

n≥0

(±1)nann(n + 1)Pn(cos θ) . (1.93)

In this approximation the metric near the black hole horizon reads

dS2
+ = A+dT

2 +B+(dθ2 − dψ2) + C+dφ
2 , (1.94)

where

A+ =
1

6
ψ2e2u+ [6− (3u

(2)
+ − 1)ψ2 + . . .] , (1.95)

B+ =
1

2
e2u+ [2− (u

(2)
+ + 4 cot θu+,θ − 2u2

+,θ + 1)ψ2 + . . .] , (1.96)

C+ =
1

2
e−2u+ sin2 θ[2 + (u

(2)
+ − 1)ψ2 + . . .]. (1.97)

This expansion, for example, can be used to determine the value of the Kretschmann
scalar K = RαβγδR

αβγδ at the horizon surface. Using Eqs. (1.94)-(1.97) we derive

K+ = 12e−4u+
(
1 + u+,θθ + 3 cot θu+,θ − 2u2

+,θ

)2
. (1.98)

For the Schwarzschild black hole KSch,+ = 12. Figure 1.7 illustrates the ratio,
k = K+/KSch,+, of the Kretschmann scalars of the distorted and Schwarzschild
black holes.

Comparing expression (1.98) with expression (1.83), one arrives at the following
relation valid on the horizon surface of a distorted black hole:

K+ = 12K2
+ . (1.99)

This relation is valid not only for the axisymmetric case but also for an arbitrary
static distorted black hole (see Appendix E, Eqs. (E.41), (E.1), for the electrically
neutral case). The metric of distorted Schwarzschild black hole is of Petrov type-I.
It is possible to show that this metric is of Petrov type-D both on the horizon and
on the axis of azimuthal symmetry [104].
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(a) (b)

Figure 1.7: Ratio k = K+/KSch,+ of the Kretschmann scalar K+ on the horizon of
the distorted black hole to its undistorted value KSch,+. Curves in plot (a) show
k for the quadrupole distortion of a2 = 1/12, line (1) and a2 = −1/12, line (2).
Similar curves in plot (b) show k for the octupole distortion of a1 = −a3 = 1/20,
line (1) and a1 = −a3 = 1/6, line (2). The dashed horizontal lines at k = 1
correspond to the Schwarzschild black hole.

1.7 Spacetime near the singularity of a distorted

black hole

1.7.1 Asymptotic form of the metric

Because of the symmetry property (1.62), the asymptotic form of U near the
singularity ψ = π can be easily obtained from its asymptotic expansion near the
horizon ψ = 0. If the expansion of U , [so Û , see (1.55)], is known, expansion of V̂
can be found, for example, by simple integration of Eqs. (1.35), (1.36), or directly,
by expansion of V̂ given by Eqs. (1.45)-(1.47). The expansions for U and V̂ near
the singularity are given in Appendix B. Using these expansions one can obtain
the asymptotic form of the metric (1.56) at the singularity, ψ− = π − ψ → 0,

dS2
− = A−dT

2 +B−(dθ2 − dψ2
−) + C−dφ

2 , (1.100)
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where

A− =
8e2u−

3ψ2
−

[6 + (3u−,θθ + 3 cot θu−,θ − 1)ψ2
− . . .] , (1.101)

B− =
e−6u−

96
ψ4
−[6− (9u−,θθ − 3 cot θu−,θ − 6(u−,θ)

2 + 1)ψ2
− + . . .] ,(1.102)

C− =
e−2u−

96
sin2 θψ4

−[6− (3u−,θθ + 3 cot θu−,θ + 1)ψ2
− . . .] . (1.103)

Expressions (1.100)-(1.103) are sufficient to calculate the Kretschmann scalar near
the singularity up to the second order in ψ− corrections,

K− =
12 · 212 e12u−

ψ12
−

[1 + K̃(2)
− ψ2

− + . . .] , (1.104)

K̃(2)
− =

1

2
[1 + 3u−,θθ − 6(u−,θ)

2 − 3 cot θu−,θ] . (1.105)

Higher order terms can be obtained by using the relations given in Appendix B. In
the absence of distortion, when u− = 0, the Kretschmann scalar does not depend
on θ,

KSch,−
=

49152

ψ12
−

. (1.106)

This is the value of K− for the Schwarzschild geometry. Using the results of [104]
it can be shown that the metric of a distorted black hole is of Petrov type-D at
the singularity.

1.7.2 Stretched singularity

For the Schwarzschild geometry the metric near the singularity,

dS2
− ≈ −

1

16
ψ4
−dψ

2
− +

16

ψ2
−
dT 2 +

ψ4
−

16
dω2 , (1.107)

can be written in the form

dS2
− ≈ −dτ 2 +

16

(12τ)2/3
dT 2 +

(12τ)4/3

16
dω2 . (1.108)

Here, τ = −ψ3
−/12 is the maximal proper time of a free fall to the singularity

along the geodesic T, θ, φ = const. The quantity τ is negative, and it reaches 0
at the singularity. The metric (1.108) has the Kasner-like behavior with indices
(−1/3, 2/3, 2/3) (see, e.g., [115], p. 197). It describes a collapsing anisotropic
universe that shrinks in the angular, θ and φ, directions and expands in the T



CHAPTER 1. 4D DISTORTED SCHWARZSCHILD BLACK HOLE 25

direction.
The Kretschmann invariant as a function of the maximal proper time has the

following asymptotic form:

KSch,−
≈ 64

27τ 4
. (1.109)

This relation shows that the surface of constant KSch,−
is, at the same time, a

surface of constant τ .
Spacetime in the region where the curvature is of order of the Planck curvature

requires quantum gravity for its description. For the Schwarzschild geometry at
the surface where KSch,−

∼ l−4
P l the proper time τ is of order of the Planck time τP l.

Since one cannot rely on the classical description in this domain, it is natural to
cut the region where the curvature is higher than the Planck one and to consider
its boundary as the stretched or physical singularity. For the Schwarzschild metric
the stretched singularity hypersurface has the topology R

1 × S2. Its metric is a
direct sum of the metric of a round two-sphere and a line.

What happens to the stretched singularity when the metric of the black hole
is distorted? To answer this question, we use the asymptotic form of the metric
near the singularity, Eq. (1.100). Let us consider a timelike geodesic lying in the
‘plane’ T = const, φ = const. We call such a geodesic ‘radial’. It can be shown
(see Appendix C) that a ‘radial’ geodesic is uniquely determined by the limiting
value θ0 of its angular parameter θ at which it crosses the singularity. Denote by
τ the proper time along the ‘radial’ geodesic to its end point at the singularity. In
coordinates (τ, θ0) the metric dS2

− is given by (1.108) where dω2 is replaced by

dσ2
− = e−2u−dθ2 + e2u− sin2 θ dφ2 . (1.110)

We can use (τ, θ0) as new coordinates in the vicinity of the singularity. Expressions
(C.14) and (C.15) relate these ‘new’ coordinates with the ‘old’ ones (ψ−, θ). The
Kretschmann scalar (1.104) in the ‘new’ coordinates reads

K− =
64

27τ 4
[1 +K(2)

− τ 2/3 +O(τ 4/3)] , (1.111)

K(2)
− =

1

2
(12)2/3e2u−(θ0)[1 + 3u−,θ0θ0 − 6(u−,θ0)

2 − 3 cot θu−,θ0] . (1.112)

The expansion (1.111) coincides in the leading order with expression (1.109).
Hence, in the presence of distortion, surfaces of equal K are again (in the leading
order) surfaces of constant τ .
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1.7.3 Shape of equicurvature surfaces

Let Σ− be a surface where the Kretschmann scalar has constant value K− = Kc.
In the vicinity of the singularity (in the leading order in ψ−) ψ− and θ on Σ− are
related as follows [see Appendix C, Eq. (C.14) and Eq. (1.111)]:

ψ− = κ−e
u− , κ− = (49152/Kc)1/12 , (1.113)

and one has the relation ψ−,θ = ψ−u−,θ.
Let us now consider the induced geometry on Σ−. Using the relation (1.113),

one can conclude that the dψ2
− term in (1.100) gives quadratic in ψ− corrections

only. Neglecting all such terms in (1.100), we obtain the following expression for
the leading asymptotic for the induced metric dl2− on Σ−:

dl2− ≈
16

κ2
−
dT 2 +

κ4
−

16
dσ2

− , (1.114)

where dσ2
− is given by (1.110). The surface Σ− has the same topology R

1 × S2 as
in the absence of distortion, but its geometry is different. This difference manifests
itself in the shape of T = const 2D surfaces. The information about the shape is
encoded in the 2D metric dσ2

−. The total dimensionless area of the surface is 4π.
The metric (1.110) can be obtained from the horizon metric dσ2

+, (1.82), by the
transformation

u+ → −u−. (1.115)

This transformation implies the following duality relations between the horizon
and the singularity [see Eq. (1.75)]:

a2n ←→ −a2n , a2n+1 ←→ a2n+1. (1.116)

Analogous relations hold for the cn’s Weyl multipole moments (see Appendix A).
The embedding diagrams for the metric (1.110) are those with opposite value of
the quadrupole moment a2 and with the same value of a3 [see Figure 1.6(a) and
Figure 1.6(b), respectively].

1.8 Exact solutions: quadrupole and octupole

distortions

In this section we consider the distorted Schwarzschild spacetime for quadrupole
and octupole distortions. We truncate expressions (1.44)-(1.47) at the octupole
approximation and using Appendix A, Eq. (A.24), rewrite the result in terms of
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an’s. The distortion field U has the following form:

U = −3

2
a2P3/2 −

5

2
a3 cosψ cos θP5/2, (1.117)

where
Pq = sin2 ψ + sin2 θ − q sin2 ψ sin2 θ. (1.118)

The corresponding distortion field V̂ is

(a) (b)

Figure 1.8: Contour lines of K for the quadrupole distortion of a2 = 1/12 (a) and
a2 = −1/12 (b). The horizontal line x = 1 represents the event horizon.

V̂ =
1

2
sin2 θ (sin2 ψ [a2

2V22 + 2a2a3V23 + a2
3V33]

− 6a2 cosψ + 5a3 cos θ [1− 3 cos2 ψ]) , (1.119)

where

V22 = 9[1− P9/8] , V23 =
15

2
cosψ cos θ[2− 3P3/2] , (1.120)

V33 =
25

4
[4− 12P39/24 − 18P2

2 + 27P2
11/6] . (1.121)

The exterior metric for a black hole distorted by a quadrupole field was derived in
[29].

Using the GRTENSORII package we calculated the Kretschmann scalar K for
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(a) (b)

Figure 1.9: Contour lines of K for the octupole distortion of a1 = −a3 = 1/20 (a)
and a1 = −a3 = 1/6 (b). The horizontal line x = 1 represents the event horizon.

this distortion. We did the calculations for both the interior and the exterior
regions of the distorted Schwazschild black hole. Figures 1.8 and 1.9 illustrate
the contour lines of K for the quadrupole and octupole distortions in the prolate
spheroidal coordinates (x = η , y = cos θ), respectively. The spacetime singularity
corresponds to x = −1.

1.9 Compactified Schwarzschild black hole

In this section we apply the obtained results to the special case of the Schwarzschild
black hole in Kaluza-Klein spacetime, a compactified Schwarzschild black hole.
Such a black hole is a solution of the vacuum Einstein equations for a spacetime
where one (or more) spatial dimension(s) is compactified. The Schwarzschild black
hole in 4D spacetime with one compact spatial coordinate was discussed in [40]
(see also [11, 97]). As a result of compactification, the event horizon of the black
hole is distorted. The metric is axisymmetric and is a special case of the Weyl
solution. Such a black hole is schematically illustrated in Figure 1.10.

Here we review the construction of the compactified Schwarzschild black hole
presented in [40]. As it was mentioned in Section 1.3, the metric function US of
the Schwarzschild black hole of mass M corresponds to gravitational potential of
an infinitesimally thin rod of the length 2M and the uniform mass density 1/2.
Thus, the metric function UC of a compactified Schwarzschild black hole of mass
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Figure 1.10: Compactified Schwarzschild black hole of mass M located in Kaluza-
Klein spacetime of compactification radius ℓ. The corresponding covering space
representing a sequence of Schwarzschild black holes situated along the Z-axis is
shown above.

M corresponds to gravitational potential of an infinite sequence of infinitesimally
thin rods, each of the length 2M and the uniform mass density 1/2, which are
situated along Z axis 2πℓ coordinate distance apart in the corresponding covering
space (see Figure 1.10). Thus, the metric function UC solves the following Poisson
equation, which corresponds to the Laplace equation (1.19):

U,ρρ +
1

ρ
U,ρ + U,zz = 4πh(ρ, z) . (1.122)

Here, h(ρ, z) is the source function which is, according to our construction, periodic
in z and has the following form:

h(ρ, z) =
δ(ρ)

4πρ

∞∑

n=−∞
[H(z + µ− 2πn)−H(z − µ− 2πn)] , (1.123)

where H(x) is the Heaviside step function (see List of Symbols and Abbreviations).
Here, and in what follows, the coordinates ρ and z are measured in units of ℓ, and
µ = M/ℓ, where 0 < µ < π. To find a solution to Eqs. (1.122), (1.123) we can use
either the method of Green’s function, or Fourier’s method. Both the methods are
discussed in [40]. Here we apply Fourier’s method, which gives a solution in more
convenient form.

The source function h(ρ, z) in the covering space can be easily mapped to the
corresponding compactified space by identification of points on z axis which differ
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by period 2π. Expansion of h(ρ, z) in Fourier series reads

h(ρ, z) =
δ(ρ)

4πρ

[
µ

π
+

∞∑

n=1

2

nπ
sin(nµ) cos(nz)

]
. (1.124)

We shall look for a solution U to Eq. (1.122) in the following form:

U(ρ, z) = U0(ρ) +

∞∑

n=1

Un(ρ) cos(nz). (1.125)

Substitution of expressions (1.124), (1.125) into (1.122) gives the following equa-
tions for the radial functions Un(ρ)’s:

U0,ρρ +
1

ρ
U0,ρ =

µ

π

δ(ρ)

ρ
, (1.126)

Un,ρρ +
1

ρ
Un,ρ − n2Un =

2

nπ
sin(nµ)

δ(ρ)

ρ
. (1.127)

To find particular solutions to the equations, which correspond to the source func-
tion h(ρ, z), we apply the method of variation of parameters (see, e.g., [83], p. 493).
The fundamental set of solutions of the corresponding homogeneous equations and
their Wronskians are given by

W [ln |ρ|, 1] = −1

ρ
, (1.128)

W [I0(nρ), K0(nρ)] = −1

ρ
, (1.129)

respectively. Here, I0(nρ) and K0(nρ) are the modified Bessel functions (see, e.g.,
[3], p. 374). The method of variation of parameters gives

U0(ρ) =
µ

π

∫
dρ
H(ρ)

ρ
, (1.130)

Un(ρ) =
2

nπ
sin(nµ)

[
H(ρ)K0(nρ)(I0(nρ)− 1)− I0(nρ)

∫
dρH(ρ)

dK0(nρ)

dρ

]
.

(1.131)

For our coordinate range [see Eq. (1.14)] the Heaviside step function H(ρ) is equal
to 1, and the solutions above simplify to

U0(ρ) =
µ

π
ln ρ , Un(ρ) = − 2

nπ
sin(nµ)K0(nρ). (1.132)
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Thus, we derive

UC(ρ, z) =
µ

π
ln ρ−

∞∑

n=1

2

nπ
sin(nµ)K0(nρ) cos(nz). (1.133)

We are interested in behavior of this function near the black hole horizon, which
is defined by [cf. Eq. (1.37)]

H : ρ = 0 , z ∈ [−µ, µ]. (1.134)

We consider the expansion of the UC function near the horizon. For ρ≪ 1 we have

K0(nρ) ≈ − ln
(nρ

2

)
− γ, (1.135)

where γ = 0.57721566... is the Euler-Mascheroni constant (see, e.g., [3], p. 379).
Substituting Eq. (1.135) into Eq. (1.133) we derive

UC(ρ, z) ≈ ln
(ρ

2

)
+γ+

µ

π
(ln 2−γ)+ 1

π

∞∑

n=1

lnn

n
[sin(n[µ+z])+sin(n[µ−z])], (1.136)

where z ∈ [−µ, µ]. To evaluate the sum in Eq. (1.136) we use the following relation
(see equation 5.5.1.24 in [109]):

∞∑

n=1

ln(na)

n
sin(nx) =

1

2
(x−π)

[
γ − ln

( a
2π

)]
+
π

2
ln

∣∣∣∣
1

π
sin
(x

2

)
Γ2
( x

2π

)∣∣∣∣ , (1.137)

where x ∈ (0, 2π). Thus, we derive

UC(ρ, z) ≈ ln
( ρ

4π

)
+
µ

π
ln(4π) +

1

2
ln

(
4π2

µ2 − z2

)
+

1

2
ln

∣∣∣∣f
(
µ+ z

2

)
f

(
µ− z

2

)∣∣∣∣ ,

(1.138)

where

f(x) =
1

π2
x sin xΓ2

(x
π

)
. (1.139)

The function f(x) has the following properties:

f(0) = 1 , f(π/2) =
1

2
, f(π) = 0 , (1.140)
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and in the interval 0 ≤ x ≤ π it can be approximated by a linear function,

f(x) ≈ 1− x

π
(1.141)

with an accuracy of 1%.
We can use expression (1.138) to derive the distortion field Û at the compacti-

fied Schwarzschild black hole horizon. Because of the linearity of the corresponding
Laplace equation, Û can be calculated by simple subtraction of the Schwarzschild
black hole metric function US, approximated at the vicinity of its horizon. An
approximation of the US, given by expression (1.22), for ρ ≪ 1 and z ∈ [−µ, µ]
reads

US(ρ, z) ≈
1

2
ln

(
ρ2

4[µ2 − z2]

)
. (1.142)

Subtracting Eq. (1.142) from Eq. (1.138), and substituting z = µ cos θ at the
horizon [see Eq. (1.16)] we derive

Û(η, θ)|η=1 =
µ

π
ln(4π) +

1

2
ln

[
f

(
µ[1 + cos θ]

2

)
f

(
µ[1− cos θ]

