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Abstract - This paper introduces an empirically driven, non-

parametric method to isolate and estimate the effects of demand 

and throughput changes to observed changes in flight delay. 

Classical queuing model concepts were used to develop a method 

by which an intermediate queuing scenario could be constructed, 

in order to isolate the delay effects due to shifts in demand and 

throughput. This method includes the development of a 

stochastic throughput function that is based entirely on data and 

as a result has two advantages: it uses non-parametric, 

empirically-based probability distributions, and capacity need 

not be estimated explicitly. The method was applied to a case 

study of the three major New York airports of LaGuardia 

(LGA), John F. Kennedy (JFK), and Newark Liberty (EWR), for 

the peak summer travel seasons of 2006 and 2007, using data 

extracted from ASPM. This case study was of particular interest 

given that these airports experienced record levels of delay in 

2007. The simulation results were consistent with both OPSNET 

and ASPM data, and were successful in quantifying the delay 

effects of demand and throughput changes from 2006 to 2007. 

Keywords - delay; demand; throughput; capacity; runway 
operations; New York airports; simulation; probability; ASPM; 

OPSNET.

I. INTRODUCTION

This paper introduces a method for estimating the effects of 
demand and throughput changes to observed changes in flight 
delay. As the delay observed over days, weeks or years 
changes from one time period to the next, we would like to 
know how much its evolvement can be attributed to demand 
and throughput changes. As a result, the motivation for this 
work is to address the following question: how can we isolate 
and measure shifts in delay caused by changes in demand and 
throughput when both are changing simultaneously? 

There is an extensive body of literature and knowledge on 
methods to predict airport capacity and delay, both analytically 
[1] and through simulation. The purpose of this work is not to 
estimate the expected capacity outright [2], but to use empirical 
data that implicitly contains information about capacity to 
quantify how simultaneous changes in demand and throughput 
affect delay. 

A new, empirically driven simulation procedure was 
developed from classical queuing concepts to address the 
question posed above. The main engine of this new procedure 

is a stochastic throughput function that was developed to have 
two key advantages. Firstly, this throughput function is driven 
by non-parametric probability distributions of throughput 
constructed from available data. Secondly, capacity need not be 
explicitly estimated, as the capacity of the operation under 
analysis is implicitly included in the probability distributions. 
This is advantageous because operational capacity is subject to 
a wide variety of factors and can be quite difficult to estimate 
well.

The simulation method is then applied to a case study of 
flight delay at the three major New York area airports: 
LaGuardia (LGA), John F. Kennedy (JFK), and Newark 
Liberty (EWR). Specifically, the arrival and departure 
operations at these airports were analyzed in order to determine 
how demand and throughput affected the delay changes 
observed between the 2006 and 2007 summer travel seasons. 

The main goal in applying this new procedure is to provide 
information about the causes of delay shifts at one greater level 
of detail. The ability to isolate individual contributions of 
demand and throughput mechanisms to delay could be helpful 
in creating more focused, effective strategies and policies to 
address the delay problem. 

II. BACKGROUND

During the summer of 2007, flight delays reached record 
high levels throughout the National Airspace System (NAS) 
and beyond. National and international headlines reported story 
after story describing the extreme wait times and missed 
connections that air travelers were subject to during this peak 
travel season. The three airports of the New York area 
experienced some of the highest delays within the NAS, with 
travelers spending 3.9 million more hours waiting for their 
aircraft to take off after leaving their gates in 2007 as compared 
to a decade earlier [3]. The increase in total operations from 
2006 to 2007 at these airports was approximately 3-4%, but the 
increase in delay was in the order of about 28% [4]. In 
addition, in 2007 the New York airports accounted for about 
40% of all delay in the NAS; in 2004 they accounted for only 
15% [5]. 

