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Abstract

In stereo imaging the depth of a 3D point is estim ated based on the position 

of its projections on the left and right images. The imaging sensors of cameras, such 

as charge coupled devices (CCD), consist of discrete picture elements (pixels). The 

discretization of images generates uncertainty in estim ation of the depth for each 3D 

point in the scene. In this thesis, the variation of depth estim ation error in a typical 

stereo imaging system, where two cameras have uniform discretization, is studied. 

This study found surprisingly, that vergence movements toward an object in the 3D 

scene cause an increase in the depth estimation error.

In order to address this issue, we investigate two possible solutions. First we 

study a stereo imaging system built using cameras similar to the human eye with high 

resolution in the center and decreasing resolution toward the periphery. The depth 

estimation error in such a stereo imaging system is studied and the result is compared 

with the uniform resolution case. As well the optim al non-uniform resolution leading 

to lowest depth estim ation error is studied.

Then we study a stereo imaging system built using cameras with cylindrical 

sensors. In this system, there is no vergence movement of the cameras, and the effect 

of vergence movements on depth estimation error is eliminated. T he findings of this 

research can be used to  design optim al stereo imaging systems.
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1

Chapter 1 

Introduction

This chapter presents the main theme of this thesis. Section 1 .1  describes the purpose 

of the thesis and the m ain idea and motivation behind this research. Section 1 .2  

provides an overview of the remaining chapters.

1.1 Purpose

A significant amount of research has been directed towards the development of sys­

tems that are able to perceive the three dim ensional (3D) structure of objects. This 

3D information is essential in many applications including geoscience, robot vision, 

military surveillance, autonomous navigation, and medical imaging. Stereo vision is 

an im portant m ethod for obtaining depth information from a 3D scene. In stereo, a 

pair of cameras provides left and right images of a scene. The depth of each 3D point 

can be estimated based on the position of its projections in the two images.

Three m ajor steps are involved in the process of deriving depth information 

from stereo images. F irst, the left and right images are pre-processed to identify 

well-defined features in each image. Second, correspondence is established between
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2
features that are projections of the same physical entity in the two images. Many 

algorithms have been proposed to establish correspondence [1,16,17,19,21,24,25,29- 

31,38]. The algorithms are classified, based on the matching primitives, into area- 

based and feature-based techniques. Area-based techniques correspond brightness 

patterns in the two images [19,30]; these algorithms have well-known drawbacks 

[16,22], Feature-based techniques match features such as edges [3,13,15,17,20,23,25] 

and linear edge segments [1,29]. In the final step of the stereopsis process, the depth 

of each point is obtained using triangulation.

Digital cameras have an image plane which consists of a number of discrete 

picture elements (pixels). In general, these pixels are uniformly arranged in a two 

dimensional array according to industrial standards. The projection of each 3D point 

in the scene is approxim ated to the nearest pixel. Because of this approximation the 

depth of each 3D point is not precise. The resulting error is known as the discretization 

error.

In stereo imaging, the discretization error generates uncertainty in estim ating 

the depth of each 3D point. In order to model such uncertainty different approaches 

have been used, such as discrete tolerance lim its [2 , 1 1 ] and multidimensional prob­

ability distribution [26]. Figure 1 .1  illustrates this depth estimation error; for all 

the points'lying in each diamond, the same depth is estimated. Therefore estim ated 

depth of all the points lying in a diamond boundary will have an error. The upper 

bound of error in depth estimation is directly proportional to the size of diamonds. 

The diamond plots axe used throughout the thesis as a tool to gain understanding of 

the behavior of depth estim ation error upper bound. This model was first introduced 

by Matthies [26]. As this figure illustrates, the depth estimation error grows with 

distance. However, the error is not a simple function of distance — the diamonds in
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the Figure 1.1 are also skewed and have different orientations.
3

Figure 1.1: Depth estimation error in stereo imaging

In this thesis we primarily study the depth estim ation uncertainty due to the 

discretization error. We do not consider depth estim ation error due to other factors, 

such as matching process errors. In our study we use an active stereo imaging system. 

Such a system uses a dynamic pair of cameras th a t can be tilted (rotated about the 

horizontal axis) or panned (rotated about the vertical axis) independently [14,32]. 

The objective of our study is to determine if the depth estimation error changes with 

stereo imaging system geometrical characteristics (such as vergence angle) and camera 

specification (such as resolution and geometrical shape of the image plane).

First we study the effect of vergence movements in a typical stereo imaging 

system with cameras having uniform resolution in both horizontal and vertical direc­

tions. Vergence movements of the cameras are defined as pan rotation of cameras. 

Cameras are typically designed with uniform resolution in both horizontal and ver­

tical directions. O ptim al vertical and horizontal resolution of stereo cameras with 

uniform resolution for minimizing the depth estimation error has been studied by 

Basu [4].

Then we present the idea of having cameras with non-uniform resolution and
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4
examine their benefits for depth estimation error reduction. These cameras are sim­

ilar to human eye, with high resolution in th e  center (foveal region) and decreasing 

resolution toward the periphery [7,35]. We aJso study the optim al non-uniform pixel 

arrangement on the cam era’s image plane [8 ].

We also explore the use of cameras w ith  cylindrical sensors [9]. Cylindrical 

sensors due to the form of the image plane provide a unique feature in stereo imaging 

which makes vergence movements pointless. In  this new approach, the negative effect 

of vergence movements on depth estimation error is completely eliminated.

1.2 Document Overview

Chapter 2  discusses the stereopsis process in more detail, including some well known 

matching algorithms. The chapter also examines the work of other researchers in the 

area of stereo depth  estim ation error.

Chapter 3 describes a typical stereo imaging system used to acquire depth 

information. This chapter examines the trigonom etry of depth estim ation and how 

the stereo imaging system is considered to be  limited when each cam era can have 

only horizontal (pan) vergence movements. An upper bound on depth estim ation 

error is obtained. This upper bound is studied  for variation with vergence angles of 

the cameras.

Chapter 4 studies a similar stereo system  with cameras having non-uniform 

discretization in the horizontal direction and uniform resolution in vertical direction. 

The upper bound on the depth estimation e rro r is studied with vergence movements 

of the cameras in such a stereo imaging system .

Chapter 5 describes the optimal non-uniform  discretization in the horizontal
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5
direction. Two different non-uniform discretization models (linear and exponential) 

are investigated.

Chapter 6  investigates a  stereo imaging system that is similar to the human 

eye, with cameras having independent pan and tilt movements. The depth of each 3D 

point in the scene is form ulated based on the projections of the point in the cameras 

as well as the system  configuration. An upper bound on the depth estimation error 

is calculated and studied with various cameras movements.

Chapter 7 studies the stereo system described in Chapter 6 with cameras having 

non-uniform discretization. As well, optimal non-uniform discretization in the both 

horizontal and vertical directions is studied.

Chapter 8  explores a stereo imaging system th a t uses cameras with cylindrical 

sensors. The depth of each 3D point in the scene is formulated based on the coor­

dinates of its projections in the left and right cameras. Then the upper bound on 

depth estimation error is calculated and studied.

Chapter 9 provides the results of experiments conducted to study the theoret­

ical results obtained.

Chapter 10 reviews the work done and the results obtained. It discusses future 

work and finishes w ith conclusions about the project and its potential usage.
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Chapter 2 

Background

Stereo imaging is a widely adopted technique for obtaining 3D data. The human 

vision system is able to extract 3D information from two 2D images through the 

stereoscopic fusion of images. The process used by the human vision is not clearly 

understood even though much research has been devoted to developing stereo imaging 

systems tha t are able to obtain 3D information and mimic human visual system.

In this chapter, we describe some of the previous research on stereo pertaining 

to the thesis. Section 2 .1  provides a general overview of stereo vision and how depth 

information is obtained from a scene using a stereopsis process. We discuss a number 

of different stereo m atching algorithms in the literature. In section 2.2, we discuss a 

number of stereo error analyses which have been carried out by other researchers.

2.1 3D Structure from Stereo Imaging

In an imaging system, all the points in the viewable space are mapped into the 

two dimensional sensor plane of the camera. This m apping is not one-to-one; depth 

information can not be extracted from a single image. In order to acquire depth
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7
information, stereo images taken from two slightly different angles axe required. The 

depth of an object can be determined by the relative displacement between two re­

sulting projections of the object. This displacement is referred to as the disparity 

between the projections.

The process of analyzing stereo images involves three main stages as follows: 

1) pre-processing, 2) establishing correspondence, and 3) calculating depth.

In the preprocessing stage, the images from left and right cameras are processed 

independently. The objective of this step is to identify locations of some well-defined 

entities in two images. The entities which are identified in this step should be clearly 

and carefully chosen, otherwise the whole stereopsis process may lead to unsatisfac­

tory results.

The second stage in stereopsis is establishing correspondence between images. 

The objective of this step is to find the entities in the two images corresponding to 

the same physical identity in the scene.

The third stage of stereopsis process is calculating the depth. Triangulation 

techniques are used to estim ate depth from the disparity of matches and imaging 

systems geometry.

2.1.1 Stereo Matching Algorithms

There is a considerable body of computer vision literature devoted to stereo m atching 

algorithms [16]. This section discusses only a few of the most well known techniques.

Matching algorithms are categorized based on the primitives used for m atch­

ing as well as the imaging geometry. Based on the matching primitives, m atching 

algorithms can be categorized as area-based and feature-based matching algorithms. 

Area-based algorithms use brightness patterns in the vicinity of each pixel to
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correlate the two images. The performance of these algorithms can be poor, because 

they use the intensity values at each pixel directly to  correlate the two images and 

the intensity can vary as a  result of changing viewing position and illumination.

Feature-based stereo algorithms use features in the two images, not the in­

tensity values. T hey  are less sensitive to changes in ambient light and perspective. 

Commonly used features are edge points and edge segments tha t can be located with 

subpixel precision.

Stereo m atching algorithms can also be categorized based on imaging geometry. 

Factors th a t can be changed are the viewing angle of each camera and adding a third 

camera. In a conventional stereo system, illustrated in Figure 3.1, the optical axes 

of the two cameras are parallel and they are separated by a horizontal distance. We 

can change the im aging geometry by changing the viewing angle to have vergence in 

the two cameras. W hen there is vergence, greater overlap exists between the images 

from the two cameras.

The trinocular (three-cameras) approach to stereo matching problem has been 

proposed by a num ber of researchers, including O hta and Kanade [31]. The third 

camera can be particu larly  useful if the focal centers of the cameras do not he on a 

straight line. In th is  case the third camera can provide extra information to resolve 

ambiguities of the m ultiple candidate matches.

Due to the clear advantages of feature-based algorithms over area-based al­

gorithms, most of the  matching algorithms are devised as feature-based. A typical 

feature-based m atching algorithm consists of two phases. First, a particular feature 

from an image is selected. Then a search is carried out in the other image to find 

a match. In order to  be more successful in this search, various local properties of 

features to be m atched are used. There is the possibility of having several matches
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or false matches. Therefore m atching will be followed by a global consistency check 

to eliminate multiple an d /o r false matches. Two constraints are used for this phase. 

The first is a  regional disparity continuity constraint, meaning th a t the objects are 

assumed to have sm ooth surfaces and this smoothness leads to sm ooth disparities. 

The second constraint is figural continuity, meaning tha t the contours of objects in 

the space map to continuous curves in the images.

2.1.2 Marr-Pogio Computational Theory of Stereopsis

M arr and Pogio proposed a com putational model of stereopsis based on the study 

of the human and other biological vision systems [25]. Marr and Pogio estabfished 

two rules for matching left and right images: 1 ) uniqueness-, only one disparity value 

is allowed to be assigned to any feature in each image. 2 ) continuity-, only a small 

fraction of the area of an image consists of boundaries tha t are discontinuous in depth, 

and therefore the disparity in the images should vary smoothly alm ost everywhere.

According to this model, the hum an visual system uses a five-stage algorithm 

to solve the stereo m atching problem:

1 . The left and right images are spatially filtered with bar masks of four sizes and 

at twelve different orientations around each pixel in the images. This operation 

can be assumed to be approxim ately linear for a given intensity and contrast. 

These masks perform a second directional derivative after low pass filtering and 

smoothing and can be used to  detect changes in intensity at different scales. 

This stage is the result of biological evidence regarding existence of independent 

spatial-frequency timed channels in the human visual system.

2. For matching the left and right images, the raw da ta  from the first stage cannot

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10
be used because they do not directly correspond to physical features of the 

objects in the scene. The result of applying the filter on the image is a function 

with positive values in the center and negative in the skirts. Therefore zero- 

crossings in the filtered images resulting from the first stage are found, and 

these specify the position of edges in the original images.

3. For each mask size, the zero-crossings of the same sign and approximately the 

same orientations along corresponding horizontal lines in the two images are 

compared. A false m atch may occur in situations where zero-crossings of the 

same size and orientations lie very close together along horizontal lines in an 

image. Hence, the distance between adjacent zero-crossings of the same sign is 

an im portant param eter in this stage.

4. The human eye has some vergence movements and M arr and Pogio used biologi­

cal da ta  to make an assumption that these movements axe accurately controlled 

by matches obtained through the various channels. To obtain fine resolution, 

disparity information of matches should be obtained in the smallest channels. 

Therefore disparity information from larger channels is used to make vergence 

movement in the human eye and bring the smaller channels into their disparity 

range.

5. When masks with certain sizes are used for the process of stereopsis, the result­

ing matches axe stored in a tem porary buffer. Two types of reasons support the 

existence of a memory in the human visual system. First axe reasons arising 

from general considerations about early visual processing. Second axe reasons 

concerning the specific problems of stereopsis. M arr and Pogio proposed the 

use of a dynamic memory named 2 j  dimensional sketch. This memory has
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considerable computing power and belongs to early visual processing. The full 

2 1 dimensional sketch contain approximate distances to  the surfaces, as well 

as their orientations, contours where surface orientation changes sharply, and 

contours where depth  is discontinuous.

2.1.3 Grimson’s Modifications of Marr-Pogio Theory

The Marr-Pogio model is only a computational theory and n o t an explicit algorithm. 

Grimson designed and implemented an explicit algorithm based on the Marr-Pogio 

theory with particular emphasis on the matching process [17]. As well, Grimson 

tested the performance of the theory and an implementation on various images, and 

made changes to the M arr Poggio theory.

Grimson’s algorithm is divided into five modules th a t  correspond closely to 

the five steps in the Marr-Pogio theory. The two most im portan t parts of Grimson’s 

algorithm are:

•  Convolution: The left and right images must be filtered to  transform  them into 

a  form tha t the m atcher may operate. Marr and Pogio proposed convolving im­

ages at twelve different orientations with special bar m asks for which the cross 

section was the difference of two gaussians. Grimson used the Marr-Hildreth 

approach, and found th a t the intensity changes tha t occur at all orientations 

may be detected by using a single non-oriented Laplacian operator. Therefore 

the left and right images are convolved with a series o f two-dimensional oper­

ators in the form of a Laplacian of a Gaussian or by an  approxim ation to this 

operator.

•  Matching: The m atching process proposed by Grimson proceeds in a coarse to
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fine manner. The algorithm starts with images filtered by the largest filters, 

and by reducing the resolution of points greatly reduces the search space and 

makes m atching easier. The matches obtained from coarser details are used to 

restrict the m atching in finer details. For each size of filter, m atching consists 

of six steps:

1 . Fix the eye position and get the right and left images.

2. Locate a  zero-crossing in one image.

3. Partition  the region around the same location in the other image into three 

pools or subregions consisting of two convergent and divergent pools and 

a sm aller pool between them. These pools are the areas to be searched for 

m atching zero-crossings.

4. Assign a  m atch to the selected zero-crossing that come from convolutions 

with the same size filter, and of the same sign and orientation. If exactly 

one m atch with the above conditions is found in a pool, the  location of 

tha t m atch is transformed to the matcher. If two matches are found within 

the same pool, the matcher is informed and no m atch will be assigned for 

the point. If just one match in only one pool is located, th a t m atch is 

accepted and the disparity is recorded in the buffer.

5. If m ultiple candidates for m atching were obtained in step 4, resolve the 

ambiguity in matching. This is carried out by scanning the neighborhood 

around the point which is considered and studying the sign of dispar­

ity (sign of the disparity is the sign of pool tha t the m atch comes from, 

such as convergent, divergent, and zero) of ambiguous m atches within that 

neighborhood. Then the right match is selected as the one w ith the same

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



13
disparity sign.

