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Abstract

For matched-pair data with a multinomial reponse, the Stuart-Maxwell
test (1955, 1970) and the Bhapkar test (1966) are commonly used to test the
marginal homogeneity. However, in medical research, many studies for assess-
ing safety consider multiple multinomial endpoints to detect the treatment ef-
fects. To test the simultaneous marginal homogeneity (SMH) in such clustered
matched-pair multinomial data, three overall tests are proposed. Furthermore,
when the outcome is ordinal, three ordinal statistics which test SMH against
stochastic ordering are proposed.

To evaluate the performance of our methods, we generated a total of 5000
clustered matched-pair data sets, considering number of endpoints = 2, 3,4 and
sample size ranging from 25 to 200. Then our methods are applied to these
5000 datasets and the empirical size and power are compared. The simulation
shows that the Score-type tests perform well with respect to nominal size and
power even with small sample size. For ordinal endpoints, the ordinal statistic
provides uniformly larger power than the one which does not utilize the ordinal

feature.
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Chapter 1

Introduction

Definition 1.1 Categorical variable is the variable which can only take on a

limited and fixed number of values, such as marital status and gender.

A categorical variable can be nominal or ordinal. For instance, The nominal
variable, gender, consists of two types, male and female, while such ordinal
variables as the severity (none, mild, moderate and severe) of an adverse event
(AE), stages of a disease (Stage I, II, III), etc, taking ordinal nature of the

characteristics of the measurement.

Definition 1.2 Matched-pair data is the data of two samples when each ob-

servation in one sample is paired with an observation in the other sample.

Matched-pair data usually occurs in longitudinal studies in which each sub-
ject is observed over time or crossover studies. It also occurs when the unit
of observation is a cluster, such as two observations on ears from one subject,
two siblings in one family, etc. Due to matching, the outcomes in two samples

are dependent.



Analysis of the matched-pair categorical data are extremely useful and pop-
ular in assessing the safety, toxicity and quality-of-life in clinical trials. For
instance, in phase II-III clinical trial of pharmaceutical products, the analysis
of AE data is an important aspect of examining the safety of a new drug. In
recent years, crossover designs gained much popularity because of the advan-
tages of requiring fewer subjects and better controlling confounding than other
designs. The crossover design is a repeated measurements design in that each
subject receives different treatments or doses during the different time periods,
i.e., the subjects cross over from one treatment to another treatment or dose
during the course of the trial. In crossover designs, comparing the incidence
of AEs under different doses leads to the clustered matched-pair binary data.

For such categorical matched-pair data, some researchers suggested to an-
alyze each AE separately and combine individual P-values through various
multiple adjustment techniques. However, many AEs are correlated to a huge
extent. Therefore, analyzing the incidence of related AEs simultaneously is
more ideal than treating them separately. Analyzing the incidence of AEs
simultaneously is challenging, as it leads to dealing with clustered and thus
correlated matched-pair data.

This thesis focuses on the analysis of clustered matched-pair multinomial
data. Three overall tests are proposed which test the homogeneity of the
marginal distributions of each AE’s severity under two treatments or differ-
ent dosages. We develop the test statistics and their asymptotic distribution.
Furthermore, their empirical size and power under different settings are ex-
amined by simulation. In addition, as AE’s severity measure is an ordinal
outcome, three statistics, which test the simultaneous marginal homogeneity

against stochastic ordering are proposed. Their empirical size and power under



different settings are also examined and compared. The thesis is framed en-
tirely in terms of a safety analysis comparing the marginal proportions of each
AE severity categories under two different treatments or different dosages.
However, our methods can be applied to any paired or repeated clustered

multinomial response.



Chapter 2

Literature Review

2.1 Overview

There are various methods developed to compare two independent or de-
pendent proportions or vectors of proportions, including non-parametric meth-
ods (for instance, Pearson, likelihood-ratio Chi-square Tests, or Mcnemar’s
Test) and model-based methods (for instance, Logistic Regression with or
without Random Effect). In this chapter, we mainly focus on non-parametric

methods.

2.2 Comparing Two Independent Proportions

For two independent multinomial samples data, Pearson (1900) proposed a
Chi-square statistic to test the homogeneity of distributions of the two samples.

In a I x J contingency table, the Pearson Chi-square statistic is:

oS ey = mng
=22 i ) Hij = T Mg /T
i



X? asymptotically follows a Chi-square distribution with df = (I —1)(J — 1)
when n — oo.
Another frequently used statistic to test the homogeneity of proportions is

the likelihood-ratio test. The likelihood-ratio test is formulated as
G* =2 E E nijlog@, where [i;; = niynij/n.
. . i
i

G? also asymptotically follows a Chi-square distribution with df = (I —1)(J —
1) when n — oo (Agresti, 2002).

Although the above Chi-square tests can be used to test the homogeneity
of proportions, they both have the limitation that the fi;; = n;,n,;/n used
in X2 and G? does not depend on the order of rows and columns. No matter
how we arbitrarily reorder the rows or columns, X? and G? do not change.
Therefore, the two statistics both treat rows and columns as nominal. When
one is ordinal, the test statistic that utilize the ordinal feature is certain to be
more powerful than the above two (Agresti, 2002).

When the row variable X and column variable Y are ordinal, we are often
interested in testing the linear trend in the association between X and Y.
Mantel (1963) propsed a test statistic, which assigns scores to levels of X
and Y and summarizes the linear trend. The scores u; < uy < --- < uy are
assigned to the X categories and v; < vy < --- < vy are assigned to the Y
categories. Let @ = ), u;p;4 denote the marginal mean of the row scores and
let 7 =5 ; UiD+j denote the marginal mean of the column scores. Thus, the

sample covariance of X and Y equals ) . .(u; — w)(v; —U)p;j. The correlation

2'7j



between X and Y is

2w =) (v; — V)py |
s =21 [ 05 = 9.

r =

To test the linear trend in the association between X and Y, a test statistic
is

M? = (n—1)r?

where n is the sample size. M? asmptotically follows a Chi-square distribution
with df =1 (Agresti, 2007).

The above M? statistic treat X and Y as ordinal. However, when one of
them is nominal, it could still be used. When X is binary, the 2 x J table
usually occurs in comparing the distribution of two groups. For instance, the
two rows stand for the two treatments. We assign the scores (u; = 0,us = 1)
to the two levels of X. Then M? is measuring the differences between the two

row mean scores on Y (Agresti, 2007).

2.3 Comparing Two Dependent Proportions

To summarize the categorical matched-pair data, the two-way contingency
table with the same row and column categories is used. Table 2.1 is an ex-
ample of matched-pair categorical data. In a survey of n university students,
ny1y students indicated approval of the president’s performance. In the sec-
ond survey four months later, n,; students indicated approval of these same
students.

For categorical matched-pair data, we are often interested in comparing



Table 2.1: Rating of Performance of the University President

Second Survey

First Survey Approve Disapprove Total

Approve n11 n12 N1y
Disapprove No1 T99 Not
Total Nyq Nyo n

the row and column marginal distribution of response. For such a two-way
contingency table, let m,, denote the probability of outcome a for the first
observation and outcome b for the second observation. Let n,, denote the
number of such pairs in the sample. Correspondingly, p,, = n4/n estimates
Ta and is a sample proportion of the joint event (a,b), where n is the total
number of subjects. Then p,. is the marginal proportion with outcome a
for the first observation and p,, is the marginal proportion with outcome
a for the second observation. In practice, we are interested in comparing the
marginal proportions p, and py,. However, the two samples are matched and
dependent. The dependence between the two samples makes the marginal
proportions correlated. Thus the methods for comparing the independent
proportions can not be applied. When p,, = p,, for each possible outcome a,
this is called marginal homogeneity.

For binary response, the McNemars test(McNemar, 1947) is a simple way
to test the marginal homogeneity in 2 x 2 tables. In 2 x 2 tables, the null
hypothesis of marginal homogeneity is Hy : myy = my1. Let d = 714 — 744

denote the difference of two marginal sample proportions. Under Hj, the



estimated variance of d is

N1 + Moy
5 )

Var(d) =

n

Hence, a Wald test statistic is established as

Y= d _ N21 — N12
@“(d) (no1 + ng) /2
Then 22 = (zi-m2) asymptotically follows a Chi-square distribution with

ni12+n21

df =1, resulting in the McNemar’s test (McNemar, 1947).

For multinomial outcome, the null hypothesis of marginal homogeneity
is: Ho: m4 = Ty1, Moy = TMig,- -+ , M+ = T4y Where I is the number of
outcome categories. Bhapkar (1966) proposed a statistic to test the marginal
homogeneity of the distributions of multinomial outcomes. Let d, = Tar —
Tia, and d = (cil, e ,cil_l)T. The sample covariance matrix V' of /nd has

elements as follows:

‘Zzb = —(Pab + Pva) — (P+a — Pat+)(P+b — Dot) fora #b

A

Vaa = P+a + Pa+ — 2paa - (p+a - pa+)2-

Under the marginal homogeneity, we have the Wald statistic W = nd’V " 'd
which asymptotically follows a Chi-square distribution with df = I — 1.
Stuart (1955) and Maxwell (1970) proposed Wy = nd” (Vy)~'d, which uses

the sample null covariance matrix % and based on a score test. Vo has



elements as:

~

ab = —(Pab + Pva) for a # b

V(za =Pia + Pat+ — 2paa-

Bhapkar test (1966) and Stuart-Maxwell test (1955, 1970) both treat the
outcome as nominal. They can be used to test marginal homogeneity against
any alternatives. When the outcome is ordinal, they ignore the ordinal nature
of the outcome. Hence, the tests that utilize the ordinal information should
be more powerful for testing marginal homogeneity against alternatives con-
sidering the ordinal feature. For instance, for ordinal outcome, one is usually
interested in if the classifications based on one variable are higher than those
based on the other variable. For a I x I square table, let Y; denote the obser-
vation from the row marginal distribution {m;; } and Y5 denote the observation
from the column marginal distribution {7 ;}. Y} is stochastically higher than
Y, (Agresti, 2010) if the cumulative density function of Y; is uniformly below

the cumulative density function of Y3, i.e.

Mg+ T ST+ Ty, forj=1,---,I—-1

This means that Y; is more likely to have larger values than Y;. The statistic
that tests the marginal homogeneity against stochastically ordered margins
can be more powerful than Bhapkar and Stuart-Maxwell tests.

Agresti (1983) proposed a statistic to test marginal homogeneity against
stochastically ordered margins by comparing marginal mean scores. Let u; <

us < - -+ < uy denote the scores assigned to the outcome categories. Marginal



homogeneity implies that E(Y;) = E(Y2), where E(Y;) = >, wymy and E(Y;) =

> u;im4;. The sample mean responses are

Y= Z U;iPi+ and Yo = Z UiDyi-

The sample standard error of y;, — ¥, is

SE - \/ZZ > (ui —uy)?pij — (U — 52)2'

n

The Wald test statistic to test the marginal homogeneity is formed by z =

(g, — Yy)/SE, which asymptotically follows N(0,1). The corresponding score

test is given by z = (7, — ¥y)/SEp, where SE; = \/M Agresti
(1983) compared its power with the Stuart-Maxwell test’s through simulation.
Simulation results showed that the ordinal test has uniformly larger power
than the Stuart-Maxwell test when they are used to test marginal homogeneity

against stochastic ordering.

2.4 Comparing Two Independent Vectors of
Proportions

In the developmental process of pharmaceutical products, investigators are
interested in testing if there is a difference between the incidence of several
adverse events for an experimental drug and the placebo (or the active control),
based on results from a randomized controlled clinical trial. Chuang-Stein and
Mohberg (1993) introduced a global test statistic formed by using the difference

between marginal sample proportions.

10



For two independent samples, we denote the group by j = 1 for an exper-
imental drug group with n; subjects and 7 = 2 for a placebo group with ns
subjects. Let K denote the number of binomial variables, which constitute the
multivariate responses. For subject i in group j, let Yi; = (Yij1, Yije -« Yijr)"

denote the K x 1 vector of responses, where Y;;, = 1 if adverse event k£ is

present and Y, = 0 if adverse event k is absent, & = 1,2,--- K. Assume
(Y11, -+, Yn,1) are ng independently and identically distributed random vari-
ables from a multinomial distribution and (Yja,- -, Ys,,2) are ny indepen-

dently and identically distributed random variables from a multinomial distri-
bution with the number of categories as 2.

Let mj(k) = Pr(Yijx = 1), where k = 1,2,--- K and j = 1,2. Then
w; = (m;(1),7(2),7;(3), -+ ,m;(K))" are K one-way marginal probabilities
for the 2K cross-classification of responses for group j. For the two vec-
tors of binomial parameters m; = (m (1), 71(2),71(3), -+ , 7 (K))T and e =
(ma(1), m2(2), m2(3), - -, m2(K))T, the null hypothesis of simultaneous marginal

homogeneity (SMH) is
HOIWI(]C):TFQ(]{?), 1{521,2,"’,K.

Let d = (dy,--- ,dg)T with d, = 7o(k) — #(k), k = 1,--- | K. Let V

denote the covariance matrix of d. Then, V' has elements as:

~

Var(dy) = m(k)(1 —m(k))/ny + m2(k)(1 — ma(k)) /02

’

Cov(dy, dys) = Cov(y(k), 71 (k) + Cov(fa(k), (k) = 14 + va,

where

11



n={Pyi=Lyy =1)— Py =1)P(yyy = 1)}/m

vo ={P(yar = 1, ypyy = 1) = P(yar = 1) P(ypyy = 1)}/na.

Let V denote the sample version of V. A Wald statistic to test SMH is
W = dT‘A/'ild, which asymptotically follows a Chi-square distribution with
df = K under the null hypothesis. Let V denote the pooled estimate of V'
over the two groups. Then W, = dTV; 'dis a score-type statistic which also
has an asymptotic null Chi-square distribution with df = K. It can be easily
extended to multinomial responses.

In practice, we often run into ordinal responses, such as the severity of
adverse events in drug safety studies, quality-of-life scale, etc. Klingenberg et
al (2008) proposed a score-type statistic to test SMH in clustered ordinal data
of two independent samples.

