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Abstract

Nowadays, we are continuously faced with a vast amount o f information, and how to 

present the data in a meaningful way becomes o f paramount interest. The main goal o f 

data modeling is to offer solutions to such problems. In this thesis, we carried out 

research concerning three fundamental logically inclined modeling structures to improve 

the transparency and interpretabi 1 ity o f data, and the ensuing models. The three modeling 

structures are: Reed-Muller Binary Decision Trees (RMBDT), Cascade OR/AND Fuzzy 

Neural Networks (COAFNN), and Parallel OR/AND Fuzzy Neural Networks 

(POAFNN).

Combining the optimal solution-searching techniques o f both fuzzy logic and the above 

modeling structures, the three modeling approaches presented are demonstrated to be 

efficient in extracting and representing knowledge from datasets.
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Part I Introduction

Chapter 1 Motivation and objectives

1.1 Motivation

We live in an era o f information explosion; the amount o f information available is 

expanding day by day. How do we handle all the information we encounter in everyday 

life? The data may come from different sources, e.g., real estate prices, software 

engineering measurements, personalized Internet searching, medical diagnosis, etc. Data 

modeling has a close relationship to our daily life.

The approaches to developing modeling systems can be classified into two categories: 

those which are supposed to work autonomously, and those which are intended to be 

tools in the hands o f the user to help him to take decisions. In the former case, the 

performance level may be the issue; but, in the latter, other dimensions such as 

comprehensibility, robustness, versatility, modifiability, and coherence with previous 

knowledge may be fundamental in order to allow the system to be accepted for use. The 

concepts o f white box and black box could be introduced into the modeling approach. 

When achieving higher accuracy in the resulting models is the main goal, we do not want 

to know the details about how the models work. Models could be considered as black 

boxes, because they are expected to give us the results when we provide the inputs to 

them. When comprehensibility is the goal, we are striving for greater transparency o f the 

models. In this case, we could say we are pursuing a white box modeling system. 

Primarily, we need the system to work accurately and be understandable, but can we gain 

these two goals together within one modeling system?

1
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The motivation o f this thesis is to give an answer to this question by creating white box 

modeling systems. We apply new network structures in data modeling in order to 

improve the accuracy o f the modeling approach, and to enhance the interpretabi 1 ity o f the 

knowledge.

1.2 Objectives

When we began the research, the goal was to find some new modeling structures that 

would give acceptable or even superb performance on data modeling or knowledge 

extraction. In the data modeling research area, there are two fundamental goals 

confronting every researcher: accuracy and interpretability. There have been many 

different data models researched in the past. Here, two classes o f data models are to be 

discussed. One class is composed o f the so-called “ black box”  models, in which the 

system is seen as a whole and only its interactions with the external world are considered. 

A black box model defines the data abstraction entirely in terms o f external behavior, in 

transitions from stimuli to responses. Another class consists o f structural or “ white box” 

models. These models are better able to handle the situation where the inside structure o f 

the model is essential for the users to know. In this scenario, the users are concerned 

about not only the results, but also the interpretable presentation o f the results. We build 

both white box and black box mode ling systems, and compare the performance o f them.

In this research, two modeling structures, the Reed Muller Binary Decision Tree 

(RMBDT) structure and the Fuzzy Neural Network (FNN) structure, are introduced. 

RMBDT models are viewed as black box models, while FNN models are considered to 

be white box models.

With the RMBDT structure, our goal is to achieve acceptable models for prediction 

purposes. The RMBDTs are based on Reed Muller expansion, which uses exclusive OR 

operators. These models are therefore anticipated to be unable to achieve easy-to-read 

knowledge, but able to provide acceptable performance.

Since Fuzzy Neural Network models consist o f only AND and OR operators, FNN 

models are considered to be easy to interpret. The OR/AND neuron is used to build the 

FNN models. Our goal is to investigate the suitability o f the cascade OR/AND neurons to

2
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build complex structures. With the interpretability o f fuzzy neurons, we may extract 

valuable rules from the models achieved in the training process.

The Cascade OR/AND neuron-based Fuzzy Neural Networks (COAFNNs) are applied to 

improve the interpretability o f the models. We assume that the models using COAFNNs 

provide equal or slightly worse performance in predication compared with black box 

modeling systems, while we could extract interpretable knowledge in the form o f rules 

from these models.

By changing the layout o f the OR/AND neurons-based fuzzy neural network, the Parallel 

OR/AND neuron-based Fuzzy Neural Network (POAFNN) structure is applied in 

classification problems. In this approach, we adopted the single objective optimization 

approach and the multi-objective optimization technique during the training. Our goal is 

to make sure that we could achieve better interpretability, as well as similar performance, 

when we combined the knowledge and applied the knowledge on the raw data. Many 

actual datasets do not have even class distribution; they are referred to as skewed 

datasets. Most o f the time, we focus on getting a higher correct classification rate on the 

minority class(es) in the skewed datasets. Usually, we are able to achieve a high overall 

classification accuracy rate, even i f  we just predicate all the samples as the majority class 

in the skewed dataset; however, the fundamental objective o f adopting POAFNNs is to 

elevate the accuracy rate on skewed classes. The POAFNN model is mainly used as a 

classifier system.

3
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Chapter 2 Organization of the thesis

This thesis is arranged into 6 parts. Part 2 provides the introduction to basic concepts in 

data modeling, fuzzy logic, evolutionary computation, and the datasets used in the 

research. Chapter 3 introduces basic concepts in the data modeling area and provides the 

literature review on the progress in this area. In Chapter 4, an overview o f fuzzy logic is 

presented and the method o f fuzzifying the raw datasets into fuzzy sets is explained. 

Evolutionary computation gets a brie f introduction in Chapter 5. Two main branches in 

evolutionary computation, Genetic Algorithm (GA) and Evolution Strategy (ES), are 

explained in detail. The datasets to be used in the experiments are described in Chapter 6. 

These datasets include the datasets from UC1 Machine Learning Repository (Boston 

housing dataset, Abalone dataset, Machine CPU dataset, Auto-MPG dataset, IRIS 

dataset) and the software metric dataset.

From Part 3 to Part 5, three data models in the framework o f fuzzy sets are constructed 

and discussed. The fuzzification o f the raw data occurs before the beginning o f the 

training. The outputs are transferred into the form o f the original raw data by 

defuzzification process.

In Part 3, the modeling structure using the Reed-Muller Binary Decision Tree (RMBDT) 

is introduced and the experimental results based on this modeling structure are presented 

and discussed. The fundamental concepts in Reed-Muller expansion and RMBDT are 

shown in Chapter 7. In Chapter 8, the modeling structure used in the experiments is 

described. The optimization method based on the GA used for construction o f RMBDT is 

explained. The analysis and the discussion o f the experimental results are presented.

In Part 4, we explain how to construct interpretable models using Cascade OR/AND 

neuron based Fuzzy Neuron Networks (COAFNN). Chapter 9 gives the overview on 

artificial neural networks and fuzzy neural networks, and the generic model for the fuzzy 

logic networks is defined. Chapter 10 describes the application o f the GA to the 

construction o f models, The statistical analysis o f results is included with the rules

4
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extracted from the models. Finally, the discussion on this modeling approach is 

presented.

In Part 5, we use the Parallel OR/AND neuron-based Fuzzy Neuron Network (POAFNN) 

as the classifier. This classification system is designed to improve performance on 

skewed datasets. Multi-objective optimization technique is explained in Chapter 11. The 

Pareto-based multi-objective optimization method applied in the experiments is described 

in detail in this chapter. The experimental results on POAFNNs are shown in Chapter 12. 

Comparison o f the single objective optimization with the multi-objective optimization is 

made and discussed. The knowledge extracted from the models is also presented.

In Part 6, the overall comparison o f the three proposed approaches is made, and the 

conclusions and future work are addressed. Chapter 13 compares the performance in 

accuracy and interpretability o f the three modeling approaches, while Chapter 14 

concludes the work presented in this thesis and suggests potential future work along this 

research path.

5
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Part II Background and Datasets

In this part, we first review concepts related to data modeling. We then review concepts 

in fuzzy logic, including fuzzy sets, linguistic variables, membership functions, and fuzzy 

modeling. Next, the evolutionary computation oriented techniques are introduced. 

Finally, the description o f used datasets is addressed.

Chapter 3 Data modeling

3.1 Basic Concepts

The problem o f characterizing a complex process can be approached from several 

different directions. I f  the process is well understood, it is possible to consider the 

underlying fundamental principles and arrive at a system o f differential equations that 

describe the process. This is traditional physical modeling. For processes whose 

underlying principles are not well understood, or are too complex to express in terms o f 

conservation equations, etc., without excessive simplifying assumptions, empirical 

modeling is often the best approach. Empirical modeling is also commonly referred to as 

curve fitting, data fitting, or system identification. Modeling is a very general problem 

and there are several tasks from a wide range o f domains that can be cast into modeling 

tasks. The result o f modeling may be a set o f discrete values (known as classification), or 

continuous values (known as predication).

The modeling problem considered here is to learn how to achieve generalization from 

experience, i.e. given some examples from a domain, to learn to model new instances 

from the same domain. In many modeling problems explicit rules do not exist, but 

examples can be obtained easily. We always try to infer a solution from a (limited) set o f 

training examples. The goal is to obtain models and learning rules to enable us to learn

6
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from the examples, and predict the value o f future objects. We assume that objects are 

described by vectors containing a set o f n real valued measurements, thus an object /' is 

represented by the feature vector x s = (xn ,x i2,...,xm) x tJ e 9? (or shorter x. € 9?"). 

Each object is thus represented as one point in a feature space X.

Much research has been done to develop systems which learn by example, or use 

inductive learning. Given a training set o f instances, these systems often can “ learn”  the 

relationship between the inputs and outputs well enough to be able to receive an input 

and produce the correct output with a high probability, even i f  that input was not one o f 

the examples. This ability is called generalization. The process o f generalization is 

modeling and the result o f the generalization could be called a model. Learning systems 

which can generalize accurately have the potential o f being able to solve problems for 

which conventional programming solutions have not been found. They may also be able 

to avoid the high costs involved in writing specific programs or constructing expert 

systems to solve many problems. In some cases, they can perform with greater accuracy 

as well.

A ll areas o f human interaction with the environment involve decision-making situations. 

Ideally, decision-making should be based on complete knowledge o f the alternatives at 

hand, as well as their consequences. As the complex nature o f the systems we are 

concerned with often makes exact predictions impossible, one usually has to rely on 

models, which provide tractable approximations to reality. Here, system analysis plays an

important role [2 4], since only a well-informed decision maker is in a position to take

well-founded decisions. There is an abundance o f definitions for the word ‘model’ . A 

common definition, here expressed in the words o f Neeiamkavil [2_19], is very 

illustrative. “ A  model is a simplified representation o f a system intended to enhance our 

ability to understand, predict and possibly control the behavior o f the system.”

3.2 Previous Work

Neural networks [2_16,2_35,2_36] provide several ways to utilize inductive learning. 

Some styles o f neural networks have been successful in accurately learning to generalize 

from a training set. The main idea behind an A rtific ia l Neural Network is to use several

7
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simple computational units, connected by weighted links through which activation values 

are transmitted. The units normally have a very simple way to calculate new activation 

values, given the values received through the connections; for example, summing their 

inputs and feeding the results through a monotonous transfer function. This activation is 

then spread through the network via the connections, finally resulting in activation o f the 

output units, which is then interpreted as the modeling result. Training o f the network 

consists in showing the patterns o f the training set to the network, and letting it adjust its 

connections to obtain the correct output. One o f the most popular neural network 

architectures used for modeling problems is the Multi-Layer Perceptron. The units are 

organized into different layers, and the network is said to be feed-forward when the 

activation values propagate in one direction only, from the units in the input layer, 

through a number o f hidden layers, to end up in the output layer. The multi-layer 

perceptron is usually trained with the Error Back-Propagation method. Initially the 

connections in the network are set randomly, then the training samples are fed one at a 

time into the input layer and the activity propagated through the network to the output 

layer. The output o f the network is then compared to the desired output, and the 

difference gives rise to an error signal which is fed backwards through the network, 

causing the connections to be updated in a way which w ill decrease the error the next 

time the same pattern is presented. By going through the training set in this way, several 

times, the connections are gradually adjusted to minimize the output error. Many 

researchers have devoted a lot o f effort in neural networks. The combination o f neural 

networks with other modeling technique is also an interesting area. In [2_21 ], the 

inputting data were first processed using rough sets, then the resulted rough sets were 

used to design neural networks. The neural networks were optimized by genetic 

algorithm and final knowledge in the form o f rules was extracted from the final neural 

networks.

The Nearest-Neighbor (NN) pattern classifier [2_8] keeps the entire training set o f 

instances, and generalizes by using the output o f the “ closest”  instance to a new input. 

The ^Nearest-Neighbor (ANN) algorithm uses the most common output value o f the k 

closest neighbors during generalization, and performs better in the presence o f noise. The 

Condensed Nearest-Neighbor rule [2_ 13] attempts to reduce storage requirements by 

keeping only selected instances, but suffers from intolerance to noise. The nested 

generalized exemplars (NGE) approach uses single instances or axis-parallel

8
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hyperrectangles that may cover several instances [2_29]. The NGE approach reduces 

storage requirements as well, but there is evidence that indicates that it may not compare 

favorably in terms o f generalization accuracy with ANN in many domains [2_33]. A 

hybrid method [2_34] improves generalization accuracy to near that o f the ANN methods. 

Instance-Based Learning (IBL) algorithms [2_1] reduce the number o f instances that 

must be saved while remaining tolerant o f noise. They are also incremental, meaning that 

additional training instances can be added easily, even after the initial learning stage is 

already complete. Case-Based Reasoning (CBR) systems [2_26] also attempt to use 

previously seen cases to generalize on new inputs. However, CBR systems may modify 

cases rather than simply storing a list o f examples. Other notable induction learning 

algorithms that have had some success include ID3 [2_28, 2_6], which builds decision 

trees.

The above methods all use supervised training methods, where the correct class label has 

to be given when updating the connections. There is another kind o f training called 

Reinforcement Learning [2_3], in which only a global signal indicating i f  the answer was 

wrong or right is given. This is sometimes useful when e. g. learning to play a game, and 

it is only possible to know i f  a whole sequence o f moves was good or bad ( i f  it lead to a 

win or a loss), and not exactly what should have been done in each move.

Fuzzy Logic [2_37], which is a generalization o f truth-values, and which can be used in 

logical inference methods to handle concepts with “ fuzzy”  boundaries has turned out to 

be a powerful tool in classification. Fuzzy techniques can also be incorporated into 

various neural network models. Each class description consists o f a set o f fuzzy 

expressions allowing the evaluation o f specific features and their logical operation. A 

fuzzy rule can have one single condition, or can consist o f a combination o f several 

conditions that have to be fulfilled for an object to be assigned to a class.

Given the character o f the overall optimization task, and having at our disposal gradient- 

based techniques and evolutionary mechanisms o f optimization, our design decision is to 

complete the overall design process through genetic optimization. Even though the 

gradient-based techniques could be applicable at the level o f parametric refinement o f the 

network, from the design point o f view, it would be advisable to apply genetic 

optimization. Genetic algorithms (GAs) [2_17] are classified as computational modeling

9
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approaches, based on evolution. Through the years, the possibility o f practical application 

has been demonstrated in many areas in research and industry. GA starts with random 

models as candidates to the problem and searches effectively for the optimal solution by 

means o f reproduction, crossover, and mutation. This feature may alleviate the possibility 

o f falling into local minima and maxima.

Decision tree has long been applied in data modeling. ID3 [2_27] is a popular and 

efficient method in training decision trees. Much research has been carried out in 

improving the performance o f decision trees and many researchers have tried to combine 

fuzzy logic and decision trees to build modeling tools that are known as fuzzy decision 

trees [2_18,2_20, 2_31].

Many real-world search and optimization problems are naturally posed as nonlinear 

programming problems having multiple objectives. Due to lack o f suitable solution 

techniques, such problems are artific ia lly converted into a single-objective problem and 

solved. The d ifficu lty  arises because such problems give rise to a set o f Pareto-optimal 

solutions, instead o f  a single optimum solution. It then becomes important to find not just 

one Pareto-optimal solution, but as many o f them as possible. Classical methods are not 

very efficient in solving these problems because they require repetitive applications to 

find multiple Pareto-optimal solutions and on some occasions repetitive applications do 

not guarantee that distinct Pareto optimal solutions w ill be found. The population 

approach o f evolutionary algorithms allows an efficient way to find multiple Pareto- 

optimal solutions simultaneously in a single simulation run [2_7, 2_10], These concepts 

and techniques are to be discussed in detail in Chapter 11.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4 Fuzzy Logic

4.1 Introduction to Fuzzy Logic

Fuzzy logic could be considered as the generalized form o f two-valued logic. Fuzzy logic 

steins directly from the theory o f fuzzy sets introduced by L. A. Zadeh[2_37]. Instead o f 

using 1 or 0 to indicate whether an object belongs to a set or not, fuzzy set uses a value in 

the unit interval [0,1] to indicate the relationship between an object and the set. This 

value is determined by a predefined function, called a membership function. Generally 

speaking, a fuzzy set F  defined in the domain o f X  is characterized by a membership 

function Hf(x) which gives out the values in the range [0,1]. There are many ways to 

define a membership function for the fuzzy set. In many practical instances, fuzzy sets 

can be represented by the following parameterized functions (shown in Figure 4.1). For 

more forms o f the membership functions, see reference [2_23],

trangLtor tr«*rc*3d Oamum

.! .i L..

F ig u r e  4.1 T r ia n g u l a r , T r a p e z o id a l  a n d  G a u s s ia n  f u n c t io n s

In the same domain, we could define as many fuzzy sets as we need, but it would become 

more d ifficu lt to explain and understand when the number o f fuzzy sets grows larger. It is 

preferable i f  the number o f the fuzzy sets defined in a universe does not exceed 7. 

Usually we assign linguistic meanings to membership functions, such as low, medium 

and high for three membership functions o f temperature. [2_23, 2_24] provide more 

information on fuzzy sets and membership functions.

With fuzzy logic, we treat original truth values in two-valued or many-valued logic as a 

linguistic characterization o f numerical truth-values. “ Thus, fuzzy logic concerns the

1 1
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principles o f approximate reasoning [2_24, 2_22].”  By applying the theory o f fuzzy logic 

in solving modeling problems, we are able to generate fuzzy models to represent 

knowledge. This process is known as fuzzy modeling. According to [2_25], fuzzy 

modeling is primarily concerned with building models at a certain level o f information 

granularity, which is conveniently quantified in terms o f fuzzy sets. Rule-based models 

have assumed a dominant position in the plethora o f fuzzy models. With the continuously 

growing diversity o f modeling rules, one can project a significant development along 

these lines. Rule-based fuzzy models exploit the calculus o f rule-based structures and, in 

general, can be structured as a series o f “ IF-THEN”  conditional statements o f the form:

IF Input) is An and Input2 \sA i2 and ... and Input„ is / l/„  THEN output is Y

/= /, 2,..., c, where An, A i2, A,„, and Y  are fuzzy sets (linguistic labels) o f the

corresponding system’s variables being defined.

4.2 Data fuzzification fo r  the datasets

A ll the data sets are fuzzified before being fed to the models. For each input attribute, it is 

considered to be continuous input i f  the containing values are floating point values or the 

integer values have more than 15 unique options. For continuous attributes, they w ill be 

fuzzified with a given number o f fuzzy sets, using Gaussian membership function or 

Triangular membership function. For those attributes containing just integer values and 

having no more than 15 different options, they would be considered as discrete inputs and 

the fuzzification process applied on these attributes uses the 1-out-of-n approach. In this 

approach, there are n fuzzy sets i f  the number o f discrete values is n. Each fuzzy set 

denotes 1 i f  the current value for this data point at this attribute is the discrete value 

represented by this fuzzy set. For each data point, just one fuzzy set in these n fuzzy sets 

is 1, while all others are 0. For example, i f  there are 3 discrete values, 1, 2, and 3, for the 

variable, we use 3 membership functions to represent fuzzy sets for this variable. We can 

code 1 as 1 0 0, 2 as 0 1 0 and 3 as 0 0 1. The first fuzzy set indicates i f  the variable is 

equal to 1 or not, the second set represents whether the variable is equal to 2, and the 

third indicates i f  the variable is equal to 3. In the experiments, all the data sets are 

randomly divided into 60-40 training-testing data sets.

12
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Chapter 5 Evolutionary Computation

Evolutionary computation is based on Charles R. Darwin’s theory o f natural selection, 

and has been extensively used in optimization since the 1960s. In natural systems, 

evolution presents the changes (sometimes not optimal ones) in behaviors o f organisms, 

over the biological hierarchy o f cells, organs, individuals, and populations. Evolutionary 

computation focuses on an analog to natural systems. It adopts stochastic methods to 

generate new individuals and its searching strategy imitates the natural process o f 

competing to survive, and successful inheritance. By using evolutionary computing 

methods, we are able to solve those problems that are d ifficult to find satisfactory 

solutions for using traditional approaches. Thomas Back et al. considered that “ the most 

significant advantage o f using evolutionary search lies in the gain o f flexib ility  and 

adaptability to the task at hand, in combination with robust performance (although this 

depends on the problem class) and global search characteristics.”  [2_2] Evolutionary 

computation works on one or more sets o f possible solutions to the problem. Each 

possible solution is referred to as an individual or a chromosome, and a set o f 

chromosomes forms a population. During the process o f solving the problem, the 

population is continuously changed by a cycle o f selecting better chromosomes and 

generating new chromosomes by applying operators such as mutation and/or 

recombination. The selection o f the chromosomes is based on the values given by an 

evaluation function applied to the chromosomes. The value that the evaluation function 

gives is called fitness o f the chromosome and the evaluation function is named the fitness 

function. The selection process can be realized in many different ways, one o f which is 

stochastic sampling with replacement. In this method, the entire population is mapped 

onto a roulette wheel where each genotype is represented by the area corresponding to its 

fitness value. Individuals forming an intermediate population are chosen by repetitive 

spinning o f the roulette wheel.

In the thesis, we w ill be using two important, strongly related but independently 

developed, approaches in evolutionary computation: Evolutionary Strategy (ES) and 

Genetic Algorithm (GA)
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5.1 Evolution strategies

Evolution strategies (ES) were developed by Rechenberg and Schwefel in the 1960s. 

They are algorithms that imitate the principles o f natural evolution, and have been used 

as a method for solving parameter optimization problems [2_17] for a long time. In their 

early stage, evolution strategies were carried out with a population consisting o f just one 

individual and one genetic operator (mutation) only. This method is called the two- 

member evaluation strategy. The most significant difference between simple genetic 

algorithms and evolution strategies lies in the representation o f the variables. In ES, an 

individual was represented as a pair o f floating point-valued vectors, i.e., v = (x, d). Here, 

the first vector x  represents a point in the solution space; the second vector or represents 

the corresponding standard deviation. The individual is altered by mutation

b y x (+l = x, + N (0 ,c t) , where N(0,o) is a vector o f independent identically normally

distributed random numbers with a mean o f zero and standard deviation cr. This is 

consistent with biological observation that smaller changes occur more often than larger 

ones [2_17], The mutated individual replaces its parent i f  and only i f  the mutated 

individual has a better fitness and satisfies all existing constraints. Otherwise, the 

offspring is destroyed and the population remains unchanged.