6 . Store the disparity value in a buffer.

Grimson made modifications to the Marr-Pogio theory [18]. Two of these modifica­

tions are:

•  Continuity: Grim son’s implementation uses a figural continuity in disparity 

to check the regions to validate the matches. Because surfaces are smooth, 

there should be a continuity in disparity; however, Grimson observed that most 

matching errors occur along discontinuities in depth, for instance occluding 

objects on the scene. He proposed to impose continuity in disparity along the 

contours in the image, rather than  disparity continuity over an area of the image. 

This is the figural continuity constraint proposed by Mayhew and Frisby [27].

•  Vertical Disparity: In the Marr-Pogio theory, searches for matches are carried 

out along the same horizontal line. However, local distortions due to perspec­

tive effects of noise and discretization error cause difficulty in finer resolutions. 

Therefore Grimson proposed searching for matching points in two images, not 

only along the same horizontal line, but also along a num ber of lines above and 

below the horizontal line.

2.2 Error Analysis in Stereo

The depth calculation stage in stereopsis relies on the location of matches found in 

the matching stage. Discretization error as a result of discrete pixels in the camera’s 

image plane is the m ajor source of error in stereo imaging. In this section, we discuss 

the work of other researchers’ in modeling this error.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.2.1 McVey and Lee Error Analysis
14

Dtnin

Dmax

Figure 2 .1 : McVey and Lee stereo imaging system

McVey and Lee [28] have performed a worst case error analysis on the image 

plane resolution required to achieve depth estimation of a given accuracy. Figure 2.1 

illustrates the stereo imaging system that they used for th e ir analysis. McVey and 

Lee simplified their analysis by assuming that the upper image can be approximated 

by the shifted lower image and the shift r  can be obtained by appropriate signal 

processing techniques. According to their analysis, the depth measurement error can 

be obtained as follows:

e =
D - D

D f L
100Zp£> (2 .1)

where lp is the length of each pixel, /  is the focal length, L  is the separation of the 

two cameras, D  is the depth, and 100 is for the percentage -error. McVey and Lee 

then used their analysis of the resulting error to provide a synthesis approach to 

determine stereo imaging system parameters from a num ber o f specifications, includ­

ing maximum absolute distance measurement error, and distance extremes D min and

Dmnjr.
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2.2.2 Blostein and Huang Error Analysis

A number of other researchers considered another alternative to  the worst case error 

analysis, which would be to determine the probability th a t a certain position estimate 

is within a specified position tolerance given the specifications of the stereo imaging 

system. Blostein and Huang [10] performed an error analysis in a stereo imaging 

system with parallel cameras as illustrated in Figure 2.2. In this figure P LP2P3P4 

defines the region of uncertainty.

/> '

> r >. fr

0  AT

A

Figure 2.2: Horizontal Projection of a triangulation

Let us assume 3D point S  has projections (/j, /;)  and ( / r , Jr) in the left and 

right cameras, respectively. For a parallel stereo imaging system Ii = Ir . The focal 

length of the cameras is denoted by / ,  the baseline of two cameras is denoted by A, 

and the pixel dimension is represented by dv. The following equations provide an

approximation to the length of the segment PsP6

IIft -  fell =  T-J .  . -wy  =— ------------------+ J f f n  (2 .2 )( j ;  — Jr +  — Jr Tli — 1 ) av2

Similarly the following equation provides the length of the segment PjP%.

/\  W77 ^2

11^ -  *  77-------------------------------+  J H 1/2 (2-3)(Ji — Jr + Tli— Ur)2 Ldv2
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In these equations ni and  tv  are real numbers between 0 and 1 representing the 

quantization uncertainty.

Assuming a point is uniformly distributed in the region of uncertainty, the joint 

density of the distribution on the two image planes is obtained from the following 

equation:

/ w i j v . f a .  n r )  =  _  h f l !  _  (J r _  _  J T +  n ,  -  r v )2 (2 '4)

where IV} and Nr are the  random variables representing probablistic interpretation 

of ni and rv- From th is distribution function, the probabilities of error in three 

dimensions X ,  Y  and Z  are less than a certain lim it rz can be obtained. For the 

depth (Z  component) we have:

f  1  — ( 1  — tzD )2 tz < jj  1
P(ez < r z) = \  D } (2.5)

1 i  ̂>= J
where D represents the horizontal disparity between left and right image.

2.2.3 Rodriguez and Aggarwal Error Analysis

Rodriguez and Aggarwal [34] carried out a  stochastic analysis of the depth estimation 

error. They calculated the  expected value of the absolute depth estimation error A Z  

as follows:

i?[| A-Zj] ~  J  [z min ZminZmax +  ZmaxJ (^-6)

W hen measuring error, the relative depth estim ation error is more meaningful than

the absolute error. Rodriguez and Aggarwal defined the relative depth estimation

error e as follows:

e - . - A f  (2.7)
Zmax in
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where ^  and zvnin define the range of the Z  coordinate. They believe that e 

describes the depth resolution be tter than the percentage error |A Z |/Z  does. The 

expected value of e is given by:

m  =  ( « )~T7WiX ^TTlin

2.2.4 Matthies and Schafer Error Analysis

Matthies and Schafer [26] used a 3D gaussian distribution to model the quantiza­

tion error in stereo imaging. They assumed that the error in the measured image 

coordinates is normally distributed {i.e. Gaussian). Then they defined a 3D gaussian 

distribution for 3D coordinates. For the 3D coordinates, the true distribution will not 

be Gaussian because of the non-linear nature of the triangulation process. Figure 2.3 

illustrates the normal approxim ation of the error. In the figure, the ellipse represents 

the contour of the error model and the diamond represents the actual quantization 

error. For nearby points, the contour will be close to spherical and therefore the 

approximation is adequate; for points further away, the more eccentric they become, 

the approximation becomes less accurate.

Figure 2.3: Quantization error with normal approximation
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2.2.5 Yang and Wang Error Analysis

Yang and Wang [39] have studied sources of errors in 3D shape reconstruction from 

structured lighting. In th e  structured lighting technique, a  spatially modulated pa t­

tern (typically a grid p a tte rn ) is projected onto the scene to encode the image object 

for analysis. Yang and W ang identified three type of errors: system modeling error, 

image processing error, a n d  experimental error. System modeling error is the error 

introduced in the calculations due to cameras not behaving according to an ideal par­

allel projection model where projection rays make an angle with respect to the optical 

access. Image processing errors which are categorized according to quantization error 

and error due to m islocating features in the image plane. Finally, experimental errors 

are errors due to calibration and operation of the im aging equipments. Yang and 

Wang studied the error in inferring 3D surface orientation and analyzed the principle 

surface curvature. Upper "bounds on the error were established in each case.
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Chapter 3 

Vergence in Stereo Imaging

In this chapter we study the effects of vergence in stereo imaging on depth measure­

ment error. Section 3.1 introduces the terminology and assumptions that we have 

adopted in our analysis. These assumptions, as well as terms, are generally valid 

through the whole thesis unless stated otherwise. Section 3.2 presents the depth of 

a 3D point as a function of the coordinates of its projections in the left and right 

cameras and the vergence angle. In section 3.3 we study the optimal vergence angle 

in the stereo system leading to minimal depth estim ation error, if there is any. Sec­

tion 3.4 discusses how the depth estimation error behaves with changes in the focal 

length of the cameras, as well as their baseline separation. Section 3.5 presents the 

depth estimation error behavior with changes in focal length. Section 3.6 discusses 

the depth estim ation error behavior with changes in dX .

3.1 Terminology and Assumptions

In this section, we define a number of terms tha t are used for our analysis. Figure 3.1 

illustrates the configuration of a simple stereo imaging system, where two cameras
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Figure 3.1: Stereo imaging system

have parallel image planes ( no vergence ) and are merely separated in the X  direction. 

The focal point of each camera is in fact in front of its image plane; we use the 

symmetry of the real focal point with respect to the image plane to simplify our 

analysis. Assuming th a t the two cameras have the same focal length, the focal length 

of each camera is denoted by / .  The separation distance between the cameras is 

denoted by dX .  It is assumed that the origin of the 3D world coordinates is at the 

focal point of the right camera. Each camera has a uniform pixel arrangement in both 

vertical and horizontal directions. The distance between two adjacent pixels along the 

x-direction is denoted by ex, and similarly the distance between two adjacent pixels 

along the y-direction is denoted by ey. The projection of the 3D point P (X , Y, Z)  in 

the right and left cameras is represented by (xr ,y r ) and (x i ,y i ), respectively. Because 

of the discrete placement of pixels, these two projections are approximated by (xr ,y r) 

and (£i,yi). The discretization error in tu rn  leads to an estim ate ( X ,Y ,Z )  of the 

coordinates of point P.
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X,R

Figure 3.2: Stereo imaging system with vergence

The m ajor assumption throughout this thesis is the only source of error is 

image plane quantization. A pinhole camera model is used and we ignore the lens 

distortion and the other forms of lens imperfections. In the pinhole camera model, 

lens is considered to be a point through which all incoming rays of light passes. In 

reality a lens with a finite aperture size is used, and the finite aperture size allows only 

one range to be focused on. However it is a valid assumption that under well lighted 

conditions and with proper geometry setup the aperture size is small enough such 

tha t the effect of blurring is small and the pinhole model holds across the scene. In 

addition to tha t in our analysis throughout this thesis we assume matching between 

points in the left and right cameras has already been performed and correct matches 

have been identified w ithout any error.
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3.2 Depth of a 3D point

Figure 3.2 illustrates a  two-dimensional view of a  stereo system along the Y  axis 

toward the origin. T he left and right cameras have vergence angles a t  and a R, 

respectively. In this chapter we ignore the noise and the effect of Y  coordinate in the 

depth estimation error. Theorem 1 provides a formula for the calculation of depth 

(Z  coordinate) of the point P  in Figure 3.2.

T h e o re m  1  The depth of point P  is given by the equation below. For definition of 

parameters refer to Section 3.1 and List of Symbols.

Z  — d X ( /  cos Oil, + x t  s i n a t ) ( f  cosaR  — x Ts in a R) /

( ( f  c o s a t  -h xi s i n a t ) ( f s i n a R +  x r c o sa R)

+ ( /  sina:£ — X[ cos a i ) { f  cos a R — x r sin a R)) (3.1)

Proof: In order to prove this theorem, a new coordinate system for each camera is 

defined, as illustrated in Figure 3.2. The origin of the new coordinate system is located 

in the focal point of the cam era and its Z axis is perpendicular to the image plane. Let 

{X R, Yr , Z r ) and ( X t ,  YL, Z t )  be the coordinates of P  in the new coordinate systems, 

which correspond to the  right and left cameras, respectively. The following relations 

exist between the projection of P  and its coordinates in each of these systems:

f X R f X L (3.2)
z R z L

X r ,  Z r ,  X l  and Z t  can be converted to X  and Z  (the m ain 3D world coordinate

system) using the following equations:

Z r  =  Z  cos a R  X  sin aR X r  — X  cos aR — Z sin aR (3.3)

Z L =  Z  cos a L — ( X  — d X )  sin a t  X L =  {X  — d X )  cos a t  +  Z  sin a t  (3.4)
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Note that a is the ro tation  of the main 3D coordinate system in the clockwise 

direction, and an  is the ro tation  of main 3D coordinate system in the counterclockwise 

direction. Using these relationships, Equation 3.2 is rew ritten as:

_  f ( X  cosan  — Z  s inan )  _  f ( ( X  — d X )  cos ac + Z s i n a L))
Xr (Z  cos a n  + X  sin an) Xl {Z  cos a L — (X  — dX )  sin a L)

By eliminating X  from these equations, equation 3.1 is obtained.

It should be noted th a t this theorem does not consider the size of the image 

plane of the cameras. In reality the size of the image plane is limited and, for certain 

vergence angles, point P  may not lie in the field of view of the cameras.

3.3 Optimal Vergence for a 3D Point

In order to study the effect of vergence on the depth estimation error for a single 

3D point, we would like to obtain an upper bound on the maximum error in depth 

estimation. Theorem 2 provides such an upper bound.

T h e o re m  2 A n upper bound on the relative error in depth of point P (X , Y, Z ) is 

given by the equation below. For definition of parameters refer to Section 3.1 and
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List o f Symbols.

+

Z - Z  ex smocL Z  cos a L - ( X - d X ) s i n a L , .
E z  =1 - g -  |<  — ^ ----------------------- z ------------------- +  (3.6)

ex sin aR Z  cos aR +  X  sin a r

2 7  x  +
ex sin ax, X (Z  cos a t  — (X  — dX )  sin a t )

2 f d X  Z
Sx COS OCR, — \

? / d x  cos sm aR'
• 6 X COS CKj, .  .  . . .

2 f d X  '  COS a L ~  (X  ~  d X ) sm “ *0 “  
ex sin o:r (X  — dX) (X cos aR + X  sin an)

2 f d X  Z

Proof: The projection of point P  in each camera has a t most ex/2  discretization error. 

We have:

x r =  xr ±  ex/2  xi = xi ±  ex/2  (3-7)

Using Theorem 1, the depth of point P  is estimated as:

Z  =  d X  ( /  cos a t  4- X* sin a t )  ( /  cos aR — x r sin a s ) /

( ( f  c o s a t  4- i i  sin a L) ( f  sin aR  -Fxr cos q r )  +

( /  sin — xi cos a t )  ( /  cos aR  — xr sin aR)) (3.8)

By substituting for xr and xi in the above equation, we have:

rp  1 v*/   ̂ , • I Cx S1H Oi£, \  /  r  - . ^ x  S il l  O C R ^ . / q  C i\
Z  =  d A ( /  cos ocl +  x i  sm a l  ± ----------   ) ( /  cos — x r s m  ocr d b   -) /  (3.9 j

r/ f  . , cx sin a t  v, , . cx cos qjjj.
[ ( / cosa L +  x; sm a L ± ---- ^----- ) ( / sm “ fi +  xrcos a R ± ---------   ) +

/ r - __ cos ô r, \ /  ̂ - __ cx sin o^/j..
( /  sm -  Xi cos a L =F ^----- ) ( /  cos 0 :^ -  xr sm 4=----- ^----- ) J

=  i W ( Z ) ( l  ±  —  6xSin- — :------- ) ( i  ±  —  exSinQfl ,------ - ) /
2 ( f  c o sa t  + Xi s w a L) 2 (/co s  aR — x r sm aR)

(Den(Z)  ± G (Z ))
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where N u m (Z )  and D en(Z)  represent the num erator and denominator of the right 

hand side of equation 3.1, and GQZ) is:

( ry\ Cx sm a R . . .  . COS o :£ , _ . .G(Z) — -----  ( /  sm a R -f- cos an)--f------- ------ ( / c o s a t  + i(S m Q £) (3.10)
z z

eI coso 'ft.f . ex sin .
   ( /  cos a R — xr sm a R)-H------------- ( /  sm a l — xi cos a i )

By replacing Z /N u m (Z )  for Derv(Z), Equation 3.9 is simplified to:

Z  = Z{  1 ±  - 7  eiSinQ^  ; r ) ( l  ±   exSmQ- -.--- r ) /  (3.11)
2 ( /  cos a L +  sm ac) 2 ( / c o s Q R - x r s m a a )
(1  ±  z __________________ G{Z)__________________

d X ( f  cosq!£, - x i  s in a c ) ( / cosa R — rrr sinQ:ft)

For many practical situations, such as a room environment where Z  is not very large, 

Z -r tn ------- ;— . G(f?,------------ =----- r is small and the above equation can be rewrittend X ( f  coscic,+X[ s i n a £ , ) ( / c o s a f t —xr  s m a / t )  ^

into the following form:

Z  =  Z (1  ±  SinQr  ---------  ± -------e" smQ:R ------  ) (3.12)
2 ( /c o s  a  + x:i sm a^) 2 ( f c o s a R — i r smci:jj)

a  T  z __________________ < m __________________ )
d X ( /  cos ac  +  xi sin ac)  ( /  cos — x T sin 0^ )

By expanding the right hand side of the above equation, some of the terms that are the 

result of multiplying two or th ree  fractional terms in the parentheses are negligible. 