Consider the case of comparing two treatments based on observing K or-
dinal variables with possibly different number of categories. For subject i in
group j, let Y;; = (Yij1, Yijo, -+, Yijx)" be the K x 1 vector of reponses, where
Yk is ordinal with C}, > 2 categories, k = 1,2, --- , K. The number of subjects
in two treatment groups are n; and ng, respectively. Let {m;i(cx) = Pr(Yi, =
k) e, = 1,- -+, Cr} denote the marginal probability of observing outcome ¢, of
variable k at dose j. Then 7r; = (71 (1), m;1(2), - - -, 7j1(C1), mj2(1), - -, mix (Ce))”
are Zle C}, one-way marginal probabilities for the 925121k cross-classification

of responses, with 7r; as the corresponding marginal sample proportions. The

12



null hypothesis of SMH is

HO:Wlk(Ck):ﬂ-Qk(Ck)a k:1727”'7K Ck:1727'” 7CK

~

Let d = fro—7ry = (d1(1)7 T 7621<Cl>7 CZ2(1>7 to 7622(02)7 to 7CZK(1)7 to 7CZK<CK))T‘
denote the difference of the marginal sample proportions at two dosages. The

Cov(d) has elements as:

~

Var(dy(cy)) = Var(mar(cr) — Tixlcr)) = Zﬂjk(ck)(l — mik(cx))/ny,

2
Cov(di(cx), dy (cy)) = Z(‘Skk’ﬂjkk’(cka ) — ij(ck)ﬂjk’ (cp))/nj.
=1
Let A = diag(up”,k = 1,--- ,K) be a score matrix with score up? =

(ugp (1), ug(2), -, ur(Cy))T for severity levels of adverse event k. Then S =
Ad = Ay — A7, compares mean scores among the two treatments, with
covariance matrix ¥ = A60\v(d)AT, where 60\1)(d) is the sample version
of Cov(d). A score-type statistic for testing the simultaneous marginal ho-
mogeneity is Wy = 1T2(;1/25/K, where 3y = Ago\vo(d)AT is obtained by
replacing 7, (cx) in 50\1)(d) with the pooled estimate over the two treatments.
The Wy asymptotically follows a Chi-square distribution with df = K under

the null hypothesis (Klingenberg et al., 2008).

13



2.5 Comparing Two Dependent Vectors of Pro-
portions

In longitudinal or crossover studies, investigators are typically interested in
testing whether significant difference exists in incidences of AEs at two or more
occasions or different dosages. Unlike the parallel design, the data collected at
different occasions are dependent. For each individual AE, the McNemar’s test
(McNemar, 1947) is frequently used for comparing the incidence rate of two
dependent samples. Klingenberg and Agresti (2006) proposed a multivariate
extension of McNemar’s test to compare the incidence rates of several AEs.

Consider clustered matched-pair binary data with K binary variables indi-
cating the incidence of K AEs at two dosages. For subject ¢ at dose j, Yz =1
if adverse event k is present and Y;;;, = 0 if adverse event k is absent, where
k=12 K, j=12 Let Y; = (Y;1,Ya)" = (Yirr, -, ik, Yior, - -+,
Yior )T denote the 2K dimension binary responses for subject 7. It may be
assumed that Y; follows a multinomial distribution, with a total sample size
equals n. Let 7;(k) = Pr(Y;;; = 1) denote the marginal probability of observ-
ing adverse event k at dose j. Then 7w = (my(1), -, m (K), mp(1),- -+, mo(K))"
is a 2K x 1 vector of marginal proportions for the 225X cross-classification of
responses. Similarly, let 7;(k, k') = Pr(Yiyx = 1Y,y = 1) and m(k, k) =
Pr(Ya, =1,Y,,,, = 1) denote the second-order marginal probabilities.

The null hypothesis of SMH is
H()Iﬂ'l(k?):ﬂ'g(k‘), 1{52172,"',}(.

Let d = (dy,--- ,dg)T with dj, = 71 (k) — #2(k),k = 1,--- , K. The covari-

14



ance matrix V of d has elements as:

Var(dy) = {m (k) + ma(k) — 2n(k, k) — [m(k) — ma(k)]*}/n
Cov(dy, dy) = {m(k, k) + mo(k, k') — [wg, E) + (K, /f)}

~[mi(k) = ma(k) | (K) = mak) |} /.

’

A Wald statistic that tests SMH is W = dTV_ld, where V is obtained
by replacing ;(k), 7;(k, k') and 7(k, k") in V with the corresponding sample
proportions 7;(k), 7;(k, k') and #(k, k). The W has an asymptotic Chi-square
distribution with df = K under the null hypothesis.

Let V' denote the pooled estimate of V', which is obtained by replacing
7;(k) in V with mo(k) = (m1(k)+ma(k))/2. Then W, = dTVgld is a score-type
statistic which also has an asymptotic Chi-square distribution with df = K

under the null hypothesis.
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Chapter 3

Multivariate Test of Marginal

Homogeneity

3.1 Marginal Homogeneity

Let Y;; = (Yij1,Yije, -+, Yijx)T be the K x 1 vector of multivariate re-
sponses for subject ¢ at dose j = 1,2, where K is the number of ordinal
variables, Y;;;, is the ordinal variable (AE severity) with Cj, > 2 categories,
k=1,2,--- K. In this thesis, C}\, = C' = 4 is used for all k£ which de-
notes the 4 severity levels of AE, i.e. None, Mild, Moderate and Severe. If
subject i experienced AE k with severity ¢, at dose j, then Y, = ¢;. For
each subject, let Y; = (Yi1>Yi2)T = (Yiu, Yaz, -+, Yak, Yior, Yioo, -+, Yao)"
denote the subject i’'s AE severity profile. Assume that we have n sub-
jects in the study, (Y1,Ys, -+ ,Y,) are n independently and identically dis-
tributed random variables from a multinomial distribution with probability
w(cy, Coy v, CK,Cpy Coy v Cie), Where Tr(cy, Coy -+, Cx,Cpy Coy v+, Cge) denotes

the joint probability PT(Ym =c1, L, Yiag = Ck, Y1 = C/17 e Yig =

16



Ci)-
Let wj = (m:(1),- -+, mn(C), mje(1), -+, m2(C), - mire (1), mir (C)),
where 7;x(cx) denotes the probability Pr(Yix = cx), ¢, = 1,2,--- ,C, C = 4.

The null hypothesis of SMH is defined as

Hy : mg(ck) = mog(cy) for k=1,2,-- K, . =1,2,---,C, C =4.

3.2 Wald and Score-type Tests of SMH

Motivated by the statistic proposed by Agresti and Klingenberg (2005)
and Klingenberg and Agresti (2006), a statistic to test SMH is constructed
by comparing the marginal proportions of each AE at two dosages. Let 7r; =
(T (1), 70 (C = 1), (1), -+ ya(C = 1), (1), Ty (C = 1)T
denote the marginal proportions of each AE at dose j, where j = 1,2 and

i (cx) denotes the sample proportion of subjects with severity ¢ of AE k

at dose j, ¢ = 1,2---,C — 1. Let d = 7t — t; = (dl(l),-~~ ,dl(C—
1),dy(1), -+ ,da(C —1),--- ,dg (1), ,dg(C —1))T denote the difference of

the marginal sample proportions at two dosages.

Under the assumption of multinomial distribution, the covariance matrix

17



V of d has elements:

~

Var(d(cx)) = Var(for(ck) — Tig(cr))

= Var(frgk(ck)) + VCLT(ﬁ'lk<Ck)) - 2COU(7A1'2]€(C]€>, ﬁ1k<ck)>

_ k() (1 — ok (ck)) N mie(cr) (1 — mie(cr))

_Q(Wk(ck?le) — mux(cr)mar(ck)) '
_ (muler) + man(en) — 2mi(er, e)) — (munler) — mon(er))?

(3.1)

Where 7y (cy, ¢i) is the probability of experiencing AE k of severity ¢, at both

dosages.

Cov(di(cr), dr(cy)) = Cov(fa(cx) — 7ruw(cr), Fawlc) — Fir(cy))
= Cov(Trox(cx), ﬁgk(C;g)) — Cov(mra(ck), ﬁlk(c;g))

—Cov(fi(cr), Fanlcy)) + Cov(Fux(er), Fx(cy))

(e ma(e) | mulen) ()

n n

_7T12k(C;c, Ck) - Wlk(C;c)W%(Ck)
n

+7T121<;(Ck, C;g) - 7T11<;(Clc)7T2h(C;g)7
n

(3.2)

Where 7y9x(cy,, i) is the joint probability of experiencing AE k of severity c;,

18



at dose 1 and AE k of severity ¢, at dose 2.

Cov(dy(cr), dy () = Cov(far(cr) — Fuk(er), o (1) — 7y (c10))
= Cov(Tar(cr), Top () — Cov(Tar(cr), Ty ()

—Cov(mk(cx), Ty (¢ ) + Cov(mr(cr), Ty (¢y))
_ Topr' (Chs € ) — Tan () Moy ()
N n
_7T12k'k(ck' i) — Ty (o )mak(cr)
n
_7T12k'k(ck7 ) — mu(er) T ()
n
+7T1kk’ (cx, &) + mig(en)myy ()
n

Y

(3.3)

where 7,/ (¢, ¢;7) is the joint probability of experiencing AE k of severity
¢, and AE k' of severity ¢ at dose j and 7y (ck, ¢y ) is the joint probability
of experiencing AE k of severity ¢, at dose j and AE k' of severity ¢, at dose
j.

Let V denote the sample version of V. Then, a Wald statistic to test SMH
is

W=d'V d.

Based on the Central Limit Theorem, W has an asymptotic null Chi-square

distribution with df = K(C — 1) when n — oo .

By replacing m(cx) and mor(cx) by the pooled estimate 7ox (cx) = (7r1x(cx )+
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For(cr))/2, we have Vi as the pooled estimate of V', which has elements as:

o3 2(mor(cr) — (e, €
Var(dy(cy)) = (7or (k) . k(s Cr))
Cov(di(er), di(cy)) = ~ o (G €)= Taapw (O )

n

@(dk(ck) a?k,(ck/)) _ Mg’ (ck, Ck') + Topp (Cry Ck') _nWIQk/k(Ck/7ck) - 7T12kk'<ck7 Ck’>.

(3.4)

Then we have a score-type statistic Wy = dTVO_ ld, which also has an
asymptotic null Chi-square distribution with df = K(C'—1) when n — oo. In
the binary case (C' = 2), the W and W}, reduces to the multivariate McNemar’s

tests (Klingenberg and Agresti, 2006).

3.3 A Non-Parametric Test of SMH

In section 3.2, it is assumed that (Y,Ys, -+ ,Y,) are n independently and
identically distributed random variables from a multinomial distribution. How-
ever, this assumption may not be feasible in practice. To account for possible
over-dispersion or under-dispersion, a non-parametric covariance estimate of
d is considered in this section. The non-parametric covariance estimate V7 of

d is given as follows:

Var(di(ci)) = Var(fa(cr) — 7i(er))
= Var(for(ci)) + Var(wu(er)) — 2Cov(fan(cr), Tunlcr)
_ Y (Yaarlen) = Yau(ew))® | 320 (Yiw(er) = Vin(en))?
n(n —1) B n(n_— 1)
Yot 2((YVin(cr) — Yir(er)) (Yior(ce) — Yor(cr))

a n(n —1) ’ (3:5)
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where Y1, (cg) = 1 if subject i experience AE k of severity cg; Yiig(cx) = 0 if

subject ¢ did not experience AE k of severity cy.

Cov(dy(cx), dy (¢;0)) = Covliar(ex) — Far(cn), Fop (cr) — Ay ()

—

= Cov(fa(cr), T (c)) — Cov(Far(cn), 7y ()

—Cov(un(cr), g () + Cov(an(en) e (c))

_ EL (o) = Vuler) Walo) =Vale)
S (Yiaeler) — ?2(k<ck>><mf (o) = Vi)
S (Yine(ew) - ?IZ(;);(Q%/ () = Vo ()
i (Yiae(ew) - zf{él>><%k, () = Viwr(eg))).

+

(3.6)

~

Next, we will show (3.5) and (3.6) are consistent estimates of Var(di(cx))
and Cov(dg(c),dy (cs)), respectively. First, we will show 27 (YVior(ck) —
Yor(cr))?/n(n — 1) in (3.5) is a consistent estimate of Var(f(cg)). Assume
Yiok, Yook, - -+, Yo are independently and identically distributed with mean

2

p and variance o®. It is well known that sample variance > | (Yior(cx) —

Yor(c))?/(n — 1) is a consistent estimate of 0. Furthermore, we have

3§2k(0k)))

_ Var(Yigs) _ o*

Var(for(cr)) = Var(zz;l(

Hence, E?:l(Y;gk(ck)—72k(ck))2/n(n—1) is a consistent estimate of Var(7ax(cx)).
Similarly, it can be shown that Y"1 | (Yiir(cx) =Y 1r(cx))?/n(n—1) and Y7, (Yix(cr)—
Y 1x(er)) (Yiar(ck) — Yar(cr))/n(n — 1) are consistent estimates of Var(7i(cx))

and Cov(7ray(cr), T1x(ck)), respectively. Therefore, (3.5) is a consistent esti-
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mate of Var(dg(cp)).

Similarly, it can be shown that (3.6) is a consistent estimate of C'ov(dy(cx ), dy ().
Since (3.5) and (3.6) are both consistent, V' is a consistent estimate of vari-
ance of d.

From the Central Limit Theorem, we have a non-parametric Wald test
statistic W7 = dTVId, which asymptotically follows a Chi-square distribution
with df = K(C — 1) when n — 0.

3.4 Tests of SMH against Stochastic Ordering

For clustered matched-pair AE severity data, it may be of interest to test
whether one margin is stochastically higher than the other for each AE. Moti-
vated by the statistic proposed by Agresti (1983), a statistic for testing SMH
against stochastic ordering is formed by comparing the marginal mean scores
under two treatments. Let 7; = (7;1(1), -+ , 71 (C), Tj2(1), -+, T2(C), - -, 7j.(1),

-, 7k (C))T, where 7ji(c) denotes the sample proportion of subjects with

severity ¢ of AE k at dose j, ¢, =1,2---,C. Let

denote the difference of the marginal sample proportions at two dosages. The
difference of the marginal mean scores at two dosages is formed by S = Ad,
where A = diag(ug®, k = 1,2,--- ,K) is a score matrix with score up? =
(ug (1), ug(2), -, ur(C))T for severity levels of AE k.