Multi-member evolution strategies were also introduced [2_30]. Here a population 

consists o f m  individuals at generation g producing k  offspring. The m  best o f (m + A') 

individuals w ill survive as parents for the next generation. This model allows those 

individuals who have better fitness to exist for a long time, until better solutions appear, 

thereby causing premature convergence. In order to prevent premature convergence, a 

simple solution could be introduced to the multi-member evolution strategy. Here, a 

population consisting o f /;/ individuals at generation g  produces k  offspring, where k > m. 

During the selection stage, the tit best o f the k  offspring are chosen to be parents o f the 

following generation.

5.2 Genetic Algorithm

The Genetic Algorithm (GA) was introduced by Holland in 1962 in the U. S. A., at 

almost the same time as the evolutionary strategy emerged in Germany. The genetic
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optimization aimed at by the structural and parametric development o f the network 

exploits Genetic Algorithms (GAs). In a nutshell, GA is a biologically inspired search 

method considering the principles o f natural selection [2_9, 2_12]. In this setting, all 

possible solutions are encoded into a population o f chromosome-like data structures 

named genotypes. The genotypes are “ translated”  into phenotypes that represent potential 

solutions to the problem. The phenotypes are evaluated based on their ability to solve the 

problem and quantified by some fitness function. Each time the phenotype is fed into this 

function, a fitness value is obtained that is assigned to the original genotype and 

represents its fitness. The results o f this evaluation are used when forming a new 

collection o f potential solutions. The choice o f individuals to be reproduced is guided by 

some selection mechanism.

Genetic operators, i.e., crossover and mutation, are employed to form a new population. 

Crossover is applied to the randomly paired genotypes from the intermediate population 

with some probability pc. In the case o f mutation, all bits in all substrings o f genotypes 

are altered with the probability pm. A sequence o f such actions is repeated until some 

final criterion has been satisfied. A ll steps described above are then repeated. The 

underlying GA pseudo-code is presented below; here Pga^ a) denotes the population o f 

solutions at some generation (denoted here by toA):

hjA := 0

initialize PgaOxja) 

evaluate Pca^ ca) 

while not terminate do

P ’ GA(tGA) :=  s e le c t  (P o A (tG A ));

P ” GA(tGA) : =  c r o s s o v e r  ( P ’ o a O g a ) ) ;

P ” ’ GA(tGA) :=  m u ta te  ( P ” 0 A (tG A ));

P g a 0 g A+ 1 ) :=  P ” ’ G A (tG A );

Iga := tGA + 1 ’>

evaluate PgaQga)

od

Classified by the gene value, GAs are divided into two types: Binary Coded Genetic 

Algorithm (BCGA) and Real Coded Genetic Algorithm (RCGA) [2_14], BCGAs use the 

binary or binary-like data, which are discrete values, as individual genes, while RCGA
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uses real values as genes. The use o f real parameters makes it possible to utilize large 

domains for the connections. This is d ifficult to achieve in binary implementations where 

increasing the domain would mean sacrificing precision (assuming a fixed length for the 

chromosomes). Another advantage when using real parameters is their capacity to exploit 

the granularity o f the functions with continuous variables, where the concept o f 

granularity refers to the fact that slight changes in the variables correspond to slight 

changes in the function. Along these lines, a highlighted advantage o f the RCGAs [2_14] 

is the capacity for local tuning o f the solutions. A  more detailed introduction to ES, GA, 

BCGA, RCGA and their applications could be found in [2_5, 2_11, 2_14, 2_30],
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Chapter 6 Experimental data used in the research

In this research, we selected several well-known data sets from the UCI Machine

Learning Data Repository [2 15], including Boston housing data, Abalone data, Auto-

MPG data, Machine CPU data and IRIS data. We also adopted the software metric data. 

We w ill introduce these datasets below.

6.1 Boston housing dataset

The Boston Housing dataset is a small but widely used dataset derived from information 

collected by the U.S. Census Service concerning housing in the Boston area, which has 

been used extensively throughout the literature to benchmark algorithms. The goal is to 

predict the median value o f a house, i.e., price. The dataset contains 506 records o f the 

real estate price and related characteristics o f the houses in Boston. The real estate price 

is the output o f the record; 13 properties are used to describe the houses. The variables 

are described in Table 6.1, which contains the variable description, the abbreviations used 

in generated rules, and the variable type(discrete or continuous).

No. Abbr. Description Type
1 CRIM Per capita crime rate by town Cont.
2 ZN Proportion o f residential land zoned for lots over25,000 sq.ft. Cont.
3 INDUS Proportion o f non-retail business acres per town Cont.
4 CHAS Charles River dummy variable (= 1 i f  tract bounds river; 0 

otherwise)
Disc.

5 NOX N itric  oxides concentration (parts per 10 m illion) Cont.
6 RM Average number o f rooms per dwelling Cont.
7 AGE Proportion o f owner-occupied units built prior to 1940 Cont.
8 DIS Weighted distances to five Boston employment centres Cont.
9 RAD Index o f accessibility to radial highways (24,8,7,6,5,4,3,2,1) Disc.
10 TAX Full-value property-tax rate per $10,000 Cont.
11 PTRATIO Pupil-teacher ratio by town Cont.
12 B 1000(Bk - 0.63)A2 where Bk is the proportion o f blacks by town Cont.
13 LSTAT % lower status o f the population Cont.
14 MEDV Median value o f owner-occupied homes in $ 1000's (Target) Cont.

Table 6.1 Attributes occurring in the Boston Housing Data

(Cont. continuous, Disc. =discrete) 
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6.2 Ahalone data

This data set consists o f eight inputs, namely the sex o f the specimen (male, female, or 

infant), the length, the diameter, the height, the total weight, the shucked weight, the 

weight o f the viscera, and finally the shell weight o f the specimen, that were used to 

predict the age o f the abalone. The original owner o f the database is the Marine Research 

Laboratories in Tasmania, Australia. The age in years o f an abalone can be obtained by 

adding 1.5 to the number o f rings. The number o f rings varies between 1 and 29 and we 

expect that two abalones with the same number o f rings should also present similar 

values for the independent attributes sex, length, diameter, height, and so on. In other 

words, the degree o f dissimilarity between crustaceans computed on the independent 

attributes should be proportional to the dissimilarity in the dependent attribute (i.e., the 

difference in the number o f rings). The database contains 4,177 cases o f marine 

crustaceans. 8 input variables and 1 output variable are stored in this dataset. Table 6.2 

includes the abbreviation, description and type o f the variables.

No. Abbr. Description Type
1 Sex Discrete value (Male, Female, and Infant) Disc.
2 Length Longest shell measurement Cont.
3 Diameter Perpendicular to length in millimeters Cont.
4 Height The thickness with meat in shell in millimeters Cont.
5 Wholeweight Total weight o f abalone in grams Cont.
6 Shuckedweight Weight o f meat in grams Cont.
7 Visceraweight Gut weight (after bleeding) in grams Cont.
8 Shell weight The weight o f the shell after being dried in grams Cont.
9 Rings Gives the age in years when plus 1.5(output) 29 values Cont.

Table 6.2 Attributes occurring in the Abalone Data 

(Cont. continuous, Disc. =discrete)

6.3 Auto-MPG data

This data set contained a set o f records o f different cars and their mileage (mpg) rates. 

The numeric attributes contained features such as displacement, horsepower, 

acceleration, weight, and model year o f a car. The target to be predicted in this problem is 

the city-cycle fuel consumption o f different car models in miles per gallon. There are 393 

instances and 7 attributes -  6 numeric and 1 categorical. (See Table 6.3.)
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No. Abbr. Description Type
1 CYLIN Number o f cylinders (3, 4,5, 6,8) Discrete
2 DISPL Displacement Continuous
3 HorseP Horsepower Continuous
4 Weight Weight Continuous
5 ACCE Acceleration Continuous
6 Model Y Model year(82,81,80,79,78,77,76,75,74,73,72,71,70) Discrete
7 Origin Origin (1 = USA; 2 = Europe; 3 = Japan) Discrete
8 Fuel Efficiency fuel efficiency (miles per gallon) (output variable) Continuous

Table 6.3 Attributes in Auto-mpg Data

6.4 Machine CPU data

This dataset is concerned with Relative CPU Performance. There are a total o f 209 

instances in the training data, and 7 attributes. It contains 6 continuous input variables 

which show the specific information about the CPU. The published relative performance 

works as the output variable in this dataset. Refer to Table 6.4 for details.

No. Abbr. Description Type
1 M YCT Machine cycle time in nanoseconds Continuous
2 M M IN Minimum main memory in kilobytes Continuous
3 M M A X Maximum main memory in kilobytes Continuous
4 CACHE Cache memory in kilobytes Continuous
5 CHM IN Minimum channels in units Continuous
6 CHM AX Maximum channels in units Continuous
7 PRP Published relative performance (output) Continuous

Table 6.4 Attributes used in Relative CPU Performance Data

6.5 IRIS data

This data set concerns four attributes -  sepal length (SL), sepal width (SW), petal length 

(PL), petal width (PW); and deals with three classes -  Setosa, Versicolor and Virginica. 

A ll four input attributes are continuous data. The data set consists o f 150 patterns, 50 in 

each class.
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6.6 Software metric data

The software metrics dataset [2_32] contains 366 software objects in a Java-based 

biomedical image data analysis system. A ll 366 software objects were labeled by an 

experienced software architect in terms o f usability. Three architects (experts A, D and 

V) were asked to rank each software object. That is, based on experience, they were 

asked to assign a value from 1 to 5 that ranks the overall usability o f a particular software 

object. Classes with low ranking are determined to be d ifficu lt to use. A class ranked 1 

should definitely be subject to a review while a class 5 is considered very easy to use. A 

set o f 64 metrics was obtained from an evaluation version o f Borland’s Together Soft 

package and an in-house metrics parser. In this study, we combined classes 1 &  2 to be a 

new class 2 and classes 4 &  5 to be a new class 4, which changes the problem into a 

three-class problem.

No. Abbr. Description Type
0 NAM E Object Name.
1 TYPE Type: GUI (=1), Data Model (=2), Algorithm (=3), Other (=4). D(4)
2 METH # methods. Cont.
3 LOC # lines o f code. Cont.
4 ALOC Mean LOC per method. Cont.
5 MLOC Median LOC per method. Cont.
6 RCC1 Ratio o f comment lines o f code to total lines o f code including 

white space and comments.
Cont.

7 RCC2 True Comment Ratio Cont.
8 TOK # tokens. Cont.
9 ATOK Mean TOK per method. Cont.
10 MTOK Median TOK per method. Cont.
11 DEC # decisions: for, while, if, switch, etc. Cont.
12 ADEC Mean DEC per method. D( 13)
13 MDEC Median DEC per method. D (11)
14 WDC Weighted # decisions based on nesting level i: Sum[/*/7,] Cont.
15 AWDC Mean WDC per method. Cont.
16 MW DC Median WDC per method. D( 12)
17 INCL # inner classes. D( 12)
18 D1NH Depth o f inheritance. D(5)
19 CHLD # children. D( 10)
20 SIBL # siblings. D( 15)
21 FACE # implemented interfaces. D(6)
22 RCR Code reuse: ratio o f overloaded inherited methods to those that 

are not.
Cont.

23 CBO Coupling between objects. Cont.
24 LCOM Lack o f cohesion o f methods. Cont.
25 RFO Response for an object. Response set contains the methods that 

can be executed in response to a message.
Cont.
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26 RFC Response for class. Cont.
27 MNL1 Maximum method name length. Cont.
28 MNL2 Minimum method name length. Cont.
29 MNL3 Mean method name length. Cont.
30 MNL4 Median method name length. Cont.
31 ATCO Attribute Complexity. Cont.
32 CYCO Cyclomatic Complexity. Cont.
33 DAC Data Abstraction Coupling. Cont.
34 FNOT Fan Out. Cont.
35 HLDF Halstead Difficulty. Cont.
36 HLEF Halstead Effort. Cont.
37 HLPL Halstead Program Length. Cont.
38 HLVC Halstead Program Vocabulary. Cont.
39 HLVL Halstead Program Volume. Cont.
40 HLON Halstead # operands. Cont.
41 HLOR Halstead # operators. Cont.
42 HLUN Halstead # unique operands. Cont.
43 HLUR Halstead # unique operators. Cont.
44 MIC Method Invocation Coupling. D(8)
45 MAXL Maximum # levels. D( 14)
46 MAXP Maximum # parameters. D( 12)
47 MAXO Maximum size operations. Cont.
48 ATTR # attributes. Cont.
49 ADDM # added methods. Cont.
50 CLAS # classes. 0(12)
51 CHCL # child classes. Cont.
52 CONS # constructors. D(9)
53 IMST # import statements. Cont.
54 MEMB # Members. Cont.
55 OPER # operations. Cont.
56 OVRM # overridden methods. D(15)
57 REMM # remote methods. Cont.
58 PKGM % package members. Cont.
59 PRVM % private members. Cont.
60 PROM % protected members. Cont.
61 PUBM % public members. Cont.
62 DEMV Violations o f Demeters Law. Cont.
63 WMC1 Weighted Methods per class. Cont.
64 WMC2 Weighted methods per class. Cont.

Table 6.5 Attributes occurring in the Software metric Data

(Cont. continuous, D(/;) =discrete, has n options)

After the combination o f the original classes, there are 3 levels o f usability in the dataset. 

Figure 6.1 shows the class distribution o f the three experts.
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Class Distribution on Expert A, D and V dataset
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F ig u r e  6.1 H is t o r y  g r a p h s  o f  t h e  u s a b il it y  d a t a  fo r  e x p e r ts  A, D a n d  V

In Figure 6.1, for Experts A, D and V, the left column is for class 1, the middle one is for 

class 2 and the right column is for class 3. From Figure 6.1, we can see that the usability 

data for expert A is the most skewed dataset, while expert D ’s dataset is next, and expert 

V ’s is the last.
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Part III Data Modeling Using Reed-Muller 

Binary Decision Trees

In this part, we build the data modeling systems based on the Reed-Muller Binary 

Decision Tree (RM BDT) structure. The related concepts are introduced first,, then the 

modeling system is described and extensive experiments are performed. Finally, the 

analysis o f the results is presented and discussed.

Chapter 7 Reed-Muller Models

The Binary Decision Diagram (BDD) method has been widely used for the synthesis, 

analysis and optimization o f both combinational and sequential logic circuits. The Binary 

Decision Tree (BDT), as the specific form o f BDD, has been applied in pattern 

recognition [3_12, 3 13] and classification [3_23].

Any Boolean function can be represented in modulo-2 algebra as the complement-free 

ring sum or Reed-Muller (RM) expansion [3_3, 3_4, 3_14]. For a given Boolean 

function, each Reed-Muller expansion is both unique and canonic. The use o f Reed- 

M uller expansions to represent Boolean functions has gained increasing popularity [3_11, 

3_17'], and the use o f the Reed-Muller Binary Decision Diagram (RM BDD) and the 

Reed-Muller Binary Decision Tree (RMBDT) for Reed-Muller expansion has become a 

research topic in its own right [3_ 15, 3_20, 3_22], RMBDD and RMBDT have been 

applied in variable ordering [3_21] and construction o f Reed-Muller universal logic 

module models [3_2].

Logic, multi-valued logic, and fuzzy logic lie at the heart o f data understanding. It has 

become clear that fuzzy logic, strongly supporting the development o f fuzzy models, is
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an essential conceptual component for the successful design o f various user-centric 

models.

In the process o f our research activity, we found that RMBDT, working with fuzzy logic, 

could also produce good generalization ability. The objectives o f research on RMBDT 

are threefold: First, we revisit the concept o f the Reed-Muller Binary Decision Tree, 

demonstrating how RMBDT is able to provide the function o f generalization ability; 

second, we develop an overall architecture o f the RMBDT; and third, a comprehensive 

genetic design procedure is established.

7.1 Reed-Muller expansion

In recent years, Reed-Muller expansion -alternative means o f representing logic 

functions based on the operations o f modulo-2 arithmetic -  has presented an attractive 

and rewarding field o f investigation. The Reed-Muller (RM) approach o f AND/EX-OR 

logic realization has certain advantages over the Boolean AND/OR method. For instance, 

RM circuits have desirable features o f ease o f complementing and testing, and often 

require fewer product terms using PLA implementation. Moreover, logic functions, 

which do not minimize well in the Boolean domain, can be reduced substantially i f

implemented in RM logic [3 18]. An AND/OR Boolean function with n variables is

represented by

where m, are the minterms, aj= 0 or 1, and r=2n- l.  Since the minterms are mutually 

exclusive, m, x nij =0 Vi, j  (i?y), the OR (+) can be replaced by the EX-OR (©), or 

moduiar-2 sum o f products, giving the Reed-Muller form as

2" - l

( 1)

f=b,)p0® b,p , <£>... ®brpr (2)

where p t are the product terms [3_1, 3_10] and b,=0 or 1.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7.2 Reed-Muller binary decision tree

A Reed-Muller binary decision tree (RMBDT) is a graphical representation o f a 

generalized Reed-Muller expansion. An //-variable RMBDT is a rooted, directed, acyclic 

graph with // levels o f nodes and one level o f leaves. It consists o f nodes interconnected 

by branches. A terminal node, a leaf, assumes the binary value 0 or 1 and has a single 

output branch. A non-terminal node represents a variable, „v, (using direct form or 

complement form), and has one output branch and two input branches. The left input (0- 

input) branch indicates that the node variable is absent and the right input (1-input) 

branch indicates that the node variable is present.

Shannon’s expansion theorem may be employed to decompose the Boolean function by 

expanding with respect to any variable x:; hence for any //-variable function f.

(3)

The residual functions j f  and f 1 are cofactors o f f  with .v, taking the values 0 and 1, 

respectively.

f  f(X\\■..X j ) /, 1 ,X j . i  . . . X i ) (4)

Using this notation, it can be shown that

(5)

The represented function by a non-terminal node is shown in Figure 7.1.

f

f t  ft® f!

F ig u r e  7.1 N o n -t e r m in a l  n o d e  r e p r e s e n tin g  f u n c t io n  v a r ia b l e  x,
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The root o f the tree is a single node and is defined as level 1. The output o f the root is 

the output o f the RMBDT. The 0-input branch o f the root is connected to the output edge 

o f one o f the two nodes present at level 2. Similarly, the 1-input branch is connected to 

the output edge o f the remaining level 2 node. In general, at level /, there are 21'1 nodes. 

The output edge o f each o f these 21'1 nodes is connected to an input branch o f a node at 

level (1-1), and the 2l input branches o f these level / nodes are connected to the output 

edges o f the 2UI nodes at level (1+1). A t the Final level, that is level (n+1), there are 2" 

leaves, and the output edge o f each leaf is connected to one o f the input branches o f the 

nodes at level n. The depth o f a RMBDT is defined as the depth o f the tree containing 

just non-terminal nodes. For a RMBDT with the depth o f //, it contains 2"-l non-terminal 

nodes and 2" terminal nodes. A ll the non-terminal nodes have the same function as the 

node in Figure 7.1. A  sample RMBDT with depth o f 2 is shown in Figure 7.2. By 

collecting the expressions from leaves with value 1, there w ill be 2 product terms in this 

RMBDT. Moving up the tree and following the rules o f 1-input and 0-input branch, we 

find that the logical function presented by this RMBDT is

f= x t 0 x 2 (6)

We can also get Equation 6 by the following process (refer to Equations 4 &  5):

f = f " ® X 2f2l

Where/ /  = 0 0 x ,  (1)=x, a n d // = 1 0 x ,  (0) = 1 

So f -  X /  0 X 2 ( 1 ) =  X /  0 X 2

Output of the RMBDT (/)

X|

0 0

F ig u r e  7.2 Sa m p l e  m u l t i- l e v e l  R M B D T

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 8 Reed-Muller Binary Decision Trees in Data 

Modeling

8.1 Description o f  the Model

The development o f the proposed RMBDT model involves parametric design decisions. 

The parameters o f the model deal with the determination o f ordered input variable 

indexes and optimal values o f the terminal node binary values. We choose genetic-based 

optimization in training models. The decision to choose genetic algorithms is well 

supported by two arguments:

-Models we build usually accept fewer inputs, compared with the total input space. One 

could envision that the number o f variables could be substantially reduced without any 

visible deterioration o f the approximation abilities o f the model, and the sequence o f the 

selected variable set is sensitive to the performance o f the tree. The depth o f the tree is 

defined at the beginning o f the design process (the value could be adjusted) and the 

optimization at this end is not o f concern -  a simple enumeration is far more productive 

than involving the depth as a part o f the optimization process. The selection o f a subset o f 

the variables is a combinatorial problem and here the role o f genetic optimization 

becomes essential. There are several design scenarios that in essence contribute to the 

increased dimensionality o f the problem.

-Using genetic optimization in the optimization o f the values o f the parameters o f the 

terminal nodes is also advantageous: the structure could exhibit significant depth that 

drastically hampers the efficiency o f the exhaustive searching based method. The larger 

the depth o f the structure, the more difficulties arise, and the lower the efficiency o f the 

ensuing learning.

Having the genetic-based optimization task in mind, the chromosome consists o f two 

parts (refer to Figure 8.1). The first part involves a binary representation o f indexes o f the 

input variables. The second part o f the genotype is concerned with binary values o f
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leaves. Both o f these parts are coded as integers. This arrangement o f the chromosome is 

very much in line with the phenotype-genotype transformations encountered in the 

literature, cf. [3_7- 3_9],

\= ^ = ^ = )
v  v

I " - !  indexes o f  2" B im iry  values for
in p u t  var iab les  te rm in a l  nodes

F ig u r e  8.1. A  s c h e m a t ic  v ie w  o f  a  c h r o m o s o m e  d e s c r ip t io n  o f  t h e  m o d e l

The model is evaluated by means o f some performance index expressing a measure o f 

f it  o f the resulting structure. Given the training dataset is given in the standard format o f 

input-output pairs, that is, (x(k), target(k)), k=l,2,.., N, the sum o f squared errors

Q = X  (x(k) -  target(k))T (x(k) -  target(k))
k=l

is a commonly used measure expressing the fitness o f the model. Given this, one could 

take the fitness function to assume the form-— . Here, the genetic optimization leads

to the maximization o f the fitness function. In the assessment o f the quality o f the model 

one could use any related index directly based upon Q, for example, a well-known root 

mean squared error (RMSE) performance measure.

Once the evaluation and selection have been completed, some o f the chromosomes are 

subject to crossover and mutation. In the case o f a basic crossover, called a one-point 

crossover, the genotypes o f randomly selected pairs are split into two parts and then 

recombined into a new pair o f genotypes.