Thus:

Z t * Z ( l ± n l ,  e* 5 ija t- ,  - +  e* sin- ^ :------ -
2 ( /  cos ai, -f-zjsm  at,) 2 { f  c o sa R — x Tsvo.aR)

G(Z)_______________

(3.13)

d X ( /  cos a L 4 - xi sin a l) ( /  cos a R — x r sin a R) )
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By substituting G (Z ) from Equation 3.10 the worst case relative error of Z  is given 

by:

■ Z  ~  Z  r______ ex sin a L_______ _̂______ ex sin a R_______
Z  2( f  cos o l l -{-xi sin o l l )  2 (/co s  o l r  — x r sina'ft)

ex sin &r Z ( /  sin o l r  -b x r cos d a )  ex cos olrZ
“b „ , .------------------ : r  -b

2 d X ( /  cos otL -b Xi sin o l l )  ( /  cos o l r  — x T sin a R) 2 d X ( /  cos a R — xr sin o l r )
ex cosa£,Z ^  ex sin e t t Z ( f  sin a t  — xi cos oll) ^

2 d X ( /  cos ccl -F Xi sin q:^) 2dX'( /  cos -(- x t sin a t )  ( /  cos o l r  — x T sin c u r )

Using Equation 3.5, the above equation is rewritten as:

Z  — Z  ex sina;^ Zcos clz — ( X  — dX )  s in o 't
E z = ' - Z - ^ — 2 f ---------------------- Z -------------------+

ex sin o c r  Z  cos o l r  -{- X  sin o l r
-b

+

2 /  Z
ex sin Oil, X ( Z  cos a i  — {X  — dX )  sin on-)

2 f d X  Z
&x  COS Ol r  . i v  • \  >— —— (Z cos OCR +  X  sm o l r )  +  

Z  J  CLsi.
ex cos Oi£,,_ , _ _ . __N . .

0  c ,v  ( z c o s a L -  (X  -  dX )  sm a L) -  
z / a A

ex sin o l r  ( X  — d X ) (Z  cos o l r  -f- X  sin a R) 
2  f d X  Z

(3.15)

According to this theorem, the upper bound on relative error is directly pro­

portional to ex , as was expected. In other words, the higher the resolution of the 

cameras, the lower the error. Furthermore, the upper bound of error is inversely pro­

portional to the focal length. Therefore, if the cameras zoom into a point, the error 

is likely to be reduced.

Now let us consider the behavior of the error upper bound with respect to 

changes in the vergence angle. For this purpose we use a numeric example. Suppose 

/  is 10 mm, the size of image plane is 40 mm x 40 mm, d X  is 100 mm, and ex 

is 0.05 mm. Figure 3.3 illustrates the changes in the upper bound of relative depth

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



27

Figure 3.3: Upper bound on the relative error in depth estimation versus the vergence 
angle for F(50, Y, 300)
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Figure 3.4: Variation of depth measurement uncertainty with vergence using uniform 
resolution images
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estimation error for a  point P  located a t  X  =  50 mm and Z  = 300 mm , with changes 

in a i  and ocr. Point P  in this example is situated symmetrically w ith respect to the 

two cameras. The error upper bound increases with vergence and it is a t its maximum 

when both a L and a R are roughly 10 degrees. The results illustrated in Figure 3.3 are 

remarkable due to the fact that, unlike common perception, vergence likely increases 

the depth estimation error.

Figure 3.4 illustrates the variation of depth uncertainty of a point P  for three 

different vergence angles graphically; the  size of the diamond th a t covers the point 

P  changes according to the plot of Figure 3.3. Figure 3.4 dem onstrates that the 

maximum depth estim ation error occurs when the projection of the point P  is at the 

center of the image plane of both cameras.

L em m a 1  Suppose point P  is located symmetrically with respect to two cameras. The 

vergence angle corresponding to the m axim um  error for this point is obtained from the 

equation below. For definition o f parameters refer to Section 3.1 and List o f  Symbols.

j Y /9
a w r  =  arc tan( “ ) (3.16)

Using this lemma with the system in th e  above example, we have:

0W r =  a rc ta n (1^ 2) (3.17)

=  9.46

which is consistent with the graph in Figure 3.3.

Figure 3.5 gives isoresolution p lo ts for our stereo imaging system. Each curve 

represents the points in the scene th a t have the same upper bound value for error in 

depth estimation. For the zero vergence angle, the isoresolution plots for the points
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Figure 3.5: Isoresolution plots for stereo cameras with uniform discretization

whose depths are not very large compared to dx are almost straight lines. When the 

vergence angle is increased, the plots become curved. The resolution of the cameras 

directly affects the distance between the curves in the isoresolution plots. The higher 

the resolution of the cameras, the denser the isoresolution plots. The isoresolution 

curve’s density around the fixed point P  in the scene changes depending on the 

vergence angle -  the density of the curves around P  increases when the cameras turn 

toward point P. Figure 3.6 illustrates the variation of depth estim ation error when 

point P  is not located sym m etrically with respect to two cameras. The upper bound 

of error in depth estimation is maximum when projection of point P  in both  cameras 

is in the center of the image plane. The result is also graphically confirmed in Figure 

3.7 (diamond plots) and in Figure 3.8 (isoresolution plots).

3.4 Optimal Vergence for an Object

T he upper bound on the relative error in depth estimation th a t we obtained in the 

previous section may have little  practical value. Due to the randomness of the position
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Figure 3.6: Upper bound on relative error in depth estimation w ith non-symmetrical 
vergence angles for P{25, Y, 300)
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Figure 3.7: Variation, of depth  uncerta in ty  for stereo cameras with uniform discretiza­
tion, and non-symmetrical vergence angles

A
A

A

\  \
Figure 3.8: Isoresolution plots fo r  stereo cameras with uniform discretization, and 
non-symmetrical vergence angles

of an arbitrary 3D point in the scene, the actual error is not necessarily equal to the 

upper bound. In this section w=e use our upper bound for a single point to obtain 

upper bound on the average e rro r  in depth estimation for all the points lying in a 

region in the scene. This is esp ecially important when an object of interest in the 

scene with finite dimensions is considered.

Figure 3.9 illustrates a rfegion in the scene representing the bounding box of 

an arbitrary object in the scene -defined by the following constraints:

Z m in  < Z  < Z ’m a x X m in  < X  < X m a x
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X

Figure 3.9: Stereo system with an object in the scene

The average depth estim ation error for all of the points lying in this area is 

calculated as follows:

'X m a s: r Z m a x/ ■s. max r
  X m in  J i

% - X m a x  rZ m a x
' Z m in E z d X d Z

(3.18)
/?*"“  r^max d X d Z  

J X m in  J Zm xn

Due to the complexity of the upper bound of the E z  equation, we use numerical 

m ethods for obtaining Ez-

Suppose an object of interest (in a system with /  =  1 0  mm, 40 mm x 40 

mm imaging axea, ex =  0.05 mm and d X  =  100 mm) is located in the region of 

280 < Z  < 320 and 35 <  X  < 6 5 .  For simplicity we assume that ccl and ocr are 

equal. Figure 3.10 shows the average error for this object as a function of vergence 

angle. The upper bound is at a  maxim um  when the center of the object region is 

projected onto the centers of the cameras. For small objects the upper bound on the
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Figure 3.10: The upper bound on the average depth estim ation error versus vergence 
angle for symmetrical movements

average error is close to the upper bound on the error for the center of the object.

3.5 Depth Estimation Error versus /

The results from the previous sections indicate that the average depth estimation 

error is inversely proportional to the focal length / .  Therefore we a ttem pt to reduce 

the depth estimation error by altering both the vergence and focal lengths. Figure 

3.11 plots the upper bound on the average depth estim ation error of the previous 

section object when bo th  cam eras’ focal length is increased to 50 mm; the upper 

bound is sharply decreased compared to f=10 mm. By increasing the focal length 

the  projection of the object covers a greater area of the image plane. The minimum 

upper bound on depth estim ation error is attained when the projection of the object 

covers the whole image plane of the  cameras. Such a situation for an object placed 

symmetrically with respect to two cameras occurs for unique values of focal length 

and vergence angle.
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Figure 3.11: The upper bound on the average depth estim ation error for f  = 50

3.6 Error versus dx

The upper bound on depth estim ation error is also dependent on the stereo cameras’ 

separation dx. Figure 3.12 illustrates the behavior of the upper bound with changes 

in dx. In order to draw this plot for each value of d x , both cameras’ vergence angles 

were changed to keep both cameras panned toward the object a t all times; for each 

new configuration based on the value of d X  the peak upper bound is always obtained. 

As Figure 3.12 illustrates, the upper bound decreases with wider separations between 

two cameras. Note that d X  =  0 illustrated in the figure is obviously meaningless.
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Figure 3.12: The upper bound on average depth estim ation error versus camera 
separation
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Chapter 4 

Vergence and Spatially-varying 

Sensing

In Chapter 3 we analyzed the effect of vergence on depth estim ation error in a stereo 

imaging system with cameras having uniform discretization. W ith uniform discretiza­

tion, the depth estim ation error can be reduced but the minimum upper bound only 

occurs when the object of interest is in the edge of the image. In other words, there 

is no optimal vergence angle which leads to minimum error while maintaining a good 

coverage of the background scene.

In order to solve this problem, we investigate the use of cameras with non- 

uniform discretization. In fact, we investigate a stereo imaging system similar to the 

hum an visual system. In the  human eye, there is a high resolution foveal region in 

the center and the resolution decreases towards the periphery.

Spatially-varying sensing is an important technique for reducing the processing 

required on images. For instance in the human visual system due to high resolution, a 

large amount of processing is required for the foveal region. If the human visual system
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resolution was uniform, the brain processing power must have been considerably 

higher to cover all the visual field.

Several approaches for modeling variable resolution images have been pro­

posed [5 ,1 2 , 36]. In this chapter we present two different models of non-uniform 

discretization: linear and exponential. I t is assumed that our cameras have a uniform 

pixel arrangement in the vertical (Y)  direction and non-uniform linear or exponen­

tial pixel arrangement in the horizontal (X ) direction. Section 4.1 describes the 

non-uniform discretization models. Section 4.2 explores the upper bound of depth 

estimation error for a point and a 3D object.

4.1 Non-uniform Discretization Model

We consider two models of non-uniform discretization: exponential and linear. We 

only study the exponential model in depth; the linear model is skipped because it is 

very similar.

1 . Exponential Discretization: The non-uniform exponential pixel arrangement is 

essentially based on the fish-eye transform [6 ]. The fish-eye transform, which 

is based on the characteristics of fish-eye lenses, describes a variable resolution 

mapping of a uniform resolution image to an image with high resolution in the 

center and non-linearly decreasing resolution towards the periphery. Based on 

this transform, any point with coordinates (x, y) in the variable resolution plane
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is mapped to the point (x, y ) in the uniform resolution plane as follows:

p =  y /x 2 + y2 9 =  arc tan(—)
x

9 =  9
A

x  = rcos9  y =  rs in 9  (4-1)

In the above equations, s is a simple scaling factor and A controls the amount 

of distortion over the entire range.

Based on the idea of the fish-eye transform, we define the pixel separation as:

ex(i) = Emine71 (4.2)

where Emin is the smallest pixel separation in the center of the camera, 7  is the

factor that determines the rate of increase in pixel separation, and i is the pixel

count in the X  direction from the center of image plane. Figure 4.1 illustrates 

the pixel distribution for 7  =  0.03. Note that the pixel separation is merely 

non-uniform in the X  direction.

2. Linear Discretization: The non-uniform linear discretization model is based on 

the following equation:

&x{i) — Emjn -(- vi (4-3)

where Emin is the pixel separation in the center of the image plane and u is a 

constant coefficient which controls the rate of increasing pixel separation.

4.2 Upper Bound of Depth Estimation Error

We use Lemma 2 In order to compute the depth estim ation error in a stereo system 

with non-uniform discretization.
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Figure 4.1: Exponential pixel distribution in the image plane for 7  =  0.03

L em m a 2  Suppose we have a single 3D point P (X , Y, Z ) which has projections x r

and xi on the right and left cameras, respectively. Each camera has a non-uniform

discretization; such a discretization is specified by a function ex (i) which defines the

separation o f pixels based on their location. The upper bound on the relative error in

the depth estimation o f P  is then given from the equation below. For definition of

parameters refer to Section 3.1 and List of Symbols.

Z  — Z  e*(®i)sinos£ Z c o s a L -  {X  — dX )sinocL 
E z  = | — g—  |<  ----------  g -------------------+  (4.4)

ex(xr) sin cxr Z  cos a& -t- X  sin
2 /  Z~' +

ex (x{) sin ar. X (Z cos ccl — (X  — d X )  sin ccl)
2f d X  Z  +

(*^r) COS CX.R

2  f d X  
ex (xi) cos a L

{Z  cos Q!ft 4- X  sin an) +

2 f d X  (Zcos ~  (X  -  d X ) sin a L) -

ex (xT) sin a  a {X  — d X )(Z  cos a n  4- X  sin ckr)
2 f d X  Z

Proof: The proof of this lem m a is similar to tha t of Theorem  2  in Chapter 3.
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Figure 4.2: Upper bound of depth estim ation error w ith non-uniform images for point 
P ( 50, Y, 300)
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Figure 4.3: Upper bound of depth estimation error w ith non-uniform images for point 
P(25, Y, 300)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



43

Figure 4.4: Variation of dep th  uncertainty with vergence using non-uniform image 
planes
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Suppose in the system described in Chapter 3, we use cameras with an expo­

nential pixel arrangement (Emin = 0.025, j  =  0.01) instead of cameras w ith uniform 

discretization. Using Lemma 2, the depth  estimation error of point P  located at 

X=50 mm and Z=300 mm is illustrated in Figure 4.2. The upper bound on the 

depth estimation error of P  is m inim um  for the same vergence angle a t which the 

error in the uniform resolution system was maximum ; this is the vergence angle for 

which the projection of P  lies on the center of the image plane of the cameras. Fig­

ure 4.4 illustrates the variation of dep th  uncertainty of a point P  for three different 

vergence angles when cameras having non-uniform discretization. The plot of Figure

4.2 is graphically verified in terms of the size of diamonds in Figure 4.4.

Figure 4.5: Isoresolution plots for stereo cameras with non-uniform discretization

Figure 4.5 gives isoresolution p lots for stereo cameras with non-uniform expo­

nential resolution when the point P  is located symmetrically respect to two cameras. 

The density of the plots changes w ith vergence, in accordance with the theoretical 

results and the diamond plots.
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We calculate the average depth estim ation error for an object of interest in the 

scene using the same constraints on the X  and Z  dimensions of the object used in 

Chapter 3. The average depth estimation error for all the points lying on an object 

is calculated as:

rX m a x  rZ m a x  j-, rr
_  Jxmin JZmin E Zd X d Z

rX m a x  rZ m a x  
J X m in  J Z m m

where E z  is obtained from Equation 4.4.

Suppose the object of interest (in a system with f =  10  mm, 40 mm x 40 

mm imaging area, ex — 0.025 mm and d X  =  100 mm ) is located in the region 

280 <  Z  < 320 and 35 <  X  < 65. Figure 4.6 shows the average error for this object 

as a function of vergence angle. The m in im u m  error occurs when the center of the 

object region is projected into the center of the image plane. The error of depth 

perception is obviously higher for peripherally visible targets.

(4.5)

2

1.8

1.8

1.2

1

0.8 20 2910 300 9

Figure 4.6: Average depth estim ation error using non-uniform images

Figure 4.7 illustrates the variation of depth uncertainty when stereo cameras 

have non-symmetrical vergence angle with point P  located non-symmetrically respect 

to the two cameras. The error in depth perception will be minimum when the pro-
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Figure 4.7: Variation of depth uncertainty for stereo cameras with non-uniform dis­
cretization and non-symmetrical vergence angles

Figure 4.8: Isoresolution plots for stereo cameras with uniform discretization, and 
non-symmetrical vergence angles

jections of the point P  in the scene are in the center of the image plane. The result 

is also verified by the isoresolution plots illustrated in Figure 4.8.