Under the assumption of multinomial distribution, the covariance matrix V'

of d is given in (3.1),(3.2) and (3.3). From S = Ad, we have the covariance
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matrix of § as ¥ = AV AT. Let 3 denote the sample version of . A

multivariate Wald test is constructed by
~—1
Woa=8"% S

Based on the Central Limit Theorem, W,,.; asymptotically follows a Chi-square
distribution with df = K when n — oo, where K is the number of AEs
considered simultaneously. When K = 1, it reduces to the statistic proposed
by Agresti (1983).

By replacing 1 (cx) and mox (¢ ) with the pooled estimate 7rox(cx) = (7r1x(cx)+
Far(cr))/2, we have Vi as the pooled estimate of V', which is given in (3.4).

Then we have a score-type statistic
a1
Worao = STE(] S

which also asmptotically follows the Chi-square distribution with df = K when
n — 00, where 3= AV,A"T.

The above two statistics assume that (Y7, Ya, - -+ , Y,,) are n independently
and identically distributed random variables from a multinomial distribution.
Similar to section 3.3, a non-parametric covariance estimate of d can be consid-
ered, which is as given in (3.5) and (3.6). Then we have a non-parametric Wald
test statistic Wy,q1 = STEIIS which also asymptotically follows a Chi-square

distribution with df = K when n — oo, where S, =Av, AT
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Chapter 4

Simulation

4.1 Data Generation

In this chapter, a simulation study is performed to evaluate the performance
of our methods. Five thousand simulated data sets under the characteristics of
SMH are generated for sample sizes n = 25, 50, 100, 200 and the number of AEs
K = 2,3, 4, and the number of severity levels C' = 4 comparing two treatments.
For instance, to simulate a data set with n = 100, K = 3 and C' = 4 under
SMH, a random vector of 4% multinomial probabilities {7 (ci, ¢z, s, ¢}, ¢y, C3)}
is generated, where ¢;, and c}c are the severity measures ranging from 1,--- ,4
(= C), k = 2,3,4 (= K) for treatment A and treatment B, respectively.
Then the iterative proportional fitting procedure (Deming and Stephan, 1940)
is performed to adjust the vector to make the marginal probabilities of each
adverse event under two treatments homogeneous. Then we randomly gener-
ated 5000 samples from a multinomial distribution with the given marginally

homogeneous vector of probabilities.
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4.2 Iterative Proportional Fitting

Iterative Proportional Fitting is a technique used for adjusting the cells
proportionally in a two-way table to make the row margins or/and column
margins equal to a set of selected values. It could also be applied in n-way
tables to make the margins equal to the selected values for each dimension.

In two-way tables, let n;; denote the unadjusted cells in the data. Corre-
spondingly, n;; and n; denote the row totals and column totals, respectively.
To adjust n;; such that they add up to the selected row and column margins,
say m;q and m.;, the Iterative Proportional Fitting is conducted as follows:

Step 1: m;j = ny; (M /niy)

Step 2: m;/j = m;j(mﬂ/m;j)

Steps 3 and up: Repeat step 1 and step 2 until the row totals and column
totals are both close enough to the m; and m.;.

In n-way tables, Iterative Proportional Fitting is performed similarly as
above.

Step 1: Divide each cell by the actual row total, then multiply by the
selected row margin.

Step 2: Divide each cell by the actual column total, then multiply by the
selected column margin.

Step 3: Divide each cell by the actual marginal total of the third dimension,

then multiply by the selected margin of the third dimension.

Step n: Divide each cell by the actual marginal total of the nth dimension,
then multiply by the selected margin of the nth dimension.

Steps n + 1 and up: Repeat step 1 to n until the marginal totals of each
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dimension are all close enough to the selected margins.

4.3 Simulation Results

4.3.1 Software Package Introduction

In this section, we analyze the simulated data sets with R (Version 3.0.2).
To fulfill the analysis in R, only the standard set of packages is required. No

other package is required.

4.3.2 Simulation Settings

In a hypothesis testing problem, there are two complementary hypotheses
which are called null hypothesis and alternative hypothesis. They are often
denoted by Hy and H4. Let 6 denote a parameter to be tested, the general
form of the null and alternative hypothesis is Hy : § € ©¢ and H4 : 0 € Of,
where O is a subset of the parameter space and Of is its complement (Casella
and Berger, 2002).

When deciding to reject the Hy, we commit one or both of two types of
errors, which are named type I error and type Il error. If Hy is true but the
test incorrectly rejects Hy, then the type I error occurs. Hence, the type I
error is known as “false positive”. On the contrary, if H,4 is true but the test
fails to reject Hy, the type II error occurs. Thus, the type II error is known
as “false negative”. In a hypothesis testing problem, the ideal situation is
to make the probabilities of two types of errors, P(Reject Hy | Hy is true)
and P(Accept Hy | Ha is true), as small as possible. However, it is often

impossible to make them both arbitrarily small. The smaller the one, the
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greater the other. Therefore, we seek a reasonable tradeoff between type I
error probability and type II error probability. To choose a good balance, we
commonly search for a test that has 5 = P(Accept Hy | Ha is true) as small
as possible, or equivalently the one with 1 — 3 = 1 — P(Accept Hy | Ha is
true) as closer to 1 as possible when controlling P(Reject Hy | Hy is true) at
a specified level a. The « is called the size of a test and 1 — 3 is called the
power of a test. The greater the power (when controlling the size at «), the
better the test (Casella and Berger, 2002).

In this section, the empirical size and power of our methods are compared
for sample sizes n = 25,50, 100,200 and for the number of AEs K = 2,3, 4.
The empirical size is calculated by dividing the number of data sets for which
Hy is rejected when Hj is true by the total number of simulated data sets. The
empirical power is calculated by dividing the number of data sets for which
Hy is rejected when H 4 is true by the total number of simulated data sets. In
our simulation, a total of 5000 simulated data sets are used to calculate the
empirical size and power.

When the sample size is large enough, the empirical size is normally dis-
tributed with mean = a and 0? = «a(1 — a)/5000. Therefore, the empir-
ical size has the 95% confidence intervals (0.007,0.013), (0.044,0.056) and
(0.092,0.108) for a« = 0.01, 0.05 and 0.1, respectively. Empirical Size and
power of W, W, and W, under various sample sizes for the fixed nominal size
when number of AEs K = 2, 3,4 and number of AE’s severity levels C' = 4 are
summarized in Table 4.1, Table 4.2 and Table 4.3. Empirical Size and power
of Wora, Worao and W41 with scores (1,2,3,4) under the same settings are
summarized in Table 4.4, Table 4.5 and Table 4.6.

In practice, higher levels of severity of an AE may be observed less fre-
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quenly than lower levels and our interest is in the performance of the tests
on low incidence events. Therefore, high probabilities are assigned to the
lower levels of severity, while low probabilities are assigned to the higher lev-
els in our simulation design. More specifically, when simulating the data sets
under SMH, for K = 2, (0.5,0.25,0.24,0.01) is used as the marginal proba-
bilities of AE = 1 and (0.7,0.2,0.05,0.05) is used as the marginal probabil-
ities of AE = 2 under both treatments. For K = 3, (1/3,1/3,0.25,1/12) is
used as the marginal probabilities of AE = 1, (0.45,1/3,1/6,0.05) is used as
the marginal probabilities of the AE = 2, and (0.45,0.25,0.25,0.05) is used
as the marginal probabilities of the AE = 3 under both treatments. For
K =4, they are (0.5,0.25,0.24,0.01), (0.7,0.2,0.05,0.05), (0.4,0.25,0.25,0.1)
and (0.7,0.15,0.11,0.04) as the marginal probabilities of the AE = 1,2, 3,4,
respectively, under both treatments.

Similar to the empirical size, high probabilities are assigned to the lower
levels and low probabilities are assigned to the higher levels when generating
the data sets for calculating the empirical power. More specifically, for K = 2,
(0.5,0.25,0.24,0.01) and (0.7,0.2,0.05,0.05) are used as the marginal proba-
bilities of each AE under the two treatments. For K =3, (1/3,1/3,0.25,1/12)
and (0.45,1/3,1/6,0.05) are used as the marginal probabilities of the AE
= 1 under the two treatments, (0.5,0.4,0.09,0.01) and (0.3,0.4,0.2,0.1) are
used as the marginal probabilities of the AE = 2 under the two treatments,
(0.3,0.4,0.2,0.1) and (0.5,0.25,0.2,0.05) are used as the marginal probabili-
ties of the AE = 3 under the two treatments. For K =4, (0.5,0.25,0.24,0.01)
and (0.7,0.2,0.05,0.05) are used as the marginal probabilities of AE = 1
under the two treatments, (0.4,0.25,0.25,0.1) and (0.7,0.15,0.11,0.04) are

used as the marginal probabilities of the AE = 2 under the two treatments,
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(0.5,0.25,0.24,0.01) and (0.4,0.25,0.25,0.1) are used as the marginal proba-
bilities of the AE = 3 under the two treatments, and (0.7,0.2,0.05,0.05) and
(0.7,0.15,0.11,0.04) are used as the marginal probabilities of the AE = 4 under

the two treatments.

4.3.3 Results on Tests - W, W, and W,

Among the three tests treating the severity level as nominal variable, the
W and W are too liberal and the empirical size improves as the sample size
increases. On the contrary, the Wy is too conservative and the empirical size
improves as the sample size increases. Under the nominal levels of 0.01,0.05
and 0.1, none of the W, Wy and W, seem to perform reasonably when K = 3, 4.
However, when K = 2, the W}, can be used when n = 100, and W, and W,
can be used when n = 200 under the nominal levels of 0.01 and 0.05.

The power of the three tests can be compared only when the empirical size
is well controlled (n > 200). Unless the sample size is larger than 200, and so
the empirical size is controlled at the nominal level, we shall not comment on
these tests, as they fail to perform.

In summary, the Wy has better performance in maintaining the nominal
level than the W and Wi, but all three require much large samples to be

suitable to use in practice.
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Table 4.1: Empirical size and power of the W, Wy and W7 in 5000 simulated data

sets under the nominal level 0.01

Empirical Size (Power)

K Method n=25 n=>50 n=100 n=200

2 w 0.071(0.644) 0.035(0.906) 0.022(0.998) 0.013(1)
Wo 0(0.029) 0.004(0.65) 0.007(0.996) 0.007(1)
Wi 0.064(0.616) 0.034(0.896) 0.021(0.998) 0.013(1)

3 w 0.205(0.621) 0.065(0.751) 0.028(0.976) 0.016(1)
Wo 0(0) 0.003(0.266) 0.004(0.915) 0.007(1)
Wi 0.185(0.591) 0.061(0.738) 0.026(0.976) 0.016(1)

4 w 0.39(0.874) 0.115(0.945) 0.039(0.999) 0.019(1)
Wo 0(0) 0.002(0.382) 0.005(0.99) 0.006(1)
%0 0.359(0.855) 0.107(0.939) 0.036(0.999) 0.018(1)

Note: The bold text indicates that the empirical size falls outside the 95% confidence

interval (0.007,0.013) of the nominal level 0.01.

When the simulated data set is very sparse, the three tests may fail to work. These data

sets are eliminated from the summary analysis.
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Table 4.2: Empirical size of the W, Wy and W; in 5000 simulated data sets under
the nominal level 0.05

Empirical Size(Power)

K Method n=25 n=>50 n=100 n=200

2 w 0.168(0.823) 0.112(0.97) 0.077(1) 0.058(1)
Wo 0.015(0.327) 0.035(0.905)  0.047(0.998) 0.042(1)
Wi 0.147(0.804) 0.106(0.968) 0.074(1) 0.056(1)

3 w 0.348(0.77) 0.168(0.884) 0.088(0.994) 0.067(1)
Wo 0.009(0.089) 0.03(0.626) 0.038(0.983) 0.042(1)
Wi 0.325(0.753) 0.157(0.874) 0.084(0.994) 0.066(1)

4 w 0.553(0.945) 0.24(0.986) 0.12(1) 0.077(1)
Wo 0.003(0.038) 0.02(0.787) 0.034(0.999) 0.037(1)
%0 0.514(0.936) 0.22(0.984) 0.114(1) 0.074(1)

Note: The bold text indicates that the empirical size falls outside the 95% confidence

interval (0.044,0.056) of the nominal level 0.05 .

When the simulated data set is very sparse, the three tests may fail to work. These data

sets are eliminated from the summary analysis.
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Table 4.3: Empirical size and power of the W, Wy and W7 in 5000 simulated data

sets under the nominal level 0.1

Empirical Size(Power)

K Method n=25 n=>50 n=100 n=200

2 w 0.252(0.889) 0.179(0.985) 0.129(1) 0.108(1)
Wo 0.049(0.573) 0.085(0.959)  0.093(1) 0.088(1)
Wi 0.228(0.874) 0.169(0.984) 0.127(1) 0.107(1)

3 w 0.446(0.842) 0.251(0.93) 0.163(0.998) 0.127(1)
Wo 0.046(0.265) 0.078(0.778) 0.081(0.994) 0.09(1)
Wi 0.415(0.825) 0.239(0.926) 0.154(0.998) 0.124(1)

4 w 0.647(0.969) 0.336(0.993) 0.191(1) 0.143(1)
Wo 0.019(0.212) 0.067(0.906) 0.084(1) 0.09(1)
%0 0.615(0.961) 0.315(0.993) 0.185(1) 0.14(1)

Note: The bold text indicates that the empirical size falls outside the 95% confidence
interval (0.092,0.108) of the nominal level 0.1 .
When the simulated data set is very sparse, the three tests may fail to work. These data

sets are eliminated from the summary analysis.