Delay metrics can be found and/or calculated with relative 
ease from several data sources. One such source is OPSNET, 
which is the official source of historical NAS air traffic delays 
and operations. In OPSNET, an airport picks up a delay each 
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time a flight is held up 15 or more minutes due to runway 
congestion, weather, air holding, traffic flow restrictions, or 
other event that would cause a flight’s realized schedule to 
deviate from its flight plan. Table 1 contains the results of 
OPSNET airport delay data extracted for LGA, EWR, and JFK 
for May through September of 2006 and 2007. The first half of 
the table indicates that the total number of operations have 
decreased at LGA and EWR, but have increased significantly 
at JFK. The second half of the table shows the number of 
flights that were delayed more than 15 minutes from their flight 
plans; it can be observed that the number of delayed flights has 
almost doubled at JFK from 2006 to 2007.  

TABLE I. OPSNET DATA

Total Number of Arrival and Departure Operations 

May-Sept 2006 May-Sept 2007 % Change 

LGA 172,142 168,616 -2.0% 

EWR 191,531 188,211 -1.7% 

JFK 169,957 197,626 +16.3% 

Total Number of Flights Delayed >15 Minutes 

May-Sept 2006 May-Sept 2007 % Change 

LGA 14,119 15,810 +12.0% 

EWR 21,707 19,809 -8.7% 

JFK 8,276 15,065 +82.0% 

III. METHODOLOGY

Delay can be estimated using the traditional queuing model, 
where a queuing scenario is constructed from a cumulative 
demand curve and cumulative throughput curve [6]. An 
example of a simplified fictional queuing scenario is shown in 
Figure 1. The demand and throughput curves are actually step 
functions because customers (or vehicles, aircraft, etc.) are 
discrete entities. However, demand and throughput can be 
approximated as continuous functions (smoothed curves) over 
sufficiently long periods of time, which simplifies calculations. 
Under a classical deterministic approach, the throughput 
function at some time t can be determined as follows:  

Q(t) = d(t) if d(t) < c 

 = c if d(t)  c

Where Q(t)  is the throughput at time t 
d(t) is the demand at time t 
c is the fixed service capacity, constant 

over all t 

n

t

Throughput1

Demand1

Delay1no

tdes tact

N

Figure 1. Queuing Scenario under Year 1 Demand and Year 1 Throughput 

Note that in Figure 1 cumulative Q(t) and d(t) are shown to 
vary linearly with time. However, this is a simplification in that 
these quantities are most often non-linear, time-dependent
functions.  

Assuming first-in first-out (FIFO) conditions, the delay 
experienced by an arbitrary customer n is the difference 
between n’s desired service time (tdes) and actual service time 
(tact). This is also the horizontal distance between the two 
curves. The number of customers queued for service at time t is 
the vertical distance between the curves at t. Where the demand 
and throughput curves meet, customers are being served 
without any delay and as a result there are no standing queues 
for service; when the curves are apart, customers must queue 
for service. The throughput curve cannot cross the demand 
curve as per Equation (1) because customers cannot be served 
until they demand service. The area between the demand and 
throughput curves is the total delay experienced by customers 
over the total observation time T (we assume that our 
observations begin at time 0): 

Jj

j

T

jQjddtdttdtQ
1

0
)]()([*)]()([

Where is total delay over time period (0,T) 
Q(t)  is the throughput function at time t 
d(t) is demand at time t 
T is total observation time 
dt is the duration of a small time slice 
j is the number of time slices over time 

T, from j=1 to j=J  

An average delay per customer can then be determined by 
dividing this total delay by the total number of customers N
that requested service over the observation time T. In these 
queuing diagrams, T could represent one day.  

Figures 1 & 3 depict fictional queuing scenarios for an 
average day in an arbitrary year (Year 1) and the following 
year (Year 2), respectively. The areas between the demand and 
throughput curves represent the total delays in Year 1 and in 
Year 2. The change in total delay from Year 1 to Year 2 is the 
difference of the two areas; however, this difference could be 
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caused by changes in demand, changes in throughput, or both. 
In order to isolate the change in delay caused solely by a 
change in demand, we can construct a “counterfactual” 
scenario where the Year 2 demands are served using the Year 1 
throughput function. The counterfactual scenario is represented 
in Figure 2, and the resulting delay is represented by the total 
area between the demand and throughput curves. The 
difference between the resulting counterfactual delay and the 
Year 1 delay (solid area in Figures 1 and 2) is the change in 
total delay due to the demand shift from Year 1 to Year 2 
(depicted in cross-hatch). The Year 2 delay (total area between 
the curves in Figure 3) minus the counterfactual delay and Year 
1 delay is the change in total delay due to the throughput shift 
from Year 1 to 2 (depicted by the unfilled area in Figure 3). 