An issue that needs investigation is how the upper bound on error changes with 

changes in param eter 7  in a non-uniform exponential system. In order to do so, we 

must first define the focal angle of a pixel. If each of the left and right boundaries of 

a pixel is connected by a  line to the focal point of the camera, the two resulting lines 

create the focal angle of the pixel. These angles are illustrated in the diamond plots 

in this thesis. By studying the diamond plots from the uniform resolution system, we
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observe tha t the behavior of depth perception error w ith vergence is directly related 

to the focal angles of the pixels. For the uniform resolution cameras, the focal angles 

of the pixels in the center of the image plane axe larger than the focal angle of pixels 

in the periphery. This is why the depth perception error is larger when a vergence 

angle is selected such that the projection of the 3D point is in the center of the 

camera. For the non-uniform exponential resolution, there is no value for param eter 

7  th a t results in equal focal angles for all the pixels, and therefore the error plot 

versus vergence is never flat. However, the param eter 7  should be chosen such that 

the focal angle of pixels increases monotonically, going from the center of an image 

plane towards the periphery. For small values of 7 , although the pixel separation 

increases monotonically from the center toward the periphery, the focal angles may 

initially decrease and then increase — resulting in dep th  perception error changing 

in a non-monotonic fashion. Lemma 3 provides the minimum value of 7  that results 

in a monotonic increase of focal angles from the center towaxd the periphery. The 

im portant point to note here is that the value of 7  is derived from the geometry of 

the cam era and not from the characteristics of the scene.

L e m m a  3 The minim um  value o f j  that ensures a monotonic increase in focal angles 

o f pixels from the center of the image plane toward the periphery is:

7 m in  =  ln( ^ > 2  L) (4‘6)
J  m in

For definition o f parameters refer to Section 3.1 and L ist o f Symbols.

Proof: Lemma 3 can be proved by finding the formula for focal angle as a function of 

the stereo imaging system parameters and studying it from elementary calculus.
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Chapter 5 

Optimal Non-uniform 

Discretization

In Chapter 4 we demonstrated th a t non-uniform discretization has a desirable effect 

on the depth estimation error w ith stereo camera’s vergence movements. In this 

chapter, we study the optimal non-uniform discretization for stereo reconstruction. 

Once again, we assume that our cam eras have uniform discretization in the Y  direction 

and non-uniform discretization only along the X  direction. Section 5.1 describes the 

error in estimation of X  and Y  coordinates an arbitrary 3D point in the scene. 

The errors in the X  and Y  coordinates are used to obtain the optim al non-uniform 

discretization. Section 5.2 and 5.3 present the optimal non-uniform exponential and 

linear discretization, respectively. Section 5.4 compares the resulting error from the 

optimal exponential case as an exam ple with the error in a stereo system built using 

cameras with a uniform discretization.
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5.1 Error in Estimation of X  and Y  Coordinates

In order to obtain optimal non-uniform discretization, we study the error in estim ating 

the X  and Y  coordinates of an arb itrary  point P  as well as its depth(Z). Also, for 

the sake of simplicity, we restrict our study to the symmetrical vergence angles which 

can always be achieved by moving the stereo head toward the object rather than 

individual cameras separately. Lemma 4 provides equations for calculating the X  

and Y  coordinates of the point P  in Figure 3.2 from the coordinates of its projections 

in the right and left cameras and the vergence angle.

L em m a  4 The X  and Y  coordinates o f the point P  are calculated from  the following 

equations:

v  ^{Xr cos a  + f  sin a) ^
X    X , r . >( /  cos a  — xr sm a)
y  _  Vr(Z cos ol + A  sin a) ^

yi(Z  cos a  — (X  — dX )  sin a)
=  _

For definition of parameters refer to Section 3.1 and List of Symbols.

Proof: Lemma 4 is proved based on the method of Theorem 1 , where a new coor­

dinate system for each camera is defined, as illustrated in Figure 3.2. The origin 

of the new coordinate system is located in the focal point of the camera and its Z 

axis is perpendicular to the image plane. Let (X r ,Y r , Z r) and (X L, Y i, Zjf) be the 

coordinates of P  in the new coordinate system that correspond to the right and left 

cameras, respectively. From equation 3.5, X  can be obtained as a function of x r and 

Z. Thus we have:

^  ^  {xr cos a  + f  sin a) f ,
X  — Z y z  ; r  (d-'jJ( /  cos a  — x r sm a)
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Finally, from trigonometry we have:

Y = Z ^ L = Z ^ L  ( 5 4 )

By substituting for Z r and Z l ha the above equation, equation 5.2 is obtained.

Because of the discretization error in approxim ating the location of projection 

of point P  in the left and right cameras, there would be an  error in estim ating the 

coordinates of point P . In this study, we assume that the  stereo cameras have non- 

uniform resolution in the X  direction, and the resolution is  uniform for both cameras 

in the Y  direction. Theorem 3 demonstrates the relationship of the error in each of 

the coordinates with the pixel separation ex and ey. In th is  theorem, ex is a function 

of location of projection and ey is a constant.

T h e o re m  3 An upper bound on the relative error in the X  and Y  coordinates o f  

point P {X , Y, Z ) is given by the following equations:

X  — X  6x(xr ) cos a (Z  cos a  +  X  sin a)
x  =i ~~X  + ------------------ 2J X ----------------------+  (0-°}

6x(^r) sin a (Z  cos a  + X  sin a)
2f Z  
a  +   ̂
oc + .

ey{Z E z  cos a. +  X E x  sin a)
2yr(Z  cosa +  X  sin a)

For definition of parameters refer to Section 3.1 and L ist c f  Symbols.

, Y  — Y  Z E z cosa  + X E x s in a  .E y  =  ■ — ^  ------------------ —-------------“l~ fo.6 )
Y  Z  cos a  -t- X  sm  a

_ l _  ey(2
2yr 2yr (Z  cosa  +  X  sin a )

Proof: In order to obtain the maximum relative error in X , we use equation 5.1 from 

lemma 3. We have:
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X  =  ^ c o s a - h / s m c *  (5.7)
f  cos a  — x r sin a.

By substituting for Z  and x r in the above equation we have:

O- m ,  , vra:r c o s a : - h / s i n a ± e I (2:r ) / 2 cosa'
"  \  f - ' Z j  j. _c • i /  \  fe \  J/  cos a  — xr sm a  ±  ex [xr)/2  sin a  

_  ,x r cos a  4- / s i n a . , 1  ±  ex(xr )/2  c o sa /(x r cos a  4- / s i n a ) .  
j cos a  — i r s in a  1 =fc eI (xr ) / 2 s in a '/( /c o sa :  — a:r sina:)

Therefore the upper bound of the relative error of X  can be obtained as follows:

F  - I  * ~ X  \< h  f F V i +  ex(xr)c o sa  ex (xr) s in a
x  X  2(xr cos a  4 - / s in  a) 2 ( /c o s  a  — x r sin a)

By substituting for x T in the  above equation, we have:

, X  - X  , ,  , , ex {xr) cos a (Z  cos a - r  X  sin a) ^
E x = \ - l r - \ < { l ± E z ) ( l ± ----------------- — ------------------ )

eI (xr)sin Q '(Z co sQ :-rX sin a ) , .
(1  ±  2? ^  } "  1 (0‘9)

By expanding the right hand side of the above equation the upper bound on the 

relative error in X  is obtained. Some of the terms are significantly smaller and can 

be ignored yielding equation 5.5.

In order to obtain the upper bound on the relative error in Y ,  we use equation 

5.2. We use the equation th a t involves yr, therefore we have:

y  _  yrC-Z'cosa +  ^ 's in  a) ^  ^

The projection of point P  in each camera has at most e^/2 discretization error. Since, 

the  discretization in the Y  direction is uniform, ey is independent of the position of 

projection on the camera. We have:

yr =  yr ± e y /2  y{ = y i ± e y/ 2 (5.11)
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By substitu ting  for Z, and yr in equation 5.10, we have:

Y  =  Z ( l ± E z )c a s a  +  XQ -.± E x ) ™ “ {yr ±  ^  (5.12)

Thus the upper bound on the relative error in Y  can be obtained as follows:

c, Y - Y  Z  E z  COS oc + X  E x  sin ac , io ,
jEy  = \ — ~ ------ —--------——:-------------- (- (o.l3)Y  Z  cos a  +  I s m a

ey ( ey (Z E z  cos a  4- X E x  sin a)
2yT 2yr (Z  cosa  4- X  sin a)

Now let us define the goal for obtaining optimal non-uniform discretization. 

The objective of the study is to find how to arrange pixels in the image plane to have 

a minimum upper bound on error of X ,  Y ,  and Z  while resolution remains constant.

Let us assume tha t R  denotes the resolution (the number of pixels) in a cam­

era’s image plane, which for simplicity, we consider to lie in a unit area. In the case

of cameras with uniform resolution the following relationship between R , ex and ey

exists:

( - ) ( - )  =  «  (5-H).
G-x ^y

If the resolution is non-uniform in the  X  direction, then the following relationship 

exists:

N ( - )  = R  (5.15)

where N  is the number of pixels in the  X  direction in a unit length and we have:
AT

i  =  ^ 2  (5-16)
1 = 0

In order to obtain optimal vertical and horizontal pixel distribution in a non- 

uniform resolution stereo imaging system, the equations for E x , E y  and E x  from
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Theorem 2 and 3 must be considered. An obvious solution to minimize error in all 

directions is to reduce ex and ey together. However reducing ex and ey together leads 

to higher resolution, and that does not satisfy our objective; comparing the resulting 

error from two cameras with different resolution is not a fair comparison. To achieve 

minimum E x  and E z  requires ex in both cameras to be as small as possible. However 

when considering fixed resolution for the cameras, reducing ex makes ey larger and this 

is the worst possible solution for E y -  Therefore in this study we turn our attention to 

a solution for minimization of E y .  The solution will be optimal for E y ,  furthermore, 

E x  and E z  will be less than what they would be if the cameras had simply followed 

industrial standards.

5.2 Optimal Exponential Discretization

In this section we study optimal non-uniform discretization modeled by equation 4.2; 

the pixel separation increases exponentially from the center of image plane toward 

the periphery. In order to calculate the upper bounds E x ,  E y ,  and E z ,  the values 

of ex and ey are required. Theorem 4 provides us with the equations for ex and ey 

based on the resolution R, model param eters Emin and 7 , and the coordinates of 

point P (X , Y, Z ). The value of ex is different for the left and right cameras due to the 

difference in the location of the projections of point P, and non-uniform discretization 

in X  direction. The value of ey is independent of projection location due to uniform 

discretization.

T h e o re m  4  The pixel separations ex and ey for projections o f point P  onto the left 

and right cameras with non-uniform exponential discretization modeled by equation
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4-2 are obtained from the following equations:

e ( x \ -  ^ = 4 1  4- f ( X c o s a ~ Z s i n a K e T - l ) , ( .
l (  r) eT [ ( Z c o s a + X s m a ) E min 1 { ]

* ( „ )  =  « - • [ !  +  / ( ( ^ - ^ c o s ^  +  Z s m ^ - 1)
(iT cosa — (X  — d X )s m a )E min

es =  i [ i l i . ( l  +  ^ ; ^ ) - l l  (5.19)
7  E min

For definition of parameters refer to Section 3.1 and List of Symbols.

Proof: Let us consider the right camera; we assume that there are m  pixels between

the center of the image plane and  the projection of point P  along the X  direction.

Therefore the following equation exists:
771

x r =  5^(£r» ine7i) (5.20)
i=0

Com puting the summation on the  right hand side we have:
(e-r(rn+l) _

=  E min {e - (5.21)
e~ — 1

from which m  can be obtained as:

m  =  ±  ln (l +  ~  1}) -  1 (5.22)
7  *-Jmin

Substitu ting m  from the above equation and x r into equation 4.2 we have:

ex (xr ) =  (5.23)

=  . (5 .2 4 )

=  Emin r f  (.X cos cl Z  sin a) (e7 -  1) _  _
e~r (Z  cos a  +  X  sin a )E min

Similarly for ex(xj) we have:

ex{x,) =  (5.26)
I n f !  I f (- (X ~ d X '> g° 3 O  \=  EminZ (Z cosa-(X —rfX) s i n  a )  £Tmi-n > ^ (5-27)

Emin r / ( (X  -  d T ) cos a  +  Z  sin oQ (e7 -  1) f .
(Z  cos a  — (X  — d X )  sin a)E min
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DO

The number of pixels in the x  direction of image plane in unit length (IV) is 

obtained as follows:

7 E„

Subsequently we have:

1 . 1  . „  1 x  (e7 -  1 ) ,  .
e . = - 5 f c W l +  5  i ) — 1]J~JnR  j

(5.29)

(5.30)
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Figure 5.1: The error E Y  (left) and E Z  (right) for an object using stereo cameras 
with non-uniform exponential discretization.

By substituting equations 5.17, 5.18, 5.19 into equation 5.6, the value of E y

for the point P (X , Y, Z ) is obtained. The average error for an object in the scene

located within Z m in  < Z  < Z m a x  and X m in  < X  < X m a x  is obtained from the 

following equation:

  f ? ™ *  f? ™ *  E y d X d Z  ,
E y  =  J x ™n Jgmi n—  --------- (5.31)I  X m n s r  r * y .m .n ? r  -_ '  // 'X m a x  r Z m a x  »v  

X m i n  J Z m in  a j ^ aZf

Let us assume a stereo system where /  is 20 mm, dx is 100 mm, l?mm is 0.05 

mm and resolution R  is 1000, the average error E y  for the object located within 

350 <  Z  < 400 and 25 <  X  < 75 boundaries is plotted in Figure 5.1. The value of 7  

corresponding to minimum E y  is derived from this plot.
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5.3 Optimal Linear Discretization
56

In this section we study optimal non-uniform discretization modeled by equation 4.3; 

the pixel separation increases linearly from the center of the image plane toward the 

periphery. Theorem 5 provides us with the equations for ex and ey for the projection 

of a point P (X , Y, Z) in both cameras, based on the resolution R , model parameters 

Emin and v, and the coordinates of point P .
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Figure 5.2: The error E Y  (left) and E Z  (right) for an object using stereo cameras 
with non-uniform linear discretization

T h e o re m  5 The pixel separation ex and ey fo r  the projection o f point P  onto the 

left and right cameras with non-uniform discretization modeled by equation 4-3 are 

obtained from  the following equations:

\ J { y  +  ^ E m i n ) 2  8 l • ' ( E m i n  /  ( Z c o s a + X  sin a ) )  ^ m i n )
ex( r r ) =  E min +  -i-------------------------------------- ^ -------------------------------------(e.32)

\ f ( U +  ZEm in)2 ~  & V {Emin ~  / (Zc o s a - ( X - d X )  s iF a )  )  — +  2 Em in)
ex{x{) = Emin +   ------------------------------------------------------------------------------------- (s.33)

y / [ v  4- 2E m in )2 -  8v ( E min ~  1) “  { y  +  2EmiTfl

2uR  ^ .34)

For definition of parameters refer to Section 3.1 and List of Symbols.
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Proof: Let us first consider the right; camera. We assume there are m  pixels between

the center of the image plane and th e  projection of point P  along the X  direction.

We have:

m

Xr — ' f E-min L'i') (5.35)
-i=0

Computing the summation on the r ig h t hand side we have:

x T =  ( m  +  E ) E mi„ +  m{~m f  1)tJ (5.36)

which can be expressed as:

i/m2 + +  2Err^in)m  +  2(Emin -  x r) = 0 (5.37)

The positive root of this equation is:

y / ( l /  +  2Emin)2 —  81/ { E min -  Xr ) -  (l/ +  2 E min) 
m  = --------------------------------—------------------------------- (o.38)

Substituting m  from the above equation  and xT into equation 4.3, we have:

„ v  , V ( u +  2  E min)2 -  8 i/{Emin -  x r) - { i /  +  2  E min) f_ onS
£x\Xr)  — rimin "T" 2 (p.dyj

\ J i y  +  ZEmin)2 ~  & ̂  {Emin ~  f  [z cosa+X sina]') ~  +  2 E min)
=  Emin +  1 --------------------------------------- Y ----------------    ^ - 4°)

Similarly for ex(xi):

/ \ -p . y /{u "b 2E min)2 — 8i/(Emin — X[) — [y -f- 2E min) 
ex{zi) ~  Emin H---------------------------------- 2--------------------------------  (°-41)

\ J ( y  +  ^ E m i n ) 2  —  8 l / ( E m i n  ~  f  [ z Co s a - ( X - d X )  s i n ^ } )  ~  +  2 -E rm n )
=  Emin +   -------------------------------------------   (0.42)

Let us denote the number of pixels in the unit length in the x  direction as N ; it is 

obtained from the following equation:

ŷ.   y/{j/ “f- 2 Emin)2 ^^{Emin 1) {y 2Emin) ✓g
—  ( 0. )
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The following relationship exists between N  and the resolution R  (which is assumed 

to be constant).