4.3.4 Results on Ordinal Tests - W4, W,.q0 and W,.q1

For these three ordinal tests with scores (1,2, 3,4), under the nominal level
0.01, the W,,.q and W,,.4 started to show stability when n > 100. The W4
also maintain the nominal level satisfactorily when n > 50. Under the nominal
level 0.05 and 0.1, the W,,.; and W,,.4;; can maintain the nominal level when
n > 200 while the W40 can maintain the nominal level effectively when
n > 50. W,.q can maintain the nominal level well even when n = 25 and

K = 2. Regarding the power, the W,.q, Wy.q0 and W41 have comparable
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power when their empirical sizes are well controlled (n > 200). In summary,
when n < 200, the W,,.q4 and W,,.4 are both too liberal to be recommended.
when 25 < n < 200. the W,,q0 can better maintain the nominal level than
Worq and W41 and therefore recommended to use.

The above results show that the tests treating the severity levels as ordinal
generally perform better than the tests treating them as nominal variables
with respect to the empirical size. When the nominal level is well controlled
by increasing the sample size, their power can be comparable. Therefore, the
tests which ignore the ordinal nature are not recommended when sample size

n < 200 due to their poor performance in maintaining the nominal level.

Table 4.4: Empirical size and power of the W,.q, W,.q0 and W,,.41 with scores
(1,2,3,4) in 5000 simulated data sets under the nominal level 0.01

Empirical Size(Power)

K  Method n=25 n=>50 n=100 n=200
2 Woa 0.027(0.292) 0.017(0.495) 0.016(0.816)  0.012(0.99)
Wordo 0.004(0.123)  0.008(0.384)  0.012(0.774)  0.01(0.988)
Worai 0.022(0.275) 0.016(0.488) 0.015(0.811)  0.012(0.99)
3 Woa 0.039(0.436) 0.019(0.747) 0.016(0.982) 0.014(1)
Wordo 0.005(0.13)  0.006(0.594)  0.01(0.968) 0.01(1)
Worat 0.034(0.41)  0.018(0.736) 0.015(0.982) 0.014(1)
4 W 0.049(0.502)  0.026(0.770) 0.015(0.982)  0.012(1)
Wordo 0.002(0.104)  0.006(0.572)  0.007(0.966)  0.007(1)
Wora 0.041(0.473) 0.024(0.761) 0.014(0.981)  0.012(1)

Note: The bold text indicates that the empirical size falls outside the 95% confidence

interval (0.007,0.013) of the nominal level 0.01 .
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Table 4.5: Empirical size and power of the W,.q, Wyrqo and Wo,q1

(1,2,3,4) in 5000 simulated data sets under the nominal level 0.05

with scores

Empirical Size(Power)

K Method n=25 n=>50 n=100 n=200

2 Word 0.093(0.467) 0.066(0.7) 0.066(0.934)  0.055(0.999)
Wordo 0.046(0.35) 0.046(0.64) 0.056(0.92) 0.05(0.999)
Wora1 0.084(0.45) 0.062(0.691) 0.065(0.932)  0.055(0.999)

3 Wora 0.1(0.646) 0.073(0.89) 0.063(1) 0.049(1)
Wordo 0.039(0.434) 0.044(0.835) 0.051(0.996) 0.042(1)
Word1 0.092(0.624) 0.07(0.883) 0.062(0.996)  0.048(1)

4 Wora 0.127(0.681) 0.09(0.897) 0.068(0.997) 0.063(1)
Wordo 0.031(0.418)  0.044(0.828) 0.049(0.95) 0.054(1)
Wora1 0.113(0.66) 0.085(0.893) 0.064(0.997) 0.063(1)

Note: The bold text indicates that the empirical size falls outside the 95% confidence

interval (0.044,0.056) of the nominal level 0.05.
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Table 4.6: Empirical size and power of the W,.q, Wy.qo and W41 with scores
(1,2,3,4) in 5000 simulated data sets under the nominal level 0.1

Empirical Size(Power)

K Method n=25 n=>50 n=100 n=200

2 Word 0.143(0.574) 0.124(0.798) 0.119(0.964) 0.102(1)
Wordo 0.102(0.489) 0.1(0.769) 0.105(0.96) 0.096(1)
Wora1 0.133(0.56) 0.12(0.793) 0.115(0.963) 0.1(1)

3 Wora 0.174(0.746) 0.135(0.939) 0.117(0.999) 0.105(1)
Wordo 0.086(0.613)  0.097(0.915) 0.096(0.998) 0.096(1)
Word1 0.162(0.731) 0.13(0.936) 0.113(0.999) 0.104(1)

4 Wora 0.195(0.775) 0.148(0.939) 0.121(0.998) 0.113(1)
Wordo 0.08(0.595) 0.098(0.903) 0.099(0.998) 0.1(1)
Wora1 0.182(0.758) 0.14(0.936) 0.118(0.998) 0.11(1)

Note: The bold text indicates that the empirical size falls outside the 95% confidence

interval (0.092,0.108) of the nominal level 0.1 .

4.3.5 Power Comparison in Testing SMH against Stochas-

tic Ordering

For the case of one adverse event, Agresti (1983) showed that the test using
ordinal scales outperforms the test ignoring its ordinal nature when they are
used to test SMH against stochastic ordering. In this section, a simulation is
performed to verify if the the test using ordinal scales is also more powerful to
test SMH against stochastic ordering for the multiple AEs case.

Based on the simulation results in section 4.3.3 and 4.3.4, it appears that
the Wy and W,,,.q0 performs the best. Thus, the W, and W, 4 are contrasted

in this section.
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To simulate a dataset with the margins stochastically ordered, we randomly
sampled from an underlying multivariate normal distribution having mean 0
and within-AE correlation p; = 0.6 and between-AE correlation ps = 0.2. A
half of the dimensions of the multivarite random vector are dichotomized as
the severity levels ¢ = 1,2,3,4 of all AEs under treatment 1 and the other
half are dichotomized as the severity levels of all AEs under treatment 2. The
boundries for AE categories under treatment 1 are set as —0.6, 0 and 0.6. The
boundries for AE categories under treatment 2 are obtained by placing a shift
A = 0.2 relative to the boundaries for treatment 1. Hence, the boundaries of
the AE categories under treatment 2 are —0.4, 0.2 and 0.8. The categoriza-
tions produce the marginal probabilities of AE categories under treatment 1 to
be (0.2743,0.2257,0.2257,0.2743), and the marginal probabilities of AE cate-
gories under treatment 2 to be (0.3446, 0.2347,0.2089,0.2119). Our simulation
includes the settings representing the combinations of sample size n = 100, 200
and number of AEs K = 2,3,4.

Table 4.7 shows the power of the Wy and W40 under the nominal levels

of 0.01,0.05 and 0.1. From table 4.7, we have the following observations:

1. The power of the W4 is consistently greater than that of W, for all

the combinations of K,n and a we considered.

2. The ratio (1—power of the Wy)/(1—power of the W,,4) is consistently

greater at n = 200 than n = 100 for all the combinations of K and a.

3. As K increases, the ratio (1—power of the Wy)/(1—power of the W,.q40)

consistently increases for all combinations of n and «.

Therefore, the W40 outperforms the W, with respect to the power. Fur-

thermore, as the sample size or number of AEs increases, the advantage of the
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W,rao compared to the W, increases.

Table 4.7: Empirical power of the W4 and Wy in 5000 simulated data sets under
the nominal levels of 0.01,0.05 and 0.1

Empirical Power

a=0.01 a = 0.05 a=0.1
K Method n=100 n=200 n=100 n=200 n=100 n=200
2 Wo 0.303 0.649 0.532 0.828 0.647 0.901
Wordo 0.434 0.808 0.676 0.933 0.789 0.966
3 Wo 0.461 0.836 0.675 0.934 0.775 0.97
Wordo 0.594 0.939 0.799 0.984 0.874 0.992
4 Wo 0.287 0.84 0.578 0.955 0.717 0.978
Wordo 0.625 0.969 0.847 0.993 0.915 0.997

Note: The marginal probabilities of AE categories are (0.2743,0.2257,0.2257,0.2743) and

(0.3446,0.2347,0.2089,0.2119) for treatment 1 and treatment 2, respectively.
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Chapter 5

Data Analysis

In this chapter, a data set (FOB; Moser, 1989) from a study to evalu-
ate the severity of neurotoxic effects in animals after receiving exposure to a
perchlorethylene (PERC) is used. In this study, 40 animals were randomly
assigned to placebo or four dose levels of PERC, with eight animals in each
group. The study consists of 25 endpoints, which were all transformed to a
scale of 1 to 4, where 1 indicates the absence of the adverse effect and 4 de-
notes the most severe adverse effect. The 25 endpoints were classified into six
domains. The endpoints in the same domain are correlated with each other.
Out of 5 groups, the placebo group and 1.5g/kg group are used in this illus-
tration. Our main interest is to test if the marginal distributions of each AE
in the same domain are homogeneous (SMH) under two treatments against
stochastic ordering. Although the two treatment groups in FOB data are in-
dependent, our methods may apply, and the purpose is to demonstrate the

practical use of our methods. Table 5.1 shows the P-values from our methods.
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Table 5.1: P-values for domains, comparing the 1.5g/kg group to placebo group, from W, Wy,
Wy and Word, Wordo, Worar with scores (1,2, 3,4)

Nominal tests Ordinal tests

Domain K w Wo Wi Word Wordo Wora1
Autonomic 5 NA NA NA NA NA NA
Sensorimotor 4 NA NA NA 0.022 0.318 0.04
CNS excitabilityc 5 NA NA NA NA NA NA
CNS activityc 3 NA NA NA NA NA NA
Neuromuscular 5 NA NA NA 1.21E-8 0.236 1.71E-7
Physiological 3 NA NA NA NA NA NA

Note: K refers to number of endpoints in the domain.

NA indicates that method failed to work due to the sparsity of the data.

From Table 5.1, only the W,,.q4, Weora0, Wora1 provide the P-value for do-
mains of Sensorimotor and Neuromuscular. The W, Wy, W fail to work for all
the domains. It is because data(n = 8) is too sparse, which makes the covari-
ance matrix non-invertible which is used to construct the statistic. However,
due to that the W,,.q, Worq0, Wora1 can not maintain the nominal level with
small sample size n = 8 as demonstrated in chapter 4, the test results may be
invalid. At best, we can conclude that further investigation is necessary for

the two domains before conclusive decisions can be made.
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Chapter 6

Conclusion

This thesis investigated the methods to test SMH in clustered matched-pair
multinomial data. A Wald test, a score-type test and non-parametric test are
proposed. A simulation study is performed to evaluate their performance with
respect to the empirical size and power. In addition, another three statistics
are proposed when the outcomes are ordinal. A simulation is conducted on the
empirical size and power of these three statistics. Furthermore, a simulation
is performed to compare the power of the Wy and W40 when the outcomes
are ordinal and the interest is to test SMH against stochastic ordering.

Based on the discussion in Chapter 3 and 4, we have the following conclu-

sions and recommendations:

1. For clustered matched-pair multinomial data, the W and W are liberal
when the number of outcomes K = 2 and the sample size is smaller
than 200. They can be used when sample size is at least 200. Moreover,
When the the number of outcomes increases, it requires larger sample
size to be used. The W, is conservative when the number of outcomes

K = 2 and samle size is less than 100 and therefore suggested to use
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when sample size is larger than 100. When K > 2, W, requireds larger

sample size to be used.

2. For clustered matched-pair ordinal data, the W, and W,,.4; are liberal
when sample size < 100. They can be used when sample size > 200. In
contrast, the W,,40 maintains the nominal level very well when sample
size is 50. Especially when K = 2, W,,.40 can be used when sample size

is 25. Therefore, the W,,.4 is suggested to use in practice.

3. For clustered matched-pair ordinal data, when the association is truly

stochastically ordered, the W49 is more powerful than W.

Although the W, maintain nominal size well when K = 2 and sample size
= 100, in some situations, Wy fail to work as the covariance matrix is non-
invertible. When the sample size is small, this becomes even more serious.
Similarly, it also happens to W4 when sample size is less than 25. For
instance, we presented the FOB data in chapter 5, a sample size of 8. Such
small data set is a reality in practice. However, we found that the FOB data
make the W, fail to work for all domains and the W,,4 fail to work in 4 out
of 6 domains. Therefore, further research on methods to deal with sparse data

1s needed.
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Appendix A

R code

Functions of W, W, and W,

#
#Parameters :
#nout : number of outcomes

#nlevel: number of levels of the outcomes

#data : an array of Z2%«nout dimensions with nlevel wunits
# for each dimension

#type: the method used to testing the hypothesis. The
# default is score—type test ’score’. It also

# has other two options: Wald test ’‘wald’ and

# Non—parametric test ’‘np’

#

smh_mult = function (nout, nlevel, data, type = "score”) {
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# number of pairs

nsize = sum(data)

# marginal sample proportion

pil = NULL

pi2 = NULL

for (h in 1:nout) {
pil.cell = apply(data,c(2xh—1),sum)[1:( nlevel —1)]/nsize
pi2.cell = apply(data,c(2%h) ,sum)[1:(nlevel —1)]/nsize
pil = c(pil,pil.cell)
pi2 = c(pi2,pi2.cell)

}

pi.pool = (pil+pi2)/2

# difference of the marginal sample proportion at two doses
d = pi2—pil
var = rep(1,length(d))

cov = matrix (0 ,nrow = length(d),ncol = length(d))