n

Throughput1

Demand2

Delaycounter

t

Figure 2. Queuing Scenario under Year 2 Demand and Year 1 Throughput 
(Counterfactual)

Demand2

Throughput2

n

t

Figure 3. Queuing Scenario under Year 2 Demand and Year 2 Throughput 

The figures show an increase in demand and a decrease in 
throughput from Year 1 to 2, but this trend was chosen for 
illustrative purposes only. The entire process is summarized in 
Table II. 

TABLE II. DEMAND AND THROUGHPUT SCENARIOS

Demand Throughput Total Delay  in Total Delay 

for an average day in… 

Year 1 Year 1 (1) Year 1   n/a  

Year 2 Year 1 (2) Counterfactual 
(2)-(1); due to 
demand shift 

Year 2 Year 2 (3) Year 2 
(3)-(2); due to 
throughput shift  

The Year 1 and Year 2 queuing scenarios can easily be 
constructed from available data (which will be discussed in 
detail later on), but the counterfactual scenario, because it does 
not actually exist, must be generated through simulation. The 
simulation is an iterative process that takes the demand in each 
time interval and, using a throughput function, assigns a 
throughput value. All aircraft not served in a time interval 
comprise the queue in that time interval, and from this a delay 
calculation can be made. 

The classic definition of a deterministic throughput 
function was introduced in Equation (1). Based on available 
data sets that include arrival and departure demand, arrival and 
departure throughput counts, and weather information, we can 
construct a deterministic throughput function as follows: 

qo(t)=min[do(t),co(w(t))] 

Where qo(t)  is the actual recorded throughput for        
 operation type o in time interval t
do(t) is the actual demand for operation o in 
 time interval t
co is the fixed capacity for operation o
w(t) is the weather condition at time t

Weather enters into the model as either visual or instrument 
flight rules (VFR or IFR), and is included as a factor in the 
model because of the significant impact it has on operational 
capacity. The operation types are either arrivals or departures.  

The deterministic throughput function is an idealized 
situation and as such does not represent actual operations very 
well. co is a critical input to the function and several major 
assumptions are needed to determine its value(s). The 
alternative to the deterministic throughput function is a 
stochastic model that incorporates some levels of uncertainty. 
Based on the available data, a stochastic model that preserves 
the dependence of throughput on demand and weather can be 
constructed as follows: 

P(Qo(t)=qo(t)|do(t),w(t)) = fQ(qo|do,w) 

Where Qo is a random variable representing 
 throughput 
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 fQ is the conditional probability 
distribution function for throughput 

The probability that Qo takes some throughput value qo,
conditional on the demand and weather in time interval t, is 
taken from fQ. It was necessary to include capacity as an 
explicit input to the deterministic model; however, in the 
stochastic throughput function it is implicitly captured in fQ. fQ

can be constructed entirely from an appropriate data set without 
having to make assumptions about its shape and parameters. In 
fact, the non-parametric nature of fQ is one of the main 
advantages of this model. 

The counterfactual scenario discussed earlier was modeled 
using approximations of the stochastic throughput function, as 
described in Figure 4. The deterministic approximation uses 
mean throughput values conditional on demand, weather, and 
other known factors to simulate the counterfactual scenario. 
The stochastic approximation uses random number generation 
to simulate throughput values. For the purposes of the New 
York airports delay analysis, Year 1 will correspond to the time 
period of May through September 2006, while Year 2 
represents that of the same months in 2007. Modeling the 
counterfactual scenario involves assigning simulated 2007 
(Year 2) demand and 2006 (Year 1) throughput, calculating 
queue lengths in each time interval, and then calculating the 
average delay per flight over all time intervals from May 
through September. The following is the iterative procedure 
that was followed. 

