
University of Alberta

Risk Management in Game�Tree Pruning

by

Y� Bj�ornsson and T�A� Marsland

Technical Report TR �����

July ����

DEPARTMENT OF COMPUTING SCIENCE

University of Alberta

Edmonton� Alberta� Canada



Submitted for review by the Information Science Journal�

Risk Management in Game�Tree Pruning

Yngvi Bj�ornsson and Tony Marsland

Department of Computing Science

University of Alberta

Edmonton� Alberta

CANADA T�G �H�

E�mail� fyngvi�tonyg�cs�ualberta�ca

July 	
� ����

� Introduction

The thinking�process used by computers for chess and other two�person games di�ers sig�
ni�cantly from the one used by humans� While humans consider at most a few alternatives
when deciding what to play� computers exhaustively search all the possible moves� In the
half century since minimax was �rst suggested as a strategy for adversary game search�
various search algorithms have been developed� The standard approach has been to use
improvements to the Alpha�Beta ����� algorithm to explore all continuations to some �xed
depth �continuation length or search horizon�� In practice� however� the algorithms are
not used that way� instead heuristics vary the search horizon� exploring some continuations
more deeply than others� In an indirect way� this resembles the human thinking process�
Continuations that are thought to be of special interest are expanded beyond the nominal
depth� while others may be terminated prematurely� The latter case is referred to as forward
pruning�

In this paper we discuss some important aspects of forward�pruning� especially regarding
risk�management� and propose ways of improving risk�assessment� Finally� we introduce
two new pruning methods based on some of the principles discussed here� and present
experimental results applying the methods in an established chess program�

� Selective Search and Decision Quality

The number of nodes visited by Alpha�Beta increases exponentially with increasing search
depth� This limits the scope of the search� especially because game�playing programs must
meet external time�constraints� often having only a few minutes to decide which move
to play� In practice� the quality of the move decision usually improves the further we
lookahead� The question now becomes� how to �nd a good move while making the best
use of the available time� One approach is to prune o� unpromising lines� so that the time
saved can be used to search selected lines more deeply�

There exist several well established forward�pruning methods for game�tree search� the
most successful probably being the null�move heuristic �Beal� 	

�� �Goetsch and Campbell� 	

��
and ProbCut �Buro� 	


�� for chess and Othello respectively� On the other hand� the the�
oretical issue surrounding forward pruning and how it a�ects decision quality has not been

	



studied much� However� Smith and Nau �	

�� analysed a model of forward�pruning using
�over�simpli�ed game trees� concluding that forward�pruning works best when there is a
high correlation among the minimax values of sibling nodes in the game tree� For speci�c
games like chess� checkers and Othello� some empirical studies that investigate how error in
leaf�node evaluation a�ects the move decision at the root also exist �Junghanns et al�� 	

���

� Forward Pruning

The real task when doing forward pruning is to identify move sequences that are worth
considering more closely� and others that can be pruned o� with minimal risk of overlooking
a good continuation� Several factors should be considered for e�ective forward�pruning�

� Risk�assessment�
How safe is the forward pruning method� We want to minimize the risks that specu�
lative pruning introduces into the search�

� Applicability�
To maximize the possible gains from forward pruning we would like to apply the
method frequently in the tree� especially where there is a potential for big savings�

� Cost�e�ectiveness�
The investment of time and e�ort to decide whether to prune a node should be kept
low� In any case� the savings achieved through pruning must exceed the additional
e�ort introduced�

� Domain�independency�
Ideally� we want a pruning method that can be applied in more than one speci�c
search domain�

The above factors are by no means independent� improving one usually involves compromis�
ing another� For example� reducing the risk factor often means limiting the applicability�
Also� improving cost�e�ectiveness can introduce other risks� and �nally the more general
�domain�independent� methods tend to be less e�cient� A useful forward pruning heuristic
needs to �nd the appropriate trade�o� between the above factors� and this process may
require careful tuning�

	�� Risk�assessment

When using forward pruning there is always some danger of overlooking good moves� We
would like to minimize the risk of doing so� When deciding whether to examine a node v�
the basic question is� how likely is it that the sub�tree below v includes a continuation that�
if searched� would yield a new principal variation �pv�� For a new variation to emerge two
things must occur� �rst the value returned to v must exceed the best value found so far�
and second the value must propagate to the root of the tree� This in turn implies that the
pruning method should be able