# varitance of the difference assuming multinomial distribution
if (type = ’'wald’) {
for (m in 1:length(d)) {
h = ceiling (m/(nlevel —1))
n =m%% (nlevel —1)
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n = nlevel —1

pilh = apply(data,c(2«h—1),sum)[n]/nsize
pi2h = apply(data,c(2x%h) sum)[n]|/nsize
ph = diag(apply(data,c(2xh—1,2%h) sum))[n]/nsize

var [m| = (pilh+pi2h—2+«ph—(pilh—pi2h)**2)/nsize

# Covariance of the difference
for (i in 1:(length(d)—1)) {
=1 %% (nlevel —1)
if (k1 = 0) {
k1l = nlevel -1
}
for (j in (i+1):length(d)) {
2 = j %% (nlevel —1)
if (k2 = 0) {
k2 = nlevel —1
}
hl = ceiling(i/(nlevel —1))
h2 = ceiling(j/(nlevel —1))
pilhl = apply(data,c(2xhl—1),sum)[kl]/nsize
pilh2 = apply(data,c(2xh2—1),sum)[k2]/nsize
pi2hl = apply(data,c(2%hl) sum)[kl]|/nsize
( (

pi2h2 = apply(data,c(2%h2) sum)[k2]|/nsize
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pil2h2h1 = apply(data,c(2xh2—1,2«hl) sum)[k2,kl]/nsize

pil2h1h2 = apply(data,c(2*hl—1,2%h2) sum)[kl k2] /nsize

if (hl != h2) {

pilh1h2 = apply(data,c(2xhl—1,2%h2—1),sum)[kl,k2]/nsize

pi2h1h2 = apply(data,c(2%hl,2xh2) sum) [kl , k2] /nsize

cov[i,j] = (pilh1h2—pilhl*pilh2+pi2h1h2—pi2h1xpi2h?2

—pil2h2h1—pil2h1h2+pilh2*pi2h1+

pilhl%pi2h2)/nsize

else {

cov|[i,j] = (—pilhl*pilh2—pi2h1*pi2h2—pil2h2h1—

pil2h1h24pilh2%pi2h1+pilhl%pi2h2)/nsize

# the non—parametric variance/covariance of the difference

else if (type = ’'np’) {
#variance
for (m in 1:length(d)) {
h = ceiling (m/(nlevel —1))

n =m%% (nlevel —1)
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}

ylh num = apply(data,c(2xh—1),sum)[n]

ylh_bar = ylh_num/nsize

y2h _num = apply(data,c(2*h) sum)[n]

y2h_bar = y2h _num/nsize

y12h = apply(data,c(2xh—1,2%h) sum)

y12h11 = diag(y12h)[n]

y12h10 = apply(data,c(2xh—1),sum)|[n]—y12hl11

y12h01 = apply(data,c(2xh) ,sum)|[n]—y12h11

y12h00 = sum(y12h)—y12h11—y12h10—y12h01

var_partl = ylh_num=((1—ylh_bar)**2)+(nsize—ylh _num)sx*
(ylh_bar%=%2)

var_part2 = y2h_num=((1—y2h_bar)**2)+(nsize —y2h _num)*
(y2h_bar*=*2)

var _part3 = (1—ylh_bar)*(1—y2h_bar)*yl2hl11—(1—ylh_bar)x*
y2h _barxy12h10—(1—y2h _bar)*ylh_barxy12h01+
ylh_barxy2h_barxy12h00

var [m| = (var_partl+var_part2—2xvar_part3)/(nsizex(nsize —1))

# covariance
for (i in 1:(length(d)—-1)) {
= i %% (nlevel —1)
if (k1 = 0) {

k1l = nlevel -1
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}

for (j in (i+1):length(d)) {

k2 = j %% (nlevel —1)
if (k2 =— 0) {

k2 = nlevel —1

hl = ceiling(i/(nlevel —1))

h2 = ceiling(j/(nlevel —1))

y1lh1lk1l _num
ylhlkl _bar
y1h2k2 num

y1h2k2 _bar

y2h1k1 _num
y2h1lkl _bar
y2h2k2 num

y2h2k2 _bar

apply (data,c(2+hl1—1) sum)[k1]
ylh1lkl num/nsize
apply (data,c(2xh2—1) ,sum) k2]

y1h2k2 num/nsize

apply (data,c(2*hl) ,sum) [ k1|
y2h1lkl num/nsize
apply (data,c(2%h2) ,sum) k2]

y2h2k2 num/nsize

if (hl != h2) {

y22h1h211
v22h1h210
v22h1h201
y22h1h200

cov.partl

apply (data,c(2+hl,2%h2) sum)[kl, 6 k2]

apply (data,c(2xhl) ,sum)[kl]—y22h1h211
apply (data,c(2xh2) ;sum)[k2]—y22h1h211
nsize —y22h1h211—y22h1h210—y22h1h201
(1-y2h2k2_bar)*(1—y2h1kl _bar)*y22h1h211—
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}
else if (hl

v22h1h210
yv22h1h201

cov.partl

v21h1h211 =
v21h1h210 =
y21h1h201 =
v21h1h200 =

cov.part2 =

y12h1h211 =
y12h1h210 =
v12h1h201 =

(1—y2h1kl_bar)*y2h2k2_bar#y22h1h210—
(1—y2h2k2 _bar)*y2hlkl _barxy22h1h201+
y2h2k2 _barxy2hlkl _bar*xy22h1h200

= h2) {

= apply(data,c(2x*hl) sum)[k1]

= apply(data,c(2xhl) ,sum) k2]

= —(1—y2h1lkl _bar)=y2h2k2_bar*y22h1h210—
(1—y2h2k2 _bar)*y2h1kl _barxy22h1h201+
v2h1k1l_bar*y2h2k2 bars(nsize—y22h1h210—
y22h1h201)

apply (data,c(2+hl,2xh2—1) sum) [kl ,6 k2]
apply(data,c(2+hl) ,sum)|[kl]—y21h1h211
apply (data,c(2%h2—1) ,sum)[k2]—y21h1h211
nsize—y21h1h211—y21h1h210—y21h1h201
(1—y2h1kl_bar)*(1—y1h2k2_bar)*y21h1h211—
(1—y2h1kl_bar)*ylh2k2_barsy21h1h210—
(1-y1h2k2_bar)*y2hlkl _bar*y21h1h201+
y1h2k2 _barxy2hlkl _barxy21h1h200

apply (data,c(2xh1—1,2«h2) ;sum) [kl , k2]

apply (data,c(2%hl—1),sum)[kl]—y12h1h211

apply (data,c(2xh2) ,sum)[k2]—y12h1h211
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y12h1h200 = nsize—y12h1h211—y12h1h210—y12h1h201

cov.part3 = (1—ylhlkl _bar)*(1—y2h2k2 _bar)*yl12h1h211—
(1—y1lhlkl _bar)xy2h2k2 _bar*y12h1h210—
(1—y2h2k2 _bar)*ylhlkl_barsy12h1h201+
ylhlkl _barsxy2h2k2 _bar*xy12h1h200

if (hl !'=h2 ) {
y11h1h211 = apply(data,c(2+hl—1,2%h2—1) sum) [kl 6 k2]
y11h1h210 = apply(data,c(2+hl—1),sum)[kl]—y11h1h211
y11h1h201 = apply(data,c(2+*h2—1),sum)[k2]—y11h1h211
y11h1h200 = nsize—y11h1h211—y11h1h210—y11h1h201
cov.partd = (1—ylhlkl _bar)*(1—ylh2k2 _bar)*yllhlh211—
(1—y1h1k1_bar)*y1h2k2 _barxyl1h1h210—
(1—y1h2k2_bar)*ylh1kl _bary11h1h201+
y1lhlkl _barsxylh2k2 _bar*yl11h1h200
}
else if (hl = h2) {
y11h1h210 = apply(data,c(2+hl—1),sum) [kl ]
y11h1h201 = apply(data,c(2+hl—1),sum)[k2]
cov.partd = —(1—ylhlkl _bar)*ylh2k2 _bar*yllh1h210—
(1—y1h2k2 _bar)*ylhlkl _barxyl1h1h201+
y1h1kl_barxylh2k2_bar*(nsize—y11h1h210
—y11h1h201)

cov|i,j] = (cov.partl—cov.part2—cov.part3+cov.part4)
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/(nsizex(nsize —1))

}
}
}
else if (type = ’score’) {

# vartance
for (m in 1:length(d)) {
h = ceiling (m/(nlevel —1))
n =m%% (nlevel —1)

pilh = apply(data,c(2%h—1),sum)[n]/nsize
pi2h = apply(data,c(2*h) ,sum)[n]/nsize
ph = diag(apply(data,c(2xh—1,2%h) ,sum))[n]/nsize
var [m| = (pilh+pi2h—2xph)/nsize
}

# covariance
for (i in 1:(length(d)-1)) {
k1l = Yo (nlevel —1)
if (k1 = 0) {
kl = nlevel -1

}
for (j in (i+1):length(d)) {
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k2 = j %% (nlevel —1)
if (k2 =0) {
k2 = nlevel -1
}
hl = ceiling(i/(nlevel —1))
h2 = ceiling(j/(nlevel —1))
pil2h2h1 = apply(data,c(2xh2—1,2+hl) sum)[k2,kl]|/nsize
pil2h1h2 = apply(data,c(2xhl1—1,2%h2) sum)[kl,k2]/nsize
if (hl !'=h2) {
pilh1h2 = apply(data,c(2xhl—1,2%h2—1),sum) [kl k2]
/nsize
pi2h1h2 = apply(data,c(2xhl,2xh2) sum) [kl k2] /nsize
cov[i,j| = (pilhlh2—pi.pool[i]*pi.pool[j]+pi2h1h2—
pi.pool[i]*pi.pool[j]—pil2h2hl—

pil2h1h2+4pi.pool[j]*pi.pool[i]|*2)/nsize

else {

cov[i,j] = (—=pil2h2h1—pil2h1h2)/nsize

}
}

cov = cov+t(cov)

diag(cov) = var
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# statistic
w = t(d) %% solve(cov) %% d
p = pchisq(w,df = noutx(nlevel —1),lower. tail = F)
result = data.frame(w,p)

return(result)
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F‘unctions Of Word, Wordo a.nd WO’I"dl

#
#Parameters :
#nout : number of outcomes

#nlevel: number of levels of the outcomes

#data : an array of Z2%«nout dimensions with nlevel wunits
# for each dimension

#score: a matrix of scores assigned to the levels of the
# outcomes.

#type: the methods used to testing the hypothesis. The
# default is score—type test ’‘score’. It also

# has other two options: Wald test ’‘wald’ and

# Non—parametric test ’‘np’

#

smh_ord = function (nout, nlevel, data, score, type = ’score’) {

# number of pairs

nsize = sum(data)

# marginal sample proportion
pil = NULL
pi2 = NULL
for (h in 1l:nout) {

pil.cell = apply(data,c(2xh—1),sum)/nsize
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pi2.cell = apply(data,c(2xh) ,sum)/nsize
pil = c(pil,pil.cell)
pi2 = c(pi2,pi2.cell)

}

pi.pool = (pil+pi2)/2

# difference of the marginal sample proportion at two doses
d = pi2—pil
var = rep(1,length(d))

cov = matrix (0 ,nrow = length(d),ncol = length(d))

# vartance of the difference assuming multinomial distribution
if (type = ’wald’) {
for (m in 1l:length(d)) {
h = ceiling (m/nlevel)
n =m %% nlevel
if (n=0) {

n = nlevel

pilh = apply(data,c(2%h—1),sum)[n]/nsize
pi2h = apply(data,c(2x*h) sum)[n]|/nsize
ph = diag(apply(data,c(2xh—1,2xh) ,sum))[n]|/nsize

var [m] = (pilh+pi2h—2%ph—(pilh—pi2h)*=*2)/nsize
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# Covariance of the difference
for (i in 1:(length(d)—1)) {
kl = i %% nlevel
if (kI = 0) {
k1l = nlevel
}
for (j in (i+1):length(d)) {
k2 = j %% nlevel
if (k2 = 0) {
k2 = nlevel
}
hl = ceiling(i/nlevel)
h2 = ceiling(j/nlevel)
pilhl = apply(data,c(2xhl—1),sum)[kl]/nsize
pilh2 = apply(data,c(2+h2—1),sum)[k2]/nsize
pi2hl = apply(data,c(2%hl) sum)[kl]|/nsize
pi2h2 = apply(data,c(2%h2) sum)[k2]|/nsize
pil2h2h1 = apply(data,c(2xh2—1,2%h1) ;sum)[k2,kl]|/nsize
pil2h1h2 = apply(data,c(2xhl1—1,2%h2) sum)[kl,k2]/nsize
if (hl !'=h2) {
pilh1h2 = apply(data,c(2xhl—1,2%h2—1),sum)[kl, k2]
/nsize
pi2h1h2 = apply(data,c(2*hl,2xh2) sum) [kl k2] /nsize
cov[i,j] = (pilhlh2—pilhl#pilh2+pi2h1h2—pi2h1%pi2h2—

pil2h2h1—pil2h1h24pilh2%pi2h1+
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pilhl%pi2h2)/nsize
}
else {
cov|i,j] = (—pilhl*pilh2—pi2hl*pi2h2—pil2h2hl1—

pil2h1h2+pilh2*pi2hl+pilhl*pi2h2)/nsize

# the robust wvariance/covariance of the difference
else if (type = ’robust’) {
#variance
for (m in 1:length(d)) {
h = ceiling (m/nlevel)

n = m%% nlevel

ylh _num = apply(data,c(2%h—1),sum)[n]|
ylh_bar = ylh_num/nsize

y2h _num = apply(data,c(2+h) sum)[n]
y2h_bar = y2h _num/nsize

y12h = apply(data,c(2xh—1,2%h) sum)
y12h11 = diag(y12h)[n]
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y12h10 = apply(data,c(2xh—1),sum)[n]—y12h11

y12h01 = apply(data,c(2*h) ,sum)|[n]—y12h11

y12h00 = sum(y12h)—y12h11—y12h10—y12h01

var_partl = ylh_num=((1—ylh_bar)*%2)4(nsize —ylh _num)x*
(ylh_barx=2)

var_part2 = y2h_num=((1—y2h_bar)*%2)+(nsize—y2h _num)*
(y2h_barx=2)

var _part3 = (1—ylh_bar)*(1—y2h_bar)xyl12hl11—(1—ylh_bar)x*
y2h _barsxy12h10—(1—y2h _bar)*ylh_barxy12h01+
ylh_barxy2h_barxy12h00

var [m|] = (var_partl+var_part2—2xvar_part3)/(nsizex(nsize —1))

# covariance
for (i in 1:(length(d)—1)) {
kl = i %% nlevel
if (k1 = 0) {
k1l = nlevel
1
for (j in (i+1):length(d)) {
k2 = j %% nlevel
if (k2 = 0) {
k2 = nlevel