Figure 4. Specifications for the Throughput Function 

1) At time interval t=1, initialize  

 = D’o,07(1) (1)Do,07
ˆ

Where is the simulated total (new & 

 queued) 2007 demand for operation 
o in time interval t

)(ˆ
07, tDo

D’o,07(t)  is the “new” 2007 demand for 
 operation type o in time interval t.

2) Find 06,
ˆ

oQ (t) conditional on )t(D̂ 07,o , Qo,07(t), & w, 
where 06,

ˆ
oQ (t) is the simulated 2006 throughput for operation 

type o in time interval t. 06,
ˆ

oQ (t) is determined using a 
stochastic throughput function. 

3) If t=T, go to Step 4. Otherwise,  

a) Set

]ˆˆ 1)(to,06Q1)(t)o,07D'(t)o,07D ˆ (to,07D[

Where  is comprised of the “new” demand of the 
current interval t in addition to the queued aircraft (those 
that are still waiting for service) from the previous time 
interval (t-1). 

)t(D̂ 07,o

b) Update t=t+1. 

c) Repeat Step 2. 

4) Calculate the average delay per flight for operation o 
for the simulated counterfactual scenario. 

oQ

t

1
(06,

ˆ

)(07,

T

t
t

T

t
toQoDt

o

)

1
)](06,

ˆˆ[*
ˆ

Where o
ˆ is the simulated average delay per 

 flight for operation type o, from t=1 to 
  t=T, in minutes 

t is the length of one time interval  

Deterministic

qo(t) = 

min[do(t),co(w(t))] 

Stochastic

P[Qo(t)=qo(t)|do(t),w(t)]  

= fQ(qo|do,w) 

The above procedure must be able to reproduce 2006 and 
2007 operations as shown in the data such that when the 
counterfactual scenario is simulated using the same procedure, 
we can be confident of the results. In other words, the 
simulation method must produce good agreement between the 
actual and simulated baselines, which entirely depends on the 
specifications of the throughput function applied in Step 2. 
Deterministic approximations to the stochastic throughput 
function were first tested. These consisted of mean counts 
conditional on demand and weather, in addition to time of day 
effects and queue presence indicators, were first tested. 
Stochastic approximations of the throughput function, which 
involved randomly drawing from probability distributions of 
throughput conditional on demand and weather, were also 
tested. The methods above did not satisfactorily reproduce 
2006 and 2007 operations, most likely due to underlying 
mechanisms not controlled for in the simulation. These 
phenomena might include serial correlation of demand and 
throughput between the quarter-hour intervals, arrival & 
departure interaction effects, and more. Finally, a stochastic 
approximation method that compares probability distributions 
of 2006 and 2007 counts, conditional on demand and weather, 
was tested. This approach, herein referred to as the “compared 
distribution” method, is able to, by design, identically 
replicates the baseline scenarios. As such the compared 
distribution method was chosen for use here.

Deterministic 

Approximation 

Stochastic 

Approximation 

In the compared distribution method, o,06(t) is simulated 
in the following manner by starting with the 2007 (Year 2) 
data. All steps below are “substeps” of Step (2) from above. 

Q̂
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The compared distribution method was used to generate the 
counterfactual scenarios for all New York airports under 
analysis. Note that the compared distribution method (as well 
the other stochastic approximation method) preserves time of 
day, day of week, and monthly effects from one year to the 
next, because the simulation is run time sequentially from t=1 
to T in both 2006 and 2007. 

1) Construct cumulative probability distributions (cdf) of 
counts conditional on demand and weather, F(Qo,07|Do,07,w07),
for 2006 and 2007. 

2) Find the cumulative probability of the empirical 2007 
count for operation type o, conditional on 2007 demand and 
2007 weather condition for some time interval t, 
F(Qo,07|Do,07,w07).