2

)]
. (1.143)

The multipole moments an’s for the solution (1.143) can be obtained from (1.43).
Let us emphasize that, since the function (1.143) is invariant under the transfor-
mation θ → π − θ, the moments an’s for odd n vanish [see Eqs. (1.75), (1.70)].
This implies that u− = u+, and the boundary value of Û at η = −1, or ψ = π,
coincides with the boundary value of this function at the horizon, η = 1, or ψ = 0
[see Eq. (1.71)], and we have [see Eq. (1.48)]

u0 =
µ

π
ln(4π) +

1

2
ln[f(µ)]. (1.144)

Using equations (1.143) and (1.144) we derive

u(θ) = u±(θ) ≈ 1

2
ln

[
4π(π − µ) + µ2 sin2 θ

4π(π − µ)

]
. (1.145)

The metric (1.82) on the surface of the horizon is

dσ2
+ ≈

[
1 +

µ2 sin2 θ

4π(π − µ)

]
dθ2 +

[
1 +

µ2 sin2 θ

4π(π − µ)

]−1

sin2 θ dφ2 . (1.146)

Using equations (1.98), (1.99), (1.111) and (1.112), we can calculate the Kretschmann
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(a) (b)

Figure 1.11: (a) Shape of the distorted event horizon surface for the compact-
ified Schwarzschild black hole. Line (1): µ = 2/3π; line (2): µ = 6/7π. The
dashed circle corresponds to the Schwarzschild black hole. The embedding surface
is obtained by rotation of these curves around the vertical axis. (b) Kretschmann
scalars ratio k = K+/KSch,+ on the horizon for the same values of µ, lines (1) and
(2). The dashed horizontal line corresponds to the Schwarzschild black hole.

scalar at the horizon surface of the compactified Schwarzschild black hole,

K+ ≈ 12 [4π(π − µ)]4
[4π(π − µ) + µ2 + 3µ2 cos2 θ]2
[
4π(π − µ) + µ2 sin2 θ

]6 , (1.147)

and in the vicinity of its stretched singularity,

K− ≈
64

27τ 4
[1 +K(2)τ 2/3 +O(τ 4/3)] , (1.148)

K(2)
− ≈ (12)2/3

[
8π(π − µ)− µ2 sin2 θ

]2
+ 3µ4 sin2 θ(13 sin2 θ − 16)

32π(π − µ)
[
4π(π − µ) + µ2 sin2 θ

] . (1.149)

Applying equations (1.89) and (1.90), and the transformation u+ → −u−,
respectively, we can construct an isometric embedding of these surfaces. Figure
1.11 illustrates the shapes of the distorted event horizon surface and the ratio of
the Kretschmann scalars, k = K+/KSch,+ , of the compactified Schwarzschild black
hole and the Schwarzschild black hole. The metric (1.110) on the surface of the
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Figure 1.12: Shape of the distorted stretched singularity of the 4D compactified
Schwarzschild black hole of µ = 2/3π, line (1) and µ = 6/7π, line (2). The regions
embedded into pseudo-Euclidean space are illustrated by the dotted lines. The
dashed circle corresponds to the Schwarzschild black hole. The embedding surface
is obtained by rotation of these curves around the vertical axis.

stretched singularity is

dσ2
− ≈

[
1 +

µ2 sin2 θ

4π(π − µ)

]−1

dθ2 +

[
1 +

µ2 sin2 θ

4π(π − µ)

]
sin2 θ dφ2 . (1.150)

The shape of the distorted stretched singularity is illustrated in Figure 1.12.

1.10 Discussion

Let us summarize the obtained results. We considered the geometry of static
vacuum axisymmetric distorted black holes. We focused mainly on the properties
of the horizon and interior of such black holes. The geometry of a distorted black
hole is uniquely determined by the ‘gravitational potential’ U which is a solution
of the 3D flat Laplace (in the exterior region) or d’Alembert (in the interior region)
equation. After solving this ‘master’ equation, the second function V , which enters
the metric, can be obtained by a simple integration.

The ‘gravitational potential’ U is a superposition of the Schwarzschild potential
US and the distortion potential Û [see Eq. (1.32)]. The distortion Û is determined
by the values of the multipole moments an’s obeying the constraints (1.52). The
distortion potential in the black hole interior possesses a remarkable discrete sym-
metry (1.62) which relates the values of Û in the vicinity of the singularity to its
values in the vicinity of the horizon. Thus, the functions u±(θ) [see Eq. (1.69) or
Eq. (1.75)] determine the shape of the horizon and the stretched singularity, as



CHAPTER 1. 4D DISTORTED SCHWARZSCHILD BLACK HOLE 35

well as the leading asymptotics of the metric and the curvature invariants near the
horizon and singularity of a distorted black hole.

Qualitatively, the shape of the event horizon surface of a distorted black hole
is similar to the shape of equipotential surfaces in linearized (Newtonian) gravity.
Namely, consider a point-like mass M located at the coordinate center O (see Fig-
ure D.1 in Appendix D). In the presence of a quadrupole distortion its Newtonian
gravitational potential reads (up to Newtonian monopole moment α0)

UN = −M
r

+ ÛN , ÛN =
α2

2
r

2(3 cos2 ϑ− 1) , (1.151)

where r =
√
x2 + y2 + z2 is the radial distance from the mass M , and α2 is the

Newtonian quadrupole moment. For positive α2 such a distortion is generated, for
example, by a ring of mass m and radius r0 ≫ r located in the equatorial plane.
For such a ring α2 = m/(2r3

0) [see Appendix D, Eq. (D.3)]. Similarly, a negative
quadrupole moment α2 is generated, for example, by two point masses m1 and
m2, located on the axis of symmetry on the opposite sides of the mass M at the
distances d1 ≫ r, and d2 ≫ r, respectively. In this case α2 = −m1/d

3
1 −m2/d

3
2

[see Appendix D, Eq. (D.3)]. We consider r ∼ M and assume that the distortion
ÛN is small. Then the change δr in the position of the equipotential surface of UN
given by Eq. (1.151) with respect to the position of the unperturbed surface of
rc = const is

δr = −α2r
4
c

2M
(3 cos2 ϑ− 1) . (1.152)

Thus the quadrupole distortion deforms the equipotential surfaces and makes them
either oblate (for α2 > 0) or prolate (for α2 < 0). This property is similar to the
property of the horizon surface for the distorted black hole [see Figure 1.6(a)].

It should be emphasized that the linear approximation is not sufficient for
the ‘explanation’ of the Kretschmann invariant properties. Indeed, in the linear
approximation

ds2 = −(1 + 2UN )dt2 + (1− 2UN)(dx2 + dy2 + dz2) , (1.153)

the Kretschmann scalar is

K ≈ 8UN,ijU
,ij

N = 48

[
α2

2 −
M(M + 2rUN )

r
6

]
. (1.154)

Its variation under the small distortion ÛN is

δK = −2M2

r
7
c

δr . (1.155)
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Hence, in the weak field approximation, K is larger at the points where δr < 0, such
as at the poles of the oblate equipotential surface (for α2 > 0), and in the equatorial
points of the prolate surface (for α2 < 0) than undistorted K. This behavior of K in
the weak field limit is opposite to the behavior of K on the horizon of the distorted
black hole [see, e.g., Eq. (1.98) and Figure 1.7(a)]. This difference demonstrates
that nonlinear effects and the spatial curvature play important role near the black
hole horizon.

The property (1.99) has an important consequence for compactified black holes
discussed in Section 1.9. For µ close to π, when the ‘north’ and ‘south’ poles of
the compactified black hole are close to each other, the Gaussian curvature (and
hence the Kretschmann invariant) becomes large at the poles. In other words,
in the infinitely slow merger transition the region of a very high curvature ‘leaks’
through the horizon in the vicinity of the black hole poles. When this curvature
reaches the Planck value, one can say that the physical singularity (as defined in
Section 1.7) becomes naked. This may indicate that during the phase transition
between black-hole and black-string phases one can expect the formation of a naked
physical singularity. Whether this conclusion remains valid for higher dimensional
compactified black holes and beyond the adiabatic approximation is an interesting
open question.
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Chapter 2

Interior of a charged distorted

black hole

2.1 Introduction

In this chapter, we study how the distortion of a charged, static black hole gener-
ated by an axisymmetric, static matter distribution in its exterior region affects its
interior. Here we present a direct generalization of a similar study for the distorted
neutral black hole interior performed in the previous chapter.

The structure and properties of the charged and/or rotating black hole interior
is a subject that has attracted a lot of interest during the past 30 years (see, e.g.,
[43], Chapter 14 and references therein). An analytic continuation of the Reissner-
Nordström (RN) and Kerr solutions results in the existence of infinitely many new
‘universes’ in the black holes interior. However, the region containing these new
universes lies in the future of the Cauchy horizon, a null hypersurface beyond which
predictability of evolution based on the past initial data breaks down. A natural
question is whether these universes are accessible to an observer traveling in the
interior of the black hole. That is why the issue of the Cauchy horizon stability is
so important. Observers traveling along a timelike world line receive an infinitely
blueshifted radiation when they approach the horizon. Penrose [105] used these
facts to argue that small perturbations produced in the black hole exterior grow
infinitely near the Cauchy horizon. The evolution of small perturbations inside
charged black holes was analyzed in [23, 92, 93]. These results confirm Penrose’s
intuitive arguments.

If one considers ingoing radiation only and neglects backscattered radiation,
then the resulting Cauchy horizon singularity is weak. Namely, the Kretschmann
invariant calculated on the Cauchy horizon is finite. A freely falling observer
detects an infinite increase of energy density, but tidal forces remain finite as the
observer crosses the Cauchy horizon (see [32, 85]). This singularity is called a
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whimper singularity. However, in a realistic situation, when both incoming and
outgoing radiation are present, the curvature grows infinitely near the Cauchy
horizon. This was demonstrated by Poisson and Israel [107] who considered the
ingoing and outgoing radiation simulated as two noninteracting radial streams of
ingoing and outgoing lightlike particles following null geodesics. Poisson and Israel
showed that this radiation results in an infinite growth of the black hole internal
mass parameter and divergence of the Weyl scalar Ψ2. They called this effect mass

inflation. Mass inflation for a slowly rotating, charged black hole was discussed
in [63]. Ori constructed an exact, simplified solution describing this effect [101].
Using his solution Ori showed that the mass inflation singularity is weak enough.
Namely, the tidal forces calculated at the Cauchy horizon diverge in the reference
frame of a freely falling observer, but their integral along the world line of the
observer remains finite. It means that freely falling observers might in fact cross
the Cauchy horizon. For a more detailed discussion see, e.g., [18–21, 63, 64]. Early
numerical analysis of the Cauchy horizon stability predicted its destruction as a
result of classical instability [54]. Later, analytical [12, 36], and numerical [14]
discussions did not confirm this result. The mass inflation phenomenon may shed
light on the Cauchy horizon stability problem. However, further investigation is
necessary.

Although rotating black holes are of real astrophysical interest, charged black
holes are often considered in publications. The reason for this is simple: a charged
black hole also has a Cauchy horizon, but its spherical geometry makes an anal-
ysis easier. However, such a model is very simplified, for in the realistic world
there always exists some matter outside the black hole. This matter distorts the
gravitational field of the black hole. What is important is that this distortion
generated by the matter distribution in the exterior of the black hole occurs not
only outside the black hole, but also affects its interior. Since the region near the
Cauchy horizon is ‘fragile’ and ‘vulnerable,’ it is interesting to analyze how such
external matter affects the properties of the black hole Cauchy horizon. This is
one of the questions we address here. We shall make several assumptions simpli-
fying the analysis. Namely, we assume that the distortions of the black hole are
static and axisymmetric. Moreover, we consider a special class of charged distorted
black hole solutions which can be generated by the Harrison-Ernst transformation
[33, 69] from a neutral distorted black hole metric. This class includes a large
variety of solutions which can be presented in an explicit form.

We assume that in the vicinity of the black hole and in its interior the Einstein-
Maxwell equations are satisfied, and the matter disturbing the black hole is located
in the black hole exterior. The matter sources are described by the corresponding
energy-momentum tensor which has to be included in the Einstein-Maxwell equa-
tions. To avoid this one can move these sources to infinity. The ‘price’ for this
is that the corresponding spacetime is not asymptotically flat anymore. In our
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description of a distorted black hole we follow [50] and adopt that approach.
Our main problem is to study how the black hole interior is distorted by the ex-

ternal fields. In particular, we shall study distortion of the inner (Cauchy) horizon
and its relation to the distortion of the outer (event) horizon. Let us emphasize that
our consideration is completely classical, and we do not consider quantum effects
which may play an important role in the charged black hole interior. Discussion
of these effects can be found, e.g., in [41, 42, 62, 100].

It should be emphasized that the study of the black hole interior is a dynamical
problem. The geometry of the black hole interior is similar to the geometry of a
collapsing, anisotropic, homogeneous universe. To study how the evolution of this
universe is modified by an external influence, one must study first the modification
of the external geometry of the black hole and use these results to find the corre-
sponding modification of the geometry of the event horizon. This gives the initial
data which determines the evolution of the black hole interior. Here we study a
simple case when the distortion of the black hole in the exterior region is both
static and axisymmetric. A similar problem for the neutral black hole was studied
earlier in [45], (see Chapter 1). The results presented here are published in [1].

2.2 Reissner-Nordström spacetime

Before we proceed with the description of a charged distorted black hole, let us
make a few remarks about the charged black hole solution in the absence of dis-
tortions. This is the well-known Reissner-Nordström (RN) solution representing
electrically charged black hole (see, e.g., [22, 43, 72, 94])

ds2 = −
(

1− 2M

r
+
Q2

r2

)
dt2 +

(
1− 2M

r
+
Q2

r2

)−1

dr2 + r2(dθ2 + sin2 θdφ2),

Aα = −Φ0δ
t

α , Φ0 =
Q

r
. (2.1)

Here, M is the black hole mass, and Q is its electric charge. The RN spacetime
is static and asymptotically flat. It is of Petrov type-D, and it has spacetime
singularity at r = 0, which is timelike. According to the generalized Birkhoff
theorem, the RN solution is unique: any spherically symmetric solution of the
Einstein-Maxwell equations (see Eq. (2.3) below) is locally isometric to the RN
solution. We shall consider nonextremal black holes with |Q| < M . The RN black
hole horizons are defined by r± = M±

√
M2 −Q2, where the upper sign stands for

the event horizon, and the lower sign stands for the Cauchy horizon. The horizons
are coordinate singularities of the RN spacetime (2.1). The RN spacetime is regular
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in the following regions:

Region I : r ∈ (r+,+∞) , Region II : r ∈ (r−, r+) , Region III : r ∈ (0, r+).
(2.2)

In the regions I and III, the coordinate r is spacelike. These regions are static. In
the region II, the coordinate r is timelike. This region is dynamic. It represents a
contracting anisotropic homogeneous universe. As in the case of the Schwarzschild
spacetime, one can find a maximal analytical extension of the RN manifold by
appropriate choice of coordinates. However, in this case the maximally extended
manifold is covered by analytic atlas consisting of two coordinate charts. One of
the charts defines the RN metric analytic everywhere except r = r+, and another
chart defines the RN metric analytic everywhere except r = r−. Figure 2.1 illus-

Figure 2.1: Part of the Carter-Penrose conformal diagram of the RN spacetime.
Each point in the diagram, except for the vertices, represents a 2D sphere (θ, φ).
The notations are defined in Section 1.1.

trates a part of the Carter-Penrose conformal diagram of the RN spacetime. The
complete Carter-Penrose diagram consists of infinitely many such parts repeated
in the vertical direction. Thus, it has an infinite number of asymptotically flat
regions I, ‘universes’, and an infinite number of horizons and singularities. The
RN spacetime singularity can be avoided by timelike and null curves. Even more,
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this singularity is repulsive for timelike geodesics, which can never hit it. Thus,
the spacetime manifold is timelike geodesically complete. However, nongeodesic
timelike curves and radial null geodesics can terminate at the singularity.

The Carter-Penrose diagram suggests that observers might travel from one
universe to another by passing though the regions II and III without hitting the
timelike singularities. Such observers have to cross the event and Cauchy horizons.
While crossing the event horizon, observers will appear to have an infinite redshift
to observers located at the corresponding asymptotically flat region I. If they
send an outgoing light signal to the region I at the moment when they cross
the event horizon, it will be received in infinite time at I+. In the region II,
where the observers travel after they crossed the event horizon, each point in the
diagram represents a closed 2D trapped surface. Thus, traveling there is just time
evolution, like in the Schwarzschild black hole interior. At the very end of this time
evolution observers cross the Cauchy horizon and see, in a flash, the whole of the
history of one of the regions I, in infinitely blueshifted ingoing null rays emerging
from I+. Infinite blueshift suggests that small perturbations in the region I will
be infinitely amplified at the Cauchy horizon. The amplified perturbations may
destroy the Cauchy horizon and seal the door to other universes. According to the
mass inflation effect proposed in [107], infinitely blueshifted ingoing radiation is
only a necessary condition to destroy the Cauchy horizon. A sufficient condition
is the outgoing flux, which is always present due to the backscattered ingoing
radiation.

In the following sections we shall discuss the RN black hole distorted by exter-
nal, static, axisymmetric matter. We shall study how such distortion affects the
black hole interior, and, in particular, its Cauchy horizon.

2.3 Metric of a distorted RN black hole

2.3.1 Static, axisymmetric Einstein-Maxwell spacetime

In this section, following [15, 16, 34], we present a solution for a static, axisymmetric
distorted charged black hole. This solution is obtained by applying the Harrison-
Ernst transformation [33, 69] to the Weyl metric of a distorted vacuum black hole
[see (1.27)]. Here we reproduce the basic relations, mainly in order to explain
notations we shall use later. The metric of a charged distorted black hole, as the
metric of the RN black hole [see Eq. (2.1)], is a special solution of the Einstein-
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Maxwell equations

Rαβ = 8π Tαβ, (2.3)

∇βF
αβ = 0 , ∇[αFβγ] = 0, (2.4)

8π Tαβ = 2F γ
α Fβγ −

1

2
gαβFγδF

γδ. (2.5)

Here, Fαβ = ∇αAβ −∇βAα, and Aα is the electromagnetic 4-potential. The nabla
stands for the covariant derivative defined with respect to the metric gαβ. It is
convenient to make the following coordinate transformation [cf. Eq. (1.26)]:

r = M(1 + pη) , p =

√
M2 −Q2

M
, η ∈ (−1/p,∞), (2.6)

and to rewrite the RN solution in the following form

ds2 = −p
2(η2 − 1)

(1 + pη)2
dt2 +M2(1 + pη)2

[
dη2

η2 − 1
+ dθ2 + sin2 θdφ2

]
, (2.7)

Φ0 =

√
1− p2

(1 + pη)
. (2.8)

In these new coordinates, η = η± = ±1 corresponds to the horizons of metric
(2.7). We denote these horizons by H(±), respectively. The black hole singularity
is defined by η = −1/p.