}

hl = ceiling(i/nlevel)
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h2 = ceiling(j/nlevel)

ylh1lkl _num = apply(data,c(2%hl—1),sum)[kl]
ylhlkl_bar = ylhlkl _num/nsize
y1h2k2 num = apply(data,c(2+h2—1),sum)[k2]

y1h2k2 _bar = y1h2k2 _num/nsize

y2h1lkl _num = apply(data,c(2%hl) sum)[kl]
y2h1kl _bar = y2hlkl _num/nsize
y2h2k2 num = apply(data,c(2%h2) sum)[k2]

y2h2k2 _bar = y2h2k2 _num/nsize

if (hl !'=h2) {

y22h1h211 = apply(data,c(2+hl,2%h2) sum)[kl, 6 k2]

y22h1h210 = apply(data,c(2xhl) sum)|[kl]—y22h1h211

y22h1h201 = apply(data,c(2+h2) sum)[k2]—y22h1h211

y22h1h200 = nsize—y22h1h211—y22h1h210—y22h1h201

cov.partl = (1—y2h2k2_bar)*(1—y2hlkl_bar)*xy22h1h211—
(1—y2h1kl_bar)*y2h2k2_barxy22h1h210—
(1-y2h2k2 _bar)*y2h1kl _bar+y22h1h201+
y2h2k2 _barsy2hlkl _barxy22h1h200

}

else if (hl = h2) {

y22h1h210 = apply(data,c(2+hl) ,sum)[k1]

y22h1h201 = apply(data,c(2+hl) ,sum)[k2]

62



cov.partl = —(1—y2hlkl _bar)*y2h2k2 _bar*y22h1h210—
(1—y2h2k2 _bar)*y2hlkl _barxy22h1h201+
y2h1kl _barxy2h2k2 _barx*
(nsize—y22h1h210—y22h1h201)
}
y21h1h211 = apply(data,c(2+hl,2%h2—1) sum) [kl 6 k2]
y21h1h210 = apply(data,c(2+hl) ,sum)[kl]—y21h1h211
y21h1h201 = apply(data,c(2*h2—1),sum)[k2]—y21h1h211
y21h1h200 = nsize—y21h1h211—y21h1h210—y21h1h201
cov.part2 = (1—y2hlkl _bar)*(1—ylh2k2 _bar)*xy21h1h211—
(1—y2h1kl_bar)*ylh2k2 _barxy21h1h210—
(1—y1h2k2 _bar)*y2h1kl _barxy21h1h201+
y1h2k2 _barsy2hlkl _barxy21h1h200

y12h1h211 = apply(data,c(2xhl—1,2%h2) sum) [kl 6 k2]

y12h1h210 = apply(data,c(2+hl—1),sum)[kl]—y12h1h211

y12h1h201 = apply(data,c(2+h2) ,sum)[k2]—y12h1h211

y12h1h200 = nsize—y12h1h211—y12h1h210—y12h1h201

cov.part3d = (1—ylhlkl_bar)*(1—y2h2k2 _bar)*yl12h1h211—
(1—y1h1kl _bar)*y2h2k2 barsy12h1h210—
(1—y2h2k2 _bar)*ylhlkl _barxyl12h1h201+
y1lhlkl _barxy2h2k2 _barxy12h1h200

if (h1 != h2) {

y11h1h211 = apply(data,c(2+hl—1,2%h2—1) sum) [kl 6 k2]
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y11h1h210
v11h1h201
y11h1h200

cov.part4d

}
else if (hl

y11h1h210
y11h1h201

cov.part4d

= apply(data,c(2+hl1—1),sum)[kl|]—y11h1h211

= apply(data,c(2xh2—1) sum)|[k2]—y11h1h211

= nsize—yl1lh1h211—y11h1h210—y11h1h201

= (1—ylhlkl_bar)*(1—ylh2k2_bar)#yllh1h211—
(1—ylhlkl_bar)*ylh2k2 _barxyl1h1h210—
(1—y1h2k2_bar)#ylh1kl_barxyl1h1h201+
y1h1kl _bar*ylh2k2 barsy11h1h200

— h2) {

apply (data,c(2+hl—1),sum) k1]

= apply(data,c(2xhl—1) sum)[k2]

= —(1—ylhlkl_bar)*ylh2k2_bar#yl1h1h210—
(1—y1h2k2 _bar)#ylh1kl_barsyl1h1h201+
y1lh1lkl _barxylh2k2 _barx
(nsize—y11h1h210—y11h1h201)

}
cov|i,j] = (cov.partl—cov.part2—cov.part3+cov.partd)
/(nsize*(nsize —1))
}
}
}
else if (type = ’score’) {

# wvariance

for (m in 1:length(d)) {
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h = ceiling (m/nlevel)
n =m %% nlevel
if (n=0) {

n = nlevel

pilh = apply(data,c(2«h—1),sum)[n]/nsize

pi2h = apply(data,c(2x*h) ,sum)[n]|/nsize

ph = diag(apply(data,c(2xh—1,2%h) ,sum))[n]/nsize
var [m] = (pilh+pi2h—2xph)/nsize

# covariance
for (i in 1:(length(d)-1)) {

kl = 1 %% nlevel

if (k1 = 0) {
k1l = nlevel

}

for (j in (i+1):length(d)) {
k2 = j %% nlevel
if (k2 =0) {

k2 = nlevel

}
hl = ceiling(i/nlevel)
h2 = ceiling(j/nlevel)

pil2h2h1 = apply(data,c(2xh2—1,2%hl) sum)[k2,kl]|/nsize
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pil2h1h2 = apply(data,c(2xhl1—1,2%h2) sum)[kl,k2]/nsize
if (hl !'= h2) {
pilh1h2 = apply(data,c(2xhl—1,2%h2—1),sum)[kl, k2]
/nsize
pi2h1h2 = apply(data,c(2xhl,2xh2) sum) [kl k2]
/nsize
cov[i,j] = (pilhlh2—pi.pool[i]*pi.pool[j]+pi2hlh2—
pi.pool[i]*pi.pool[j]—pil2h2hl—pil2h1h2+

pi.pool[j]*pi.pool[i]*2)/nsize

else {

cov|i,j] = (—pil2h2h1—pil2h1h2)/nsize

cov = cov+t(cov)

diag(cov) = var

# Mean score difference

ms. dif = score %% d

# covariance matriz of scorexd = scorexcouvkt(score)

w.cov = score % cov Y# t(score)
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# statistic
w = t(ms.dif) %% solve(w.cov) %% ms. dif
p = pchisq(w,df = nout ,lower. tail = F)
result = data.frame(w,p)

return (result)
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Functions of iterative proportional fitting

#

#Parameters :
#nout: number of outcomes
#nlevel: number of levels of outcomes

#margin: a matriz of selected margins for each dimension

#

smh_ipf = function(nout, nlevel , margin) {
#a vector of multinomial probability
set.seed (1)
p=runif(nlevels*(2%nout))
p=p/sum(p)
tablesize=rep(nlevel ,2*nout)
probsimu=array (p, tablesize)
if (any (margin==0)){

margin [margin==0] <— 0.001

#transform each dimension to make the observed marginal
#probability equal the expected marginal probability
iter=0 #number of iteration
checksum=1 #criteria for stopping the interation
factor=matrix (0 ,nrow=2%nout ,ncol=nlevel)

while ((checksum >0.001)& (iter <1000)) {
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for (j in 1:(2=nout)) {

mar.obs = apply(probsimu ,j ,sum)
factor [j,]=(margin[j, ])/mar.obs
probsimu=sweep (probsimu, j, factor|[j,], "*”)

}

checksum = max(apply (abs(l—factor),1 sum))
iter=iter+1

}
print (iter)

prob=as.vector (probsimu)
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Empirical size and power of W, W, and W,

#

#Parameters:

#nsimu: number of simulated datasets
#nout: number of outcomes

#nsize: sample size

#nlevel: number of levels of outcomes

#alpha: significance level

#

source ("smh_ipf.R”)

source (”"smh_mult .R”)

# empirical size comparison

mout_emp = function (nsimu,nout ,nsize ,nlevel ;alpha) {
set .seed (1)
dat0 = rmultinom (nsimu, nsize , prob=prob.vec)
tablesize = rep(nlevel ,2*nout)
np.p = rep(10000,nsimu)
multi.p = rep(10000,nsimu)

scoret.p = rep(10000,nsimu)

for (i in 1:nsimu) {
# skip the error in the loop
tryCatch ({
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isimu = dat0[,i]

dat = array (isimu,tablesize)

mult = smh_mult (nout=nout ,nlevel=nlevel  data=dat ,
type='wald ")

multi.p[i] = mult$p

np = smh_mult (nout=nout , nlevel=nlevel ,data=dat ,

type="np’)
np.p[i] = np$p
scoret = smh_mult (nout=nout ,nlevel=nlevel ,data=dat ,

type='score )
scoret .p[i] = scoret$p
}, error = function(e) {cat(”ERROR.:" ,
conditionMessage(e), "\n")})

# remove the cases in which the statistic fails to work
multi.p = multi.p[multi.p!=10000]
np.p = np.p[np.p!=10000]

scoret.p = scoret.p[scoret.p!=10000]
# empirical size
multi.empsize = sum(multi.p<=alpha)/length(multi.p)

np.empsize = sum(np.p<=alpha)/length(np.p)
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scoret .empsize = sum(scoret .p<=alpha)/length(scoret.p)

9

cat ('Empirical _size _of _wald_test=_’ ,multi.empsize)
cat(”\n")

cat (’_Empirical_size_of _non—parametric_method=_",
np.empsize)

cat (7\n")
cat(’_Empirical_size_of_score—type_method=_.",
scoret .empsize)

cat (”\n"”)

Y

cat (”Number_of_plausible_obs=_", length(multi.p),
length (np.p),length(scoret.p))

cat (”\n")

#Power comparison

mout_power = function (nout ,nsimu,nsize ,nlevel jalpha) {
set.seed (123)
dat0 = rmultinom (nsimu, nsize , prob=prob.vec)

tablesize = rep(nlevel ,2%nout)
np.p = rep(10000,nsimu)

multi.p = rep (10000 ,nsimu)

scoret.p = rep(10000,nsimu)
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for (i in 1l:nsimu) {

# skip the error in the loop

tryCatch ({

isimu = dat0[,1i]

dat = array (isimu,tablesize)

multi.p[i] = smh_mult(nout=nout,nlevel=nlevel ,data=dat ,
type="wald’)$p

np.p[i] = smh_mult(nout=nout, nlevel=nlevel ,data=dat ,
type="np’)$p

scoret.p[i] = smh_mult(nout=nout ,nlevel=nlevel  /data=dat ,

type=’score’)$p
}, error = function(e) {cat(”ERROR.:",
conditionMessage(e), "\n")})

# remove the cases in which the statistic fails to work
multi.p = multi.p[multi.p!=10000]
np.p = np.p[np.p!=10000]

scoret.p = scoret.p[scoret.p!=10000]

# empirical power
multi.power = sum(multi.p<=alpha)/length(multi.p)
np.power = sum(np.p<=alpha)/length (np.p)

scoret .power = sum(scoret.p<=alpha)/length(scoret.p)
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cat ( 'Power_of_wald _.method=_." , multi.power)
cat(”\n")

cat ( 'Power_of _non—parametric_method=." ,np.power)
cat(”\n”)

cat ( ’Power_of_score._method=.",scoret .power)

cat (7\n")

Y

cat (”"Number_of_plausible_obs=_", length(multi.p),
length (np.p), length(scoret.p))

cat (”7\n")

2 outcomes

# empirical size comparison

margin.vecl = ¢(1/2,1/4,0.24,0.01)

margin.vec2 = ¢(0.7,0.2,0.05,0.05)

margin = rbind (margin.vecl ,margin.vecl ,margin.vec2 ,

margin. vec2)

prob.vec = smh.ipf3 (nout=2,nlevel =4 margin=margin)

s = matrix (0 ,nrow=2,ncol=38)

s[1,1:4] = 1:4
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s[2,5:8] = 1:4

mout _emp (nsimu=>5000,nout=2,nsize=25nlevel =4, alpha=0.01)
mout _emp (nsimu=>5000,nout=2,nsize=>50,nlevel =4 ,alpha=0.01)
mout _emp (nsimu=>5000,nout=2,nsize=100,nlevel=4,alpha=0.01)
(

mout _emp (nsimu=>5000,nout=2,nsize =200,nlevel =4 alpha=0.01)
mout _emp (nsimu=>5000,nout=2,nsize=25,nlevel =4, alpha=0.05)

(
mout _emp (nsimu=>5000,nout=2,nsize=>50,nlevel=4,alpha=0.05)
mout _emp (nsimu=>5000,nout=2,nsize=100,nlevel=4,alpha=0.05)
(

mout _emp (nsimu=>5000,nout=2,nsize =200, nlevel =4, alpha=0.05)

mout _emp (nsimu=>5000,nout=2,nsize=25 nlevel =4 alpha=0.1)
mout _emp (nsimu=>5000,nout=2,nsize=50,nlevel =4 ,alpha=0.1)
mout _emp (nsimu=>5000,nout=2,nsize=100,nlevel=4 alpha=0.1)
(

mout _emp (nsimu=>5000,nout=2,nsize=200,nlevel =4,alpha=0.1)

#Empirical Power
margin.vecl = ¢(1/2,1/4,0.24,0.01)

margin.vec2 = ¢(0.7,0.2,0.05,0.05)

margin = rbind (margin.vecl ,margin. vec2 ,margin.vecl ,
margin . vec2)
prob.vec = smh_ipf(nout=2,nlevel =4 margin=margin)

s = matrix (0 ,nrow=2,ncol=38)
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s[1,1:4] = 1:4
s[2,5:8] = 1:4

mout _power (nsimu=>5000,nout=2,nsize=25,nlevel=4,alpha=0.01)