R  =  N — (5.44)

ey can be obtained from the equations 5.44 and 5.43 as follows:

^ /(u  +  2E min)2 ~  8 is(Emin — 1) -  [y +  2 E min)
2 v R (5.45)

By substituting equations 5.32, 5.33, 5.34 into equation 5.6, the value of E y  

for a point P (X , Y, Z ) is obtained. Suppose th a t /  is 20 mm, dx is 100 mm, Emin 

is 0.05 mm and the resolution R  is 1000. Figure 5.2 (left) illustrates the graph of 

E y  versus v for a small object located within the 350 < Z  < 400 and 25 <  X  < 75 

boundaries when two cameras are tilted  toward the object.

By substituting equations 5.32, 5.33, 5.34 into equation 4.4, we obtain  the E z  

value for a point P ( X , Y , Z ). For the example in the previous section, the variation of 

E z  with i/ is illustrated in Figure 5.2 (right) E z  increases directly with the  increase 

in v, as expected.

5.4 Comparison of Uniform and Non-Uniform Dis­

cretization

In the previous sections, we found the  optim al non-uniform discretization in the X  

direction. The significance of these results is only understood when the error is com­

pared with the uniform resolution case. For non-uniform exponential discretization, 

the optimal value of E Y  is obtained for 7  =  0.2. For this value of 7 , E Y  =  5.85%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



59
and E Z  =  3.17%. Figure 5.3 illustrates the upper bound on average error E Y  as 

a function of pixel separation ex for the example system in this chapter when both 

stereo cameras have uniform resolution. T he error E Y  in the best case is above 8.5%, 

which is well above the values obtained by non-uniform resolution case. This best 

value of E Y  is obtained for ex =  0.22. Figure 5.4 illustrates the error E Z  for this 

value of ex as a function of vergence angle. The value of E Z  is maximum for the 

vergence angle where both cameras axe tilted toward the object. For this vergence 

angle, its value E Z  =  3.82 is still more than  the values obtained by the non-uniform 

resolution. In other words the optim al non-uniform discretization not only improves 

E Y  over the uniform resolution, bu t also E Z  is improved.
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Figure 5.3: E Y  for using stereo cameras with uniform discretization.
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Figure 5.4: E Z  for using stereo cameras with uniform discretization for ex =  0 .2 2 .
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Chapter 6 

Stereo Cameras with Tilt 

Movements

In this chapter we examine a stereo imaging system with a  less restricted configura­

tion, where cameras have independent tilt as well as pan movements similar to the 

human eye. The object of interest can be located anywhere in 3D space with respect 

to the cameras and not necessarily symmetrically located before the two cameras.

Section 6 .1  illustrates the configuration of the stereo system  which is studied 

in this chapter. The depth of an arb itrary  3D point in the scene will be calculated 

based on the stereo imaging system  parameters. In Section 6.2, we study the error in 

depth estimation. Section 6.3 discusses the epipolar lines com putation in this stereo 

imaging system which is used for stereo matching.

6.1 Depth of A 3D Point

Figure 6 .1  illustrates the configuration of the stereo imaging system  with cameras 

having independent pan and tilt  movements. The pan angle, which is the angle of
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rotation of the cam era’s coordinate system  along the Y axis, is denoted by (3 and 9 for 

the left and right cameras respectively. The tilt angle which is the angle of rotation 

of the camera’s coordinate system along the X axis, is denoted by a  and 7  for the 

left and right cameras respectively.

Figure 6 .1 : Stereo imaging system with tilt movements

Theorem 6  provides the equation for depth of a point P  in Figure 6.1 based 

on the physical geometry of the stereo imaging system and the projection of point P  

in the left and right cameras.

T h e o re m  6  The depth o f a 3D point P (X , Y, Z ) in the stereo imaging system o f 

Figure 6.1 can be obtained from  the following equation:

_ _ Z E Yk d X _ _
YlX r  -  (X L -  dX )Y R K ;
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in which:

Z r — —yr sin fi 4- cos @(—x r sin a  4- /  cos a) (6 .2 )

Z L =  —yi sin 9 4- cos 9{—xi sin 7  +  /  cos 7)

X r  =  x r cos a  + f  sin a  

X l  =  xi cos 7  4- /  sin 7  4-  dX  

Y r — Ur cos f i  4-  sin (—xT sin a  4- /  cos a)

Yl  =  yi cos 9 4- sin 9(—xi sin 7 4 - /  cos 7 )

(6.3)

For definition of parameters refer to Section 3.1 and List o f Symbols.

Proof: In order to find the depth (Z) of point P (X , Y, Z ) from the coordinates of 

its projections in the left and right cameras, we use the m atrix  form of the rotation, 

translation and projection transformations. The m atrix form of the transformations 

is easily accomplished by using a homogeneous coordinate system. The homogeneous 

coordinates of a point with coordinates (X, Y, Z) are defined by (kX , kY, kZ, k) where 

k is an arbitrary nonzero constant.

Let us consider a point Pr {x t , yT) in the right cam era’s image plane. Assuming 

that the right camera pan and tilt angle is zero, point Pr has 3D coordinates (xr , yr, f )  

in the world 3D coordinate system with its origin in the right cam era’s focal point. 

Using the m atrix form of the rotation and homogeneous coordinates of point Pr , if 

the right camera has nonzero pan and tilt angles, then the  3D coordinates of point 

Pr are obtained as follows:

C hR =  R fiR cW h R  (6-4)
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where WhR denotes the homogeneous coordinate of point P r , and C ^ r  represents 

the resulting point homogeneous coordinate after transformation. R a is the rotation 

m atrix along the Y  axis, and Rp is the rotation m atrix along the  X  axis as follows:

( ,  „  n  n \

R a =

f  cos a  0 sin a  0  ^

0 1 0  0

— sin a  0 cos a. 0

0 0 0 1 /V

R r =

V

1 0  0 0

0 cos/3 sin/3 0

0 — sin /3 cos /3 0 

0 0 0 1 /

(6.5)

Similarly, we have the following equation for the point Pl in the left camera’s 

image plane:

ChL =  RgRyCWht (6 .6)

where, similar to P r , W ^ l  denotes the homogeneous coordinate of point P l , and C l l  

represents the resulting point homogeneous coordinate after transform ation. C is 

the displacement matrix, R^ is the rotation matrix along the Y  axis, and Rg is the 

rotation matrix along the X  axis as follows:

/ i n n  j y  \

C =

1 0  0 dX  

0 1 0  0 

0 0 1 0  

V 0  0  0  1 /

(6.7)

(  cos 7  0  sin 7  0

0 1 0  0 

— sin 7  0  cos 7  0

^ 0  0  0  1

\

R g =

( l 0 0 0  N

0 cos 9 sin# 0

0 — sin 6 cos 9 0

\ o 0 0 1 J

(6 .8)
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Let us assume point P (X , Y, Z ) has projections P R(X R, Yr , Z r ) and Pl (X Li Yl , Z l ) 

in the right and left cameras, respectively. Equation 6.10 describes all the 3D lines 

passing from P R and the origin (which happens to be the focal point of the right 

camera) in parametric form:

X  =  X Rt  (6.9)

Y  = YRt  

Z  — Z Rt

Similarly, Equation 6.11 dem onstrates all the 3D lines passing from Pl and the focal 

point of the left camera, which is located at (d X , 0 , 0 ) in param etric form:

X  =  d X  + (X L -  d X )t ' (6.10)

Y  = Yl £'

Z  = Z Lf

The point P  projection line into the right camera passing from point PR and 

P , and the projection line passing from point Pc and P  have point P  in common. 

Therefore point P  should satisfy both equations, and we have:

YLd X
~  YlX r — (X l — d X )Y R }

t  -  Y * d X _________  (6 12)
~  YLX R -  {X L -  d X )Y R { j

By substituting for the t  in equation 6.10, we have:

Z RYLd X
YLX R - { X L - d X ) Y R ]

In order to obtain the relationship between the 3D coordinates of PR and Pl

with the coordinates of the projection on the image plane (e.g. X R, YR] Z R and xr , yr),
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we use the m atrix form of the projection transformation Tp  as follows:

f l 0 0 0  ^

0 1 0 0

0 0 1 0

^ 0 0 1 / / 0 ^

Let us denote the homogeneous coordinate of point P  with vector W^ and the resulting 

point homogeneous coordinate w ith vector C^. Equation 6.15 provides the projection 

of point P  in the projection plane defined by the equation Z  = f ,  which coincides 

with our right camera’s image plane with zero pan and tilt angles.

Ch = TPWh (6.15)

The projection of point P  in the cameras with nonzero a  pan and 13 tilt angles can 

be calculated by first ro tating point P  by —a  and —/? along the Y  and X  axes,

respectively, and then finding the projection using the equation 6.15. This leads to

the following equations for the right and left cameras:

CflR =  TPR ^ R _ aW fl (6.16)

ChL =  TPR _0R -yC W h (6.17)

The projection point P r  with (x r , yr) in the right cam era’s image plane has coordi­

nates (xr , yT, f )  in the 3D world coordinate system, and similarly the projection point 

P l  with coordinates (Xi,yi) in the left cam era’s image plane has coordinates (xi, yi, / )  

in the 3D world coordinate system. Considering these facts and expanding the above 

equations, the equation 6.1 for depth  (Z  coordinate) of point P  is obtained.
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6.2 Depth Estimation Error

Because of discretization error in approxim ating of the location of projection of point 

P  in the left and right cameras, there is an error estimating the coordinates of point 

P. In this study, we assume that the stereo cameras have uniform discretization in 

the x  and y direction, and each cam era can have independent pan and tilt movements. 

Theorem 7 demonstrates the relationship of the error in the depth coordinate Z  with 

pixel separation e.

T h eo re m  7 The upper bound on relative error in depth o f a 3D point P (X , Y, Z ) is 

obtained from the following equation:

. Z  — Z  A Z R ,
E z  =1 — | <|  i 4-

A n  , X RA Y L + Yl A X r -  YRA X L -  (X L -  d X )A Y R 
1 n  ' YLX R - { X L - d X ) Y R 1

in which equations 6.3 hold and we have:

(6.18)

A Z R =  ± e/2(sin ,5  +  cos j3 sin a) (6.19)

A Z l =  ± e /2 (s in 0  4- cos Q sin 7 )

A X r — ± e / 2  cos a  

A X l — ± e / 2 cos7  

A Yr  =  ± e / 2 (cos @ +  sin /5 sin a)

A  Y i =  ± e/2(cos 9 4- sin 9 sin 7 )

For definition of parameters refer to Section 3.1 and List o f Symbols.

Proof: In order to prove this theorem we use the following equation:

Z  =  Z Rt  (6.20)
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in which t  is obtained from equation 6 .1 1 . Due to discretization error, we have:

Z  =  Z Ri  (6.21)

By expanding the right hand side, we have:

1  =  Z Rt( l  ±  ^ ) ( 1  ±  (6.22)
t  Z , R

By multiplying two terms together and ignoring the second order error terms we have:

E z = \ ^ - \ < \ ^ \  + \ ^ \  (6.23)

In this equation, AZ r  and A Zt, are unknowns. First we find the error in coordinates

of the projection of the point P (X , Y, Z) in the right and left camera P r ( X r , Y r , Z r)

and P l { X l , Y l , Z l ) due to discretization. For the Z r  coordinate, we have:

Z r  =  — y T sin +  cos/3(—xr sino: +  /  cos a )  (6.24)

Due to discretization we have:

xr =  xr ± e / 2  (6.25)

yr = yr ± e / 2  (6.26)

Since the cameras have uniform resolution, e is constant and we only need to consider 

the case where pixel separation is the same in both directions. We have:

Z r  =  —sin ,6(yr ±  e/2) +  cos/3(—(xr ±  e /2 ) s in a  +  f c o s q )  (6.27)

Therefore we have:

A Z r  =  ± e / 2 (sin/? +  cos/?sina)) (6.28)
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Similarly, for the rest of the coordinates we have:

A Z l =  ± e /2 (sin  9 cos 9 s in 7 ) (6.29)

A X r =  ± e / 2  cos a  

A X l =  ± e / 2 cos7  

A Yr  =  ± e/2(cos /3 -4- sin /3 sin a)

A Yl =  ± e/2 (cos0  -F sin 0 sin 7 )

The other unknown in the equation 6.23 is the A t,  which we calculate here:

f = _____________  (6.30)
Y lX r -  ( X L -  d.X)YR

Then we have:

{Yl +  A YL)d X (6.31)
{Yl - F  A Y l ) { X r  - F  A X r )  — {X L - I -  A X L — dX )Y n

By expanding the right hand side of the above equation and ignoring the second order

error terms and assuming error in denominator is small we have:

^ A Y l , X RAYL +  YLA X R - Y RA X L - { X L - d X ) A Y R  ̂ fR 00,
~  ~Yl --------------- '------------D E W t) --------------------------- } ( 6 ' 3  '

By substituting the above equation in equation 6.23, the equation 6.18 is obtained.

Theorem 7 presents an upper bound on the depth estim ation error for a single 

point. We are interested in the average error for am object. The average depth 

estimation error for an object w ithin the boundaries of X min < X  < Xmax, Ymin < 

Y  < Ymax, Zmin < Z  < Zmax is obtained as follows:

-  A?™" ATm°x / / max E z dxdydzE  =  J x ™r jYm™ ----------------  (6.33)
r X m a x  r Y r n a x  r Z m a x  d x d  d z  

J  ^rnin J  * m in  J  "min
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Now let us consider a stereo imaging system consisting of two cameras which 

are separated by 100 mm (dX =100). Two cameras are identical w ith focal length of 

10 mm, and the distance between centers of two adjacent pixels is 0.05 mm. Figure

6 .2  illustrates the upper bound on the average relative error in depth estimation of 

an object situated within the following boundaries: 25 <  X  < 75, 275 < Z  < 325, 

25 <  Y  < 7 5 . This figure plots the error when the two cameras have a fixed 10 degree 

tilt angle toward the object, and  the pan angles of both cameras varies towards the

object. Figure 6 .2  clearly illustrates th a t depth estimation error is maximum when

the cameras are panned and tilted  toward the object in the scene.

6.3 Epipolar Lines

In this thesis we are not directly concerned with the matching process in stereo 

images. However, most of the m atching algorithms in literature are restricted to a 

simple parallel stereo imaging system. A stereo imaging system which each camera 

can have independent pan and tilt movements has not been fully studied. Theorem 8 

derives the epipolar line equation in the left image for an arbitrary  point in the right 

image — the match for the selected point resides on the derived epipolar line.

Theorem 8 For the 3D point P ( X ,  Y, Z ) with projection point P r ( x t , yr) in the right 

image, the following equation is the epipolar line equation in the left camera’s image 

plane corresponding to point P r :

Xi (sin 7  cos 7  — C y  sin 9 sin 7 )  -I- (6.34)

UiiCy cos 9 + f  sin2 7  — / )  4- 

C y f  sin 9 cos 7  =  0
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Figure 6.2: Upper bound of depth estimation error of location of a 3D object in stereo 
imaging
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in which

Z RC y  — cos 7 sin 9 — cos 7 cos (6.35)
Y r

For definition o f parameters refer to Section 3.1 and L is t o f Symbols.

Proof: Figure 6.3 illustrates the epipolar lines in our stereo configuration. Epipolar 

lines are derived from the intersection of the epipolar plane, which is the plane passing

through the focal points of the right and left cameras and  the 3D point P , and the

image plane of the cameras .