The general form of a static, axisymmetric metric in prolate spheroidal coordi-
nates (η, cos θ, φ) is given by

ds2 = −e2Ūdt2 +M2p2e−2Ū

[
e2V̄ (η2 − cos2 θ)

[
dη2

η2 − 1
+ dθ2

]
+ (η2 − 1) sin2 θdφ2

]
,

(2.9)

where the metric functions Ū and V̄ depend on (η, θ) coordinates. The correspond-
ing electrostatic 4-potential is

Aα = −Φ(η, θ)δ t
α . (2.10)

2.3.2 Harrison-Ernst transformation

The Einstein-Maxwell equations for Ū and Φ are the Ernst equations [33], which
in our case of static spacetime (2.9) take the following form:

∇
(
e−2Ū∇Ē

)
= 0 , ∇

(
e−2Ū∇Φ

)
= 0. (2.11)
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Here,
Ē = e2Ū − Φ2 (2.12)

is the Ernst potential, and ∇ is the nabla operator defined with respect to the 3D
flat metric

dl2 = (η2 − cos2 θ)

[
dη2

η2 − 1
+ dθ2

]
+ (η2 − 1) sin2 θdφ2.

(2.13)

There exists a special class of solutions where the Ernst potential Ē is an analytic
function of Φ. Under this assumption Eqs. (2.11) imply

d2Ē
dΦ2

= 0. (2.14)

If spacetime is asymptotically flat, we choose Ū = Φ = 0 at infinity. In this case a
general solution of Eq. (2.14) can be written as

Ē = 1− 2√
1− p2

Φ. (2.15)

We shall keep this relation in our consideration. Following [33] it is convenient to
parametrize Ē and Φ as follows:

Ē =
ξ̄ − 1

ξ̄ + 1
, Φ =

√
1− p2

ξ̄ + 1
, (2.16)

where ξ̄ is the auxiliary Ernst potential. Using (2.11) one obtains the following
equation for ξ̄:

(ξ̄2 − p2)∇2ξ̄ − 2ξ̄∇ξ̄ · ∇ξ̄ = 0. (2.17)

In the absence of an electric field, Φ = 0, the Ernst equation (2.11) is

E∇2E = ∇E · ∇E , (2.18)

where E = e2U , and U corresponds to the vacuum uncharged solution. In this case
one can also use the parametrization (2.16), which gives

E =
ξ − 1

ξ + 1
, (2.19)
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and the Ernst equation (2.17) takes the form

(ξ2 − 1)∇2ξ − 2ξ∇ξ · ∇ξ = 0. (2.20)

Comparing (2.17) and (2.20), we can derive the relation between the vacuum and
the electrostatic Ernst potentials. This is the Harrison-Ernst transformation:

ξ̄ = pξ. (2.21)

Thus, if we know the solution U to the vacuum Einstein equations, we can apply
the transformations (2.21) and (2.16) to obtain the corresponding solution Ū , and
the electrostatic potential Φ obeying the Einstein-Maxwell equations. Namely,
using expressions (2.21), (2.19) and (2.16), we derive

e2Ū =
4p2e2U

[1 + p− (1− p)e2U ]2
, Φ =

√
1− p2(1− e2U)

1 + p− (1− p)e2U . (2.22)

These expressions determine the charged version of an electrically neutral, vacuum
static solution. For example, starting with the Schwarzschild black hole solution,
we can derive the RN black hole. If the Schwarzschild black hole is distorted by
neutral exterior matter, these expressions electrically charge both, the black hole
and the matter.

In the next subsection, we apply this ‘charging’ procedure to the Weyl static
metric describing a vacuum, axisymmetric distorted black hole, and obtain an
electrically charged distorted black hole. We discuss the corresponding metric in
subsection 2.3.4.

2.3.3 Charged distorted black hole

Now we are ready to present a solution for a charged, axisymmetric distorted
black hole. The Israel uniqueness theorem for distorted Schwarzschild black hole
(see Chapter 1, Section 1.3) can be generalized to electrically charged distorted
black hole [78]: among all static, asymptotically flat, electro-vacuum solutions to

the Einstein-Maxwell equations, which have closed, simply connected equipotential

surfaces ξ2
(t) = const, where ξ(t) = ∂t is a timelike, surface-orthogonal Killing

vector, the Reissner-Nordström solution is the only one which has a regular event

horizon ξ2
(t) = 0.

In analogy with the distorted Schwarzschild black hole, we consider a RN black
hole distorted by static, axisymmetric external distribution of electrically charged
matter whose sources are located at asymptotic infinity. The Israel theorem above
is not applicable for such a black hole, for the corresponding spacetime is not
asymptotically flat. Thus, we may have a charged distorted black hole which
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differs from the RN one, and whose event horizon is regular. Following the proce-
dure presented in the previous subsection, we can start with the vacuum solution
representing an axisymmetric distorted Schwarzschild black hole (1.33), which we
discussed in Chapter 1, Section 1.3. To obtain a charged version of the distorted
neutral black hole, it is sufficient to derive Ū and Φ from U [see Eqs. (1.32), (1.28)
and (1.44)] using the transformation (2.22). We have

e2Ū =
4p2(η2 − 1)e2Û

[(1 + p)(η + 1)− (1− p)(η − 1)e2Û ]2
, (2.23)

Φ =

√
1− p2[η + 1− (η − 1)e2Û ]

(1 + p)(η + 1)− (1− p)(η − 1)e2Û
. (2.24)

Remarkably, the transformation (2.22) does not alter Eqs. (1.35) and (1.36).
Thus, Ū and Φ, given by Eqs. (2.23), (2.24), and V , which is determined by Eqs,
(1.32), (1.28), and Eqs. (1.45)-(1.47), solve the corresponding Einstein-Maxwell
equations. The axisymmetric distorted RN solution is given by (2.9), (2.10) to-
gether with (2.23), (2.24) and V̄ = V . Axisymmetric, distorted Schwarzschild
black hole spacetime is of Petrov type-I, and is type-D on the horizon and on its
axis of symmetry [104]. It can be checked that the transformation (2.22) does not
alter these properties, and in addition the corresponding spacetime is of Petrov
type-D on the Cauchy horizon.

A more general case of a distorted, electrically charged, rotating black hole
was considered in [16]. Charged dilaton black hole distorted by the charged and
dilatonic external matter was studied in [124].

2.3.4 Dimensionless form of the metric

The metric (2.9) contains only one essential dimensional parameter, say M , while
all other parameters can be presented in dimensionless form. It is convenient to
write the metric (2.9) in the following dimensionless form dS2

± adopted to analysis
of the black hole horizons H(±) [cf. Eq. (1.56)]:

ds2 = Ω2
±dS

2
±, (2.25)

dS2
± = −η

2 − 1

∆±
e2UdT 2

± +
∆±
η2 − 1

e−2U+2V̂ dη2 + ∆±e
−2U

(
e2V̂ dθ2 + sin2 θdφ2

)
,

(2.26)

Ω± = M(1± p)e∓u0 = M ′(1± p′). (2.27)

For the dimensionless metric dS2
±, we define T± = κ±t, where κ± is the surface
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gravity, which is given by

κ± =
p e±2u0

M(1± p)2
=

(1 + p′)eu0 − (1− p′)e−u0

2M ′(1± p′)2
. (2.28)

We also use the following expressions for the metric functions ∆± and U :

∆± =
δ±1

4δ

[
η + 1− δe2U(η − 1)

]2
, (2.29)

U = Û − u0 , δ = δ0e
2u0 =

1− p
1 + p

e2u0 =
1− p′
1 + p′

.

(2.30)

Together with the original parameters M and p it is convenient to use the related
parameters

M ′ =
M

2

[
(1 + p)e−u0 + (1− p)eu0

]
, (2.31)

p′ =

√
M ′2 −Q2

M ′ . (2.32)

In the absence of distortion M ′ = M is the Komar mass of the RN black hole
measured at asymptotic infinity. In the case when Q = 0, M ′ is the local mass of
a distorted Schwarzschild black hole defined in [50].

The coordinate η changes from η = +∞ (at spatial infinity) to the region of
η < −1 where the spacetime singularity is located (see subsection 2.3.5). As in
the case of the RN black hole (2.7), the horizons of metric (2.26) are defined by
η = η± = ±1. As we mentioned earlier, we shall use the notation H(±) for the
outer (+), and for the inner (−) horizons. To indicate that a dimensional quantity
(. . .) is calculated at the black hole horizons H(±), we shall use a superscript (±),
and denote this quantity as (. . .)(±).

The metric (2.26) allows Wick’s rotation T+ → iTE , which transforms the
exterior region η ≥ 1 into that of the corresponding distorted Euclidean charged
black hole. The Euclidean horizon surface η = 1 is a regular 2D totally geodesic
surface. The corresponding electric field transforms as Φ+ → −iΦE .

As we shall see in the next section, the form of metric (2.26) is convenient for
the analysis and comparison of the properties of the inner and outer black hole
horizons. 2D metrics on the horizon surfaces can be obtained by taking T = const,
and η = η± = ±1 in the metric (2.26). In Section 2.4, we show that the surface
area of the outer (event) horizon calculated for the dimensionless metric dS2

+ is
equal to 4π. Similarly, the surface area of the inner (Cauchy) horizon calculated
for the metric dS2

− is also equal 4π. These normalization conditions specify the
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form of the conformal factor Ω2
± in (2.25). The ‘real’ (dimensional) areas of the

horizon surfaces are
A(±) = 4πΩ2

± , (2.33)

and the ratio of these areas is

A(+)/A(−) = (Ω+/Ω−)2 =

(
1 + p′

1− p′
)2

≡ δ−2 . (2.34)

In what follows, we shall discuss different geometrical objects, such as the Kretschmann
invariant K, the Weyl scalar C2,

K = RαβγδR
αβγδ , C2 = CαβγδC

αβγδ , (2.35)

and the Gaussian curvature K of the 2D horizon surfaces. We shall use the same
notations with an index ± for an object calculated for the metric dS2

±. One has

K = Ω−4
± K± , C2 = Ω−4

± C2
± , K = Ω−2

± K± . (2.36)

To study the interior region we can use any of these two forms of the dimensionless
metric dS2

±. Certainly, the ‘physical’ result, calculated for the metric ds2 will be
the same.

The dimensionless electrostatic potential for metric (2.26) is given by

Φ± =

√
δ∆

−1/2
±

(e2u0 − δ)
[
η + 1− (η − 1)e2U+2u0

]
. (2.37)

It is related to the electrostatic potential (2.24) as follows

Φ = Ω±κ± Φ±. (2.38)

The non-vanishing dimensionless components of the electromagnetic field Fµν are
defined by

F±T±η = Φ±,η =
δ±1/2

∆±
e2U [(1− η2)U,η − 1] , (2.39)

F±T±θ = Φ±,θ =
δ±1/2

∆±
e2U(1− η2)U,θ . (2.40)

2.3.5 Singularities

Here, we mainly focus on the study of the horizons H(±), and the inner domain
located between the horizons. Since one cannot trust the metric obtained by the
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analytical continuation of the exterior metric beyond the inner (Cauchy) horizon,
it is reasonable to postpone study of the regions close to the spacetime singularity
until the classical and quantum (in)stability will be proved. For this reason, we
give only a couple of remarks about properties of the singularities in the analytic
continuation of the charged distorted black hole solution.

Using expressions (2.25), (2.39), and (2.40) one can check that the curvature
and the electromagnetic field invariants diverge for ∆± = 0, i.e., for

η = −1 + δ0e
2Û

1− δ0e2Û
, (2.41)

indicating the spacetime singularity. For the RN black hole, the singularity is
located at η = −1/p, p ∈ (0, 1], corresponding to r = 0. Analyzing expression
(2.41), we see that for Û 6 0 the singularity is located in the region η < −1,
whereas for Û > 0 the spacetime singularity is naked and located outside the outer
horizon, η > 1. Thus, if the distortion field Û satisfies the strong energy conditions,
i.e., Û 6 0 (for details see [50]), the spacetime outside the black hole outer horizon
is regular, and the singularity is located behind the inner (Cauchy) horizon.

2.4 Duality relations between the inner and outer

horizons

In this section, in analogy with the discrete symmetry between the event horizon
and the singularity of distorted Schwarzschild black hole (1.65), (1.68), we describe
special symmetry relations between the inner and outer horizons. Let us consider
a 2D subspace T± = const, φ = const orthogonal to the corresponding Killing
vectors ξ(T±) and ξ(φ). In the coordinates

η = cosψ , ψ ∈ [0, π] (2.42)

the subspace metrics are

dΣ2
± = ∆±e

−2U+2V̂
[
−dψ2 + dθ2

]
. (2.43)

Figure 2.4 illustrates the Carter-Penrose diagram for these metrics. Lines ψ ± θ =
const are null rays propagating from the outer to the inner horizon within the 2D
subspace. Three of such null rays are shown in the figure. One of the rays starts
at point A on the outer horizon H(+), goes through the ‘south’ pole at θ = π, and
reaches point B at the inner horizon H(−) (compare with Figure 1.2).

Consider a transformation RC representing the reflection of coordinates (ψ, θ)
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Figure 2.2: Carter-Penrose diagram for (ψ, θ) subspace of the charged distorted
black hole interior. The arrows illustrate propagation of future directed null rays.
Points A and B are symmetric with respect to the central point C(π/2, π/2).

with respect to the ‘central point’ C in the interior region

RC : (ψ, θ)→ (π − ψ, π − θ). (2.44)

This transformation determines a map R∗
C between functions defined in the inner

domain and on its boundaries

f ∗ = R∗
C(f) , f ∗(ψ, θ) = f(π − ψ, π − θ) . (2.45)

Such a transformation was considered for distorted Schwarzschild black hole be-
tween its event horizon and singularity [see Eqs. (1.62)-(1.64)]. It is easy to see
that coordinates of the points A and B are related by the reflection RC . Thus, the
transformation R∗

C determines a map between functions on the inner and outer
horizons. As in the case of distorted Schwarzschild black hole, this is a symmetry
transformation for distortion fields U and V̂ . In other words, the values of U
and V̂ on the inner horizon, ψ = π, are determined by their values on the outer
horizon, ψ = 0. Expressions (1.65) and (1.68), which we call the duality relations,
allow one to establish special symmetry relations between the geometric properties
of the inner and outer horizons. In this case, function (1.69) defines the boundary
values (1.71), (1.72) and (1.73), (1.74) of the distortion fields U and V̂ , respec-
tively, and as a result, the metric on the black hole horizons. Thus, the distortion
fields calculated on the inner horizon are expressed through those calculated on
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the outer horizon. This fact allows one to make important conclusions about the
distortion of the Cauchy horizon (the details follow).

The boundary values of the distortion fields U and V̂ define symmetry proper-
ties of the metric on the black hole horizon surfaces. The surface of the outer and
the inner horizon is defined by T± = const and η = η± = ±1, respectively. The
corresponding dimensionless metrics derived from metric (2.26), by applying the
transformation (2.42) and the boundary conditions (1.71) and (1.73), are

dσ2
± = e±2u±dθ2 + e∓2u± sin2 θdφ2. (2.46)

The dimensional metrics on the horizon surfaces are [see Eq. (2.25)]

dσ(±)2 = Ω2
±dσ

2
±. (2.47)

Here, and in what follows u± ≡ u±(θ). The metric dσ2
+ coincides with the metric on

the distorted Schwarzschild black hole horizon surface (1.82). The dimensionless
areas of the horizon surfaces are equal to 4π. The metrics dσ2

+ and dσ2
− are related

to each other by the transformation

u+ ←→ −u−, (2.48)

which according to (1.69) implies the following duality relations between the outer
and the inner horizons

c2n ←→ −c2n , c2n+1 ←→ c2n+1. (2.49)

These duality relations are exactly the same as the duality relations (1.115), (1.116)
between the horizon and the singularity of the distorted Schwarzschild black hole
(cf. Appendix A).

Thus, the metrics dS2
± are identical for distortions which have only odd mul-

tipole moments. The derived duality relations imply, in particular, that the in-
ner (Cauchy) horizon of a distorted charged black hole solution obtained by the
Harrison-Ernst transformation is regular, if the outer horizon is regular. This con-
clusion and its generalization to the case of rotating and charged black holes was
proven recently in [5, 73].

2.5 Gaussian curvature

In this section we discuss the geometry of the distorted horizon surfaces. The
gaussian curvature is a natural measure of the intrinsic curvature of a 2D surface
(see, e.g., [38, 89, 114, 122, 123]). It is equal to 1/2 of its scalar curvature. For the
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metrics (2.46) the Gaussian curvature is given by

K± = e∓2u±
(
1± u±,θθ ± 3 cot θu±,θ − 2u2

±,θ
)
. (2.50)

The dimensional Gaussian curvatures associated with the metrics (2.47) are

K(±) = Ω−2
± K±. (2.51)

We shall illustrate our analysis of the charged distorted black hole horizon
surfaces considering simple examples of the lowest order multipole distortions.
Namely, we shall consider quadrupole and octupole distortions for which the cor-
responding functions u± read

u± = −c2 sin2 θ , u± = ∓c3 sin2 θ cos θ. (2.52)

Here, c2 and c3 are the quadrupole and the octupole moments, respectively.

(a) (b)

Figure 2.3: Regions of positive and negative Gaussian curvature for the outer hori-
zon surface. Plot (a) illustrates the regions for different values of the quadrupole
moment. Plot (b) illustrates the regions for different values of the octupole mo-
ment. Curves separating these regions correspond to zero Gaussian curvature.

Regions of positive and negative Gaussian curvature for different values of the
quadrupole and octupole moments, for the outer horizon surface, are presented in
Figure 2.3. From Figure 2.3(a) we see that for the quadrupole distortion regions
of negative Gaussian curvature near the black hole poles (θ = 0, π) correspond to



CHAPTER 2. INTERIOR OF A CHARGED DISTORTED BLACK HOLE 52

high positive values of c2, and near its equator (θ = π/2) to high negative values
of c2. Using Eqs. (2.50), (1.51), (1.69), and the auxiliary expressions

u±,θ(θ) = −
∑

n≥0

(±1)ncnn sin θ cosn−1 θ, (2.53)

u±,θθ(θ) =
∑

n≥0

(±1)ncnn cosn−2 θ[n sin2 θ − 1], (2.54)

we derive

K±|θ=0 = 1∓ 2u
(2)
± , K±|θ=π = 1∓ 2u

(2)
∓ , (2.55)

K±|θ=π/2 = e±2(u0−c0)(1± 2c2 − 2c23). (2.56)

Here,

u
(2)
± = 2

∑

n≥0

(±1)ncnn, (2.57)

in accordance with expression (1.93). Thus, the sign of the Gaussian curvature
strictly depends on the distortion field. Using these expressions we see that for the
quadrupole distortion Gaussian curvature of the outer horizon surface is positive at
the poles for c2 < 1/8, and on the equator for c2 > −1/2. For c2 < −1/2 we have
a dumbbelled-shaped horizon. According to the duality relations (2.49) regions
of positive and negative Gaussian curvature of the inner horizon surface can be
constructed by mirror reflection of Figure 2.3 with respect to the line c2 = 0.

Figure 2.3(b) illustrates that there is a symmetry between the regions of posi-
tive and negative Gaussian curvature and signs of the octupole moment. Namely,
the transformation c3 → −c3, θ → π/2− θ does not change the figure. Using Eq.
(2.55) we see that for c3 > 1/8 Gaussian curvature is negative on the north pole and
positive on the south pole, whereas for c3 < −1/8 it is negative on the south pole
and positive on the north. In addition, there are the regions of negative Gaussian
curvature near the ‘tropics’ (±23◦26′22′′ from the equator), i.e., near θ− ≈ 1.165
(corresponding to ≈ 23◦16′39′′ from the equator) for c3 < −0.333, and θ+ ≈ 1.977
(corresponding to ≈ −23◦16′39′′ from the equator) for c3 > 0.333. According to
the duality relations (2.49), the Gaussian curvature of the inner horizon surface is
identical to that of the outer horizon surface. The dimensionless Gaussian curva-
ture of the outer horizon surface for certain values of the quadrupole and octupole
moments is plotted in Figure 2.4.

As we shall see in Section 2.8, the curvature and the electromagnetic field in-
variants calculated on and at the vicinity of the black hole horizons are expressed in
terms of the corresponding Gaussian curvatures and their derivatives with respect
to the angular coordinate θ.
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(a) (b)

Figure 2.4: Dimensionless Gaussian curvature K+ of the outer horizon surface. (a)
Quadrupole distortion: c2 = −2/3, line (1), c2 = 2/3, line (2), and c2 = 1/9, line
(3). (b) Octupole distortion: c3 = −2/3, line (1), and c3 = 1/9, line (2). The
dashed horizontal lines at K+ = 1 correspond to the RN black hole.

2.6 Embedding

To visualize the distorted horizon surfaces, we present their isometric embedding
into a flat 3D space, in a way similar to the isometric embedding of the horizon sur-
face of the distorted Schwarzschild black hole (see subsection 1.6.1). To construct
the embedding we consider an axisymmetric 2D surface parametrized as follows:

ρ = ρ(θ) , z = z(θ). (2.58)

Let us embed this surface into a flat 3D space with the metric in cylindrical coor-
dinates (z, ρ, φ):

dl2 = ǫdz2 + dρ2 + ρ2dφ2, (2.59)

where for Euclidean space ǫ = 1, and for pseudo-Euclidean space ǫ = −1. The
geometry induced on the surface is given by

dl2 = (ǫz2
,θ + ρ2

,θ)dθ
2 + ρ2dφ2. (2.60)
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Matching the metrics (2.46) and (2.60) we derive the following embedding map:

ρ = e∓u± sin θ , z =

∫ π/2

θ

Z dθ, (2.61)

Z2 = ǫe±2u± [1− e∓4u±(cos θ ∓ u±,θ sin θ)2]. (2.62)

From Eq. (2.62) we see that if the expression in the square brackets is negative,
an isometric embedding into 3D Euclidean space using such a surface of revolution
is not possible, and we should take ǫ = −1.

(a) (b)

Figure 2.5: Shape of the outer horizon surface. The shape curves are shown in the
(ρ, z) plane. (a) Quadrupole distortion: c2 = −2/3, line (1), c2 = 2/3, line (2), and
c2 = 1/9, line (3). (b) Octupole distortion: c3 = −2/3, line (1), and c3 = 1/9, line
(2). Regions embedded into pseudo-Euclidian space are illustrated by the doted
lines. The dashed circles of radius 1 correspond to the RN black hole.

According to the duality relations (2.49), it is enough to consider embedding of
the outer horizon surface only. The shape curves of the outer horizon surface are
presented in Figure 2.5. The embedding diagrams for the outer horizon surface
can be obtained by rotation of the curves around the vertical axis of symmetry
lying in the plane of the figure, parallel to the z axis. Note that the change in
sign from ‘+’ to ‘−’ of the quadrupole moment corresponds to a deformation of
the rotational curve from oblate to prolate and vice versa. This transformation
corresponds to the duality relations (2.49) between the outer and inner horizon
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surfaces. The change in sign of the octupole moment corresponds to an overturn
of the rotational curve preserving its shape.

2.7 Free fall from the outer to the inner horizon

In Section 1.5 we studied how distortion of the Schwarzschild black hole affects
proper time of a free fall from the black hole horizon to its singularity. It is
interesting to check how the distortion changes the maximal proper time of free
fall of a test particle from the outer to the inner horizon of the distorted RN
black hole. Let us consider motion of a test particle of zero angular momentum
which moves from the outer to the inner horizon along the axis of symmetry. Free
fall from the north pole corresponds to θ = 0, and free fall from the south pole
corresponds to θ = π. We use metric (2.25) with dS2

+. Using Eq. (1.53) we derive
the proper time of the free fall:

τ(E) = Ω+

∫ +1

−1

∆
1/2
+ e−Udη

(Ω−2
+ ∆+e−2UE2 + 1− η2)1/2

∣∣∣∣∣
θ=0,π

, (2.63)

where E is the energy of the particle,

E = κ+Ω2
+

η2 − 1

∆+
e2U

dT+

dτ
. (2.64)

The maximal proper time corresponds to E = 0. Using the coordinate trans-
formation (2.42) and applying the boundary values (1.72) we derive the maximal
proper time for the free fall

τmax = τ(0) = τ+Ω+, (2.65)

where Ω+ is given by (2.27), and the dimensionless time τ+ is

τ+ =

∫ π

0

dψ

2

[
(cosψ + 1)e−u(ψ) − δeu(ψ)(cosψ − 1)

]
. (2.66)

Here, u(ψ) = u+(ψ) for the fall from the north pole, and u(ψ) = u−(ψ) for the
fall from the south pole. For the RN black hole we have τ+ = π/(1 + p), and
τmax = πM , that is exactly the same as the maximal proper time for free fall from
event horizon to the singularity of the Schwarzschild black hole of mass M ([94],
p. 836).

In the case of the quadrupole distortion (2.52), the integral in (2.66) can be
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(a) (b)

Figure 2.6: Free fall along the axis of symmetry from the outer to the inner horizon
surface for p′ = 1/2. (a) Dimensionless proper time τ+ for different values of the
quadrupole moment c2. Here, the minimal value of the dimensionless proper time
τ+min ≈ 1.91 corresponds to c2min ≈ −0.734. (b) Dimensionless proper time τ+ for
different values of the octupole moment c3, for the fall from the north pole. Here,
the minimal value of the dimensionless proper time τ+min ≈ 1.80 corresponds to
c3min ≈ −2.29, where c3min does not depend on the value of p′. For the RN black
hole τ+ = 2π/3 ≈ 2.09.

calculated analytically:

τ+ =
π

2
I0(c2/2)[ec2/2 + δe−c2/2], (2.67)

where I0(x) is the modified Bessel function (see, e.g., [3], p. 374). Note, that
because of the reflection symmetry of the horizon surfaces with respect to the
plane θ = π/2 the proper time is the same for the fall from the north and the
south poles. For the octupole distortion we evaluate the integral numerically.
From expressions (2.52) and (2.66) we see that the change in sign of the octupole
moment corresponds to the change of the poles as the starting points of the fall.
The dimensionless proper time calculated for p′ = 1/2 is presented in Figure 2.6.
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2.8 Spacetime invariants

For distorted vacuum black holes there exists a remarkable relation between the
Kretschmann scalar calculated on the surface of the event horizon K(+) and the
Gaussian curvature of the horizonK(+) calculated at the same point (see Eq. (1.99)
representing such a relation in dimensionless form)

K(+) = 12K(+)2 . (2.68)

The proof of this relation for a more general case of electrostatic solution is given in
Appendix E. This relation shows that the 4D curvature invariant of the spacetime
calculated on the black hole horizon is correlated with the shape of the horizon
surface. In a region where the horizon is sharper the 4D curvature invariant is
larger than in a region where the horizon is smoothed out. In order to prove the
property (2.68) one uses the fact that the horizon H(+) surface is a totally geodesic

surface.
The general analysis by Boyer [13], and, in particular, his conclusion saying

that a bifurcate Killing horizon contains a totally geodesic 2D surface, which is in
fact independent of the field equations, can be applied to the case of the charged
distorted black hole. For this reason one can expect the existence of a relation
similar to (2.68) and generalizing the latter (see Appendix E for details). In this
section, we discuss this problem.

First of all, let us emphasize that in the presence of the electromagnetic field
Fαβ there exist an additional 4D invariant F 2 = FαβF

αβ characterizing the strength
of the field. For the distorted black hole the calculations give the following value
of this invariant on the outer horizon [see Eqs. (2.38), (2.39), (2.40), (1.71) and
(1.73)]

F (+)2 = − 2

M ′2
(1− p′)
(1 + p′)3

, (2.69)

where M ′ and p′ are defined by Eq. (2.31) and Eq. (2.32) respectively. Note,

that F (+)2 is a constant over the outer horizon. The minus sign on the right-hand
side reflects the fact that we are dealing with an electric (not magnetic) field. The
Kretschmann scalar K and the Weyl invariant C2 are related as follows:

K = C2 + 2(F 2)2 . (2.70)

In the presence of matter, in order to characterize the ‘strength’ of the gravitational
field, it is more convenient to use the Weyl invariant. The calculations presented
in Appendix E give for the Weyl invariant on the event horizon the following
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expression [cf. Eqs. (E.40) and (E.41)]:

C2(+)
= 12

[
K(+) − 1

2
F (+)2

]2

. (2.71)

It is evident that in vacuum, when F 2 vanishes and the Kretschmann invariant
coincides with the Weyl invariant, this relation reduces to Eq. (2.68). The second
term in the square brackets is constant on the horizon [see Appendix E, and Eq.
(2.76) below]. Using Eqs. (2.36) and (2.27) we can present the expression in the
square brackets in the following form

K(+) − 1

2
F (+)2 =

4K(+)|p=1

(1 + p)2
− 1

2
F (+)2 , (2.72)

where K(+)|p=1 is the Gaussian curvature of the horizon surface of a distorted
Schwarzschild black hole. Thus, the Gaussian curvature of the horizon surface of
a distorted RN black hole is related to that of a distorted Schwarzschild black hole
by the linear transformation (2.72).

The relations similar to (2.69) and (2.71) are valid for the inner horizon,

F (−)2 = − 2

M ′2
(1 + p′)

(1− p′)3
, (2.73)

C2(−)
= 12

[
K(−) − 1

2
F (−)2

]2

. (2.74)

Using Eq. (2.70) we can calculate the ratio of the Kretschmann invariants on the
black hole horizons:

k =
K(+)

K(−)
= δ4 3(K+ + δ)2 + 2δ2

3(K− + δ−1)2 + 2δ−2
, (2.75)

where δ is defined by Eq. (2.30). This ratio calculated for p′ = 1/2 is presented
in Figure 2.7. The behavior of the curves is very similar to those for the Gaussian
curvature illustrated in Figure 2.4.

Finally, we present the expressions for the curvature and the electromagnetic
field invariants at the vicinity of the black hole horizons. We use the expressions
(E.44), (E.40) and (E.45) given in Appendix E. The expansion of the electromag-
netic field invariant near the black hole horizons reads

F 2
± = −2δ±1 ± 4δ±1e±2u±(K± − δ±1)(η ∓ 1) + ... . (2.76)
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(a) (b)

Figure 2.7: Ratio k for p′ = 1/2. Plot (a) illustrates the ratio for the quadrupole
distortion of c2 = −2/3, line (1), c2 = 2/3, line (2) and c2 = 1/9, line (3). Plot (b)
illustrates the ratio for the octupole distortion of c3 = −2/3, line (1), and c3 = 1/9,
line (2). The dashed horizontal line corresponds to the RN black hole.

The expansion of the Weyl invariant near the black hole horizons is

C2
± = 12K2

e± ∓ 4
(
3K2

e±[3K± − 2δ±1]e±2u± − 2[K±,θ]
2

+ 3Ke±[K±,θθ + cot θK±,θ]) (η ∓ 1) + ... , (2.77)

where Ke± = (K± − δ±1).

2.9 Discussion

In this chapter, we studied the interior of a distorted, static, axisymmetric, electri-
cally charged black hole. The corresponding metric was derived by the Harrison-
Ernst transformation applied to the metric of a distorted, static, axisymmetric
vacuum black hole, whose interior was discussed in Chapter 1. We established the
special duality relations between the properties of the inner and the outer horizons
of the distorted charged black hole. These duality relations allow one to make
a conclusion about the inner (Cauchy) horizon structure, which is based on the
structure of the outer (event) horizon of the black hole. In particular, regions of
positive and negative Gaussian curvature and its values on the outer horizon sur-
face are correlated with those on the inner horizon surface. There is a correlation
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between the shapes of the horizon surfaces as well.
We derived expansion of the curvature and electromagnetic field invariants near

the black hole horizons, which is expressed in terms of the Gaussian curvature,
electrostatic field, and their derivatives calculated on the horizon surfaces. Thus,
the established duality relations show that the spacetime geometry near the inner
(Cauchy) horizon is correlated with the spacetime geometry near the outer (event)
horizon. This implies that if the distortion leaves the outer horizon regular, the
inner horizon remains regular as well.

The duality between the outer and the inner horizons seems important. Appar-
ently, according to the mass inflation phenomenon [107] such duality breaks in the
case of dynamical perturbation of the RN black hole. Namely, due to the presence
of the outgoing flux the inner apparent horizon and the Cauchy horizon become
separated. The infinite grow of the mass parameter induced by the blueshift of the
ingoing flux on the Cauchy horizon is not canceled by the redshift of the ingoing
flux on the apparent horizon. As a result, the Cauchy horizon becomes singular.
This does not happen in the case of static, axisymmetric distortion. One may think
of the static distortion in the dynamical region between the black hole horizons as
represented by ‘standing’ waves. According to the duality relations between the
horizons, initial and boundary values of the waves should be dual as well.

Quite possibly, the axisymmetric, static distortion due to remote charged masses
and fields cannot affect much the interior of a charged black hole. In such a situa-
tion nothing enters, or leaves (through the Cauchy horizon into other ‘universes’)
the black hole. Thus, the black hole inner horizon remains regular due to such
a type of distortion. Nevertheless, as our analysis shows, such ‘serene’ distortion
can in fact deform the interior of the black hole to create regions of high local
curvature. Moreover, the distortion noticeably affects the maximal proper time
of free fall of a test particle moving along the axis of symmetry in the black hole
interior. An important question of whether the Cauchy horizon of an electrically
charged black hole is regular for an arbitrary static, external distortion remains
open. It would be interesting to study a general class of electromagnetic distortion
fields, as well as more general class of rotating charged distorted black holes which
admit the Weyl form of the metric (see, e.g., [16]).
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Chapter 3

5D electrically charged black

string

3.1 Introduction

In attempts to resolve the hierarchy problem, the existence of large extra spatial
dimensions was proposed in modern theoretical models [6, 8]. The existence of
large compact extra dimensions opens an interesting possibility of mini black hole
production in future LHC experiments (see, e.g., [26, 53, 125]). In addition, in
spacetimes with large compact extra dimensions, a large variety of topologically
different black objects may exists: black holes, black rings, black branes, black
strings, etc. (see, e.g., [66]). The study of such objects, especially topological
phase transitions between them, is a subject of high interest.

In this chapter we study static electric black strings in 5D spacetime with
one large compact dimension and compare their thermodynamical and dynamical
properties with static magnetic black strings. The topology of the horizon of
the black string is different from the spherical topology of a black hole solution,
which is another possible topological phase. A vacuum black string solution can
be obtained from a lower dimensional, spherically symmetric, static, vacuum black
hole solution by adding a flat compact extra dimension. In the case of more than
one, say p, extra dimensions, the solution is called a black p-brane. Simple analysis
shows that for a given size of extra dimensions, there exists a critical value of the
mass Mcr. If M > Mcr, the entropy of the black string or black brane is larger
than the entropy of the black hole, while for M < Mcr the situation is opposite.

Based on this simple argument, Gregory and Laflamme (GL) [57] came to a
conclusion that a black string (brane) must be unstable if its mass is smaller than
some critical value. Studying S-wave gravitational perturbations of black strings,
they discovered the classical instability of these objects. Namely, they obtained a
dispersion relation between the imaginary part Ω of the frequency, and the wave



CHAPTER 3. 5D ELECTRICALLY CHARGED BLACK STRING 62

number k of the perturbation field mode, which clearly illustrates the instability.
The dispersion relation allows one to find a rate of decay corresponding to a given
wave number k. The instability starts at the special value kcr. Ω vanishes for this
threshold mode. Positive values of Ω correspond to values of the wave numbers
smaller than kcr. Finally, the zero-value wave number corresponds to Ω = 0, which
indicates the stability of the D-dimensional Schwarzschild-Tangherlini black hole.

The existence of the critical (maximal) wave number kcr in the instability spec-
trum corresponds to the minimal wavelength λcr = 2π/kcr of the perturbation
threshold mode. The modes with smaller values of the wavelength are stable. This
behavior is similar to the classical Jeans instability (see [60, 66, 82] and [121], p.
562). If there exist compact extra spatial dimensions with a size smaller than the
minimal wavelength Lcr, then unstable modes cannot fit into the compact dimen-
sions, and the instability does not arise. In the opposite case, compactified black
string (brane) solutions are unstable.

The GL instability is a generic property of black objects in spacetime with
compact extra dimensions. This effect was studied by many authors. For example,
in [58] the GL instability for a dilaton black string with magnetic charge was
demonstrated. The instability in magnetically charged black strings was studied
in [95]. It was found that for a certain range of magnetic charge values, the string
becomes stable, if compared with a neutral one. The instability in boosted strings
was studied in [75]. It was found that in the frame comoving with the string,
results are largely unchanged if compared with a static black string. However,
in the frame where the string is moving along its length, the instability strongly
depends on the velocity of the string. For example, the threshold mode appears
as a wave traveling with the boost velocity along the string. New AdS black
string solutions were discovered in [91]. Analysis of the GL instability for these
solutions showed that small AdS black strings are unstable; however, black strings
with relatively large values of the event horizon radius, as well as topological black
strings, are classically stable [17].

Numerical evolution of a perturbed, unstable black string was studied in [24]. It
was found that at an intermediate time of the evolution a nonuniform black string
forms. This string is reminiscent of a distorted spherical black hole connected
to a thin black string. Topological transitions between black strings in 5D and
6D, and the corresponding Kaluza-Klein black holes, were studied in [86]. It was
found that the black string and the black hole phases merge at a topology-changing
transition. Large D asymptotics of a marginally stable black string were studied
in [88]. Detailed reviews on the phase transitions between black strings and black
holes and the GL instability issue are given in [87] and [66], respectively.

There is an interesting relation between the dynamical instability of a black
brane and off-shell instability of the corresponding Euclidean black hole. For ex-
ample, the threshold unstable mode of a neutral black brane corresponds to the



CHAPTER 3. 5D ELECTRICALLY CHARGED BLACK STRING 63

Euclidean Schwarzschild black hole negative mode [60]. Namely, k2
cr = −λ, where

λ is the negative eigenvalue of the spectral problem related to the Euclidean black
hole off-shell perturbations. A general analysis of such relations is given in [111].
Negative modes of a 4D Reissner-Nordström black hole with magnetic charge cor-
responding to the threshold unstable mode of a 5D black string were found in
[96].

In a general case, the size of extra compact dimensions is a spacetime parameter
which is fixed at an asymptotically flat region. However, the proper length of
the extra compact dimensions at the vicinity of a black object generally depends
on the matter and fields present. The matter or fields may increase or decrease
the local size of the compact dimensions, changing the black object instability
spectrum. This effect is illustrated on several types of black strings. For example,
the presence of magnetic and dilaton fields tends to stabilize the black string [58].
A similar behavior of the critical wave number for a black string in a spacetime of
arbitrary dimension D > 5 with magnetic or electric charge was observed in [95]
and [112], respectively.

Here, we shall study the GL instability of an electrically charged 5D black
string. The corresponding dimensionally reduced solution is S-dual to the dimen-
sionally reduced solution for a 5D black string with a magnetic charge [95]. We
consider static S-wave perturbation of the charged black string and search for the
threshold mode. The existence of the threshold mode implies existence of the in-
stability spectrum. We construct a critical curve in a topological phase transition
diagram. The curve corresponds to a nonuniform black string and separates the
charged black string phase and the corresponding charged Kaluza-Klein black hole
phase. The shape of the curve illustrates that electric charge tends to destabilize
the black string. Similar behavior can be inferred from the global thermodynamic
equilibrium condition between the charged black string and charged black hole.
The main results discussed here were published in [46].

3.2 5D charged black string solution

3.2.1 5D theory

In this section, we describe a solution for 5D electrically charged, compactified
black string. Let us consider the following action

S =
1

16πG(5)

∫ L

0

dz

∫
dx4√−g

(
R− 1

4
F 2

)
, (3.1)

where
Fµν = ∇µAν −∇νAµ. (3.2)
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Here Aµ is the 5D electromagnetic vector potential, and L is the size of the compact
dimension. The corresponding Einstein-Maxwell equations read

Rµν −
1

2
gµνR =

1

2
T (em)
µν , (3.3)

∇νF
µν = 0 , ∇[λFµν] = 0. (3.4)

The 5D electromagnetic field energy-momentum tensor is given by

T (em)
µν = F λ

µ Fνλ −
1

4
gµνF

2. (3.5)

Here and in what follows, ∇µ denotes a covariant derivative defined with respect
to the 5D metric gµν , whereas a comma stands for a partial derivative.

In a general case, the electric charge Q associated with the d-form F(d) is defined
as follows:

Q = (−1)1+d(D−d)
∫

V(D−d)

⋆F(D−d), (3.6)

where the Hodge dual to F(d) is defined by

⋆F µ1...µ(D−d) =
εµ1...µ(D−d)ν1...νd

d!
√−g Fν1...νd

. (3.7)

The magnetic charge P is defined by

P =

∫

V(d)

F(d). (3.8)

The integral over the d-form F(d) and the corresponding volume element V(d) are
defined as follows:

∫

V(d)

F(d) =

∫

V(d)

F|µ1...µd|dx
µ1 ...dxµd , V(d) =

∫

V(d)

⋆1,

(3.9)

where |µ1...µd| = µ1 < ... < µd means proper orientation, and ε|µ1...µ(D−d)ν1...νd| =
+1. In our case d = 2.

The Komar mass of a black object is defined by (see, e.g., [98])

M =
1

16πG(D)

D − 2

D − 3

∫

V∞

(D−2)

dD−2Σµν∇µkν , (3.10)
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where kµ is the timelike Killing vector normalized at spatial infinity as kµkµ =
−1. Another definition of the mass of a black object in spacetime with compact
dimensions was given in [68].

For a spacetime with compact extra dimensions of asymptotic size L, the D-
dimensional and 4D gravitational constants are related as follows

G(D) = G(4)L
D−4. (3.11)

We consider a 5D metric of the following form:

ds2 = −f1dt
2 +

dr2

f1f2

+ f2dz
2 + f3(dθ

2 + sin2 θdφ2), (3.12)

where fi = fi(r), i = 1, 2, 3, and z is the coordinate of the compact dimension
of size L. In the next subsection, we shall see that this metric can be derived
by oxidizing (uplifting) a 4D dimensional solution, which does not depend on the
compact coordinate z, to the 5D spacetime of the charged black string [102]. Such
a 4D solution is related to solutions of the so-called a-model. In our case, this is a
4D electrically charged dilaton black hole.

3.2.2 a-model

Here, we discuss the 4D a-model solution representing a dilaton black hole with
electric charge. Let us start from the 4D a-model action [102]

S̄ =
1

16πG(4)

∫
d4x
√
−ḡ
(
R̄− 1

2
(∇̄ϕ)2 − 1

4
e−2aϕF̄ 2

)
, (3.13)

where R̄ is the Ricci scalar of the 4D spacetime, ϕ is the dilaton field, and a is the
dilaton-electromagnetic field coupling constant. The electromagnetic field tensor
is

F̄ij = ∇̄iĀj − ∇̄jĀi, (3.14)

where Āi is the 4D electromagnetic vector potential. Here and in what follows,
∇̄i denotes a covariant derivative defined with respect to the 4D metric ḡij, and
i, j, k = 0, 1, 2, 3.

The Einstein-Maxwell-dilaton equations read (16πG = c = 1)

R̄ij −
1

2
ḡijR̄ =

1

2

(
T̄

(d)
ij + e−2aϕT̄

(em)
ij

)
, (3.15)

∇̄j

(
e−2aϕF̄ ij

)
= 0 , ∇̄[kF̄ij] = 0, (3.16)

∇̄2ϕ+
a

2
e−2aϕF̄ 2 = 0. (3.17)
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Here the dilaton and the 4D electromagnetic field energy-momentum tensors are
given by

T̄
(d)
ij = (∇̄iϕ)(∇̄jϕ)− 1

2
ḡij(∇̄ϕ)2, (3.18)

T̄
(em)
ij = F̄ k

i F̄jk −
1

4
ḡijF̄

2, (3.19)

respectively.
We are interested in static, spherically symmetric solutions of the equations.

One of such solutions is a dilaton black hole with electric charge. The corresponding
metric is [102]

ds̄2 = −r
v−1(r − w)

(r + h)v
dt2 +

(r + h)v

rv−1(r − w)
dr2 + r2−v(r + h)v(dθ2 + sin2 θdφ2), (3.20)

where v = 2/(1 + 4a2). The electromagnetic vector potential and the dilaton field
are given by

Āi = ∓
√
vh(4w + h)√
2(r + h)

δ t
i , ϕ = −2av ln

(
1 +

h

r

)
, (3.21)

respectively. In the particular case of zero coupling constant, a = 0, the solution
is the 4D Reissner-Nordström black hole [see Eq. (2.1)].

To proceed with the oxidation [102], let us consider the 5D metric (3.12) in the
following form:

ds2 = e
− ϕ√

3ds̄2 + e
2ϕ√

3dz2, (3.22)

where ds̄2 is the 4D metric (3.20). The following relations between the 5D and the
4D objects hold:

R = e
ϕ√
3

(
R̄− 1

2
(∇̄ϕ)2 +

√
3∇̄2ϕ

)
, (3.23)

√
−g = e

− ϕ√
3
√
−ḡ , F 2 = e

2ϕ√
3 F̄ 2. (3.24)

Applying these relations to the action (3.1), integrating over z, and using the
relationship (3.11) between the gravitational constants in 5D and 4D spacetimes,
we derive

S̄ =
1

16πG(4)

∫
dx4√−ḡ

(
R̄− 1

2
(∇̄ϕ)2 − 1

4
e
ϕ√
3 F̄ 2

)
. (3.25)

This is exactly the 4D action (3.13) with a = −1/(2
√

3).
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3.2.3 5D electrically charged black string

An oxidation of the dilaton black hole with electric charge to a 5D spacetime gives
us the electric black string solution (3.12) (see, e.g., [86], and [112] for D = 5) with

f1 =
r(r − w)

(r + h)2
, f2 = 1 +

h

r
, f3 = r(r + h) , Aµ = ∓

√
3h(w + h)

r + h
δ t
µ . (3.26)

Note that for the 5D black string and the 4D black hole solutions r > 0, h > 0,
and the corresponding event horizons are defined by r = w > 0. The parameters
h and w can be expressed in terms of the mass and the electric charge of the black
string.

The definition (3.10) and the relation (3.11) give us the black string mass,
which in our units is

M = 6π(w + 2h). (3.27)

Using the definition of electric charge (3.6) for d = 2, we derive

Q = ±4πL
√

3h(w + h). (3.28)

Expressions (3.27) and (3.28) give

w =
1

6π

√
M2 − 3(Q/L)2 , h =

1

12π

(
M −

√
M2 − 3(Q/L)2

)
. (3.29)

Thus, the magnitude of the black string electric charge is defined within the range

0 6 |Q| 6 ML√
3
. (3.30)

Calculating the energy-momentum tensor components in a local tetrad frame, we
derive the following energy density ρ, and the principal pressures pi, (i = r, z, θ, φ):

ρ = −pr = pz = pθ = pφ =
3h(w + h)

2r(r + h)3
. (3.31)

Thus, all but the radial principal pressures are positive.
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3.3 Static perturbations of the black string

3.3.1 S-wave static perturbations

To study the GL instability of a 5D charged black string, we consider gravitational
perturbations hµν ≪ 1 of the metric gµν , given by (3.12), (3.26). In general,
for a 5D metric we have 15 components of the gravitational perturbation field
hµν . Following [57], we consider S-wave perturbations only. In this case, the
perturbation field has 7 components

hµν = {htt, htr, htz, hrr, hrz, hθθ, hφφ = hθθ sin2 θ, hzz}. (3.32)

Such gravitational perturbation in general induces a perturbation in the electro-
magnetic field Fµν . In the case of the electric black string, Fµν has in general the
following induced components:

δFµν = {δFtr, δFtz , δFrz}, (3.33)

which depend on the (t, r, z) coordinates.
The Fourier mode of the S-wave propagating in z direction along the black

string reads
hµν = Re

{
aµν(r)e

−iωt+ikz} . (3.34)

This mode is unstable if ω = iΩ, where Ω > 0. The threshold of GL instability
corresponds to the time-independent (critical) mode with Ω = 0. We shall study
static S-wave perturbations of the black string and search for the critical GL mode.

In the case of static S-wave as a result of the symmetry t→ −t, the number of
the metric perturbation field components reduces to 5,

hµν = {htt, hrr, hrz, hθθ, hφφ = hθθ sin2 θ, hzz}. (3.35)

The perturbed electromagnetic field (3.33) has δFtr and δFtz components only,
which depend on (r, z) coordinates. Using the electromagnetic gauge freedom the
corresponding vector potential can be cast into the form Aµ = At(r, z)δ

t
µ .

Thus, we can present the perturbed 5D charged black string solution (3.12),
(3.26) as follows:

ds2 = −f1e
2τdt2 +

e2σdr2

f1f2
+ f2e

2β(dz − αdr)2 + f3e
2γ(dθ2 + sin2 θdφ2), (3.36)

Aµ = [At(r) + at(r, z)]δ
t
µ . (3.37)

Here, the components {τ, σ, β, α, γ, at} ≪ 1 are functions of r and z only.
Because of the freedom in coordinate choice in general relativity, there is a gauge
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freedom in the perturbation field. To fix the gauges we have to fix infinitesimal
diffeomorphisms ξµ in the coordinate transformations xµ = xµ

′

+ ξµ. In our case,
ξµ = [ξr(r, z), ξz(r, z)]. These diffeomorphisms induce gauge transformations in
the metric gµν and in the vector potential Aµ as follows:

δgµν = (Lξg)µν = ∇µξν +∇νξµ, (3.38)

δAµ = (LξA)µ = Aµ,νξ
ν + Aνξ

ν
,µ. (3.39)

As a result, the components of the perturbation field transform in the following
way:

δτ =
1

2
ξrf1,rf2 , δσ = ξr,rf1f2 +

1

2
ξr(f1f2),r, (3.40)

δγ =
1

2
ξrf1f2f

−1
3 f3,r , δβ = ξz,zf

−1
2 +

1

2
ξrf1f2,r, (3.41)

δα = f−2
2 (ξzf2,r − ξz,rf2 − ξr,zf2). (3.42)

In the case of the 5D electric black string the only non-vanishing induced electro-
magnetic perturbation, at, transforms as

δat = ξrf1f2At,r. (3.43)

The induced electromagnetic perturbation at corresponds to the perturbation of
the timelike (electrostatic) component of Aµ.

Our system of equations contains 6 ‘field’ variables {τ, σ, β, α, γ, at} with the
gauge freedom (3.40)-(3.43) generated by 2 functions ξr and ξz of 2 variables r and
z. As usual for such a case, there exist 6− 2 · 2 = 2 ‘physical’ degrees of freedom
(see, e.g., [27]). We shall demonstrate that one can choose γ and at as such physical
degrees of freedom. Namely, we show that these objects obey 2 decoupled, second
order ordinary differential equations. As we show later, one of the equations (for
at) does not have unstable modes, while the other one, the master equation for γ,
is responsible for the existence of the GL unstable threshold mode.

3.3.2 Master equation for the electric black string

Here we use the same gauge as in [95]. Namely, we define τ = τ ′ + δτ = 0,
which fixes ξr through Eq. (3.40). This gauge preserves the gravitational redshift
function f1 under the perturbation field. The next gauge choice is β = β ′+δβ = 0,
which fixes ξz through Eq. (3.41). This gauge preserves the metric along the z
coordinate. Thus, we are left with {σ, α, γ, at}. Assuming that the amplitudes
in the Fourier modes (3.34) of the perturbation field are real-valued functions, we
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have

σ = σ̃(r) cos(kz) , α = −α̃(r)k sin(kz), (3.44)

γ = γ̃(r) cos(kz) , at = ãt(r) cos(kz). (3.45)

Here, the form of the Fourier mode of α reflects the fact that δα is an antisymmetric
function of z.

Our goal is to derive the master equation corresponding to the perturbation
field. Currently we have three components of the gravitational perturbation field,
{σ, α, γ}, and one component of the induced electrostatic perturbation, at. They
solve system of the Einstein-Maxwell equations.

We employed the GRTENSORII package to derive a reduced system of the
Einstein-Maxwell equations for the first order gravitational perturbation of metric
(3.12), (3.26) corresponding to the electric black string. As a result, we have five
components, {tt, rr, rz, θθ, zz}, of the Einstein equations and one, {t}, component
of the Maxwell equations ∇νF

µν = 0. The Maxwell equations ∇[λFµν] = 0 are
satisfied identically. Using the {rz} component of the Einstein equations, we can
express σ̃ in terms of γ̃ and ãt,

σ̃ =
16πL(r − w)(rγ̃,r + γ̃)−Qãt

4πL(4r − 3w)
, (3.46)

substitute the result into the {rr} component of the Einstein equations, and solve
it for α̃ in terms of γ̃ and ãt,

α̃ = −2w(2r − 3w)γ̃,r − [4w − 4k2r2(4r − 3w)]γ̃

k2(4r − 3w)2
+
Q[(4r − 3w)ãt,r + 4ãt]

4πLk2(4r − 3w)2
.