(
mout _power (nsimu=5000,nout=2,nsize=50,nlevel=4,alpha=0.01)
mout _power (nsimu=5000,nout=2,nsize=100,nlevel =4, alpha=0.01)
(

mout_power (nsimu=>5000,nout=2,nsize=200,nlevel=4 alpha=0.01)

mout _power (nsimu=5000,nout=2,nsize=25,nlevel=4,alpha=0.05)

mout_power (nsimu=>5000,nout=2,nsize=>50,nlevel=4,alpha=0.05)

mout _power (nsimu=>5000,nout=2,nsize=100,nlevel =4 alpha=0.05)
(

mout _power (nsimu=5000,nout=2,nsize =200,nlevel=4,alpha=0.05)

mout _power (nsimu=5000,nout=2,nsize=25,nlevel=4,alpha=0.1)

mout_power (nsimu=>5000,nout=2,nsize=>50,nlevel=4,alpha=0.1)

mout _power (nsimu=5000,nout=2,nsize=100,nlevel =4 alpha=0.1)
(

mout _power (nsimu=5000,nout=2,nsize =200,nlevel=4,alpha=0.1)

3 outcomes

margin.vecl = ¢(1/3,1/3,1/4,1/12)
margin.vec2 = ¢(0.45,1/3,1/6,0.05)
margin.vec3 = ¢(0.45,1/4,1/4,0.05)
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margin = rbind (margin.vecl ,margin.vecl ,margin.vec2 ,
margin . vec2 ,margin. vec3 ,margin. vec3)

prob.vec = smh_ipf(nout=3,nlevel =4 margin=margin)

mout _emp (nsimu=>5000,nout=3,nsize=25,nlevel=4,alpha=0.01)
mout _emp (nsimu=>5000,nout=3,nsize=50,nlevel =4 ,alpha=0.01)
mout _emp (nsimu=>5000,nout=3,nsize=100,nlevel =4 alpha=0.01)
(

mout _emp (nsimu=>5000,nout=3,nsize=200,nlevel=4,alpha=0.01)
mout _emp (nsimu=>5000,nout=3,nsize=25,nlevel=4,alpha=0.05)

(
mout _emp (nsimu=>5000,nout=3,nsize=50,nlevel =4 ,alpha=0.05)
mout _emp (nsimu=>5000,nout=3,nsize=100,nlevel=4,alpha=0.05)
(

mout _emp (nsimu=>5000,nout=3,nsize=200,nlevel=4,alpha=0.05)

mout _emp (nsimu=>5000,nout=3,nsize=25,nlevel=4,alpha=0.1)

mout _emp (nsimu=>5000,nout=3,nsize=>50,nlevel =4 alpha=0.1)

mout _emp (nsimu=>5000,nout=3,nsize=100,nlevel =4 ,alpha=0.1)
(

mout _emp (nsimu=>5000,nout=3,nsize=200,nlevel =4, alpha=0.1)
#Empirical Power
margin.vecl = ¢(1/3,1/3,1/4,1/12)

margin.vec2 = ¢(0.45,1/3,1/6,0.05)

(
(
margin.vec3 = ¢(0.5,0.4,0.09,0.01)
margin.vecd = ¢(0.3,0.4,0.2,0.1)

(

margin.vech = ¢(0.3,0.4,0.2,0.1)
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margin.vec6 = ¢(0.5,0.25,0.2,0.05)
margin = rbind (margin.vecl ,margin.vec2 ,margin.vec3
margin. vec4 ,margin. vec5 ,margin. vec6 )

prob.vec = smh_ipf(nout=3,nlevel =4 margin=margin)

mout _power (nsimu=>5000,nout=3,nsize=25,nlevel=4 alpha=0.01)
mout _power (nsimu=5000,nout=3,nsize=50,nlevel =4, alpha=0.01)
mout _power (nsimu=5000,nout=3,nsize=100,nlevel =4, alpha=0.01)
mout_power (nsimu=>5000,nout=3,nsize=200,nlevel=4,alpha=0.01)

mout _power (nsimu=>5000,nout=3,nsize=25,nlevel=4,alpha=0.05)

(
mout _power (nsimu=5000,nout=3,nsize=50,nlevel =4, alpha=0.05)
mout _power (nsimu=5000,nout=3,nsize=100,nlevel =4, alpha=0.05)
(

mout_power (nsimu=>5000,nout=3,nsize=200,nlevel=4 alpha=0.05)
mout_power (nsimu=>5000,nout=3,nsize=25,nlevel=4,alpha=0.1)

(
mout _power (nsimu=5000,nout=3,nsize=50,nlevel=4,alpha=0.1)
mout _power (nsimu=5000,nout=3,nsize=100,nlevel =4, alpha=0.1)
(

mout _power (nsimu=>5000,nout=3,nsize=200,nlevel=4,alpha=0.1)

7 7) 7) 7 7 7 7 7 7 7) 7 7 7

4 outcomes
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# empirical size comparison

margin.vecl = ¢(1/2,1/4,0.24,0.01)
margin.vec2 = ¢(0.7,0.2,0.05,0.05)
margin.vec3 = ¢(0.4,0.25,0.25,0.1)
margin.vecd = ¢(0.7,0.15,0.11,0.04)

margin = rbind (margin.vecl ,margin.vecl ,margin.vec2 ,
margin . vec2 ,margin. vec3 ,margin. vec3 ,margin. vec4 ,
margin. vec4)

prob.vec = smh_ipf(nout=4,nlevel =4 margin=margin)

s = matrix (0 ,nrow=4,ncol=16)

s[1,1:4] = 1:4

s[2,5:8] = 1:4

s[3,9:12] = 1:4

s[4,13:16] = 1:4

mout _emp (nsimu=>5000,nout=4,nsize=25,nlevel =4 ,alpha=0.01)
mout _emp (nsimu=>5000,nout=4,nsize=50,nlevel=4,alpha=0.01)
mout _emp (nsimu=>5000,nout=4,nsize=100,nlevel =4 alpha=0.01)
mout _emp (nsimu=>5000,nout=4,nsize =200, nlevel =4 alpha=0.01)

mout _emp (nsimu=>5000,nout=4,nsize=25,nlevel=4,alpha=0.05)

(
mout _emp (nsimu=>5000,nout=4,nsize=50,nlevel=4,alpha=0.05)
mout _emp (nsimu=>5000,nout=4,nsize=100,nlevel =4, alpha=0.05)
(

mout _emp (nsimu=>5000,nout=4,nsize=200,nlevel=4,alpha=0.05)
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mout _emp (nsimu=>5000,nout=4,nsize=25,nlevel=4,alpha=0.1)

(
mout _emp (nsimu=>5000,nout=4,nsize=>50,nlevel =4 alpha=0.1)
mout _emp (nsimu=>5000,nout=4,nsize=100,nlevel =4 ,alpha=0.1)
(

mout _emp (nsimu=>5000,nout=4,nsize =200,nlevel =4, alpha=0.1)

#Empirical Power

margin.vecl = ¢(1/2,1/4,0.24,0.01)
margin.vec2 = ¢(0.7,0.2,0.05,0.05)
margin.vec3 = ¢(0.4,0.25,0.25,0.1)
margin.vecd = ¢(0.7,0.15,0.11,0.04)

margin = rbind (margin.vecl ,margin.vec2 ,margin.vec3 ,
margin. vec4d ,margin. vecl ,margin. vec3 ,margin. vec2 ,
margin . vec4 )

prob.vec = smh_ipf(nout=4,nlevel =4 margin=margin)

s = matrix (0 ,nrow=4,ncol=16)

s[1,1:4] = 1:4

s[2,5:8] = 1:4

s[3,9:12] = 1:4

s[4,13:16] = 1:4

mout _power (nsimu=>5000,nout=>5,nsize=25,nlevel=4,alpha=0.01)

mout _power (nsimu=>5000,nout=5,nsize =50,nlevel=4,alpha=0.01)

mout _power (nsimu=5000,nout=5,nsize=100,nlevel=4,alpha=0.01)
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mout _power (nsimu=5000,nout=5,nsize =200, nlevel =4, alpha=0.01)

mout _power (nsimu=>5000,nout=4,nsize =25,nlevel=4,alpha=0.05)
mout _power (nsimu=5000,nout=4,nsize=50,nlevel=4,alpha=0.05)
mout _power (nsimu=5000,nout=4,nsize=100,nlevel =4, alpha=0.05)
mout _power (nsimu=5000,nout=4,nsize =200,nlevel =4, alpha=0.05)

mout _power (nsimu=>5000,nout=4,nsize=25,nlevel=4,alpha=0.1)

(
mout _power (nsimu=>5000,nout=4,nsize=50,nlevel=4,alpha=0.1)
mout _power (nsimu=>5000,nout=4,nsize=100,nlevel=4,alpha=0.1)
(

mout _power (nsimu=>5000,nout=4,nsize =200,nlevel =4, alpha=0.1)
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Empirical size and power of W,.;, W .4, and

Word 1

#

#Parameters:

#nsimu: number of simulated datasets
#nout: number of outcomes

#nsize: sample size

#nlevel : number of levels of the outcomes

#alpha: significance level

#score: a matriz of scores assigned to the levels of the
# outcomes

#

source ("smh_ipf.R")

source ("smh_ord .R”)

# empirical size
mout _emp = function (nsimu,nout ,nsize ,nlevel ;alpha  score) {

set .seed (1)

tablesize = rep(nlevel ,2%nout)
np.nsig = 0

multi.nsig = 0

scoret .nsig = 0
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for (i in 1l:nsimu) {
dat0 = rmultinom (1,nsize ,prob=prob.vec)
dat = array(dat0,tablesize)
mult.p = smh_ord (nout=nout, nlevel=nlevel ,score=score
data=dat , type="wald ') $p
np.p = smh_ord (nout=nout , nlevel=nlevel ,score=score ,
data=dat , type="np’)$p
scoret .p = smh_ord (nout=nout ,nlevel=nlevel ,score=score

data=dat , type='score’)$p

if (np.p <= alpha) {
np.nsig = np.nsig+l1

}

if (multi.p <= alpha) {
multi.nsig = multi.nsig+1

}
if (scoret.p <= alpha) {

scoret .nsig = scoret.nsig+l1

multi.empsize = multi.nsig/nsimu
np.empsize = np.nsig/nsimu

scoret .empsize = scoret.nsig/nsimu
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b

"Empirical osize_of _wald_.test=.’ , multi.empsize)

)

,p . empsize)

# empirical power
mout_power = function (nout ,nsimu,nsize ,nlevel jalpha  score ,cv) {

set .seed (123)

dat0 = rmultinom (nsimu, nsize , prob=prob.vec)
tablesize = rep(nlevel ,2%nout)

np.nsig = 0

multi.nsig = 0

scoret .nsig = 0

for (i in 1l:nsimu) {
isimu = dat0[,i]
dat = array (isimu,tablesize)
multi.p = smh_ord (nout=nout ,nlevel=nlevel ,score=score ,
data=dat ,type="wald’)$p
robust.p = smh_ord (nout=nout ,nlevel=nlevel ,score=score
data=dat ,type="robust ’)$p

scoret .p = smh_ord (nout=nout ,nlevel=nlevel ,score=score
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data=dat , type='score’)$p

if (np.p <= alpha) {

np.nsig = np.nsig+1
}
if (multi.p <= alpha) {

multi.nsig = multi.nsig+1
}
if (scoret.p <= alpha) {

scoret.nsig = scoret.nsig+1

multi.power = multi.nsig/nsimu
np.power = np.nsig/nsimu
scoret .power = scoret.nsig/nsimu

cat ( 'Power_of _wald_test=_’ ,multi.power)

)

cat (’'_Power_of _non—parametric_test=_’ np.power)

Y

cat (’_Power_of_score—type._test=_.", scoret .power)

[ L) LL L LT 1L /] [ [/ 1]/

4 2 outcomes

# empirical size

margin.vecl = ¢(1/2,1/4,0.24,0.01)
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margin.vec2 = ¢(0.7,0.2,0.05,0.05)

margin = rbind (margin.vecl ,margin.vecl ,margin.vec2 ,
margin. vec2)

prob.vec = smh_ipf(nout=2,nlevel =4 margin=margin)

s = matrix (0 ,nrow=2,ncol=38)

s[1,1:4] = 1:4

s[2,5:8] = 1:4

mout _emp (nsimu=>5000,nout=2,nsize=25,nlevel=4,alpha=0.01,score=s)

(
mout _emp (nsimu=>5000,nout=2,nsize=>50,nlevel =4 alpha=0.01,score=s)
mout _emp (nsimu=>5000,nout=2,nsize=100,nlevel=4,alpha=0.01,score=s)
(

mout _emp (nsimu=>5000,nout=2,nsize=200,nlevel =4, alpha=0.01,score=s)
mout _emp (nsimu=>5000,nout=2,nsize=25,nlevel=4,alpha=0.05,score=s)

(
mout _emp (nsimu=>5000,nout=2,nsize=>50,nlevel =4 alpha=0.05,score=s)
mout _emp (nsimu=>5000,nout=2,nsize=100,nlevel=4,alpha=0.05,score=s)
(

mout _emp (nsimu=>5000,nout=2,nsize =200, nlevel=4,alpha=0.05,score=s)

mout _emp (nsimu=5000,nout=2,nsize=25,nlevel=4,alpha=0.1,score=s)
mout _emp (nsimu=>5000,nout=2,nsize=50,nlevel =4, alpha=0.1,score=s)
mout _emp (nsimu=>5000,nout=2,nsize=100,nlevel =4 ,alpha=0.1,score=s)
(

mout _emp (nsimu=>5000,nout=2,nsize =200,nlevel=4,alpha=0.1,score=s)

#Empirical Power
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margin.vecl = ¢(1/2,1/4,0.24,0.01)

margin.vec2 = ¢(0.7,0.2,0.05,0.05)

margin = rbind (margin.vecl ,margin. vec2 ,margin.vecl ,
margin . vec2)

prob.vec = smh_ipf(nout=2,nlevel =4 margin=margin)

s = matrix (0 ,nrow=2,ncol=38)

s[l1,1:4] = 1:4

s[2,5:8] = 1:4

mout _power (nsimu=5000,nout=2,nsize =25 nlevel=4,alpha=0.1,score=s)
mout _power (nsimu=5000,nout=2,nsize=50,nlevel=4,alpha=0.1,score=s)
mout _power (nsimu=5000,nout=2,nsize=100,nlevel =4, alpha=0.1,score=s)
mout _power (nsimu=5000,nout=2,nsize =200, nlevel=4,alpha=0.1,score=s)

mout _power (nsimu=5000,nout=2,nsize=25 nlevel=4 alpha=0.05,score=s)

(
mout _power (nsimu=5000,nout=2,nsize=50,nlevel=4,alpha=0.05,score=s)
mout _power (nsimu=>5000,nout=2,nsize=100,nlevel=4,alpha=0.05,score=s)
(

mout _power (nsimu=5000,nout=2,nsize =200,nlevel =4,alpha=0.05,score=s)
mout _power (nsimu=5000,nout=2,nsize =25 nlevel=4,alpha=0.01,score=s)

(
mout _power (nsimu=5000,nout=2,nsize=50,nlevel=4,alpha=0.01,score=s)
mout _power (nsimu=>5000,nout=2,nsize=100,nlevel=4,alpha=0.01,score=s)
(

mout _power (nsimu=>5000,nout=2,nsize =200,nlevel =4,alpha=0.01,score=s)
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3 outcomes

l/ l/ l/ 7 7 l/ l/ l/ 7 7 7 / l/ l/ l/ 7 7 7 / l/ l/

# empirical size

margin.vecl = ¢(1/3,1/3,1/4,1/12)

margin.vec2 = ¢(0.45,1/3,1/6,0.05)

margin.vec3 = ¢(0.45,1/4,1/4,0.05)

margin = rbind (margin.vecl ;margin. vecl ,margin.vec2 ,
margin . vec2 ,margin. vec3 ,margin. vec3)

prob.vec = smh_ipf(nout=3,nlevel =4 margin=margin)
s = matrix (0 ,nrow=3,ncol=12)

s[l1,1:4] = 1:4

s[2,5:8] = 1:4

s[3,9:12] = 1:4

mout _emp (nsimu=>5000,nout=3,nsize=25,nlevel=4,alpha=0.01,score=s)

mout _emp (nsimu=>5000,nout=3,nsize=50,nlevel =4 ,alpha=0.01,score=s)

mout _emp (nsimu=>5000,nout=3,nsize=100,nlevel =4 ,alpha=0.01,score=s)
(

mout _emp (nsimu=>5000,nout=3,nsize =200, nlevel =4 alpha=0.01,score=s)

mout _emp (nsimu=>5000,nout=3,nsize=25,nlevel =4, alpha=0.05,score=s)
mout _emp (nsimu=>5000,nout=3,nsize=50,nlevel =4 ,alpha=0.05,score=s)
mout _emp (nsimu=>5000,nout=3,nsize=100,nlevel =4 ,alpha=0.05,score=s)
(

mout _emp (nsimu=>5000,nout=3,nsize=200,nlevel=4,alpha=0.05,score=s)
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mout _emp (nsimu=5000,nout=3,nsize=25,nlevel=4,alpha=0.1,score=s)

(
mout _emp (nsimu=>5000,nout=3,nsize=50,nlevel =4, alpha=0.1,score=s)
mout _emp (nsimu=>5000,nout=3,nsize=100,nlevel=4,alpha=0.1,score=s)
(

mout _emp (nsimu=>5000,nout=3,nsize =200,nlevel=4,alpha=0.1,score=s)

#Empirical power
margin.vecl = ¢(1/3,1/3,1/4,1/12)
margin.vec2 = ¢(0.45,1/3,1/6,0.05)
margin.vec3 = ¢(0.5,0.4,0.09,0.01)
margin.vecd = ¢(0.3,0.4,0.2,0.1)
margin.vech = ¢(0.3,0.4,0.2,0.1)

(

margin.vec6 = ¢(0.5,0.25,0.2,0.05)

margin = rbind (margin.vecl ,margin. vec2 ,margin.vec3 ,
margin . vec4 ,margin. vec5 ,margin. vec6 )

prob.vec = smh_ipf(nout=3,nlevel =4 margin=margin)

s = matrix (0 ,nrow=3,ncol=12)

s[1,1:4] = 1:4

s[2,5:8] = 1:4

s[3,9:12] = 1:4

mout _power (nsimu=>5000,nout=3,nsize=25,nlevel=4 alpha=0.01,score=s)

mout _power (nsimu=5000,nout=3,nsize=50,nlevel =4, alpha=0.01,score=s)

mout _power (nsimu=5000,nout=3,nsize=100,nlevel=4,alpha=0.01,score=s)
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mout _power (nsimu=>5000,nout=3,nsize =200,nlevel =4 alpha=0.01,score=s)

mout _power (nsimu=>5000,nout=3,nsize =25 nlevel =4 alpha=0.05,score=s)
mout _power (nsimu=5000,nout=3,nsize=50,nlevel=4,alpha=0.05,score=s)
mout _power (nsimu=5000,nout=3,nsize=100,nlevel =4, alpha=0.05,score=s)
(

mout _power (nsimu=5000,nout=3,nsize =200,nlevel =4,alpha=0.05,score=s)
mout _power (nsimu=>5000,nout=3,nsize =25 nlevel=4 alpha=0.1,score=s)

(
mout _power (nsimu=5000,nout=3,nsize=50,nlevel=4,alpha=0.1,score=s)
mout _power (nsimu=>5000,nout=3,nsize=100,nlevel=4,alpha=0.1,score=s)
(

mout _power (nsimu=>5000,nout=3,nsize =200, nlevel =4, alpha=0.1,score=s)

M4 outcomes

# empirical size

margin.vecl = ¢(1/2,1/4,0.24,0.01)
margin.vec2 = ¢(0.7,0.2,0.05,0.05)
margin.vec3 = ¢(0.4,0.25,0.25,0.1)
margin.vecd = ¢(0.7,0.15,0.11,0.04)

margin = rbind (margin.vecl ,margin.vecl ,margin.vec2 ,

margin . vec2 ,margin. vec3 ,margin. vec3 ,margin. vec4 ,

margin. vec4)
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prob.vec = smh_ipf(nout=4,nlevel =4 margin=margin)
s = matrix (0 ,nrow=4,ncol=16)

s[l1,1:4] = 1:4

s[2.,5:8] = 1:4

s[3,9:12] = 1:4

s[4,13:16] = 1:4

mout _emp (nsimu=>5000,nout=4,nsize=25,nlevel =4 alpha=0.1,score=s)

(
mout _emp (nsimu=>5000,nout=4,nsize=>50,nlevel =4 ,alpha=0.1,score=s)
mout _emp (nsimu=>5000,nout=4,nsize=100,nlevel=4,alpha=0.1,score=s)
(

mout _emp (nsimu=>5000,nout=4,nsize=200,nlevel =4, alpha=0.1,score=s)

mout _emp (nsimu=>5000,nout=4,nsize=25,nlevel=4,alpha=0.05,score=s)
mout _emp (nsimu=>5000,nout=4,nsize=>50,nlevel =4, alpha=0.05,score=s)
mout _emp (nsimu=>5000,nout=4,nsize=100,nlevel=4,alpha=0.05,score=s)
(

mout _emp (nsimu=>5000,nout=4,nsize=200,nlevel =4, alpha=0.05,score=s)

mout _emp (nsimu=>5000,nout=4,nsize=25,nlevel=4,alpha=0.01,score=s)

mout _emp (nsimu=>5000,nout=4,nsize=>50,nlevel =4 alpha=0.01,score=s)

mout _emp (nsimu=>5000,nout=4,nsize=100,nlevel=4,alpha=0.01,score=s)
(

mout _emp (nsimu=>5000,nout=4,nsize=200,nlevel =4, alpha=0.01,score=s)
#Empirical Power

margin.vecl = ¢(1/2,1/4,0.24,0.01)
margin.vec2 = ¢(0.7,0.2,0.05,0.05)
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margin.vec3 = ¢(0.4,0.25,0.25,0.1)

margin.vecd = ¢(0.7,0.15,0.11,0.04)

margin = rbind (margin.vecl ,margin. vec2 ,margin.vec3,
margin . vec4d ,margin. vecl ,margin. vec3 ,margin. vec2 ,
margin. vec4)

prob.vec = smh_ipf(nout=4,nlevel =4 margin=margin)

s = matrix (0 ,nrow=4,ncol=16)

s[1,1:4] = 1:4

s[2,5:8] = 1:4

s[3,9:12] = 1:4

s[4,13:16] = 1:4

mout _power (nsimu=5000,nout=5,nsize =25 nlevel=4,alpha=0.01,score=s)

mout_power (nsimu=>5000,nout=>5,nsize=50,nlevel =4 alpha=0.01,score=s)

mout _power (nsimu=5000,nout=5,nsize=100,nlevel =4 ,alpha=0.01,score=s)
(

mout _power (nsimu=>5000,nout=5,nsize=200,nlevel=4,alpha=0.01,score=s)

mout _power (nsimu=>5000,nout=4,nsize =25 nlevel=4,alpha=0.05,score=s)

mout_power (nsimu=>5000,nout=4,nsize=50,nlevel =4 alpha=0.05,score=s)

mout _power (nsimu=>5000,nout=4,nsize=100,nlevel =4, alpha=0.05,score=s)
(

mout_power (nsimu=>5000,nout=4,nsize=200,nlevel=4,alpha=0.05,score=s)

mout _power (nsimu=5000,nout=4,nsize =25 nlevel=4 alpha=0.1,score=s)

mout _power (nsimu=5000,nout=4,nsize=50,nlevel=4,alpha=0.1,score=s)

92



mout _power (nsimu=5000,nout=4,nsize=100,nlevel =4, alpha=0.1,score=s)

mout_power (nsimu=>5000,nout=4,nsize=200,nlevel=4 alpha=0.1,score=s)
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Power comparison between W, and W,

#
#Parameters:
#nout : number of outcomes

#nlevel: number of levels of the outcomes
#nsize: sample size

#nsimu: number of simulated datasets
#delta: shift value

#phol : within—AE correlation

#pho?2 : between—AE correlation

#alpha: significance level

#score: a matriz of scores assigned to the levels of the
# outcomes.

#

library (MASS)

source (”smh_mult .R”)

source ("smh_ord .R”)

power_comp = function (nout, nlevel, nsize, nsimu, delta, phol,

pho2, alpha, score) {

cov = matrix (1 ,nrow=2xnout ,ncol=2%nout)
mult.p = rep(0,nsimu)

ordinal .p = rep(0,nsimu)
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for (i in 1:(2%nout)) {
for (j in 1:(2=nout)) {
hl = ceiling(i/2)
h2 = ceiling(j/2)
if (hl = h2 & i !=j) {cov|[i,j] = phol}
else if (i = j) {cov][i,j] = 1}
else if (hl != h2) {cov]i,j] = pho2}

for (n in 1l:nsimu) {
set .seed (n)

dat = mvrnorm(n=nsize ,mu=rep (0,2*nout),Sigma=cov)

# cut points for dichotomizing the data
dosel.cut = ¢(—0.6,0,0.6)

dose2 .cut = dosel.cutt+delta

# dychotomize
dat2 = rep(0,2%nout)
dat0 = array (0,rep(nlevel ,noutx2))
for (k in 1:nsize) {
datl = dat [k, ]

for (i in seq(1,(2*nout)—1,2)) {
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if (datl[i] <= dosel.cut[1]) {dat2[i] = 1}
else if (datl[i] > dosel.cut[1] & datl[i]
<= dosel.cut[2]) {dat2[i] = 2}
else if (datl[i] > dosel.cut[2] & datl[i]
<= dosel.cut[3]) {dat2[i] = 3}
else if (datl[i] > dosel.cut[3]) {dat2[i] = 4}
}
for (i in seq(2,(2%nout),2)) {
if (datl[i] <= dose2.cut[1]) {dat2[i] = 1}
else if (datl[i] > dose2.cut[1] & datl[i]
<= dose2.cut[2]) {dat2[i] = 2}
else if (datl[i] > dose2.cut[2] & datl[i]
<= dose2.cut[3]) {dat2[i] = 3}
else if (datl[i] > dose2.cut[3]) {dat2[i] = 4}
}
datO[dat2[1],dat2[2],dat2[3],dat2[4],dat2[5],dat2][6],
dat2 [7],dat2[8]]
= datO[dat2[1],dat2[2],dat2[3],dat2[4],dat2[5],dat2[6],
dat2[7],dat2[8]]+1

}

mult.p[n] = smh_mult(nout=nout, nlevel=nlevel ,data=dat0 ,
type="wald ) $p

ordinal .p[n] = smh_ord (nout=nout ,nlevel=nlevel ,score=score ,

data=dat0, type='wald’)$p
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mult . power = sum(mult.p<=alpha)/nsimu
ordinal .power = sum(ordinal .p<=alpha)/nsimu

b

cat ( 'Power_of_multinomial _method=_" mult . power)

Y

cat(’_Power_of_ordinal _method=.",ordinal . power)
pcomb = cbind (mult.p, ordinal .p)

return (pcomb)

s = matrix (0 ,nrow=4,ncol=16)
s[l1,1:4] = 1:4

s[2,5:8] = 1:4

s[3,9:12] = 1:4

s[4,13:16] = 1:4

# sample size=200

power _comp (nout=4, nlevel=4, nsize=200, nsimu=5000, delta=0.2,
phol=0.6, pho2=0.2, alpha=0.01, score=s)

power _comp (nout=4, nlevel=4, nsize=200, nsimu=5000, delta=0.2,
phol=0.6, pho2=0.2, alpha=0.05, score=s)

power _comp (nout=4, nlevel=4, nsize=200, nsimu=5000, delta=0.2,

phol=0.6, pho2=0.2, alpha=0.10, score=s)
# sample size=100
power _comp (nout=4, nlevel=4, nsize=100, nsimu=>5000, delta=0.2,

phol=0.6, pho2=0.2, alpha=0.01, score=s)
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power _comp (nout=4, nlevel=4, nsize=100, nsimu=5000, delta=0.2,
phol=0.6, pho2=0.2, alpha=0.05, score=s)
power _comp (nout=4, nlevel=4, nsize=100, nsimu=5000, delta=0.2,

phol=0.6, pho2=0.2, alpha=0.10, score=s)
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