Point PR(xr,y r) and  the projection of point P ( X , Y , Z )  have the following 

coordinates in the 3D coordinate system:

X r =  xr cos(o:) 4- /  sin(a) (6.36)

Y r  =  y r  cos(/3) 4- sin(/3)(—xr sin(o:) 4- /cos(o :))

Z R =  —7/r sin(/5 ) 4- cos(/3)(— xT sin(o:) 4- /co s(a :))

The epipolar plane equation which passes focal points of left and right cameras 

and P r  is defined by the following equation:

dx (Z RY  + YRZ ) =  0 (6.37)

The equation for the left cam era’s image plane is obtained by calculating the

normal vector of the plane considering its pan and tilt movements, and selecting an 

arb itrary  point on the plane. We have:

sin(7 )(X  — /sin(Y ) — dx) 4- (6.38)

cos(7 ) sin(0)(Fr — /c o s (7 ) sin(0)) 4-

cos(7 ) cos{9){Z — f  cos(y) cos(9)) =  0
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The epipolax line equation is obtained from the intersection of the two planes 

described by equations 6.37 and 6.38 as follows:

X sin(7 ) — f  — dx  sin(7 ) +  (cos(7 ) sin(0) — cos(7 ) cos(9)Zr / Y r ) Y  =  0 (6.39)

in which X  and Y  are the 3D coordinates of projection points onto the left image 

plane. By substituting equation 6.3 into the above equation, the epipolax line equation 

6.35 is obtained.

Y

Epipolar Line

a 2

Figure 6.3: Epipolax lines in a stereo system with vergence
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Chapter 7 

Spatially-Varying Stereo Cameras 

with Tilt Movements

In this chapter we study the idea of non-uniform discretization presented in Chapter 4, 

for the stereo system described in C hapter 6 . However, unlike C hapter 4, the cameras 

will have non-uniform discretization in both the horizontal and vertical directions.

Section 7.1 describes the upper bound of the error in the stereo system of 

Chapter 6  built using cameras with non-uniform exponential discretization. Section

7.2 discusses the optim al non-uniform discretization in the stereo imaging system of 

C hapter 6 .

7.1 Upper Bound of Error in Z

Theorem 7 in Chapter 6  provides the upper bound for the depth estim ation error when 

two cameras have uniform resolution. For the cameras with non-uniform resolution, 

Theorem 7 is still valid based on the values for A X R, A X L, A Y R,A Y L, A Z R, A Z L 

provided by the following lemma:
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L em m a  5 The absolute error for the 3D coordinates o f projection o f  point P  in the 

left and right cameras is obtained from the following equations:

&.Zr =  ± 1 / 2 (e(yr) sin/3 +  e(xr) cos /3 sin  a) (7-1)

A Z l =  ± l/2 (e (y i) sin 9 ±  e{xi) cos 9 s in  7 )

A X r =  ± l / 2 e(xr ) cos a  

=  ± l / 2 e(x;) cos 7  

A YR =  ± 1 / 2 (e(yr) cos/3 — e(xr ) sin /3 sin  a)

A Yl — ± l/2 (e (y i)  cos 9 — e(xi) sin 9 s in  7 )

For definition of parameters refer to Section 3.1 and L is t  of Symbols.

Proof: Proof can be easily accomplished using equation 6.3 and expanding the right 

hand side using the error in the coordinates of projections. The error depends on the 

value of a coordinate rather than being a fixed value.

In this study we consider the exponential non-uniform discretization model 

described by the following equation:

e(i) =  E r ^ e *  (7.2)

where E min is the pixel sepaxation at the center of the cam era, u is a  constant coeffi­

cient that controls the rate of increase of the pixel sepaxation, and i is the m anhattan 

distance of the pixel along X  or Y  directions from the center pixel.

Now let us consider the stereo imaging system with identical setup described in 

the Chapter 6 . We replace the cameras with ones th a t have non-uniform discretization 

described by equation 7.2 (E min =  0.01 and v  =  0.01). N ote that these numbers are
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selected so that the overall resolution of the cameras w ith non-uniform resolution 

in unit area is the same as the one with uniform resolution in the Chapter 6 . This 

is done to make the comparison of uniform and non-uniform resolution a fair one. 

Figure 7.1 illustrates the variation of upper bound of depth estim ation error for the 

object of interest in the scene. Figure 7.1 illustrates th a t the  error will be minimum 

when the cameras are panned and tilted  toward the object.

The significance of the result illustrated in Figure 7.1 is only perceived by 

comparison to the results illustrated in Figure 6 .2 . The upper bound in non-uniform 

resolution case when cameras are panned and tilted toward the object is far less than 

the uniform resolution case.

7.2 Optimal Non-Uniform Discretization

In section 7.1, we proved tha t non-uniform discretization sim ilar to the human eye pro­

vides far better results in depth estim ation error compared to cameras with uniform 

discretization. In this section we study optimal non-uniform discretization provided 

that we are restricted to the exponential non-uniform discretization model described 

in equation 7.2.

In the stereo imaging system described in the C hapter 6 , we analyze average 

error in depth estim ation for the object in the scene w ith the changes in is, where 

the cameras are panned and tilted toward the object. Again, in order to have a fair 

comparison, with each change in the value of is, the value of Emin is changed to keep 

the overall resolution a t a  fixed value. Figure 7.2 illustrates the change in average 

error versus is. Figure 7.3 illustrates the change of Emin versus is. For each object 

in the scene there is an optim al non-uniform discretization which leads to minimum
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Figure 7.1: Upper bound on depth estim ation error in the location of a 3D object in 
stereo imaging system with non-uniform pixel distribution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



78
average depth estimation error.
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Figure 7.2: Optim al non-uniform discretization
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Figure 7.3: Changes in Emin with v  changes to keep constant overall resolution
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Chapter 8 

Stereo System with Cylindrical 

Sensors

In this chapter we study the depth  estim ation error in a stereo system  using two 

cameras with cylindrical image planes. We demonstrate that such a stereo imaging 

system has superior performance in term s of the depth estimation error in comparison 

with the stereo imaging system using conventional cameras with flat image planes.

Section 8 .1  describes the cam eras th a t can be modeled as cam eras w ith cylin­

drical image planes. In Section 8.2, we obtain  the formula for calculating the depth of 

a 3D point using a stereo imaging system  built with cylindrical sensors. Section 8.3 

provides the error analysis in depth o f  a  3D point using cylindrical sensors. In Section 

8.4, we compare the stereo imaging system  built with cylindrical sensors against a 

system built with conventional cam eras w ith flat image planes.
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8.1 Cameras with Cylindrical Image Plane

Let us consider a  device which, consists of a  single dimensional array of CCD sensors 

as opposed to conventional cameras which use CCD sensors that are two dimensional. 

In this device (illustrated in Figure 8.1), the  CCD sensor is rotated around a center 

point. At each position the image projected onto the CCD sensor is a column of 

picture elements in the final image provided by the device. This device can be used 

to generate panoramic images of 360 degree rotation.

 f \
Center 

o f Rotation CCD|
•Amy**

Figure 8.1: Model of the imaging system  with single dimensional array

The cam era described above is modeled to have an image plane of cylindrical 

form, and is therefore referred to as a cylindrical camera. The radius of the cylinder 

is the radius of rotation. The focal length of the lens in this device has significance 

only in the vertical direction. The form of the image in the horizontal direction is 

determined by the radius of rotation and the horizontal resolution.

8.2 Depth of a 3D Point

Figure 8.2 illustrates a stereo imaging system  that uses the cylindrical cameras. In 

this stereo imaging system, we assume th a t  the cameras have no independent tilt 

movement and are similar to an ordinary parallel stereo imaging system; the cameras 

are merely separated in the X  direction. T he focal length of each camera is denoted 

by / .  The pixels on the sensor array are of a square form with size e. The pixel
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• p

X I

d X

X r

Figure 8 .2 : Stereo imaging system using cameras with cylindrical image plane

separation on the image plane in the horizontal and vertical directions axe denoted 

by ex and ey, respectively. Note th a t ey is always equal to e, but ex is based on the 

steps and radius of the rotation. The radius of rotation (the distance between the 

focal point and the image plane) is denoted by R.

The separation distance between the cameras is denoted by d X .  It is assumed 

that the origin of 3D world coordinates is at the focal point of the right camera. The 

projection of the 3D point P {X , Y, Z ) in the right and left cameras is represented by 

(xr , 2/r ) and (xi,yi), respectively. Because of the discrete placement of pixels, these 

two projections are approximated to (£r , yr) and (Xi,yi). The discretization error in 

tu rn  leads to an estim ate (X , Y , Z ) of the coordinates of point P.

The following theorem provides a formula for the calculation of depth (Z co­

ordinate) of the point P  in Figure 8.2.

T h e o re m  9 The depth of a point P  is calculated from the following formula:

z  dX
taxi(xr /R )  — tan(x[/P )

For definition of parameters refer to Section 3.1 and List of Symbols.

(8 .1)

Proof: In order to prove this theorem, let us consider the top view of our stereo
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imaging system along the Y~ coordinate axis as illustrated in Figure 8.2(right). The 

distance between the projection of point P  in the right cam era’s image plane to the 

center of the image along time X  direction is an arc which is defined by the angle 9r

and represented by xT. S im ilarly xL is an arc defined by the angle 9[.

Based on the arc leng th  formula from elementary calculus we have:

x r =  R a xc ta n (X /Z ) (8-2)

xi = H a r c ta n ( ( X - d X ) /Z )  (8.3)

Then we have:

tan (x[/R)

By eliminating X  from the above equations we have:

d X

Z  tan (xr/R )  (8‘4)

Z - X r ™  (8.5)

Z  =
tan(xr /l?) — tan {x JR )

8.3 Depth Estimation Error Analysis

In this section we analyze ttae error in the stereo system with cylindrical sensors. We 

obtain an upper bound on th e  maximum error in depth estim ation for the 3D point 

P. The following theorem provides such an upper bound:

T h e o re m  10 An upper boxund on the relative error in depth o f point P ( X , Y . Z ) is 

obtained from the following Jormula:

„ _ e x , X  X - d X ,
E z  =  2 R { Z ---------
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For definition of parameters refer to Section 3.1 and List of Symbols.

Proof: In order to prove this theorem , let us use the result of Theorem 1 in Section 

3.1. The projection of point P  in each cam era has at most ex/ 2  discretization error.

We have:

x r = x r ±:ex/2  £[ = X i ± e x/2  (8-7)

Using Theorem 1, the depth of point P  is estimated as:

Z  =  d X  (8.8)
tan.(xr/R )  — tan {xi/R)

The following trigonometric equation exists:

. tan (a ) +  tan(/3) .
tan (a  +  0)  -  ± _  fcan^  (8.9)

By substituting for xr and xi and using the above trigonometric equations, We have:

^   ___________________d X { l  g= ex/ 2 R t z n ( x T/R ) ) ( l  ip ex/2Rta.n(x[/R))________________ _
( tan (xr/R )  ± e x/2 R ) ( l  ex/2R ta ji{x i)  /  R) — ( t a n ^ / # )  ± e r /2 i? )( l  er / 2 i? tan (x r ) /

By multiplying the parentheses together and ignoring the second order terms, we 

have:

^  _  dX{  1 =F ex/ 2 i? ( ta n ( i r /H ) +  tan(x//.R))
(tan(o:r /H ) — tan(a:i/R)) ±  (ex/R-{- ex/Rtasx{xT/R )  ta ji(xi/R))

Then we have:

^  =  ex/2R(t<m(xr/R )  +  ta a fa /ig ))  1Q.
1 ±  juxO-  +  tan(a:r /l?) tan(xi/R))

For practical situations such as a  room  environment where Z  is in the same order of 

m agnitude as dX ,  the above equation can be rewritten as follows:

Z  =  Z (( 1 |^ ( ta n ( :c r /.R) +  ta n ( ^ /f ? ) ) ) ( l  q= +  tan{xr/R )  tan(xj/H))()8.11)
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By multiplying two parentheses together and ignoring the second order terms we 

have:

E z  = | Z  Z Z  |<  ||> ( ta n (a :T/R )  +  tan(a;t/f2)) 4- +  tan(xr /£ )  tan(ar J R ) )

By replacing in the above equation for x T and xi from equations 8.2 and 8.3, equation 

8 .6  is obtained.

8.4 Comparison of Flat vs. Cylindrical Stereo

For the stereo imaging system using the cylindrical image plane, pan vergence move­

ments have no effect on the stereo system configuration due to the nature of the 

cameras. The advantage of this new stereo imaging system is that it eliminates the 

negative effects of vergence movements on the depth estim ation error.

Figure 8.3 illustrates the variation of depth uncertainty in a typical stereo 

imaging system when using cameras with fiat image planes. Figure 8.4 illustrates the 

depth estim ation error in a stereo imaging system built with cameras with cylindri­

cal image planes. In  both these figures, the pixel separations on both the flat and 

cylindrical image planes is the same. For the sake of simplicity, the radius of the 

cylindrical camera is chosen to be equal to the focal length of flat image plane cam­

eras. As the figures illustrate, the error in a stereo imaging system with flat image 

plane and no vergence angle is roughly the same as the  stereo imaging system with 

a cylindrical image plane. However, the error in the flat case grows larger with the 

vergence movements toward the object in the scene, while the error in the cylindrical 

case remains unchanged with vergence movements.
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Figure 8.3: Variation of depth estim ation error in stereo with vergence movements 
using cameras with flat image plane

Figure 8.4: Depth estim ation error in stereo using cameras with cylindrical image 
plane

While the focal angle for all the pixels of the cylindrical cameras is the same, 

the focal angles of the conventional cameras changes with the position of the pixels. 

Comparison of flat vs. cylindrical stereo is only fair when we consider the size of 

the focal angles for both flat and cylindrical case. The size of the focal angle in the 

cylindrical cameras is a function of the pixel size as well as the radius of the cylinder. 

Therefore, for any given conventional camera with a flat image plane, a cylindrical 

camera is comparable when the pixel sizes are the same and the radius is chosen such 

th a t the focal angles are equal to the average of the focal angles of the conventional 

flat image plane cameras.
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Let us consider an stereo imaging system with a flat image plane and  uniform  

resolution where /  =  10 m m , 40 mm x 40 mm imaging area, ex =  0.05 m m  and d X  

=  100 mm. The object of interest is in the region 280 < Z  < 320 and 35 <  X  <  65. 

Figure 8.5 illustrates the upper bound of dep th  estimation error as a  function of 

vergence angle changes in the  left and right cameras.

Figure 8.5: Upper bound on the depth estim ation error versus the vergence angle in 
a stereo system with flat image plane and uniform resolution

Figure 8 .6  illustrates the upper bound changes for the above stereo imaging 

system when the cameras have non-uniform exponential resolution described by the 

following equation:

c .(0  =  Emine*  (8.12)

and Emin =  0.025, 7  =  0.01.

Figure 8.7 illustrates the depth estim ation error in the above stereo imaging 

system when the cameras have cylindrical image planes. In order to  have a fair 

comparison with flat image planes, the radius R  is selected based on th e  size of the 

flat image planes as well as the focal length (in our example R  =  15.0). As this figure
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Figure 8 .6 : Upper bound of depth estimation error versus vergence angle in stereo 
system with flat image plane and non-uniform resolution

shows, the upper bound of the error is constant 1 .0 2 % and it is much more desirable 

than the other two cases.

Besides the fact tha t the upper bound of error in the cylindrical stereo is 

uniform with vergence movements, the cost of providing super high resolution using 

the rotating linear CCD cameras is less than conventional flat CCD cameras. As well, 

lens distortion (which could be a source of error in conventional cameras) is not a 

factor in rotating linear CCD cameras. In the above example, when the ex is reduced 

to half (0.025) in cylindrical sensors, the upper bound of error which is proportional 

to ex (based on equation 8 .6 ), is reduced from 1.02% (illustrated in Figure 8.7) to 

0.51%. Achieving such low errors with conventional cameras is costlier.
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Figure 8.7: Upper bound of depth estimation error versus vergence angle in stereo 
system with cylindrical cameras
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Chapter 9 

Experimental Results

This chapter presents the  results of experiments conducted to verify the theoretical 

results obtained in the previous chapters. In Section 9.1 a simulated stereo imaging 

system was used. In this system, average error for an object in the scene was studied. 

In Section 9.2 a real stereo imaging system using conventional cameras was used and 

the depth of selected 3D points in the scene was studied for different stereo imaging 

configurations. Two sets of tests were carried out in this experiment. In the first test, 

coplanar points in the scene were studied. In the second test, selected features in a 

3D object (a Mr. Potato Head toy) were examined. In order to carry out these tests, 

a  number of software tools were developed. In Section 9.3, a  stereo imaging system 

with cylindrical cameras was used. The depth of selected points in the scene were 

studied.