3) Based on the simulated 2007 demand, 07,oD̂ , find the 
interval in the 2006 count cdf that the 2007 probability found 
in the previous step falls into. From this, lower and upper 
bounds (FL(Qo,06| 07,oD̂ ,w06) and FU(Qo,06| 07,oD̂ ,w06),
respectively) of the 2006 cdf and corresponding 2006 
simulated count values (Qo,06,L and Qo,06,U, respectively) are 
obtained. 

4) Construct a probability value, f(x), for the simulated 
2006 count based on the 2007 count cdf’s position between 
the lower and upper bounds of the 2006 cdf interval: 

)06w,o,07D |o,06(QLF-)06w,o,07D |o,06(QUF

)07w,o,07D|o,07F(Q-)06w,o,07D |o,06(QUF

)Lo,06,Qo,06QPr(f(x)

ˆˆ

ˆ

ˆ

f(x)1)Uo,06,Qo,06QPr( ˆ

5) Generate random number n. If n  f(x), set count to 
lower bound 2006 count Qo,06,L; otherwise set count to upper 
bound Qo,06,U.

There are fewer count data recorded at very high demand 
values, and as a result the cumulative probability distributions 
of counts conditional on high demands are often based on small 
and incomplete data sets. To avoid reliance on probability 
distributions constructed using sparse data, all counts recorded 
with demands beyond the capacity threshold were combined 
into a single truncating probability distribution at the cut-off 
demand. For all simulated demands higher than that of the 
demand truncation point, this combined probability distribution 
is used for count simulation.  

IV. DESCRIPTION OF DATA

The Aviation System Performance Metrics (ASPM) 
database is part of the Federal Aviation Administration’s 
(FAA’s) Operations and Performance Data system. Data from 
the “Download/Airport” section of the ASPM database was 
used for this analysis. The data includes hourly as well as 
quarter-hourly arrival and departure counts, demands, and 
visibility conditions (either visual (VFR) or instrument (IFR) 

flight rules). The data is available for 77 major airports in the 
United States. 

ASPM count data are based on individual aircraft landing 
and take-off times as supplied through Airline Service Quality 
Performance (ASQP) data or Enhanced Traffic Management 
System (ETMS) messages.  

ASPM provides the perfect data set to construct the 
counterfactual scenarios described in the previous section; 
however, some particular characteristics of the ASPM demand 
data selected for this analysis must be noted. Firstly, the 
demand data used here is based on the updated flight plan just 
before a flight is due to take off at the origin airport; it does not 
reflect demand as defined by airline schedules. As a result, for 
flights arriving at a given airport, the delay calculated in this 
analysis includes all delays that occur between the filed flight 
plan take-off time (demand) and actual landing time (count), 
but does not include the delays between scheduled and flight 
plan take-off times (although this information can also be 
found in the ASPM dataset). For flights departing the airport, 
the delay calculated in this analysis includes the delay incurred 
between the time that the flight was scheduled to depart 
according to the flight plan, and the time that it actually does 
depart. As a result, the calculated delay will not include the 
effects of ground delay programs (GDP), the effects of air 
traffic management (ATM), plus other mechanisms that would 
cause a flight to deviate from its schedule. Secondly, the 
reported demand represents the total number of aircraft that 
were available for operation o (arrival or departure) in time 
interval t. An aircraft will count towards demand in each and 
every time interval starting in the one when it was first 
available to land/depart until the time interval when it is 
actually able to do so. As a result, the demand Do(t), reported in 
t includes the “new” demand D’o(t), plus the queued (unserved) 
aircraft from the previous time interval [Do(t-1)-Qo(t-1)]. D’o(t) 
for each 15-minute interval is easily calculated from the ASPM 
dataset, and is used for input to the simulation. 

1)](toQ1)(to[D(t)oD(t)oD'

Where D’o(t) is the “new” demand for operation 
 type o in time interval t

t is the length of one time interval  
 Do(t)  is the total demand for operation 

o in time interval t
 Qo(t-1) is the throughput for operation o in 

 time interval t-1.

If an aircraft’s demand and service times fall within the 
same or adjacent intervals, its delay is recorded to be zero. For 
instance, if time intervals are 15 minutes in length, an aircraft 
will not be counted towards delay if its demand and actual 
service times are, for instance, 1 minute and 14 minutes into 
the interval respectively. Also, ASPM counts will never exceed 
the total demand in any given time interval, meaning that 
operations which occur earlier than scheduled are not counted 
as negative delay or a delay savings. 
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Data from LGA, EWR, and JFK were obtained for May 1 
through September 30 2006, and May 1 through September 30 
2007. From the data, we can derive the following information 
about demands, throughput, and delay. Figure 5 displays 
cumulative arrival demands by hour averaged over all days 
from May 1 through September 30. It can be observed that the 
total daily demand (averaged over all days) at LGA and EWR 
has decreased (between 2% and 3%) from 2006 to 2007 while 
it has increased significantly (by approximately 18%) at JFK. 
As expected, departure demands exhibit very similar trends and 
as a result are not displayed here. Figure 6 displays the average 
arrival count recorded during VFR conditions plotted against 
demand. The average arrival count per demand was calculated 
by averaging all counts recorded at each demand level from 0 
to 70+. Observe that the arrival counts match arrival demands 
up to a certain point, after which this trend stops as the facility 
cannot serve at the demanded rate any longer. After this peak 
count level, arrival counts remain steady or begin to decrease 
until the slope of the curve flattens out. Also beyond the peak, 
all demand cannot fully be served within the same time period 
any longer. The peak arrival count is the realized arrival 
capacity for a given airport [7]. Based on this simple yet 
reliable capacity estimation, Figure 6 suggests that the arrival 
capacities of all three airports have decreased from 2006 to 
2007. One can also observe that higher arrival demands were 
reported at LGA and JFK in 2007, which suggests that there 
were longer queues, which in turn suggests that aircraft waited 
longer for service and therefore experienced greater delay in 
2007. The same phenomenon, however, was not recorded at 
EWR. A similar analysis can be applied to the averaged 
departure counts in Figure 7, which implies that departure 
capacities have dropped at LGA and EWR but have increased 
at JFK from 2006 to 2007. However, much higher demands 
(and therefore queuing) were reported at JFK in 2007, which 
may be the result of increased demand and/or more severe 
demand peaking effects, as the data does not seem to suggest 
that capacity has decreased. 
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Figure 5. Cumulative Arrival Demands (Average Day of Ops), by Hour 
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Figure 6. Average Arrival Counts vs. Demand, in VFR, by Quarter-Hour 

EWR VFR Departures (per quarter-hour)
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Figure 7. Average Departure Counts vs. Demand, in VFR, by Quarter-Hour 

The average delay per flight was also calculated for arrival 
and departure operations at each airport from May through 
September of 2006 and 2007 as per Equation (7). Recall that 
delay is calculated against flight plan demand, and the data is 
tabulated in 15-minute intervals (such that t=15 min). The 
data set contains T=14,688 quarter-hour intervals. 

The delay results are summarized in Table III. 

TABLE III. AVERAGE DELAY PER FLIGHT, MAY-SEPT 2006 & 2007 

Average delay per flight (min) Change
(from 2006 to 

2007)2006 2007 

LGA Departure 8.56 10.72 +2.16 

Arrival 8.85 10.7 +1.85 

EWR Departure 11.53 9.95 -1.58 

Arrival 11.46 12.06 +0.60 

JFK Departure 12.06 14.38 +2.32 

Arrival 3.23 8.11 +4.88 

The average delay per flight increased at both LGA and 
JFK between 2006 and 2007, and significantly so for JFK 
arrivals. Average delay has decreased by about 1.6 minutes per 
departing flight at EWR, and for arrival flights it has increased 
0.6 minutes. These results from ASPM are consistent with the 
OPSNET data discussed previously. 

Modeling the counterfactual scenarios involves recreating 
the structure of the ASPM demand and count data by assigning 
simulated 2007 demand and 2007 throughput values, and then 
calculating queue lengths and average delay in the same 
manner as was done for the data shown in Table III.  