8.2 Experimental setup

As usual, the data set is split into the 60-40 training and testing combination. The 

construction o f the logic relationship between information granules o f input and output 

attributes is considered as 3 fuzzy sets, quantified as low, medium, and high for 

continuous attributes. In the case o f discrete variables assuming several discrete values,
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we consider a 1-out o f -  n decoding scheme. Because o f this arrangement, we develop 

three separate models in which each deals with the corresponding linguistic granule of 

output result. In the case o f the approximation nature o f the problem, the development o f 

the model could be conveniently monitored by reporting performance on the training and 

testing sets; this helps to achieve a tradeoff between sound approximation and 

generalization abilities.

In the experiments, the GA was run for 200 generations with the size o f the population 

being equal to 500. Under these conditions, the results stabilized and larger values o f 

these parameters did not contribute to any significant changes in the performance o f the 

model.

In the experiments for construction o f data models, the models with depth from 2 to 7 are 

trained. 10 experiments are carried out on each model and the performance indexes are 

recorded. The performance o f the model could be immediately characterized by means o f 

the mean RMSE and the standard deviation achieved on the training and testing set.

The experimental results are shown in tables and plots. Tables contain the mean value 

and the standard deviation over 10 experiments. The plots show the performance as it is 

varied via the changes in the depth o f  RMBDT. Lines are drawn between the mean values 

to show the trend o f the performance. Enclosed vertical lines describe the standard 

deviation change, on which the mean values are marked as circles. The filled circles are 

the optimal mean values among the results

8.3 Experimental results

Level 2 Level 3 Level 4 Level 5 Level 6 Level 7
Train Test Train Test Train Test Train Test Train Test Train Test

Low median price o 'real estate
Mean
SD

0.2276
0.0036

0.2242
0.0092

0.1772
0.0059

0.1734
0.0097

0.1681
0.0047

0.1837
0.0143

0.1662
0.0038

0.1829
0.0084

0.1696
0.0054

0.1719
0.0074

0.1800
0.0089

0.1796
0.0075

Medium rnec ian price o f rea estate
Mean
SD

0.2482
0.0047

0.2490
0.0100

0.2114
0.0059

0.2042
0.0084

0.2039
0.0063

0.2141
0.0070

0.2029
0.0121

0.2112
0.0188

0 2 0 1 6
0.0048

0.2121
0.0120

0.1985
0.0058

0.2077
0.0071

High median price o ' real estate
Mean
SD

0.1389
0.0148

0.1456
0.0211

0.1327
0.0037

0.1214
0.0143

0.1093
0.0112

0.1228
0.0277

0.1315
0.0122

0.1267
0.0164

0.1398
0.0072

0.1435
0.0138

0.1531
0.0062

0.1457
0.0262

SD: Standard Deviation

Table 8.1 Experimental results on Boston data
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A comprehensive set o f experiments is aimed at presenting the detailed design o f the 

models as well as quantifying their performance. We use several representative examples 

from the Machine Learning Data Repositoiy to demonstrate the generalization ability o f 

RMBDT. The optimization is realized at the internal logic based level.

Experiment 1 Boston Housing Data

In the analysis o f Boston housing data, we are interested in the construction o f the logic 

relationship between information granules o f the price o f real estate (that is, quantified as 

low, medium, and high). Therefore, we end up with logic models o f real estate o f low, 

medium and high price. (For the attributes and explanation see, Chapter 6.)

The experimental results are recorded in Table 8.1. The plots illustrating the 

performance o f each model structure on training dataset and testing dataset are shown in 

Figure 8.2-8.3.

F ig u r e  8.2 Low ( u p p e r ), M e d iu m  ( m id d l e ) a n d  H ig h  ( l o w e r ) m e d ia n  p r ic e  of

REAL ESTATE ON TRAINING DATA

o.ia
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F ig u r e  8.3 Low ( u p p e r ), M e d iu m  (m id d l e ) a n d  H ig h  ( l o w e r ) m e d ia n  p r ic e  of

REAL ESTATE ON TESTING DATA

The best models in the testing dataset for low, medium, and high price o f real estate are 

found at the depths o f  3, 5, and 4, respectively. The RMSE for low, medium and high 

price o f real estate are 0.1622, 0.1861, and 0.0951. The sample plot, which is the 

RMBDT model for low price o f real estate, is shown in Figure 8.4.

Low price o f  real estate 

Access to H ighway No. 24 (X<j)—

X |2  medium—

J ^ 6  low 1 11 (  medium *- \  medium—(  }/ v / v X '  / \
0 0

F ig u r e  8.4 B e st  RM BDT m o d e l  in  t e s t in g  d a t a s e t  op  l o w  p r ic e  o f  r e a l  e s ta te

From Figure 8.4, we can derive the logical expression in the form o f AND/EXOR 

arithmetic and transform it into the AND/OR forms. The process is shown below.
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X \ s jow ® X bj nwA w_h,Kh ® A H N 2A ® X u maljumX n mcjh,mA H N 24

' ( " ^ 13 _ low ^ 6  _ low  A / |  I high A  13 _ medium 24 ^  1 3 _ hm ^ 0 _//»> A *I I _ high  A  12 _ medium ^ ^ ^ 2 4

^ 6 _ low  A  13 _ /fm' A  13 _ medium A H N  34 “T  A / j ,  ^  ^  \ l  -A 13 _ medium A / / A / 2 4 4"

II _ Mull v^ 13_ medium A  ̂ ^ 2 4  +  - ^ l \ _  high X 13 _ low  ^ l2  _ medium A  ̂ ^ 2 4  )  +

" ^ 13 _  /mi’ A- 6 _ tow A  I ) high  A  13 _  medium A  ] 2 _ medium  A ” 13 _ low  A  6 _ low  A  | | _  high  A  24 4 ~

A ^] 3 Ajh A  o _ /mi' A ^  13 medium ^ 12 medium  A  13 /,m, A Ta  /f)l(l A H N 24 4"

A ^  13 _ /r>u A  11 _ h ig h ^ L 1 3 _ medium  A  12 _ medium  A  13^/,,,,. A ^ | t_ /, ig h  ^ H N  24

O f course, we can continue to create rules from the former equation, but in the process o f 

changing AND/EXOR logical expression into AND/OR logical expression, we have 

inevitably introduced the negative form to each variable. Sometimes, the negative form o f 

the variable has no reasonable meaning in the rules. So, some side effects w ill show up in 

the final rule set. On the other hand, the transformation between two logical expressions 

is a tedium hard work. Errors are very easy to be made during the process. The former 

example comes from a RMBDT with depth o f 3. I f  the depth comes to bigger than 3, it 

w ill become really d ifficu lt in this process o f transformation. In practice, we usually do 

not treat RMBDT as the model which is able to generate the logical expression that is 

easy to interpret.

On observation o f Figures 8.2-8.3, we see that the medium sized RMBDT model (depth 

from 3 to 6) usually gives better performance on both training and testing datasets.

Experiment 2 Other Machine Learning Datasets

We designed RMBDT models for several commonly used datasets, such as Auto-mpg, 

Machine CPU, and Abalone. The development process is the same as for the Boston 

Housing Dataset. In what follows, we briefly report the key results. The plots for the 

testing datasets are shown in Figures 8.5-8.7.
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FIGURE 8.5 LOW (UPPER), MEDIUM (MIDDLE) AND HIGH (LOWER) MPG ON AUTO MPG 

TESTING DATA
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F ig u r e  8.6 Low (u p p e r ), M e d iu m  (m id d l e ) a n d  H ig h  ( l o w e r ) p e r f o r m a n c e  of

CPU ON MACHINE CPU TESTING DATA
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F ig u r e  8.7 Low ( u p p er ), M e d iu m  (m id d l e ) a n d  H ig h  (l o w e r ) o u t p u t  o n  a b a l o n e

TESTING DATA

Figures 8.5 -  8.7 show the trend with this kind o f model that models with medium size 

structure give better performance on predicting unseen data. When the model structure 

becomes more complex, the predicting ability goes down, because o f over fitting o f the 

models on the training data set.

8.4 Discussions

In this study, we have proposed a logic network composed o f the Reed-Muller binary 

decision tree. We have proposed a genetic scheme o f optimization o f the network, with 

the intent o f addressing the structural facet o f learning. The critical issues in this learning 

deal with the depth o f the tree: this design parameter implies the number o f input 

variables used by the network, therefore one reduces the number o f input variables 

existing in the problem.

In the design o f the network we have demonstrated the role o f the interface between 

the physical variables and those o f logic character required by the model. The encoding 

scheme dwells on fuzzy sets treated as a collection o f semantically sound information 

granules. From the experiments carried out on the data modeling approach, we can see 

that the RMBDT with depth from 3 to 6 usually gives better generalization ability than 

other trees with less or more complex structure.
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Part IV Data Modeling Using Cascade 

OR/AND Neuron Based Fuzzy Neural 

Networks

We now introduce a novel fuzzy neural network based on OR/AND neurons. In this part, 

the OR/AND neurons are organized according to the Cascade OR/AND neuron-based 

Fuzzy Neural Networks (COAFNN), which have two structural parameters: inputs to 

each layer o f OR/AND neurons, and the number o f OR/AND neurons. COAFNNs are 

tested in predication and classification problems.

Chapter 9 Introduction to Fuzzy Neural Networks

Fuzzy neural networks are developed based on the principle o f artificial neural networks. 

The description o f artificial neural networks is presented first, then fuzzy neurons are 

introduced, and the OR/AND neuron is explained in detail.

9.1 Overview o f  Fuzzy Neural Networks

9.1.1 Artificial Neural Network

An A rtific ia l Neural Network (ANN) is an information-processing paradigm. A rtific ia l 

neural networks are simulations o f biological nervous systems, such as animal brains. 

They are composed o f a large number o f highly interconnected processing elements 

(neurons) working together to solve specific problems. An ANN is defined by the 

neurons and the connection between these neurons. These connections are measured by 

having values assigned to them (primarily floating point values), which are called
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weights. ANNs are trainable, that is they can learn by example. Through a learning 

process, an ANN changes the weights between two neurons according to a set o f training 

data. The neuron, as the basic element to an ANN, usually has a number o f connections 

that send information in/out o f the neuron. The neuron processes the input information 

and produces the output information for other neurons in the ANN, or the network output 

to the outer system. The typical structure o f the neuron looks like that in Figure 9.1.

Xl
Output

transfersum

'V„x„

F ig u r e  9.1 t h e  s t r u c t u r e  of t h e  n e u r o n

The neuron can be considered as having two parts. The first part has responsibility for the 

aggregation o f the input information. In Figure 9.1, the sum is calculated by

sum  = y  ” | x,M\ . I f  we denote x as the vector o f the inputs and w as the vector o f 

weights, that is x  = [ x , ,x 2,... ,x „ ] andw = [w ,, w2,...,w „ ] , then the calculation o f the

sum can be expressed by sum = \»  w 1. The second part o f the neuron applies the 

transfer function (also called the activation function [4_8,4_ 15]) on the sum obtained in 

the first part, and generates the output o f this neuron. There are many selections for the

transfer function, such as the sigmoid function f ( x )  = — -— , the linear function
\ + ex

fO x  < 0
/ ( x )  = x ,  or the hard lim it function / ( x )  =  j  . The topology o f the neural

[1 x > 0

network can be described by the number o f layers and the number o f neurons (or nodes) 

per layer. The types o f layers include input, hidden, and output. The topology o f a feed 

forward ANN, which has n inputs, 1 hidden layer containing m nodes, and just one node 

in the output layer, is shown in Figure 9.2.
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Xi
Output Layer

x„

Hidden Layer 
with m  neurons

Input Layer
with i t  inputs

F igure  9.2 The t o p o l o g y  of a n  ANN 

9.1.2 Fuzzy neurons

“ One can think o f neural networks as structure-free and fu lly distributed models. The 

distributivity contributes to profound learning capabilities, as the individual computing 

elements in the network are capable o f adjusting their connections to carry out the best 

possible mapping. While this feature enhances learning, it makes it almost impossible to 

come up with a reasonable interpretation o f the overall structure o f the network worked 

out in terms o f easily understood logical constructs (like “ if-Then”  statements, frames, 

etc.). [4_20] In order to make use o f the profound learning capabilities o f the ANN and 

gain the ability to interpret the knowledge in logical form, fuzzy neurons are introduced 

to the fam ily o f neural networks [4_ 17, 4_18, 4_19, 4_20], There are two types o f basic 

fuzzy neurons: AND and OR. Both types o f neurons process information through the use 

o f standard fuzzy set operations like AND, OR, and NOT. (See [4_22] for detailed 

information on these operators.) Let us briefly recall that by an OR neuron we mean a 

fuzzy neuron that achieves a logic mapping from [0,1]" into [0,1] in the following format

y = OR(x;w) = S (x f t Wi) (1)
i=i

where Xj denotes the i-th input and Wj stands for the associated weight (connection), all o f 

them assuming values in the unit interval. The aggregation operations are implemented 

using t- and s-norms (recall that t- and s-norms are models o f logic operators o f AND and 

OR, respectively). For logic values o f 0 and 1 (Boolean logic), s- and t-norms result in
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standard AND and OR operators (logic intersection and union). Formally, by a t-norm we 

mean a two-argument operator mapping [0,1]2 to [0,1] such that it is (a) monotonic, (b) 

associative, and (c) commutative, and comes with boundary conditions as 0 t a = 0 and as 

1 t a = a. The same properties hold for s-norms with the exception o f the boundary 

conditions, which are spelled out as 0 s a = a and as 1 s a = 1. Given the semantics o f the 

logic operators, we can interpret (1) as a logic expression endowed with a collections o f 

weights (connections) y = (X| and W|) or (x2 and w2) or ... or (x„ and wn). We use a 

convenient shorthand notation y = OR(x; w) by collecting all inputs and connections into 

two vectors, x = [X| x2... x „]T, w= [wi w2... w „]T. This representation helps emphasize the 

character o f processing and underlines the available parametric flexib ility  o f the module 

residing within its connections.

The AND neuron is governed by the expression

n

y = A N D (x ;w ) = 'J ' ( x i s (2)
i=i

where in comparison with the previous construct, the order o f aggregation operations has 

been reversed. Again, in terms o f the abbreviated notation, we arrive at the expression, y 

= AND(x; w).

9.1.3 OR/AND neuron

The basic logic processing module to be used as a building module in the logic 

architectures o f the network in this part o f the research comes in the form o f a so-called 

OR/AND neuron proposed by Hi rota and Pedrycz [4_10][4_11 ] (refer also to [4_21] 

[4_22]). In essence, this processing unit can be regarded as a combination o f several 

generic fuzzy logic neurons o f AND and OR type [4 21] organized into a two-layer 

architecture. The OR/AND neuron arranges these two neurons in the form illustrated in 

Figure 9.3. In essence, the behaviors o f the two neurons are aggregated (weighted) by 

using the OR neuron located in the output layer.
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F ig u r e  9.3 OR/AND n e u r o n : a n  o v e r a l l  a r c h it e c t u r e . A ls o  Sh o w n  a r e  t h e

CONNECTIONS OF THE CORRESPONDING NEURONS

Given this functional structure, the detailed formulas o f the overall OR/AND neuron are 

as follows:

Z | = A N D (x;w ); z2 = OR(x; u); y = OR(z;v) (3)

where v = [vi v2]T and z = [Z| z2]T. The connections o f the AND and OR neurons forming 

the first layer o f this architecture are denoted by w and u, respectively. The overall 

aggregation o f the logic behaviors is completed by the OR neuron located at the output 

layer o f the OR/AND neuron. Here, the connections (v) play an important role; say, i f  v 

=[1 0], this leads to the “ pure”  type o f the and-like aggregation. The two nonzero values 

o f v produce a “ mixed”  type o f logic aggregation, as both AND and OR neurons 

contribute to the output o f the structure. The plots o f the input-output relationships o f the 

OR/AND neurons, regarded as a two-input single-output structure, are included in 

Figures 9.4-9.6. Here, we consider two collections o f triangular norms and co-norms, and 

used several numeric combinations o f  the connections.
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F ig u r e  9.4. C h a r a c t e r is t ic s  o f  OR/AND n e u r o n s  fo r  s e l e c t e d  v a l u e s  o f  t h e

CONNECTIONS AND REALIZATIONS OF T- AND S-NORMS: (A) MIN AND MAX, (B) 

PRODUCT (ATB=AB) AND PROBABILISTIC SUM (ASB =  A+B-AB), (C) LUKASIEWICZ 

CONNECTIVES (AND CONNECTIVE: ATB =  MAX(0,A+B-1), OR CONNECTIVE: ASB = 

MIN(A+B, 1)); W =  [0.3 0.7], U =  [0.4 0.9], V =  [0.9 0.2]

(a) (b) (c)

F ig u re  9.5. C h a r a c te r is t ic s  o f  OR/AND n e u ro n s  f o r  s e le c te d  v a lu e s  o f  th e

CONNECTIONS AND REALIZATIONS OF T- AND S-NORMS: (A) MIN AND MAX, (B) 

PRODUCT AND PROBABILISTIC SUM, (C) LUKASIEWICZ CONNECTIVES; W =  [0.5 0.1 ], 

U =  [0.4 0.9], V =  [0.1 1.0]

(a) (b ) (c)

F ig u re  9.6. C h a r a c te r is t ic s  o f  OR/AND n e u ro n s  f o r  s e le c te d  v a lu e s  o f  th e

CONNECTIONS AND REALIZATIONS OF T- AND S-NORMS: (A) MIN AND MAX, (B) 

PRODUCT AND PROBABILISTIC SUM, (C) LUKASIEWICZ CONNECTIVES; W =  [0.3 0.7], 

U =  [0.4 0.9], V =  [0.9 0.8]
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Two observations become straightforward. First, the connections help us control the form 

o f the input-output characteristics, which implies their important role in any learning 

activities:they deliver all necessary plasticity abilities o f the network. Second, the use o f 

various t-norms and s-norms is another mechanism one can use to adjust the network to 

conform to available experimental data. In particular, we note a difference between the 

use o f the min - max tandem versus other combinations o f t- and s-norms, whose usage 

usually gives rise to significantly smoother input-output dependencies. From the 

functional standpoint, we can accommodate complements o f the inputs, that is, along 

with the (direct) inputs x, admit their complements x j , where x ^ l- X j .  In this sense, 

given “ n”  original input variables, the total number o f inputs becomes equal to “ 2 n” .

The evident advantage o f the OR/AND neurons resides with their significant 

interpretability capabilities. Even though the neuron itself may appear somewhat 

complicated, its underlying logic expression is straightforward and readable. The two 

neurons positioned at the First layer o f the OR/AND construct realize two generic logic 

operations o f OR and AND. The results are combined OR-wise and this aggregation 

helps establish an interesting hybrid combination o f the logic characteristics o f the overall 

structure. Note that i f  V| = 1 and V2 = 0 we end up with a “ pure”  and aggregation. The 

combination o f Vi = 0 and v2 = 1 leads to the “ pure”  or-wise aggregation o f the inputs. A 

whole spectrum o f situations in-between the pure and and or aggregations is captured by 

the intermediate values o f the connections o f the OR neuron in the output layer. 

Interestingly, the hybrid style o f logic connectives used in fuzzy sets has been around for 

a long time; one may refer to early experimental studies conducted by Zimmermann and

Zysno [4 25], who introduced a broad family o f compensative logic operators that share

some properties o f both and and or connectives. The same concept is realized here; the 

significant difference lies in the algorithmic realization o f the operator where now we are 

provided with interesting learning abilities o f the structure, essential to the adjustment o f 

the properties o f the neuron. Return ing to the logic neurons in the first layer, we note that 

they have a straightforward interpretation. The OR neuron aggregates inputs or-wise with 

the weights (connections) that are essential to modeling the contribution o f individual 

inputs to the output. The higher the value o f the connection, w „ the more significant the 

corresponding input is. In this sense, different inputs affect the output to a different 

degree, and this feature is o f profound relevance for learning purposes. The situation is 

the opposite in the case o f the AND neuron: here, higher values o f the connections
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“ mask”  the inputs and therefore the highest impact (relevance) o f the input happens when 

the input comes with the connection equal to zero. The impact o f a certain input on the 

output could be quantified by computing the partial derivative o f the output with regard

dv
to this specific input, sa y  . The detailed expressions depend upon the specific form

o f the t- and s-norms. For instance, in the case o f the product and probabilistic sum we 

arrive at concise and interesting expressions o f the form,

OR neuron

^ -  = w j l - ^ ]  where A j = S ( x j t w p  (4)
OXj j=i

j*i

AND neuron

^ -  = B i ( l - w i ) where B, = X ( X j  s W j )  (5)
“ X j  H

j * i

that are in essence linear relationships o f wj. The derivations o f the above expressions 

dwell upon the specific type o f the t- and s-norm that reads as a t b = ab and a s b = a+b- 

ab, where the arguments are in the unit interval. As an example, let us derive (3). Given 

the product realization o f the t-norm, we have

y  =  S ( X j  1 w j )  =  [ S CXj t W jM X irtv ,.) =  [S (JC jW jM X jW ,.) ( 6 )
H  j=t j=l

j*l  j*l

We now introduce the notation Aj to denote all but the ilh component o f the aggregation 

completed by the s-norm. Then, y = Aj s(XjWj) = Ai + XjWj- AjXjWi, whose derivative taken 

with respect to x* becomes equal to Wj(l-Aj).

When dealing with “ classic”  artificial neurons, we are concerned with excitatory and 

inhibitory dependencies. In logic computing (as we do not allow for any negative 

connections), the aspect o f inhibition is captured by admitting complements o f the
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original inputs. In essence, this extension serves exactly the same purpose: when Xj 

decreases then 1 - X j  increases and the inhibition effect takes place.

9.3 Input -  output interfaces o f  fuzzy logic networks and 

optimization modes

So far the fuzzy network has been discussed in the context o f  logic mapping between the 

unit hypercubes, that is, [0,1]"’ to [0,1]". While these two somewhat abstract spaces could 

be directly encountered in some problems, in general we encounter physical variables 

that need to be interfaced with the network. A problem o f this nature is commonly 

encountered in a variety o f constructs involving fuzzy sets. The most straightforward 

solution is to assume a collection o f reference fuzzy sets in each input and output 

variable, and treat them as conceptual entities that allow us to describe individual 

variables. Those could be standard semantic entities, such as small, medium, large, etc. 

From the computational standpoint we use them as nonlinear transformations 

(normalizations) o f numeric inputs. Given a numeric input z e R  and a collection o f 

fuzzy sets defined in this space, say (A i, A 2, ..., A c}, the result o f the transformation is a 

vector o f membership grades x = [A ;(z) ... A c(z)], that is an element in the c-dimensional 

unit hypercube, x e [0 , l]c. In this sense, each input and output datum comes with its 

manifestation in the space o f reference fuzzy sets. When dealing with a data set 

transformed in this manner, we are concerned with the mapping between fuzzy sets rather 

than numeric values; the mapping is then realized in the form o f the logic network. The 

optimization o f the network is completed at the level o f the vectors in the unit hypercubes 

rather than at the level o f the original numeric data. The overall schematic flow o f 

processing involving the interfacing o f the network is displayed in Figure 9.7.
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INTERFACE

LOGIC
PROCESSING

INTERFACE

F ig u r e  9.7. G e n e r a l  s c h e m a t ic s  o f  in t e r f a c e s  o f  f u z z y  l o g ic  n e t w o r k s : a  f l o w

OF COMPUTING AT THE PHYSICAL AND LOGICAL LEVEL

Obviously we could envision optimization at the level o f the original data, that may 

include the interface itself, yet this may not be essential i f  we assume a certain type o f 

membership functions for the fuzzy sets defined in the output space.
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Chapter 10 Fuzzy Neural Network in Data Modeling

The fuzzy neural networks based on OR/AND neurons are created by placing the 

OR/AND neurons in the cascade manner. In this chapter, the structure is explained and a 

large number o f experiments are carried out. In addition, the performance o f cascade 

OR/AND neuron based fuzzy neural networks is analyzed.

10.1 Description o f  the Model

10.1.1 Architecture o f the Model

The topology o f the network depends/is based on the usage o f OR/AND neurons as its 

basic computing nodes. The nodes are arranged into a form o f the cascade (modular) 

structure as shown in Figure 10.1.

OR/AND

OR/AND

F ig u r e  10.1. C a s c a d e  t y p e  of  n e t w o r k  c o n s t r u c t e d  w it h  t h e  a id  o f  OR/AND

NEURONS

Using this approach, the logic expression between input variables and the output is 

constructed stepwise. More specifically, denote the output o f the first OR/AND neuron as 

fi = OR/AND (x; W |) with W| combining all connections o f the neurons in this structure. 

The output o f the second OR/AND neuron is computed by considering other inputs x ’ 

and f| giving rise to f> = OR/AND ([x ’ f i ]T, W2) with [x ’ f |]T forming the vector o f inputs 

o f this neuron. In the successive units o f the network, the processing is carried out in the 

same manner. There are two important parameters we use to design the network: the 

number o f layers (viz., the depth o f the network), and the width o f the individual module
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(OR/AND neuron). Deeper structure results in fewer inputs at each layer, and conversely, 

more inputs to a single OR/AND node produce a network o f less depth. The structure o f 

the network controlled by these two parameters presents some obvious computational 

implications, and there are interesting insights into the logic description offered by the 

network. We can treat each OR/AND neuron as an implementation o f a certain concept; 

the number o f inputs to the neuron predetermines the complexity o f the concept. The 

connections set up a certain balance between the or and and-like type o f processing. They 

directly imply the nature o f processing occurring at the subsequent phases o f the network. 

In essence, at consecutive layers o f the network, this concept is subject to further 

refinement. In some particular cases (see Figure 10.2), the concept is generalized by the 

or-wise inclusion o f some additional variables or becomes specialized with the and-wise 

combination o f other variables.

ANDAND OR/ANDOR/AND

OROR

o
y

OR OR

(a) (b)

F ig u r e  10.2. Ex a m p l e s  of r e f in e m e n t  o f  t h e  c o n c e p t  ( f) d e v e l o p e d  a t  s o m e

LAYER OF THE NETWORK: (A) GENERALIZATION WITH THE AID OF ADDITIONAL 

VARIABLES (D), AND (B) SPECIALIZATION. SHOWN ARE TWO SUCCESSIVE MODULES 

(OR/AND NEURONS) OF THE NETWORK.

Interestingly the overall network achieves a decomposition o f a fuzzy function, so fj, f2, 

and all successive outputs o f the cascaded neurons build partial realizations o f such a 

function. The decomposition o f Boolean functions has been at the center o f theoretical 

investigations since the fundamental work o f Shannon and others, with the classic paper 

by Ashenhurst [4_1] (Refer also to [4_3 ]). The investigations in this study are in line with 

the generalizations o f the decomposition and optimization results occurring in the realm 

o f fuzzy functions [4 _2 ][4_12 ][4_13 ][4_14 ][4_24 ].

To develop some preliminary idea o f  what the network can produce, let us consider the 

network shown in Figure 10.3. The interpretation o f the network is straightforward. The
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only working knowledge we need at this point comes in the form o f the boundary 

conditions o f t- and s-norms. In particular, we know that the zero connections o f the OR 

neuron eliminate the corresponding inputs. The connections o f the AN D  neurons equal to 

1 have the same elimination effect: all inputs associated with the connections set up to 1 

do not exhibit any impact on the output o f this AND neuron.

F ig u r e  10.3. Ex a m p l e  op t h e  f u z z y  l o g ic  n e t w o r k

Following these two simple interpretation rules, we arrive at the logic expression that 

could be read out directly from the network, y = OR (AN D (xi, x3), OR(x2, X4)) = (X| and 

x3) or (x2 or x3). This underlines the high level o f transparency o f the construct and its 

immediate interpretation.

10.1.2 Design aspects o f the networks

The development o f the proposed network involves two main categories o f design 

decisions -  (a) structural and (b) parametric. The diversity o f the network may be very 

significant. Structural optimization is concerned with the characteristics o f the network 

that result from selecting among its various structural options. The parameters o f the 

network deal with the determination o f optimal values o f the connections o f the 

individual OR/AND neurons. While this task is usually carried out through some 

gradient-based optimization techniques, the first group falls under the realm o f genetic- 

based optimization, [4_4][4_16][4_23][4_27]. The choice o f the optimization 

environment is influenced by a number o f requirements. The decision o f choosing genetic 

algorithms is well supported by two compelling arguments:

- We are interested in the structural development o f the network. Being motivated by 

a quest for an interpretable description o f data, one could envision that the number o f 

variables could be substantially reduced without any visible deterioration o f the
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approximation abilities o f the network. The width and depth o f the network are defined at 

the beginning o f the design process (their values could be adjusted) and optimization at 

this end is not o f concern -  a simple enumeration is far more productive than involving 

them as a part o f the optimization process. The selection o f a subset o f the variables is a 

combinatorial problem and here the role played by genetic optimization becomes 

essential. There are several design scenarios that, in essence, contribute to the increased 

dimensionality o f the problem. In light o f the inhibitory effect o f some variables 

(obviously we do not know which o f them could exhibit this phenomenon), we have to 

admit complements o f all the variables. There are also two possible design alternatives in 

which we allow some variables to repeat (that is they could show up in the network more 

than once

-The optimization o f the values o f the parameters o f the connections o f the neurons 

could be a domain o f gradient-based learning. The use o f genetic optimization is still 

advantageous: the structure could exhibit significant depth that drastically hampers the 

efficiency o f the method where a backpropagation o f error has to be realized throughout 

the entire structure o f the network. The greater the depth o f the structure, the more 

difficulties arise, and the lower the efficiency o f the ensuing learning.

10.1.3 GA applied in training

The genetic optimization aimed at the structural and parametric development o f the 

network exploits Genetic Algorithms (GAs). In a nutshell, GA is a biologically inspired 

search method considering the principles o f natural selection [4_4][4_9],

Having the genetic-based optimization task in mind, a chromosome consists o f two parts 

(refer to Figure 10.4). The first part involves a binary representation o f indexes o f the 

input variables. The second part o f the genotype is concerned with the connections o f the 

neurons; it is coded as real numbers (floating point representation). This arrangement is 

very much in line with the phenotype-genotype transformations encountered in the 

literature, cf. [4_5] [4_6][4_7][4_9].
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indexes of connection
input weights

variables

F ig u r e  10.4. A  s c h e m a t ic  v ie w  o i- a  c h r o m o s o m e  c o n s is t in g  s t r u c t u r a l

(INDEXES ARE CODED AS INTEGERS) AND PARAMETRIC (WEIGHTS ARE CODED AS 

REAL NUMBERS) DESCRIPTION OF THE NETWORK

The network is evaluated by means o f some performance index expressing a measure o f 

f it  o f the resulting structure. Given the training dataset stated in the standard format o f 

input-output pairs, that is (x(k), target(k)), k=l,2,.., N, the sum o f squared errors,

■ Q = 2 ]  ~ target(k))T (x(k) -  target(k))
k=l

is a commonly used measure expressing the fitness o f the network. Given this, one could 

take the fitness function to assume the form ^  . Here, genetic optimization leads to

the maximization o f the fitness function. In the assessment o f the quality o f the network, 

one could use any related index directly based upon Q, such as, for example, a known 

RMSE performance measure.

Once the evaluation and selection have been completed, some o f the chromosomes are 

subject to crossover and mutation. In the case o f a basic crossover, called a one-point 

crossover, the genotypes o f randomly selected pairs are split into two parts and then 

recombined into a new pair o f genotypes.

10.1.4 Interpretation aspects o f  the network

As already underlined, in the heart o f fuzzy logic networks lies their interpretability. In 

essence, this means that we can take the optimized network and effortlessly produce its 

logic expression. As the neurons come with well-defined semantics, the transparency o f 

the network is evident. There is however, a possibility o f producing an even more
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condensed logic description by confining ourselves to the most “ essential”  part o f the 

network. This is accomplished by reducing the weakest and least meaningful 

connections. This concept o f pruning is guided by the properties o f AND and OR 

neurons, and the underlying t- and s- norms, in particular.

10.1.5 A (X,p) pruning procedure and its realization

The pruning procedure introduced in this section is inherently associated with the (X, p) 

notation, hence the name o f the pruning procedure. The underlying concept is 

straightforward and relates to the nature o f the AND and OR neurons and their 

monotonicity with regard to the values o f the corresponding connections. Owing to the 

expression for the OR neuron, we note that the higher the value o f the connection, the 

more essential the input. Lower values o f the connections could then be dropped 

(pruned). To formalize this effect, let us introduce a certain threshold X with the values 

confined to the [0 , 1]:

which returns an original value o f the connection (w) i f  it exceeds or is equal to X. 

Otherwise, i f  it is weak, we prune the connection and return a zero value. The higher the 

threshold, the more connections are eliminated from the original network. The operation 

reflects our previous observation that weaker connections are related to the variables that 

could be eliminated.

The threshold operation for the AND neurons is defined as follows:

where we use a certain different threshold, say p. Now, the connections whose values are 

above the threshold p are pruned. By setting their values to 1 (corresponding to a 

complete masking effect), we eliminate the corresponding input. The lower the value o f 

the threshold, the more radical the resulting pruning o f the AND neurons. The

w  if  w > X  
0 otherwise

w if  w < p 

1 otherwise

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



combination o f these two thresholds (X, p.) serves as a general pruning mechanism. The 

choice o f their values arises as a compromise between the reduced accuracy o f the 

network and its increasing interpretability. More radical pruning (with the values o f X 

close to one and values o f p close to zero) leads to higher approximation error but at the 

same time results in more compact and therefore easily interpretable structure (its 

underlying logic expression). These two characteristics are in conflict. Possible 

optimization is very much user-oriented: we may wish move with further reductions o f 

the network given its interpretation benefits from the reduced form o f the model and 

accept somewhat higher values o f the approximation error.

10.2 Experiment results

A comprehensive set o f experiments is aimed at presenting the detailed design o f the 

networks as well as quantifying their performance. Three categories o f problems are 

considered. In the first one we use some Boolean data to visualize how Boolean functions 

can be effectively learned and interpreted. Next we move on to continuous data governed 

by expressions o f multivalued logic. Finally we consider several representative examples 

coming from the Machine Learning Data Repository.

10.2.1 Synthetic binary data

Given a collection o f input-output binary pairs {(x(k), y(k))}, k= l,2 ,...,N , x (k )e {0 ,l}", 

y (k )e {0 , l } ’” we construct a logic network and interpret it so that a final result comes in 

the form o f the logic expression. Having this in mind, we use all data for training 

purposes. From the design standpoint we allow for repeated variables and admit their 

complements as well. In the case o f many outputs we design a fam ily o f networks with 

each o f them having a single output.

Experiment 1 Here we consider Boolean data with n = 4 inputs and a single output, 

Table 10.1 (each column represent a single input-output pair)

X| 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

X2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

X3 0 0 i i 0 0 1 1 0 0 1 1 0 0 1 1

X4 0 i 0 i 0 1 0 1 0 1 0 1 0 1 0 1

y i i 0 0 1 1 0 0 0 0 1 1 0 0 1 0

Table 10.1. Boolean data used in the experiment
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The genetic optimization is run with the crossover rate o f 0.7 and mutation rate o f 0.05.

The inputs are taken as original variables as well as their complements. Several 

combinations o f the structural parameters o f the network have been experimented with,.

The scenario with 3 layers and 3 input OR/AND neurons is illustrated in Figure 10.5.

0.35 

0.3 

0.25 

0.2 

0.15 

0.1 

0.05 

0

F ig u r e  10.5. Pe r f o r m a n c e  in d e x  in  s u c c e s s iv e  g e n e r a t io n s  -  b e s t  a n d  a v e r a g e

IN THE POPULATION (3-LAYER 3-INPUT STRUCTURE)

With this particular configuration the network produced a zero error. A  smaller network 

(having 3 layers and 2 inputs) produced a nonzero value o f error. Larger network gave 

rise to slower learning as visualized by the less substantial drop in the values o f the 

performance index.

Let us discuss the 3-layer 3-input architecture o f the network whose connections are 

equal to (we also include the indexes o f the input variables)

OR 
1.00 
0.00 
0.00 
0.00

OR [1.00 0.00] OR [1.00 1.00] OR [1.00 1.00]

Table 10.2 Network connections for the model

Further pruning o f the connections (with the values o f the threshold levels set up as X =

0.9 and p. = 0.1, respectively) leads us to the reduced network as shown in Figure 10.6.

52

layer- 1 layer-2 layer-3
AND OR AND OR AND

*3 0 .0 0 1 .0 0 Z l 1 .0 0 1 .0 0 Z i 1 .0 0

X| 0 .0 0 0.07 X i 0 .0 0 0 .0 0 n o t(x i) 0 .0 0

not(x2) 0 .0 0 0.54 X3 0 .0 0 0 .0 0 not(X3) 0 .0 0

not(x4) 0 .0 0 0 .0 0 x 4 1 .00

average

generation  no. 200
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This reduction has not introduced any additional representation error (that is the error is 

still equal to zero).

*3  X | X 2 X | X j X l x"l X3

F ig u r e  10.6. T h e  t o p o l o g y  o f  t h e  n e t w o r k  a f t e r  p r u n in g  (t h e  r e m a in in g

MEANINGFUL CONNECTIONS ARE EQUAL TO 1 IN THE CASE OF OR NEURONS AND 0 

FOR AND NEURONS).

A direct inspection o f Figure 10.7 reveals that the network was able to simplify the 

Boolean data (the process which could have been easily verified by simplifying the data 

using a standard technique o f Karnaugh maps, K-maps) to the following logic 

expression x 3x , x 2 + x , x 3x 4 + x jx-, . Here for simplicity o f notation we confined

ourselves to the logic operators o f and and or denoted here by * and + (which is a typical 

notation being used in digital systems). With regard to the simplified expression refer 

also to the corresponding K-map in which we have carried out the standard simplification 

by grouping the adjacent entries o f the table.

00 01 11 10

00 1 1 0 0
01 1 1 0 0
11 0 0 0 1
10 0 0 1 1

F ig u r e  10.7. K - m a p  a n d  t h e  r e s u l t in g  s im p l if ic a t io n  o f  t h e  B o o l e a n  d a t a ;

HIGHLIGHTED ARE THE GROUPS OF THE LOGIC VARIABLES LEADING TO THE 

REDUCED EXPRESSION
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There are some other interesting developments when pursuing different learning 

scenarios. When increasing the size o f the population to 700 individuals we reached an 

ideal solution in less than 30 generations as illustrated in Figure 10.8.

0.35

0.05 -

0.15 -

0.25 -

0.1 -

0.2 -

0.3 -

0

average

g e nera tion 30

F ig u r e  10.8. G e n e t ic  o p t im iz a t io n : t h e  b e s t  a v e r a g e  o f  t h e  p o p u l a t io n  in

SUCCESSIVE GENERATIONS

The topology o f the network is now quite different from the architecture we obtained 

before; the first layer produces the or combination and this becomes aggregated and-wise 

at the next layer with some other variables, Figure 10.9.

F ig u r e  10.9. T h e  p r u n e d  f u z z y  l o g ic  n e t w o r k ; in c l u d e d  a r e  a l s o  p a r t ia l

RESULTS WHEN MOVING DOWN THE NETWORK

The logic expression comes now in the following form x (x 3 (x , + x 4) + x l x 3, which in 

essence is equivalent to the one we produced when optimizing a different topology o f the 

network. Opening the brackets we obtain x , x 3x 2 + x , x 3x 4 + x , x 3 which is equivalent 

to the one derived earlier.

Xi and_X3 and  

( x j  o r x 3)

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Larger networks lead to the zero value o f the performance however its development takes 

more time. The 3-layer 4-input network required 50 generations and the use o f the larger 

population o f 1,500 individuals, see Figure 10.10. Interestingly enough, the network after 

pruning with X =0.9 and p, =0.1 has resulted in the same topology as already portrayed in 

Figure 10.9.

0.35

0.3

0.25
average

0,2

0.15

best
0.05

1 55generation no.

F ig u r e  10.10. Pe r f o r m a n c e  in d e x  in  s u c c e s siv e  g e n e r a t io n s  (b e s t  a n d  a v e r a g e

INDIVIDUAL IN THE POPULATION) OF NETWORK COMPOSED OF 3 LAYERS AND 4 

INPUTS PER NEURON

Experiment 2. In this study, we are concerned with the continuous mapping from [0,1 ] 2 

to [0 , 1] governed by the following logic expression

f ( x h  x 2, w , , w 2, w 3)  =  [ ( w i t x , )  s ( w 2 t ( l - x 2» ]  t  [ ( X | t X 2)  s w 3]

F ig u r e  10.11. in p u t  -  o u t p u t  c h a r a c t e r is t ic s  of t h e  l o g ic  e x p r e s s io n

where the connections W|, w2, and w 3 are equal to 0.8, 0.4, and 0.1, respectively. The t- 

and s-norms are implemented as the product and probabilistic sum while the plot o f the
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input -  output characteristics for this specific configuration o f the parameters is shown in 

Figure 10.11.

We have randomly generated 500 data points (here the inputs are drawn from a uniform 

distribution over the unit interval while the outputs are computed with the use o f the logic 

expression given above). The experiment is completed with 60% o f data used for training 

and the remaining 40% used for testing purposes. Several combinations o f t- and s-norms 

have been experimented with to observe their impact on the performance o f the network. 

The values o f the parameters o f the GA environment are typical and similar to those 

encountered in the literature: the crossover rate is 0.7 while the probability o f mutation is 

0.05. The size o f the population is 100 and the optimization has been run for 100 

generations (in most cases the convergence was noted earlier nevertheless we allow the 

method to run longer). Several topologies have been used along with the reported 

performance.

(a) Single layer with two inputs. The t- and s-norm is the product and probabilistic sum 

(so the logic operators are in agreement with those used in the generation o f synthetic 

data). The resulting network comes with the RMSE o f 0.001627 on the training set and 

0.001505 on the testing set. As shown in Figure 10.12 the optimization requires very few 

generations, which is again not surprising considering the dimensionality o f the problem 

and relatively large population o f the individuals. In the sequel, the plot o f the data versus 

the output o f the network is given in Figure 10.13. The logic expression o f the data reads 

as 0.63 t [ (0.211 s X|) t x2] and involves a single AND neuron in the input layer o f the 

OR/AND structure, Figure 10.14. Both inputs heavily contribute to the output (the 

connections o f the AN D  neuron are equal to 0.211 and zero.
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F ig u r e  10.12. G e n e t ic  o p t im iz a t io n  o f  t h e  n e t w o r k : p e r f o r m a n c e  in d e x  in

SUCCESSIVE GENERATIONS (BEST AND AVERAGE IN THE POPULATION)

0.8

network

k r
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

F ig u r e  10.13. Ex p e r im e n t a l  d a t a  v er su s  t h e  n e t w o r k  (t r a in in g  s et )

x.

F ig u r e  10.14. T h e  t o p o l o g y  of t h e  n e t w o r k ; n o t e  t h a t  t h e  OR n e u r o n  c o m e s

WITH A SINGLE CONNECTION (THE OTHER ONE IS EQUAL TO ZERO)

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The use o f other realizations o f the logic connectives gives rise to higher values o f the 

performance index as shown in Table 10.3; the min and max operators (that are appealing 

from the implementation perspective) produce a significant clipping effect, Figure 10.15.

t- and s-norm RMSE (training) RMSE (testing)
M in and Max 0.014527 0.015953
Lukasiewicz and and or 0.002602 0.003191

Table 10.3. Performance index for selected realizations o ft-  and s-norms
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(a)

0.8

0.7
n e tw o rk
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0.3 - j& r
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0 '
Jp
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(b)
F ig u re  10.15. E x p e r im e n ta l  d a t a  v e rs u s  th e  n e tw o r k  ( t r a in in g  s e t) : (a ) m in

AND MAX OPERATIONS, (B) LUKASIEWICZ CONNECTIVES (ATB = MAX(0, A + B -l) ; 

ASB=M1N(1,A+B))

We carried out the design for the Lukasiewicz logic connectives; they lead to worse 

results (as illustrated in Figure 10.15(b), there is some effect o f clipping) than the product 

-  probabilistic pair but are far better than the results obtained for the network with the

58

n e tw o rk

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



min and max operators. The poor performance o f the min and max connectives could be 

attributed to their noninteractive character o f processing the contributing arguments.

(b) three-input two-layer structure. In this structure we allowed both the complements o f 

the input variables along with their duplicates in each layer (so this builds in an extra 

flexibility). The optimization resulted with the RMSE equal to 6*1 O'6 for both training 

and testing set (to get there it took about 20 generations). Practically, the results fully 

match the data as this becomes visible in this figure 10.16.

0.8
network

0.7

0.6

data

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

F ig u r e  10.16. D a t a  v er s u s  t h e  o u t p u t  oe t h e  n e t w o r k

By inspecting the values o f the connections while monitoring the values o f the 

approximation error associated with the reduced network, it is obvious that the network is 

very much excessive and could be easily pruned. Experimenting with various values o f 

the threshold levels (^. and p.), Table 10.4, one can use the values o f 0.4 (7.) and 0.6 (p) as 

a reasonable compromise: the RMSE went up but also a significant portion o f 

connections has been eliminated.

OR neurons (X) 0.4 0.5 0 .6

AND neurons (p)
0.7 1.85*1 O'4, 10 1.85*1 O'4, 10 1.85*1 O'4, 10
0 .6 8.69*1 O'4, 11 8.69*1 O'4, 11 8.69*1 O'4, 11
0.5 8.69*1 O'4, 11 8.69*1 O'4, 11 8.69*1 O'4, 11
0.4 8.69*1 O'4, 11 8.69*1 O'4, 11 8.69*10'4, 11

Table 10.4. RMSE and number o f eliminated connections for selected values o f 
thresholds; note that the original number o f the connections is equal to 18.
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Noticeably, the changes o f the threshold levels affect the approximation abilities 

(reflected in the values o f the RMSE), number o f pruned connections and (what is not 

directly quantified in the table above), the readability o f the resulting logic expression. 

Two combinations o f the thresholds are: at the combination o f (0.4, 0.7) we have 

eliminated 10 connections and ended up with the RMSE that is over 4 times lower when 

in case we modify the thresholds and eliminate 11 connections. The interpretabi 1 ity o f the 

structure could be another essential criterion: a careful inspection o f the pruned network 

reveals that at the second layer o f the structure the first variable repeats itself and enters 

the network with different connections. The second combination o f the connections 

eliminates this effect.

F ig u r e  10.17. N e t w o r k  a f t e r  p r u n in g  (A. =0.4; p =0.6), t h e  v a l u e s  o f  t h e

CONNECTIONS ARE SHOWN BELOW

10.2.2 M achine Learning datasets

A collection o f the ensuing experiments concerns Machine Learning data. As we are 

dealing with continuous data, the network interfaces with the external world through 

some interface as discussed in Section 6 . The optimization is realized at the internal logic 

based level. We are concerned with continuous as well as discrete data; with the latter 

being typical for classification problems.

Experiment 3 In the analysis o f Boston housing data we are interested in the 

construction o f the logic relationship between information granules o f price o f real estate 

(that is quantified as low, medium, and high) and the corresponding fuzzy sets defined in 

the input space. The number o f fuzzy sets for the inputs is equal to three as well. In the

x, x2

0.72
0.94 0.99

0.00
0.04
0.00

0.86
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case o f discrete variables assuming several discrete values, we consider a 1-out o f -  n 

decoding scheme. Because o f this arrangement, we develop three separate networks 

where each o f them deals with the corresponding linguistic granule o f the price o f real 

estate. This means that we end up with a logic description o f real estate o f low, medium 

and high price. As usual, the data set is split into the 60-40 training and testing 

combination. The selection o f the structure o f the network is not that obvious as in the 

previous case where we are after the zero value o f the performance index (in essence, in 

the previous experiment we were concerned with the representation problem). In the case 

o f the approximation nature o f the problem, the development o f the network could be 

conveniently monitored by reporting performance on the training and testing sets so this 

helps us achieve a tradeoff between sound approximation and generalization abilities. In 

the experiments, the GA was run for 60-200 generations with a size o f the population 

being equal to 500. Under these conditions the results stabilized and larger values o f 

these parameters have not contributed to any significant changes in the performance o f 

the network. The results o f learning are reported in a series o f tables, Table 10.5(a)-(c). 

There are two important design parameters o f the network such as its depth (the number 

o f layers) and width (the number o f inputs entering each processing module). We 

anticipate that by choosing their values, we could achieve an optimal performance o f the 

overall network. Likewise we may envision some tradeoffs between its depth and width. 

The performance o f the network could be immediately characterized by means o f the 

RMSE achieved on the training set. While compelling in general, one could be faced with 

the ultimate danger o f memorization and reduced generalization abilities. To monitor the 

impact o f the network’s parameters on the performance o f the network we could record 

the values o f the ratio (k) o f the values o f the RMSE on the training and testing (or

validation) set, K = ^ ' csl . Typically, this ratio would take values greater than 1, which 
Q train

is obvious given somewhat weaker performance over the testing set. In essence, high 

values o f the ratio become indicative o f the poor generalization abilities o f the network. 

Obviously, one needs to look at both measures otherwise we would be favoring models 

that are highly consistent across the data but equally poor on the testing and training data. 

The results are summarized in Table 10.5. Those concern the realization o f t- and s-norms 

as the product and probabilistic sum.
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Layers 1 2 3 4 5 6

/ Train test Train test Train test Train test Train test Train test

Inputs (Q) train (Q) train (Q) train (Q) train (Q) train (Q) train

(K ) (K ) (K ) (K ) (K ) (K )

2 0.105 2.2 0.095 2.38 0.089 2.46 0.096 2.65 0.088 2.5 0.097 2.33
3 0.099 2.19 0.089 2.49 0.094 2.78 0.088 3.14 0.093 2.88 0.089 2.65

4 0.088 2.67 0.089 2.84 0.103 2.29 0.090 2.29 0.084 2.92 0.094 2.67

5 0.094 2 .38 0.090 2.99 0.086 2.91 0.088 2.91 0.088 2.68 0.086 2.81

6 0.090 2.48 0.089 2.67 0.089 2.66 0.084 2.97 0.095 2.37 0.087 2.64

7 0.080 3.08 0.087 2.53 0.096 2.8 0.089 2.65 0.099 2.42 0.093 2.64

(a) low median price o f real estate

Layers
/

Inputs

1 2 3 4 5 6
Train

(Q)
test
train

(1C)

Train

(Q)
test
train

(1C)

Train
(Q)

test
train

(K )

Train

( 0 )
test
train

(K )

Train

(Q)
lest
trai
n

(1C)

Train
(Q)

test
train

(1C)

2 0.156 1.85 0.146 1.81 0.147 1.81 0.145 1.81 0.153 1.85 0.155 1.85

3 0.153 1.82 0.145 1.9 0.148 1.87 0.143 1.64 0.147 1.81 0.143 1.82

4 0.152 1.81 0.149 1.88 0.153 1.87 0.140 1.94 0.147 1.75 0,148 1.71

5 0.153 1.85 0.150 1.89 0.139 1.89 0.154 1.85 0.152 1.88 0.152 1.93

6 0.153 1.88 0.152 1.84 0.149 2.02 0.152 1.86 0.152 1.91 0.153 1.9

7 0.154 1.79 0.149 1.95 0.154 1.87 0.148 1.93 0.157 1.83 0.157 1.81

(b) medium median price o f real estate

Layers
/

Inputs

1 2 3 4 5 6
Train

(Q)
test
train

(1C)

Train
(Q)

test
train

(K )

Train

(Q)
test
train

(K )

Train

(Q)
test
train

(K )

Train
(Q)

test
train

(K )

Train

(Q)
test
train

(K )

2 0.102 1.59 0.098 1.66 0.100 1.66 0.099 1.63 0.100 1.62 0.111 1.59

3 0.106 1.62 0.098 1.62 0.106 1.62 0.102 1.7 0.112 1.62 0.099 1.74

4 0.102 1.58 0.094 5.87 0.103 1.68 0.106 1.66 0.106 1.63 0.111 1.63

5 0.102 1.58 0.100 1.6 0.105 1.67 0.101 1.72 0.102 1.58 0.106 1.67

6 0.106 1.68 0.102 1.58 0.101 1.64 0.099 1.6 0.102 1.58 0.099 1.65

7 0.106 1.61 0.106 6.75 0.107 1.65 0.105 1.71 0.101 1.6 0.108 1.69

(c) high median price o f real estate

Table 10.5. Quantification o f the network for the training set and the values o f ratio k  for 
different combinations o f the number o f layers and width o f the node. Note that there 

are three networks each for the specific linguistic term defined in the output {low, 
medium, and high), say (a)-(c), respectively. The boldface entries represent the 

optimal configurations o f the networks which are chosen based on the RMSE values o f
both training and testing data

The above results are also shown in a form o f bar graphs, Figure 10.18 that help illustrate 

some general tendencies. The lowest values for Q and are indicated by the arrows in 

Figure 10.18 and the italic numbers in Table 10.5.
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Training performance Testing/Training performance

Layers Layers

(a) low median price o f real estate

Training performance

o: 0.1

Inputs

Testing/Training performance

O)
c

t
CT>

CO

P

Layers

4

2

0

Inputs Layers

(b) medium median price o f real estate

Training performance Testing/Training performance

Inputs Layers

10

5

0

Inputs Layers

(c) high median price o f real estate 

F ig u r e  10.18. B a r  g r a p h  v is u a l iz in g  t h e  p e r f o r m a n c e  ( fo r  t r a in in g  s e t ) a n d

RATIO K FOR THREE DIFFERENT NETWORKS DESCRIBING LOW, MEDIUM, AND HIGH
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MEDIAN PRICE OF REAL ESTATE (A) -  (C), RESPECTIVELY (I IS SHORT FOR INPUT L  IS

s h o r t  fo r  L a y e r )

Interestingly enough, we note a certain general tendency. For the first network the best 

results are produced when the depth o f the network is medium and the width o f each 

OR/AND is medium. For the network governing the medium values o f output the best 

results are obtained for medium depth o f the network that comes with small width o f the 

units. Finally, for the third network we end up with somewhat low values o f width and 

depth.

We selected optimal configurations o f the networks (layer 4, input 4 for low MEDV, 

layer 4, input 3 for medium MEDV and layer 2, input 3 for high MEDV) and we carried 

out their pruning ending up with results shown in Figure 10.19. These graphs show the 

impact on the threshold levels o f the neurons (p. and A,) on the relative performance o f the 

reduced network. Thus we use a ratio o f the performance index (Q) o f the pruned 

network versus the original one; the values higher than 1 point at the deterioration in the 

mapping properties because o f the increased interpretability. Here, an interesting 

observation concerns a tradeoff between the accuracy and the reduction in the size o f the 

network (as the weakest connections become eliminated its interpretability increases). 

There are quite large regions o f the (A.,p) plane where the changes o f the threshold do not 

impact the values o f the performance index. The impact coming from the threshold 

applied to the AND neurons is not the same as the one OR neurons are subjected to.

8iKi
i
IIi

I

(a) low median price o f real estate

8i

I
I

(b) medium median price o f real estate
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I
I

2

I

(c) high median price o f real estate

FIGURE 10.19. THE EFFECT OF PRUNING PROCESS OF THE NETWORKS SHOWING IMPACT 

OF THE THRESHOLD VALUES ON THE PERFORMANCE OF THE NETWORK FOR TRAINING 

DATA (LEFT COLUMN), FOR TESTING DATA (MIDDLE COLUMN) AND ON THE STRUCTURE 

OF THE NETWORKS (RIGHT COL UMN)

Considering the threshold values o f X and pare equal to (0.1, 0.3, 1) and (0.2, 0.3, 0) 

(these two combinations led to a sound accuracy-transparency compromise), we end up 

with a linguistic description (protocol) o f the data. This description is produced directly 

from the reduced networks shown in Figure 10.20. A ll pertinent abbreviations o f the 

variables standing in the rules see part 0 .

PTRATIO is high
MEDV is lowRAD is 6------(

NOX is high L  
RM is low *' 

CRIM is medium

B is medium LSTAT is medium

LSTAT is high
RAD is 4

a )  low m e d ia n  p r ic e  o f  r e a l  e s ta te  (k=0.1 a n d  p=0.2, Q=0.089767, k = 2 . 3 0 )

RM is mediumRAD is 5 MEDV is mediumPTRATIO is medium

RAD is 7
LSTAT is low

B is high

b) medium median price o f real estate (X=0.3 and p=0.3, Q=0.144053, k=1.63)
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RM  is highPTR A TIO  is low

M E D V  is high

LS TA T is low
L S T A T  is low

c) high median price o f real estate (^.= 1 and p=0, Q=0.099679, k = 1.5 8 ) 

F ig u r e  10.20. N e t w o r k s  r e s u l t in g  a f t e r  t h e  p r u n in g  process

Median
price

Rules

low IF {{Z3}o.oo AND {LSTAT is medium)0A] AND {PTRATIO is high}o.n}0.v OR 
{ {Z 3 }o.i4 OR {LSTAT is medium}o.n  OR {LSTAT is % / 7 } i . q 0 }o. 8 I  THEN MEDV 
is low
Z 3 = {{Z 2 }0.oo AND {NOX is /wgA}0.oo}i.oo OR {{Z 2 },.0o OR {RM is lo w }m  OR 
{NOX is high}\.oo OR (CRIM is medium) i.oo OR {RAD is 4 }0.is} i.oo 
Z2={ {Z 1 }o.oo} i oo OR {{B  is medium)\.00} i.oo 
Z 1= {{R A D  is 6 }o.oo}o.46

medium IF { { Z 3 } o . i 5 AND {RM is medium}om AND {CRIM is / o w } 0 .29} i . o o  THEN MEDV 
is medium
Z 3={{LS T A T  is low } 0.00 AND {RAD is 5 } 0 .oo}o. 6i  OR {{Z 2 },.0o OR {LSTAT is 
low) 1.00} 1.00

Z2={ {PTRATIO is medium}om}oj\ OR { {RAD is 7} 1.00 OR {B is high)aM)a.n
high IF {{Zljo.oo AND {LSTAT is /ow}0.oo AND {RM is high)0.00} 1.00 THEN MEDV is 

high
Z l= {{P T R A T IO  is /ou'lo.oohoo OR {{LSTA T is / o m ’ } , . oo OR {PTRATIO is 
low) 1.00 } 1.00

Table 10.6. Collection o f rules describing Boston housing data

We can now fu lly  appreciate the expressive power o f the network; the relationships are 

quite revealing. In many cases they reflect our intuitive feel as to the nature o f the 

relationships between the price o f real estate and the essential factors that impact it. More 

importantly, though, the model quantifies these essential relationships and tells which 

variables exhibit essential impact on the median price o f real estate. We also see how 

intermediate variables are constructed and what they entail.

The experiment was repeated for several other combinations o f t- and s-norms; the 

remaining values o f the parameters o f the network and the overall setup o f the 

optimization environment were the same as before. The findings are quite similar. While 

the numeric performance o f the network varies from case to case, the changes o f the 

performance index with respect to the key parameters o f the network remain the same,
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see Figures 10.21-10.22 for more details. Essentially, we note that there always exists a 

certain tradeoff between he depth o f the network and the width o f the individual nodes. 

For the best option, we get the following values (the results are reported for three 

networks in a combined manner): Q = (0.082420,0.135074,0.072684) k =(2.45,1.83,2.07) 

(Lukasiewicz connectives) and Q = (0.116752, 0.153483, 0.112303) k =(2.24,1.72,1.55) 

(min and max operators).

Training performance Testing/Training performance

a
Efw
5cc
O)c
c
St-

Inputs Layers Inputs Layers

a) Median price of real estate is low

Training performance Testing/Training performance

Inputs Layers Inputs Layers

b) Median price of real estate is medium
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Training perform ance Testing/Training perform ance

Layers Layers

c) Median price of real estate is high

Figure 10.21. Performance index  regarded as a  function of depth an d  w idth  of the

N E T W O R K  FOR T H E  L U K A S IE W IC Z  L O G IC  C O N N E C T IV E S  ( I  IS S H O R T  FO R IN P U T  L  IS S H O R T  FOR

L ayer )

Training performance Testing/Training performance

Scc
o>c

Inputs Layers Inputs Layers

a) Median price o f real estate is low

Training performance

Inputs

Testing/Training performance

t
o>

Layers

4

2

0

Inputs Layers

b) Median price o f real estate is medium 
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Training perform ance Testing/Training perform ance

§■ 02 
co
5cc
D)c

'j=
Et-

Inputs Layers

S ’c
c
E 1 
tO)
.E 0
in(DH

Inputs Layers

c) Median price o f real estate is high 

F ig u r e  10.22. Pe r f o r m a n c e  in d e x  as  a  f u n c t io n  of d e p th  a n d  w id t h  o f  t h e

NETWORK FOR MIN AND MAX (I IS SHORT FOR INPUT L  IS SHORT FOR LAYER)

Through the series o f detailed experiments, we found that the optimal configuration o f 

the networks based on Lukasiewicz logic connectives turn out to offer the best 

performance, which is followed by the networks exploiting product and probabilistic 

sum. The min and max operations produced the least favorable results. The intuitive feel 

as to the contribution o f the variables is fully reflective in the topology o f the network. 

When talking about real estate o f low price, the network points out at the three highly 

indicative attributes o f 1STAT, PTRATIO and NOX; all o f them assume high or medium 

values. A ll three o f them are reflective o f the standard o f schools (crowded classes), 

environmental conditions (nitric oxides concentration) and high percentage o f lower 

status o f the population. When we move to the medium price range, some o f the previous 

attributes are in place with the number o f rooms coming into the expression. For the high 

median price o f real estate, the high number o f rooms is the common attribute identified 

by all networks. The rules derived with the connectives o f product and probabilistic sum 

put stress on the combination o f  low LSTAT and low PTRATIO. In the case o f 

Lukasiewicz connectives, “ AGE,”  “ TA X ,”  and “ DIS”  are taken into consideration.

Considering the best architecture o f the network and completing its pruning, we arrive at 

the linguistic description o f the data as shown in Table 10.7 (the use o f the Lukasiewicz 

connectives) and Table 10.8 (here we considered the min and max operations).
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Median price Rules
low
(width: 6 , 
depth: 2, 7.=0.4 
and p=0.7)

IF {{LS T A T  is high}oM AND {PTRATIO is high}0.iS AND {LSTAT is 
medium} o no AND {NOX is high}0.63)0.98 OR {{R M  is medium}o k  OR 
{RM is low}0.95 OR {LSTAT is medium}0.41)0.31 THEN MEDV is low

medium
(width: 2, depth: 
3, X=0.2 and 
H=0.7)

IF { {Z2}o 21 AN D  {RM is medium}0 20 AND {LSTAT is /0 M'}o.63}o.go OR 
{ {Z2}| 00 OR {RM is medium}ox,g}0.2s THEN MEDV is medium 
Z 2 = {{Z 1 }o.69} 1.00 OR { { Z l } o,26 OR {PTRATIO is medium} o.go} ox,0 

Z1 = {{T A X  is high}0.00 AND {RAD is 2}o.65) 0.32

high
(width: 4, depth: 
3, ^.=0.45 and 
H=0.7)

IF {{Z2}o57 AN D  {RM is % /7 }0oo}o94 OR {{LS T A T  is/oM«}0Jg OR 
{T A X  is high}o.M,}osb THEN MEDV is high 
Z2={{Z1}o.82 OR {AGE is low}im OR {RAD is J},.00} 1.00 

Z1={{AG E  is medium}oM AND {DIS is low}040 AND {INDUS is 
high}0.31}0.97 OR {{AG E is mediu»t}o,M OR {RAD is ilcm koo

Table 10.7. Rules describing Boston housing data (the use o f Lukasiewicz connectives)

Median price Rules
low
(width: 6 , 
depth: 2, A,=0.3 
and p=0.2)

IF {{Z ljo .io  AND {DIS is low}o 17 AND {LSTAT is medium}oo^,}ogi 
THEN MEDV is low
Z1 = {{B  is low}0 ,ig OR {LSTAT is high} 0 &6 OR {RAD is 24}074 OR 
{NOX is high} 0 48 OR {PTRATIO is high}0.48W

medium
(width: 3, depth: 
5, Z=0.4 and
p=0.6)

IF {{Z4}o.52 AND {RM is medium}0.01 }o.9o THEN M EDV is medium 
Z 4= {{Z 3 }| 00 OR {LSTAT is low} 100 OR {RAD is ^}o.6s}o.97 

Z3={{Z2}o.85 OR {PTRATIO is medium}0.92) 0.83 

Z2={{AG E  is medium}o.ss OR {RM is /on'}0.87}0.92

high
(width: 6, depth: 
3, Z=1 and 
H=0.9)

IF {{R A D  is 5 }o.85 AND {B is high}0.00 AND {RM  is high}0.00) 1.00 THEN 
M EDV is high

Table 10.8. Rules describing Boston housing data (the use o f min and max operators)

Experiment 4. We design fuzzy logic networks for several commonly used datasets such 

as Auto-mpg, Machine CPU and Abalone. The development process is the same as 

before. In what follows we briefly report the key results, which lend themselves to the 

linguistic characterization o f the data. Again, for each case the best architecture was 

searched for. Afterwards we pruned it by choosing sound values o f the threshold levels 

(again the issue o f reaching a legitimate compromise was discussed earlier and we 

followed the same development path). The quantification o f the performance o f the 

corresponding networks is summarized in Table 10.9-10.10.
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Data set Q (training set) K. Threshold layers 
and number o f 
connections 
pruned

Comments

Auto-mpg low: 0.097652 
Med: 0.110055 
high'. 0.027749

1.62
2.54
8.66

Layer:5 lnput:2 
Layer:4 Input:4 
Layer:3 Input:2

The depth and size o f 
the network depends 
upon the output o f the 
network; the one 
corresponding to low 
output requires the 
largest depth

low. 0.124896

Med\ 0.188752

high: 0.061673 
After pruning

1.03

1.69

3.29

>.=0.4, }i=0.8 
17 eliminated
>.=0.6, pi=0
42 eliminated 
>.=0.3, p.=0 
13 eliminated

Machine
CPU

/ow:0.057367 
Med: 0.063419 
high:0.002449

1.55
1.68
20.24

Layer:3 lnput:3 
Layer:2 Input:6 
Layer:4 Input:6

Here the largest network 
is required for the 
network describing high 
performance o f the CPUlow. 0.057367

Med: 0.063390

high: 0.002411 
After pruning

1.55 

1.68

20.55

>.=0.6, p.=0.95
12 eliminated 
1=0.2, ^=0
13 eliminated
>.=0.1, jj.=0
36 eliminated

Abalone low: 0.137430 
Med: 0.152729 
high: 0.069635

0.93
0.90
0.56

Layer:5 Input:3 
Layer:6 lnput:5 
Layer:5 lnput:2

It was observed that the 
network describing 
medium output required 
a large network. The 
two others concerning 
low  and high output led 
to networks o f large 
depth and small width.

low: 0.137430

Med: 0.152729

high: 0.069635 
After pruning

0.93

0.90

0.56

>,=0.05, jli=0 
35 eliminated 
>=0.2, p.=0.3 
68 eliminated 
?i=0.2, p.=0.9 
18 eliminated

Table 10.9. Quantification o f the optimized networks along with the values o f their main 
parameters. The number o f linguistic terms in all networks was set up to 3

Data set Q (training set) K Threshold layers 
and number o f 
connections 
pruned

Comments

Auto-mpg low: 0.097954 
Med: 0.107995 
high: 0.024739

1.75
2.43
10.47

Layer:5 Input:4 
Layer:5 Input:4 
Layer:5 Input:3

It is worth noting that 
the performance o f the 
network depends quite 
substantially on its depth 
and to a lesser extent on 
the width o f the nodes 
(number o f its inputs)

low: 0.102036

Med: 0.118444

high: 0.061573 
After pruning

1.56

2.13

3.72

>=0.35, (.1=0.4 
41 eliminated 
>=0.4, p=0 
36 eliminated
>=0.2, p=0
45 eliminated

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Machine
CPU

low: 0.059506 
Med: 0.050577 
high: 0.001732

1.38
1.64
6.63

Layer:5 Input:2 
Layer:4 lnput:3 
Layer:5 Input:5

The network 
characterizing high 
performance o f the CPU 
was the most demanding 
and has resulted in the 
large number o f layers 
and number o f inputs. In 
two other networks we 
require lower number o f 
inputs

low: 0.059506

Med: 0.050904

high: 0.003412 
After pruning

1.38

1.61

3.73

*=0.2, p.=0.1
22 eliminated
*.=0.2, p=0.1
28 eliminated
*.= 1, p.=0.1
65 eliminated

Abalone low: 0.137931 
Med: 0.154198 
high: 0.069685

0.94
0.92
0.59

Layer:3 Input:6 
Layer:5 Input:5 
Layer:4 Input:4

The network used to 
model medium output is 
the largest. The one 
pertaining to the low 
output is quite shallow 
but comes with a 
significant depth (the 
number o f inputs to each 
node)

low: 0.146374

Med: 0.153408

high: 0.074152 
After pruning

0.91

0.91

0.53

?i=0.2, p.=0
26 eliminated 
*,=0.3, |i=0.1 
34 eliminated 
*.=0.5, p.=0.05 
24 eliminated

Table 10.10. Quantification o f the optimized networks along with the values o f their main 
parameters. The number o f linguistic terms describing variables was set to 5

The rules involving 3 and 5 linguistic terms are shown in Table 10.11-10.11.

F u e l E f f ic ie n c y R u le s

low
( * = 0 .4 , j j .= 0 .8)

IF  { { Z 4 } 0.oo A N D  { D 1S P L  is  medium)0.37)0.84 O R  { { Z 4 } , . 0o O R  { D I S P L  is 

medium)0.47 O R  { C Y L f N  is  <5)0.47)0.79 T H E N  F u e l E f f ic ie n c y  is  low 
Z 4= { { Z 3 }o.oo A N D  { W e ig h t  is  high)0.73} 1.00 O R  { { W e ig h t  is  high) 1.00} 1.00 

Z 3= {  { H o r s P  is  /7/ g / i } 0.oo}i 00 O R  { { Z 2 } i . 0o O R  { H o r s P  is  /7/g /? )o .73)o .8o 

Z 2= { { C Y L I N  is  J W 1 . 0 0  O R  { { C Y L I N  is  5 },.00},.00

medium 
( * .= 0 .6 , n = 0 )

IF  { { W e ig h t  is  /o v v }0.95 O R  { D I S P L  is  low } 0 1 9 O R  { H o r s P  is  low)OM}og1 

T H E N  F u e l E f f ic ie n c y  is  medium
high
( * = 0 .3 , f t = 0 )

IF  { { Z 2 }o.oo A N D  { H o r s P  is  /o w jo .o o  A N D  { W e ig h t  is  / o w } 0.oo}o.39 T H E N  

F u e l E f f ic ie n c y  is  high
Z 2= { { M o d e ! Y  is  <52} 0.00)0,54 O R  { { M o d e lY  is  <52 ) 0.9i O R  { O r ig in  is

2 } 0.36}  1.00

Table 10.11. Linguistic description o f data for Auto-mpg; the number o f linguistic terms
is equal to 3

Fuel Efficiency Rules
low
(*,=0.35,
ft=0.4)

IF {{W eight is high} 0 .25 AND {Weight is very_high) 0 . 7 1 ) 0 . 5 2  OR {{Z 4 } Q,57 
OR {Weight is medium)0.35 OR {Weight is high)0.b2 OR {Weight is 
very high) 1.00 OR {C YLIN  is 5 }065}o.8« THEN Fuel Efficiency is low 
Z4={{C Y LIN  isijo.oo AND {ModelY is 75}0.oo}o.54 OR {{C Y L IN  is 
3} 1.00 OR {ModelY is 72}0.35 OR {C YLIN  is 6 ) 0.75 OR {ModelY is 
72}o.5l)o.77
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medium 
(k=0.4, p=0)

IF {{Z4}o9, OR {HorsP is W } 05o OR {C YLIN  is 4}X.**}*M THEN Fuel 
Efficiency is medium
Z4={{D ISPL is /orv}o.oo}o,76 OR {{Z 3 }0.79 OR {DISPL is low}*.}8 OR 
{Weight is low}*M OR {ModelY is S/}o.79}o.7o
Z3={ {Weight is medium}0 oo}o so OR { { Z2} 100 OR {ModelY is 76 }|0oOR
{C YLIN  is S}o.84}o.5o
Z2={ {Z 1}, oo OR {ModelY is 77},.0o}i.oo
Z1={{ACCE is very /ovf'}0.0o}i.oo

high
(k=0.2, p=0)

IF {{D ISPL is veryjow }0.oo AND {Weight is v<?ry_/W}0.oo}o..i4 THEN 
Fuel Efficiency is high

Table 10.12. Linguistic description o f the Auto-mpg data; the number o f linguistic terms 
(that are quantified as veryjow , low, medium, high and very_high) is equal to 5

The results for the CPU Performance Data are reported in the same manner, see Table 

10.13-10.14

Published relative 
performance

Rules

low
(^=0.6, p=0.95)

IF {{Z 2 }0.9| AND {CACHE is /<w}0.oo AND {M M IN  is /mv}0.o2}o.98 OR 
{{Z 2 }, oo OR {M M A X  is Iow}\ oo OR {M M IN  is /ovt'}0.69}o.68 THEN 
PRP is low
Z2={{Zl}o.oo AND {M M A X  is medium} o.*o} \ *o OR {{Zl}o,65 OR 
{M M A X  is low} i.oo}i.oo 
Z 1 = {{M M A X  is low}***}i.oo

medium 
(A.=0.2, p=0)

IF {{Zljo.oo AND {M M IN  is medium}*.oo}o.77 OR {{CACHE is 
medium}^ oo OR {M M A X  is high}i.oo OR {CACH is high}i.oo OR 
{M M IN  is high} i.oo}o.2s THEN PRP is medium 
Z 1={{M Y C T is low}*** AND {M M IN  is medium}*.** AND {M M A X  is 
medium}*.**}*j\ OR {{C H M A X  is high} i.oo OR {M M A X  is high}\ ** 
OR {M M IN  is /ou'}o.88 OR {M M A X  is medium}0.92} i.oo

high
(A,=0.1, p=0)

IF { {Z3}o.00 AND {M M A X  is high}00o} 1.00 THEN PRP is high 
Z3={{Z2}o.,3 OR {CACH is high}L** OR {M M IN  is high}x.** OR 
{M YC T is high}*5* OR {CHM AX is high}*.5* OR {M M A X  is 
/ovr}05o} i.oo
Z2={{Zl}o.oo AND {M M A X  is medium}o.oo}o.i6 OR { {Z 1 } 0.34 OR 
{CHM IN is low}*.5* OR {CACH is high}*.** OR {M YC T is /oh'},.00 OR 
{M M A X  is medium}*.}* OR {CACH is medium}*.*} OR {M M IN  is
low) 0.21} 0.42
Z1={{CACH is medium}*.}* OR {M M A X  is /ou;}o.i9 OR {CACH is 
high} 100 OR {C H M AX is medium}* |8} 1.00

Table 10.13. Linguistic description o f Machine CPU data; the number o f linguistic terms
is equal to 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Published relative 
performance

Rules

low
(A,=0.2 and
M'=0.1)

IF {{CACH is very jow )005 AND {M M IN  is veryjow ) o m } 0 9 9  OR 
{{Z4}o.99 OR {CACH is very low}o6i OR {M M IN  is very /oiv) 022)091 

THEN PRP is low

Z 4={{Z 3}i oo OR {M M IN  is low) 0.34 OR {M M A X  is /o>v} 1.00)0.86

Z 3= {{M M A X  is /o w }0.00},.oo OR {{M M A X  is/ow },.0o OR {CHMIN 
is very /ow) 0.50} 1.00

medium 
(k=0 . 2  and
p=0.1)

IF {{M M IN  is medium)0.09}0.77 OR {{Z 3 },.0o OR {CHM IN is low)0.22 

OR {M M IN  is medium } ] . 00 OR {M M A X  is medium)0.53)0.51 THEN PRP 
is medium

Z3={{M M IN  is very /oit'Jooo AND {CACH is medium)Qoo}].oo
high
(A.=l, n=0.1)

IF {{M M A X  is veryjiigh)0.00 AND {CACH is medium)0.04) 1.00 THEN 
PRP is high

Table 10.14. Linguistic description o f Machine CPU data; the number o f linguistic terms 
(that are quantified as veryjow , low, medium, high and veryjiigh ) was set up to 5

There is an interesting effect o f more detailed granulation o f variables (the increased 

number o f fuzzy sets defined therein) on the performance o f the model. In general, the 

accuracy o f the network increases (an obvious tendency one could have easily expected), 

refer to Table 10.15.

Data set 3 4 5 6 7
Auto- Q =(0.097652 Q=(0.089163 Q=(0.097954 Q=(0.103933 O=(0.109918
mpg 0.110055 0.110095 0.107995 0.113212 0.104494

0.027749) 0.026796) 0.024739) 0.021932) 0.024900)
k = (1.62, k = (1.74, K =(1.75, k =(1.73, K = (1.51,
2.54, 8.66) 2.50, 9.50) 2.43, 10.47) 2.37, 12.11) 2.62, 10.69)
Optimal Optimal Optimal Optimal Optimal
parameters: parameters: parameters: parameters: parameters:
(Layer:5Inp:2 (Layer:4Inp:3 (Layer:5Inp:4 (Layer:5Inp:3 (Layer:3Inp:3
Layer: 4Inp: 4 Layer:2np:2 Layer:5Inp:4 Layer:4Inp:2 Layer:3Inp:4
Layer:3Inp:2) Layer:2np:5 Layer:5Inp:3) Layer:4Inp:2) Layer:3Inp:3)

Machine Q=(0.057367, Q=(0.064684 Q=(0.059506 Q=(0.062562 Q=(0.051478
CPU 0.063419, 0.053470 0.050577 0.052820 0.055263

0.002449) 0.001732) 0.001732) 0.002000) 0.001414)
k=(1 .55, k = (1.37, k = (1.38, k  = (1.52, k  = (1.89,
1.68, 20.24) 1.60, 64.34) 1.64,6.63) 1.74, 55.88) 1.59, 79.49)
Optimal Optimal Optimal Optimal Optimal
parameters: parameters: parameters: parameters: parameters:
(Layer:3Inp:3 (Layer:5Inp:5 (Layer:5Inp:2 (Layer:5Inp:5 (Layer:2Inp:4
Layer:2Inp:6 Layer:2Inp: 6 Layer:4Inp:3 Layer:3Inp:4 Layer:2Inp:4
Layer:4Inp:6) Layer: I Inp:5) Layer:51np:5) Layer: 1 Inp:5) Layer:2Inp:4)
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Abalone Q=(0.137430 Q=(0.137543 Q=(0.137931 Q=(0.139492 Q=(0.139989
0.152729 0.149760 0.154198 0.154803 0.156831
0.069635) 0.069642) 0.069685) 0.069484) 0.070385)
k=(0.93, k  = (0.93, k  = (0.94, K  = (0.93, k  = (0.91,
0.90, 0.56) 0.92, 0.59) 0.92, 0.59) 0.91, 0.60) 0.91,0.62)
Optimal Optimal Optimal Optimal Optimal
parameters: parameters: parameters: parameters: parameters:
(Layer:5Inp3: (Layer:4Inp:6 (Layer:3Inp:6 (Layer:6Inp:4 (Layer:5Inp:3
Layer:6Inp:5 Layer:6Inp: 7 Layer:5Inp: 5 Layer:4Inp:5 Layer:4Inp:4
Layer:5Inp:2) Layer:4Inp:3) Layer:4Inp:4) Layer:5Inp:2) Layer:5Inp:3)

Table 10.15. Performance o f the network for the optimal configuration o f the structural 
parameters (depth and width). No pruning has been completed (Inp is short for Input)

Experiment 5. Here we elaborate on the use o f the logic network to a classification 

problem such as the well-known IRIS data. The data set consists o f 150 patterns, 50 in 

each class. The data set has been divided into the training and testing set with the 

standard split o f 60%-40%. The classification variable is coded follow ing the 1-out-of-n 

scheme. A ll input attributes are coded with the use o f three Gaussian fuzzy sets (whose 

semantics pertains to linguistic terms such as low, medium, and high). Through a series 

o f experiments we determined that the optimal network comes with a width o f 3 where 

the depth is equal to 2. For this configuration, the performance is quantified as Q = 

(0.025866,0.1511328,0.163378) and k= (1 .10,1.37,1.37), respectively. The threshold 

mechanism leads to the structure displayed in Figure 10.23. It is noticeable that the 

reduction o f the network has not produced any increase o f the classification error. In this 

case the classification rate on the training data set achieved 98.9% (that is 89 out o f 90 

correctly classified patterns) while on the testing data set the result is 93.3% (56 out o f 60 

correctly classified patterns).

PL is high 

PL is lowPW is h ig h  1

PL is low
Class Setosa

SW is low

(a)
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PL is high

PW is high
Class Versicolor

PW is medium
PL is medium

PW is medium

(b)

PW is medium

Class Virginica

PW is high
PW is high

PL is high

(C)

F ig u re  10.23. P ru n e d  lo g ic  n e tw o rk ,  f o r  IR IS  d a ta :  (a )  S e to s a  ( 1 = ]  a n d  p=0); 

(b ) V e r s ic o lo r  (A,=0.9 a n d  |t=0); (c )  V i r g in ic a  (k=0.6  a n d  p=0)

Equivalently, the classification rules derived from the pruned networks are included in 

Table 10.16.

Plant Rules
Setosa IF {{P L  is /owjo.oo AND {NOT PL is h i g h } 0.oo AND {PW is /ovr}0.oo}i.oo 

OR { {Z 1} i.oo} i .oo THEN Output is setosa
Z l= {{N O T  PW is h i g h ) 0.oo AND {PL is low} 0.oo AND {NOT SW is
/ o m ; } o.oo} i .00/OM;}o.OOfl .00______________________________________________________
IF {{Zl}o.oo AND {PL is m edium }^  AND {PW is medium) Q THEN 
Output is versicolor
Z l= {{N O T  PL is high}om AND {NOT PW is % /? }0.oo AND {PW is 
medium)qM}\,0Q OR {{PW  is medium)0.99) 1.00____________________

F I /  P W / 1 c h i r r h  \  ~ \  . - ~ O R  /  /  P I  ic  f r r l t X  .  . _ D R  /  D W /

Versicolor

Virginica IF { {Z l }o,oo AND {PW is high)o.oo}\.m OR {{P L  is high } 0 ,b2 OR {PW is 
high) 1.00} 1.00 THEN Output is virginica
Z l= {{N O T  PW is medium)0 .0 0 } t oo OR {{PW  is high) 1.00 OR {NOT PW is 
medium)qm)\ q0________________ ________________

Table 10.16, Logic description o f IRIS data
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7.4 Discussions

In this study, we have proposed a logic network composed o f functional modules o f 

OR/AND fuzzy neurons. The neurons o f this type come with a high level o f functional 

flexib ility  and encompass “ pure”  AND and OR fuzzy neurons. By adjusting the 

connections o f the neurons one could easily model intermediate logic characteristics o f 

the logic mapping. We have proposed a genetic scheme o f optimization o f the network 

with intent o f addressing the structural facet o f learning. The critical issues in this 

learning deal with the depth o f the network (the number o f the neurons organized in 

series) and the width o f the network (that is the number o f inputs to each neuron); 

apparently these two design parameters imply the number o f the input variable used by 

the network so in this manner one reduces the number o f all input variables existing in 

the problem. Architecturally, the network forms a cascade type o f realization o f the 

multivariable logic mapping so in essence we can come up with a stepwise logic 

description o f experimental data.

In the design o f the network we have demonstrated the role o f the interface between the 

physical variables and those o f logic character required by the model. The encoding 

scheme dwells on fuzzy sets treated as a collection o f semantically sound information 

granules. Interestingly by choosing their number one could easily control the level o f 

specificity o f the network as well as contribute to its interpretability. The development 

process o f the fuzzy networks is highly interactive and designer-oriented: the design 

relies on the iterative process that allows us to form a plausible tradeoff between accuracy 

o f the network (which usually results in large structures) and interpretability o f the logic 

description whose compactness is a genuine asset. This process relies heavily on the 

interaction with the designer who has to be provided with various options. The ability to 

select specific values o f the threshold levels is one o f the essential design mechanisms 

that help achieve a required tradeoff between accuracy and interpretability.
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Part V Data Modeling Using Parallel 

OR/AND Neuron Based Fuzzy Neural 

Networks

In this part o f the thesis, we place OR/AND neurons in a parallel manner, to form a new 

modeling structure. This parallel OR/AND neuron based fuzzy neural network 

(POAFNN) structure is designed for classification problems. The main goal o f this 

research is using the Pareto-based multi-objective optimization approach to gain better 

performance on skewed dataset.

Chapter 11 Pareto approach

In this chapter, the multi-objective optimization technique is introduced. The Pareto 

approach is defined, and other methods used to solve multi-objective optimization 

problems are also presented.

11.1 Multi-objective optimization

Optimization can be defined as the search for the best possible solution(s) to a given 

problem. Real-world problems often entail the optimization o f multiple objectives. I f  

these objectives are conflicting, then no best solution exists, but a set o f good 

compromise solutions may be found[5_l].

A multi-objective optimization problem often involves formulating a design in which 

there are several criteria or design objectives. Almost every real-world problem involves 

simultaneous optimization o f several incommensurable and often competing objectives.
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While in single-objective optimization the optimal solution is usually clearly defined, this 

does not hold for multi-objective optimization problems. I f  the objectives are opposing, 

then the problem becomes one o f finding the best possible design which still satisfies the 

opposing objectives. An optimum design problem must then be solved with multiple 

objectives and constraints taken into consideration. Instead o f a single optimum, there is 

rather a set o f alternative trade-offs. This type o f problem is known as a multi-objective, 

multi-criteria, or vector optimization problem.

Definitions o f a multi-objective problem:

A general multi-objective problem (MOP) includes a set o f n parameters (decision 

variables) x = {x, , x 2 ,...,xn} e X , where X c  R " is  the 11-dimensional decision space 

or solution space, a set o f k  objective functions f x ( x ) , / 2 (x ) . Objective

functions are functions o f the decision variables. The optimization goal is to 

m in { / j ( x ) , / 2(x)..., f k (\)}w h ereX  c  R n or
xeX

m a x { / | ( x ) , /2(x ) .. . , / j.  (x)}w hereX  c  R n according to different problems. In some
xeX

cases, these objective functions have a set o f m constraints functions, which define the 

boundary o f the problem. In the following discussion, we consider the problem o f 

maximizing optimization. Each feasible set o f decision parameters is considered a 

solution.

11.2 Multi-objective optimization methods

In this section, we provide a short survey o f several multi-objective optimization 

methods. Information on other methods can be found in [5_4, 5_5, 5_7, 5_11, 5_16],

11.2.1 Pareto approach

Given a set o f solutions to the problem, a partial ordering can be found by the principle o f 

dominance: A solution is clearly better than (dominating) another solution, i f  it is better 

or equal in all objectives, but at least better in one objective. Using this principle, the set 

o f best compromise solutions results by removing all solutions that are dominated by at
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least one other solution. The remaining solutions are all o f equal quality (indifferent). A 

mutual comparison o f two solutions shows that each one is always better and worse in at 

least one objective. This set o f indifferent solutions is referred to as the Pareto set, named 

after the work o f the engineer and economist Vilfredo Pareto. Starting from a Pareto 

solution, one objective can be improved only at the expense o f at least one other 

objective. A ll the definitions described here are in accordance with [5_1, 5_6, 5_9, 5_12, 

5 J 4 , 5_16],

Definition 1 A solution a 6 X  is dominating solution b e X ( a > - b )  i f  and only i f  it is 

superior or equal in all objectives, and at least superior in one objective. This can be 

expressed as aHb , i f  V /e  { l,2 ,. .. ,m }: / ( a )  > / , ( b )  and

3 / e {1,2 ,..., m } : (a) > / ,  ( b ) .

When we define a weaker condition for definition 1, we get the definition o f a weak 

dominating relationship between two solutions.

Definition 2 A solution a e X  is weakly dominating a solution b € X  (a H b ) i f  and only 

i f  it is superior or equal in all objectives. This can be expressed as 

a> b , i j V i  e {1,2,..., m ) : /  (a) > / ( b ) .

Now we are able to define the indifferent relationship between two solutions.

Definition 3 The solution a e X  is indifferent to a solution b e X ( a - b ) ,  i f  and only i f  

neither solution is dominating the other ( —i ( a ) A  —i (  b y_Cl ) ).

Definition 4 A solution a e X  is said to be nondominated with regard to a set A c X , i f  

and only i f  —i3b e X  : b >~ a . Here, X ^  c  X  represents the set containing all the feasible

solutions we currently have. I f  and only i f  the solution a e X  is nondominated regarding 

the set X f  , x is said to be Pareto optimal.

When no a priori preference is defined among the objectives, dominance is the only way 

to determine i f  one solution performs better than the other. Furthermore, the best
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solutions to a multi-objective problem are the nondominated subset among all feasible 

solutions. These are denoted as the Pareto optimal set; the corresponding objective 

vectors form the Pareto-optimal front or surface.

Definition 5 Let A c: X y  . The function p(A) gives the set o f nondominated decision 

vectors in A: p{A)={ b e A | b is nondominated with regard to A}.

The set p(A) is the nondominated set with regard to A and the resulting set o f objective 

vectors f(p(A)) is the nondominated front (surface) with respect to A. In the sequel, i f  

A=Xj, the p(Xj) is called the Pareto-optimal set and the set f(p(Xt)) is denoted as the 

Pareto optimal front.

11.2.2 W eighted sum method

Weighted sum is a method o f secularization o f vector functions.

Definition 6 For a function F (x) = (,/j(x), / 2(x )...,/* (x )), which is a vector o f target 

objects and a vector w = (vv,,w 2 ,.,.,M’k) , so that w( =  1 , define

Fw(x) = '£ w ,  » / , ( x )
/==!

We have transferred the original optimization problem into the problem o f finding the 

optimal result for function Fw(x) with a suitable vector w. In this way, we are able to 

deal with the original problem using single-objective optimization methods.

A normal way to assign the weight vector is to consider the importance o f the objectives. 

The more important objective w ill get a higher weight, while the less important objective 

w ill get a lower weight. However, since not all the objectives necessarily have the same 

value range, these objectives should be normalized before being weighted.

The advantages o f using weighted sum are:

a) multi-objective function is reduced to a single-objective function;
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b) traditional optimization methods can now be applied.

The disadvantages are also very obvious. Since the results o f solving an optimization 

problem using the weighted sum method can vary significantly as the weighting 

coefficients change, and since very little is generally known about how to choose these 

coefficients, a necessary approach is to solve the same problem for many different values 

o f w>. In this case, however, we are still confronted with the decision o f having to choose 

the most appropriate solution based on our intuition.

11.2.3 The e-constraint Method

This method is based on minimization o f one (the most preferred or primary) objective 

function, and consideration o f the other objectives as constraints bound by some 

allowable levels Ej. Hence, a single objective minimization is carried out for the most 

relevant objective function, say f r, subject to additional constraints on the other objective 

functions. The levels e , are then altered to generate the entire Pareto optimal set. The 

method could be formulated as follows:

f r( \ )  = m in / r (x ) subject to additional constraints o f the form / ( ( x ) ^ ,  for

i= l,2 ,...,k  and i*r, where Eiare assumed values o f the objective functions which we wish 

not exceed.

This method is also known as a trade-off method, because o f its main concept o f trading 

the value o f one objective function for the value o f another function. A difficulty with 

this technique is that the new feasible solution set which is obtained, might be empty. 

This w ill occur i f  the lower bounds are not chosen appropriately. In order to avoid this 

situation, a suitable range o f values for the Ej must be known beforehand. In other words, 

knowledge o f the problem may be required for this approach, but may not always be 

available.
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Chapter 12 Pareto in Data Modeling for Skewed Datasets

The parallel OR/AND neuron based fuzzy neural network is designed and tested mainly 

for performance on skewed datasets. Single-objective and multi-objective optimization 

approaches are used to construct the POAFNN models. The comparison for the two 

methods are presented in this chapter.

12.1 Description o f  Model

12.1.1 Model Structure

We use the parallel fuzzy OR/AND neuron as the fundamental part o f the model, but 

modified the connections to OR neuron at the second layer in the OR/AND neuron and 

we combined several OR/AND neurons together to form a united model. The number o f 

inputs to each OR/AND neuron is identical. Each neuron at the first layer in the OR/AND 

neuron has a connection to the second layer OR neurons. Each OR/AND neuron 

represents one output for the whole system, and the final output o f the system is the class 

number derived by comparing the outputs o f the OR/AND neurons. The system structure 

dealing with 3 classes is shown in Figure 12.1.

F ig u r e  12.1 t h e  s t r u c t u r e  for  t h e  m o d e l  w it h  3 c la s s e s

Output for class I (O i)

Class
selection

Final output: class #
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There are two ways to implement the “ class selection”  function. One is using maximum 

output and another is using threshold value.

•  Maximum output

In this approach, we compare the output value o f all the outputs for these classes in 

the whole structure. The one giving the max value w ill be selected and the output o f 

the model w ill be generated according to the index o f this output.

•  Threshold value

This technique is implemented by defining a threshold value (, with which the output 

o f each class w ill be compared. I f  there is one and only one output, O, is greater than 

or equal to I, and the final output is the class number represented by O,. Otherwise, 

the output o f the model is no class (value is -1).

We have performed a large number o f experiments using both maximum and threshold 

techniques, and found that, by using the threshold value, we could extract rules from the 

raw data with better combination performance. In other words, the rules obtained with the 

threshold approach have a higher confidence level. The confidence level can be 

calculated by the Laplace error estimate [5_2],

12.1.2 M odel Representation

We use genetic algorithm to construct models when using the single objective 

optimization approach. For the Pareto-based multi-objective optimization approach, we 

trained the models using the evolutionary strategy. The model structure is represented as 

a chromosome in the process o f both the genetic algorithm and the evolutionary strategy. 

Each chromosomeconsists o f two parts -  variable indexes and connection weights. In the 

variable indexes part, the index values are presented by integers ranging from 0 to N-l 

(supposing there are TV variables). The length o f this part is determined by the number o f 

classes (C) and input variable number (I) to separating OR/AND neurons, which is C*I. 

The connection weights part contains float values ranging from 0 to 1. The number o f 

weights for a chromosome is (2*I+2*C)*C.
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The model needs to be post-processed after the training o f the model is completed in 

order to gain better interpretability without shrinking the system performance too much. 

Model post-processing is performed using the technique o f model pruning. Model 

pruning is carried out by changing the thresholds for OR and AND neurons in a similar 

manner to what was done in Part 4. For the AND neuron, the input variable has 

significant influence on the final output when the weight for this variable to the neuron is 

close to 0. For the OR neuron, the input has a stronger effect on the output i f  the weight is 

closer to 1. So, for the AND neuron, the inputs with weight near 1 w ill not contribute a 

great deal to the output. The same is true with the OR neuron, i f  the weight is close to 0. 

I f  we change the threshold values 1 for the AND neuron and 0 for the OR neuron, we 

may find that more inputs are not very useful. By changing threshold values, we are able 

to eliminate some non-significant inputs to obtain a simpler model, perhaps with little 

change to the accuracy o f the model. In our research, we change the threshold for the 

AND neuron and the OR neuron separately, while ensuring the output accuracy w ill not 

drop by more than 5%.

12.1.4 Rule Recombination

After we achieve optimal models (or rule sets) for each class, we can combine these rule 

sets to obtain the final classification results. In this approach, we compare the output o f 

each rule set; the rule set which gives the maximum value w ill be considered to be the 

final classification result.

12.2 Training Criteria Introduction

We tried out several modeling criteria in training this type o f structure. A ll the criteria are 

related to the classification confusion matrix. In this section, we first introduce the 

classification confusion matrix, followed by several related concepts .
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12.2.1 Confusion Matrix

The confusion matrix [5_10] is a common tool for assessing the quality o f classification 

results. It is simply a square matrix that shows the various classifications and 

misclassifications o f the model in a compact area. The columns o f the matrix correspond 

to the number o f instances classified as a particular value, and the rows correspond to the 

number o f instances with that actual classification. For binary classification problems, the 

confusion matrix contains the following possibilities: the number o f True Negative (TN), 

False Positive (FP), False Negative (FN) and True Positive (TP) classifications (Figure 

1 2 . 1).

Actual Positive Actual Neaative
Predicted Positive
Predicted Negative

F ig u re  12.1 T h e  c o n fu s io n  m a t r ix  f o r  2 -c la s s  c la s s i f ic a t io n  

12.2.2 Confusion M atrix Derived Measures

Based on the confusion matrix, a number o f measures have been defined to describe 

classification performance. Some o f them are introduced as follows. (To simplify, we 

define N  = TP+ TN + FP + FN  .)

•  Classification Rate (Accuracy)

The goal o f classification problems is to maximize TP and TN. The classification rate

TP + TN
is the sum o f TP and TN over the whole dataset: ------------- . This measure provides us

N

with the accuracy o f the classifier on the dataset.

• Prevalence

This measure gives the proportion o f the actual positive samples in the whole dataset. 

TP + FN
It is defined as

N

Recall or Sensitivity
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This measure is the proportion o f positive cases that were correctly identified, as

TP
calculated using the equation — — . This measure is useful when capturing

present points is most important (i.e., a model can capture all positives, but there may 

be many false positives).

Specificity

The specificity measure is the proportion o f negative cases that were incorrectly

TN
classified as positive, as calculated using the equation-------------- . This measure is

TN + FP

most useful when eliminating absent points is most important; for example, a model 

has few false positives, but some actual present points may be eliminated.

• Positive Predictive Power

This measure is the proportion o f the predicted positive cases that were correct, as

TP
calculated using the equation

TP + FP

When we apply the confusion matrix to problems that have more than 2 classes, a simple 

method is to convert this kind o f confusion matrix into a two-class confusion matrix by 

focusing on just one class at one time. In this way, the selected class classifies positive 

samples, and the other classes contribute to the negative samples. For each class, we can 

calculate the relevant measures. For example, we have the confusion matrix with n

classes as

au an ... aUl

a i \  a 2 2  • • •  a 2 n

a„\ a„2 ... a,nn

. For class / (/= /..n), TP = ai i , FP  =  ^  a,, -  an
H

F N  = ^  a „ -  aa and TN  =  ]T ^ £ 7 , / -  TP -  FP -  air After we obtain the values for
> = i  ' 7=1 k = \

TP, FP, FN and TN, we continue to calculate the measures mentioned above.
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12.2.3 Measures Applied

We tried several modeling criteria in training this type o f structure and have selected 3 o f 

them for presentation o f their results:

• The classification Overall Accuracy (OA) on the whole dataset

With the confusion matrix

a \ \  a n

a 2 l  a 22

a  , a. / i l  n2

in

a 2 / i

a..

the OA is calculated as

0 4  =-  '°i
n  n  

'=1 ./=!

This measure is used in single optimization.

The Pareto approach using the combination o f the classifications, Specificity, 

Sensitivity, and Accuracy (abbreviated as SSA)

SSA is calculated using the product o f the Specificity, Sensitivity, and Accuracy 

measures when we transfer the n-class confusion matrix to a 2-class confusion 

matrix.

•  The Pareto approach using the combination o f the classifications o f Accuracy, 

Positive predictive power, and Recall (abbreviated as APR)

APR is calculated using the product o f the Accuracy, Positive predictive power, and 

Recall measures when we transfer the /7-class confusion matrix to a 2-class confusion 

matrix.

12.2.4 Training Method

Generally speaking, solving multi-objective problems is very difficult. In an attempt to 

stochastically solve problems o f this generic class in an acceptable timeframe, specific

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



multi-objective evolutionary algorithms (MOEAs) [5_3, 5_8, 5_13, 5_15] were initially 

developed in the mid-1980s. In this section, we continue to use the Evolutionary 

Computation approach to train the models. We use GA to train the models using the OA 

approach and apply ES when we attempt to train the models using the multi-objective 

optimization approach, Pareto-based, SSA, and APR methods. GA and ES share the same 

chromosome structure. The MOEA algorithms applied here are in part taken from [5_18, 

5_16, 5_17].The datasets are divided into training and testing data 10 times. For each 

split o f the training and testing data, 5 experiments are carried out. The following results 

are based on these 50-experiment sets

12.3 Experimental results

12.3.1 Experiments on Synthetic Data

Here we use a synthetic dataset which contains 12 input attributes. W ithin these 12 input 

attributes, there are 9 continuous attributes and 3 discrete attributes (consisting o f 8, 5, 

and 6 unique values, respectively). The data have 2 classes and the proportion o f these 

two classes is 1:4. This synthetic data set is constructed based on three rules (X n 

represents the nlh input attribute):

1) IF  X 9 is Medium TH EN  class 1

2) IF  Xio is H igh TH EN  class 2

3) IF  X 5 is 5 TH EN  class 2

Experiments were carried out on this synthetic data set with the three training criteria 

discussed above. For each training criteria, we randomly split the original data 10 times 

set into training-testing data. For each data split, we trained the model -  which has 5 

inputs for every output -  with different randomizing seed 5 times. The original data set 

was transformed into a fuzzified data set by applying 3 fuzzy sets (Low-Medium-High) 

on continuous attributes, and the 1-out-of-n technique on discrete attributes.

12.3.1.1 Experimental Results on OA
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First, we examine the training results on the statistical analysis o f the confusion matrixes. 

Table 12.1 shows the mean value and the standard deviation on the confusion matrixes.

For training data 
0.000± 0.000 0.000± 0.000
1 12.360± 17.071 470.040± 15.336
For test data 
0.000± 0.000 0.000± 0.000
73.100± 11.709 3 13.340± 13.106

Table 12.1 Statistical analyses on confusion matrixes

From Table 12.1, we see that the OA approach focuses only on the class which is the 

majority in the data set; therefore, the models simply classified all the data to the majority 

class. For OA, we obtain the rules from the model, as in Table 12.2.

IF {{X 10  is Low }0.732346 OR {X10 is H ig h jo ,024400 }o.927565 THEN 
class 2
IF { { X 10 is Medium}o,958442 }o. 9mo48 THEN class 2

Table 12.2 Sample rules obtained in OA approach

By observing Tables 12.1 and 12.2, we can easily conclude that the approach using OA is 

not suitable for extracting knowledge from this skewed synthetic dataset.

12.3.1.2 Experimental results on the APR approach

First, we examine the training results on the statistical analysis o f the confusion matrixes. 

Table 12.3 shows the mean value and the standard deviation on the confusion matrixes.

Pareto focuses on class 1 Pareto focuses on class 2
For training data For training data
116.040± 15.995 0.580± 1.071 54.460± 33.036 0.000± 0.000

0.040± 0.283 367.380± 100.042 1.240± 2.308 464.400± 60.951
For test data For test data

71.780± 20.966 0.980± 1.684 34.400± 22.144 0.000± 0.000
0.040± 0.198 235.280± 80.261 1.500± 3.099 292.360± 81.417

Table 12.3 Statistical analyses on confusion matrixes

From Table 12.3, we see that the APR approach is able to get good results on both the 

majority class and the minority class. For APR, we obtain the rules from the model, as in 

Table 12.4.
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IF { {X 9  is M edium }0.70363i O R  {X 9  is HighJojoisio O R {X 10  is Lowjo.owss OR  
{ X 10 is M ediu in}0.096336}0.978602 T H E N  class 1 
IF { {X 9  is M edium }0.202465 A N D  {X 1 0 is L o w }0 254935 A N D  {X 10  is 
Medium}o.6247os}o.3084i6 T H E N  class 1
IF { {X 5  is 5 } o.209147 O R  {X 9  is Low}o.9g3534 O R {X 9  is High}o.698462 O R {X 10  is 
Medium}o.i9i i oo O R { X 1 0  is H igh}0.234073}0.935050 T H E N  class 2

Table 12.4 Sample rules obtained using the APR approach 

The Pareto surface for APR is shown in Figure 12.2
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12.3.1.3 Experimental results using the SSA approach

First, we examine the training results on the statistical analysis o f the confusion matrixes. 

Table 12.5 shows the mean value and the standard deviation on the confusion matrixes.

Pareto focuses on class 1 Pareto focuses on class 2
For training data For training data
119.280± 5.489 2.980± 3.809 63.620± 34.427 0.020± 0.141

0.000± 0.000 382.240± 82.081 0.360± 0.898 473.960± 8.046
For test data For test data

77.320± 5.073 2.580± 2.935 40.580± 21.415 0.060± 0.314
0.000± 0.000 256.200± 54.108 0.400± 1.245 3 16.080± 6.446

Table 12.5 Statistical analyses on confusion matrixes
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From Table 12.5, we see that the APR approach is able to get good results on both the 

majority class and the minority class. For APR, we obtain the rules from the model, as in 

Table 12.6.

IF { { X9 is Medium}o.9«245 OR {X9 is High}o.3G978o}o.899Q98 THEN class 1 
IF { {X5 is 5 }o.43656o OR {X9 is Low}o.97048i OR {X9 is H ig h jo .777895 OR 
{ X 10 is High}o.678811 }o.7i 1764 THEN class 2

Table 12.6 Sample rules obtained using the SSA approach 

The Pareto surface for SSA is shown in Figure 12.3.
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12.3.1.4 Comparing the rules

From Tables 12.3 and 12.5, we see that the rules derived from the APR and SSA 

approaches are similar. They all have a close relationship to the rules used to generate the 

synthetic dataset, but there are still some differences. For class 1, we use the rule “ IF X9 

is Medium THEN class V \ but in Tables 12.3 and 12.5, we see that there is a rule, “ IF 

X9 is Medium OR X9 is High THEN class 1.” The main reason for this difference is 

the different membership functions used in generating dataset and training models. Figure

12.4 describes the difference between these membership functions.
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F ig u r e  12.4 M e m b e r s h ip  f u n c t io n  in  g e n e r a t in g  d a t a s e t  (l e f t ) a n d  m o d e l

TRAINING (RIGHT)

12.3.2 Experim ental results for the Software Metric Usability Dataset

From the experiments in 12.3.1, we see that the modeling approach using Pareto APR or 

SSA is able to extract knowledge from the raw dataset, although there would be some 

difference due to the membership function type, or format applied on the raw dataset 

when we fuzzify the data. In this section, we apply the modeling approach on the 

Software Metric dataset for software usability.

From Chapter 6, we know that the usability data for expert A is the most skewed dataset, 

expert D ’ s dataset is next ,and expert V ’ s is the last. We choose the most skewed dataset, 

which is the usability data for expert A, to demonstrate the performance o f the modeling 

approach. For experts D ’s and V ’s usability data, we also present the experimental 

results. With the synthetic data, we have 10 splits on the datasets, and 5 experiments on 

each split.

12.3.2.1 Experimental results for the OA approach

From 12.2.1.1, we find that the OA approach is not a good solution for the proposed 

model in the synthetic data. Here we use the statistical data to show the feasibility o f the 

OA approach in a real dataset. The statistical data are shown in Table 12.7.
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For training data
0.000± 0.000 O.QOOi 0.000 0.040± 0.198
0.040± 0.198 0.000± 0.000 0.140± 0.756
2.020± 1.040 8.140± 2.030 187.940± 22.377

For test data
0.000± 0.000 0.000± 0.000 0.040± 0.283
O.OOftfc 0.000 0.000± 0.000 0.060± 0.314
i.300± 0.974 5.000± 1.591 124.080± 15.183

Table 12.7 Statistical analysis on OA for usability data expert A

From Table 12.7, it is clear that the OA approach focuses on the majority class and 

ignores the two minority classes.

12.3.2.2 Experimental results for the APR approach

First, we show the statistical analysis on the APR approach in Table 12.8.

Pareto focuses on class 1
For training data

2.260± 1.006 0.000± 0.000 0.000± 0.000
0.000± 0.000 1,640± 2.229 0.700± 1.474
0.240± 0.431 3.920± 2.656 164.000± 41.304

For test data
0.080± 0.274 0.020± 0.141 0.320± 0.683
0.120± 0.385 0.360± 0.776 1.380± 2.828
0.620± 0.923 3.120± 2.047 06.120± 27.412

Pareto focuses on class 2
For training data

0.440± 0.675 0.000± 0.000 0.380± 1.176
0.060± 0.240 6.580± 1.295 0.440± 0.675
0.360± 0.525 1.000± 0.926 114.200± 62.083

For test data
0.020± 0.141 0.040± 0.198 0.340± 0.872
0.340± 0.593 0.860± 1.125 3.460± 2.121
0.200± 0.495 1.040± 1.228 74.240± 42.200

Pareto focuses on class 3
For training data

0.320± 0.587 0.000± 0.000 0.000± 0.000
0.020± 0.141 0.060± 0.240 0.000± 0.000
0.940± 0.620 5.020± 1.801 207.980± 1.995

For test data
0.000± 0.000 0.000± 0.000 0.000± 0.000
0.020± 0.141 0.000± 0.000 0.000± 0.000
1.020± 0.958 5.160± 1.530 134.900± 2.809

Table 12.8 Statistical analyses on confusion matrixes (expert A)
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Table 12.8 shows that the classification on the specific class improved with the changing 

focus in the target class; it provides a much better performance for the minority classes 

than does the OA approach.

Next, we select data split #6 to analyze the rules we obtained and the performance o f the 

combination o f the rules. For data split #6, the historical graph o f the class distribution on 

training and testing is shown in Figure 12.5.
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In Figure 12.5, for training, testing and total datasets, the left column represents class 1, 

the middle column represents class 2 and the right column represents class 3. One o f the 

Pareto 3D scatter graphs is shown in Figure 12.6.
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The models obtained with the APR Pareto approach are pruned as indicated in 12.1.3, in 

order to achieve more interpretable rule sets. Table 12.9 shows the rules after pruning for 

data split #6.

For class 1________________________________________________
And rule 1
{CHLD is 8 }0.425557 AN D  {HLUN is Low}o.o73286 

Or rule 1
{ATCO is High}„.58ii49 
And rule 3
{ADEC is 7 }0.393473 AND {FACE is 3 }0.42801 s AND {LCOM  is 
High}o,070016 AND {OVRM is 5}o.sso455

IF {And rule 1}0.406305 OR {And rule 3}o.9i895i OR {Or rule
1 }0.780950 THEN class 1_____________________________________
For class 2________________________________________________
And rule 1
{F A C E  is 4}o.,54i57 A N D  {F N O T  is L o w }0.8iisis A N D  {C LA S  
is 5 }0.419970 A N D  {C O N S is 8 }o.oi3363 

Or rule 1
{FACE is 4 )0  370459 OR {FNOT is Low}oq30629 OR {CLAS is 
5 }0.302440 OR {CONS is 8 )0 .6 2 4 5 1 5  OR {WMC2 is High}o.514258 

And rule 2
{R FO is High}o.o4752i AND {M IC is 12}0.689692 AND {ATTR  is 
Medium}o.445078 AND {OVRM is 10}o.i56858 AND {PROM is
L O W ) 0.735041
Or rule 2
{ R F O  is H igh jo 364495 O R  { M I C  is 1 2 }0.838123 O R  { A 1 1 R  is 
M e d iu m }o .9 5 i8 8 8  O R  { O V R M  is 10}0.835529 O R  { P R O M  is 
Low) 0.962305 
And r u le  3
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{T O K  is Low}o,309708 A N D  {A D E C  is 9 }o.4so861 A N D  {W D C  is 
Medium}o.393i58 A N D  {M N L1 is M ediuin}0.82787i A N D  {M A X P
is 6} 0.819408
Or rule 3
{TOK is Low}o.o57898 OR {ADEC is 9}o.017304 OR {WDC is 
Medium}o.o82244 OR {MNL1 is Medium}o.902t76 OR {M AXP is
6 } 0.182413
IF {And rule 1 }o550176 OR {And rule 2 }00i2364 OR {And rule 
2 }0.209279 OR {Or rule 1 }o.936070 OR {Or rule 2}o.i76856 OR {Or rule
3}o.is9848 THEN class 2_____________________________________
For class 3_______________________________________________
Or rule 1
{M D E C  is 1}0.309051 O R  {C H L D  is 0}o.687076 OR {R FO  is 
M edium }0.605976 OR {H L U N  is L o w }0.4S4937 
Or rule 2
{TYPE is 2}o,8si 146 OR {LOC is Low}o.632i96 OR {TOK is 
Medium}o.553i26 OR {CONS is 7}o.72i46i OR {PROM is
H ig ll} 0.494498
Or rule 3
{CLAS is 5}o.858582
IF {O r rule 1 }o.654649 OR {Or rule 2}o.7243s2 OR {Or rule 3}o.348i69 
THEN class 3

Table 12.9 Rules obtained in APR Pareto approach for data split #6

After we obtain the pruned models, we combine these models to classify the dataset. In 

the combination, we use the maximum o f the models’ output as the final class, and we 

obtain the confusion matrix following the combination o f pruned models. (Table 12.10).

Training data confusion matrix 
0 0 1
0 3 1
1 5 209

Classification accuracy: 0.963636 
Testing data confusion matrix

0 1 0
1 1 4
2 5 132

Classification accuracy: 0.910959

Table 12.10 Confusion matrix after combining models

12.3.2.3 Experim ental results on the SSA approach

First, we show the statistical analysis on the APR approach, in Table 12.11.
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Pareto focuses on class 1
For training data 

2.500* 1.035 0.020* 0.141 0.020± 0.141
0.000* 0.000 3.560* 3.131 6.780± 8.379
0.000* 0.000 0.560* 0.760 133.000± 58.893

For test data
0.080* 0.274 0.260* 0.723 0.760± 1.271
0.240* 0.517 0.780* 1.130 5.680± 7.221
0.340± 0.557 1.720± 1.727 82.560± 38.146

Pareto focuses on class 2
For training data 
0.640* 0.942 0.020* 0.141 3.260± 5.876
0.280* 0.536 9.000* 1.278 6.180± 3.863
0.160± 0.370 0.060* 0.240 94.720± 57.912

For test data
0.020* 0.141 0.200* 0.404 2.180± 3.998
0.520* 0.677 l .440* 1.033 7.540± 2.823
0.120± 0.328 0.620± 0.697 61.500± 38.767

Pareto focuses on class 3
For training data 

0.240* 0.716 0.040* 0.283 0.120± 0.521
0.060* 0.240 0.760± 1.572 0.940± 1.953
0.020* 0.141 0.220± 0.465 192.260± 6.922

For test data
0.080* 0.274 0.040± 0.198 0.040± 0.198
0.080± 0.340 0.100± 0.303 0.740± 1.549
0.660* 0.823 3.060± 1.778 123.900± 3.813

Table 12.11 Statistical analyses on confusion matrixes

Table 12.11 shows that classification on the specific class improved with the changing 

focus in the target class. It provides much better performance for the minority classes 

than the OA approach does. One o f the Pareto 3D scatter graphs is shown in Figure 12.7.
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For class 1_____________________________________________________
And rule 1
{1MST is Medium}o.oo58io A N D  {P U B M  is Lo w }0.045474
IF {And rule 1 }o,88S987 T H E N  class 1_____________________________
For class 2_____________________________________________________
And rule 1
{MDEC is 4 }0i248939 AND {MDEC is 10>0.33oss4 AND {M AXP is
0} 0.150592 
And rule 2
{M W D C is  16} 0.040358 A N D  {CBO is Low}o .234855 

O r rule 2
{M D E C  is 10}0.234767 OR {M W D C  is 16}0.932097 O R  {C B O  is 
L o w }0.085431 OR {W M C 1 is High} 0.486816 
And rule 3
{1NCL is 2 }0.356554 AND {M NL2 is H igh}0.i7093i AND {PROM is
L O W } 0.407681
O r rule 3
{A L O C  is Medium}o.3oo554 O R { IN C L is  2 }0.9io444 O R  {M N L1  is 
M edium }0.5693oo O R  {M N L 2  is H igh}0.68S23i O R  {P R O M  is
L O W } 0.659878
IF {And rule 1U 097055 O R  {And rule 2 }0.052668 O R  {And rule 
3 }q.35805 1 O R  {O** rule 2}p 992928 OR {O r rule 3}q.228498 T H E N  class 2
For class 3____________________________________________________ _
And rule 1
{1NCL is 3 }0.039691 AND {INC L is 8 }o.oi96si 
O r rule 1
{T Y P E  is 3} 0.389817 OR {A D E C  is 7 }0.353241 O R  { IN C L  is 
3 } 0.407295 O R  {IN C L  is 8 }0.427132 OR {M A X L  is 4 } 0.350110 

And rule 2 
(C H L D  is 3} 0.078406
O r rule 2
{A T O K  is High}o.552006 O R  {C H L D  is 3 } 0 6 76342 O R {A T C O  is
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Low}0.657739 OR {ATCO is Medium}o.904957 OR {ATTR is
Medium}o.667247
And rule 3
{ATOK is Low}0 .0 3 5 9 6 7  AND {ADEC is 3} 0.008391 

Or rule 3
{ATOK is Low}o277025 OR {ADEC is 3 }0 i ,8408 OR {LCOM is 
H igh}0.7|5947 OR {W M C 1 is High} 0.494564

IF {And rule 1 } 0 .35o i 67 OR {And rule 2 } 0 .452347 OR {And rule 
3 }o .io 6 9 7 o  OR {Or rule 1 } o . 2 7 i 8 2 i OR {Or rule 2 }o .9 8 4 0 8 7  OR {Or rule 
3 }o.398385 THEN class 3

Table 12.12 Rules obtained in the SSA Pareto approach for data split #6 

After we obtain the pruned models, we combine these models to classify the dataset. As 

we have done in the APR approach, we obtain the confusion matrix following the 

combination o f pruned models (Table 12.13).

Training data confusion matrix 
1 0 2
0 6 5
0 2 204

Classification accuracy: 0.959091 
Testing data confusion matrix 

0 0 4
0 2 7
3 5 125

Classification accuracy: 0.869863

Table 12.13 Confusion matrix after combining models

12.3.2.4 M erg ing o f SSA and APR approaches to obtain the fina l rule set

In Sections 12.3.2.2 and 12.3.2.3, we obtained a set o f rule sets from the APR and SSA 

approaches. For theAPR approach, the models work well when the training methods are 

applied separately but, after the combination o f models, the performance o f the 

combination is not promising. The performance o f separate models is worse with the SSA 

approach than with the APR approach, but the combined results are much better. In this 

section, we attempt to combine the APR and SSA approaches to see i f  there is any 

improvement. In Table 12.14, the combined results for usability expert A ’ s dataset are 

displayed.
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APR APR APR 
Training data confusion matrix 

0 0 1
0 3 1
1 5 209

Classification accuracy: 96.4% 
Testing data confusion matrix

0 1 0
1 1 4
2 5 132

Classification accuracy: 91.1% 
APR APR SSA
Training data confusion matrix 

1 0 0
0 6 7
0 2 204

Classification accuracy: 95.9% 
Testing data confusion matrix 

0 1 3
0 2 7
3 4 126

Classification accuracy: 87.7% 
APR SSA APR
Training data confusion matrix 

0 0 0
0 4 5
1 4 206

Classification accuracy: 95.5% 
Testing data confusion matrix

0 0 0
1 2 5
2 5 131

Classification accuracy: 91.1% 
APR SSA SSA
Training data confusion matrix 

1 0 1
0 6 5
0 2 205

Classification accuracy: 96.4% 
Testing data confusion matrix 

0 1 4
0 2 7
3 4 125

Classification accuracy: 87.0%

SSA APR APR
Training data confusion matrix 

1 0 3
0 3 1
0 5 207

Classification accuracy: 95.9% 
Testing data confusion matrix

0 0 4
1 1 4
2 6 128

Classification accuracy: 88.4% 
SSA APR SSA
Training data confusion matrix 

1 0 2
0 6 7
0 2 202

Classification accuracy: 95.0% 
Testing data confusion matrix 

0 0 4
0 2 7
3 5 125

Classification accuracy: 87.0% 
SSA SSA APR
Training data confusion matrix

1 0 3
0 4 5
0 4 203

Classification accuracy: 94.5% 
Testing data confusion matrix

0 0 4
1 2 5
2 5 127

Classification accuracy: 88.4% 
SSA SSA SSA
Training data confusion matrix 

1 0 2
0 6 5
0 2 204

Classification accuracy: 95.9% 
Testing data confusion matrix 

0 0 4
0 2 7
3 5 125

Classification accuracy: 87.0%

Table 12.14 Confusion matrix after combination o f APR and SSA (expert A)

From Table 12.14, it is clear that the combinations o f APR APR SSA and SSA APR SSA 

are superior to simply using the APR rule combination, and similar to the simple 

combination o f the SSA models. From the view o f classification accuracy, the results in
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Table 12.14 are not good. For example, the combination o f APR APR SSA, the base line 

o f the classification is 93.2% in testing data, while the classification accuracy here is 

87.7%. There is a difference between the two accuracy rates o f 5.5%. But our results did 

review the existence o f the minority class (class 2) instead o f just focusing on the 

majority one (class 3). The goal o f this research is focusing on the classification rate on 

minority class. So, in this sense, this classification result is good. In Tables 12.15 and 

12.16, we show the APR SSA combination results for experts D and V.

APR APR APR 
Training data confusion matrix 

1 1 0
1 2 1
4 20 190

Classification accuracy: 87.7% 
Testing data confusion matrix 

0 0 0
0 1 1
11 11 122

Classification accuracy: 84.2% 
APR APR SSA
Training data confusion matrix 

2 0 0
4 15 15
0 8 176

Classification accuracy: 87.7% 
Testing data confusion matrix

1 2 1
7 6 9
3 4 113

Classification accuracy: 82.2% 
APR SSA APR
Training data confusion matrix 

0 0 0
3 6 7
3 17 184 

Classification accuracy: 86.4% 
Testing data confusion matrix

0 0 0
4 3 3
7 9 120

Classification accuracy: 84.2% 
APR SSA SSA
Training data confusion matrix 

2 0 1
4 18 20
0 5 170

Classification accuracy: 86.4%

SSA APR APR
Training data confusion matrix 

0 1 5
2 2 1
4 20 185

Classification accuracy: 85.0% 
Testing data confusion matrix 

0 1 1
0 0 1
11 11 121

Classification accuracy: 82.9% 
SSA APR SSA
Training data confusion matrix

2 4 18
4 11 7
0 8 166

Classification accuracy: 81.4% 
Testing data confusion matrix

3 5 4
6 3 7
2 4 112

Classification accuracy: 80.8% 
SSA SSA APR
Training data confusion matrix 

0 0 5
3 6 6
3 17 180

Classification accuracy: 84.5% 
Testing data confusion matrix

0 0 1
4 3 2
7 9 120

Classification accuracy: 84.2% 
SSA SSA SSA
Training data confusion matrix 

2 3 14
4 15 13
0 5 164

Classification accuracy: 82.3%
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Testing data confusion matrix 
0 1 0
11 7 11
0 4 112

Classification accuracy: 81.5%

Testing data confusion matrix 
0 2 3
11 6  1 0  

0 4 110 
Classification accuracy: 79.5%

Table 12.15 Confusion matrix after combination o f APR and SSA (expert D)

APR APR APR 
Training data confusion matrix 

0 0 0
2 12 28
14 28 136 

Classification accuracy: 67.3% 
Testing data confusion matrix 

0 0 0
2 9 20
12 25 78 

Classification accuracy: 59.6% 
APR APR SSA
Tra in ing  data confusion m atrix

6 7 4
7 26 41
3 7 119

Classification accuracy: 68.6% 
Testing data confusion m atrix

7 9 6
5 19 29
2 6 63

Classification accuracy: 61.0% 
APR SSA APR
Training data confusion matrix 

0 0 0 
0 1 4
16 39 160 

Classification accuracy: 73.2% 
Testing data confusion matrix 

0 0 0
0 0 1
14 34 97 

Classification accuracy: 66.4% 
APR SSA SSA
Training data confusion matrix 

0 2 1
13 25 24
3 13 139

Classification accuracy: 74.5% 
Testing data confusion matrix

0 1 1
12 21 20
2 12 77

SSA APR APR
Training data confusion matrix 

0 0 0
2 12 28 
14 28 136 

Classification accuracy: 67.3% 
Testing data confusion matrix 

0 0 0
2 9 20
12 25 78 

Classification accuracy: 0.59.6% 
SSA APR SSA
Tra in ing data confusion m atrix

8 7 6
5 26 41
3 7 117 

Classification accuracy: 68.6% 
Testing data confusion m atrix

9 10 7
4 18 29 
1 6 62

Classification accuracy: 61.0% 
SSA SSA APR
Training data confusion matrix 

0 0 0
0 1 4
16 39 160 

Classification accuracy: 73.2% 
Testing data confusion matrix 

0 0 0
0 0 1
14 34 97 

Classification accuracy: 66.4% 
SSA SSA SSA
Training data confusion matrix 

0 3 0
13 24 25 
3 13 139

Classification accuracy: 74.1% 
Testing data confusion matrix 

0 2 4
12 20 18 
2 12 76
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Classification accuracy: 67.1% | Classification accuracy: 65.8%

Table 12.16 Confusion matrix after combination o f APR and SSA (expert V)

In Tables 12.14, 12.15, and 12.16, we have highlighted the optimal combinations. We 

find that the combinations o f APR APR SSA and SSA APR SSA are superior to simply 

using the APR rule combination, and similar to the simple combination o f the SSA 

models; however these two combinations are more stable than the simple SSA 

combination.

12.4 Discussions

In this part o f the thesis, we proposed a new model for a rule-based fuzzy classification 

system. The focus o f this system is to improve performance in skewed data. We 

compared the OA approach and the Pareto-based multi-objective optimization 

approaches, represented here as APR and SSA approaches. From the experimental results 

on synthetic data and the software metric dataset, we find that Pareto-based m ulti­

objective optimization approaches are more effective than traditional approaches, such as 

OA, in modeling skewed datasets. By comparing the results o f the combination o f APR 

and SSA models, we are able to say that combining SSA and APR models in specific 

ways can offer better performance than simply using one kind o f model. In our 

experiments, we find that the combinations o f APR APR SSA and SSA APR SSA are the 

best choices.
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Part VI Conclusions and Future Work

Chapter 13 Comparisons of Approaches Used

13.1 Reed Muller Models vs. Cascade Fuzzy Neural Networks

In Chapter 8 and Chapter 10, we performed experiments on the Boston housing data, 

Abalone dataset, Machine CPU dataset, and Auto-MPG dataset, using the Reed-Muller 

Binary Decision Tree (RMBDT) and the Cascade OR/AND neuron-based Fuzzy Neural 

Network (COAFNN). From these results, we obtained the following facts:

•  The two modeling structures have similar performance on simple datasets, such 

as Machine CPU and Auto-MPG.

•  When confronted with complex datasets, such as the Boston housing and 

Abalone datasets, COAFNN performs better than RMBDT. The reason is that 

COAFNN provides more structural choice in building the models.

•  For the structural optimization process, the RMBDT model needs only one 

parameter as the depth o f the tree, while the COAFNN model is defined by two 

parameters: number o f layers and number o f inputs to each layer. The optimal 

structural parameter for RMBDT is easier to find, compared to finding optimal 

structural parameters for COAFNN. COAFNN is the most complex structure o f 

the three modeling structures we researched: there are more possible models for 

COAFNN to check, with numerous combinations o f the two structural 

parameters.

•  COAFNN outperforms RMBDT in the interpretability o f the models.
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13.2 Reed Muller Models vs. Parallel Fuzzy Neural Networks

In order to compare the results for the Reed-Muller Binary Decision Tree (RMBDT) 

structure with those for the Parallel OR/AND neuron-based Fuzzy Neural Network 

(POAFNN) structure, we carried out the experiments on the software metric data with the 

models with depth o f 2 to 7. Considering the confusion matrix o f the classification, we 

present the results o f experts A, D, and V ’s confusion matrix mean value and standard 

deviation value, in Table 13.1.

For Expert A  dataset_______________________________________
For training data 

1.683± 0.983 0.000± 0.000 0.000± 0.000
0.000± 0.000 2.717± 1.075 0.333± 0.475
0.783± 0.524 5.867± 1.578 208.617± 1.914

For testing data
0.333± 0.475 0.000± 0.000 0.183± 0.504
0.183± 0.431 0.683± 0.725 1.333± 1.244
1.017± 0.930 5.733±1.471 36.533± 2.119_____________ __

For Expert D dataset_______________________________________
For training data

6 .017± 1.864 1.250± 1.144 0 .250± 0.474
1,550± 1.534 6 .833± 2.345 0 .767± 1.079
3 .167± 1.317 12.167± 2.656 188.000± 3.805

For testing data 
1.667± 1.188 1.717± 1.166 0.933± 1.483
1.500± 1.321 2 .533± 1.546 1.317± 1.157
3 .100± 1.633 10.500± 3.689 122.733± 4.021__________

For Expert V  dataset_______________________________________
For training data

6 .683± 3.000 0 .950± 1.171 1.067± 1.163
3 .100± 1.884 10.750± 2.955 4 .333± 2.334
8 .617± 2.256 31 .983± 4.023 152.517± 4.466

For testing data
2 .367± 1.687 1.600± 1.509 1.117± 1.530
3 .333± 2.549 5 .733± 2.350 4 .517± 2.228
5 .900± 2.608 22.983± 3.680 98.450± 4.597

Table 13.1 Statistical analyses on confusion matrices for RMBDT

From Table 13.1, we see that the RMBDT tends to push the samples towards the majority 

class (class 3), but it is able to review the existence o f the m inority classes (class 1 &2). 

When applied on the software metric dataset, we find that RMBDT performs better than 

the parallel OR/AND neuron-based fuzzy neural network using the single objective 

optimization method (OA metric), but not better than the POAFNN models trained with
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the SSA or APR Pareto-based multi-objective optimization process. RMBDT is able to 

reveal the existence o f the minority classes (classes 1 &  2), while the single objective 

optimization method places great focus on the majority class (class 3) and virtually 

ignores the appearance o f the minority classes.

When comparing RMBDT with the Pareto approach in POAFNN, we find the following:

•  RMBDT results are inferior to the results in the Pareto approach when comparing 

the individual classes separately. Considering Table 13.1 and Tables 12.8 

&  12.11, we find that the APR and SSA Pareto approach results in Expert A ’s 

usability data outperform the RMBDT results in classes 1 &  2, but are lower than 

RMBDT results in class 3. As our goal is focusing on improving performance in 

the minority classes, this demonstrates (proves) that Pareto in POAFNN is the 

better solution.

• We find that the combined results in POAFNN are slightly better than the results

in RMBDT. (Refer to Tables 12.14, 12.15, 12.16 and Table 13.1.)

•  In terms o f extracting knowledge, POAFNN supports the interpretability o f the

models, while RMBDT does not.

13.3 Cascade Fuzzy Neural Networks vs. Parallel Fuzzy Neural 

Networks

Here we present the experimental results o f COAFNN on the software metric dataset, 

The experiments are based on models with 3 layers and 5 inputs to each layer. Similar to 

the experimental setup in Chapter 12, we randomly divided the dataset into training and 

testing splits 10 times. For each split, we carried out 5 experiments. Based on these 50 

experiments, we obtained the statistical analysis results in Table 13.3.
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For Expert A  dataset
For training data 

1.620± 0.805 0.000± 0.000 0.000± 0.000
0.020± 0.141 2.640± 1.306 0.240± 0.517
0.860± 0.639 6.560± 1.740 208.060± 1.856

For testing data
0.060± 0.240 0.020± 0.141 0.060± 0.240
0.120± 0.328 0.220± 0.418 0.740± 1.026
1.320± 0.957 5.560± 1.514 137.900± 1.753

For Expert D dataset
For training data 

5 .020± 1.879 0 .920± 0.986 0.100± 0.364
1.960± 1.261 6 .800± 2.914 1.460± 1.313
3.720± 1.278 13.480± 2.597 186.540± 5.230

For testing data 
1.660± 1.136 1.160± 1.131 0.280± 0.701
2 .460± 2.375 1.380± 1.028 1.500± 1.282
2 .180± 1.380 11.260± 3.337 124.120± 3.921

For Expert V  dataset
For training data

5 .780± 2.574 1.300± 1.488 1.340± 1.154
3 .080± 2.069 8 .340± 3.729 2 .460± 1.432
9 .140± 2.907 35 .760± 3.378 152.800± 4.408

For testing data
2 .380± 1.483 1.640± 1.588 1.060± 1.185
2 .900± 1.930 2 .760± 1.408 2 .340± 1.955
6 .720± 2.090 24 .200± 3.188 102.000± 4.305

Table 13.2 Statistical distribution o f the classes on confusion matrixes for COAFNN

Comparing the results in Table 13.2 with Tables 12.8, 12.11, 12.14, 12.15, and 12.16, we 

come to the following conclusions:

• Similar to RMBDT, COAFNN has lower performance on individual class 

classification.

• COAFNN models outperform POAFNN models trained by the OA single 

objective optimization approach.

•  From the viewpoint o f the combination o f POAFNN Pareto approaches, the two 

structures do not d iffer greatly.
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• III terms o f knowledge extraction, the two structures are based on fuzzy neural 

networks, so both have the ability to generate rules from models.

• COAFNN and POAFNN are two methods for gaining better performance in both 

accuracy and interpretability for skewed datasets. The construction o f COAFNN 

models is achieved by a separate process performed on each class. The same 

number o f models w ill be generated after training. We can combine the results 

with the maximum value comparison, when considering the classification results. 

The POAFNN Pareto approach predicts the results on the same model at a 

specific time, and generates the final class using threshold value. A lter each class 

has been classified, the final classification results are obtained by combining the 

results using maximum value comparison. These two structures provide us with 

different methods for solving the classification problems for skewed datasets.

• When there are a large number o f classes in the dataset, POAFNN is still able to 

reach the optimal models much more quickly than COAFNN is able to.

• COAFNN w ill automatically generate the models. POAFNN produces a set o f

models and the user makes a selection using their own criteria, after the training

completes.
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Chapter 14 Conclusions and Future Directions

In this thesis, we introduced two categories o f logic-driven models, the Reed-Muller 

Binary Decision Tree (RM BDT) and the Fuzzy Neuron Network (FNN), and we 

presented the evolutionary development environment. Although RMBDTs do not come 

with a great deal o f interpretability, their structures offer a significant level o f accuracy 

and in this sense are worth exploring, The FNNs discussed here are based on the 

OR/AND neurons. Making use o f the Cascade OR/AND neuron-based FNNs 

(COAFNNs), we investigated their abilities to extract domain knowledge in a rule-based 

format. We used the Parallel OR/AND neuron-based FNN (POAFNN) in various 

classification and knowledge-based models to solve the problems that are characterized 

by skewed data. In order to properly address the skewness o f the data, we adopted multi­

objective optimization techniques. The experimental results showed that the Pareto-based 

multi-objective optimization approach outperforms the single-objective optimization 

approach. In order to achieve rule bases o f higher accuracy, we experimented with 

different optimization measures considered together, and feel we made some progress 

along this line o f research..

The comparative analysis o f the results led us to a number o f general conclusions

• A ll three approaches presented in this study offer some interesting modeling 

capabilities, producing similar levels o f accuracy o f the resulting models

•  Performance o f white-box models is slightly worse than that o f black-box 

models

• The RMBDT models contain rules represented with the use o f the exclusive-OR 

aggregation, and this leads to a far less interpretable character o f the rules than 

those used in other models discussed in this thesis. Rules generated from 

COAFNN and POAFNN models are expressed in the form o f AND/OR terms, 

which are easier to comprehend. Based on the experiments, we conclude that the 

extracted rules are quite simple and easy to understand. Furthermore, accuracy o f
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the models is desirable, and we noted that the increased simplicity and 

understandability o f the rules (i.e., simpler rules) results in a fairly limited 

deterioration in the accuracy o f the models.

• The classification abilities o f COAFNN and POAFNN on skewed datasets are 

very similar. These two approaches confront the essence o f the problem in 

different ways. When we use COAFNN models, we construct models separately; 

rules are generated after the models have been pruned. By selecting the Pareto- 

based multi-objective optimization approach, a number o f POAFNN models 

could be built during the training process, and we are able to select appropriate 

ones from these models, to generate rules.

•  The training speed o f POAFNN using the Pareto approach is faster than that o f 

COAFNN, when the number o f classes is large.

•  For classification involving skewed data, POAFNN is a better choice than the 

RM BDT and COAFNN models.

We have also used other data models, such as Fuzzy Decision Trees, Product o f Maxterm 

Fuzzy Neural Networks, and Sum o f Minterm Fuzzy Neural Networks. In these models, 

promising results were also obtained in extracting knowledge from the raw data. Future 

issues worth exploring along this line are summarized as follows:

• Combination o f different modeling structures

We have tried different kinds o f  models that are useful in extracting knowledge from 

the raw dataset. The next step in improving the performance o f the modeling system 

could be the attempt to combine 2 or more different modeling structures to form a 

new modeling system. With a proper combining technique, it would be possible to 

find models that could provide improved accuracy and interpretability.

•  Evaluation o f rule confidence levels
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Because o f time constraints, we did not do a great deal o f work on how to extract 

rules with a higher confidence level, with the modeling structures we proposed 

above. This topic could provide an exciting continuation o f the research in this area.
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