9.1 Simulated Stereo Imaging System

Let us consider a simulated stereo imaging system with two cameras providing images 

from a scene. For the sake of simplicity, we assume that the cameras do not have
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tilt movements and vergence pan movements are symmetrical for both cameras. For 

a virtual object in the scene, a grid of points is selected and the projections of each 

point in the camera’s image plane are obtained. Based on the characteristics of the 

image plane, the projection is rounded to the nearest pixel. The depth of the point is 

calculated from the rounded position; the obtained depth is compared w ith the actual 

depth and percentage error is calculated. The errors for all the points are averaged 

to obtain the average error percentage for the object. In this experiment we are only 

concerned with discretization error and other sources of errors such as lens distortion 

axe ignored.

Figure 9.1 illustrates the average depth estimation error for an object located 

within 25 <  X  <  75 and 350 < Z  < 400 boundaries. The average error is obtained for 

all the points within the boundary with 1 mm distance. The stereo imaging system 

in this example consists of two uniform resolution cameras with a  pixel separation of 

0.075 mm, where the baseline distance is cLA=100 mm, and the focal length of /= 1 0  

mm. As well the cameras have sym m etrical vergence movements with angle a.

1.02
Average Depth Error -----

0  9 2*
5

<5

0 .3 2

20 2 3
Vergence  Degree

Figure 9.1: Average depth estim ation error in a stereo system with uniform discretiza­
tion
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Figure 9.2 illustrates the average error for the same object of the above system 

and the stereo imaging system with the exact same configuration except that the 

cameras have non-uniform discretization of an exponential form E min — 0.05,7 — 

0 . 01 .

1.05

0.95

0.9

<3
085

0 75

10 25 30S 15
Vergence Degree

200

Figure 9.2: Average depth estimation error in a stereo system with non-uniform 
discretization.

Both figures clearly show the trend of changes in the average depth estimation 

error obtained by changes in the upper bound on the error. The irregularity in each 

case is due to the fact we axe obtaining the real error and not an upper bound, and 

for each vergence angle there is the potential of having no error at all for some points; 

the projections of some points he exactly on the pixel centers.

A similar experiment was conducted when cylindrical cameras were used in­

stead of conventional flat image plane cameras. The R  param eter was chosen to be 

10 mm to be equal to the focal length of the previous experiment. As well, the pixel 

separation e was chosen to be 0.05 mm to provide a focal angle roughly equal to the 

average focal angle of the pixels in the flat uniform resolution case. Simulation indi­

cates that the average error for the same object is 0 .6 6 ; this is b e tte r than the cases
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of uniform and non-uniform resolutions examined eaxlier. As well, the error unlike in 

the previous cases, remains constant with pan vergence movements of the cameras

9.2 Conventional Stereo Imaging System

9.2.1 Calibration Process

The first step to determine an accurate depth measurement in stereo imaging is the 

calibration process. This consists of determining the  internal camera geometric and 

optical characteristics as well as its position and orientation respect to the world 

coordinate system.

We used T sai’s algorithm for camera calibration [37]. Tsai’s algorithm is based 

on his comprehensive camera model, consisting of 1 1  parameters: six extrinsic pa­

rameters (Rx, Ry, R z, Tx, Ty, Tz), which are the position and orientation of the camera 

coordinates with respect to the world coordinate system, and five intrinsic parameters 

( f ,C x ,C y, s x,k i)  th a t describe the camera’s image formation system. More details 

about T sai’s camera calibration technique are provided in Appendix B.

We require T sai’s exterior orientation param eters tha t describe the position 

and orientation of the camera to obtain the param eters in our stereo imaging model 

to use in the m athem atical formulas obtained in the  earlier chapters for calculating 

depth information. The required parameters are dx, a, /3, 7 , and 0.

Figure 9.3 describes how the parameters are calculated from calibration results. 

In order to obtain the parameters in our stereo configuration, we need to define the 

3D coordinate system in our model based on the calibration 3D coordinate system. 

In our model, the 3D coordinates origin is in the focal point of the right camera. The
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X  axis of our coordinate system is obtained from:

X m  =  Tl — T r (9.1)

where TR and TL are the  translation vectors of the right and left cameras, respectively. 

The Y  axis of our coordinate system is arbitrarily chosen from the following equation:

Ym  =  X I f  x  Zc  (9.2)

Similarly, the Z  axis is obtained from the following equation:

Z m  =  X m x Ym  (9-3)

Based on calibration data, each camera orientation’s vector is defined as fol­

lows:

Xcam =  cos(rx) sin(r„) - (9-4)

YCam =  sin(rx)

Zcam =  cos(rx) cos(ry)

d X  is obtained from the length of the X m vector. For the right camera the 

tilt angle fd is the angle between the cameras orientation vector Pcam and the X ^ Z m 

plane. Therefore the first projection of the orientation vector Pcam ha the X MZ M 

plane is obtained, fd is calculated from the angle of the cam era’s orientation vector 

and its projection, a  is calculated from the angle between the Pcam and Z m - A 

similar method is used to find 9 and 7  for the left camera. The equations are:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



94

C a m - Y l t  -  
P cam  =  C a m  -^r-2  YM

=  asccos(Pcdm/Cam)

n  "*______ -PC7am '  ■Z’iVf
■*Z C a m  — — 2 "iV f

Z m

a  =  arccos (Pzczm/Pcam)

(9.5)

(9.6)

(9.7)

(9.8)
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YM

CaraR

TR

XM

Z

Figure 9.3: Calculation of our models parameters from calibration results

9.2.2 Coplanar Points

In this test, we use a set of coplanar points in the 3D scene and measure the depth 

of selected points using three different vergence positions.

Because we did not have access to cameras with non-uniform discretization, we 

m anipulated the original images acquired from the cameras to mimic the non-uniform 

discretization. The depths of th e  same points were measured using the resulting 

images. The depth information obtained from non-uniform resulting images was
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compared with the dep th  information obtained from uniform subsampled images to 

make the comparison a  fair one. The subsampled images have almost the same 

number of pixels as the non-uniform resolution images.

Param eter Value Units
f 11.013987 m m

c* 320.000000 pixels
c v 240.000000 pixels
ki -2.137029e-03 1 /  mrn2
sx 1 .0 0 0 0 0 0
TX  X -61.721653 mm
Ty -47.529553 mm
Tz 553.052224 mm
R* -22.488247 deg
Ry -1.125861 deg
Rz -3.532439 deg

Mean UIP 1.508903 pix

Table 9.1: Calibration parameters for one of the cam era’s positions

Point PositionA PositionB PositionC
a -1.32 6.94 14.49
P -23.11 -22.75 -24.97
T - 1 .1 2 -6.91 -13.87
9 -22.48 -22.52 -22.23

Table 9.2: Orientation information obtained from the calibration for the three differ­
ent positions

For the calibration purposes, test points were created by applying Letteraset 

onto a flat block. A single point on the surface was selected as the origin of the 

3D world coordinates. The camera was calibrated using a monoview set of 60 se­

lected points which, because they lie within the block surface, will be coplanar. The 

coordinates of the selected data  points were measured with submillimeter accuracy. 

Calibration was carried out by first acquiring a grey scale image of the scene; image 

was then thresholded to  provide a binary image. In the resulting image, the positions
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Figure 9.4: Original stereo images in position A
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Figure 9.5: Original stereo images in position B

:
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Figure 9.6: Original stereo images in position C
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of d a ta  points were accurately measured. This information as well as the measured 

3D coordinates of th e  d a ta  points, was passed to the calibration program .

The images were acquired using a Cannon CCD camera w ith a 1 /4  inch image 

plane and 577 x  433 pixels on the CCD image plane. However, the  frame grabber 

consists of 640 x 480 pixels. Stereo images were obtained by moving the camera 

to provide two sho ts of the same scene; the camera was calibrated for each view. 

Although the intrinsic parameters remain the same, the extrinsic param eters must be 

recomputed for each cam era’s position. The same procedure was repeated for each of 

the left and right images with three different camera positions (A, B , C ) ,  as illustrated 

in Figures 9.4, 9.5 and  9.6. Results of the calibration were then used to calculate the 

pan and tilt angles in  our stereo model as depicted in Figure 6 .1 .

Table 9.1 illustrates a sample of the resulting calibration param eters obtained 

from one of the cam era positions. The first 5 parameters in the tab le are the intrinsic 

ones and are considered to be independent of the position of the camera. The rest 

of the param eters are  the extrinsic param eters and are dependent on the camera’s 

position and orientation. The small value for mean Undistorted Image Plane (UIP) 

indicates that the calibrated model did a good job for capturing cam era’s behavior. 

Table 9.2 illustrates the  various angle information obtained from calibration for the 

three different positions.

Point Position A Position B Position C
1 597.07 596.27 585.11
2 599.24 600.65 582.11
3 574.82 568.59 593.07
4 552.97 552.32 542.09
5 543.25 538.74 540.34
6 541.40 542.12 538.43

Table 9.3: D ep th  of the selected points measured using the original images
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Point Position A Position B Position C

1 598.73 — 0.2 % 599.02 — 0.5 % 583.62 — 0.2 %
2 599.24 — 0 % 602.34 — 0.3 % 582.22 — 0.01 %
3 574.07 — 0.1 % 571.03 — 0.4 % 592.44 — 0.1 %
4 555.26 — 0.4 % 552.34 — 0.003 % 541.62 — 0.1 %
5 544.38 — 0.2 % 538.43 — 0.05 % 542.29 — 0.36 %
6 541.55 — 0.02 % 541.67 — 0.08 % 539.11 — 0.1 %

Table 9.4: Depth of the selected points and the percentage error measured using the 
subsampled images and compared with the results obtained from the original images

Point Position A Position B Position C
1 595.29 — 0.3 % 596.12 — 0.02 % 588.87 — 0.64 %
2 595.96 — 0.5 % 600.20 — 0.07 % 585.19 — 0.5 %
3 571.72 — 0.5 % 568.93 — 0.05 % 594.08 — 0.17 %
4 548.76 — 0.8 % 552.23 — 0.01 % 545.43 — 0.6 %
5 541.12 — 0.4 % 539.44 — 0.1 % 543.93 — 0.66 %
6 538.53 — 0.5 % 541.69 — 0.08 % 542.04 — 0.67 %

Table 9.5: Depth of the selected points and the percentage error measured using the 
non-uniform images and compared with the results obtained from the original images

Table 9.3 illustrates the depth measured for six selected points in the scene 

using the original high resolution images with the three different vergence positions; 

the selected points were manually matched in both images. The selected points are 

the top left comers of the  letters K  and L in the first row, the two left comers of 

letter N  in the second row, and the top left comers of letters E  and R  in the third 

row. Table 9.4 illustrates the depth calculated from the subsampled images and the 

percentage error when compared with the original resolution images. T he original 

resolution images serve as the benchmark for accurate depth information. The error 

described in the table is over and above the error introduced due to the discretization 

in the original images. Table 9.5 illustrates the depth calculated from the non-uniform 

resolution images and the  error in the depth. As was expected, the error for position 

B  using non-uniform resolution images is considerably lower compared to  the error
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of depth using the uniform images; the error for positions A  and C, however, are 

generally higher in the non-uniform resolution case.

9.2.3 Points on a 3D Object

In the previous test described in Section 9.2.2, we ignored the fact that even the 

original resolution images introduce error in the depth calculation due to their dis­

cretization effect. In this test we dem onstrate this in a more tangible fashion to show 

how dimensions are estim ated for a 3D object using stereo images.

In this test we use stereo imaging to measure depth of selected feature points 

on a Mr. Potato Head toy. We used the same camera and procedure for obtaining 

stereo images as in the last test, and once again used them in three different vergence 

positions. Depth of the feature points is studied on the subsampled images as well as 

the non-uniform resolution images.

For each set of images, edge detection was first performed on the images. Then 

a number of well-defined feature points in the images were selected from the resulting 

binary images. The features from both  images were then manually matched. Epipolar 

computations (described in chapter 6) were used as a guide to make the matching 

process easier. Then the depth for each selected point was calculated.

The following figures illustrate the images in three different vergence positions. 

As well, the subsampled images and the non-uniform resolution images in vergence 

position B  are illustrated. For a larger illustrations of the subsampled and aon- 

uniform resolution images, refer to Appendix C.

The following figures illustrate  the selected feature points in Mr. Potato Head’s 

face for which depth is calculated, as well as selected dimensions of Mr. Potato Head’s 

face.
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Figure 9.7: Original stereo images position A

Figure 9.8: Original stereo images position B

Figure 9.9: Original stereo images position C
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Figure 9.10: Original stereo images with uniform discretization, position B

Figure 9.11: Subsampled stereo images with uniform discretization, position B

Figure 9.12: Stereo images with non-uniform exponential discretization, position B
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Figure 9.13: Mr. Potato Head’s Dimensions (right), Mr. Potato Head’s selected 
features (left)

For each set of images the  depth of selected feature points were measured. 

Then the depth difference between some of the feature points is compared with the 

actual dimensions of Mr. Potato Head’s face. This gives us a clear view of how 

accurate the depth estimations are. This information are recorded in a table for each 

set of images. Note tha t the errors are in estimation of dimensions, and that a small 

error in depth estim ation can lead to high error in the dimension.

By examing the results it is obvious that, even in the original resolution images, 

there is error in estim ating the dimensions of the 3D surface, and by considering the 

depth values, we can estimate the depth  estimation error in the order of few percentage 

points.

In the subsampled images, the errors in the estimation of dimensions grow 

for almost all locations. In the non-uniform resolution case, the error in estimated 

dimensions depends on the location of the features and the position of images. In
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Point Position A Position B Position C
1 410.49 415.52 408.26
2 412.47 415.27 411.75
3 412.47 415.26 413.60
4 412.47 425.13 422.38
5 412.47 424.23 422.69
6 424.07 423.03 423.24
7 424.07 424.32 422.12
8 412.47 417.52 414.78
9 418.33 416.46 415.17
10 414.44 416.18 415.01
11 427.83 427.22 424.93
12 427.83 427.97 424.63
13 427.83 426.03 425.38
14 416.39 414.61 415.00
15 414.44 414.58 414.87
16 418.33 413.51 411.47
17 415.26 413.42 414.67
18 420.26 416.67 415.86
19 420.25 415.12 415.77
20 412.47 413.20 412.28
21 412.47 412.25 412.88
22 412.47 414.51 415.60
23 412.47 412.38 411.67
24 414.44 411.15 410.29
25 412.47 412.78 413.06
26 410.49 413.16 409.88
27 414.44 411.12 410.42

Table 9.6: D epth of the selected feature points using the original images

Features Actual
Distance

Error % 
Pos. A

E rror % 
Pos. B

Error % 
Pos. C

Features 2,7 23 13.58 9.05 10.37
Features 17,13 25 12.57 12.61 10.71
Features 13,22 24 15.36 11.52 9.78

Table 9.7: Depth distance between the selected feature points using the original 
images, and percentage error compared to the actual dimensions
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Point Position A Position B Position C
1 404.48 410.95 412.32
2 410.49 418.36 414.86
3 404.48 414.24 420.81
4 410.49 419.99 429.11
5 410.49 420.91 423.52
6 422.17 418.98 428.02
7 422.17 426.17 426.41
8 404.48 411.22 420.82
9 416.39 418.37 415.12
10 410.49 418.12 420.35
11 422.17 423.17 428.69
12 422.17 429.84 432.41
13 427.83 424.58 431.19
14 410.49 415.75 416.98
15 410.49 417.65 421.69
16 416.39 414.14 417.63
17 416.39 413.53 422.13
18 416.39 416.94 420.44
19 416.39 408.11 419.68
20 410.49 415.15 412.29
21 408.22 410.21 409.48
22 414.48 420.76 417.80
23 410.49 412.06 403.61
24 410.49 408.97 414.59
25 410.49 416.96 418.59
26 404.48 410.91 418.39
27 410.49 403.24 418.39

Table 9.8: Depth of the selected feature points using the subsampled images

Features Actual
Distance

Error % 
Pos. A

E rror % 
Pos. B

Error % 
Pos. C

Features 2,7 23 11.68 7.81 11.55
Features 17,13 25 11.44 11.05 9.06
Features 13,22 24 13.35 3.82 13.39

Table 9.9: D epth distance between the selected feature points using the subsampled 
images, and percentage error compared to the actual dimensions
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Point Position A Position B Position C
1 417.11 420.76 397.49
2 422.17 419.38 401.63
3 427.06 412.24 407.48
4 422.17 426.44 419.42
5 417.16 420.41 416.96
6 429.51 421.34 417.42
7 432.71 426.26 420.80
8 419.94 416.26 407.49
9 427.06 415.34 403.11
10 422.52 416.16 407.25
11 434.84 425.83 412.29
12 438.44 425.68 421.57
13 430.84 427.51 421.01
14 427.49 415.64 407.31
15 416.33 413.82 406.51
16 428.18 415.67 400.51
17 422.11 415.37 409.01
18 428.08 417.45 409.11
19 424.22 415.85 409.09
20 420.20 412.44 400.49
21 422.11 415.37 405.07
22 426.24 414.04 405.64
23 418.61 418.68 411.31
24 427.49 408.70 401.58
25 417.87 415.13 403.99
26 418.03 412.62 403.67
27 420.20 410.28 408.61

Table 9.10: D epth of the selected feature points using the non-uniform images

Features Actual
Distance

Error % 
Pos. A

E rror % 
Pos. B

Error % 
Pos. C

Features 2,7 23 10.54 6.88 19.17
Features 17,13 25 8.73 12.14 12.0
Features 13,22 24 8.6 10.47 15.37

Table 9.11: D epth distance between the selected feature points using the non-uniform 
images, and percentage error compared to the actual dimensions
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the case of position B  and features in the foveal region such as 13 and 17, the result 

is good in comparison with the original images. However, for o ther positions, the 

results are severely distorted due to lower resolution outside of the foveal region.