V. RESULTS

The simulation results are summarized in Table IV. The 
reported counterfactual delays are the average of 10 simulation 
runs for each scenario. The standard deviations of the 10 runs 
are also reported. 
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TABLE IV. DELAY RESULTS

Average Delay per 

Flight (min) 

 delay

due to  

 demand 

(implies)

 delay 

 due to 

throughput

(implies)

SD**

2006 CF* 2007 

LGA 

Departure 8.56 6.49 10.72 -2.08 4.24 0.115 

Demand has 

decreased

Throughput has 

decreased

Arrival 8.85 6.03 10.70 -2.82 4.67 0.097 

Demand has 

decreased

Throughput has 

decreased

EWR

Departure 11.53 5.78 9.95 -5.76 4.18 0.064 

Demand has 

decreased

Throughput has 

decreased

Arrival 11.46 6.65 12.06 -4.81 5.41 0.097 

Demand has 

decreased

Throughput has 

decreased

JFK

Departure 12.06 19.09 14.38 7.03 -4.71 0.138 

Demand has 

increased

Throughput has 

increased

Arrival 3.23 4.91 8.11 1.68 3.20 0.084 

Demand has 

increased

Throughput has 

decreased

* Counterfactual, referring to scenario with 2007 demand and 2006 throughput 

** Standard deviation of counterfactual delay, for 10 simulation runs made 

The results are consistent with the trends seen in the 
OPSNET data, as well as the ASPM data presented in the 
previous section and used for this simulation. At both LGA and 
EWR, arrival and departure demand changes have results in 
decreases in arrival and departure delay, implying that demand 
has declined. In addition, delays attributed to changes in 
throughput have increased, which would imply that throughput 
has dropped as well. At JFK, arrival and departure delays have 
increased due to changes in demand, suggesting that demands 
have gone up (with the departure demands having caused 
relatively significant increases in delay). However, increases in 
departure throughput have caused departure delays to drop 
while arrival throughput may have decreased and caused a 
subsequent increase in arrival delay.  

The counterfactual scenario can also be constructed by 
swapping the demand and throughput years and simulating 
2006 demand with 2007 throughput; in other words, using the 
same procedure described above but with the years switched. 
In this case, the difference between the counterfactual and 2006 
base year delays can attributed solely to changes in throughput, 
and the difference between the 2007 base year and 
counterfactual scenario delays to changes in demand. Table V 
contains the results of this simulation. 

TABLE V. DELAY RESULTS (COUNTERFACTUAL SCENARIO II) 

Average Delay per 

Flight (min) 

 delay

due to  

 demand 

(implies)

 delay 

 due to 

throughput

(implies)

SD**

2006 CF* 2007 

LGA 

Departure 8.56 13.08 10.72 4.52 -2.36 0.093 

Throughput has 

decreased

Demand has 

decreased

Arrival 8.85 13.36 10.70 4.51 -2.66 0.287 

Throughput has 

decreased

Demand has 

decreased

EWR

Departure 11.53 20.33 9.95 8.80 -10.38 0.088 

Throughput has 

decreased

Demand has 

decreased

Arrival 11.46 16.40 12.06 4.94 -4.34 0.351 

Throughput has 

decreased

Demand has 

decreased

JFK

Departure 12.06 9.10 14.38 -2.97 5.29 0.060 

Throughput has 

increased

Demand has 

increased

Arrival 3.23 6.52 8.11 3.29 1.59 0.084 

Throughput has 

decreased

Demand has 

increased

* Counterfactual, referring to scenario with 2006 demand and 2007 throughput 

** Standard deviation of counterfactual delay, for 10 simulation runs made 

The delay trends in Tables IV and V are consistent with one 
another. It also appears that the magnitudes of the changes in 
delay are consistent between the two analyses at LGA, EWR 
arrivals, and JFK, although there is greater discrepancy in the 
departure results for EWR. Because demand, throughput and 
delay are not necessarily related linearly, the “direction” in 
which the counterfactual scenario is simulated could have a 
significant effect on the delay results (of Tables IV and V). 
However, the choice regarding which way to simulate the 
counterfactual scenario is arbitrary, and consequently the two 
sets of delay results may serve to validate the simulation 
process. The differences between the two sets of results for 
EWR departures may be due to other dependent effects not 
accounted for or readily apparent in the simulation process. 
Also, as demands increase, delays also increase at much faster 
rates; conversely, when demands are lower an increase in 
throughput can result in a significantly greater delay reduction 
[2]. This may account for the fact that the Table V results for 
EWR show much larger changes in delay between the two 
years than Table IV. 