(3.47)

Thus, we can express σ̃ and α̃ in terms of γ̃ and ãt. Substituting the result into the
remaining Einstein-Maxwell equations, we see that the {zz} component is satisfied
identically, whereas the components {tt} and {θθ} together with the {t} component
of the Maxwell equation represent a system of three mutually compatible equations
for γ̃ and ãt. An analysis of the equations shows that we can eliminate γ̃ and derive
a single equation for ãt,

r − w
r

ãt,rr +
2(r − w)(w + 2h)

r(wr + 2hr − wh) ãt,r = k2ãt. (3.48)

Thus, the electrostatic perturbation decouples from the gravitational one. As we
illustrate in Appendix F, there are no unstable threshold modes. Thus we can take
ãt = 0.
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As a result, the {tt} and {θθ} components of the Einstein equations and the
{t} component of the Maxwell equations become equivalent and give us the master
equation for the static S-wave gravitational perturbation of the electric black string,

r − w
r

γ̃,rr −
w(2r − 3w)

r2(4r − 3w)
γ̃,r +

2w

r2(4r − 3w)
γ̃ = k2γ̃.

(3.49)

Remarkably, this equation has only one parameter w, whereas the black string
metric (3.12), (3.26) has two, w and h.

3.4 Numerical analysis

We shall integrate the master equation (3.49) numerically, applying the shooting
method [108]. To proceed we map the semi-infinite interval r ∈ [w,+∞) into
a finite one and rewrite the master equation in a dimensionless form using the
following transformations:

r =
w

1− x , k =
κ

w
, (3.50)

where x ∈ [0, 1]. Here, x = 0 corresponds to the black string event horizon. The
master equation (3.49) takes the form

x2γ̃,xx + xP (x)γ̃,x +Q(x)γ̃ = 0, (3.51)

where

P (x) = − (3x2 + 6x− 1)

(1− x)(1 + 3x)
, (3.52)

Q(x) =
2x

(1− x)(1 + 3x)
− xκ2

(1− x)4
. (3.53)

This equation has a regular singular point at x = 0 and an irregular singular
point at x = 1. We are looking for regular solutions which are finite everywhere,
together with their derivatives, and which vanish at infinity. Namely, γ̃(1) = 0.
Applying the method of Frobenius, we can construct an approximate solution near
the horizon. The solution reads

γ̃(x) ≈ C0 − C0(2− κ2)x+ · · · , (3.54)
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where C0 is an arbitrary constant, which we take to be equal to one. From (3.54)
we derive the following boundary conditions on the black string event horizon:

γ̃(0) = 1 , γ̃,x(0) = κ2 − 2. (3.55)

Using the boundary conditions and implementing the shooting code written in
FORTRAN, we found κcr ≈ 0.876 for the critical GL mode. This result coincides
with that of [75] for a neutral 5D black string.

To obtain a critical wave number kcr, we use the transformations (3.50), and
derive

kcr =
κcr

w(M,Q)
. (3.56)

Here, w(M,Q) is given by Eq. (3.29). The critical unstable mode corresponds to
the highest mode in the instability spectrum Ω = Ω(k), i.e., to the lowest frequency
Ω = 0. For the second order equations for the static spacetime (3.12), (3.26) the
dispersion relation Ω = Ω(k) has two roots, k = 0 and k = kcr. The region
k ∈ [0, kcr] defines the instability spectrum. If we set the asymptotic size of the
compact dimension L = Lcr ≡ 2π/kcr, then for such a spacetime (with fixed M
and Q) there will be only one unstable mode, the critical one. For spacetime with
L > Lcr, additional unstable modes are possible, and for spacetime with L < Lcr,
there are no unstable modes at all. The relation (3.56) can be presented in the
following dimensionless form:

µ =
√

9κ2
cr + 3q2. (3.57)

Here we introduced the dimensionless mass µ = M/L and the dimensionless electric
charge q = Q/L2. Line (1) in Figure 3.1 represents this relation for the dimension-
less critical wave number κcr ≈ 0.876. We see that addition of electric charge to a
neutral 5D black string makes it less stable. Namely, for a given mass M > Mcr

corresponding to a stable neutral black string, gradual addition of electric charge
shifts the black string close to the critical curve, and for Q > Qcr(Mcr) the black
string becomes unstable.

3.5 Thermodynamics of the black strings

Black strings are higher dimensional objects which have an event horizon. Thus,
as in the case of a black hole, they can be considered as thermodynamical systems
which have entropy and temperature (see, e.g., [116]). The entropy is defined as
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Figure 3.1: Dynamical critical curve (1) for the electric black string−electric black
hole topological phase transition corresponding to κcr ≈ 0.876. Here, µ = M/L,
q = Q/L2. The thermodynamical curve (2) corresponds to the relation (3.66).
Line (3), µ = q

√
3, corresponds to the extreme value of the electric charge [see

Eqs. (3.30), (3.64)]. Curves (1) and (2) asymptotically approach line (3). The re-
gion above curve (1) represents dynamically stable black string topological phase,
whereas the region between the curves (1) and (3) represents dynamically stable
black hole topological phase. Analogously, curve (2) separates the regions of ther-
modynamically stable black string topological phase (above the curve), and the
region of thermodynamically stable black hole topological phase [below the curve,
up to the line (3)]. The region below the line (3) represents naked spacetime
singularities.

follows:

S =
AH

4G(D)

, (3.58)

where AH is the event horizon surface area. For the electric black string we have

SEBS = 16π2
√
w(w + h)

3
2 =

√
2

9

[
M2 − 3(Q/L)2

]1
4

[
M +

√
M2 − 3(Q/L)2

]3
2
.

(3.59)

We assume that an unstable 5D electric black string may undergo a topological
phase transition into an electrically charged 5D black hole. We can compare the
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entropy (3.59) with that of the electrically charged black hole SEBH , and define the
micro-canonical equilibrium condition for the electric black string as SEBS > SEBH .
The corresponding critical curve is defined as SEBS = SEBH .

Unfortunately, an exact solution of a 5D electrically charged black hole in
spacetime with one compact dimension is unknown. Analytical approximations
for an electrically neutral black hole are given in [55, 56, 84]. However, we can
make an estimate for the micro-canonical critical curve by comparing the electric
black string entropy, SEBS, with that of a 5D Reissner-Nordström black hole. We
take the mass and the electric charge of the black hole equal to those of the black
string and use the relation (3.11).

The 5D Reissner-Nordström black hole metric is (see, e.g., [102])

ds2 = −r
2(r2 − w̃)

(r2 + h̃)2
dt2 +

r2 + h̃

r2 − w̃dr
2 + (r2 + h̃)(dψ2 + sin2 ψ[dθ2 + sin2 θdφ2]),

(3.60)

where ψ ∈ [0, π] is the third angular coordinate for a 3D round sphere. The
corresponding electromagnetic vector potential is given by

Aµ = ∓

√
3h̃(w̃ + h̃)

r2 + h̃
δ t
µ . (3.61)

The black hole horizon is located at r =
√
w̃. The Komar mass (3.10) and the

electric charge (3.6) are

M =
6π2

L
(w̃ + 2h̃) , Q = ±4π2

√
3h̃(w̃ + h̃). (3.62)

Thus, we have

w̃ =
L

6π2

√
M2 − 3(Q/L)2 , h̃ =

L

12π2

(
M −

√
M2 − 3(Q/L)2

)
. (3.63)

Hence, the black hole electric charge is defined within the range

0 6 |Q| 6 ML√
3
. (3.64)
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For the 5D Reissner-Nordström black hole we have

S =
8π3

L
(w̃ + h̃)

3
2 =

L
1
2

3
√

3

[
M +

√
M2 − 3(Q/L)2

]3
2
.

(3.65)

According to expressions (3.30) and (3.64), the electric charge of the black string
and the black hole is defined in the same range. Approximating SEBH with ex-
pression (3.65), we derive the micro-canonical critical curve. In dimensionless form
the curve is given by

µ =
√

9/4 + 3q2. (3.66)

This curve is shown in Figure 3.1 [curve (2)] together with the critical curve (3.57)
of the dynamical perturbation. These curves are hyperbolae. They have qualita-
tively similar behavior and illustrate that an electrically charged black string is less
stable than a neutral one. Let us note that line (1) for the dynamical instability
is always higher than line (2).

3.6 5D extremal electrically charged black string

In this section, we discuss a 5D extremal electrically charged black string. An
extremal black p-brane with dilaton and charge associated with n-form was stud-
ied in [59]. It was demonstrated that such a p-brane is stable against S-wave
gravitational perturbations.

Let us consider the limiting case of the expression (3.30),

|Q| = ML√
3
, (3.67)

which corresponds to the extremal electrically charged black string. In this case,
the parameters of the black string are the following:

w = 0 , h =
M

12π
, (3.68)

and the corresponding solution is given by (3.12), where

f1 =
r2

(r + h)2
, f2 = 1 +

h

r
, f3 = r(r + h) , Aµ = ∓

√
3h

r + h
δ t
µ . (3.69)

This solution belongs to the family of 5D extremal electrically charged solutions



CHAPTER 3. 5D ELECTRICALLY CHARGED BLACK STRING 76

discussed in [97]. According to the theorem proven in [97], all higher dimensional
(D > 5) extremal solutions, except a sequence of any number of extremal Reissner-
Nordström black holes, have singular event horizons. This theorem is an extension
of the theorem by Hartle and Hawking, which was proven in [70] for 4D spacetimes.
We present the 5D compactified extremal Reissner-Nordström black hole solution
in Appendix G. The energy-momentum tensor components in a local tetrad frame
are [cf. Eq. (3.31)]

ρ = −pr = pz = pθ = pφ =
3h2

2r(r + h)3
. (3.70)

Here we consider S-wave static gravitational perturbations of the spacetime
(3.12), (3.69) and search for an unstable threshold mode. The extremal black
string horizon is defined by r = 0. One can check that the surface horizon area is
zero, and so is the black string entropy. Thus, we may expect that the spacetime
is unstable. To study S-wave static perturbations of the spacetime, one can follow
the procedure presented in Section 3.3, or one can take the limit w → 0 in the
expressions therein, which gives the same result. For w = 0, expressions (3.46)-
(3.49) read

σ̃ = rγ̃,r + γ̃ − Qãt
4πL

, (3.71)

α̃ = −rγ̃ +
Q(rãt,r + ãt)

16πLk2r2
, (3.72)

ãt,rr +
2

r
ãt,r = k2ãt, (3.73)

γ̃,rr = k2γ̃. (3.74)

We shall look for solutions to these equations which are finite at the horizon r = 0
and which vanish at asymptotically flat infinity, r → +∞. The general solution to
Eq. (3.73) has the following form

ãt =
C1

r
sin(
√
−k2r) +

C2

r
cos(
√
−k2r), (3.75)

where C1 and C2 are arbitrary constants. Imposing the following boundary condi-
tions,

ãt|r→0 = const = 1 , ãt|r→+∞ = 0, (3.76)

we derive

ãt =
sin(
√
−k2r)√
−k2r

, (3.77)

where
√
−k2 is real, i.e., k is imaginary. Thus, there are no unstable threshold
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modes for nontrivial induced electrostatic perturbation ãt. As in the case of the
non-extremal electrically charged black string, we take ãt = 0. The general solution
to the master equation (3.74) is

γ̃ = C̃1e
√
k2r + C̃2e

−
√
k2r, (3.78)

where C̃1 and C̃2 are arbitrary constants. Imposing the following boundary condi-
tions

γ̃|r→0 = const = 1 , γ̃|r→+∞ = 0, (3.79)

we derive
γ̃ = e−

√
k2r, (3.80)

where
√
k2 is real, i.e., k is real. For a fixed asymptotic size of the compact

dimension L, we have the maximal wave number kmax = 2π/L in the instability
spectrum. According to the solution (3.80), there is a continuous spectrum of
unstable threshold modes defined by k ∈ (0, kmax]. Using expressions (3.71), (3.72),
and (3.44) we derive the following perturbation fields

τ = 0 , σ = (1− kr)e−kr cos(kz) , β = 0,

α = kre−kr sin(kz) , γ = e−kr cos(kz) , ãt = 0. (3.81)

The continuous spectrum of the unstable threshold modes indicates that the cor-
responding system, the 5D extremal electrically charged black string, is highly
unstable, as we expected because of its zero entropy. In fact, we have a highly un-
stable spacetime with a naked singularity. According to the expressions (3.69) and
(3.70), the proper length along the compact dimension and the energy momentum
tensor components diverge at the horizon of the extremal electrically charged black
string. An analysis of dynamical evolution of such a singular spacetime, especially
its final state, is an interesting open question.

3.7 5D magnetic black string

It is interesting to compare the obtained topological phase diagram (Figure 3.1)
with a similar diagram for a 5D magnetically charged black string. Let us recall
some properties of the 5D magnetic black string, which was studied (in the case
of general D > 5) in [95]. The magnetic black string metric can be derived as
follows. The dimensionally reduced magnetic black string gives a 4D dilaton black
hole with magnetic charge which is another solution to the 4D a-model discussed
above. This solution is S-dual to the 4D dilaton black hole with electric charge,
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Eqs. (3.20)-(3.21). Applying the S-duality transformation [102]

F̄ ′ = e−2aϕ ⋆ F̄ , ϕ′ = −ϕ, (3.82)

to the 4D dilaton black hole with electric charge, one derives the electromagnetic
potential and the dilaton field

Āi = ±
√
vh(4w + h) cos θδ φ

i , ϕ = 2av ln

(
1 +

h

r

)
, (3.83)

of the 4D dilaton black hole with magnetic charge. The duality transformation
does not change the 4D metric (3.20). Oxidizing the metric to a 5D spacetime, we
derive the magnetic black string solution (3.12) (see, e.g., [95] for D = 5), where

f1 =
r − w
r + h

, f2 =
r

r + h
, f3 = (r + h)2 , Aµ = ±

√
3h(w + h) cos θδ φ

µ . (3.84)

Using Eqs. (3.10), (3.11) and (3.8), we derive the mass M and the magnetic charge
P of the black string,

M = 6π(w + h) , P = ∓4π
√

3h(w + h). (3.85)

Figure 3.2: Dynamical critical curve (1) for the magnetic black string−black hole
topological phase transition. Here, µ = M/L, p = P/L. Line (2) corresponds to
p = 2µ/

√
3. The region enclosed by the curve (1) represents a dynamically stable

black hole topological phase, whereas the region outside the curve (1) represents a
dynamically stable black string topological phase.

We take the magnetic black string mass equal to the mass of the electric black
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string. Using (3.85), we derive

w =
1

6πM

(
M2 − 3

4
P 2

)
, h =

P 2

8πM
. (3.86)

To preserve the spacetime signature, we define w > 0 corresponding to

0 6 |P | 6 2M√
3
. (3.87)

The energy-momentum tensor components calculated in a local tetrad frame are

ρ = −pr = pθ = pφ = −pz =
3h(w + h)

2(r + h)4
. (3.88)

Thus, in contrast to the electric black string [see Eq. (3.31)], the principal pressure
pz is negative.

To present the critical mode of the magnetic black string in the (M,P ) pa-
rameter space, we have to construct a relation between the dimensionless mass
µ = M/L and the dimensionless magnetic charge p = P/L for L = Lcr. We
use Eq. (3.86) and the numerical results of [95]. The relation has the following
parametric form:

µ =
3κcr(m)

1−m , p =
2κcr(m)

√
3m

1−m , (3.89)

where

m =
h

h + w
. (3.90)

Figure 3.2 illustrates the relation (3.89). We see that in contrast to electric charge,
magnetic charge tends to stabilize black string.

We do not know the final state of the topological phase transition of the mag-
netically charged black string. A 5D magnetic black hole, dual to a 5D Reissner-
Nordström black hole, does not belong to the same theory. Namely, the corre-
sponding electromagnetic tensor is a 3-form, whereas for the 5D magnetic black
string considered above it is a 2-form. One may propose a scenario where the
final state of the topological phase transition is a neutral black hole pierced by a
magnetically charged string which wraps around the compact dimension. Such a
scenario tacitly assumes that the topology of the magnetic charge is stable.

3.8 Discussion

The thermodynamical and dynamical correspondence observed for the electric
black string (see Figure 3.1) shows that as in the case of a neutral black string
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discussed in [57], one may expect a decay of an electric black string into the cor-
responding Kaluza-Klein black hole. But as it is in the case of a neutral black
string, the question whether such a transition is possible remains open [74]. One
may expect that because such a transition is associated with extreme spacetime
curvatures of a nonuniform black string horizon at the pinch regions (see, e.g., the
4D compactified Schwarzschild black hole discussed in Section 1.9), to describe
such a transition quantum gravity considerations may be necessary.

Our results show that, in contrast to the magnetic black string, the electric
black string is less stable than a neutral one. Namely, an electric charge tends to
destabilize black string, whereas a magnetic charge makes it more stable. This can
be deduced from the form of gzz components of the corresponding metrics. For
the electric black string, gzz = f2 > 1, [see Eq. (3.26)] which makes the proper
length along the compact dimension greater than Lcr. As a result, the electric
black string is thinner than a neutral one, and hence less stable. For the magnetic
black string, gzz = f2 6 1, [see Eq. (3.84)] which makes the proper length along
the compact dimension smaller than Lcr, and as a result, the string is thicker than
a neutral one, and hence more stable. This may also be related to the fact that
the principal pressure pz is positive for the electric black string and negative for
the magnetic black string [see Eqs. (3.31) and (3.88)].

The S-duality transformation (3.82), between dimensionally reduced versions
of the electric and magnetic black strings, is broken after oxidization. In fact,
we have such symmetry only in 4D spacetimes for black holes, in 6D spacetimes
for black strings, etc. [102]. It is interesting to study whether there remains any
connection between the instability spectrum properties of the electric and magnetic
black strings induced by this S-duality.