9.3 Cylindrical Stereo System

In this section, we present the result of test performed with cylindrical cameras. A 

stereo system with the cylindrical image plane cameras was set up. Similar experi­

ments as previous sections were conducted.

The cylindrical camera used in this experiment is (shown in Figure 9.14) man­

ufactured by TelePhotogenics Inc. The resolution of the camera sta rts  from around 

4,000 pixels vertically to 40,000 pixels horizontally (for up to 360 degree field of view); 

models for higher resolution are available for other applications. For our experiments, 

we obtained the images by moving the same camera to two known and fixed positions 

in order to eliminate the possibility of variations between two cameras with similar 

specifications. In this case we have a lot more resolution in the images which we 

expect reduction in the depth estim ation error.

Calibration of cylindrical cameras is beyond the scope of this thesis and we did 

not develop a calibration model. Instead of the calibration process, all the parameters 

of the camera relevant to depth estim ation are accurately measured. Table 9.12 

provides the parameters of this stereo imaging system which are required for depth 

calculation.

A few points in an indoor scene, as illustrated in Figure 9.15, were selected. 

The coordinates of the projections of each selected point in the scene, as well as 

the depth of each point were calculated from equation 8.1. Approximate physical
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Figure 9.14: Camera used for cylindrical stereo imaging

Param eter Value Units
/ 50.00 mm

14.9 micron
ey 8 micron
R 39 mm

d X 150 mm

Table 9.12: Stereo system parameters for depth calculation

measurements have shown these estimates to be fairly accurate.

In order to further analyze the depth estimation in the cylindrical stereo sys­

tem, we consider Mr. Potato Head in the scene. A number of features from Mr. 

Potato Head’s face are selected; these are illustrated in Figure 9.17. Figure 9.18 illus­

trates the dimensions of the actual Mr. Potato Head, measured with submillimeter 

accuracy. Our focus of attention is on depth differences between various features.

Table 9.14 describes the coordinates of projections for each feature point as 

well as the result of depth calculation. Note that, the doll itself is not in a symmetrical 

position compared to the World Z  axis, this results in slight depth differences between 

symmetrical features (e.g. feature 11 and 12).
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Figure 9.15: Points at which depth was estim ated

Table 9.15 illustrates the depth differences between a number of selected fea­

tures and their comparison with the actual dimensions. The result is quite good and 

the calculated dimensions are within 8% error in comparison with the actual dimen­

sions. Note tha t the  error percentage in the Table 9.15 is the error in dimensions; 

the error in depth for each feature is a lot less in term of percentage. W ith an accu­

rate calibration m odel for the cylindrical cameras, higher precisions should be easily 

achievable.
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Point x i ,y i •CnVr Depth
A 1 6 7 9 ,1 8 2 1336 ,175 9 9 5 .3 3 0 5 9 7
B 2 7 0 5 ,1 7 2 2357 ,175 9 9 2 .8 9 0 0 1 3
C 2 2 8 5 ,5 1 8 1970 ,513 9 8 0 .3 9 2 8 4 0
D 1 9 6 4 ,5 6 7 1647 ,568 9 7 2 .3 7 9 8 6 0
E 2 5 2 9 ,5 6 7 2212 ,565 9 7 0 .5 0 2 1 7 7
F 2 7 7 9 ,2 0 9 8 2726 ,2 0 4 6 6 3 0 .4 8 1 6 2 9
G 29 6 7 ,2 1 3 5 2913 ,2071 6 1 9 .1 7 2 8 2 2
H 28 5 9 ,2 3 3 3 2824 ,2 2 6 5 6 1 1 .0 8 1 4 2 6
I 28 5 3 ,2 4 1 9 2833 ,2 3 4 8 6 1 0 .7 3 4 0 1 9
J 2 7 0 8 ,2 4 9 4 2 6 4 6 ,2 4 3 4 6 4 5 .2 1 8 0 5 9
K 3 0 4 7 ,2 5 2 4 2987 ,2446 6 2 5 .9 0 3 2 0 7
L 1457 ,1 7 6 5 1321 ,1785 7 6 1 .5 5 3 9 9 0
M 1 6 1 5 ,1 7 8 7 1 490 ,1800 7 6 5 .8 8 4 3 7 3
N occluded 1278 ,1951 N /A
O 1578 ,1960 1 469 ,1976 7 3 8 .3 6 4 7 8 7
P 1 4 3 5 ,2 2 9 3 1340 ,2320 7 0 1 .2 1 8 9 9 6

Q 7 9 3 ,1 6 9 7 651 ,1739 6 3 9 .3 8 6 0 1 9
R 1124 ,1 7 5 3 977 ,1782 6 3 7 .7 5 7 0 6 2
S 8 3 6 ,1 8 4 2 706 ,1893 6 3 5 .8 4 3 6 4 7
T 1009 ,1 8 7 9 882 ,1920 6 3 8 .6 5 3 0 5 4
U 8 8 3 ,2 1 8 2 7 4 6 ,2 2 3 7 6 4 4 .6 5 0 0 6 4

Table 9.13: D epth of the selected points measured using the stereo images

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



110

Figure 9.16: Stereo images, right image (top) and left image (bottom), using the 
cameras with cylindrical image planes
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Figure 9.17: Mr. Potato Head’s Dimensions

Figure 9.18: Mr. Potato Head’s selected features.
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Point xi,yi xr ,yr Depth
1 2908,1898 2812,1850 677.36
2 3036,1918 2924,1862 676.91
3 3124,1950 3000,1890 676.58
4 2820,1938 2736,1894 674.86
5 2972,1906 2872,1906 671.84
6 2868,1998 2780,1950 672.90
7 3096,2018 2980,1958 670.72
8 2828,2030 2748,1982 668.34
9 2900,2086 2812,2034 667.75
10 2988,2066 2890,2014 666.18
11 2776,2098 2724,2050 640.36
12 2968,2134 2894,2966 638.00
13 2776,2174 2724,2122 640.37
14 2880,2218 2816,2154 639.90
15 2668,2118 2604,2078 668.93
16 3172,2142 3048,2070 666.20
17 3128,2214 3012,2142 664.07
18 2690,2298 2616,2246 679.22
19 3148,2370 3040,2294 648.58
20 2670,2386 2598,2338 679.01
21 2862,2330 2816,2262 620.98
22 2780,2394 2746,2326 618.78
23 2856,2414 2816,2354 614.94
24 2978,2386 2916,2314 621.42
25 2768,2502 2708,2442 651.24
26 2884,2554 2828,2482 629.51
27 3008,2510 2944,2430 618.63
28 3068,2466 3000,2386 612.58
29 2680,2522 2604,2462 683.08
30 2628,2550 2560,2502 678.62
31 2680,2602 2608,2554 677.81
32 2640,2626 2580,2570 667.08
33 3138,2582 3060,2494 637.06
34 3090,2702 3000,2610 636.13

Table 9.14: Depth of the  selected feature points on Mr. Po tato  Head measured 
the stereo images.
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Features Depth Diff Actual Dist. Error %
12-23 638.00-614.94=23.06 25 8%
3-12 676.58-638.00=38.58 36 7%
19-23 648.58-614.94=33.64 32 5 %
10-12 666.18-638.00=28.18 26 8 %

Table 9.15: Depth difference of the selected feature points on Mr. Potato Head 
measured using the stereo images.
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Chapter 10 

Conclusions and Future Work

In this thesis we studied depth estimation error in stereo imaging. First we studied a 

conventional stereo imaging system, and we established an upper bound on the depth 

estimation error. The behavior of this upper bound was studied with vergence move­

ments of the stereo cameras. This study demonstrated that for objects in the scene 

depending on their location and the optical characteristics of the camera vergence may 

increase the depth estimation error. Then non-uniform discretization was proposed 

for stereo imaging. Non-uniform discretization in the horizontal direction as well as 

in both the horizontal and vertical directions was studied. Non-uniform discretization 

shows promising behavior in depth estimation error w ith vergence movements of the 

cameras. However, a t least in an exponential model, there is no value of j  that led 

to uniform focal angles across the image plane. The benefit of uniform focal angles 

is that they would lead to constant upper bounds on the error with vergence move­

ments. Cylindrical sensors were introduced; they have uniform focal angles across 

the image plane and therefore the upper bound on depth  estim ation error remains 

constant with vergence movements. This is a remarkable result and it eliminates the
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negative effect of vergence movements on depth estimation error.

The analysis in this thesis could be used in developing optim al stereo imaging 

systems based on the results obtained. The cylindrical sensors can be used to build 

the system where negative effects of vergence are eliminated. As well non-uniform 

scheme can be combined with cylindrical approach to reduce the required processing 

power on the image.

Further study is required in the area of non-uniform resolution to study new 

schemes that may possibly lead to  uniform focal angles on the flat image planes. 

As well non-uniform resolution sensors based on the schemes described in this thesis 

need to be developed. Developing the non-uniform sensors could be accomplished by 

changing the structure of sensor arrays in CCD cameras or it can be accomplished by 

designing optical devices to map the scene projection on the uniform sensor array in 

a non-uniform fashion.

Future work is also required to develop a comprehensive calibration scheme for 

cylindrical sensors to provide the  intrinsic and extrinsic param eters for the system. 

There axe potentially other type of image planes such as elliptical cam eras that could 

lead to interesting behavior in stereo systems and deserves future attention.
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Appendix A 

Imaging Device

Modem cameras are based on solid state sensor arrays composed of discrete silicon 

imaging elements, called photosites, that have voltage output proportional to the 

intensity of the incident light. The technology used in solid state sensors is based on 

charge-coupled devices (CCD), where each photosite is a MOS capacitor structure.

In order to understand the CCD technology, we examine the architecture of 

a commercial CCD device, RCA SID51232 [33]. This device generates a standard 

interlaced 525-line television picture. In this device, the cell size is 0.03 mm x 0.03 

mm, and the image area size is 7.31 x 9.75. The useful spectral response range extends 

from 420 nm to 1100 nm.

Figure A .l illustrates the block diagram of the SIDS 1232, which consists of the 

following subsections:

•  Image Area: The image area is an array of analog CCD shift registers containing 

320 parallel columns of 256 sensing cells. Each cell is a MOS N-channel device 

defined by three adjacent polysilicon gate electrodes in the vertical direction and 

adjacent channel stops in the horizontal direction. The gates in each cell are
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Figure A .l :  Block diagram of a CCD im aging device.

connected in parallel with the corresponding gates in other cells. These three 

connections are called vertical register clocks $>vai,®va2 ,$ v a 3 - The transfer 

electrodes are m ade of polysilicon, which is transparent to most wavelengths 

and therefore there is no opaque part in the image area to cause picture details 

to be obscured.

When a pulse waveform is applied to the vertical register clocks, a light image 

focused on this register is integrated into a  charge pattern  of electrons during; 

high part of the pulse and transferred to the storage area during the vertical 

blanking period.

•  Storage Area: T he  storage area has the same architecture as the image area 

and contains the sam e sized array of cells, the cells hold the previous image 

frame to allow conversion of a charge pattern  image into a sequential horizontal 

readout. The storage area is shielded from external light.

The storage area is clocked with the image axea during vertical blanking to 

transfer the com plete image from image area to  the storage axea. During the
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horizontal blanking, the entire charge pattern  will be propagated one cell toward 

the horizontal register.

•  Horizontal Register: The horizontal register is an output register and it has 

the same three phase structure as the image and  storage areas. The horizontal 

register receives one line of picture information from the storage area during 

the horizontal blanking interval. The register contains the 320 active elements 

corresponding to  the 320 columns in the image and storage areas.

•  Bias Charge Circuit: The bias charge circuit provides a uniform low-noise bias 

charge to the ou tpu t of the horizontal register to maximize the horizontal res­

olution.

•  Output Circuit: The output circuit extracts the  CCD signal from the horizontal 

register.
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Appendix B 

Tsai’s Calibration Algorithm

T sai’s camera model is based on 11 parameters: six extrinsic parameters (R x , R y , R z , 

Tx ,T Yi Tz) and five intrinsic parameters ( / ,  C x ,  Cy, sx ,  ki). The five intrinsic param­

eters for each camera are constant; the extrinsic parameters need to be recomputed 

once the camera moves.

Y
w

Figure B .l: Tsai’s camera model

In Tsai’s model illustrated in Figure B .l, the X c , Y c , Z c  axes describe the 

cam era’s coordinate system, in which the (X c , Yc) plane is parallel to the camera’s 

image plane and the Z q axis coincides with the camera’s optical axis.

The following equation describes the relationship between the world coordinate
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system {XM, Ym , Z m) and the camera’s coordinate system {Xc,  Yc , Z c ):

\

Yc

Z c

R

f  X w  N 

Yw  

^  Z w  J

+  T (B-l)

where R  denotes the rotation transformation which can be described as three sequen­

tial rotation transformations around X , Y ,  and Z  axes by angles R x , R y, and Rz- 

Also, T  describes the translation transformation.

The following equation describes the relationship between the coordinates of 

a projection point {Xu, Yu)  in the camera’s image plane, with its coordinates in the 

cam era’s coordinate system {Xc,  Yc , Zc)  and the focal length /  of the camera:

X  - f X c  x  u  — J
6 c

Y  -  f Y c  Y u  —  J
6 c

(B-2)

(B.3)

Due to lens distortion there is a displacement from the actual position of the 

projection (X d, Yd) to its ideal position {Xu, Yu)- K]_ is the parameter which describes 

the radial lens distortion. We have:

X u = X d{l  +  K lP2) 

Yu =  Yd( 1 +  K L(?) 

p = s q T t ( ( X d)2 + (Yd)2))

(B.4)

(B.3)

(B-6)

The final element of Tsai’s model is the difference between the position of the

projection point on the image plane {Xd, Yd) and its coordinates in the camera’s frame

buffer {Xf ,Yf ).

x, = (et )( -  1 ) X dsx +  Cx (B.7)

Y,  =  (e,)< -  1 )Yd + C,  (B.8)
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where Cx  and C y  are the  coordinates of the intersection of the Z q axis and the 

camera’s image plane, ex and axe the pixel separations in X  and Y  directions, 

respectively, and sx is a  scaling factor denoting the ratio  between the number of 

elements in the image plane and the number of pixels in the camera’s frame buffer in 

the X  direction.
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Appendix C 

Stereo Images

In Chapter 9, Figures 9.11 and 9.12 illustrate the subsampled and non-uniform res­

olution images of Mr. Potato Head. Due to the size and quality of those images, 

the differences might be hard to notice. Therefore in this appendix we include larger 

images to highlight the differences. The following figures illustrate the left image in 

position B  for the original, subsampled, as well as the non-uniform cases.
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Figure C .l: Left original resolution image

Figure C.2: Left subsampled resolution image
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Figure C.3: Left non-uniform resolution image
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