We can make a few inferences based on the results in 
Tables IV and V above. Firstly, of the three airports JFK has 
experienced the largest overall increase in delay due to changes 
in throughput and demand. In particular, a substantial growth 
in arrival and departure demands has contributed to the large 
increase in delay at JFK. Departure throughputs have not 
similarly increased to offset this rise in demand, while the 
problem in the arrival operations is further exacerbated by a 
decrease in throughput. Decreased throughput does not 
necessarily mean a drop in airport capacity. In fact, sources at 
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the FAA believe that fleet mix changes in 2007 at JFK led to 
higher minimum in-trail separations, which would certainly 
reduce throughput. It has also been suggested that New York 
airspace controllers had grown more conservative about 
aircraft separations due to safety concerns. This would support 
the findings of Figures 6 and 7, which suggest that capacities 
have generally decreased (except for JFK departures) between 
2006 and 2007. The drop in demand at LGA and EWR (Figure 
5) occurred alongside a drop in throughput, and generally 
resulted in an overall increase in delay at these airports. 

VI. CONCLUSIONS

The New York airports experienced a very significant rise 
in delays over the summer of 2007 compared to previous 
periods, most specifically that of summer 2006. The purpose of 
this work was to estimate how much of this change in delay 
was due to demand changes and how much was due to 
throughput changes. Because demand and throughput change 
simultaneously, the purpose of this work was to quantify how 
changes in each contribute to a change in delay, and ultimately 
provide information about the causes of delay at one greater 
level of detail. To do this, an empirically driven simulation 
procedure was developed from classical queuing concepts, and 
applied to a case study of the three major New York area 
airports in summer 2006 and 2007. This procedure consists of a 
stochastic throughput function whose main advantages are that 
it uses non-parametric, empirically-based probability 
distributions and that capacity need not be estimated explicitly. 
The throughput function was used to recreate the structure of 
the ASPM data and construct the intermediate “counterfactual” 
scenario, by which the delay changes from 2006 to 2007 could 
be attributed to either demand or throughput.  

The simulation results confirmed the OPSNET and ASPM 
data results. The counterfactual scenario was first constructed 
with 2007 demand and 2006 throughput. At both LGA and 
EWR, arrival and departure demand changes have results in 
decreases in arrival and departure delay, implying that demand 
has declined. In addition, delays attributed to changes in 
throughput have increased, which would imply that throughput 
has dropped as well. At JFK, arrival and departure delays have 
increased due to changes in demand, suggesting that demands 
have gone up. However, increases in departure throughput have 
caused departure delays to drop while arrival throughput may 
have decreased and caused a subsequent increase in arrival 
delay. The counterfactual scenario was also constructed with 
2006 demand and 2007 throughput, and the results of this 
simulation served to validate the previous simulation results. 

VII. FURTHER WORK

This procedure is a starting point from which we can 
further analyze and deconstruct the causes of operational delay 
at airports in terms of demand and throughput. However, 
knowing only the demand and throughput effects on delay has 
limited importance; it would be beneficial to identify factors 
other than flight rule conditions that influence demand and 
throughput. This could, in turn, be used to re-specify the 
throughput function to control for additional factors not yet 
included in the model. Phenomenon yet uncontrolled for might 
include fleet mix changes, and arrival/departure interaction 
effects (the model as of yet assumes arrivals & departures to be 
independent of one another). Another direction for future work 
is to base delay calculations on a demand scenario other than 
that of the flight plan, such as demand recorded at the time 
flights are scheduled by the airlines to arrive or depart. Using 
this, the effects of GDP as well as all the effects of ATM at 
origin airports could be incorporated into the analysis. 
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