Finally, it is interesting to analyze the relation between the threshold unstable
mode of the electrically charged black string and the negative mode of the cor-
responding Euclidean dilaton black hole with electric charge. To do this one can
follow the procedure given in [111]. However, our gauge is not suitable for such
analysis.
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Conclusion

Let us now summarize the main results presented in this thesis.
In the first two chapters we studied the interior of 4D Schwarzschild and

Reissner-Nordström black holes distorted by external, static, axisymmetric fields.
We found that in the case of a Schwarzschild black hole, there is a duality relation
between its event horizon and singularity. A similar relation exists for distorted
Reissner-Nordström black hole between its event and Cauchy horizons. One may
expect that, if the electric charge of the Reissner-Nordström black hole vanishes,
the black hole becomes Schwarzschild, and the duality relation between the event
and Cauchy horizons ‘transforms’ into the duality relation of the Schwarzschild
black hole between its event horizon and singularity. As we illustrated, in the
case of a distorted Reissner-Nordström black hole, such a duality relation plays a
crucial role in the Cauchy horizon stability. Namely, it shows that the spacetime
geometry near the event horizon is correlated with the spacetime geometry near
the Cauchy horizon. This correlation implies that the Cauchy horizon remains
regular for such type of distortion. Whenever the Cauchy horizon remains regular
for a more general type of static distortion is an interesting open question. One
may conjecture that the instability of the Cauchy horizon is purely dynamical by
nature. However, to prove such a conjecture is a rather nontrivial problem. In ad-
dition, it would be interesting to study the interior of a rotating charged distorted
black hole, which admits the Weyl form of the metric.

We found, with the examples of octupole and quadrupole distortions, that such
distortion fields noticeably change the proper time of free fall of a test particle from
the event horizon to the singularity of a distorted Schwarzschild black hole, as well
as the proper time of a free fall from the event to the Cauchy horizon of a distorted
Reissner-Nordström black hole.

An analysis of the distorted Schwarzschild black hole near its singularity shows
that the corresponding metric has the Kasner form of an undistorted Schwarzschild
black hole. It is an interesting open question if an asymmetric, static distortion
will preserve the Kasner form of the metric near the corresponding black hole
singularity.

We demonstrated, with the example of a compactified 4D Schwarzschild black
hole, that the physical singularity becomes naked when the north and the south
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poles of the black hole come close to each other. It is important to study whether
this happens for a higher-dimensional compactified black hole, which may be a
topological phase of the corresponding unstable black string. If this is the case, we
may question the validity of the classical analysis of the merger transition between
the black string and the compactified black hole.

In Chapter 3 we studied the Gregory-Laflamme instability of a 5D black string
with magnetic or electric charge. We illustrated that an electric charge tends to
destabilize black string, whereas a magnetic charge makes it more stable. This
result may be related to the fact that the principal pressure pz is positive for
the electric black string and negative for the magnetic black string. It may be
stimulating to analyze which properties of the matter field are responsible for such
an effect.

The analysis of the Gregory-Laflamme instability of a 5D extremal electrically
charged black string shows the presence of a continuous spectrum of the unsta-
ble threshold modes. This indicates that the black string, which has a singular
event horizon, is highly unstable. It would be interesting to study the dynamical
evolution of such extremal black string.
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Appendix A

Relation between the multipole

moments

In this appendix, we present the relation between two different representations of
the distortion field Û given by expressions (1.42) and (1.44). Using the expansion
of the Legendre polynomials of the first kind (see, e.g., [7], p. 419),

Pl(x) =
1

2l

⌊l/2⌋∑

k=0

(−1)k(2l − 2k)!

k!(l − k)!(l − 2k)!
xl−2k, (A.1)

where ⌊x⌋ is the floor function (see List of Symbols and Abbreviations), we derive

RnPn(η cos θ/R) =

n∑

s=0

As,nPs(η)Ps(cos θ), (A.2)

where R = (η2 − sin2 θ)1/2. Here, according to the property of the Legendre
polynomials, Pn(±1) = (±1)n, the coefficients As,n satisfy the relation

n∑

s=0

As,n = 1, (A.3)

where the sum is over even s if n is even, and it is over odd s if n is odd. These
coefficients can be calculated with the aid of the following recurrence expressions:
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for even n, A0,0 = 1, and for n > 2,

An−2q,n = 2n−4q

[
(n− 2q)!(n− 2q)!

(2n− 4q)!

]2

×
[

min{n/2−q,q}∑

m=0

(2n− 2q − 2m)!

m!m!(q −m)!(n− q −m)!(n− 2q − 2m)!

−
n/2∑

s=n/2−q+1

A2s,n

(
(n+ 2s− 2q)!

22s−n/2(n− 2q)!(s− n/2 + q)!(s+ n/2− q)!

)2
]
, (A.4)

where the integer q ∈ [1, n/2], and

An,n =
n!n!2n

(2n)!
; (A.5)

for odd n, A1,1 = 1, and for n > 3,

An−2q,n = 2n−4q

[
(n− 2q)!(n− 2q)!

(2n− 4q)!

]2

×
[

min{(n−1)/2−q,q}∑

m=0

(2n− 2q − 2m)!

m!m!(q −m)!(n− q −m)!(n− 2q − 2m)!

−
(n−1)/2∑

s=(n+1)/2−q

A2s+1,n[(n+ 2s+ 1− 2q)!]2

[22s−n/2+1(n− 2q)!(s− (n− 1)/2 + q)!(s+ (n+ 1)/2− q)!]2

]
, (A.6)

where q ∈ [1, (n− 1)/2], and

An,n =
n!n!2n

(2n)!
. (A.7)

Thus, we have the following relation [see Eqs. (1.42), (1.44), and (A.2)]

Û(η, θ) =

N∑

n=0

cn

n∑

s=0

As,nPs(η)Ps(cos θ) =

N∑

n=0

anPs(η)Ps(cos θ), (A.8)

where N is the order of approximation of the distortion field. The multipole
moments an’s and cn’s are uniquely related to each other though the following
formulas:



APPENDIX A. RELATION BETWEEN THE MULTIPOLE MOMENTS 92

for even N > 0, and the even multipole moments,

a2n =

N/2∑

k=n

c2kA2n,2k , n ∈
[
0,
N

2

]
, (A.9)

for N > 2, and the odd multipole moments,

a2n+1 =

N/2−1∑

k=n

c2k+1A2n+1,2k+1 , n ∈
[
0,
N

2
− 1

]
, (A.10)

for odd N > 1,

a2n =

(N−1)/2∑

k=n

c2kA2n,2k , n ∈
[
0,
N − 1

2

]
, (A.11)

a2n+1 =

(N−1)/2∑

k=n

c2k+1A2n+1,2k+1 , n ∈
[
0,
N − 1

2

]
. (A.12)

The multipole moments cn’s can be defined in terms of an’s by the following
recurrence formulas:
for N = 0, c0 = a0, and for even N > 2, and the even multipole moments,

c2n = A−1
2n,2n


a2n −

N/2∑

k=n+1

c2kA2n,2k


 , n ∈

[
0,
N

2
− 1

]
, cN =

aN
AN,N

,

(A.13)

for N > 4, and the odd multipole moments,

c2n+1 = A−1
2n+1,2n+1


a2n+1 −

N/2−1∑

k=n+1

c2k+1A2n+1,2k+1


 ,

n ∈
[
0,
N

2
− 2

]
, cN−1 =

aN−1

AN−1,N−1
; (A.14)

for N = 1, c0 = a0, c1 = a1, and for odd N > 3, and the even multipole moments,

c2n = A−1
2n,2n


a2n −

(N−1)/2∑

k=n+1

c2kA2n,2k


 , n ∈

[
0,
N − 3

2

]
, cN−1 =

aN−1

AN−1,N−1
,

(A.15)
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and for the odd multipole moments,

c2n+1 = A−1
2n+1,2n+1

[
a2n+1 −

(N−1)/2∑

k=n+1

c2k+1A2n+1,2k+1

]
,

n ∈
[
0,
N − 3

2

]
, cN =

aN
AN,N

. (A.16)

These relations together with conditions (1.50) and (1.51) imply the following
expressions:

⌊(N−1)/2⌋∑

n=0

a2n+1 =

⌊(N−1)/2⌋∑

n=0

c2n+1 = 0, (A.17)

and
⌊N/2⌋∑

n=0

a2n =

⌊N/2⌋∑

n=0

c2n. (A.18)

These expressions imply,
N∑

n=0

an =

N∑

n=0

cn = u0. (A.19)

Example: Octupole approximation

Let us preset the relation (A.8) for an octupole approximation, N = 3. We start
with the representation (1.44):

Û = c0 + c1RP1(η cos θ/R) + c2R
2P2(η cos θ/R) + c3R

3P3(η cos θ/R), (A.20)

where according to the conditions (1.50) and (1.51), c1 = −c3. Applying Eqs.
(A.4)-(A.7) we derive

A0,0 = A1,1 = 1 , A0,2 =
1

3
, A2,2 =

2

3
, A1,3 =

3

5
, A3,3 =

2

5
, (A.21)

and Eqs. (A.11), (A.12) give

a0 = c0 +
1

3
c2 , a2 =

2

3
c2 , a1 = −a3 = −2

5
c3. (A.22)
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The conditions (A.17) and (A.18) are easily verified. Finally, with the aid of Eq.
(A.8) we derive

Û = a0 − a3P1(η)P1(cos θ) + a2P2(η)P2(cos θ) + a3P3(η)P3(cos θ), (A.23)

where an’s are defined through cn’s by the relations (A.22). The inverse relations
are

c0 = a0 −
1

2
a2 , c2 =

3

2
a2 , c1 = −c3 = −5

2
a3. (A.24)
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Appendix B

Expansions of the distortion fields

U and V̂

In this appendix, we present expansions of the distortion fields U and V̂ near the
horizon and the singularity of the distorted Schwarzschild black hole. Using the
the transformations (1.58), we present Eq. (1.34) in the following form:

DψÛ = DθÛ , (B.1)

DψÛ = Û,ψψ + cotψ Û,ψ , (B.2)

DθÛ = Û,θθ + cot θ Û,θ . (B.3)

Then, from Eq. (B.2) we see that DψÛ = D−ψÛ . Thus, a solution to Eq. (B.1)
can be presented as a sum of two solutions, one being odd and the other being an
even function of ψ. Because of the presence of the factor cotψ in Dψ, this operator
is singular at ψ = 0. Hence, the solution regular at the horizon must be an even
function of ψ. Indeed, using the transformations (1.58) the solution (1.42) reads

Û(ψ, θ) =
∑

n>0

anPn(cosψ)Pn(cos θ), (B.4)

The solution (B.4) can be used to find the asymptotic behavior of U near the hori-
zon, ψ = 0, and the singularity, ψ = π. To deal with both the cases simultaneously,
we denote ψ+ = ψ and ψ− = π − ψ. The function U is an even function of ψσ
(σ = ±), and it has the following expansion:

U =

∞∑

n=0

U (2n)
σ ψ2n

σ . (B.5)
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Here U
(2n)
σ are functions of the angular variable θ. The operator Dψ in (B.2) has

the same form Dσ for both the variables ψσ,

Dσ = ∂2
ψσ

+ cotψσ ∂ψσ
. (B.6)

Using the series expansion for cotψσ,

cotψσ = ψ−1
σ [1−

∞∑

m=1

c2mψ
2m
σ ] , c2m =

(−1)m−122mB2m

(2m)!
, (B.7)

where B2m are the Bernoulli numbers,

B2 =
1

6
, B4 = − 1

30
, B6 =

1

42
. . . , (B.8)

the relation

Dσψ
2n
σ = 4n2ψ2(n−1)

σ − 2n

∞∑

m=1

c2mψ
2(n+m−1)
σ , (B.9)

and equation (B.1), one obtains

U (0)
σ = uσ , (B.10)

U (2)
σ =

1

4
(uσ,θθ + cot θuσ,θ) , (B.11)

U (4)
σ =

1

16

(
U

(2)
σ,θθ + cot θU

(2)
σ,θ +

2

3
U (2)
σ

)
, (B.12)

...

U (2n+2)
σ =

1

4(n+ 1)2
[DθU

(2n)
σ + 2

n∑

m=1

(n−m+ 1)c2mU
(2(n−m+1))
σ ] . (B.13)

Similarly, the asymptotic expression for V̂ near the horizon and the singularity can
be written in the form

V̂ =
∞∑

n=0

V (2n)
σ ψ2n

σ , (B.14)

where V
(2n)
σ are functions of the angular variable θ. Substituting the expansion

(B.5) into Eqs. (1.35), (1.36), and integrating with the boundary condition (1.74)
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one can determine the functions V
(2n)
σ . The first three of these functions are

V (0)
σ = 2σuσ , (B.15)

V (2)
σ = 2σU (2)

σ − σ cot θuσ,θ +
1

2
(uσ,θ)

2 =
1

2
[σ(uσ,θθ − cot θuσ,θ) + (uσ,θ)

2] , (B.16)

V (4)
σ =

1

12
{σ[24U (4)

σ + 6(1 + 2 cot2 θ)U (2)
σ − 6 cot θU

(2)
σ,θ − (5 + 6 cot2 θ) cot θ uσ,θ]

+ 6uσ,θU
(2)
σ,θ + (1 + 3 cot2 θ)(uσ,θ)

2 − 12 cot θU (2)
σ uσ,θ + 12(U (2)

σ )2} . (B.17)
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Appendix C

Geodesic motion near the

singularity

In this appendix, we derive an approximate solution for ‘radial’ timelike geodesic
motion near the singularity of the distorted Schwarzschild black hole. For a free
particle moving in the black hole interior there exist two integrals of motion related
to the spacetime symmetry,

E = −pT = −ξα(T )pα = const , L = pφ = ξα(φ)pα = const . (C.1)

The first integral has the meaning of the conserved momentum pT along the T
axis, and the second one is the angular momentum pφ.

Consider a point (ψo−, θ
o, T o, φo) near the singularity of a distorted black hole.

What is the proper time τ o required to fall from this point to the singularity? This
time depends on the value of E and L. We consider the proper time for the special
value of these parameters E = L = 0. In this case, for a moving particle T = const
and φ = const. For the Schwarzschild geometry this is radial motion. We also call
the motion in the interior of a distorted black hole ‘radial’ when E = L = 0. This
type of motion is a geodesic in the 2D metric

dγ2 = B−(dθ2 − dψ2
−) , (C.2)

obtained by dimensional reduction (T = const, φ = const) from the metric (1.100).
Let us denote

α =
1

2
(lnB−),ψ−

, β =
1

2
(lnB−),θ . (C.3)

Then the Christoffel symbols for the metric dγ2 are

Γ
ψ−

ψ−ψ−
= Γθ θψ−

= Γ
ψ−

θθ = α , (C.4)

Γθ ψ−ψ−
= Γθ θθ = Γ

ψ−

θψ−
= β . (C.5)
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The geodesic equation
ẍα + Γαβγ ẋ

β ẋγ = 0 (C.6)

for the metric (C.2) takes the following form:

ψ̈− + α(ψ̇2
− + θ̇2) + 2βψ̇−θ̇ = 0 , (C.7)

θ̈− + β(ψ̇2
− + θ̇2) + 2αψ̇−θ̇ = 0 . (C.8)

Here the over-dot denotes a derivative with respect to the proper time τ . These
equations obey the constraint

B−(ψ̇2
− − θ̇2) = 1 , (C.9)

that is, the normalization condition, uαu
α = −1, for the 4-velocity uα.

Using the expansions (1.101)-(1.103) for the metric (1.100) near the singularity,
we derive

lnB− = 4 lnψ− − 6u− − ln 16 +O(ψ2
−) . (C.10)

Thus, in the leading order α ≈ 2/ψ− and β ≈ −3u−,θ. In the leading order the
geodesic equations (C.7) and (C.8) and the constraint (C.9) take the following
form:

ψ−ψ̈− + 2(ψ̇2
− + θ̇2)− 6u−,θψ−ψ̇−θ̇ ≈ 0, (C.11)

ψ−θ̈ − 3u−,θψ−(ψ̇2
− + θ̇2) + 4ψ̇−θ̇ ≈ 0, (C.12)

e−6u−ψ4
−(ψ̇2

− − θ̇2) ≈ 16, (C.13)

respectively. According to the expansion (C.10), the order of approximation in
the geodesic equations corresponds to the order of approximation of the metric
(1.100).

We use the ambiguity in the choice of τ to put τ = 0 at the singularity for each
of the ‘radial’ geodesics approaching the singularity. Since τ grows along geodesics
directed to the singularity, it is negative before the geodesic reaches the singularity.

The point τ = 0 is a singular point of equations (C.11)-(C.13). To find an ap-
proximate solution to the geodesic equations one can apply the method of asymp-
totic splittings described in [25]. A ‘radial’ geodesic approaching the singularity
is uniquely determined by the limiting value θ0 = θ at τ = 0. The asymptotic
expansions of ψ− and θ near τ = 0 have the following form:

ψ− = τ̃ 1/3 +
2

5
u2
−,ϑ(ϑ)τ̃ +O(τ̃ 4/3) , (C.14)

θ = θ0 +
1

2
u−,ϑ(ϑ)τ̃ 2/3 +O(τ̃ 4/3) , τ̃ = −12e3u−(ϑ)τ . (C.15)
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Appendix D

Newtonian picture

In this appendix, we consider a static axisymmetric Newtonian gravitational po-
tential ÛN at point A due to point-like masses m1, m2, and a thin ring of mass m
and radius r0, as it is shown in Figure D.1.

Figure D.1: Scheme for calculation of the gravitational potential at point A due
to the point-like masses m1 and m2 located on the axis Oz, and the thin ring of
mass m and radius r0 located in the plane perpendicular to the axis.
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The potential is

ÛN = − m1√
r

2 + d2
1 − 2rd1 cosϑ

− m2√
r

2 + d2
2 + 2rd2 cosϑ

− 2mK(k)

π
√
r

2 + r
2
0 + 2rr0 sin ϑ

, k =
2
√
rr0 sin ϑ√

r
2 + r

2
0 + 2rr0 sin ϑ

, (D.1)

where r = |~r| and K(k) is the complete elliptic integral of the first kind, K(0) =
π/2.

We consider an octupole approximation of the potential assuming that the
sources are remote, i.e., r/l ≪ 1, where l = min{r0, d1, d2}. The approximation
reads

ÛN ≈ α0 + α1rP1(cosϑ) + α2r
2P2(cosϑ) + α3r

3P3(cosϑ), (D.2)

where the Newtonian multipole moments are given by

α0 = −m1

d1
− m2

d2
− m

r0
, α1 =

m2

d2
2

− m1

d2
1

,

α2 =
m

2r3
0

− m1

d3
1

− m2

d3
2

, α3 =
m2

d4
2

− m1

d4
1

. (D.3)

Here, α0 is the monopole, α1 is the dipole, α2 is the quadrupole, and α3 is the
octupole moment.

In general, for arbitrary values of the masses we can have any values for the
moments; however, the condition that ÛN 6 0 should be satisfied. Note, that α0

is always negative.
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Appendix E

Calculation of the spacetime

invariants

In this appendix, we obtain expressions for the curvature and the electromagnetic
field invariants near horizons of a static, arbitrary (not necessary axisymmetric)
distorted black hole with electric charge. The procedure is similar to that presented
in [78]. We start our construction in the regions where the Killing vector ξ is
timelike, namely outside of the horizons. The final expressions of the invariants
will be valid in the region between the horizons as well.

The simplest curvature invariant is the Kretschmann scalar, which for Einstein-
Maxwell 4D spacetime admits the following decomposition

K = RαβγδR
αβγδ = C2 + 2RαβR

αβ , (E.1)

where C2 = CαβγδC
αβγδ is the Weyl scalar. The Weyl invariant characterizes prop-

erties of a ‘pure’ gravitational field, while the square of the Ricci tensor RαβR
αβ

is determined in our case by the electrostatic field. In this appendix, we derive
an expansion of these invariants near the black hole horizons. In the main text
of Chapter 2, we use these results for a special case, when the static spacetime is
axisymmetric. A similar analysis for a vacuum distorted black hole can be found in
[44] and [77]. The results presented in [44] are the particular case (corresponding
to zero electrostatic field) of the results given in this appendix.

It is convenient to start with the form of the metric proposed in [77]. Namely,
we consider static spacetime which has timelike, hypersurface orthogonal Killing
vector ξ. We assume that in the region under consideration ∇α(ξ

2) does not
vanish. Following [77] we write our metric, gαβ (α, β, . . . = 0, . . . , 3) in this region
in the form

ds2 = −k2dt2 + dγ2 , dγ2 = γABdy
AdyB = κ−2(k, θc)dk2 + hab(k, θ

c)dθadθb . (E.2)
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Here, k = (−ξαξα)1/2; A,B, . . . = 1, 2, 3; a, b, c, . . . = 2, 3 ,

κ2 = −1

2
(∇βξα)(∇βξα) , (E.3)

and hab is the metric on ‘equipotential’ 2D surfaces k = const spanned by θa

coordinates. At the horizon of a static black hole, that is for k = 0, κ coincides
with the surface gravity. In a static spacetime the Weyl invariant can be written
as follows [47]

C2 ≡ CαβγδC
αβγδ = 8ΠαβΠ

αβ + 8ΠαβΛ
αβ + 4ΛαβΛ

αβ − (Π + Λ)2 − 2RαβR
αβ ,

(E.4)

where

Παβ = Rαγδβζ
γδ , Π ≡ Π α

α = −ζαβRαβ , (E.5)

Λαβ = Rαβ + ζαβΠ , Λ ≡ Λ α
α = R + Π . (E.6)

Here, ζγδ = −ξγξδ/ξ2. For a static spacetime Π00 = Π0A = 0. To calculate C2, it is
convenient to use the Gauss-Codazzi equations (see [77])

RABCD = RABCD + ε[SADSBC − SACSBD] , (E.7)

nαRαBCD = SBC|D − SBD|C , (E.8)

kRAγδBn
γnδ = −kΠAB = γACS C

B ,t + εk|AB + kSACS C
B . (E.9)

Here, nα = ξα/k is the unit normal to a hypersurface t = const, ε = n2 = −1,
SAB is the extrinsic 3D curvature of the hypersurface t = const, RABCD is its 3D
intrinsic curvature defined with respect to the metric dγ2, while R is the 3D scalar
curvature. The stroke stands for a covariant derivative with respect to this metric.

Relations (E.7)-(E.9) imply

2Gαβn
αnβ = −εR− SABSAB + S2 , (E.10)

Rαβn
αnβ = −SABSAB − εk−1k

|A
|A − k−1S,t , (E.11)

GαBn
α = RαBn

α = −S,B + S C
B |C , (E.12)

RAB = RAB − εSSAB − k−1k|AB − εk−1γACS C
B ,t . (E.13)

Here S = γABSAB is twice the mean curvature. Since the metric (E.2) is static,
the extrinsic curvature defined as

SAB =
1

2
k−1γAB,t (E.14)
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vanishes. Thus, Eqs. (E.7)-(E.13) imply

ΠAB = k−1k|AB , Π = k−1k
|A

|A , (E.15)

ΛAB = RAB − k−1k|AB , Λ = R− k−1k
|A

|A , (E.16)

Λ00 = 0 , Λ0A = 0 . (E.17)

The Einstein equations Gαβ = 8πTαβ give

R = 16k−2πT00 , T0A = 0 , GAB = 8πTAB + k−1k|AB − k−1γABk
|A

|A . (E.18)

Thus, the Weyl invariant (E.4) written in terms of 3D objects related to hypersur-
face t = const is

C2 = 2k−2
(
k|ABk

|AB − 3k
|A

|A k
|B

|B

)
+ 2

(
RAB + 2k−1k|AB

)
RAB . (E.19)

The next step is a (2 + 1) decomposition. We use the following expression for
the 3D metric

dγ2 = κ−2(k, θc)dk2 + hab(k, θ
c)dθadθb . (E.20)

We denote a covariant derivative with respect to the 2D metric hab as (. . .):a. A
unit vector orthogonal to the equipotential 2D surface k = const is nA = κδAk,
ε = n2 = 1. The extrinsic curvature of the surface is

Sab =
κ

2
hab,k. (E.21)

Using the metric (E.20) we derive

k|kk = κ−1κ,k , k|ka = κ−1κ:a , k|ab = κSab , k
|A

|A = κS + κκ,k , S = habSab .

(E.22)

To project the Einstein equations on the 2D surface we have to define the stress-
energy tensor of the electrostatic field. The electrostatic potential is given by
Φ = Φ(k, θa). The corresponding electric field vector defined with respect to the
Schwarzschild time t on the hypersurface t = const reads

EA = −k−1F0A = −k−1Φ,A. (E.23)

We are interested in deformation of the equipotential 2D surfaces. Thus, it is
convenient to define the component of the electric field vector orthogonal to the
surfaces separately. The electric field vector components in an orthonormal frame
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are
Ek̂ = −κ k−1Φ,k , Ea = k−1Φ:a . (E.24)

Thus, in our notations
~E2 = E2

k̂
+ k−2Φ:aΦ

:a. (E.25)

The energy-momentum tensor of the field is

8πTαβ = 2ξαξβk
−2 ~E2 − 2EαEβ + gαβ ~E

2. (E.26)

Using the relations (E.10)-(E.13) for the metric (E.20) together with the relations
(E.18), we derive the Einstein equations projected onto the 2D equipotential sur-
faces:

κ3 S b
a ,k = κ2[K − E2

k̂
− k−2Φ:cΦ

:c]δ ba − κ3k−1S b
a

+ κκ :b
:a − 2κ:aκ

:b − κ2SS b
a + 2κ2k−2Φ:aΦ

:b, (E.27)

κ3 S,k = κ2
[
κk−1S − S b

a S
a
b − 2k−2Φ:aΦ

:a
]
+ κκ :a

:a − 2κ:aκ
:a, (E.28)

k−1κκ,k = −κk−1S + E2
k̂

+ k−2Φ:aΦ
:a, (E.29)

κ2Ek̂ ,k = −κSEk̂ − κ:ak
−1Φ:a + κ k−1Φ :a

:a . (E.30)

The corresponding constraints are

0 = S2 − S b
a S

a
b − 2K + 2[κk−1S + E2

k̂
− k−2Φ:aΦ

:a], (E.31)

0 = [S:a − S b
a :b]k + 2Ek̂Φ:a + κ:a. (E.32)

Here, K is the Gaussian curvature of a 2D equipotential surface k = const.
The square of the Ricci tensor RαβR

αβ is equal to the squared electromagnetic
field invariant

RαβR
αβ = (F 2)2 = (FαβF

αβ)2. (E.33)

According to Eqs. (E.23) and (E.25), F 2 has the following form:

F 2 = −2 ~E2 = −2[E2
k̂

+ k−2Φ:aΦ
:a]. (E.34)

Using the expressions (E.18), (E.24)-(E.30), we derive

Rkk = k−1κ−1κ:k + κ−2[ ~E2 − 2E2
k̂
],

Rak = k−1κ−1[κ:a + 2Ek̂Φ:a],

Rab = k−1κSab + hab ~E
2 − 2k−2Φ:aΦ:b,

R = 2 ~E2 = 2k−1κ[S + κ:k]. (E.35)
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Using Eqs. (E.19), (E.1), (E.34), and expressions (E.22) and (E.35), we have

1

8
C2 = [κ2S b

a S
a
b + 2κ:aκ

:a + κ2S2 + 2 ~E2Φ:aΦ
:a]k−2

+ 4Ek̂κ:aΦ
:ak−2 − 2κ [S b

a Φ:b + SΦ:a]Φ
:ak−3. (E.36)

The hypersurface-orthogonal Killing vector field ξα by definition is null on the
Killing horizon, which is bifurcate (κ 6= 0). A bifurcate Killing horizon contains a
2D spacelike, totally geodesic surface [13]. In our coordinates, this equipotential
surface is defined by t = const and k = 0. On the other side, a necessary and
sufficient condition that a hypersurface is totally geodesic is its vanishing extrin-
sic curvature defined in the corresponding enveloping space [31]. Thus, for the
equipotential surfaces t = const, k = 0, we have Sab = 0. For a regular horizon, its
2D surface has everywhere finite Gaussian curvature, and the electrostatic field on
the surface is finite as well. Thus, we can deduce from the constraints (E.31) and
(E.32) that on the horizon Φ:a = κ:a = 0. Hence, the electrostatic field potential
Φ is constant on the black hole horizon. This implies that the horizon surface is
an equipotential surface of the electrostatic field; thus, according to Eq. (E.24),

Ea|H = k−1Φ:a|H = 0 . (E.37)

Here and below (...)|H means calculated on the horizon. The constancy of κ on
the horizon is nothing but the zeroth law of black hole thermodynamics [9].

Projecting the first of the Einstein equations (E.27) on the horizon, we derive

κ
[
S b
a ,k + S b

a k
−1
]∣∣
H

= δ ba [K − E2
k̂
]
∣∣
H
. (E.38)

Expanding the extrinsic curvature near the horizon, S b
a ≈ S b

a

∣∣
H
k, we present the

expression (E.38) in the following form:

2κS b
a k

−1
∣∣
H

= δ ba [K − E2
k̂
]
∣∣
H
. (E.39)

Thus, using Eqs. (E.33), (E.34), (E.36) and (E.39), we derive the following ex-
pressions for the spacetime invariants calculated on the horizon:

F 4
∣∣
H

= RαβR
αβ
∣∣
H

= 4E4
k̂

∣∣
H
, (E.40)

and

C2
∣∣
H

= 12[K −E2
k̂
]2
∣∣
H
. (E.41)

This is the generalization of the relation between the Gaussian curvature and
the Kretschmann scalar calculated on the event horizon surface of an arbitrary
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distorted Schwarzschild black hole [45], [44].
We can expand the metric and the electrostatic field in a series near the hori-

zon and substituting these expansions into Eqs. (E.34) and (E.36), to derive
expressions of the spacetime invariants near the horizon. There are two types of
quantities, even and odd in k, which we denote by A = {κ, hab, K,Φ, Ek̂, F 2, C2},
and B = {S b

a , S}, respectively. The series expansions of A and B read

A =
∑

n>0

A[2n]k2n , B =
∑

n>0

B[2n+1]k2n+1. (E.42)

Here, A[0] ≡ A|H . We can express higher order coefficients in the expressions in
terms of these on the horizon substituting Eq. (E.42) into the Einstein equations
(E.27)-(E.32). The necessary coefficients to calculate the first order expansion of
the spacetime invariants are the following:

κ[2] =
1

2κ[0]
[2E

[0]2

k̂
−K [0]] , Φ[2] = −

E
[0]

k̂

2κ[0]
,

S b[1]
a =

δ ba
2κ[0]

[K [0] − E[0]2

k̂
] , S [1] =

1

κ[0]
[K [0] − E[0]2

k̂
],

S b[3]
a =

1

8κ[0]2
[2κ[2]:b

:a + κ[2]:a
:a δ ba − κ[0]S [1]2δ ba ]

+
1

16κ[0]3
[2E

[0]

k̂:a
E

[0]:b

k̂
− 3E

[0]

k̂:c
E

[0]:c

k̂
δ ba ],

S [3] =
1

4κ[0]2
[2κ[2]:a

:a − κ[0]S [1]2]− 1

4κ[0]3
E

[0]

k̂:a
E

[0]:a

k̂
,

E
[3]

k̂
= − 1

4κ[0]2
[2κ[0]S [1]E

[0]

k̂
+ E

[0]:a

k̂:a
]. (E.43)

Finally, we derive the first-order expansions of the spacetime invariants near the
horizon:

F 2 ≈ − 2E2
k̂

∣∣
H

+
1

2κ2

[
4KeE

2
k̂

+ E2 :a
k̂:a
− 3Ek̂:aE

:a
k̂

]∣∣∣∣
H

k2, (E.44)

C2 ≈ 12K2
e

∣∣
H
− 1

κ2

[
6K2

e [3Ke − 2E2
k̂
]− [2Ke −E2

k̂
]:a

× [2Ke − E2
k̂
]:a + 6Ke[K

:a
e:a − 2Ek̂E

:a
k̂:a

]
]∣∣
H
k2, (E.45)

where Ke|H = [K − E2
k̂
]|H .
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Appendix F

Induced electrostatic perturbation

I this appendix, we discuss the existence of threshold modes in the electrostatic
perturbation equation (3.48). Using the transformations (3.50) and (3.90), we
present the equation in the following form:

x2ãt,xx +
2mx2

1 +mx
ãt,x −

κ2x

(1− x)4
ãt = 0. (F.1)

Applying the method of Frobenius we derive the following boundary conditions

ãt(0) = 0 , ãt,x(0) = κ2 , ãt(1) = 0. (F.2)

Using the boundary conditions and implementing the shooting code written in
FORTRAN [108], we found no indication of unstable threshold modes.

This result can be inferred from analytical consideration of the equation. Let
us present (F.1) in the self-adjoint form

[
(1 +mx)2ãt,x

]
,x
− κ2(1 +mx)2

x(1− x)4
ãt = 0. (F.3)

Multiplying this equation by ãt, integrating the result by parts, and using the
boundary conditions (F.2), we derive

∫ 1

0

(
(1 +mx)2ã2

t,x +
κ2(1 +mx)2

x(1− x)4
ã2
t

)
dx = 0. (F.4)

This equation has the nontrivial solution ãt only if κ2 < 0. Thus, there are no
unstable threshold modes.
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Appendix G

5D compactified extremal RN

black hole

In this appendix, we consider a static, extremal RN black hole in 5D spacetime with
one compact dimension of asymptotic size L (see, e.g., [97]). The corresponding
metric is

ds2 = −U−2(ρ, z)dt2 + U(ρ, z)dl2, (G.1)

U(ρ, z) = 1 +
4M

3ρ

sinh(2πρ/L)

cosh(2πρ/L)− cos(2πz/L)
, (G.2)

dl2 = dρ2 + dz2 + ρ2(dθ2 + sin2 θdφ2) ., (G.3)

and the coordinate ranges are

t ∈ (−∞,∞) , ρ ∈ [0,∞) , z ∈ [0, L] , θ ∈ [0, π] , φ ∈ [0, 2π). (G.4)

The corresponding electrostatic potential vanishing at asymptotic infinity is

Aα =
√

3[U(ρ, z)−1 − 1]δ t
α . (G.5)

The Komar mass and the electric charge of the black hole are the same as those
of the corresponding 5D extremal RN black hole. The equipotential hypersurfaces
U = const are schematically illustrated in Figure G.1.

The black hole horizon is defined by ρ = z = 0. As it is shown in the figure,
the horizon is a point. This is just a manifestation of coordinate singularity.
One can check that none of the spacetime invariants CαβγδC

αβγδ, RαβR
αβ diverges

there. Therefore, we can perform an analytical continuation through the point
(ρ = 0, z = 0). We consider the following analytical continuation in the (ρ, z)
plane:

ρ = iρ̃ , z = iz̃, (G.6)
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Figure G.1: Rotational curves corresponding to 2D slices θ = π/2 of equipotential
3D hypersurfaces U = const are shown for M = L = 1 in the corresponding
covering space. 5D extremal black holes are located along the dashed vertical line.
Point O indicates horizon of one of such black holes. The critical curve C separates
equipotential hypersurfaces of different topology and corresponds to U = 1+4π/3.
The angle of the cone of the critical surface is ϕC = 60◦ (see [39]).

where ρ̃ and z̃ are real coordinates. In the new coordinates (ρ̃, z̃) the metric
function (G.2) reads

Ũ(ρ̃, z̃) = 1 +
4M

3ρ̃

sin(2πρ̃/L)

cos(2πρ̃/L)− cosh(2πz̃/L)
. (G.7)

The equipotential hypersurfaces Ũ = const are schematically illustrated in
Figure G.2. Analysis of the spacetime invariants shows that the true spacetime
singularity corresponds to Ũ = 0. The singularity is timelike. It is illustrated in
Figure G.2 by the curve S. However, as one can check from the metric (G.1), it is
a point of zero 4D volume.

Finally, we can calculate the Bekenstein-Hawking entropy of the black hole [see
Eq. (3.58)],

S =
4M3/2

3
√

3

√
πL. (G.8)

We see that the entropy, and hence the horizon area, is nonzero, despite the fact
that the horizon surface is a point in (ρ, z) coordinates. From expression (G.8)
we see that the entropy of a single compactified RN black hole is greater than the
entropy of an assemblage of such black holes of the same total mass M .
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Figure G.2: Rotational curves corresponding to 2D slices θ = π/2 of equipotential

3D hypersurfaces Ũ = const are shown for M = L = 1. The point O indicates the
black hole horizon. The spacetime singularity Ũ = 0 is illustrated by the curve
S, which separates equipotential hypersurfaces of negative (inside the curve) and

positive (outside the curve) values of Ũ = const.