� to predict with reasonable accuracy the range of values for node v� and

� to measure the likelihood that the anticipated value will back up to the root of the
tree�

�



Existing forward pruning methods address the �rst issue while often ignoring the second
one�

����� Error Introduction

For most subtrees we are not so much interested in knowing the exact value of each particular
node� but rather whether the value lies outside the bounds of the ��� window� This is
because we know that continuations which result in values outside the window can never
become a part of the principal variation� When using a null�window search the bound is the
value of the current principal variation� so when comparing node values to the bound we are
determining whether a better continuation is found� In that case we are simply interested
in knowing if a value returned by searching a node further is as good as the ��bound� since
it causes a cuto��

When predicting where the value of a node v lies relative to the ��� bounds� most
pruning methods carry out a shallow search� They use the value returned to estimate the
range in which the actual value of node v is likely to be when the node is searched more
deeply� For example� a 
�ply�deep search is used to predict the window for a ��ply�deep
search� The outcome of the shallow search decides whether to search node v further� If
we are con�dent enough that further search will not yield an improvement� node v is not
expanded� The exact criteria used to relate the value of the shallow search to the anticipated
return value of the deeper search varies with the pruning technique� Some approaches use
statistical methods to de�ne con�dence intervals� while others simply use ad hoc heuristics�
Error is introduced into the search when a wrong pruning decision is made�

Although� shallow searches are usually reasonable indicators of the values returned by
deeper searches� additional information can enhance the overall prediction capabilities of
the pruning heuristics� thereby reducing the risk involved� For example� consider the tree in
Figure 	� The shaded area marks the parts of the tree searched to decide whether to prune

m m... ...
v

a b...

1 n

Figure 	� Di�erent risk�assessment�

nodes a and b� Each pruning decision is made independently of the other� based only on

�



the outcome of the local search� However� by looking at each node in isolation information
is lost� For example� when looking at move mn current pruning methods are interested in
knowing if the move will lead to a value that causes a cuto�� that is� in estimating the
probability

P �v�mn� � ���

But having already searched moves m������mn��� and knowing that none caused a cuto��
provides a strong indicator that move mn will also fail to do so� especially because the pre�
liminary move�ordering scheme believes that move mn is no better than the moves already
searched� Instead one should compute the probability that move mn causes a cuto�� given
that moves m������mn�� have failed to do so� that is compute�

P �v�mn� � � j v�m�� ���� mn��� � ���

The values of the moves are not independent of each other� and so by assuming otherwise
we are ignoring potentially useful information� Existing pruning methods and probability
based best��rst search algorithms totally ignore the dependencies� or unrealistically assume
the search values �or the error in the values� to be independent of each other� Instead� the
fact that the values tend to be dependent should be used to make more informed pruning
decisions�

����� Error Propagation

Figure � shows two di�erent game trees� The solid lines identify the parts of the tree that
have already been visited� while the dotted lines show nodes that have not been expanded�
Assume that the search is currently situated at node v and that the sub�tree resulting from

v
...

...

(b)

m

(a)

m1m
... ...

v

1 k

Figure �� Controlling error propagation�

playing move m� has already been searched� Furthermore� assume that a part of that sub�
tree has been pruned o� using some forward pruning technique� and that the value returned

�



is greater or equal to the ��bound used at node v �if node v is a cut�node this is what we
would expect�� Therefore� a ��cuto� occurs and the value returned by move m� will back
up to the root� From the root�s perspective this branch is inferior to the current principal
variation and the search therefore continues to expand the other children of the root without
switching the principal variation�

If the pruned subtree in Figure ��a� does not contain a better line� search e�ort has
been saved� The case of interest here is� what if a better line is present� In Figure ��a��
if a better line is present but is overlooked� the value of m� is wrong and the error may
propagate through node v to the root� However� if alternatives to m� are present� as in
Figure ��b�� it is possible that one of the alternative moves in �m�� ����mk� may contain a line
that enables it to deliver a beta�cuto� at v� acting as a substitute for m�� thus preserving
the value assigned at node v� Thus in Figure ��b�� an error in the subtree below m� does
not necessarily propagate to the root� This situation is common in practice� if the �rst
move fails to cause a cuto�� one of the alternative moves may do so� This means that even
though the pruning below m� was risky� the risk of a�ecting the move decision at the root
is less in Figure ��b� than in Figure ��a�� because one of the other moves m� ���� mk might
preserve the cuto� if m� changes it�s value� Thus� even though an erroneous pruning is
made it will not necessarily a�ect the move decision at the root� Hopefully� this illustrates
that� when assessing risk� pruning methods should not only take into account the expected
return value of a pruned node� but also assess the likelihood that an erroneous pruning
decision will propagate up the tree�

	�
 Applicability

The most popular pruning heuristics used in two�person game�playing programs have one
thing in common� they apply frequently� though not without restriction� The more fre�
quently a pruning heuristic is applied in the search� especially at places where there is a
high probability of big savings� the more potential it has for being e�ective� However� the
applicability is restricted� since pruning can only be done where it is expected to be safe�
Depending on the heuristics used� this can di�er substantially� Some heuristics need addi�
tional pre�requirements for them to be applied� An example of one such pruning method
is the special cuto� introduced by the NegaScout �Reinefeld� 	
��� algorithm� Although
the cuto� is risk�free when search extensions are not used� the savings are very small �less
than ���� This is because the necessary pre�requirement �that is� a change in the princi�
pal variation is occurring two or less plies from the search horizon� for the cuto� is met
infrequently�

	�	 Cost�e�ectiveness

Although some pruning methods o�er low risks and substantial savings in terms of nodes
searched� the overhead needed to implement them is often prohibitive� The e�ort expended
gathering and tracking in real�time the information required by the heuristics may outweigh
the potential time�savings introduced by the pruning� An example of such a heuristic is the
method of analogies� Although� the method o�ers almost risk�free pruning� the overhead
of tracking how pieces in�uence each other originally proved too high for practical use
in a competitive chess playing program �Adelson�Velskiy et al�� 	
�
�� However� changes in
software and hardware technology may improve the e�ciency of such methods� It might also
be possible to approximate the original heuristic by another that is less costly to maintain�






and yet achieve most of the savings� Therefore the method of analogies is again a topic
worthy of investigation�

	�� Domain�dependency

Ideally we want domain�independent pruning� Such methods would not rely on such explicit
knowledge as� is a king in check� or whether a corner square is occupied� If domain�speci�c
knowledge� is used� it is incorporated in a domain independent way� for example externally
state the knowledge in a language that can be compiled and used in a general way by the
search�

In the domain independent methods� the only information revealed to the search by the
evaluation function is a numerical estimate of a problem state�s quality� This clear separa�
tion of the search and the problem encourages more domain�independent pruning methods�
On the other hand the methods are then denied access to potentially useful information
about the problem domain� thereby restricting their pruning capabilities� However� there is
a wealth of information to be gathered about the problem by simply looking at the shape
of the expanded search tree� This knowledge is accessible without having to uncover any
additional domain�speci�c knowledge� We have already mentioned a few cases of interest
during our risk�assessment discussion�

In practice� it is extremely di�cult for pruning methods to be domain independent� As
said earlier� there is a trade�o� between generality and e�ectiveness� and to achieve the full
pruning capability we have to exploit some special characteristics of the search space� Most
existing forward pruning methods are therefore domain speci�c� Even though methods like
null�move �Beal� 	

�� and ProbCut �Buro� 	


� do not use explicit knowledge about their
domain� they make implicit assumptions that tie them down for use in one� or at best very
few� two�person games� For example� the null�move heuristic is very e�ective in chess� but
inappropriate in Othello� Conversely� ProbCut is the pruning heuristic of choice in Othello
but has not yet been shown useful in chess or checkers�

� New Forward Pruning Methods

As mentioned before� pruning heuristics should be concerned with the question� What is the
likelihood of making an erroneous pruning decision� and if an erroneous decision is made how
likely is it to a�ect the principal variation� Existing forward�pruning methods generally do
not consider the second part of this question� When assessing risk� pruning methods should
not only speculate whether a subtree contains a good continuation� but also determine if
there are alternatives to any potentially overlooked continuation that could preserve the
principal variation� To answer these questions the methods must consider each node in the
context of its location in the game�tree� instead of looking at each node �and the subtree
below it� in isolation�

In the following sections we introduce two new forward pruning methods� Multi�Cut�
and Variable Null�move Bound� Both our new methods indirectly consider the likelihood
that the consequences of an erroneous pruning decision propagate to the root of the game
tree�

�



� Multi�Cut

In this section we present the idea behind the multicut method� then give implementation
details� and experimental results�


�� Multiple cut�o�s idea

In a traditional ���search� if a move returns a value greater or equal to � there is no reason
to examine that position further� and the search can return� This is often referred to as
a ��cuto�� Intuitively� this means that the player to move has found a way to refute the
current line of play� so there is no need to �nd something better� By way of explanation�
and to introduce our terminology� we are seeking the principal variation� the best sequence
of moves from the root node �current position in the game� to the best of the accessible
nodes on the search horizon� We expect ��cuto�s to occur at so called cut�nodes �that is�
nodes that are refuted�� The root node of a game�tree is a pv�node �principal variation
node�� the �rst child of a pv�node is also a pv�node� while the other children are cut�nodes�
All children of a cut�node are all�nodes �where every successor must be explored� and vice
versa� In a perfectly ordered tree only one child of a cut�node is expanded� If a new best
move is found at a pv�node� the node it leads to is also a pv�node� At pv� and all�nodes
every successor is examined� Most often it is the �rst child that causes the cuto�� but if
it fails to do so the sibling nodes are expanded in turn� until one of them returns a value
greater or equal to � �thus causing a cuto�� or all the children have been searched� If none
of the moves causes a cuto�� a cut�node becomes an all�node�

For a new principal variation to emerge� every expected cut�node on the path from a
leaf�node to the root must become an all�node� In practice� however� it is common that
if the �rst move does not cause a cuto�� one of the alternative moves will� Therefore�
expected cut�nodes� where many moves have a good potential of causing a ��cuto�� are less
likely to become all�nodes� and consequently such lines are unlikely to become part of a new
principal�variation� This observation forms the basis for the new forward pruning scheme
we introduce here� multi�cut ���pruning� Before explaining how it works� let us �rst de�ne
a mc�prune �multi�cut prune��

De�nition � �mc�prune� When searching node v to depth d� 	 using ���search� and if
at least c of the �rst m children of v return a value greater or equal to � when searched to
depth d� r� a mc�prune is said to occur and the search can return�

In multi�cut ���search� we attempt a mc�prune only at expected cut�nodes �we would not
expect it to be successful elsewhere�� Figure � shows the basic idea� At node v� but before
searching v� to a full depth d� as normal ���search does� the �rst m successors of v are
expanded to a reduced depth of d � r� If c of them return a value greater or equal to � a
mc�prune occurs and the search returns the value of �� otherwise the search continues as
usual exploring v� to a full depth d� The subtrees below v�� ���� vm represent extra search
overhead introduced by mc�prune� since they would not be expanded by normal ���search�
The dotted area of the subtree below node v� represents the savings that are possible if the
mc�prune is successful� However� if the pruning condition is not satis�ed� we are left with
the overhead but no savings� By searching the subtree of v� to a shallower depth� there
is of course some risk of overlooking a tactic that would make v� become a new principal
variation� We are willing to take that risk� because we expect at least one of the c moves
that returns a value greater or equal to �� when searched to a reduced depth� will still cause
a genuine ��cuto� if searched to a full depth�

�



v1 vm vn

r

v

......

...

d

v2

Figure �� Principles of multi�cut pruning


�
 Implementation

Figure � is a C�code version of a null�window search �NWS� routine using multi�cut� For
clarity we have omitted details about search extensions� transposition table lookups� null�
move searches� and history heuristic updates that are not immediately relevant to our
discussion� The NWS routine �Marsland� 	

�� could for example be called by an en�
hanced ���variant like Principal Variation Search or NegaScout� The parameter depth is
the remaining length of search for the position� and � is an upper�bound on the value we
can achieve� There is no need to pass � as a parameter� because it is always equal to � �
	� In our case� however� the new parameter ntype is needed to identify the nodes where
mc�pruning applies�

As is normal� the routine starts by checking whether the horizon has been reached� and
if so to use a quiescence search �QS� to return the value of the position� Otherwise� we look
in the transposition table for useful information to guide the search� This is followed by a
null�move search �most chess programs use this powerful technique� �Beal� 	

��� Normally
one of the �� search variants would follow� if the null�move does not cause a cut�o�� Instead
we insert here a multicut search to see if the mc�prune condition applies� The parameters
mc M � mc R� and mc C stand for m �number of moves to look at�� r �search reduction��
and c �number of cuto�s needed�� respectively� Although they are shown here as constants�
they could be determined more dynamically and allowed to vary during the search�

We do not check for the mc�prune condition at every node in the tree� First� we test
for it only at expected cut�nodes� Second� it is not applied at the levels of the search tree
close to the horizon� thus reducing the time overhead involved in this method� Finally�
there are some game�dependent restrictions that apply� In Figure � these restrictions are
encapsulated in the function TryMultiCut��� In our experiments in the domain of chess
�see later� the pruning is disabled when the endgame is reached� Usually only a few viable
move options exist there� and so the mc�search is not likely to be successful� Also� the

�



�� Multi�Cut parameters

�define mc�M �� ��� of moves to look at

�define mc�C � ��� of cuts to cause a mc�prune

�define mc�R � ��depth reduction

�define CUT �

�define ALL �

�define TYPE�t	 ���t	

CUT	 � ALL � CUT	

VALUE NWS�int depth
 VALUE beta
 NODETYPE ntype	

�

VALUE score�

MOVE move�

�� Search extension code
 omitted ���

if � depth �
 � 	 return QS�beta��	�

�� Transposition table lookup
 omitted ���

�� ��� retrieve best move and bound information���

�� Nullmove search
 omitted ���

�� ��� terminate search on null�move cutoff ���

�� Multi�Cut pruning

if � �ntype 

 CUT	 �� �depth � mc�R	

�� TryMultiCut�	 	 �

int m 
 ��

int c 
 ��

move 
 MoveFirst�	�

while � m � mc�M �� move 	 �

MakeMove� move 	�

score 
 �NWS�depth�mc�R��
 �beta��
 TYPE�ntype		�

RetractMove� move 	�

if � score �
 beta 	 �

c���

if � c 

 mc�C 	 return beta�

�

m���

move 
 MoveNext�	�

�

�

�� Standard null�window �minimal window	 search

move 
 MoveFirst�	�

while � move 	 �

MakeMove� move 	�

score 
 �NWS�depth��
 �beta��
 TYPE�ntype		�

RetractMove� move 	�

if � score �
 beta 	 break�

move 
 MoveNext�	�

�

�� Store node information
 omitted ���

�� ��� update trans table and history heuristic���

return score�

�

Figure �� Multi�Cut null�window search�






positional understanding of chess programs in the endgame is generally poorer than in the
earlier phases of the game� Therefore the programs rely heavily on the search to guide
them� and so any forward pruning scheme is more likely to be harmful� Finally� the pruning
is not done if the side to move is in check� or if a search extension has been applied at any
of the three previous moves leading to the current position�


�	 Experimental Results

Ultimately� we want to show that game�playing programs using the new pruning method
can achieve increased playing strength� To test the idea in practice multi�cut ���pruning
was implemented in The Turk�� Two versions of the program were matched against each
other� one using multi�cut pruning and the other without� Several matches� with �� games
each� were played using di�erent time controls� To prevent the programs from playing the
same game over and over� forty well known opening positions were used as a starting point�
The programs played each opening once from the white side and once as black� Table 	
shows the match results� T stands for the unmodi�ed version of the program and Tmc�c�m�r�

for the version with multi�cut implemented� We experimented with the case m � 	�� r � ��
and c � � �i�e� 	� moves searched using a depth reduction of � and requiring � ��cuto�s to
achieve the mc�prune condition�� These parameter values are somewhat arbitrary� although
based on experience and a few test trials�

Tmc�������� versus T

Time control Score Winning �

�� moves in 
 minutes �	 � �
 
	��
�� moves in 	
 minutes �� � �� 
���
�� moves in �
 minutes �� � �� 

��

Table 	� Multi�cut pruning match result�

The multi�cut version shows a slight improvement over the unmodi�ed version� In
tournament play this winning percentage would result in about 	
 points di�erence in the
players� rating� Since more than 	��� games are typically needed to obtain a standard error
of less than 	� rating points �Anantharaman� 	

��� we cannot be sure that the multi�cut
version is the stronger through this single set of experiments�

One �nal insight� the programs gathered statistics about the behavior of the multi�cut
pruning� The search spends about �
����� if its time �in terms of nodes visited� in shallow
multi�cut searches� and mc�prune occurs in about �
��
�� of its attempts� Obviously� the
tree expanded using multi�cut pruning di�ers signi�cantly from the tree expanded when it
is not used�

� Variable Null�move Bound

In this section we describe a new enhancement to the null�move heuristic� variable null�
move bound search� that utilizes some of the aforementioned observations to search more
e�ciently�

�
The Turk is a chess program developed at University of Alberta by Yngvi Bj�ornsson and Andreas

Junghanns

	�



��� Basis

Goetsch and Campbell �	

�� mention as a future research idea the possibility of permitting
a null�move cuto� not only when a null�move search returns a value greater or equal to ��
but also if the returned value is slightly less� They propose that a cuto� be forced if
v � � � t� t � �� where v is the value returned by the null�move search and t is a small
positive number that can be interpreted as the value of a tempo� This allows null�move
cuto�s to be applied more frequently thereby reducing the tree�size even further� although
at the cost of introducing additional errors� Furthermore� they state that the value of t
must be lower than the actual value of a tempo to avoid inadvertent cuto�s� and that the
value of t would be dependent on the evaluation function and could vary during the course
of the game� Both these factors help reduce the risk of erroneous pruning�

The method we introduce here is based on the same idea� However� we use a di�erent
approach for approximating t� Instead of having t depend on the evaluation function� we let
it vary according to how likely we think an erroneous pruning decision a�ects the principal
variation� Indeed� in some parts of the tree we allow the value of t to exceed what would
normally be considered an appropriate value for a tempo�

��
 Implementation

First we need a metric to show how likely it is that a pruning error a�ects the principal
variation� The more alternative moves a player has to refute the opponent�s play� the less
likely it is that an oversight in assessing an individual node will a�ect the move decision at
the root �see the discussion with Figure ��� This suggests that one metric is the number
of potentially good alternative moves a player has on the path leading from the root to
the current node in the search tree� However� there are a couple of di�culties� First� at
cut�nodes only one� or at most few� moves are considered� leaving us with no information
about the remainder� Second� since programs commonly employ a null�window search� for
most nodes in the tree we have only bounds on the actual value of a node� making it di�cult
to compare the merits of any two moves� One approach would be to perform additional
shallow searches to estimate the value of each move� but this would imply a considerable
extra search overhead� possibly o�setting any gains� Fortunately� there are more cost�
e�ective means of approximating the number of potentially good alternative moves� Most
programs use some form of the history�heuristic �Schae�er� 	
�
� for move ordering� This
heuristic gives a credit to moves that cause a cuto�� We simply de�ne a move to be a
potentially good alternative if it has a positive history heuristic value� Although this is not
the most accurate approximation it is a cost�e�ective one�

We implemented the variable null�move bound heuristic in The Turk� The program uses
principal variation search� and null�moves are applied recursively with a search reduction
of �� Several restrictions control where and when the null�move heuristic applies� For
example� a null�move is not allowed on the principal variation or if the side to move is in
check� Neither are two consecutive null�moves allowed� Figure 
 shows how the null�move
heuristic is applied in the variable bound scheme� The variable no pgam is the number
of potentially good alternative moves �as de�ned above� that are found on the path from
the root� but are still unexplored� A separate count is kept for each player and is updated
incrementally as the tree is traversed�

In the current implementation the number of potentially good alternative moves is
recorded during a zero�window search� with the exception of the �rst move expanded at

		



each node� The main reasons for this is that the �rst move is most often taken from the
transposition table and expanded before any legal moves are generated� Since we count the
number of good alternative moves for each level in the tree at the time of move generation�
that information is not available to pass down for the �rst move� Since the no pgam count
is not updated for that level� this makes the program less aggressive in pruning along these
paths��

if � NULLMOVE�OK�� � �

int bound� t � ��

if � �InNullMoveSearch�� � �

if � no�pgam 	 
� � �

t � ���




else if � no�pgam 	 � � �

t � 
��







bound � beta � t�

Make � Nullmove ��

score � �NWS � depth�
��bound�
�max�depth�� ��

Retract � Nullmove ��

if � score 	� bound � �

return � beta ��







Figure 
� Variable bound null�move cuto� decision�

��	 Experimental Results

We did preliminary experiments to assess the viability of the new heuristic� Three di�erent
variants of the chess program �TTt� were matched against an unmodi�ed version of the
program �TT �� each using a di�erent value for the tempo� t� For two of the variants� TT��
and TT��� t was set to a �xed constant� 	� and �� respectively� � The third� TTvariable�
varied the value of t using history data �see above�� The relationship between no pgam

and t is as shown in Figure 
� and was chosen based on some trial and error tests� In
a future implementation a more appropriate relationship will be empirically determined�
Each match consisted of �� games� with the time controls set to �� moves in 
 minutes�
To prevent the programs from playing the same game over and over� twenty well known
opening positions were used as a starting point� The programs played each position twice�
once from the white side and once as black� The match results are shown in Table ��

Of the three variants� TTvariable performed the best� outplaying the original version with
a ��� winning percentage�

Although the preliminary results are encouraging� care must be taken in interpreting
them� First� more than �� games are needed to reliably determine a di�erence in playing

�Since the �rst move expanded is often the most critical one� this compromise might actually be bene�cial�
�The value of a pawn is ����

	�



Match Score Winning �

TT vs� TT�� �� � �� 
�
TT vs� TT�� ���
 � 	
�
 �

TT vs� TTvariable 	� � �� ��

Table �� Variable null�move bound match results

strength between any two programs� and second� games with actual tournament time con�
trols must be played� The preliminary results indicate that this method has some potential
and is worth re�ning and experimenting with� but more study is de�nitely needed to reach
a �nal verdict�

� Conclusions

We have discussed some important characteristics of forward pruning in game�tree search�
emphasizing risk�management� and propose two ways to improve risk�assessment�

� consider move dependency information� and

� consider the likelihood that erroneous pruning decisions in�uence the principal varia�
tion�

We develop two new forward�pruning methods based on the above principles�
Preliminary experiments with the new methods are encouraging� Although the methods

are still in their infancy� they demonstrate a small gain over current state of the art search
techniques� We feel there is still much scope for improvement through further tuning and
enhancements� For example� in multi�cut the optimal setting of the parameters c� m� and r

is not yet known� The two new forward�pruning methods introduced here are by no means
the only way of exploiting the above principles for improved risk�assessment� there is still
room for other innovative methods�

References

�Adelson�Velskiy et al�� 	
�
� G� M� Adelson�Velskiy� V� L� Arlazarov� and M� V� Donskoy�
Some methods of controlling the tree search in chess programs� Arti�cial Intelligence�
�������	���	� 	
�
�

�Anantharaman� 	

�� T� Anantharaman� A Statistical Study of Selective Min�Max Search
in Computer Chess� PhD thesis� Carnegie�Mellon University� Pittsburgh� PA� May 	

��

�Beal� 	

�� D� F� Beal� A generalized quiescence search algorithm� Arti�cial Intelligence�
����
�
�� 	

�� See also� Experiments with the Null Move� In Advances in Computer
Chess 
� 	
�
� �
��
�

�Buro� 	


� M� Buro� ProbCut� An e�ective selective extension of the alpha�beta algo�
rithm� ICCA Journal� 	������	���� 	


�

�Goetsch and Campbell� 	

�� G� Goetsch and M�S� Campbell� Experimenting with the
null move heuristic� In T� Marsland and J� Schae�er� editors� Computers� Chess and

	�



Cognition� pages 	
��	��� 	

�� See also� 	
�� AAAI Spring Symposium Proceedings�
	��	��

�Junghanns et al�� 	

�� A� Junghanns� J� Schae�er� M� Brockington� Y� Bj�ornsson� and
T� Marsland� Diminishing returns for additional search in chess� In Advances in Computer
Chess �� June 	

�� To appear�

�Marsland� 	

�� T� Marsland� Single�Agent and Game�Tree Search� In A� Kent and J� G�
Williams� editors� Encyclopedia of Computer Science and Technology� volume ��� pages
�	������ New York� 	

�� Marcel Dekker� Inc�

�Reinefeld� 	
��� A� Reinefeld� An improvement to the Scout tree search algorithm� ICCA
Journal� �������	�� 	
���

�Schae�er� 	
�
� Jonathan Schae�er� The history heuristic and alpha�beta search enhance�
ments in practice� IEEE Transactions on Pattern Analysis and Machine Intelligence�
		�	��	����	�	�� 	
�
�

�Smith and Nau� 	

�� S� J� J� Smith and D� S� Nau� An analysis of forward pruning�
In Proceedings of the Twelfth National Conference on Arti�cial Intelligence �AAAI��	
�
volume �� pages 	����	�
	� 	

��

	�


