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Abstract

Many single-agent search algorithms have parameters that need to be tuned to get the best perfor-
mance. Typically, the parameters are tuned offline, resulting in a generic setting that is supposed
to be effective on all problem instances. However, though the settings found by tuning will ex-
hibit strong average performance over the test set, it can be shown that parameter settings that are
problem-instance specific can result in substantially reduced search effort. We consider the use of
dovetailing as a way to deal with this issue. Dovetailing is a procedure that performs search with
multiple parameter settings simultaneously. In this thesis, we present results testing the use of dove-
tailing with the weighted A*, weighted IDA*, weighted RBFS, and BULB algorithms on the sliding
tile and pancake puzzle domains. Dovetailing will be shown to significantly improve weighted IDA*
with which it commonly improves run-time by several orders of magnitude. It will also generally
enhance the performance of weighted RBFS. In the case of weighted A* and BULB, dovetailing
will be shown to be ineffective when used with these algorithms. Dovetailing is also trivially par-
allelizable and we will demonstrate that the use of this procedure decreases the search time in all

considered domains.
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Chapter 1

Introduction

Consider the problem of finding a route from one location in a city to another when navigating
with a map. Before any travel can begin, a route for travel (or at least a partial route) must be found.
Unfortunately, there may be a large number of candidate partial paths that must be considered before
a complete route is found.

In this example, a single agent has the task of path finding. In general, all agents — whether
they be living or artificial — are faced with some number of tasks to perform. In order to complete
these tasks, agents must develop plans for action.

The effectiveness with which an agent plans is evaluated in terms of two different measures. The
first is the time required to find a plan that will complete the given tasks. The second is the cost of
the plan, the metric for which will be a function of the agent’s objectives. In the case of navigation,
the possibilities for plan cost include distance travelled if the agent is to find a short path, or the
expected travel time if the agent is to find a quick path (ie. when navigating in a map, such an agent
would prefer the use of highways over city streets).

In many domains, there is additional information that can be used to inform and thereby speed up
planning. For example, when navigating between locations in Edmonton, Canada, it is reasonable to
initially disregard routes through distant locations such as Madagascar. Moreover, if the destination
is east of the initial location, the first routes to consider are naturally those that initially proceed
eastward (if such paths exist).

Such information can be used to build heuristics which estimate the cost of the remaining path
to the goal from any area in the domain. The field concerned with the development of heuristics and
the construction of algorithms that use heuristics for planning is called single-agent search. In this
field, planning is performed with a heuristic guided search in the space of candidate partial plans.

Single-agent search remains an important field for research due to the large number of real-
world applications in which search algorithms have proven to be effective problem-solving tech-
niques. These applications include autonomous robot navigation, in which heuristics are used to
guide pathfinding [42]; DNA sequence alignment [33]; and, computer games [43].

There is a class of single-agent search algorithms that will provably find the lowest cost solution



provided that the heuristic value of any area of the domain is guaranteed to never overestimate the
true distance from that part of the domain to the goal. Unfortunately, as problem domains grow
larger, these optimal algorithms will often take too long to find a solution. To address this issue,
suboptimal single-agent search algorithms have been developed which sacrifice solution quality for
a decrease in search time. These algorithms are ideal when a solution (often near optimal) is needed
quickly.

When constructing a single-agent search system, it must first be determined if suboptimal so-
lutions will suffice or if optimal solutions are desired. Another consideration is if planning will
precede execution or if the system is to work in real-time, with planning and execution being in-
terleaved. The system designer is then faced with decisions regarding the proper selection of an
algorithm and a heuristic function for the given domain(s). There are also often subtle choices such
as tie-breaking (the order in which equally promising candidate paths are considered) that can simi-
larly affect search speed. With all of these possible choices, properly recognizing and evaluating all
of the necessary design decisions is a vital aspect of building an effective search system.

In the case of suboptimal problem solving, additional options arise as almost all applicable algo-
rithms involve some kind of parameterization. For example, in the weighted variants of A*, IDA*
[30], and RBFS [31], the value of the weight parameter must be set. Similarly, beam-search variants
like BULB [18] and Beam-stack search [45] require the selection of a beam width. Parameterization
also occurs in the class of best-first search variants like KBFS [16], MSC-WA* [27], and MSC-
KWA* [19] in which a system designer can adjust the number of nodes expanded in parallel, the
number of nodes to commit to, and the combination of these two ideas, respectively.

Any adjustment of these parameter values can change both the solution quality and the search
speed. In a few cases, there are theoretical results that indicate how changing a parameter will affect
the search (such as the bounds on solution quality in weighted A*, weighted IDA*, and weighted
RBFS [31]). Unfortunately, it is much more common that a significant amount of pre-computation
is needed so as to determine the relationship between a parameter and these two metrics. In prac-
tice, parameter values are tested offline on a set of training examples through a process commonly
referred to as parameter tuning. The single parameter setting that satisfies any given constraints on
solution quality and exhibits the best average performance is then used in all future searches.

Parameter tuning customizes a search algorithm for each specific problem domain. As such,
the results of this expensive process cannot effectively be transferred across domains — a fact that
is of particular concern when designing general search systems such as automated heuristic search
planners. In these systems, general heuristics are used to guide a suboptimal search algorithm. In
general, planners such as HSP [4] commit to a single parameter value that will hopefully be effective
over a diverse class of problems.

Parameter tuning also suffers from another deficiency: there is no guarantee that a tuned value

will perform well on each individual problem. Tuning only finds the setting that has the best average



performance on the training set. On a per problem basis, there can be other parameter values which
significantly outperform the tuned setting. As we will demonstrate in Section 3.2, it is often the
case that if a search system could properly select the correct parameter setting for each problem, the
planning speed over a number of problems can be greatly improved.

In this end, we will consider the dovetailing procedure as an approach to this problem. Dovetail-
ing involves running several independent instances of an algorithm — each of which has a different
set of parameter settings — at the same time by interleaving the execution of the instances. The
procedure is also trivially parallelizable. This aspect of the algorithm is important due to the in-
creasing availability of multi-processor machines. As such, we will also analyze the performance of
the algorithm when used in this fashion.

The main contributions of this thesis can be summarized as follows:

1. The single-agent search algorithms of WA*, WIDA*, WRBEFS, and BULB are described, and
the weaknesses of WA*, WIDA*, and WRBFS as suboptimal search algorithms are demon-
strated. The behaviour of these algorithms in the sliding tile and pancake puzzles as a function
of the weight parameter will also be shown. Similarly, the behaviour of BULB in these domain

as a function of the beam width will be demonstrated.

2. Dovetailing is explored as an approach to proper parameter selection. Dovetailing is shown
to significantly enhance WIDA* in the domains of the sliding tile puzzle and the pancake
puzzle. The parallel version of dovetailing is also shown to exhibit massive improvements
in search time when used with this algorithm. In the case of WRBFS, dovetailing without
any pre-computation is shown to improve the speed of the algorithm in the sliding tile puzzle
domain, and offer comparable performance in the pancake puzzle domain. Dovetailing with
WRBFS over operator orderings will also improve the quality of the solutions. We will also

demonstrate that parallel dovetailing offers an effective parallelization of this algorithm.

3. The sequential version of dovetailing will be shown to decrease the search speed of BULB
and WA*, but improve the quality of the solutions when considered over operator orderings.
The reasons for this behaviour are discussed. The parallel version of dovetailing will also
be shown to offer the best performance of all known parallelizations of WA* when higher

weights are used in the sliding tile puzzle domain.



Chapter 2

Background

In Chapter 1, the idea of single-agent search was introduced through the use of the navigation ex-
ample. In this chapter, the single-agent search problem is formalized. The optimal algorithms A*,
IDA*, and RBFS are then introduced along with the notion of weighted heuristics. Two problem
domains, the sliding tile puzzle and the pancake puzzle, are then described, and the behaviour of the
weighted algorithms WA*, WIDA*, and WRBFS are demonstrated in these domains. Additional
properties of these algorithms are also considered. The chapter then concludes with a description of
the beam-search variant BULB and some experimental results for this algorithm in the aforemen-

tioned domains.

2.1 Formalization of Single-Agent Search

Underlying every single-agent search problem is a graph, the definition of which is given below.

Definition 2.1.1. A graph G is defined by two sets: the vertex set V and the edge set E C V x V.
The graph given by a vertex set V' and edge set E will often be denoted as G(V, E).

A graph G(V, E) is said to be undirected if for every pair v1,v3 € V, (v1,v2) € E & (v2,v1) €
E. If this condition does not hold, the graph is said to be directed. Each edge e — whether it
be directed or undirected — will have an associated cost, denoted c(e) € R or ¢(u,w) where
e = (u,w). In single-agent search, the cost of any edge e is assumed to be larger than some real-
valued constant € > 0. In the case of undirected graphs the cost of an edge is the same regardless of
in which direction it is traversed.

While the techniques considered in this thesis can be applied to either directed and undirected
graphs, the experiments will only be performed on domains that correspond to undirected graphs
with a finite vertex set such that the edge set does not contain edges of the kind (v, v). As such, an
edge (v1,v9) will refer to both (v1,v2) and (vg, v1). If (v1,v2) € E, v1 will be said to be adjacent
to vg or a neighbour of vs.

An ordered sequence of vertices P = {vy,...,v;} is called a path from vy to vy in a graph

G(V, E) if every pair of consecutive vertices in P is adjacent. The cost of P, denoted C(P) € R,



will be the sum of all the edges connecting consecutive vertices in P. We will also only consider
finite paths in which if v;, v; are in P, v; # v; unless ¢ = j (ie. there are no cycles in the P).

The main task of a single-agent search system is to find paths between sets of vertices. As such,
single-agent search algorithms are usually only applicable to problem-solving in discrete spaces.
In order to apply single-agent search techniques to a problem like navigation, the map must first
be discretized. It should be noted that the problem of modeling problem spaces as finite graphs
is beyond the scope of this thesis. When evaluating a single-agent search algorithm, it is only the
algorithm’s performance in the model that is of concern.

As these models can be arbitrarily large, the vertex set may not fit into memory. As such,
problem-solving on large graphs is usually performed on an implicit representation if possible. In
an implicit representation, the vertices are usually referred to as states and the vertex set is called
the state space. States can be thought of as annotated vertices. For example, a state in a navigation
problem will be annotated with the location on the map that the vertex corresponds to.

The edge set in an implicit representation is described by the successor function succ. For any
state s the successor function will return the set of states in .S that are neighbours of s. Formally,
this function has S as its domain and the power set of S as its range. As we are only considering
undirected graphs, if so € succ(sy) then s; € succ(ss).

If the successor function merely contains for each state s a list of adjacent states, the represen-
tation is no more compact than the full graph. Instead, the edge set of most single-agent domains
is expressed in terms of a set of operators O, some subset of which can be applied in any state.
The successor function will find the set of operators O’ C O that are applicable in any state s, and
generate the |O’| neighbours of s each found by executing a different o € O’ in s. For example, in a
simple navigation example, the operators may entail proceeding one step in one of the four cardinal
directions: north, east, south, and west. At any location on a map, the applicable operators will be
those directions in which there are roads.

With these notions, it is now possible to define a single-agent search problem:

Definition 2.1.2. A single-agent search problem is determined by a state space .S, an initial state
s; € S, asuccessor function succ, a function h : S — R called the heuristic function, and a boolean
function G : S — {1,0}. The task is to find a path P that starts with s; and ends in a state s,
such that G(s,) = 1, if such a path exists. The only constraint on h is that for any state s such that

G(s) =1,h(s)=0.

Let T" denote the set of all solution paths, formally described as P € T if and only if P is a
path from s; to some state s, such that G(s,;) = 1. The problem is said to be an optimal single-
agent search problem if the only acceptable paths are those with the minimum cost. The set of
minimum cost paths is denoted by 75, and is defined as P € T, if and only if P € T and

C(P) = minprer C(P’). As there exists an € > 0 such that all edge costs are at least as large e,



we are guaranteed the existence of this minimum. The cost of any path in 75, is called the optimal
cost and is denoted by C*.

Usually the heuristic function is used to guide the problem-solving process. Intuitively, the value
of h(s) is an estimate on the cost of a path from s to a goal state. Several properties of heuristic
functions will be described in the next section.

The function G is called the goal test function and defines the desired conditions. By this defi-
nition there may be more than one goal state. For example, the goal of navigation may be either to
reach a specific supermarket or go to one of several supermarkets. Despite this general definition,
all experimentation in this thesis will be on domains that only have a single goal state denoted s,.

We leave experimentation with domains that have multiple goal states for future work.

2.2 Search Terminology

Before describing any algorithms, it is first necessary to introduce a number of terms. Central to
most single-agent search algorithms is the node data structure. A node n consists of a state s and
additional search information about s. Specifically, the node records the current candidate path from
s; to s. This path is usually the shortest such path found thus far. The path is often stored recursively,
with each node holding a pointer to another node p that contains the state s,, that is immediately prior
to s in the path from s; to s. The node p is said to be the parent of s, and s is said to be a child of p.
The state within a node will be referred to as n.state and the parent will be referred to as n.parent.
The node n; containing s; will not have a pointer to any other nodes.

Each node n also has a number of costs associated with it. The g-cost of a node n, denoted g(n),
will be the cost of the stored path from s;. The h-cost of n is the heuristic cost of n. This value
corresponds to the heuristic estimate of the cost of traversing from n to a goal node.

For any state s, there will be at most one node n in memory at any time. If a node n is stored
in memory, and a path from the initial node n; to n is found that is shorter than the stored path, the
parent and g-cost of n is updated. Note, due to the correspondence between nodes and states, we
will often use the same notation for nodes and states interchangeably. For example, h(n) will be
used to refer to the A-cost of n. In reality, h(n) will be shorthand for h(n.state).

Similarly, a path will often be used to refer to a sequence of nodes such that consecutive nodes
are neighbours (ie. the corresponding states are adjacent). However, when we refer to a path P, we
will not necessarily be referring to a path being considered during the execution of any algorithm.
Though some algorithm may store all the nodes in P in memory at some time, it may be considering
alternative paths to each of the nodes in P instead of the path of P itself. As such, the g-cost of
some node n in P may not necessarily be equal to the cost of the portion of P from the beginning of
the path to n. Also note, that all paths will be assumed to start at the initial node n; unless otherwise
specified.

The notion of a node expansion of a node n is also fundamental to most single-agent search



algorithms. As a first step of node expansion, the goal test is applied to n. If n is not a goal node,
the successor function is used to find the neighbours of n. For each neighbour ¢, a new node, n., is
constructed which has c as its state. The parent of n. is set as n. These new nodes are said to be
generated.

This expansion of nodes will be used to construct a search tree in which the initial node forms
the root of the tree and below any node n are the children of n. If the successor function of a domain
is expressed in terms of b € N operators where b > 0, the number of nodes generated during any
node expansion will be at most b. The value b will be called the brute-force branching factor of the
domain. If the search tree is constructed to a depth d, the number of nodes in the tree will therefore
have O(b?) nodes. If every node in a domain has exactly b children, the domain will be said to have
a uniform branching factor.

Where O = {01, ..., 0 } is the ordered set of operators, the successor function constructs a list L
of states by checking each operator in order for applicability. If an operator is found to be applicable
to the current state, the corresponding child is constructed and appended to L. Therefore, the order
of elements in L will depend on the order of operators in O. In general, a static ordering is set before
search begins and operators are checked for applicability in this order. As this operator ordering can
significantly impact the speed of the search, the ordering used in all experiments will be reported.

The order in which nodes in the search tree are expanded will also depend on the heuristic func-
tion. The heuristic functions that are used in practice are always somewhat inaccurate as otherwise
problem-solving would be trivial. One such metric for the effectiveness of a heuristic function and
an algorithm is the effective branching factor [35]. For a solution found at depth d of a problem
with a search tree containing M nodes, the effective branching factor &’ is calculated as the solution
to the equation 1 + &’ + b2 4 ... + b'¢ = M. The effective branching factor can be estimated by
solving some small problems. Note that as b’ becomes smaller, the search tree decreases in size and
the search becomes more efficient.

For the purposes of theoretical analysis, it is often useful to consider the perfect heuristic function
h*, which returns the distance of the shortest path from s to the nearest goal state for any state s € .S.
This perfect heuristic function can also be used to define additional heuristic properties. A heuristic
function h is said to be admissible if for any state s in the state space, h(s) < h*(s). Intuitively, a
heuristic function is admissible if it never overestimates the distance to the goal. A heuristic function
h is also said to be consistent if for any adjacent states m and n, |h(m) — h(n)| < ¢(m,n). Itis
easily shown that if a heuristic function is consistent, it is necessarily admissible. However, the
converse of this statement is not true.

Note, any heuristic function h considered in the remainder of this thesis will have arbitrary
properties (ie. it may or may not be admissible), unless otherwise specified. The only guaranteed

condition is that the heuristic value of any goal state will be 0.



2.3 The Best-First Search Algorithm

One popular approach to single-agent search problems is the best-first search algorithm. In this
algorithm, search is guided by a cost function F'. The algorithm is shown in Figure 2.1. This figure
is based on the pseudocode presented in “Al: A Modern Approach” [40]. Many of the properties
found in this section can also be found in the work of Ira Pohl [37] although they may have appeared

in other papers before that one.

BestFirstSearch(Initial State s;):
CLOSED «+— empty set
OPEN «— empty set
Construct initial node n; with state n;.state = s; and n;.parent = null
Insert n; into OPEN
loop
if OPEN is empty then
return no solution exists
n < node in OPEN with the lowest cost value of F'(n)
if n is a goal node then
10: return path from n; ton
generate children nodes C = {cy, ...,c;} of n
122 forallc e Cdo

R A A R ol

—
—_

13: if 3m € OPEN, m.state = c.state and F(m) > F(c) then

14: m.parent < c.parent

15: else if Im € CLOSED, m.state = c.state and F'(m) > F(c) then
16: m.parent < c.parent

17: remove m from CLOSED and add m to OPEN

18: else if Ym € OPENUCLOSED, m.state # c.state then

19: Add c to OPEN

Figure 2.1: The Best-First Search Algorithm.

The algorithm iteratively considers a set of partial candidate paths. Each iteration involves the
selection of the most promising partial path P and the expansion of the deepest node on P. The
cost, as given by F', of the deepest node on a path P’ will determine how promising P’ is. These
deepest nodes are contained in the OPEN set. The selection of a path P corresponds to the selection
of the deepest node n on P given by line 8 of Figure 2.1. The expansion of n will then add new
candidate paths to memory, each of which consists of P and a successor of n.

Also note that a node n’ is in the CLOSED set if it has already been expanded. By maintaining
this set, it is possible to prune duplicate paths to the same node and to reconstruct the solution path
once a goal node is found. These nodes are never removed from the CLOSED list and added to the
OPEN list unless a new path is found to n’ that is shorter than any previous such path.

Regardless of the cost function used, the algorithm will be complete: the algorithm will terminate
with a solution if one exists. However, the choice of cost function F' will determine the style of
search performed. If F'(n) is set to the number of nodes in the path from the initial node to n, the

search will be a breadth-first search. If F'(n) = g(n), the search will be a Djikstra’s Search [40].



Alternatively, consider the function f, the value of which is referred to as the f-cost of n:

f(n) =g(n) + h(n).

If the cost function F' is set to be equal to this function f, the result is the A* algorithm.

The A* algorithm is guaranteed to find the optimal solution if the heuristic function is admissible.
However, it is limited by its memory requirements. At any depth d, A* will store O(b'?) nodes where
b’ is the effective branching factor. This generation of an exponential number of nodes can occur
even when using very accurate heuristics [23]. As such, the A* algorithm can be problematic when

used in large domains.

2.4 The Iterative Deepening A* (IDA*) Algorithm

IDA* was developed so as to overcome the memory requirements of A*. An outline of the more
general algorithm Depth-First Iterative Deepening (DFID) which uses an arbitrary cost function F’
is shown in Figure 2.2. The IDA* algorithm is a variant of DFID in which the cost function used is
the same f-cost function described in Section 2.3. The description of the algorithm and discussion

found in this section are based upon the work of Rich Korf [30].

DFID(Initial State s;):
1: Construct initial node n; with state n;.state = s; and n;.parent = null
2: threshold « F(n;)

3: loop

4 threshold < RecursiveDFID(n, threshold)

5 if solution has been found then

6: return solution extracted from recursion stack

RecursiveDFID(Node n, threshold):

threshold,ept < 00
if n is a goal node then
return with the solution
generate children nodes C' = {¢y, ..., ¢} of n
for all c € C do
if F'(c) < threshold then
threshold eyt <— min(threshold,e.t, RecursiveDFID(c, threshold))
else if F'(c) > threshold and F(c) < threshold,.,+ then
thresholdye.t — F(c)
return threshold,, .

—_
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Figure 2.2: The Iterative Deepening A* Search Algorithm.

The IDA* algorithm has a global threshold that is initially set as the heuristic value of the initial
state. The algorithm then iteratively performs a series of depth-first searches that are limited to
only expanding nodes with an f-cost at most as large as the threshold. If a solution is found during
an iteration, the search ends and the solution is extracted from the recursion stack. If an iteration

completes without having found a solution, the threshold is increased to the minimum node f-cost



seen during the iteration that exceeded the threshold. As such, it can be guaranteed that on the next
iteration, at least one new node will be expanded.

In DFID, only the nodes along the current depth-first search path and the neighbours of nodes on
this path are stored in memory. There will be no node updates since as soon as the depth-first search
backtracks past a node, any information related to that node is lost. As such, the g-cost of a node n
is simply the cost of the single path from n; to n that is held in memory.

Like A*, IDA* is a complete algorithm that is guaranteed to find the optimal solution if one
exists, given an admissible heuristic function. Also notice that IDA* can re-expand the same node
multiple times since every iteration is a proper subset of every subsequent iteration. However, if there
is some constant ¢ > 1 such that for all iterations the number of nodes expanded is approximately
c times the number expanded in the previous iteration, IDA* will asymptotically expand the same
number of nodes as A*. Intuitively, this effect occurs because the work done in the last iteration will
dominate the amount of work done in all previous iterations.

Unfortunately, there are domains in which IDA* can be ineffective. If the nodes in the search
tree have a large number of unique f-cost values, the increase in the number of nodes expanded from
one iteration to the next will by small. In the worst case, only a single new node is expanded for
each new iteration. In this case, the number of nodes expanded by IDA* will actually be O(N?)
where [V is the number of nodes expanded by A*.

IDA* will also have problems in domains in which there are many cycles with a small length
in the underlying graph. This issue occurs since there is no duplicate detection in IDA*. In these
domains, the same state may be expanded multiple times as part of different paths within the same
iteration.

Despite these deficiencies, IDA* remains a useful algorithm since it is a linear-space algorithm.
An algorithm is said to be linear-space if the memory requirement of the algorithm at any time is
O(d), where d is the depth of the search. This is because the only nodes stored in memory are the
d along the path currently being explored and the neighbours of these nodes, of which there are at
most b. As such, IDA* can often solve problems in much larger domains than A* (which is usually

limited by its large memory requirements).

2.5 The Recursive Best-First Search (RBFS) Algorithm

While IDA* has proven to be an effective linear-space search algorithm, it can exhibit odd behaviour
if the heuristic function is such that the cost function is not monotonically increasing. A cost function
F is said to be monotonically increasing if and only if for nodes n and m where m is a child of n,
F(m) > F(n). Itis easy to show that the cost function f is monotonic if and only if the heuristic
function is consistent.

In Figure 2.3, a small part of a search tree is depicted in which the heuristic function is not

consistent. Each circle represents a node and the value inside each circle corresponds to the heuristic
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value of the node. A line between nodes indicates that the nodes are neighbours, with the one above
the other being the parent. Assume that all edge costs are 1 and that if two nodes both satisfy the
cost threshold, the leftmost node is expanded first. This ordering of node expansions is caused by

the operator ordering. The f-cost of each node is shown beside the node.

TN A
5 5

4

B

Figure 2.3: Tree with non-monotonic cost function.

The threshold on the first iteration will be set to 5, and so all vertices shown will be expanded.
Due to the operator ordering, the node labelled “B” will be expanded before the node labelled “A.”
However, “A” has a lower f-cost and hence should be considered more promising. While node “A”
would be expanded prior to “B” in an A* search, this will not necessarily be the case in an IDA*
search.

The RBFS algorithm was developed as a linear-space algorithm that would address this problem.
In this section, the algorithm is described based upon the original RBFS paper [31]. The algorithm
is shown in Figure 2.4 for any cost function F'. Note that in the rest of this thesis, RBFS will be used
to refer to the use of this algorithm where the cost function is the f-cost function used in A*.

The call to the RBFS algorithm is made to Ma i nRBF S. This algorithm merely calls the recursive
function RecursiveBestFirstSearch on the initial node with a cost bound of infinity and a
lower bound equal to the f-cost of the initial node. The main component of the algorithm is the
recursive function.

The algorithm was designed so as to ensure that if a node n is generated for the first time and a
node m with f(m) > f(n) is generated for the first time after n, then n will be expanded before m.
This property is enforced through the use of the upper bound parameter. The upper bound records
the lowest f-cost among all nodes that have been generated but not expanded. When the recursive
function is called on any node n, no node with an f-cost greater than the upper bound in the subtree
below it will be expanded. If all nodes below n have a larger f-cost, the value of the smallest f-cost
exceeding the bound is returned so that any search in other parts of the tree will have this additional

constraint on the search.
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MainRBFS(Initial State s;):

1:
2:

Construct initial node n; with state n;.state = s; and n;.parent = null
RecursiveBestFirstSearch(n;, co, F'(n;))

RecursiveBestFirstSearch(Node n, Upper Bound B, Lower Bound [):

1:

11:

22:
23:

if F'(n) > B then
return F'(n)

: if n is a goal node then

return solution extracted from recursion stack

2
3
4
5. if n has no children then
6:
7
8
9

return co

: generate children nodes C' = {cy, ...,c;} of n
: forall c € C' do

if F(n) <[ then

Value(c) < max(l, F(c))
else

Value(c) < F(c)

: best «— arg min e Value(c)

while Value(best) < B and Value(best) < oo do
if |C| > 1 then
boundsccond < Milee{c—pest) V alue(c)
else
boundsecond — 0
Value(best) «+ RecursiveBestFirstSearch(best, min(B, boundsecond), Value(best))
if a solution was found then
return found solution
best < arg min.cc Value(c)
return V (best)

Figure 2.4: The Recursive Best-First Search Algorithm.
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The Value of any node is an estimate of how promising a node is. For a node n, this value is
initally set as the f-cost of n. Value(n) is then updated to the value of the most promising node
that exceeds the upper bound in the subtree below n. Intuitively, this update occurs because of the
deficiencies in the heuristic function, and it is only through new knowledge found during exploration
of the search tree that better estimates on how promising a node are can be determined.

The purpose of the lower-bound is to limit the re-expansion of nodes. A complete description of
how this parameter achieves this improvement is beyond the scope of this thesis, but can be found
in the original paper on RBFS.

RBFS shares many theoretical properties with both A* and IDA*. For example, the order in
which nodes are expanded for the first time during an RBFS search will be the same as the order
in which nodes are expanded by A* (aside from differences due to tie-breaking). RBFS is also a
complete algorithm that is guaranteed to find the optimal solution if one exists and the heuristic
function is admissible. Moreover, RBFS only requires memory linear in the depth of the search and,
under certain conditions which are out of the scope of this thesis, will asymptotically expand no
more nodes than A*.

Unfortunately, RBFS also shares many of the same deficiencies as IDA*. In domains in which
there are many cycles, the lack of memory for duplicate detection can cause RBFS to exhibit poor
performance. Similarly, if every node in the search tree has a unique f-cost, RBFS will again expand

O(N?) nodes, where N is the number of nodes expanded by A*.

2.6 Weighted Heuristics

While A*, IDA*, and RBFS are guaranteed to find a solution if the heuristic function is admissible,
the time for problem-solving (and the space requirements in the case of A*) can be very large.
When suboptimal solutions will suffice, it is often possible to speed up the search in exchange for
a decrease in solution quality. The most common way to do so is to use weighted heuristics. This
strategy was first proposed by Ira Pohl [37].

A weighted heuristic is constructed by multiplying an admissible heuristic function h by a con-
stant factor w € R, where w > 0. The resulting heuristic function h’(n) that is then used to guide

search is given by 4/(n) = wh(n). The cost function used therefore reduces to

f(n) =g(n) +h'(n) = g(n) + wh(n).

Notice that if w = 1 then h(n) = h'(n). Moreover, if w < 1, the value of h'(n) = wh(n) is
guaranteed to be less than the value of the perfect heuristic and hence is admissible. As such, we
will not consider weight values in this range for suboptimal search. Also note that in the remainder
of this thesis we will use WA*, WIDA*, and WRBEFS to denote the use of A*, IDA*, and RBFS

respectively with weighted heuristics.
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2.7 Test Domains

In the following sections, we will analyze the behaviour of several suboptimal algorithms, including
those weighted variants introduced above. Before doing so, we will introduce two problem domains

so that the performance of these algorithms can be demonstrated through experimentation.

2.7.1 Sliding Tile Puzzle

The M x N sliding tile puzzle is a standard test domain for single-agent search algorithms. Each
state consists of a matrix of M columns and N rows. M N — 1 of these locations contain a tile,
each labelled with one of the unique integers from 1 to M N — 1. The other location is empty.
The available actions involve sliding one of the tiles adjacent to the empty location into that empty
location. The original tile location before sliding will be empty after the slide. As tiles cannot slide
in a diagonal direction, the four operators are up, down, left, and right, which correspond to
sliding a tile upward into the empty location, downward into the empty location, leftward into the
empty location, and rightward into the empty location. Unless otherwise specified, all experiments
are performed with the operator ordering O = {down, right, left, up}. The cost of each of
these operators is 1, but not all operators are applicable in every state. For example, if the empty
location occurs in the upper-left corner, the only applicable operators will be 1eft and up. Figure

2.5 shows a 3 x 3 puzzle state, and the neighbours of the state.

1 5 4

2|6

3,187
1,54 1/5|4 514
3/2|6 2 6 1,26
8|7 3,187 3, 8|7

Figure 2.5: Example State in the 3 x 3 Puzzle and the Neighbours of this State.

A problem in this domain involves finding a sequence of operators that transform some initial
state into some desired goal state. In all experiments below, the goal state will remain constant. In
this static goal state, the upper-left corner position will be empty, and the remaining tiles will be in
consecutive order when read from left-to-right and top-to-bottom. For example, the goal of the 3 x 3
puzzle is shown in Figure 2.5.

The sliding-tile puzzle is an instance of a permutation puzzle in that any state can be represented

as a permutation of the positive integers from 0 to M N — 1. In this representation, if a number %
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Figure 2.6: The Goal State for the 3 x 3 Puzzle.

is in position & of the permutation, then the tile marked ¢ will be in column (¥ mod M) and row
| k/M |. The permutation location containing 0 corresponds to the empty location. For example, the
top state in Figure 2.5 is represented by the permutation [1,5,4,0,2,6, 3,8, 7).

This representation shows that the number of states in the M x N sliding tile puzzle domain is
(M N)!. However, the graph corresponding to this domain consists of two distinct, but equally sized
connected components. As such, there is only a path from any node to the desired goal for half of
the states in the domain. A state is said to be solvable if it is in the same connected component as
the static goal. All experiments in this thesis were performed on solvable states. Whether a state is
solvable or not can be determined with a parity test that will not be described here.

Let column(s, i) and row(s, i) be the column and row in state s in which tile i occurs, respec-
tively. The heuristic function we will use in our experiments is called the Manhattan distance. For
each tile ¢, this function calculates the horizontal and vertical grid distances from the current state s

to the goal state s,. Formally, this distance is calculated as follows:

Rmanhattan(8) = Z (lcolumn(s,i) — column(sg, )| + [row(s,i) — row(sg,1)]).
i€{1,2,..,. MN—1}

This heuristic function is both admissible and consistent. Also notice that the difference between

the heuristic value of a parent node and any of its children will be exactly 1 or —1. This is because

every operator will correspond to a shift of the row or column of only one tile.

2.7.2 Pancake Puzzle

The N pancake puzzle domain is another common test domain for single-agent search algorithms.
In this domain, there are a stack of N pancakes, each of a unique size. Each operator in this domain
is denoted by one of the numbers in the sequence 2, 3, ..., N. The application of an operator k
involves flipping the top & pancakes and therefore inverting their order. All N — 1 operators are
applicable in each state. Unless otherwise specified, the operator ordering used in all experiments
will be O = {N, N-1, ..., 2}. In Figure 2.7, an example 4 pancake puzzle state and the neighbours
of this state are shown.

As in the sliding tile puzzle, a single static goal state will be used in all experiments in the
pancake puzzle domain. In this goal state, the pancakes will be stacked from top to bottom in

ascending order of pancake size.
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7 N

Figure 2.7: Example State in the 4 Pancake Puzzle and the Neighbours of this State.

The N pancake puzzle is also a permutation puzzle with each permutation being of size N. For
this representation, each pancake will be uniquely labelled with one of the integers from 0 to N — 1
such that the pancake labelled ¢ is the ith smallest pancake. For example, the state depicted at the
top of Figure 2.7 can be represented with the permutation [1, 3,0, 2]. This representation clearly
demonstrates that the number of states in this domain is N!. Note, all pancake puzzle states are
solvable regardless of the goal chosen.

The heuristic functions that will be used for the N pancake puzzle are based on pattern databases
[12]. Pattern databases are built upon a particular kind of abstraction of a permutation puzzle do-
main. Consider a permutation state space S where each permutation is of size V. The abstraction is
built upon the idea of a pattern, which is a subset of the values in the permutation. A pattern will be
denoted < t1,...,tr > where £ < N and each ¢; is a unique value found in the permutation.

Let the state space of the abstract version of S be denoted S,. In the abstract version of any
state s, the N — k symbols that do not occur in the pattern will be indistinguishable. Intuitively, this
transformation can be thought of as replacing these N — k symbols in the permutation representation
of s by a don’t care element denoted by [J.

For an example of such an abstraction, we consider the abstraction given by the pattern <
1,2,5 > on a permutation puzzle with 6 values. Consider a state s determined by the permuta-
tion [4,5,2,0,1,3]. The permutation of the abstract state s, corresponding to s will be given by
[4,0,0,0,0, 3]. Note that state s’ given by [4, 1,5, 0,2, 3] will also be abstracted to s,. As such,
the function that transforms regular states into abstract states, denoted F, : S < 5, is one-to-one
but not onto.

The only constraint on the selection of a pattern is that if an operator is applicable in a regular
state, it is also applicable in the abstract state. Moreover, if s’ is a neighbour of s in .S, then F,(s’)
is a neighbour of Fy,(s) in S,. Under these conditions, the length of a path between any two abstract
states is guaranteed to not overestimate the distance between any two corresponding regular states.
In the pancake puzzle, any pattern will guarantee this condition. In the sliding tile puzzle, the empty
space must be included in the pattern for this condition to be satisfied.

The purpose of the abstract space is to have a state space on which the exact distance from any

state s, to the abstract goal g, can be calculated. This is possible since the abstract space has size
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(]]Z )k!, where k is the number of tiles in the pattern. If & is small enough, the entire abstract state
space can be stored in memory. This allows for a pre-processing step by which for any state s, € .9,,
the minimum distance between s, and g, can be calculated and stored in a table called a pattern
database.

The pattern database is then used during a search in S as follows: for any state s, Fy, (s) is found,
and the distance from F,(s) to g, is returned by the pattern database. This distance is then used as
the heuristic value of state s. The resulting heuristic function is both admissible and consistent.

There are a number of additional ways in which pattern databases can be used. These include
leveraging the symmetry [12] or the duality of permutation puzzles [17]. While these variants are
not used in this thesis, we will often build heuristics by maximizing over multiple pattern databases
[24]. In this variant, a number of pattern databases are built, each with a different pattern. The
resulting heuristic is then the maximum of the values returned by each of the individual pattern

databases. The resulting heuristic remains admissible and consistent.

2.8 Weighted A* (WA¥)

Having introduced the two test domains described above, we can now analyze the performance of
several suboptimal search algorithms, of which WA* is the most commonly used. The effective-
ness of WA* was first reported by Ira Pohl [37] but it has also been studied extensively by other
researchers.

Part of the reason for the popularity of this algorithm is the fact that there is a proven bound on
the suboptimality of the solutions found. In this section, the proof of this bound is reproduced and

experiments are given that show WA* in practice.

2.8.1 Bound on Solution Quality

Below we will prove Theorem 2.8.5 which states that a WA* search will find a solution with cost
at worst w times the optimal solution cost. This bound was first shown for a related algorithm by
Ira Pohl [38], however below we reproduce a proof similar to the one given by Davis et al. [13].
This is not the simplest known proof of this bound, however it is instructive in that it demonstrates
which set of solution paths are candidates for WA* to return and a similar approach will be used to
prove the bound on the solution quality of WIDA* in Section 2.9.1. The following proof includes
statements that are more general, such as Lemmas 2.8.1, 2.8.2, and 2.8.3 which are applicable to any
arbitrary heuristic function h. For a simpler proof of Theorem 2.8.5, see the aforementioned paper
by Ira Pohl.

Before reproducing this proof, some notation must be introduced. First, recall that any path
P will be assumed to start at the initial node n; of some problem. Where n is a node on path P
(denoted n € P), let C(P,n) be the cost of the portion of the path from n; to n. C(P,n) is not

necessarily the g-cost of n since there may be shorter paths to n than the one taken by P. For a path
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P and anode n € P, we will define f(P,n) = C(P,n) + h(n) and denote the M-cost of a path P,
M (P) as follows:

M(P) = max f(P,n).

To illustrate these ideas consider Figure 2.8 which contains a sample graph with all edges being of
unit-cost. Each node is labelled with the node name. The number inside each node is the heuristic
value. Note that the heuristic function is constructed from an admissible heuristic with a weight of 3.
There are five solution paths in the figure: P; = {n;,a,b,c,d,ng}, Py = {n;,e, f, g, h,i,ny}, Ps =
{ni,j,9,h,i,ng}, Py = {n;,e, f,k,l,m,n,ng},and P; = {n;, j, g, f, k,l,m,n,ng}. Notice that

only P; and Ps are optimal.

BOSUSOSEOSESC

o ToToioh

Figure 2.8: Example Domain.

Consider path P,. The value of f(P2,n) for eachn € Py is 6,7, 8,9, 7, 8, and 6 from left to
right. Therefore, M (P,) = 9. Notice that there is a shorter route to node g than is taken by P,. This
means that the f-cost of node g is not necessarily 9, and may be 8. At any time during the search,
the actual value will depend on which paths to g have been discovered thus far. As such, for any
path P, M (P) is not necessarily the largest f-cost of nodes on P.

Recall that T" and T5,,; denote the set of all solution paths and the set of all optimal solution paths

for a problem, respectively. () will now be defined as follows:

@ = ppMe)

Qopt Will be defined similarly, except the minimization is only over paths in T,,;. Since T, € T,
necessarily Q@ < Qopt.

Now, let Ty be the set of solutions with M-cost () and let C(’Z}i” be the minimum cost of any
solution in T¢y. We can now define 755" = {P | P € Tq, C(P) = CZ™}. Intuitively, T5*" is the
set of lowest cost paths in T" with an M-cost of ). Note, if T" is non-empty, Ty and Té”m will also
necessarily be non-empty.

In the case of the graph in Figure 2.8, T,,,; = {Pi, Ps} and T = {Py, P, Ps, P4, P5}. Since
M(Py) = 10, M(Py) = 9, M(Ps;) = 13, M(Py) = 9, and M(P5) = 13 then @ = 9 and
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Qopt = 10. Moreover, Tg = { P2, Ps}. As P, is shorter than Py, then Cg”” = C(P;) = 6 and
Tg”" ={P}.

Finally, when the tth node is to be expanded during an A* search, U (t) will be used to denote
the largest value of min,coppn f(n) seen thus far. For example, at ¢ = 1 only n; is on the OPEN
list, and U(1) = f(n;). Let n. be the child of n; with the smallest f-cost. If f(n.) > f(n:),
then U(2) = f(n.) > U(1). However, if f(n.) < f(n;), then U(2) = U(1). Clearly, U is
monotonically increasing with ¢.

Similar statements to Lemmas 2.8.1, 2.8.2, and 2.8.3 are found in the works of Davis et al. [13]
and Bagchi and Mahanti [3], however the proofs are left to the reader. Below, these lemmas are

proven in full as is the proof on the bound on solution quality given by Davis et al. [13].

Lemma 2.8.1. For any single-agent search problem with an arbitrary heuristic function h, and any

PeT, C(P)< M(P).

Proof. The final node in n, € P will be a goal node. In this case, f(P,ng) = C(P,ny) +0 =
C(P). By the definition of function M, f(P,ng) < M(P)andso C(P) < M(P). O

The following lemma will show that A* will be simultaneously considering all paths in Tém".

Lemma 2.8.2. After t — 1 node expansions of an A* search, if U(t) < Q then for all P € Tg”",
there is at least one node n on the OPEN list such that n € P and g(n) = C(P,n).

Proof. This proof is by induction. The base case occurs when no nodes have been expanded. At
this point, only n; is in the OPEN list. As n; is on all solution paths, f(n;) < @ and so necessarily
U(1) < Q. As well, n; will have g-cost of 0 which satisfies the fact that C'(P,n;) = 0 for any
P € T. Therfore the statement is true in the base case.

Assume the statement is true after N nodes have been expanded, U(N + 1) < @, and n is the
N + 1st node to be expanded. Prior to expanding n, any path P € Tg’m has at least one node
m € P such that m is on the OPEN list with g(m) = C(P, m) by the induction hypothesis. It
is now necessary to show that after expanding n, m is unchanged or a new node n’ € P is on the
OPEN list.

Consider the situation for which m = n. Let ¢ be the node immediately after m in P. The path
found through m to ¢ will have cost C'(P, q) by the induction hypothesis. ¢ will necessarily be a
child of m and will either have never been seen before; already reside on the OPEN list; need to
be removed from the CLOSE D list and added to the OPE N list; or, already be in the CLOSED
list with a smaller g-cost than C'(P, q). If it is this last case, let R be the path from n; to ¢ with a
g-cost less than C'(P, ). A new path P’ can be constructed which begins with path R and continues
along the same sequence as P after q. The new path P’ will clearly have a lower cost than P. Since
U(N +1) <@, all nodes r on R wil be such that f(R,r) < @ and M (P) < @, then M (P’") < Q.
Together, these facts contradict the fact that P € Té”i”. Therefore, ¢ cannot already be on the
CLOSED list with a smaller g-cost.
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As such, ¢ must be a new successor, already reside in the OPFEN list, or be moved from the
CLOSED listto the OPEN list with an updated g-cost. In any of these cases, the g-cost assigned
to ¢ will be C(P,n) + ¢(n, q). Therefore, g(q) = C(P, q) and the statement is satisfied for P.

Now consider the situation in which m # n. The only way that m will be affected in any way
by the expansion of n is if m is a successor of n and the g-cost of m is updated. However, by a
similar construction as above, a path P’ can be found with M (P’) = Q and C(P’) < C(P). This
contradicts the fact that P € TC’Q’”" and so the statement is satisfied for this situation. As these cases
cover all possible situations for P € Té’”", the inductive step is complete. [

With the previous lemma, it is now possible to show that the only solutions that will be found
by an A* search, regardless of whether the heuristic is admissible or not, are those in the set T(,.

Combined with Lemma 2.8.1, we have the following statement.

Lemma 2.8.3. For a single-agent search problem with an arbitrary heuristic function h, any solu-

tion path P found by A* will satisfy the inequality C(P) < Q.

Proof. Note that no solution path will by found by A* until there have been at least ¢ node
expansions such that U (¢t + 1) > @ since for any P’ € T, there is some node n € P’ such that
f(n) > @Q (since M(P’) > Q). n will only be expanded when it is the node in OPEN with the
smallest f-cost.

As n; is on all solution paths, f(n;) < @ and so U(1) < Q. Now, assume that M (P) > Q
and let n be the first node on P such that f(P,n) = M(P). Before n can be expanded, U must
increase to M (P). By Lemma 2.8.2, for any path P’ € Tgm there will be some node n’ € P’
on the OPEN list while U(t) < . Since U starts with a value at most ), U will not be able to
increase beyond () until every node on P’ has been expanded. If this is the case, the algorithm will
return P’ instead of P, which is a contradiction. Therefore M (P) < Q. Since M(P) > Q by
definition, M (P) = Q. By Lemma 2.8.1, this givesus C(P) < Q. O

The following lemma bounds the value of @ by a function of the optimal solution cost where the

heuristic function is bounded.

Lemma 2.8.4. For a single-agent search problem with an arbitrary heuristic function h, if for all s,

h(s) < wh*(s) for some w > 1, then Q < wC™.

Proof. Consider any optimal path P € Tj,,;. Since the perfect heuristic value of the initial node

will by definition be equal to C*, f(n;) < wC*. Any node n € P will satisfy the following:
f(P,n) <C(P,n)+wh*(n) < C(P,n)+w(C*—C(P,n)) <(1—w)C(P,n)+wC* <wC*

since w > 1. Therefore, M(P) < wC*. As P is an arbitrary path in T,p;, Qopr < wC*. Since

Q S Qopt: Q S wC™. O
With these lemmas, it is now possible to bound the solution quality of any path found by WA*.

Theorem 2.8.5. If a solution path P is found by a WA* search with weight w, C(P) < wC'x.
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Proof. Let h denote an admissible heuristic and consider some constant w > 1. For any node
n, wh(n) < wh*(n) is satisfied. This means that for a WA* search with weight w (which uses
heuristic function A’ = wh), @ < wCx by Lemma 2.8.4. By Lemma 2.8.3, C(P) < @ and so
C(P)<wCx. O

With this bound it is possible to control the suboptimality of a solution. However, as will be
shown below, WA* generally significantly outperforms these bounds. Also note that the bound

given by Theorem 2.8.5 applies with any arbitrary heuristic function h where for all nodes n, h(n) <
wh*(n).

2.8.2 WA#* in the Sliding Tile and Pancake Puzzles

In this section, we demonstrate the behaviour of WA* by experimenting with the algorithm in the
4 x 4 sliding tile and 14 pancake puzzle domains. Due to the space requirements of A*, the number
of nodes stored during problem solving on any single problem was limited to a million states.

For the sliding tile puzzle, the test set used consisted of 1, 000 randomly generated solvable 4 x 4
puzzle states. The total optimal cost of all 1,000 problems was found using IDA* and is 52, 522.
All the weights in the set W7 = {1.0,1.5,2.0,2.5, ...,25.0} were tested as were the weights in the
set Wy = {35,45,...,95}. The results for the sliding tile experiments are shown in Figure 2.9. Due
to the memory restriction, WA* was only able to solve 241, 897, and 996 of the 1,000 problems
with the weights of 1, 1.5, and 2, respectively. As such, these data points have been omitted from
Figure 2.9. Also note that a dotted line is shown in Figure 2.9(a) depicting the total optimal solution
length over all 1, 000 problems.

160000

2e+07
. ;
140000 o 1.8e+07 ‘
- 166407 |
120000 | - |
// 8 1ges07t
[ 8
100000 |- ¢ S 12407 %
;[ WA* —— i |
8000 T Optimal Solution Length e asdi
60000 z 8406 1 |
S 6e+06 | |
40000 = §
4e+06 | e
20000 |
0

20

Weight

100

ol e e
0 10 20 30740 56 &SP 90 100

Weight

Figure 2.9: WA* on 1, 000 4x4 Sliding Tile Problems

For the pancake puzzle, the test set is composed of 1,000 randomly generated puzzle states.
The total optimal cost of all 1, 000 problems was found using WIDA* and is 12, 775. The heuristic
function used is given by the < 0,1,2,3,4,5,6 > pattern database. The results for WA* are shown
in Figure 2.10. Due to the memory limit, WA* was unable to solve all problems with the smaller
weights. For the weights of 1, 1.5, 2, and 2.5 only 459, 883, 987, and 993 of the 1,000 problems

were solved, respectively. As such, these weights have been omitted from the figure. Also note that
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for this puzzle, all WA* searches with a weight of 10 or greater produced identical results. The data

points corresponding to weights larger than 10 have also been omitted from the the figures.
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Figure 2.10: WA* on 1, 000 14 Pancake Tile Problems

In both domains, the solution quality found by WA* during the experiments outperforms the
guaranteed upper bound by a large margin. As an example, consider the weight of 3 finds solution
paths that are on average 1.5 and 1.2 times more than the optimal cost in the sliding tile and pancake
puzzles, respectively. Moreover, with the weight of 10, the factor of suboptimality is only 2.3 and
1.3 in these puzzles, respectively. Figures 2.9(a) and 2.10(a) show that in these domains the solution
quality actually plateaus instead of growing linearly with the weight value.

Figures 2.9(b) and 2.10(b) show that as the weight increases, the search time generally decreases.
Part of the reason for this behaviour is the fact that in both of these domains, there is guaranteed to
be a solution in the subtree below any node n in the search tree. As such, taking a more greedy
approach by increasing the weight is an effective strategy. Note, that the amount of improvement in

search speed gained from increasing the weight diminishes for larger weight values.

2.9 Weighted IDA* (WIDA¥)

WIDA* is another well-known suboptimal search algorithm in which a weighted heuristic is used
in IDA*. In this section, we will show that WIDA* has the same bound on solution quality as
WA*. Several other properties of this search technique will be highlighted, including several of the

deficiencies of the algorithm. Finally, we will demonstrate the behaviour of WIDA* experimentally.

2.9.1 Bound on Solution Quality

We have been unable to find a proof for a bound on the quality of solutions found by WIDA* in the
search literature. However, in the work of Davis et al. [13], a bound is found for an algorithm called
A(}L which shares properties with both WA* and WIDA*. Below, we adjust this proof to make it

applicable to WIDA*, using much of the same notation as was used in Section 2.8.1.
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The first lemma is analogous to Lemma 2.8.3. In this proof, we will use the notation threshold(7)
to refer to the value of the global threshold on the :th iteration. The threshold function takes on a

similar role as the function U did in Lemma 2.8.3.

Lemma 2.9.1. For any single-agent search problem with a heuristic function h, any solution path

P found by IDA* will satisfy the inequality C(P) < Q.

Proof. Assume P is found on the ith iteration. P cannot be found until threshold(i) > @ since
there is some node n € P with f(P,n) > @ and n will not be expanded during an examination of P
until threshold(i) > f(P,n). Also notice, that if an iteration k starts such that threshold(k) > Q,
then all nodes on all paths in T can be expanded, and so a solution will necessarily be found before
the iteration completes. Below we will prove that threshold(i) must be exactly equal to Q.

Assume some iteration k begins with threshold(k) > @ without having an iteration k' €
{1, ...,k — 1} such that threshold(k) = Q. As threshold(1) = h(n;) = f(P,n;) < Q, k > 1.
Due to the depth-first nature of IDA*, every path P’ will be examined up until the first node m € P’
is found such that f(P’,m) > threshold. As the next threshold is set as the smallest such value,
the f-cost of a node that was generated but not expanded during iteration k — 1 was threshold(k).

For any Pg € Tq, Py was not found in iteration k — 1. However, during this iteration some node
ng € Py must have been generated but not expanded. As M (Pg) = @, necessarily f(Pg,ng) <
Q < threshold(k). This contradicts the choice of threshold(k), and so iteration k cannot have
threshold(k) > () unless an earlier iteration had a threshold of exactly Q).

Since the threshold value is also strictly increasing and threshold(i) > @, then threshold(i) =
Q. Therefore, M (P) = Q. By Lemma 2.8.1, C(P) < Q. O

It is now possible to prove the bound on WIDA*.
Theorem 2.9.2. If a solution path P is found by a WIDA* search with weight w, C'(P) < wC'x.

Proof. Let h denote an admissible heuristic and consider some constant w > 1. For any node n,
wh(n) < wh*(n) is satisfied. As such, by lemma 2.8.4 Q < wCx for WIDA* with weight w. By
lemma 2.9.1, C(P) < Q and so C(P) < wCx. O

While WIDA* and WA* both have the same bound on solution quality and are both limited to
returning solutions from Tq, in practice, the solution quality found by WIDA* is generally worse
than that found by WA*. This will be shown experimentally in Section 2.9.4. However, we will first

consider several other properties of WIDA*.

2.9.2 Effect of w on the Iterations of WIDA*

The first obvious question when analyzing WIDA* is how the search trees examined during any
iteration ¢ changes when different weights are used. In the case of the first iteration, it can be shown
that larger weights will always examine a larger search tree. This idea will be formalized in the

following theorem:
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Theorem 2.9.3. Consider the first iteration of two WIDA* searches in which the search does not
terminate when a solution is found and the same admissible heuristic function h is being weighted
in both searches. The first search will be performed with weight w1 and the second with weight
wo > wi. If a node n is expanded by the WIDA* search with weight w1 during the first iteration,

then it is also expanded by the WIDA* search with weight wa.

Proof. The proof is by induction. The base case is the node n;. As the threshold used in the first
iteration will be w1 h(n;) and woh(n;) for the weight w; and ws searches, rescpectively, clearly this
node will be expanded by both searches.

Now consider any path P of length N such that both WIDA* searches expand the first N — 1
nodes along P. Let n be the Nth node on P. If n is not expanded by the weight w; search, the
statement is vacuously true for n. Let f,, (n’) refer to the f-cost of node n’ when searching with
weight w1, and define f,, (n’) analogously. If n is expanded by the weight of wy, then f,,, (n) <
wih(n;). As such, g(n) + wih(n) < wyh(n;). This leads to the following algebraic manipulation:

g(n) +wih(n) < wih(n;) Q2.1
g(n) < wi(h(n;) — h(n)) (2.2)

g(n) < wa(h(ng) — h(n)) (2.3)

g(n) +wah(n) < woh(ny) (2.4)
Juwa(n) < wah(ng) (2.5)

Line 2.3 is possible since wy > wq and h(n;) — h(n) > 0. Therefore, n will also be expanded by
the search with weight ws. [

While the set of nodes expanded by any weight during the first iteration is guaranteed to be a
superset of the set of nodes expanded by any smaller weight during the first iteration, this is not the
case in subsequent iterations. An example of this behaviour is shown in Figure 2.11. In this figure, a
partial subtree is shown from left to right where each circle represents a node, the initial node is the
farthest leftward, and the lines represent edges. The number inside the node is the heuristic value
of the node. The number above the node is the f-cost of the node for a search with a weight of 1,
and the number below the node is the f-cost of the node for a search with a weight of 2. The initial
thresholds are set to the f-costs of the initial node. The nodes in bold correspond to the first iteration
for both weights. In this case the first iterations will be exactly the same.

The nodes labelled “A” and “B” will be generated but not expanded during the first iteration. On
the second iteration, the thresholds for the second iteration will be set to 12 and 21 for weights 1
and 2, respectively. Now consider “B” and all its descendents. The search with a weight of 2 will
expand all the nodes depicted, while the weight of 1 will expand all of these nodes except node “C”.

The fact that a larger weight will expand a larger set of nodes is unsurprising. However, consider

node “A”. This node will be expanded by the search with a weight of 1, but will not be expanded by
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Figure 2.11: Different Search Trees for Different Weights.

the search with a weight of 2. As such, on any iteration that is not the first, larger weights are not

guaranteed to search a superset of the nodes expanded by smaller weights.

2.9.3 Deficiencies of WIDA*

The main issue with WIDA* is that the search can become stuck searching large parts of the search
tree without any heuristic guidance. For example, consider a domain with a uniform branching
factor b in which all operators have a cost of 1. Let the admissible heuristic function being weighted
be denoted A and assume h is consistent. In such a domain, the heuristic value of a child n. can be
at most 1 more than the heuristic value of the parent n,. In this case, f(n.) = g(n.) + wh(n.) =
g(np)+1+w(h(n,)+1) = g(ny) +wh(n,)+w+1 = f(n,) +w+1. As well, the heuristic value
of a child . can be at most 1 less than the heuristic value of the parent n,,. By a similar calculation,
it can be shown that in this case, f(n.) = f(n,) — (w — 1).

Assume the current threshold is [ and that a node n is to be expanded. As the f-cost of any
node can be at most w + 1 greater than the parent, all nodes to a depth | (H — f(n))/(w+1) | below
n will be expanded during the current iteration unless a solution is found first. The minimum size of
this subtree will be Z = bLUH—f(n)/(w+1)] The key observation is that in this subtree, no pruning
will occur and WIDA* will be forced to perform a depth-first search with no heuristic guidance.

If h(n) is low, the value of H — f(n) will most likely be high and consequently so will Z.
Therefore, if a heuristic leads the search into an area of the state space with low heuristic values
but which is not actually near the goal, WIDA* must expand a large number of nodes before it can
backtrack to n. Even if there is a goal near n, WIDA* may still have to expand a large number of
nodes before finding it since the search has no guidance in the search tree of size at least Z.

In an extreme example of this behaviour, assume it is the first iteration (H = wh(n;)) and all
d moves that lead to n have decreased the heuristic value by 1. The f-cost of n is then f(n) =
d+ w(h(n;) —d) = d(1 — w) + wh(n;). The minimum depth below n to which all nodes must
be expanded is therefore |(wh(n;) — [d(1 — w) + wh(n,)]))/(w + 1)] = |d(w —1)/(w + 1)].

Therefore the minimum number of nodes in the subtree below n that can be expanded during the
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current iteration is exponential in d and increases as w increases.

2.9.4 WIDA¥* in the Sliding Tile and Pancake Puzzles

The WIDA* algorithm was also tested on the 1, 000 4 x 4 sliding tile puzzle problems, and the 1, 000
14 pancake problems that WA* was tested on. For both puzzles, the weights tested were those from
the set W, = {1.0,1.5,2.0,2.5,...,25.0}. The results of these experiments are shown in Figures
2.12 and 2.13.
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Figure 2.12: WIDA* on 1, 000 4x4 Sliding Tile Problems
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Figure 2.13: WIDA* on 1,000 14 Pancake Problems

In both puzzles, IDA* was able to solve all problems optimally unlike WA*. Figures 2.12(a)
and 2.13(a) demonstrate that while WIDA* outperforms the solution cost bounds guaranteed by
Theorem 2.9.2 (which are shown in the figure), the solution quality still degrades linearly. The
slopes of the total solution cost found by WIDA* are approximately 30,325 and 8,176 for the
sliding tile and pancake puzzles, respectively. Note, the slopes of the upper bound lines are given by
the optimal total solution costs of 52, 522 for the 4 x 4 puzzle and 12, 775 for the 14 pancake puzzle.

Figures 2.12(b) and 2.13(b) also show that both puzzles, the total number of nodes expanded
hits a minimum as the weight increases. However, in the sliding tile puzzle, increasing the weight

too far beyond this minimum causes the search efficiency to degrade quickly. This behaviour is not
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apparent in the pancake puzzle, in which the average search effort remains mostly stable beyond this
minimum. The minimum is hit at a weight of 5 for the 4 x 4 puzzle, although most of the weights
between a weight of 3 and 7 perform similarly. The minimum is hit at a weight of 9 for the 14

pancake puzzle although all weights from 4 to 25 perform similarly.

2.10 Weighted RBFS (WRBFS)

WRBES also has the same bound on solution quality as the other two weighted algorithms. While
this will not be proved formally, the argument is based on the fact that RBFS will expand nodes in
the same order as A* aside from differences due to tie-breaking. As such, RBFS will necessarily
only find solutions in Tg, each of which will be at worst w times the length of the optimal solution.

In practice, WRBFS generally outperforms this bound and finds solutions with similar quality to

those found by WA*. This behaviour will be demonstrated in the two test domains.

2.10.1 WRBFS in the Sliding Tile and Pancake Puzzles

In Figures 2.14 and 2.15 the results are shown for the experiments involving the use of WRBFS
for problem-solving on the 1,000 4 x 4 puzzles and 1,000 14 pancake puzzles, respectively. Like
IDA*, RBFS was able to solve all problems in both problem sets optimally.
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Figure 2.14: WRBFS on 1, 000 4x4 Sliding Tile Problems

In terms of solution cost, WRBFS has similar behaviour in both domains. Specifically, the
solution quality found by WRBFS is very similar to that found by WA*.

In terms of solution effort, WRBFES actually performs quite differently on both domains. In the
sliding tile puzzle, the behaviour of WRBFS is similar to that of WIDA* in that the relationship
between the value of the weight and the search effort is concave. However, WRBFS is actually
outperformed by WIDA* on every single weight value, despite the fact that WRBFS was designed
so as to avoid some of the deficiencies of WIDA*.

Even when comparing the algorithms at their peak performance on the 4 x 4 sliding tile puzzle,

WIDA* significantly outperforms WRBFS. The weight value for which WRBFS requires the least
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Figure 2.15: WRBFS on 1,000 14 Pancake Tile Problems

amount of total nodes expanded over all problems is the weight of 3. As mentioned in Section 2.9.4,
the weight that required the least amount of total nodes expanded over the problem set is the weight
of 5.5, which expanded 2.6 times fewer total nodes than WRBFS did with a weight of 3. This
difference in the performance of the two algorithms is magnified when one considers the behaviour
reported in the original RBFS paper that the running time needed per node expansion of WRBES is
greater than the running time needed per node expansion of WIDA*.

In the 14 pancake puzzle, the performance of WRBFS is quite similar to WIDA*. In WRBFS
all weights of value at least 10 produce an identical search, at which point a minimum is reached.
In WIDA*, the performance is quite stable for weights of size at least 4. WIDA* again outperforms
WRBFS on all weights with the only exception being the weight of 19 for which the number of
nodes expanded by WRBFS is slightly less than the number expanded by WIDA*. However, the
amount by which WIDA* generally outperforms WRBFS is much smaller. When comparing the
peak performance of these algorithms, WIDA* expands 1.9 times fewer nodes than WRBFS.

2.11 Beam Search and BULB

Another approach to suboptimal search is beam search. In this section, the general beam search
algorithm will be described. Enhancements that make beam search into the complete algorithm
known as BULB are then offered, and the behaviour of this algorithm is shown in experimentation.

Aside from the experiments, this section is based on the work of Furcy and Koenig [18].

2.11.1 Beam Search

Traditional beam-search is designed for unit-cost domains. The main data structure of a beam search
is the beam. Each beam is a container for at most B nodes, all at the same depth. B is referred to as
the beam width or beam size.

The algorithm begins with the construction of the initial beam beamg which holds only the initial

node n;. n; is then expanded, and the successors of n; are sorted. At most B successors with the
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lowest heuristic value then form the next beam: beam;. Similarly, the construction of an arbitrary
beam beamy, requires the expansion of all nodes in beamy_1. The generated nodes are then sorted
and the best B nodes that do not already exist in any of the other beams are then used to form beamy,.
If a goal node is found during the expansion of beamy_1, the solution of length k is extracted from
the beams and returned.

The process of constructing new beams is continued until a goal solution is found or some
memory limit L is hit. As at most B nodes at any depth are ever considered, beam-search is an

incomplete algorithm.

2.11.2 Beam Search with Limited Discrepancy Backtracking (BULB)

BULB is a variant of beam search that includes backtracking. Aside from the beam width parameter
B, BULB takes in a limit on the number of states that can be stored in memory at any time, de-
noted L. By adding backtracking, BULB becomes a complete algorithm provided that there exists a
solution that has a length of at most L/ B.

When the set of successors Speqm; of a beam beam; are generated and sorted, Sbmmj can be
divided into a number of slices denoted By, By, ..., By where (k — 1)B < |Sieam,| < kB. In the
ordering of Sbwmj, B; holds the nodes in positions (¢ — 1) B to i B — 1. For example, By holds the
top B nodes ordered by heuristic value.

The BULB algorithm is shown in Figure 2.16. One of the main concepts behind this algorithm
is the notion of a discrepancy developed by Harvey and Ginsberg [21]. As extended by Furcy and
Koenig, a discrepancy occurs when instead of using B; in the construction of the next slice, some
slice B; is used, where j > 1. For example, consider some beam; whose list of successors can
be split into 3 slices: By, Bs, and Bs. Instead of constructing beam ;1 out of the nodes in B; as
traditional beam search would, the new beam can be constructed from the nodes in B>. When a
beam is constructed in this way, a discrepancy is said to occur. Note, if the new beam is created with
B3, we still say only a single discrepancy has occurred.

The BULB algorithm runs iteratively with an increasing limit on the number of discrepancies
that can be used. Each iteration corresponds to one pass through the loop beginning at line 5 of the
BULB algorithm. The value of the discrepancy limit d on the first iteration will be 0. At any time
during an iteration with limit d, no more than d beams in memory can have been constructed using
some slice other than the first.

The order in which discrepancies are selected to occur is given by limited discrepancy backtrack-
ing. Backtracking begins whenever the memory limit is reached without having found a solution.
At this point, beams will be removed until some beam; is found such that beam . was constructed
using a discrepancy. Where B; was last used to construct beam;1, B;11 will be used this time.
This behaviour is caused by line 10 of the RecursiveBulb which iterates through the discrep-

ancies. If no such B, exists, beam ;1 will be constructed without a discrepancy, using B; (line
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BULB(Initial State s;, Beam Size B, Memory Limit L):

D AN o

d—0
BEAMS < empty set of beams
Construct initial node n; with state n;.state = s; and n;.parent = null
Construct beam with n; being the only node on it and add beam; to set BEAM S
loop

RecursiveBulb(BEAMS, B, L, d)

if a solution was found then

return found solution
d—d+1

GetSuccessors(BEAMS):

1:
2:

Generate successors Speqm, of deepest beam beamy, € BEAMS
Remove all Duplicates from Sy, and any nodes already in some beam in BEAM S

RecursiveBulb(BEAMS, B, L, d):

—_

_..—
= @

R A A

Sp, «—GetSuccessors(BEAMS)
if S is empty then
return without solution
else if (|Sb| + ZbeaijBEAMS |beamj|) > L then
return without solution
else if S;, contains a goal node then
return solution extracted from BEAM S
if d > 0 and |S,| > B then
num — [y]/B]
forall j € {2,3,...,num} do
Sort Sy and find jth slice B;. Delete all other nodes in S,
Construct new beam beamy,1 consisting of nodes in B;
RecursiveBulb(BEAMS, B, L,d — 1)
if a solution was found then
return found solution
Remove beamy41 from BEAMS
S, «—GetSuccessors(BEAMS)
Sort Sy and find 1st slice By. Delete all other nodes in S;,
Construct new beam beamy, 1 consisting of nodes in By
RecursiveBulb(BEAMS, B, L, d)

. if a solution was found then

return found solution

: Remove beamy, 1 from BEAM S

return without solution

Figure 2.16: The BULB Algorithm.
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Total Solution Cost

18). Note, if backtracking reaches the first beam and the second beam was constructed without a
discrepancy, then the number of discrepancies is incremented and a new iteration will begin.

This scheme is designed so as to first reconsider decisions made near the root of the tree where
the heuristic function is expected to be the least accurate. This behaviour is caused by line 8 of the
RecursiveBulb procedure which uses available discrepancies as soon as possible. Also notice,
that as there are no discrepancies allowed on the first iteration, this iteration will proceed identically

to a traditional beam search.

2.11.3 Properties of BULB

The main advantage that BULB has over standard beam-search is that BULB is complete. This
property is ensured by the limited discrepancy backtracking.

Unfortunately, unlike WA*, WIDA*, and WRBFS, there are no guaranteed bounds on the sub-
optimality of the solution returned by a BULB search. However, even without such guarantees,
there are clear trends. As the beam size of a beam search approaches 1, the search degenerates into
a greedy search. As the beam size approaches infinity, the search will degenerate into a breadth-first
search. As such, beam search (and subsequently BULB) will tend to increase the solution quality

with the beam size.

2.11.4 BULB and the Sliding Tile and Pancake Puzzles

BULB was tested on both the 4 x 4 sliding tile and 14 pancake test sets that the other algorithms
were tested on. A variety of beam widths from 2 to 1,000 were considered. The value of L for all
of these experiments was set at 50, 000. The results are seen in Figures 2.17 and 2.18. Notice that

in both figures all axes are in logarithmic scale.
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Figure 2.17: BULB on 1,000 4 x 4 Sliding Tile Problems.

In the case of the 4 x 4 sliding tile puzzle, the algorithm never had to backtrack under the given
memory constraints. As such, the results are the same as would be found by a standard beam search.

The only beam width for which backtracking was necessary on the 14 pancake puzzle was that of 2.
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Figure 2.18: BULB on 1, 000 14 Pancake Sliding Tile Problems.

In both puzzles, BULB exhibited the expected behaviour of finding poor quality solutions with
small beam sizes and high quality solutions with large beam sizes. This effect was most prominent
in the sliding tile puzzle for a beam size of 2 with which the average solution found was almost 29
times greater than the optimal solution length. In comparison, the beam size of 1000 found solutions
only 1.11 times greater than the optimal length.

In the case of search effort, BULB reaches a minimum in the sliding tile puzzle at a beam width
of 6. The minimum for the pancake puzzle was actually hit at a beam size of 2. Figures 2.17(b) and

2.18(b) show that the search effort grows significantly beyond these minimum beam widths.

2.12 Chapter Summary

This chapter began with the formalization of the single-agent search problem in Section 2.1. The
algorithms of A*, IDA*, and RBFS were then introduced in Sections 2.3, 2.4, and 2.5 respectively.
These algorithms are capable of finding the optimal solution paths for any single-agent search algo-
rithm provided that the heuristic function is admissible.

Unfortunately, these algorithms often require an excessive amount of problem-solving time or
have large memory requirements. One solution to this problem is the use of inadmissible heuristics
which often find solutions quicker at the expense of solution quality. The idea of weighting heuristics
so as to achieve an inadmissible heuristic function was then introduced in Section 2.6.

In order to demonstrate how different weights affect the search speed and solution quality found
by the aforementioned algorithms, the M x N sliding tile puzzle and N pancake puzzle domains
are introduced as test beds. A set of experiments are performed in these domains with the weighted
variants of A*, IDA*, and RBFS in Sections 2.8, 2.9, and 2.10, respectively. These sections also
include theoretical analysis of these weighted algorithms. Of particular importance is that if the
weight on a admissible heuristic used in these weighted algorithms is w > 1, then the cost of any
solution found will be at most w times the optimal solution cost.

The chapter concludes with a description of the beam search algorithm, as well as the complete
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variant known as BULB. The performance of this algorithm in the sliding tile and pancake puzzles

is then demonstrated.
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Chapter 3

Configuration Selection and
Dovetailing

The problem of finding an effective set of parameters for an algorithm is not specific to single-agent
search. In this chapter, we examine some of the previous approaches to this problem, discuss their
applicability to suboptimal search algorithms, and then describe an alternative strategy called dove-
tailing. Instead of committing to a single set of parameters, dovetailing involves the simultaneous
consideration of multiple settings. The chapter will conclude with a description of the properties of
dovetailing and related work.

Before continuing, it is necessary to introduce some notation, much of which is based on the
work of Hutter ef al. [26]. Let us first consider the idea of a configuration. A configuration 6 for
an algorithm a will refer to the set of all design decisions made for the implementation and appli-
cation of a. These design decisions include those concerning heuristic function selection, random
number generator, seeds, operator ordering, parameter values, etc. Each of these choices may have
a numerical domain or be selected from a set (such as operator ordering). The instance of a with
configuration 6 will then be referred to as a(6).

In many of the experiments, all of the configurations in a finite set will share many of the same
design choices. For the sake of simplicity, these static choices will be omitted when describing the
different configurations. For example, if #; and 65 are two configurations of WIDA* that differ only
in the weight parameter w, the configurations will be written as §; = {w = w;} and 3 = {w =
ws }, where w; and w- are the values of the weight values in each configuration, respectively.

For any search problem p, we can now let exp(a, 8, p) denote the number of node expansions
required by a(6#) during problem solving on p. We will also define the batch results of a(f) over a
problem set P as the total number of nodes expanded over all problems in P by a(6). Formally, this

definition is given by the following:

batch(a, 8, P) = Z exp(a,,p).
peP
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3.1 Batch Tuning

A natural approach to configuration selection is to evaluate the performance of a number of configu-
rations on a test set and select the configuration with the best average performance. This strategy will
be referred to as batch tuning. In general, batch tuning involves finding the configuration with the
smallest batch value over a test set. Note, while any variation of batch tuning is an offline procedure,
it may still require an immense cost in terms of time.

The simplest version of batch tuning involves testing all possible combinations of design choices.
In the literature, this strategy is referred to as full factorial design [26]. Unfortunately, this approach
is generally intractable due to the size of the design choice space.

An alternative approach to batch tuning is local search. Traditionally, this has been a manual
process that begins with some initial configuration. The researcher then adjusts the configuration in
hopes of improving performance. The perturbation of the configuration is mainly based on intuition
and experience. The process continues until either no further improvement is found or some resource
limit (such as time) is reached. The configuration with the best average performance is then used for
future searches.

In the work of Hutter et al., this local search procedure is automated [26]. The resulting pro-
cedure is called Iterative Local Search in the parameter space. In this procedure, the informed
perturbation is replaced with the random selection of a neighbour of a configuration, where the
neighbourhood relation is defined by the user. The natural definition of this relation, and that used in
practice, is such that two configurations are considered neighbours if the two differ by exactly one
design choice. For each new iteration, the configuration considered is the neighbour that improves
in performance over the perturbed configuration (if such a configuration exists). Ocassionally, the
algorithm will jump to a completely random configuration so as to avoid becoming stuck in a local
minimum. A faster variant of this algorithm, called Focused Iterative Local Search in the parameter

space, is also considered. We do not describe this algorithm in detail here.

3.2 Deficiencies in Batch Tuning

As described in Chapter 1, parameter tuning is both algorithm and domain specific. This behaviour
can be seen in the experimental results presented in Chapter 2. For example, compare Figures
2.14 and 2.15 which show that WRBFS can have widely different behaviour in different application
domains. As such, the offline process of parameter tuning needs to be performed independently for
each individual domain.

Another issue with parameter tuning is that even within the same domain, a setting which ex-
hibits strong performance on any one problem is not guaranteed to exhibit strong performance on
all problems. Even the single parameter setting that has the lowest average amount of search effort

may perform poorly on a number of individual problems.
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In order to demonstrate this behaviour, consider the following example: suppose that for any set
of configurations O, there exists a system that could indicate exactly which of the configurations in
O required the least amount of search effort in solving some problem p. This system will be referred
to as a configuration oracle. When solving p, the amount of search effort needed when informed by

such an oracle will be denoted by oracle(a, ©, p). This value is given by the following formula:
l O,p) = mi 0,p).
oracle(a, ©,p) = min exp(a, §,p)

Similarly, oracle(a, ©, P) will denote the total number of nodes expanded over an entire prob-

lem set P by the oracle, formally expressed as follows:

oracle(a,®, P) = Z oracle(a, ©,p).
peP

Now recall the experiments performed in Section 2.9.4 on the 4 x 4 sliding tile puzzle with the
WIDA* algorithm and the weight set {1.0,1.5,2.0,...,24.5,25}. Each of these weights forms a
different configuration, the set of which we will refer to as W. A similar set of experiments were
also performed on a set of 100 4 x 4 puzzles. This test set is composed of the solvable puzzle
instances used in the original IDA* paper [30]. This test set will be used a number of times in the
remainder of this thesis and will be referred to as the Korf test set from now on. The configuration
in W which had the lowest number of total nodes expanded over all problems in this test set is the
configuration with the weight of 5.5. This configuration expanded a total of 2, 563, 731 nodes.

Testing these configurations involves the calculation of exp(WIDA*,w, p) for each problem
p and configuration w € W. Once this data has been collected, it is trivial to calculate
oracle(WIDA*,W, p). The value of exp(WIDA* {w = 5.5}, p)/oracle(WIDA*, W, p) is then an
indication of how close the weight of 5.5 is to the best weight in W on problem p. If the value of
this ratio is 1, then the weight of 5.5 is the best for the problem of all weights in the set. In Figure
3.1(a), for each of the 100 problems, the value of this ratio is shown. Problems are numbered in
ascending order of nodes expanded on that problem by the weight of 5.5. Note the logarithmic scale
of the y-axis.

Let 65 5 denote the configuration {w = 5.5}. Notice that 65 5 is the best configuration in W for
only 3 of the 100 problems and that for 48 problems there exists a configuration in W that requires
10 times fewer node expansions than 65 5. If an oracle was available it would only expand a total
of 74,987 nodes which corresponds to an expansion of 34 times fewer nodes than is done by the
configuration of 05 5. These facts demonstrate that there is the potential to significantly outperform
the single configuration found by batch tuning if configurations could be correctly selected on a
problem-by-problem basis.

The same experiment was replicated for each of WRBFS, WA*, and BULB and the results are
shown in Figures 3.1(b), 3.1(c), and 3.1(d) respectively. The weight sets used for WRBFS and WA*

were the same as the candidate weight set used in WIDA*, and the best weights for these algorithms
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Figure 3.1: A Comparison of the Configuration with the Best Average Performance over 100 4x4
Sliding Tile Problems to an Oracle.

Problem Number in Order of Difficulty for Beam Size 7

was found to be 5, and 9.5 respectively. The candidate beam size set is the same as that used in
Section 2.11.4, with the best beam size found being 7. Note that the different figures have different
scales for the y-axes.

WRBES shows very similar behaviour as WIDA* in that the problems that were difficult for the
weight of 5 were beat the most by other weights. While a similar trend is evident for BULB, the
effect is not as pronounced. On the other hand, the problems which were hardest for WA* with a
weight of 9.5 were not necessarily significantly outperformed by other weights.

Also notice that the effectiveness of the oracle is greatly dependent on the algorithm being used.
For example, the weight of 5 was only outperformed by the oracle by a factor of at least 10 on
30 problems. The oracle was even less effective in WA* and BULB. With WA*, the oracle only
outperformed the weight of 9.5 by at least a factor of 10 on 2 problems. In BULB, the oracle never

outperforms the beam width of 7 by a factor of 10 on any of the problems tested.

3.3 Per-Instance Tuning

These results suggest there is potential for the use of problem-by-problem configuration selection
or per-instance tuning. In this strategy, problem solving on a problem p begins with an information

collection stage and then a configuration is selected specifically for p.
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The EUREKA system is one such example of the use of per-instance tuning in single-agent
search [11]. EUREKA was designed to address the fact that different problems should be solved
optimally using different search parallelization techniques. For each problem, the EUREKA system
builds a custom parallel version of IDA*. The system does so by collecting statistics during a
breadth-first expansion of 100,000 nodes. These statistics are then fed into a decision-tree that builds
a parallel IDA* instance by selecting between various methods of task distribution, load balancing,
and node ordering. The decision tree is trained using a set of problem instances, each annotated with
the combination of techniques found to be most effective for that problem.

Per-instance tuning has also been successfully applied in other fields. For example, in local
search SAT solvers, there is often a noise parameter which determines how often the solver makes
random decisions as opposed to heuristically suggested decisions. In Auto-Walksat, a number of
initial iterations are used to estimate a particular invariant which is used to find a good value for
this noise parameter [36]. Other examples include the work of Horvitz et al. [25] which considers
determining a per-problem restart policy for constraint satisfaction problems and SAT solvers, and
the work of Lee and Bulitko [32] which considers the use of genetic algorithms as a way to improve
the development of policies for the automatic construction of image recognition systems through the

use of a classifier. A more complete description of these works is beyond the scope of this thesis.

3.3.1 Issues with Per-Instance Tuning

While the results in Section 3.2 suggest that the use of per-instance tuning in suboptimal search
algorithms has significant potential, there are several issues that must be overcome before the de-
velopment of any such system. The main requirement for such a system is the construction of a set
of features that do well to predict the configuration to use. Finding such a set is a difficult problem,
particularly if the system is expected to generalize across multiple domains.

The performance of the weighted linear-space algorithms of WIDA* and WRBFS demonstrate
an additional problem. Consider Figure 3.2 which shows the nodes expanded by WIDA* when using
weights in the set {2.0,2.25,2.5,2.75, 3.0, ...,24.75,25.0} on two 4 X 4 sliding tile puzzle prob-
lems. These are the two hardest problems in the Korf test set for IDA*. The figure demonstrates that
the number of nodes expanded is not necessarily a smooth function of the weight. As small changes
to the weight value can result in drastic changes in search effort, even very small mistakes in classifi-
cation can result in poor performance. Moreover, as the peaks and valleys over the two problems do
not correspond, the figure offers further evidence as to the importance of proper parameter selection.

In Figure 3.3, the same experiment was run with WRBFS instead of WIDA*. While the function
shape for problem 100 is smoother than that for WIDA*, there are many artifacts from the discrete
nature of the domain in problem 99. Figure 3.3 also indicates that the selection of the weight
set can be very important to such classification. In this case, the relationship between weight and

work would appear much smoother if a coarser set of weights was initially used. This issue further
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Figure 3.2: The number of nodes expanded by WIDA* on two 15-puzzle problem when using
weights 2 through 25 incremented by 0.25.
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weights 2 through 25 incremented by 0.25.

While EUREKA [11] effectively uses a classifier for the selection of a configuration for parallel
IDA*, several of the features used for classification were specifically designed to inform parallel
configuration selection. For example, one of the features detected is the imbalance which is defined
as a measure of how evenly the subtrees of the search tree are distributed. A second feature is the it-
eration branching factor which determines the ratio of subsequent IDA* iterations and is considered
in more detail later in this thesis in Section 5.4. Both of these features are expected to significantly
aid in the selection of a task distribution technique, but it is unclear if these features can inform the
selection of a configuration for suboptimal single-agent search.

While per-instance tuning remains an interesting direction for future work — particularly through
the use of a classifier as is done by EUREKA — it will first be necessary to resolve the issues re-
garding feature selection and the sensitivity of search to small changes in parameter values. As such,

we will consider an alternative to both batch tuning and per-instance tuning in the next section.
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3.4 Dovetailing for Single-Agent Search

In Section 3.2 it was shown that there is significant room for improvement over the use of any single
parameter value as found by batch tuning. In Figures 3.2 and 3.3, we have also shown that the
parameter values that require a near minimum amount of work on any single problem need not be
similar. Together, these results suggest the idea of simultaneously searching the space with multiple
parameter values so as to increase the probability that at least one of the values will show good
performance on each problem instance. To this end, we consider the use of dovetailing.

Dovetailing is a strategy that takes as its input a problem p and a set of ordered pairs of search
algorithms and configurations A = {(ag, 60), ..., (an, 0,,)} where for each i, 6; is a configuration of
algorithm a;. The output of dovetailing is a solution to p. The set A is called an algorithm portfolio
and each pair in A will be called a candidate algorithm.

For our purposes, we will make several simplifications. We will assume that each candidate
algorithm performs the search in a series of steps and the work done during each step is comparable
between algorithms. Unless otherwise stated, it will also be assumed that all candidate algorithms
share the same base algorithm (ie. a9 = a1 = ... = a,) and differ only in the configuration
being used. As such, we will often refer to the input of dovetailing as being a candidate set of
configurations for an algorithm a, instead of as a set of candidate algorithms.

Dovetailing is a technique by which a parallel algorithm is run on a single processor. Intuitively,
dovetailing involves interleaving the work done by each algorithm. Formally, dovetailing consists of
a number of rounds. Each round works as follows: each candidate algorithm will, in order, advance
its search by a single step. If some candidate algorithm finds a goal on its turn, the solution found
will be returned and dovetailing will stop. If a round completes without having found a solution, a
new round begins. Note that during dovetailing, each of the candidate algorithms is performing a
completely independent search. As such, there is no memory shared between configurations, and
communication is restricted to messages indicating that a solution has been found on the current
problem and the search should stop.

By having each algorithm advance by a single step during each round, dovetailing ensures that
at all times, any candidate algorithm in A will have performed approximately as much work as any
other. As such, the total problem-solving time taken by dovetailing on a problem p will be approxi-
mately | A| times the problem-solving time of the candidate algorithm with the best performance on
D.

We will also consider the parallelization of dovetailing, called parallel dovetailing, in which each
of the candidate algorithms in A is assigned to one of |A| processors each with its own memory. In
parallel dovetailing, each processor will perform a completely independent search on a problem
p. Communication is limited to messages indicating that p has been solved and processors should
proceed to the next problem. As such, the time of a search taken by parallel dovetailing using |A]

processors will be approximately a factor of | A| less than the time taken by dovetailing on a single
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processor.

In all experiments in this thesis, the algorithms have been implemented so that each step ad-
vances the search by exactly one node expansion. Under our additional assumptions, the number of
nodes expanded by dovetailing with an algorithm a over a candidate set of configurations © on a
problem p will be at most |©| * oracle(a, ©, p). While parallel dovetailing will perform the same
amount of total work over all processors as single processor dovetailing, the search time will be

approximately reduced to the time needed by a single processor to expand oracle(a, ©, p) nodes.

3.4.1 Dovetailing and Memory

Many of the properties of dovetailing will be related to the properties of the candidate configurations.
For example, if each of the candidate algorithms has bounds on the solution suboptimality, the
solution suboptimality of the dovetailing search will be the maximum of the individual bounds.
Similarly, the memory requirement of both parallel and single processor dovetailing is exactly
the sum of the memory requirements of each of the individual algorithms. As such, dovetailing is
problematic for memory intensive algorithms such as weighted A* except in parallel systems where

each processor has its own memory. Systems of this type are said to have distributed memory.

3.4.2 Dovetailing and Diversity

If a search algorithm is misled by a heuristic it may spend a lot of time considering unneccessary
areas of the state space. One approach to this issue is to expand multiple candidate paths in parallel
so as to introduce diversity into the search. This is the strategy taken by beam searches and the
KBFS algorithm [16]. In practice, diversity helps to decrease the probability of becoming stuck in a
heuristic local minima or an area with many dead-ends.

Dovetailing will achieve diversity in search provided there is diversity in the behaviour of the
candidate algorithms selected. If the algorithms all search the state space in a similar manner, any
differences in search effort between candidate algorithms will be small. In these situations, any
improvement made by an oracle will be overwhelmed by the cost of running multiple algorithms.
For example, note that the worst case for dovetailing over k instances of an algorithm occurs when
the candidate algorithms are identical, in which case dovetailing will take k times as much time as
is necessary.

If the candidate algorithms do perform a diverse set of searches, there is an increased chance that
at least one of these algorithms will avoid dead-ends or heuristic local minima. In this way, diversity
in the candidate set allows for different configurations to overcome the weaknesses of others. It is

this aspect of dovetailing that will lead to its strong behaviour in practice.
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3.5 Related Work

As far as we know, dovetailing has only been previously considered for suboptimal search by Kevin
Knight [28]. This work concentrates on Real-Time A* (RTA*) which is a real-time variant of A*. A
key parameter for RTA* is the lookahead value. Increasing the lookahead value generally increases
solution quality. Small lookahead values also tend to increase the stochasticity of the algorithm.

For small lookaheads, RTA* is often forced to randomly break ties between states. Knight
observed that by dovetailing many instances of RTA* with a lookahead of 1, the solution quality
increased dramatically over running a single instance with a lookahead of 1. Dovetailing over many
instances with a lookahead of 1 also found solutions much quicker than having a single instance
with a larger lookahead that achieved a similar average solution quality.

Note, in the work by Knight, the only difference in the configurations is the random number
generator seed. In this thesis, we will be generalizing this idea and showing that dovetailing can be
used in suboptimal search on a variety of parameters.

Parallel Window Search (PWS) is a parallel version of IDA* [39]. In this algorithm, each pro-
cessor performs an IDA* search with a different cost threshold. These cost thresholds are selected so
as to correspond to a consecutive set of IDA* iterations. When a processor completes its iteration, it
begins again with the next smallest unexplored cost threshold. By simply returning the first solution
found by any processor, PWS can be used to find suboptimal solutions.

PWS is a special case of parallel dovetailing as each processor can be thought of as being as-
signed an incomplete algorithm that performs a single iteration of IDA*, each with a different thresh-
old. Since each iteration is a proper subset of all subsequent iterations, these searches will not be
diverse. This lack of diversity explains why PWS with multiple processors outperforms a single-
processor version of WIDA* (with weights selected so that the solution quality of the two algorithms
is similar) in terms of search time but not in terms of total work.

Dovetailing is also related to the use of restarts in SAT solvers such as MiniSat [14] and Chaff
[34]. These solvers perform a depth-first-like search where at each step, some variable is assigned a
value. After a certain number of partial variable assignments are found to be invalid, the depth-first
search restarts with all variables unassigned. Because SAT solvers can learn new constraints during
search, restarts allow the decisions made near the root of the search tree to be more informed.

One of the motivations for restarts is the fact that it may take a long time to prove that choices
made early in the depth-first search are poor. By restarting and instantiating with more information,
this effect can be minimized. Instead of restarting the search, dovetailing approaches this problem
by simultaneously searching with multiple algorithms so as to increase the probability that at least
one of them will perform well — provided there is diversity in the candidate configurations.

Fast Downward is a automated planning system which uses a multi-valued state representation
and a heuristic based on causal graphs [22]. Part of this system is the multi-heuristic best-first

search. In this search, there are two OPEN lists, each of which is ordered by a different heuristic.
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The algorithm alternates between open lists when selecting nodes for expansion so as to overcome
the deficiencies of each heuristic.

Both dovetailing and multi-heuristic best-first search simultaneously search the state-space with
different choices. The main difference is that dovetailing completely separates the different algo-
rithm variations while multi-heuristic best-first combines them. As multi-heuristic best-first search
is a specific enhancement to A*, and we are interested in ideas that generalize across algorithms, we
will not consider multi-heuristic best-first search again in this thesis.

In contrast to systems that select configurations on a per-problem basis, there are also those that
dynamically alter the configuration at each step of algorithm execution. In this end, Russell and
Wefald [41] considered estimating the amount of computation that may be necessary to improve
upon the best move found at any time in real-time systems. In their paper, the authors develop a
system which dynamically adjusts resource allocation based on this estimation. Alternatively, there
is the work of Bulitko et al. [5] in which both subgoal selection and lookahead depth in an LRTA*
search are adjusted dynamically based upon the recent history of the search. As these works perform

configuration selection at a different level of algorithm execution, we will not consider them further.

3.6 Chapter Summary

This chapter began with a description of the notation necessary for the consideration of configuration
selection. A first approach to this problem, batch tuning, is described in Section 3.1. Unfortunately,
batch tuning suffers from the fact that the configuration which has the best average performance on
a set a problems will often perform very poorly on several individual problems.

Another approach to configuration selection is per-instance tuning which is described in Section
3.3. While this remains an intriguing direction for future work, the approach is problematic since
any such classifier will be both domain and algorithm specific. Moreover, the relationship between
configuration settings and the search effort is not necessarily smooth which poses additional issues
for classification. Despite these problems, the potential of per-instance tuning suggests that this
approach remains a promising area for future work.

The strategy of dovetailing is then described in Section 3.4. This simple approach is an alter-
native to either batch and per-instance tuning and involves simultaneously searching with multiple
configurations at once. Several properties of this approach are outlined. The chapter then concludes

with a discussion of related work.
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Chapter 4

Dovetailing Over the Main
Parameter Spaces of Search
Algorithms

This section will be concerned with dovetailing over configurations that only differ in the value
assigned to the main parameter of each of the WA*, WIDA*, WRBFS, and BULB algorithms. The
parameters of interest for these algorithms will be the weight in the case of the weighted algorithms,

and the beam width in the case of BULB.

4.1 Experimental Design

Where O is a set of candidate configurations for an algorithm a, the number of nodes expanded
during search when dovetailing over © on a problem p will be denoted by dove(a,©,p). The
total number of nodes expanded over an entire problem set P will be denoted dove(a, ©, P) and is

calculated as follows:

dove(a,©, P) = Z dove(a, ©,p).
peP

Most of the experiments in this chapter and Chapter 5 were performed by simulating dovetailing
as detailed below. To help demonstrate this procedure, we will also include an example.

When testing the performance of dovetailing on an algorithm a, a set of configurations {2 was
initially selected. 2 will be referred to as the starting configuration set. For our example, the algo-
rithm of interest will be WIDA*, and the starting configuration set will consist of 4 configurations:
0t = {w = 5}, 0}y = {w = 10}, 0]5 = {w = 15}, and 05y = {w = 20}. {w = j} is defined as
the configuration with the weight value set to j.

For some problem set P, the value of exp(a,f,p) was found for each p € P and § € Q by
running a(6) on p. Table 4.1 shows this information for the 4 configurations in our example on the

3 easiset 4 x 4 sliding tile puzzle problems in the Korf test set. Notice that the number of nodes
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Solution Costs and Nodes Expanded
By Each Configuration
Problem o 010 0] 040
Cost | Nodes | Cost | Nodes | Cost Nodes Cost Nodes
1 120 | 3,326 | 218 3,631 338 21,167 446 | 198,216
2 149 8,106 | 285 | 2,984 435 | 106,380 557 4,163
3 130 | 11,164 | 240 | 19,709 348 | 94,722 480 1,279
Totals 399 | 22,596 | 743 | 26,324 | 1,121 | 222,269 | 1,483 | 203,658

Table 4.1: The Number of Nodes Expanded by WIDA* with 4 Configurations on 3 4 x 4 Sliding
Tile Puzzles.

expanded by the configuration which expanded the least number of nodes on each problem is shown
in bold.

Once this data had been collected, dovetailing can be simulated for any set of candidate algo-
rithms © C . To perform a simulation of dovetailing with ©, the configurations in © are given
an order 61,0, ..., 0y, where |©| = k. For any problem p, the collected data was used to find the
configuration 6; such that ; = arg mingece exp(a, 8, p) and where 6; is the ith configuration in the
ordering of the candidate sets. The exact number of nodes expanded when dovetailing over © with

the above ordering is then given by:
dove(a,O,p) = (exp(a, b;,p) — 1) x k + 1.

To see why this relation holds, consider the candidate set ©’ consisting of the two configura-
tions of A and 65,. The configuration ordering we will use is {65, 05,}. On the first problem, the
configuration in the subset that expands the least number of nodes is 65 which only expands 3, 326
nodes. During dovetailing, both configurations will each expand 3,326 — 1 = 3, 325 nodes without
finding a solution. On the 3, 326th round of dovetailing, 6 will expand a node, find the solution,
and stop the dovetailing procedure. Since 5 is before 05, in the ordering of the configurations, 65,
will not perform a node expansion in this final round. In general, where the configuration that solves
the problem is the ith in the ordering of the configurations, ¢ nodes will be expanded during this last
round. Therefore, the number of nodes expanded by dovetailing over the two configurations on this
problem will be (3,326 — 1) x 2+ 1 = 6,651.

On the second and third problems, 8% is the best configuration of the two in ©’. By performing
the same calculation as above, we find that dovetailing over these two configurations will expand
8,326 and 2, 558 nodes on the second and third problems respectively. Therefore, dovetailing over
these two configurations will expand a total of 17, 535 nodes on this 3 problem test set.

With regards to the solution costs found using dovetailing, it should be clear that this will depend
on which configuration solves each problem. With the selected candidate set, the 3 problems will be
solved with length 120, 557, and 480 respectively, for a total cost of 1, 157.

Notice that the difference between the number of nodes expanded by the best ordering of the
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configurations in the candidate set and the worst ordering of the set will be exactly £ — 1 on any
single problem. In our experiments, dove(a, ©, p) will usually be many orders of magnitude larger
than k and so the ordering of the configurations in the candidate set will have no significant impact
on search speed. As such, we will not consider the problem of configuration ordering again in either
this chapter or Chapter 5 except to note the ordering used. In this chapter, configurations are ordered
in ascending value of the main parameter value being considered, which will either be the weight or
beam width.

The purpose of testing through simulation is that it allows us to efficiently calculate the perfor-
mance of dovetailing on a large number of candidate sets. Where there are n configurations in the
starting configuration set, there are (Z) possible candidate sets of size k. In practice, where n < 15,
we will simulate dovetailing on all (Z) sets. For larger initial starting configuration set sizes, the
number of candidate sets tested is capped at 10, 000 per candidate set size k£ and the subsets tested
are selected randomly.

For a set of n configurations and a configuration set size of k, the average number of nodes
expanded over all min((7}), 10,000) candidate sets tested will be recorded, as will the number of
nodes expanded by the candidate sets that have the shortest and longest search times. Going back to
our example with the starting configuration set that contains 6%, 8/, 8’5, and 8%, let us consider all
(3) = 6 possible candidate sets of size 2. The candidate set with the least amount of seach time is
given by {6, 05,} which expands 15, 786 nodes. The worst configuration set is {65, 85, } which
expands 53, 217 nodes. The average number of nodes expanded over all 6 configurations is 36, 553.

Most of the figures in this chapter will depict the number of nodes expanded by dovetailing
as a function of the candidate set size. For each tested candidate set size k, the figures will show
the performance of the best and worst candidate sets of size k and the average performance over
all candidate sets of size k tested. Note, different sized puzzles will be tested with each of the
algorithms considered due to the differences in the ability of each of the algorithms to scale to
larger domains. For the largest puzzle in each domain tested with an algorithm A (in which a large
number of configurations capably solved all problems), we will also depict the performance of A
with individual configurations and with parallel dovetailing over some starting configuration set, as
a function of the solution quality achieved.

Unfortunately, the large search time needed when problem-solving in the larger domains with
WIDA* and WRBFS prevented the calculation of exp(WIDA*, 6, p) and exp(WRBFS, 6, p) for all
configuration-problem pairs. For example, of the weights considered for WIDA* in the 6 X 6 sliding
tile puzzle, only the weight of 5 solved all puzzles in the problem set of size 100 after a week of
computation. As several of these weights were expected to require months of problem-solving time,
large-scale simulation was deemed infeasible in this domain.

Instead, a restricted set of data was collected so that dovetailing could at least be simulated over

the single candidate set containing all configurations in the starting configuration set. For all config-
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urations 6 € €Q, the search on a problem p was bound to expand no more than exp(WIDA*, {w =
5}, p) nodes. If 6 was unable to do so, p was recorded as unsolved by 6.

However, where exp(WIDA* 0,p) > exp(WIDA* {w = 5},p), the actual value of
exp(WIDA* 6, p) does not matter when performing a simulation of dovetailing over any candi-
date set containing {w = 5}. This is because {w = 5}, if not some other faster configuration, will
solve p. Therefore, dovetailing over all configurations in {2 can still be simulated. Note, we have
taken this approach so that it would be possible to compare the performance of dovetailing to the
performance of the configuration with the lowest average search time on the problem set (which is
the configuration with the weight of 5 in this case).

Recall that when using parallel dovetailing over a candidate set O, the search time on any prob-
lem p will approximately be dove(a, ©,p)/|0| when |O| processors are available. In general, we
will only describe the speedup achieved from parallel dovetailing over all configurations in the
starting configuration set. This value will be used to evaluate the effectiveness of dovetailing as a
parallelization technique. The one exception is in our experiments with parallel dovetailing over
WA* configurations on the 4 x 4 sliding tile puzzle. In this domain, we have found experimental
results regarding another algorithm known as wPBNF which parallelizes WA* [7]. As such, we will
examine the performance of parallel dovetailing more closely in this domain and compare it to this
other system.

With regards to the problems used in the experiments, in general we will consider test sets that
contain 1,000 solvable problems. In certain experiments, we have limited the test sets to the size
of 100 due to the excessive time needed for the calculation of exp(a, 6, p) with all configuration-
problem pairs. The 100 problems selected are merely just those in the first 100 of the larger problem
sets. The one exception is in the 4 x 4 sliding tile puzzle, in which some experiments will be

performed using the Korf test set.

4.2 Dovetailing over Weights in WA *

As mentioned in Section 3.4.1, dovetailing over k configurations is not particularly appropriate for
memory intensive algorithms like WA* due to the factor of k increase in memory requirements. In
the case of parallel dovetailing, these memory issues go away if the system uses distributed memory.

There has been a number of investigations into the parallelization of A* search. These include
Parallel Retracting A* [15], best-first search using parallel structured duplicate detection [46], and
Parallel Best-NBlock-First Search (PBNF) [8]. However, there has been little investigation into the
parallelization of WA*. To the best of our knowledge, the only consideration is by Burns et al.
[7] in which the three methods mentioned above are extended and evaluated in their application to
suboptimal search using weighted heuristics. The algorithm which performed the best in almost all
domains tested is the weighted variant of PBNF, denoted wPBNF.

wPBNF works by abstracting the search space into node groups called nblocks such that for any
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node n that is abstracted to an nblock b, the abstract version of any successor of n will either be
in b or a neighbour of b in the abstract space. During search, each nblock has its own OPEN and
CLOSED lists. Due to this abstraction, separate threads can expand nodes in separate nblocks
without any communication as long as the nblocks do not share neighbours in the abstract space.

An nblock b is said to be free if b and all neighbours of b are not being worked on by any threads.
Free nblocks are stored in a heap sorted by the f-cost of the next node to expand in the OPEN list
for that nblock. If an nblock becomes free, it is added to the heap.

When a thread is assigned to an nblock b, it will make at least m node expansions, where m is
a parameter to the algorithm. At that time, the thread will continue expanding nodes in b until the
f-cost of the next node to be expanded in the nblock at the top of the heap is less than the f-cost of
the next node to be expanded in b. When this occurs, the thread will be assigned to the nblock at the
top of the heap.

There are a number of details that ensure the completeness of the algorithm as well as several
additional pruning techniques for use with weighted heuristics. We will not discuss those here.
However, we will note that the performance of wPBNF has been demonstrated to scale well with the
number of processors being used in several planning domains and in the grid pathfinding domain.

In the paper on wPBNF, the algorithm is tested on the easiest 43 problems in the Korf test set.
In this domain, all of the algorithms show poor performance for larger weights and larger numbers
of processors. While we have yet to perform a complete comparison of the algorithms, in Section
4.2.2 we will analyze the relative performance of wPBNF and parallel dovetailing on this domain
based upon the information in this paper.

In the case of single-processor dovetailing, configurations in the starting configuration set will
all have some memory limit L. The performance of dovetailing will then be compared to the per-
formance of each of the individual configurations. While a fairer comparison would be between
dovetailing over such candidate sets of size k and the performance of individual configurations with
the memory limit of kL, the results below will demonstrate that even in such favourable conditions,

dovetailing is a poor addition to WA* in the domains considered.

4.2.1 Dovetailing over Weights with WA* on the Sliding Tile Puzzle

Recall Figure 2.9 which showed the performance of WA* in terms of both search time and solution
quality on 1,000 4 x 4 sliding tile puzzles. For the dovetailing simulations on both this puzzle
and the 4 x 5 sliding tile puzzle considered later in this section, the starting configuration sets were
selected so as to consist of the first 15 integer weights that successfully solved all 1,000 problems
under the memory limit of 1, 000, 000 states. In the case of the 4 x 4 sliding tile puzzle, these weights
are those integers in the range of 3 to 17 inclusive.

Figure 4.1 shows the performance of dovetailing over all subsets of this starting configuration

set. Note, the number of nodes expanded by the weight with the lowest batch results — the weight
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Total Solution Cost

of 12 — is also shown in the figure. When using all 15 configurations, 5.8 times more nodes are
expanded than are expanded by the weight of 12 alone. While the average solution quality found
through dovetailing is closer to that found by the weight of 6, the number of nodes expanded is still

4.4 times larger than even this weight alone.
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Figure 4.2 shows the performance of WA* on 1,000 4 x 5 sliding tile puzzle problems. In the
figure, the first 15 integer weights that completely solved all states in the problem set are shown.
These weights are those at least as large as 5 and no larger than 19. Figure 4.3 shows the results
of the dovetailing simulations in which these 15 weights are used to form a starting configuration
set. The number of nodes expanded by the single weight with the best batch results — namely the

weight of 18 — is shown in the figure.
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Figure 4.2: WA* on 1000 4 x 5 Sliding Tile Puzzles

The figure demonstrates that dovetailing remains an ineffective procedure even in the larger
domain. Dovetailing over all 15 configurations requires 4.8 times as many node expansions as the

best weight alone. Again, the average solution quality found is better than the weight with the best
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batch results. The solution quality is more similar to the weight of 8, but the dovetailing procedure
still requires the expansion of 3.9 times more nodes than this weight alone.

These results should be expected when considering Figure 3.1(c) which demonstrates that even
an oracle does not significantly outperform the weight with the best batch value. This is due to
the behaviour shown in Figures 2.9(b) and 4.2(b) which indicate that increasing the weight almost
monotonically improves the search speed, and this is similarly true on individual problems. A higher
weight causes the search to favour node expansions in the search tree that are deeper and in areas
with a low heuristic value. As there is a solution below any branch in the search tree of these
domains, this behaviour of WA* is favourable in these environments. The largest valued weight
in the candidate set with therefore rarely be significantly outperformed by any other weight on a

problem-to-problem basis.

4.2.2 Parallel Dovetailing over Weights with WA* on the Sliding Tile Puzzle

In this section, we will consider the performance of parallel dovetailing by first comparing this
technique to wPBNF. The experiments in the WPBNF paper were performed with 16 GB of shared
memory. The test set used consisted of 43 4 x 4 puzzle problems from the Korf test set that were
solvable by A* with this memory limit.

We do not know the exact set of problems used in their experiments and the set of problems
which satisfy this condition well depend on their implementation of A*, and so we will use the 43
problems that were found to be easiest to solve by IDA*. We suspect that this set is similar to the
set used in the wPBNF experiments. Moreover, we restrict ourselves to these 43 problems since
wPBNF is said to perform better in comparison to WA* on the harder problems. Including harder
problems may therefore unfairly favour parallel dovetailing when it is compared to wPBNF.

The experiments with parallel dovetailing will also be performed through simulation and we
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Speedup With Different Numbers of Processors
wPBNF Parallel Dovetailing
Weight 2 4 5 8 2 4 5 8
2 0.37 | 0.62 | 1.34 | 1.46 | 6.42 | 9.0 | 9.85 | 11.7
3 0.74 | 0.62 | 0.9 | 0.78 | 1.71 24| 26| 3.12
5 0.6 | 0.76 | 0.72 | 0.64 | 1.58 | 2.22 | 2.43 | 2.88

Table 4.2: The Speedup of wPBNF and the Average Speedup of Parallel Dovetailing on 43 4 x 4
Sliding Tile Puzzle Problems.

will consider both the distributed and shared memory situations. The starting configuration set used
consists of the 15 configurations, each with a different integer weight in the range of 2 to 16 inclusive.
For the distributed memory experiments, each processor will be assumed to have enough memory to
store 1, 000, 000 nodes. In the case of shared memory, the total memory among processors will be
1,000, 000 nodes. Therefore, when collecting the initial data for the experiments with k processors,
the searches were forced to expand no more than 1,000,000/k nodes. Note, this is a significant
handicap when compared to the memory limits imposed upon wPBNF which we speculate allowed
their system to hold at least 50, 000, 000 at a time.

The behaviour of the algorithms is shown in Table 4.2. For wPBNF, the table shows for each
weight w, the speedup factor achieved from the weight w wPBNF search when compared to a serial
WA* search with weight w. The total time taken by wPBNF is only less than that taken by WA* if
the speedup is greater than 1. Moreover, larger factors of speedup imply shorter search times. Note,
these numbers are taken from the combination of a conference paper [7] and a workshop paper [6].
Where the numbers conflict, the results from the more recent conference paper are shown.

For parallel dovetailing, almost all the weights in the starting configuration set were able to
solve all 43 problems even with only being able to store 125,000 nodes (which corresponds to 8
processors sharing the 1,000, 000 node limit). The only exception was the weight of 2. However,
any candidate set containing the weight of 2 will also contain some other weight which will be able
to handle problems unsolved by 2. As such, the results in the table correspond to both memory
architectures since the experiments for both distributed and shared memory performed exactly the
same. For each weight w and number of processors k, the table shows the average speedup of
parallel dovetailing over all (1: ) possible candidate configurations when compared to a sequential
WA* search with a weight of w. Note, the number of nodes expanded by parallel dovetailing does
not change within the same column. The speedup changes because the number of nodes expanded
by the weight it is being compared against changes.

The figure shows that wPBNF does not offer much speedup over serial WA*, particularly for
larger weights and numbers of processors. The authors believe that in this domain the overhead
of communication is not overcome for larger weights because WA* alone requires so few node

expansions. However, parallel dovetailing over weights does improve upon the performance of WA*
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even if the value of w is larger. It should be noted that the inclusion of high weights in the candidate
sets causes the average solution quality to suffer. While the average solution quality does improve
slightly as the number of processors increases, the average solution length is generally similar to that
found with a weight 5 WA* search. When using 2 processors, the solution quality is 2% worse than
the weight of 5. When using 8 processors, the solution quality is 5% better. However, this solution
quality is also 23% and 16% worst than the weight of 2 when using 2 and 8 processors respectively.

We can also compare parallel dovetailing against the performance of the best configuration in
the starting configuration set with a distributed memory architecture. We will do so in the 4 x 4 and
4 x 5 sliding tile puzzles with the 1,000 puzzle problem sets. The starting configuration sets are
the same as those considered in the dovetailing experiments at the beginning of this section. When
using 15 processors, we find that the search time is decreased by 2.28 in the 4 x 4 sliding tile puzzle
when compared to the single weight with the best batch results on a single processor.

In the case of the 4 x 5 sliding tile puzzle, consider Figure 4.4 which shows the performance of
WA* and parallel dovetailing over WA* configurations for all candidate set sizes tested as a function
of the solution quality. Each WA* point corresponds to the total number of nodes expanded over the
entire problem set when using a single different configuration. Each dovetailing point corresponds to
using a different candidate set size k, where each configuration is assigned to one of k processors. In
the case of the parallel dovetailing points, we show the number of nodes expanded by each processor
over the entire problem set. Since there is minimal communication between processors, this value

will be proportional to the total run-time of parallel dovetailing.
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The figure shows that the average solution quality achieved by dovetailing actually outperforms
many individual configurations, and that even parallel dovetailing over the worst of all considered

candidate sets will usually be faster than any individual configuration alone. When parallel dove-
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tailing with 15 processors over all 15 configurations, the speedup is by a factor of 3.18.

4.2.3 Dovetailing over Weights with WA* on the Pancake Puzzle

In Figure 2.10, the performance of WA* on the 14 pancake puzzle using the heuristic given by the
< 0,1,2,3,4,5,6 > pattern database was summarized. However, all weights greater than or equal
to 10 performed exactly the same. Therefore, having multiple weights with a value of at least 10
in any candidate set will cause a duplication of search effort due to the lack of diversity. The fact
that such performance can be seen in practice suggests that the selection of good candidate sets is
an important problem. This issue will be discussed in Chapter 6.

Due to the equivalence in the search effort of different weight values, the starting configuration
set selected for the dovetailing simulations was set as the 8 configurations that differ only in weight
value, with each being assigned a different integer weight in the range of 3 to 10. While the larger
weights in this set do perform similarly, they do not produce identical searches. However, as can
be seen in Figure 4.5, the performance of dovetailing over these configurations in the 14 pancake
puzzle is poor. For example, dovetailing over all 8 weights in the starting configuration set requires

6.4 times as many node expansions as the weight of 10 alone.
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Concerning solution quality, the average length of solutions found when dovetailing over all
8 weights is similar to that found by the weight of 4 alone. Unfortunately, dovetailing over all 8
weights still requires 5.4 times as many node expansions as the weight of 4.

The performance of dovetailing over WA* configurations was also considered for the 16 pancake
puzzle. The heuristic function used in these experiments is given by the maximization of the <
0,1,2,3,4,5 > and < 6,7,8,9 > pattern databases. Figure 4.6 shows the performance of the first
15 integer weights found that successfully solved all 1, 000 problems in the test set. Note that in this

case, WA* does not smoothly improve performance with the weight and actually finds a minimum
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Figure 4.6: WA* on 1, 000 16 Pancake Puzzles

For the 16 pancake puzzle, the starting configuration set includes the integer weights from 4 to
18, inclusive. The results of these simulation experiments are shown in Figures 4.7 which demon-
strates that dovetailing remains an ineffective enhancement to WA* even in the larger 16 pancake
puzzle. In this case, dovetailing over all 15 weights requires 9.7 times more search effort than the
best single weight of 6, and 9.3 times more nodes than the weight of 5 alone, with which dovetailing

finds the most similar average solution quality.
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Figure 4.8 shows the performance of parallel dovetailing when compared to the individual con-
figurations alone, and indicates that dovetailing achieves a solution quality that is significantly better
than all but two of the configurations considered. These results indicate that only modest speedups
are found when using parallel dovetailing over WA* configurations as a parallel search algorithm
in the pancake puzzle domain. In the case of the 14 pancake puzzle, the speedup found is only

1.3 when using 10 processors. In the 16 pancake puzzle, the speedup is only 1.6 when using 15
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processors.
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The increased ineffectiveness of dovetailing in the pancake puzzle domain when compared to the
sliding tile puzzle domain may be related to the fact that solutions to pancake problems are much
shorter than those for the sliding tile problems. As there is also guaranteed to be a solution under

any branch in the search tree, the use of any high weight again proves to be an effective strategy.

4.3 Dovetailing and WIDA*

In this section, we consider the effectiveness of dovetailing as an enhancement to WIDA*. As the
memory requirements of WIDA* are small, comparisons can be made between the performance of
single configurations to dovetailing without any concern as to the difference in resources used by
the different problem-solving methods. It is only on excessively large candidate sets that memory
may become an issue. However, it is expected that the overhead of simultaneously running so many
instances will prohibit the use of dovetailing over WIDA* instances long before memory does. In
this thesis, we will only be using candidate sets no larger than 24 and so this issue will not be
considered further.

Below we will show that parallel dovetailing offers a very simple and effective form for par-
allelizing. While there has been much investigation into the parallelization of IDA* in the search
literature, we are unaware of any work regarding parallelizing WIDA*. Additionally, we are sim-
ilarly unaware of any consideration as to how well the techniques parallelizing IDA* generalize to
the weighted variant of the algorithm. As such, we have not compared parallel dovetailing to any

other parallel technique.
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4.3.1 Dovetailing over Weights with WIDA* on the Sliding Tile Puzzle

As WIDA* has proven to be an effective algorithm for solving permutation puzzles, the experiments
in this section will be on larger puzzles than those tested in Section 4.2.1. We will first consider the
use of dovetailing in the 4 x 5 puzzle. Figure 4.9 shows the performance of WIDA* in terms of both
search effort and solution quality in this environment. Note that in Figure 4.9(b), the y-axis is shown

in a logarithmic scale.
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Figure 4.9: WIDA* on 1,000 4 x 5 Sliding Tile Puzzles

Figure 4.10 shows the behaviour of dovetailing when applied to this puzzle. The starting con-
figuration set consists of the 15 configurations that differ only in that each is assigned a different
integer weight in the range of 2 to 16. The number of nodes expanded by the best weight in the

starting configuration set, that of value 5, is also shown in the figure.
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The figure indicates that dovetailing over WIDA* configurations that differ only in weight sig-
nificantly improves over even the single best configuration alone. In this case, if the candidate set

size is at least 4, even the worst of the (145) candidates sets outperforms the weight 5 search. If
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the candidate set contains all 15 configurations, the improvement in terms of search effort over the
weight of 5 alone is by a factor of 7.9. With regards to solution quality, dovetailing over all 15
configurations results in a total cost that is similar to that found by the weight of 8.5.

Unlike WA*, in which the efficiency of search degraded when used with dovetailing, WIDA*
shows significant speed increases when enhanced with this technique. This is because of the be-
haviour seen in Figure 3.1(a) which shows that the weight with the best average performance will
often exhibit poor performance on a certain number of problems. This was not the case with WA*,
in which increasing the weight generally improved search speed on a problem-by-problem basis.

These results indicate that in this domain, parallel dovetailing exhibits super-linear speedup
in search time. A parallelization of an algorithm exhibits super-linear speedup when the use of
k processors results in a speedup in the running time that is greater than k. In the case of parallel
dovetailing over all 15 configurations in this starting configuration set on the 4 x 5 sliding tile puzzle,
the speedup is by a factor of 119.21. Note that whenever a single-processor dovetailing outperforms
the best configuration in the candidate set, then parallel dovetailing will necessarily be exhibiting
super-linear speedup in that domain. This is true for any algorithm in all experiments in this thesis.

The performance of WIDA* on 1,000 5 x 5 puzzle problems is shown in Figure 4.11. In this
case, the single weight with the fastest average search time is the weight of 5. Note that the y-axis

in Figure 4.11(b) is also shown in a logarithmic scale.
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Figure 4.11: WIDA* on 1,000 5 x 5 Sliding Tile Puzzles

When the dovetailing simulations are performed on these 5 x 5 sliding tile puzzles while using the
same starting configuration set as above, the performance improvements are even more impressive.
These results are shown in Figures 4.12. The performance of parallel dovetailing, in which each
configuration is assigned to a different processor, is shown in Figure 4.13. In this figure, each
WIDA* point corresponds to a different single configuration run of WIDA*. Each dovetailing point
corresponds to a different candidate set size. Notice that the scale of the y-axis in both figures is
logarithmic.

In this puzzle, the candidate set sizes must be 4 and 6 respectively before the average and worst

candidate sets exhibit better performance than the weight of 5 alone. However, when the candidate
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set contains all 15 configurations, the improvement over the use of the single best configuration
is greater than the improvement found in the 4 x 5 puzzle. Specifically, dovetailing over all 15
configurations performs 42.5 times fewer node expansions than the weight of 5 alone. The solution
quality found by such a search is similar to the solution quality found by the weight of 9 alone. With
regards to parallel dovetailing, when using all 15 configurations each on a different processor, the

speedup is by a factor of 637.
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Figure 4.13 shows that the candidate sets with the worst performance are those with poor solution
quality. This is because these candidate sets generally consist mostly of high weights. While parallel
dovetailing over any such candidate set will outperform all the weights in the set alone, there are

too many problems in which all weights perform poorly. This causes these candidate sets to exhibit
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slower search speeds when compared with other candidate sets.

Just as the effectiveness of dovetailing increased from the 4 x 5 sliding tile puzzle to the 5 x 5
sliding puzzle, a similar trend is seen when dovetailing over WIDA* configurations is considered
for the 6 x 6 puzzle. This puzzle proved to be too large to collect all the necessary data needed
to perform the simulation experiments even when the problem set was decreased to a size of 100.
However, as described in Section 4.1, it is still possible to calculate the number of nodes expanded
over the 15 candidate weights in the range from 2 to 16.

For each problem p in the problem set, Figure 4.14 shows the value of dove(WIDA*, O, p) and
exp(WIDA* {w = 5}, p) where © is the set of 15 configurations described above. The configura-
tion of the weight of 5 was the only configuration in the candidate set that successfully solved all
100 problems in the time allotted, and can therefore be considered the configuration with the best
average search time. Note that the y-axis in Figure 4.14 is in a logarithmic scale and that problems
in the set P are ordered in ascending value of exp(WIDA*, {w = 5}, p).

In total, dovetailing over the 15 configurations expands 121 times fewer nodes than the configu-
ration of {w = 5} alone. For parallel dovetailing over the candidate set ©, the factor of improvement
in terms of search time is 1826. This result offers further evidence that the improvement offered by

dovetailing over weight sets in WIDA* scales in the sliding tile puzzle domain along with the state

space size.
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Another question that arises from these results is as to how much this enhancement depends
on the starting configuration set. In this end, we will consider dovetailing with 3 different starting
configuration sets. The first will be the starting configuration set considered above — specifically,
the set containing one configuration for each of the integer weights in the range from 2 to 16. This
set will be referred to as the consecutive integer set. The narrow set will consist of configurations

each with a unique weight value from the set Wharrow = {2,2.5,3,3.5,...,8.5,9}. The wide set
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will consist of configurations, each with a unique weight value from the set W,,;4. where W,;4. is
the union of Weyer, = {2,4,...,22,24} and W’ = {7,13,21}. The wide set consists of all even
weights in the range 2 to 24, as well as 3 additional equally spaced odd weights. Notice that all three
starting configuration sets include exactly 15 configurations.

For any candidate set size k, Figure 4.15 shows the average performance over all (1k,5) possible
candidate sets by each of the narrow, consecutive integer, and wide sets. The performance of the
best weight alone of all those considered, namely that of weight 5.5, is also shown in the figure.
The figure demonstrates that regardless of the starting configuration set, the average results achieved
with dovetailing significantly outperforms the weight of 5.5 once the size of the candidate sets is
large enough. Also notice that for larger candidate set sizes, the performance of the 3 starting
configuration sets is quite similar.

When comparing the solution quality achieved by the different sets, the results are unsurprising:
sets with a lower average weight outperform those with a higher average weight. However, for every
single candidate set size, the narrow set also outperformed both the consecutive integer and wide
sets in terms of nodes expanded. Similarly, the consecutive integer set outperformed the wide set on
every candidate set size.

This effect is most pronounced for small candidate weight sizes because the average is skewed by
a few bad candidate sets. For example, in the wide set, the candidate set of size 2 which had the worst
performance was that of weights 21 and 22. As shown in Figure 4.9(b), these weights alone require
a large number of node expansions. While dovetailing will allow weight 22 to compensate for some
of the errors that weight 21 makes when navigating its search tree (and vice versa), there will still be
too many problems in which both exhibit poor performance. In the narrow and consecutive integer
sets, there are fewer weights with such poor performance and so this behaviour occurs less often.

However, even for the candidate set size of 15 the narrow set still outperforms the others. This
behaviour can again be explained by the fact that the narrow set contains the highest number of
weights with good individual performance. While the weights in this set are the closest together of
any of the sets, there is evidently enough diversity in the search trees induced by these weights such

that they complement one another well.

4.3.2 Dovetailing over Weights with WIDA* on the Pancake Puzzle

In this section, dovetailing over WIDA* configurations that differ only by weight will be applied to
the 14 pancake puzzle and the 16 pancake puzzle. The heuristic functions used for these puzzles
will be those given by the pattern database < 0,1,2,3,4,5,6 >, and the maximization over the
<0,1,2,3,4,5 > and < 6,7,8,9 > databases respectively.

The performance of WIDA* on the 14 pancake puzzle with the < 0,1,2,3,4,5,6 > pattern
database heuristic function has already been shown on in Figure 2.13. The results of the dovetailing

simulations on the 14 pancake puzzle are shown in Figure 4.16. In this case, the average performance
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of dovetailing bests the single best weight as soon as the candidate set size is at least of size 3. When
dovetailing is performed over all 15 configurations, dovetailing improves upon the single best weight
of 9 by a factor of 1.5. In this case, the solution quality found with dovetailing is very similar to that
found by the weight of 9. Also note that in this puzzle, all of the worst candidate sets include the

weight of 2 which suggests that this weight is not contributing much to the configuration portfolio.
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The performance of WIDA* on the 16 pancake puzzle is shown in Figure 4.17. Note, the figure
only includes data for integer weights from 2 to 12 due to that fact that it took too long to calculate
all the necessary data for larger weights. Among the weights shown, the weight of 5 was the most

effective.
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Figure 4.17: WIDA* on 1,000 16 Pancake Puzzles.

Dovetailing exhibits similar strength when applied to the 16 pancake puzzle. Figure 4.18 shows
the results of the dovetailing simulations on the 16 pancake puzzle. Figure 4.19 shows the per-
formance of parallel dovetailing as a function of solution quality. When dovetailing over the 11

configurations, each with a unique integer weight from 2 to 12, the average performance of dovetail-
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ing surpasses the weight of 5 when the candidate set size is at least of size 5. The number of nodes
expanded by dovetailing over all 11 configurations is 1.9 times lower than the number expanded by
the weight of 5 alone. Dovetailing in this way also results in a solution quality similar to that found
by a weight of 7. Notice that again, the worst candidate sets tend to be those with a poor solution

quality because they contain mostly high weights.
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While Figure 4.19 indicates that parallel dovetailing is achieving super-linear speedups with the
11 configurations mentioned above, dovetailing was also simulated over all 15 integer weights from
2 to 16 on the 16 pancake puzzle as described in Section 4.1. Dovetailing in this way outperformed
the weight of 5 by a factor of 1.8 and had an average solution quality similar to that found by the

weight of 6. This performance indicates that parallel dovetailing will exhibit super-linear speedups
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and will therefore be a useful way of parallelizing WIDA* in this domain even when the candidate
set size is allowed to grow to 15. This is similarly true on the 14 pancake puzzle.

As the use of abstraction introduces the opportunity to test with many different heuristic func-
tions, an interesting question emerges: how is the effectiveness of dovetailing related to the ac-
curacy of the heuristic? To address this issue, we consider solving the 16 pancake puzzle with 3
different heuristics. The first function is given by the maximization over the < 0,1,2,3,4,5 > and
< 6,7,8,9,10 > pattern databases. The second heuristic function considered is the maximization
over the < 0,1,2,3,4,5 > and < 5,6,7,8,9,10 > pattern databases. The final heuristic func-
tion considered will be the maximization over the < 0,1,2,3,4,5 >, < 5,6,7,8,9,10 >, and
< 10,11,12,13,14, 15 > pattern databases.

These heuristic functions have been ordered in ascending order of memory used and hence will
be referred to as the low memory, medium memory, and high memory heuristic functions, respec-
tively. Typically, an increase in memory used in a pattern database will increase the accuracy of the
corresponding heuristic function. This is certainly true in this case as the lower memory abstractions
are subsets of the higher quality ones. To demonstrate the difference in the accuracy of the functions,
consider Figure 4.20 which compares the performance of WIDA* when using these three different
heuristics with all of the integer weights from 2 to 16. In all but one case, higher memory heuristics
outperform the lower memory ones. Note that the y-axis in Figure 4.20(b) is in a logarithmic scale.
Also notice that in general, increasing the accuracy also increases the solution quality.

Now consider 3 different starting configuration sets, the high memory, medium memory, and
low memory sets, in which all configurations use the corresponding heuristic function. Each set will
consist of 15 configurations, each with a unique integer weight in the range from 2 to 16.

When comparing the performance of the different sets, the results are as expected: for any
candidate set size k, the average performance of the high memory set outperforms the average
performance of the medium memory set. Similarly, the average performance of the medium memory
set outperforms the average performance of the low memory set. However, if instead of comparing
the average performance, we consider how dovetailing over each configuration compares to the
configuration in that set that has the best performance alone, we see a different relationship. In Figure
4.21, for each candidate set we have plotted the ratio of the average number of nodes expanded
during the dovetailing simulations of all (15) candidate sets to the number of nodes expanded by the
single best configuration in each corresponding set. The configurations that had the fewest number
of total nodes expanded in the low memory, medium memory, and high memory sets correspond to
the weights 5, 5, and 4, respectively. Note, if a point is greater than 1 this means that dovetailing
required more nodes on average than did the single best weight.

While dovetailing over all 3 sets results in poor performance when compared with the single
best configuration in each set, it is the high memory set which exhibits the worst relative behaviour.

While the other two sets show very similar performance by this metric, for most of the candidate set
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sizes the medium memory set exhibits slightly poorer performance than does the low memory set.

Recall that the performance of dovetailing with the heuristic given by the maximization over the
< 0,1,2,3,4,5 > and < 6,7,8,9 > pattern databases was examined earlier in Figure 4.18. This
heuristic requires even less memory and is less accurate than those in Figure 4.21. In the case of this
very poor heuristic case, the performance of dovetailing outperformed the single best configuration.
As such, the trend that emerges is that as the accuracy of the heuristic decreases, dovetailing becomes
a more effective procedure.

This relationship is caused by the fact that as the heuristic increases, fewer mistakes will be made
in the traversal of the search trees. The searches will therefore become less diverse, and there will
be more duplication of work between configurations. As one of the main impacts of dovetailing is
to minimize the effect of any single configuration being led astray, dovetailing will therefore offer

less and less as the heuristic function becomes more accurate.

4.4 Dovetailing and WRBFS

As WRBFS is also a linear-space algorithm like WIDA*, dovetailing can be performed with this al-
gorithm without any significant concerns regarding restrictions on available memory. In this section
we will show that while dovetailing over weights is not as effective as it is for WIDA*, it can still

enhance the performance of WRBFS on larger puzzles.

4.4.1 Dovetailing over Weights with WRBFS on the Sliding Tile Puzzle

The performance of WRBES on the 4 x 4 sliding tile puzzle was demonstated previously in Figure
2.14. For the dovetailing simulations, the starting configuration set was selected as the 15 configu-

rations that differ only in that each is assigned a different integer weight in the range from 2 to 16.
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The results of these simulations are shown in Figure 4.22.
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While the performance of the worst candidate set is quite poor, the average performance is
similar to that of the best weight of 3. Dovetailing over all 15 configurations requires 1.7 times as
many node expansions as does the weight of 3 alone. The solution quality found by this candidate
set is similar to that found by the weight of 4.5.

While the performance of dovetailing over all 15 configurations does not match that of the single
best weight, it is less than 2 times worse. However, recall that no tuning was performed in the
construction of this candidate set. As tuning would be needed to determine that the weight of 3 is
indeed the best weight, this additional cost could be considered as an acceptable overhead.

The performance of dovetailing over WRBFS configurations appears even more promising when
it is applied to the larger 4 x 5 puzzle. Figure 4.23 shows the performance of WRBFS with 15
different configurations, each with a different integer weights in the ranfe of 2 to 16. The best

weight is again the weight of 3.
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Figure 4.23: WRBFS on 1,000 4 x 5 Sliding Tile Puzzles.
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The dovetailing simulations were performed with the starting configuration set consisting of
those 15 tested configurations. The simulation results are shown in Figure 4.24. While the worst
candidate set still shows poor performance when compared to the single best weight of 3, the average
performance is better than this single weight once the candidate set size is at least 6. When the

candidate set is of size 15, dovetailing requires 2.5 times fewer node expansions than the weight of

3.
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Figure 4.25 shows the performance of parallel dovetailing as a function of solution quality. The
figure indicates that the average solution quality found by dovetailing, particularly for the larger can-
didate set sizes, is better than that found by most of the individual weights alone. For example, the
solution quality found by the candidate set containing all configurations in the starting configuration
set is between that found by the weights of 5 and 6 alone. Similar to the behaviour of dovetailing
with WIDA*, the worst candidate sets are those containing mostly high weights — hence the poor
solution quality. Again, these weights have generally poor behaviour alone, and are often unable to
overcome the deficiencies of one another as well as other candidate sets.

These results indicate that parallel dovetailing offers a simple, yet effective way to trivially
parallelize WRBFS. In the case of the 4 x 4 puzzle, the speedup from using 15 processors is by
a factor of 9.0. For the larger puzzle, we see a super-linear speedup of 37 when using only 15
processors. Overall, parallel dovetailing appears to be an effective form of parallelization of the
algorithm. Note, to the best of our knowledge, there have been no other attempts to parallelize either
the RBFS or WRBEFS algorithm.

While we have not tested WRBFS on the larger puzzles, the above results do suggest that the
effectiveness of dovetailing scales with the size of the puzzle. This behaviour is again related to
the fact that dovetailing helps to avoid mistakes made early in the search due to inaccurate heuristic

values. The cost of making such mistakes increases with the domain size. As it was in WIDA*,
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dovetailing offers a simple way of minimizing this effect.

4.4.2 Dovetailing over Weights with WRBFS on the Pancake Puzzle

In this section, we perform the same experiments on the 14 and 16 pancake puzzles as were per-
formed with the WA* and WIDA* algorithms. Recall that the heuristic functions used are given
by the < 0,1,2,3,4,5,6 >, and the maximization over the < 0,1,2,3,4,5 > and < 6,7,8,9 >
pattern databases, respectively.

The behaviour of WRBES on the 14 pancake puzzle with the aforementioned heuristic was
shown previously in Figure 2.15. Recall that for any weights of size at least 10, all searches were
identical. This again highlights the issue of candidate set selection, which will be considered later.

For the dovetailing experiments, the starting configuration set chosen consists of the 9 config-
urations each with a different integer weight in the range of 2 and 10 inclusive. The results of the
simulations are shown in Figure 4.26. As with WA* on this puzzle, dovetailing actually degrades
the performance when compared to the single best weight of 10. For example, when dovetailing
over all 9 configurations, 5.5 times more nodes need to be expanded during problem-solving. While
the average solution quality is closer to that found by the weight of 3, dovetailing still requires 2.5
times more node expansions than this weight alone.

In the case of the 16 pancake puzzle, the behaviour of WRBES is shown in Figure 4.27(a). Due
to the length of time for problem-solving, we only present the statistics for the integer weights from
2 to 12. Notice that like WA*, RBFS does not improve its performance as the weight increases, as
both algorithms did in the 14 pancake puzzle. Instead, the performance hits its peak performance at
the weight of 5.

Doevtailing also offers more benefits to WRBFS on the 16 pancake puzzle than it does on the 14
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pancake puzzle. The starting configuration set consists of the 11 configurations shown individually
in Figure 4.27. The results of these experiments are shown in Figure 4.28. Figure 4.29 also shows

the performance of parallel dovetailing in this domain as a function of the solution quality.
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In this puzzle, the results of dovetailing are much closer to the single best weight of 5. When
using all 11 configurations, dovetailing expands 3.3 times as many nodes as does the weight of 5.
The solution quality found by this candidate set is similar to that found by the weight of 4, which
expands 2.8 times fewer nodes than does dovetailing. Figure 4.29 also demonstrates that even the
solution quality found by the weakest candidate sets generally outperform the solution quality found
by the weights of 5 and higher alone.

However, if dovetailing is performed over all 15 integer weights in the range of 2 to 16 inclusive,
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dovetailing appears as a much more attractive enhancement. In this case, dovetailing only requires
1.7 times as many node expansions as the weight of 5. Again, this cost can be considered an
acceptable overhead since no pre-computation was required. These results also indicate that parallel
dovetailing becomes an effective method for parallelizing WRBFS on larger puzzles as the procedure
yields a speedup of 8.8 when using 15 processors in the 16 pancake puzzle. In the 14 pancake puzzle,
the speedup is only by a factor of 1.6 times when using 9 processors.

It should also be noted that the effectiveness of dovetailing also degrades as the heuristic func-
tion increases in accuracy. For example, when using 15 configurations on the 16 pancake puz-
zle, each with an integer weight in the range from 2 to 16 and the heuristic function given by the
<0,1,2,3,4,5 > and < 6,7,8,9,10 > pattern databases, dovetailing expands 9.3 times as many

nodes as does the single best weight alone.

4.5 Dovetailing over Beam Widths in BULB

Recall that one of the parameters to the BULB algorithm is the memory limit L, which is the max-
imum number of states in memory at any time. In the case of dovetailing, this limit can be used to
control how much memory is allocated to each configuration.

In all the following experiments, we will take a similar approach as is taken in Section 4.2. All
configurations will be assigned the same limit L and dovetailing over %k such configurations will be
compared to the single best configuration in the set (which also has the limit L). While the memory
requirements of dovetailing will actually be kL, we are considering experiments in this way with
an eye toward parallel machines with distributed memory. Like WA*, even under these favourable
conditions, dovetailing over BULB configurations will still yield poor performance.

In all dovetailing simulations in this section, the starting configuration set will consist of 15
identical configurations that only differ in the beam width. The beam widths used will be those in
the set BW = {3,5,7,10, 15,25, 30, 40, 50, 60, 75, 100, 150, 200, 300}. These widths have been

chosen so as to offer a diversity in the solution quality and search efficiency.

4.5.1 Dovetailing over Weights with BULB on the Sliding Tile Puzzle

In this section, we will consider the performance of dovetailing over BULB configurations on the
5 x 5 and the 6 x 6 sliding tile puzzles. Figure 4.30 shows the performance of the algorithm when
using BULB with different beam widths on 1,000 5 x 5 sliding tile problems. The memory limit
used in these experiments is 100, 000 states. Note, for all beam widths from 6 to 175, all 1,000
problems could be solved without any backtracking, and both axes in the figure are in a logarithmic
scale.

The results of the dovetailing simulations are shown in Figure 4.31. The starting configuration
set used is given by the beam width set BW mentioned above. The figure demonstrates that dove-

tailing over beam widths is ineffective in the 5 x 5 domain. For all candidate set sizes, even the best
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Figure 4.30: BULB on 1,000 5 x 5 Sliding Tile Puzzles.

set expanded more nodes than did the beam width of 10 alone. Dovetailing over all 15 configurations
requires 9.4 times as many node expansions as the beam width of 10 alone. Even when compared to
the beam width of 25, with which dovetailing has the most similar solution quality, dovetailing still

expands 5.8 times as many nodes.

' ' Bet of Dovétailing A
1e+08 | Worst of Dovetailing 1
Average of Dovetailing -~
Nodes Expanded By Width 10 -
B 8et07 r ]
=)
@
Q.
@ eer07 | ]
o) I e
z « * o
g 4e+07 e *///4—/ 1
o * * —
'_ s ¥ : ) P
2er07f |
///

O 1 1 1 1 1 1
Figure 4.31:Dovetailing aver Waights 0 BUI1B on the 5 x 7 Sliding Tile Puzzle.
Candidate Set Size

The performance of dovetailing on the 6 x 6 puzzle is not much better. First, consider the
performance of the individual configurations, each with a unique beam width and the memory limit
of 200, 000. Figure 4.32 shows the performance of such configurations on 100 6 x 6 sliding tile
puzzles. Note, only the beam widths of 7, 8, 9, and 10 were able to solve all problems without any
backtracking and both axes have a logarithmic scale. The beam width in the set BW with the best
performance is that of the weight 10.

The results of the dovetailing simulations over the configuration set given by widths in BW
are shown in Figures 4.33, which demonstrates that dovetailing is ineffective even in this larger

domain when compared to the single best configuration of beam width 10 alone. For all candidate
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Figure 4.32: BULB on 1,000 6 x 6 Sliding Tile Puzzles.

set sizes, even the best set again performs worse than the beam width of 10. Dovetailing over all
15 configurations also takes 8.4 times more node expansions than the beam width of 10 alone, and
2.0 times more node expansions than the beam width of 60 alone, with which the set has the most

similar average solution quality.
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The above results demonstrate that dovetailing over beam widths is not suitable for use with the
BULB algorithm in this domain. Figure 4.34 (which has a logarithmic scale for both axes) shows the
performance of parallel dovetailing as a function of solution quality. This figure shows that parallel
dovetailing is a poor form of parallelization of the BULB algorithm, as the speedup gained from the
use of 15 processors are only 1.6 and 1.8 on the 5 x 5 and 6 x 6 puzzles, respectively. While we are
unaware of any other attempts to parallelize BULB, parallel dovetailing appears to be a poor use of
resources in this domain. We will consider why dovetailing is ineffective when used with BULB at

the end of the next section.
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4.5.2 Dovetailing over Weights with BULB on the Pancake Puzzle

Dovetailing over BULB configurations that differ only by beam width is similarly ineffective in
the pancake puzzle. The results of the dovetailing simulations for the 14 pancake puzzle domain
when using the < 0,1,2,3,4,5,6 > pattern database heuristic are shown in Figure 4.35. These
results are for the problem set of size 1, 000. The memory limit used in these experiments was set at
50, 000 states. Recall that Figure 2.18 depicted the performance of many BULB configurations on

this problem set.
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While dovetailing is somewhat more useful in this domain than on either of the sliding tile puz-
zles, the procedure still remainds mostly ineffective. When dovetailing over all 15 configurations,

there are 2.5 times more nodes expanded than are expanded by the beam width of 50 which has
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the best performance of all configurations. Dovetailing also expands 2.1 times more nodes than the
beam width of 100 with which it has the most similar average solution length.

The performance of dovetailing on the 16 pancake puzzle with the heuristic function given by
the maximization over the < 0,1,2,3,4,5 > and < 6,7,8,9 > pattern database heuristics is even
worse. Figure 4.36 shows the performance of a number of configurations with the memor limit of
50, 000 states, on a problem set of size 1,000. Note that only beam widths of 2, 3, and 4 required
any backtracking.
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Figure 4.36: BULB on 1,000 16 Pancake Puzzles.

Figure 4.37 shows the results of the dovetailing simulations using the configuration set given by
BW. In this case, dovetailing results in much poorer performance than the best width of 15 alone.
When dovetailing over all 15 configurations, 5.3 more node expansions are needed to solve all
problems than are required by the beam width of 15 alone. The solution quality of such dovetailing
is similar to that found by the beam width of 60 which expands 4.1 times fewer nodes than the
dovetailing procedure.

As was the case in the sliding tile puzzle, parallel dovetailing exhibits poor performance in this
domain. To see this, consider Figure 4.38 which shows the performance of parallel dovetailing as
a function of solution quality on the 16 pancake puzzle. While parallel dovetailing is somewhat
effective in the 14 pancake puzzle, for which it results in a speedup of 6 when using 15 processors,
the performance is quite poor on the 16 pancake puzzle for which the speedup is only by a factor of
2.8 when using the same number of processors.

These results suggest that dovetailing is poorly suited for BULB configurations in both the pan-
cake puzzle and the sliding tile puzzle, largely because the beam search algorithm already addresses
some of the issues that dovetailing tackles. Beam search naturally considers multiple alternative
paths at the same time through the parallel expansion of all nodes on the beam. As for dovetailing,
the consideration of multiple paths means that if any single path is led astray, there are others that
will hopefully compensate. Since beam search inherently has this property, dovetailing can offer
little to the algorithm. As a result, the overhead of running multiple instances of the same algorithm

in parallel dominates the search time and causes the poor performance seen above.
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4.6 Chapter Summary

In this chapter, we considered the performance of dovetailing and parallel dovetailing over the main
parameter spaces of WA*, WIDA*, WRBFS, and BULB. In the case of WA* and BULB, dovetailing
caused a degradation in the search speed for all domains tested. In WA*, this behaviour is related to
the fact that aggressively proceeding down any branch of the search tree is a strong policy in these
domains. As the heuristic functions will cause the algorithm to make mistakes during expansion,
the fact that the algorithm holds all generated states in memory means that it is capable of quickly
changing to an alternate candidate path if the current line of play is lead astray. The ineffectiveness
of dovetailing with the BULB algorithm is caused for similar reasons. BULB already simultaneously
considers alternate paths through the state space thereby minimizing the impact if any single path is
guided poorly. As dovetailing solves a similar problem, it adds little to BULB at the cost of running
many instances in parallel.

On the other hand, dovetailing was generally successful when applied to WRBEFS as it was
usually solved all problems nearly as quickly as the single best configuration alone if not better,
and it did so without any offline tuning. Dovetailing was also shown to significantly improve the
performance of WIDA*. As these algorithms only consider a single line of play at any time, the
cost of making a mistake due to poor heuristic guidance is magnified. In the case of WIDA*, this
effect may lead the algorithm to blindly search large areas of the state space as discussed in Section
2.9.3. On the other hand, poor heuristic guidance causes WRBFES to perform a lot of backtracking.
Dovetailing helps to mitigate these effects by simultaneously considering multiple paths and thereby
decreasing the chance that all paths have been lead in a bad direction.

Parallel dovetailing over the main parameter spaces al all algorithms considered has also been
shown to offer at least some speedup in all domains tested. In particular, this procedure offers super-
linear speedups in all WIDA* experiments and in the WRBFS sliding tile experiments. Parallel
dovetailing also offers near-linear speedups when applied with WRBFS in the pancake puzzle do-
main. While the results are less impressive when dovetailing is applied with WA* and BULB, we
have shown that parallel dovetailing over WA* configurations does compare favourably with state-
of-the-art systems in the sliding tile puzzle domain. As such, parallel dovetailing represents a simple

yet effective algorithm for multicore machines.
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Chapter 5

Dovetailing Over Operator
Orderings

Another design choice that can have a large impact on search speed is the operator order. In this
chapter, we will consider dovetailing over candidate sets in which the configurations differ in the
static operator ordering used during the search. All experiments in this chapter will be performed
through the use of dovetailing simulations as outlined in Section 4.1.

To test the effectiveness of dovetailing over operator orderings, we will consider one puzzle
size from each of the sliding tile and pancake domains. Each of WA*, WIDA*, and WRBFS will
be tested with a number of different starting configuration sets denoted S,,. In any such S, all
configurations will have the same weight value of w but differ in operator ordering. In the figures, the
starting configuration sets will be denoted by the corresponding weight value. The BULB algorithm
will be tested similarly, except each starting configuration will contain configurations that all have
the same beam width. Also note that due to the large number of parameters being tested, we will
only consider problem sets of size 100 in this chapter.

In the case of the sliding tile puzzle, recall that regardless of the puzzle size, there are exactly 4
operators. As such, there are 4! = 24 operator orderings. The starting configuration sets used for all
dovetailing experiments will therefore consist of 24 configurations, each with a constant weight or
beam width, but a different operator ordering.

In the case of the pancake puzzle, the number of operators will depend on the number of pan-
cakes. Specifically, for the N pancake puzzle, there are V! operators. As it is infeasible to consider
all possible operator orderings, we will only consider N — 1. The first two operator orderings are
{2,3,4,...N —1,N}and {N,N —1,...,4,3,2}. The N — 3 remaining operator orderings where
constructed as follows: each ordering had its first element assigned as a unique member of the set
{3,4,5,...., N — 2, N — 1}, and the remaining operators were ordered randomly. This construc-
tion ensures that all N — 1 operator orderings in the starting configuration set have a different first
operator.

Recall that when performing the dovetailing simulations, the ordering of configurations in a
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candidate set will have a small impact on the search quality. We will again ignore this factor and
instead use a single strategy for ordering all sets. For the ordering of configurations in the sliding
tile puzzle candidate sets, each operator order was assigned a unique positive integer. The configu-
rations are then ordered in ascending value of this integer. In the pancake puzzle candidate sets, the
configurations are ordered in ascending value of the first operator.

Note that in several of the figures in this chapter, we will compare the average performance
of dovetailing against the average performance of all configurations in the starting configuration.
This is unlike the figures in Chapter 4 in which the performance of dovetailing is compared against
the configuration in the starting configuration set with the best performance. The evaluation of
dovetailing over operator orderings is done in this way because it is common for researchers to
select an arbitrary operator ordering with little or no experimentation. The reasoning behind this
decision is given below.

Recall that the figures in Chapter 2 showing performance of WA*, WIDA*, WRBFS, and BULB
on the 4 x 4 sliding tile puzzle and 14 pancake puzzles suggest that the average performance over
a number of problems will change relatively smoothly with the value of parameters. As such, when
looking for strong average performance it is usually possible to quickly find a configuration with
high average performance by performing a binary search in the parameter space. Such a binary
search can only be performed in parameter spaces that are either real or integer valued. In the
case of operator order, we usually do not have a natural ordering of configurations over which
performance is expected to be relatively smooth. Combined with the fact that there is usually little
a priori information to guide in the selection of an operator ordering, it is common to simply select
any ordering and stick to it. Due to such random selection, it is therefore more accurate to consider
the average performance over all configurations than just the single best configuration.

Also note that the figures will show one of two ratios. The first is the ratio of the average number
of nodes expanded by all min( (Z) , 10, 000) candidate sets of size k (where the starting configuration
set is of size n) divided by the average number of nodes expanded by the n configurations in the
starting configuration set. This ratio will be used in cases where dovetailing performs worse than
selecting a configuration at random. All data points greater than 1 will indicate that dovetailing is
performing worse than the average configuration.

One such figure is 5.1 which summarizes the results of the WA* dovetailing simulations in the
4 x 5 sliding tile puzzle. Each line corresponds to a different starting configuration set. In this
case, dovetailing does not work well for most of the candidate set sizes, so the value shown for any
size k is the ratio of the the average performance of dovetailing over candidate sets of size k to the
average of the batch results for each of the 24 operator orderings. For example, consider the line
for the weight 6 starting configuration set. The average number of nodes expanded over 10, 000
candidate sets of size 11 is 3,273, 214. The average number of nodes expanded by the 24 weight 6

configurations alone is 2,221,011. Therefore, the value shown for the candidate set size of 11 on
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the weight 6 line is 3,273, 214/2,221,011 = 1.47. This means that dovetailing over candidate sets
of size 11 is on average expanding 1.47 times more nodes than the average configuration.

In cases where dovetailing outperforms the average configuration, the inverse relation will be
depicted. Specifically, this relation is the number of nodes expanded by the average configuration
to the average expanded by dovetailing. In these figures, all data points greater than 1 correspond
to instances in which dovetailing is outperforming the average configuration. One such figure is 5.3
which shows how many times fewer nodes dovetailing is expanding when compared to the average
WIDA* configuration.

We use these two different ratios to make it clear how many times worse or better dovetailing is

doing in comparison to the average configuration. The ratio shown will be indicated in the figure.

5.1 Dovetailing over Operator Orderings in WA*

In the case of WA*, operator ordering will affect in which order elements are added to the OPEN
list. Since the nodes in the OPEN list are sorted, the ties between nodes that are generated by the
same parent and have an equal f-cost and g-cost will be broken differently based on the order in
which these elements are added to the list. This will cause the order in which nodes are selected for
expansion to change.

This difference can cause a significant change in the number of nodes expanded. For example,
we tried using the 24 different WA* configurations to solve 100 4 x 5 problem instances. All 24
configurations had the weight of 3 and a memory limit of 1,000, 000 states, but each has a different
operator ordering. When performing such experiments, all configurations solved between 97 and
100 problems with only 7 of the 24 configurations solving all problems. Of those that solved all
of the problem instances, the ordering that required the least amount of work expanded 6,657,411
nodes while the ordering that required the most amount of work expanded 8, 766, 492 nodes. Note,
unless otherwise mentioned, we will only consider dovetailing with starting configuration sets in
which all configurations successfully solved all problems in the test set.

Figure 5.1 summarizes the set of experiments regarding WA* dovetailing simulations on the 4 x5
sliding tile puzzle. The figure shows that on some small candidate set sizes and larger weights, the
average performance of dovetailing actually outperforms the average performance of the individual
configurations. However, as the candidate set size increases, the overhead of running multiple in-
stances of WA* simultaneously dominates the run time. Regarding parallel dovetailing, when using
24 processors where each is assigned a different configuration in the starting configuration set with
a weight of 10, the improvements in search time are by factors of 8.8 and 6.6 over the average time
needed by a single-processor with any of the 24 operator orderings and the most efficient ordering,
respectively. The performance of parallel dovetailing over operator orderings will be compared to
wPBNF in Section 5.1.1.

Figure 5.2 shows the results of the equivalent set of 16 pancake puzzle experiments. The heuristic
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Figure 5.1: Dovetailing oser Operar Orderiag in WA on the 45x 5 Sliding Tile Puzzle.
Candidate Set Size

function used for these experiments is given by the maximization over the < 0,1,2,3,4,5 > and
< 6,7,8,9 > pattern databases. As in Figure 5.1, only values less than 1 indicate that the average

performance of dovetailing is better than the average performance of individual configurations.
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Candidate Set Size

Dovetailing over operator ordering with WA* again appears ineffective. Similarly, parallel dove-
tailing only offers modest speedups. For example, when using 15 processors where each is assigned
a different configuration in the weight 10 starting configuration set, the improvement in search time
is by a factor of 4.1 over the average time needed by individual configurations. When parallel dove-
tailing over all configurations with the weight of 10 is compared against the single best configuration
with the weight of 9, the speedup is by a factor of 3.6.

One of the trends evident in both Figures 5.1 and 5.2 is that dovetailing is usually more effective

on the starting configuration sets with larger weights than on those with smaller weights. This effect
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occurs because while there is a solution below every branch in the search tree in these domains, the
amount of work needed to find that solution will differ between branches. In WA*, larger weights
cause the algorithm to increasingly commit to a single line of play. The difference in tie-breaking
caused by different operator orderings can change which line of play is being committed to. Dove-
tailing over operator orderings helps overcome issues that arise when WA* commits to lines of play
that require a lot of work in order to find a solution.

Also of note, increasing the candidate set size has shown to improve the average solution quality
of the solutions found. For example, consider the weight 3 starting configuration used in the 4 X 5
sliding tile puzzle. The average total cost of all solutions found with each of the 24 configurations
in this set when run individually is 11, 843. The average total solution cost found when dovetailing
over candidate sets of size 2 is 11, 869. However, the solution quality found when dovetailing over
all 24 configurations is 11, 765. This behaviour is even more pronounced for larger weights. For
the weight 10, the average total solution cost found when dovetailing over candidate sets of size 2
with the weight of 10 is 17, 755, which is actually better than any individual configuration in this
set. When dovetailing over all 24 configurations, the total solution cost is 16, 219 which represents a
12% improvement over the average total solution cost of the configurations alone. Similar behaviour
is also seen in the pancake puzzle domain.

Unfortunately, the amount of diversity introduced through the use of different operator orderings
is still not enough to make dovetailing a useful enhancement to WA*. As changing operator order-
ings will only change the order in which nodes with the same parent are added to the OPEN list,
most of decisions made by different configurations will be very similar. As such, before dovetailing
will successfully enhance WA*, it will be necessary to find another aspect of WA* algorithm design

that introduces much more diversity.

5.1.1 Comparing Parallel Dovetailing over Operator Orderings with WA* to
wPBNF

In this section, the dovetailing experiments will be performed in the same manner as was described
in Section 4.2.2. As was done above, several different starting configuration sets will be considered,
each of which will contain configurations with a different associated weight. The configurations
within the same starting configuration set will again differ only in the operator ordering used.

For the smaller weights in the shared memory case, there were several occurrences of multiple
configurations in the same candidate set being unable to solve the same problem. This only occurred
when using higher numbers of processors since each thread is assigned a smaller fraction of the total
memory. To handle this problem, the following strategy was taken: if none of the configurations
in a candidate set can solve a problem p, all but one of the processors are stopped. The remaining
processor is then allowed to use all the memory available while the other processors remain idle.

Further, we assume the worst case possible: the configuration that continues searching is the config-
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Speedup With Different Numbers of Processors
Parallel Dovetailing
wPBNF Shared Memory Distributed Memory

Weight 2 4 5 8 2 4 5 8 2 4 5 8

1.4 112 | 1.65 | 1.92 | 2.62 | 1.00 | 0.99 | 0.98 | 0.98 | 1.00 | 1.01 | 1.02 | 1.02
1.7 076 | 1.37 | 1.50 | 149 | 095 | 1.04 | 1.06 | 1.07 | 0.95 | 1.04 | 1.06 | 1.08
2.0 062|110 | 1.34 | 146 | 1.00 | 1.15 | 1.19 | 1.23 | 1.00 | 1.15 | 1.19 | 1.24
3.0 062 | 090 | 0.84 | 0.78 | 1.06 | 1.65 | 1.83 | 2.11 | 1.06 | 1.65 | 1.83 | 2.11
5.0 060|076 | 072 | 0.64 | 1.25 | 1.75 | 19 | 218 | 1.25 | 1.75 | 1.9 | 2.18

Table 5.1: The Speedup of wPBNF and the Average Speedup of Parallel Dovetailing over Operator
Orderings on 43 4 x 4 Sliding Tile Puzzle Problems.

uration in the candidate set that requires the highest number of node expansions in order to solve the
problem. While this approach gives a pessimistic evaluation of shared memory parallel dovetailing,
we will show it will have minimal impact on the results.

Table 5.1 shows the speedup of both wPBNF and parallel dovetailing on the 43 easiest 4 x 4
sliding tile puzzle problems. For wPBNF, the table shows the speedup achieved from the weight w
wPBNF search when compared to a serial WA* search with weight w.

In the case of parallel dovetailing, the weight w row indicates that the starting configuration
used contains only configurations with a weight of w. The value shown in the weight w row and
k processors column is the average speedup seen by parallel dovetailing over k processors with the
weight w starting configuration set, when compared with the single configuration in that starting
configuration set with the best performance alone. Note, we compare with the best configuration in
this case since the wPBNF papers may have done the same.

For each weight and each number of processors in the table, we also show the highest speedup in
bold. Also note that the algorithms only require less time than the serial version of WA* for entries
larger than 1.

First, let us compare the shared and distributed memory versions of parallel dovetailing. The
performance of the two memory architectures are only different for low weighted starting configu-
ration sets and high numbers of processors. This is because these are the only situations in which all
the configurations in a candidate set run out of memory before any single configuration has found
a solution. In these cases, a distributed memory architecture will outperform the shared memory
which has to default to the worst case procedure outlined above. However, the table shows that the
effect of this worst case procedure is minimal, and only occurs where the speedup gained through
parallel dovetailing is small.

The table shows that for low weights, wPBNF outperforms parallel dovetailing over operator
orderings. For these weights, there is little diversity in the performance of the operator orderings.
On the other hand, wPBNF handles these cases well as the processors are working on mutually

exclusive sets of the state space during expansion.
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As mentioned in Section 4.2.2, wPBNF shows poor performance in this domain for larger
weights. In contrast to this result, the best speedup achieved with parallel dovetailing is with the
largest weight considered. Recall that due to the behaviour of WA*, this is also the weight that
requires the least amount of search effort in the serial case. Therefore, parallel dovetailing is able to

enhance even the best performance of WA* while wPBNF cannot.

5.2 Dovetailing over Operator Orderings in WIDA*

As described in Section 2.9.3, WIDA* is often forced to examine large portions of a search tree
without any heuristic guidance or pruning. In these areas of the search space, the order in which
nodes at any branch of the search tree are considered is completely determined by the operator
ordering. If the the portion of the search tree contains a goal, some operator orderings may find
it quickly while others will require a large number of node expansions before doing so. As such,
proper operator ordering selection for WIDA* on a problem-by-problem basis will potentially yield
large gains in the search efficiency.

In Figure 5.3, experiments are shown regarding dovetailing over operator orderings with WIDA*.
The figure is similar to Figure 5.1, except the inverse relation is depicted. Here, values greater than 1
imply that dovetailing required fewer nodes expanded on average when compared to using a single

ordering.
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Figure 5.3: Dovetniling over Operatad Ordering in WIDA* on thes x 5 Sliding Tile Puzzle.
Candidate Set Size

The figure indicates that dovetailing over configurations that differ only in operator orderings
offers large speed increases when compared with the average WIDA* instance. In Table 5.2, it is
shown that the improvement over even the operator ordering with the best performance for each
particular weight is also large. Notice that the minimum in terms of nodes expanded by dovetailing

over all 24 operator orderings occurs at the weight of 8. This is in contrast to the fact that when
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Nodes Expanded By Nodes Expanded By Factor of
Weight the Best Order Dovetailing over 24 Orders | Improvement
3 273,782,770 49,318,913 5.6
4 246,230,595 16,968,531 14.5
5 411,505,075 11,092,577 37.1
6 441,818,307 10,280,071 43.0
7 487,919,186 10,216,976 47.8
8 325,019,519 9,646,247 33.7
9 541,136,094 11,210,600 48.3
10 1,866,590,738 13,096,426 142.5

Table 5.2: Dovetailing over Operator Ordering in WIDA* Compared to the Best Single Order on the
5 x b Sliding Tile Puzzle.

using a single configuration, the minimum number of nodes expanded occurs with the weight of 4.

Dovetailing over operator orderings also extends the range of weight values over which WIDA*
is an efficient search algorithm. For example, Table 5.2 shows that the number of nodes expanded
by even the best configuration in the starting configuration sets with weights of 9 and 10 is quite
high in comparison to the performance of the weight of 4. However, the performance of dovetailing
over all 24 orders is actually similar (and quite low) on all three of these starting configuration sets.

Both Figure 5.3 and Table 5.2 also indicate that the improvement gained through the use of
dovetailing over operator ordering increases with the value of the weight. This is because of the
behaviour described in Section 2.9.3 in which increasing the weight causes WIDA* to search a larger
subtree without heuristic guidance. Running multiple operator orderings simultaneously through
dovetailing decreases the chance of this happening.

In Figure 5.4, we show the performance of dovetailing over operator orderings on the 16 pan-
cake puzzle. The figure shows that dovetailing is outperforming the average configuration on all
candidate set sizes, for all weights starting configuration sets considered. Note, the y-axis is shown
in logarithmic scale.

In this puzzle, dovetailing does not improve WIDA* on the low weights as much as it does on the
5 x b sliding tile puzzle. However, the improvements seen with high configuration sets and the larger
weights is more dramatic. This is again due to the fact that larger weights are more susceptible to
making poor decisions while traversing the search tree. The improvement is similarly large when we
compare the performance of dovetailing over all 15 orders to the best configuration in each starting
configuration set. This trend can be seen in Table 5.3.

The above results indicate that parallel dovetailing over operator orderings is a very effective
parallelization of WIDA*. The speedups gained through such parallel dovetailing can be calculated
for each of the starting configuration sets considered above by simply multiplying the factor of
improvement in Tables 5.2 and 5.3 by the number of processors used: 24 in the case of the sliding
tile puzzle, and 15 in the case of the pancake puzzle. The speedup is super-linear for all starting

configurations considered.
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Candidate Set Size
Nodes Expanded By Nodes Expanded By Factor of
Weight the Best Order Dovetailing over 24 Orders | Improvement
3 4,234,363 3,835,205 1.1
4 1,671,646 1,187,152 1.4
5 1,733,165 668,793 2.6
6 2,120,445 911,044 23
7 2,505,688 1,003,828 2.5
8 5,881,005 1,323,972 44
9 19,229,160 1,249,807 15.4
10 80,527,176 1,033,192 77.9

Table 5.3: Dovetailing over Operator Ordering in WIDA* Compared to the Best Single Order on the

16 Pancake Puzzle.
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In many cases, the speedup from parallel dovetailing is very large. For example, consider the
weight 8 starting configuration used in the 5 x 5 sliding tile puzzle. As sequential dovetailing over
24 operator orderings involves the expansion of 9,646,247 nodes, the time required by parallel
dovetailing will be approximately that needed for 9, 646, 247/24 = 401, 927 node expansions. This
means that parallel dovetailing with 24 processors will actually take 612 times less search time
than the single best configuration in any starting configuration set considered — namely, the best
configuration in the weight 4 set.

While dovetailing over operator orderings significantly improves the search time of WIDA*,
the effect on solution quality is mostly negligible. This is also true when considering individual
configurations. For example, in the weight 10 starting configuraton set used in the sliding tile puzzle
experiments, the difference between the fastest and slowest configurations is by a factor of 5.1.
However, the difference in the average solution quality found by these configurations is 0.2%. The
difference between the average total solution quality found by dovetailing over candidate set sizes
of 2 when compared to the candidate set sizes of 24 is only 0.03%. Both of these candidate set sizes
also find solutions that are almost identical to the average over the configuration sets. The results

are similar in the pancake puzzle domain.

5.3 Dovetailing over Operator Orderings in WRBFS

Recall that when a node n is expanded for the first time by WRBFES, the children of n are sorted by
their f-cost. The initial order of the children (before sorting) will effect how the sorting algorithm
breaks ties between nodes with an equal f-cost. This initial order is given by the operator ordering.
Therefore, different operator orderings can change the order in which nodes are expanded for the
first time.

When a node is re-expanded, the value assigned to any child ¢ is the maximum of f(c) and
the minimum threshold of all f-costs seen thus far. Often, this results in several children being
assigned the same f-cost. As described above, the operator ordering will affect the order in which
nodes are expanded in the presence of ties. This increase in ties will thereby increase the impact
of the operator ordering. As such, operator ordering will also affect the order in which nodes are
re-expanded. In this section, we will show that dovetailing will often effectively enhance WRBFS
due to the diversity introduced to the search tree traversal in these two ways.

In Figure 5.5, the results of the simulations regarding dovetailing over operator orderings in
WRBES are shown. Note that like the figures in Section 5.2, a value greater than 1 for any candidate
set size k indicates that dovetailing over k configurations on average requires fewer node expansions
than the average configuration.

Several interesting trends emerge from Figure 5.5. First, notice that much like the performance
of WIDA¥* on the 5 x 5 puzzle, the relative improvement is greater for the larger weights than it

is for the smaller weights. The reasoning behind such behaviour is similar to that given for WA*
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Figure 5.5: Dovetailing over Operattr Ordering in WRBES on thes! x 5 Sliding Tile Puzzle.

Candidate Set Size
Nodes Expanded By Nodes Expanded By Factor of
Weight the Best Order Dovetailing over 24 Orders | Improvement
3 82,013,967 94,798,145 0.9
4 110,396,467 87,437,546 1.3
5 73,823,540 22,595,097 33
6 114,610,812 49,159,763 2.33
7 89,791,503 19,555,388 4.6
8 183,524,940 37,268,972 4.9
9 165,478,833 22,314,006 7.4
10 373,128,797 64,443,033 5.8

Table 5.4: Dovetailing over Operator Ordering in WRBFS Compared to the Best Single Order on
the 4 x 5 Sliding Tile Puzzle.

which exhibited similar trends. Also note that while using all 24 operator orderings does work well
on all weights, the best average performance is found with smaller numbers of configurations. The
candidate set size with the best average performance for a weight w starting configuration set, also
increases with the weight.

When the comparisons are made between dovetailing and the single best configuration, the be-
haviour is slightly different. This relationship is shown in Table 5.4. Here we see similar behaviour
to that observed in Figure 4.23, in that when comparing consecutive integer weights, the odd weights
always outperform the even weights. The performance of dovetailing over the different starting con-
figuration sets shows a similar trend. Currently, we do not have a reason for why odd weights
outperform even weights in this domain and leave such an investigation for future work.

While the results shown above suggest that dovetailing over configurations that only differ in
operator ordering is an effective enhancement to WRBES, the results on the 14 pancake puzzle are
mixed. Figure 5.6 shows these results. The y-axis in this figure shows the same relation that it does

in Figure 5.5.
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Figure 5.6: Povetading over Opesator Otderingitn WRBES omshe 16 Pancake Puzzle.

Candidate Set Size
Nodes Expanded By Nodes Expanded By Factor of
Weight the Best Order Dovetailing over 24 Orders | Improvement
3 6,929,572 41,818,769 0.17
4 2,762,023 12,378,956 0.22
5 2,165,567 7,113,658 0.30
6 2,263,928 5,238,205 0.43
7 3,113,635 4,654,909 0.67
8 6,628,702 10,101,465 0.66
9 19,446,612 10,950,786 1.8
10 75,287,230 35,951,542 2.1

Table 5.5: Dovetailing over Operator Ordering in WRBFS Compared to the Best Single Order on
the 16 Pancake Puzzle.

The performance of dovetailing is highly dependent on the weight in this domain. Dovetailing
degrades the performance of small weights yet significantly improves the performance of larger
weights. A similar trend is seen when comparing the performance of dovetailing to the performance
of the configuration in each starting configuration set that has the best performance. This comparison
is shown in Table 5.5. Clearly, dovetailing is doing well to minimize the effect of the mistakes made
by the high weights. Unfortunately, with the lower weights, the search trees are evidently too similar.

When considering the parallel variant of dovetailing over operator orderings, the results again
depend on the domain. For every starting configuration except the weight 3 set, the speedups are
super-linear in the 4 x 5 sliding tile puzzle when dovetailing over all 24 configurations. This is not
the case in the pancake puzzle in which the speedups depend on the starting configuration set. For
the small weighted starting configuration set, dovetailing over operator ordering is an ineffective
form of parallelization. However, super-linear speedups are seen with the higher weights.

Much like WA*, dovetailing over increasing numbers of operator orderings in WRBFS also

improves the quality of the solutions found. The behaviour is similarly magnified for larger weights.
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Due to the similarity of the observed behaviour of WRBFS with WA*, we will only consider the
weight 10 starting configuration set used in the sliding tile puzzle experiments. The average total
cost of the 24 configurations in the set is 18,112 when the configurations are used individually.
When dovetailing over candidate sets of size 2, the average total cost is 17,743. The total cost
found when dovetailing over the candidate set containing all 24 configurations is 16, 817. This is an

improvement of almost 8%.

5.4 Dovetailing For Optimal Problem Solving

For weight values of at least 3, Sections 5.2 and 5.3 demonstrate that dovetailing over operator
ordering can often help to improve upon the standard WIDA* and WRBFS algorithms. These results
suggested the following question: can dovetailing (or parallel dovetailing) over operator orderings
be used with a weight of 1 to speed up optimal search?

In particular, we are interested in the performance of dovetailing over operator orderings with
RBFS and IDA* since the linear-space nature of these algorithms allows them to optimally solve
problems in larger domains than an algorithm like A*. Below, we will examine the performance
of these linear-space algorithms in two test domains: the 4 x 4 sliding tile puzzle domain and
the 14 pancake puzzle. The heuristic functions will be given by the Manhattan distance and <
0,1,2,3,4,5,6 > pattern database, respectively. For the 4 x 4 sliding tile puzzle, the test set used
is the Korf test set. For the 14 pancake puzzle, we will use a test set containing 100 problems.

Table 5.6 shows the results from the dovetailing over operator ordering simulations. The set of
operator orderings considered are the same as those considered with the weighted algorithms. For
every candidate set size k, the table shows the ratio of the average number of nodes expanded when
dovetailing over k configurations to the average number of nodes expanded by each of the configu-
rations. This value is shown for each algorithm on both domains. If the value is greater than 1, then
the average dovetailing simulation required more node expansions than did the average configura-
tion alone. Note, the average speedup found by parallel dovetailing can be found by dividing the
candidate set size by the factor of nodes expanded by single-processor dovetailing. For example,
the average speedup found in the sliding tile puzzle domain when using parallel dovetailing over 4
IDA* instances, each on a separate processor, will be 4/2.8 = 1.4.

The table shows that in all situations tested, the average configuration outperforms the average
performance of dovetailing. Similarly, parallel dovetailing over operator orderings is clearly not an
effective form of parallelization for these algorithms. For example, the speedup achieved on the
4 x 4 puzzle when using 24 processors is only by a factor of 1.6 for both algorithms. The speedup
achieved on the 14 pancake puzzle when using 13 processors is also 2.0 for both algorithms.

Below, we will analyze why dovetailing is ineffective in the case of optimal problem-solving
with IDA* and suggest that a similar argument can be made for RBFS. Some of this work is similar

to the analysis done by Powley and Korf in their evaluation of the effectiveness of Parallel Window
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Ratio of the Nodes Expanded by Dovetailing
To the Nodes Expanded by the Average Configuration

4 x 4 Sliding 14 Pancake
Tile Puzzle Puzzle

Candidate | Dovetailing | Dovetailing | Dovetailing | Dovetailing
Set Size | With IDA* | With RBFS | With IDA* | With RBFS

2 1.6 1.7 1.6 1.5

3 2.2 23 2.1 2.0

4 2.8 2.8 2.6 24

5 33 34 3.1 29

6 39 4.0 3.6 33

13 8.0 8.1 6.6 6.4

24 15.0 14.7 NA NA

Table 5.6: Dovetailing over Operator Ordering for Optimal Problem-Solving.

Search [39].

First, notice that the total amount of work performed during all iterations except the last one will
be identical. During these non-final iterations, the search will involve raising the threshold to the
cost of the optimal solution path. Changing the operator ordering only changes the order in which
potential solution paths in the search space are considered. Any difference in search time between
operator orderings occurs because the final iteration is stopped as soon as a solution is found.

Before continuing, we need to introduce the notion of the iteration branching factor. The it-
eration branching factor b; is the ratio of the number of nodes expanded when searching to a cost
threshold ¢ to the number of nodes expanded in the previous iteration for a large ¢. This value is an
estimate of how the size of iterations grow. With this definition, it should be clear that on any prob-
lem p that requires d iterations to solve, the average number of nodes expanded on some non-final
jth iteration is cb{ ~! where c is the average number of nodes expanded during the first iteration.

The total number of nodes expanded in the first d — 1 iterations, denoted ¢, is given by the following:

P = C+cbi+cbf+...cbf_l 5.1

O 4 b3 b 4 1) (5.2)

Now let z = 1/b; and substitute in 5.2. The result is the following: ¢ = cbfl_1 (I+z+z2+..+
2%~4). If we assume b; > 1, < 1. Therefore, 1 can be approximated as ¢ = cb? ' (1+z+2%+...)
since 1+ + 22 + ... converges to 1/(1 — x) for z < 1. Substituting b; back into the equation yields
¥ = e (b;/(bi—1)) = cb/(b; —1). Note, this value will remain constant over all configurations
that have the same value of b;.

The total number of nodes in the search tree of the final iteration is cb¢. This means that the
ratio between the total number of nodes expanded in the final iteration to v is cb?/(cb?/(b; — 1)) =

(b; — 1). However, only a fraction of the nodes in the final iteration will be expanded since search is

92



stopped once a solution is found. Let ay denote the average proportion of the last iteration expanded
by a configuration 6. Using the above ratio, this means that the average number of nodes expanded
in the final iteration of a search using 6 can be expressed as ag(b; — 1)v.

Now let us compare the expected number of nodes expanded by configuration 8 against dovetail-
ing. The expected number of nodes expanded by 0 willbe Ty = 1)+ ag(b— 1)y = (1+ag(b—1))¢.
Let ag be expected proportion of the final iteration that is expanded by the configuration in the can-
didate set © that required the minimum number of node expansions on p. When dovetailing over ©
where |O| = k, the expected number of nodes expanded will be Tg = ki) + kaeo(b; — 1)1. The
expected ratio of Tg to Ty is then given by k(1 + ag(b; — 1))/(1 + ag(b; — 1)). Dovetailing over
© will only outperform some configuration @ if this ratio is less than 1. Notice that as b; increases
to oo the ratio reduces to agk/ayg.

The poor performance exhibited by dovetailing in the 4 x 4 sliding tile puzzle and the 14 pancake
puzzle implies that the average of this ratio is greater than 1 in these domains with the corresponding
heuristics. Below, we will empirically estimate the values of ay, ag, and b; so as to evaluate the
effectiveness of this model. To perform these calculations, two test sets were constructed from the
easiest 50 problems from each of these domains. Each problem was solved using IDA* such that
the search continued even when a solution was found. The ratio of the number of nodes in the last
iteration to the total number of nodes in all previous iterations was then used to estimate b; — 1.

Having expanded the entire final iteration on each problem, it is simple to calculate the pro-
portion of nodes in the final iteration expanded by each configuration using the data collected for
the dovetailing simulations previously considered in this section. The average minimum proportion
over all configurations of the final iteration examined is also calculated for each problem. Averaging
these values over all 50 problems gives us ag and ag.

In the 4 x 4 sliding tile puzzle, the candidate set © contains all 24 operator ordering config-
urations. The value for b; found is 6.2. The value of ay, where 6 is the average configuration is
0.27. The value of ag is 0.06. This predicts that the ratio of Tg to T} is 13.2. This compares well
to the actual average ratio of the number of nodes expanded by dovetailing to the average number
expanded by individual configurations over all 50 problems, which was found to be 13.1. Note, the
actual average ratio over all 100 problems is 13.3.

In the 14 pancake puzzle, the value for b; is also larger than the brute-force branching factor of 12
(13 operators are applicable per state, but one returns the state to the parent and can be immediately
pruned). For these experiments, the candidate set contains all 13 configurations considered above.
The value for b; found over the 50 problems is 21.5. For the average configuration, ay was calculated
as 0.32. The value of ag over all 13 configurations is 0.04. This predicts that the ratio of Tg to Ty
is 3.1 which can be compared to the actual average ratio of 4.0 over the 50 problems. The actual
average ratio over all 100 problems is 4.4.

Note that this analysis is not immediately applicable to dovetailing over configurations all with
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the same weight w, where w > 1. This is because the iterations do not grow as uniformly as they
do in optimal search. Typically, WIDA* will perform a small number of very small iterations (in
the case of the 4 x 4 puzzle all non-final iterations expanded fewer than 25 nodes), with the final

iteration dominating search time. We leave such modelling as future work.

5.5 Dovetailing over Operator Orderings in BULB

In this section, we will consider applying dovetailing over operator orderings to the BULB algo-
rithm. Recall that in beam search, all the nodes in the deepest beam are expanded and sorted. In
practice, this list of successors L is built by iteratively expanding nodes in the deepest beam. These
nodes are then appended to L. It is only once all nodes in the deepest beam have been expanded that
L is sorted.

The order in which nodes are appended to L is given by the operator ordering. The operator
ordering will therefore affect the way ties are broken by the sorting algorithm. This can change in
which beam slice a node ends up in after the sort. For example, consider a BULB search with a beam
width of 4. Consider the successors of some beam b. If the number of successors with the minimum
h-cost is 6, only 4 of these nodes will be in the first slice. Let n be one of these 6 successors. Some
operator orderings will result in n being in the first slice, and others will have n being in the second
slice. As the slice that a node is in will change the order in which it is expanded, operator ordering
can significantly affect the traversal of the search tree.

Figures 5.7 and 5.8 show the results of the dovetailing simulations for different BULB starting
configurations in the 6 x 6 sliding tile puzzle and 16 pancake puzzle domains, respectively. Each
starting configuration corresponds to a different beam width. In the figures, dovetailing is only
outperforming the average configuration if the ratio is less than 1.

Notice that in both domains, dovetailing is generally a more effective enhancement with the
smaller beam widths. Smaller beam widths result in a greedier search of the space. If a greedier
search is mislead, it requires extra effort when trying to correct itself. Dovetailing minimizes this
problem by having multiple instances running at the same time in the hopes that not all instances
will be mislead. Smaller beam widths also have an increased chance of splitting nodes with an equal
f-cost among multiple slices. Therefore, the amount of diversity between configurations is much
greater for small beam widths than it is for larger beam widths.

The only starting configuration set which did not follow this trend is the beam width 7 starting
configuration set in the 6 x 6 sliding tile puzzle. In this set, only one of the configurations ever needed
to backtrack, and it only needed to do so on a single problem. This is unlike the rest of the starting
configuration sets considered in which backtracking was needed by all configurations. Without any
backtracking, all configurations in the beam width 7 set end up solving the problems in a similar
amount of time. As such, dovetailing yields poorer performance in this starting configuration set

than it does in starting configuration sets with a larger beam width.
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Figure 5.7: Davetailing 6ver Operator Orderifg in BU2dB on the x 6 Sliding Tile Puzzle.

Overall, the performance of dovetailing and parallel dovetailing offers little to BULB in both
domains except on the smallest of beam widths. In the case of parallel dovetailing, either super-
linear or near-linear speedups are seen for the starting configuration with the beam width of 3.
However, as the beam width increases, the speedups seen decrease rapidly. For example, with the
beam width 100 starting configuration set, the speedup is only by a factor of 3.8 when using 24

processors in the 6 x 6 sliding tile puzzle, and 2.1 when using 15 processors in the 16 pancake

puzzle.
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Figure 5.8:2Dovetailing oger Oparator Qoderingzin BUlB on the 16 Pancake Puzzle.

As was the case in WA* and WRBFS, dovetailing over an increasing number of operator order-
ings also improves the solution quality when the procedure is applied to BULB. This effect is the
most pronounced on the low beam widths. On the starting configuration set with beam width 3, the

average total cost in the 6 x 6 sliding tile puzzle is 3,132,084 and 913, 421 for candidate set sizes
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of 2 and 24 respectively. These correspond to an improvement in solution quality over the average
solution quality of the configurations alone by factors of 1.13 and 3.88, respectively.

The solution quality also improves with the number of candidate sets by a significant amount
when using large beam widths. For example, with the beam width 100 starting configuration, dove-
tailing over all 24 configurations achieved an improvement of 2.4 in the solution quality over the

average configuration alone.

5.6 Chapter Summary

In this chapter, dovetailing over configurations that differ only in the static operator ordering used
was considered for the WA*, WIDA*, WRBFS, and BULB algorithms. When using a starting
configuration set in which all configurations have a weight w, dovetailing was shown to improve the
solution quality of the WA* and WRBFS algorithms when compared to the average solution quality
found when searching with the configurations alone. In the case of WA*, this significantly increased
the search time. A similar result was seen in the BULB.

Dovetailing over operator orderings was also considered as a parallelization of WA* and was
compared to the wPBNF algorithm in the sliding tile puzzle domain. wPBNF has been shown to
perform well with low weights, although it was unable to speedup the search with larger weights.
In contrast, the amount of speedup gained through parallel dovetailing actually increased with the
weight value and outperformed wPBNF in these situations.

In the case of WRBFS, the performance of dovetailing over operator orderings was dependent
on the domain considered. In the sliding tile puzzle, the algorithm saw significant speedups with
dovetailing. In the pancake puzzle, dovetailing significantly effectively enhanced weighted starting
configuration sets but significantly increased the search time for low weighted sets.

WIDA* was the only algorithm which showed improvement in both domains when dovetailing
over operator orderings was applied to it. This improvement increased as the weight became larger.
The only weights on which dovetailing was less effective was on very small weights. In the extreme
case of this behaviour (ie. with a weight of 1), dovetailing over operator ordering was shown to
be an ineffective procedure when used for optimal problem-solving with the IDA* algorithm. The

same was also shown to be true for RBFS.
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Chapter 6

Conclusion

Recall that the initial problem we considered was that of proper configuration selection for single-
agent search algorithms. One of the motivations behind such an investigation is that while batch
tuning does well to find a single configuration that has a good average performance over problems
in a domain, this configuration will often perform poorly on a number of individual problems. In
such cases, configuration selection should be performed on a problem-by-problem basis.
Unfortunately, a number of issues arise when developing such as system, as outlined in Section
3.3.1. As an alternative, we considered the use of dovetailing as a enhancement to the WA*, WIDA*,
WRBEFS, and BULB single-agent search algorithms. Dovetailing involves simultaneously searching
with a configuration portfolio as opposed to a single configuration. Dovetailing allows configura-
tions to overcome the weaknesses of one another, as opposed to the traditional use of a batch tuning

which can result in poor performance due to the over-reliance on a single configuration.

Dovetailing Speedup over the Single Best Configuration
On the Largest Puzzle Problem Tested

Using 15 Configurations Using 15 Configurations
in the Sliding Tile Puzzle in the Pancake Puzzle
Algorithm | Sequential Parallel Sequential Parallel
WA* 0.21 32 0.10 1.6
WIDA* 121 1826 1.8 27
WRBFS 2.5 37 0.59 8.9
BULB 0.12 1.8 0.19 2.9

Table 6.1: A Summary of Speedup Results for Dovetailing Over the Main Parameter Space of
Algorithms.

Table 6.1 shows the speedup found when dovetailing in the largest puzzle tested with each al-
gorithm in each domain. This table is concerned with dovetailing and parallel dovetailing over the
main algorithm parameter spaces. The speedups shown are for the candidate sets that contain all
the configurations in the starting configuration set used with that algorithm. The numbers shown

represent the speedup gained from performing dovetailing when compared to the single best con-
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figuration in the candidate set. The parallel values assume that each configuration is assigned to a
separate processor.

Table 6.2 shows an analogous summarization of results for dovetailing over operator orderings.
In this case, the comparison is between sequential dovetailing and the average performance over all
configurations in the candidate set. All configurations in the candidate sets are identical except that
each uses a different operator ordering. The setting of the main parameter in the candidate set is

shown beside the algorithm name (ie. all configurations in the candidate set used with WA* have a

weight of 6).
Dovetailing Speedup over the Average Configuration
On the Largest Puzzle Problem Tested

Using 24 Operator Orderings | Using 15 Operator Orderings

in the Sliding Tile Puzzle in the Pancake Puzzle

Algorithm Sequential Parallel Sequential Parallel
WA* with weight 6 0.40 9.6 0.25 3.8
WIDA* with weight 6 223 5352 4.3 65
WRBFS with weight 6 6.1 146 0.67 10
BULB with beam width 15 0.24 5.8 0.33 5.0

Table 6.2: A Summary of Speedup Results for Dovetailing Over Operator Orderings.

While these tables show that dovetailing offers significant speedups in many situations (or at
least similar behaviour without any offline tuning), it does not actually solve the problem of proper
configuration selection. Instead, the task of selecting a single effective configuration is replaced with
the task of selecting an effective candidate set of configurations. Where offline time is available,
batch tuning over possible candidate sets is one solution. The use of a more sophisticated automatic
configuration tuner, such as the aforementioned Iterative Local Search system described in Section
3.3, is also a possibility.

Where offline time is not available — such as is the case with general systems that must be able
to handle many different domains — previous approaches cannot be used. In such situations, we
assert that the use of a single configuration is more error-prone approach than is the selection of a
candidate set. This is because the use of multiple configurations helps overcome the deficiencies of
any single configuration at a linear cost in the candidate set size.

When using only a single configuration, there is no such backup. Even if a strong single configu-
ration is found, it cannot be expected to do well on all problems in all domains. Such a configuration
can always be placed in a candidate set so as to help prevent poor performance on certain problems
found to be difficult by that configuration.

As a future direction of research, we consider the problem of automatically constructing good
candidate sets for a specific domain. In the remainder of this chapter, we will detail some prelim-

inary research into several aspects of this topic. First, we will address the issue of having multiple
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configurations in a candidate set which duplicate search effort. We will then describe some prelim-
inary ideas towards understanding the distribution of work performed over a set of configurations,
using a distribution to estimate the ideal size k for a candidate set, and finding the best candidate set

of size k from a larger starting configuration set. Finally, we will finish with some closing remarks.

6.1 Removing Duplicates From Candidate Sets

In Sections 2.8.2 and 2.10.1, it was shown that on the 14 pancake puzzle, all weights larger than
10 yield identical searches when used with both WA* and WRBFS. If the automatic construction
of candidate sets is not performed carefully, dovetailing can perform unneccessary work due to
presence of essentially duplicate configurations in the candidate set.

To address this issue, we suggest the use of the following procedure, which we will explain by
example. Consider having a candidate set © for some WRBFS search, where |©| = k. On the first
problem in the problem set, all configurations will begin working on only a single search tree instead
of k trees as is done normally. Each configuration will maintain its own bounds at every level of the
tree. However, as soon as some configuration ¢ disagrees with the rest of the £ — 1 configurations
in terms of which node should be expanded next, § will break away from the others. This break will
involve having the search tree being copied. Work on the two subtrees — that being worked on by 6
and that be worked on by © /6 — will then continue in a dovetailing fashion.

This process can be generalized as follows. Instead of having only a single configuration split
away, 6 will be separated into subsets 61, ..., 0; such that there is no intersection between these
configuration sets, 61 U ... U 0; = 0, and each of these subsets selects a unique node to expand.
At this point in the search, the search tree is copied j times and each of the subsets is assigned an
independent search tree. This process of splitting off into separate search trees continues until a
solution is found. All configurations will then be contained in a set of groups g1, ..., g;, where for
all 4, the configurations in g; performed identically. For any future searches, 6 can be pruned of all
configurations except one in each of g;.

This procedure allows for the removal of essentially duplicate configurations from the candidate
set. It should be clear that this procedure requires no more work or memory than dovetailing itself.

The main disadvantage of using this procedure is that it significantly complicates the implemen-
tation of the algorithms. Further domains need to be considered so as to determine if in practice,
many design choices will induce configurations that are different in parameter values but the same in
execution. For example, it is all but impossible for different beam widths to induce the same search.
Similarly, different operator orderings are expected to induce different searches even in algorithms
that involve sorting, as long as each node in the search tree does not have a unique f-cost. As such,
the presence of “essentially duplicate” configurations may be rare enough such that it is not worth

complicating dovetailing with the use of this procedure.
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6.2 Analyzing the Distribution of Work Performed by a Starting
Configuration Set

One of the properties of a candidate set that determines whether dovetailing will be effective is the
distribution of search effort required by the configurations in the set. For example, if the search
effort needed by the configurations in some candidate set © is similar on many problems, using
only a single configuration in © will outperform dovetailing due to the overhead of simultaneously
running multiple configurations.

In the work of Gomes et al., the distributions of search effort over sets of cofigurations for
constraint satisfaction problems were shown to have very long tails [20]. The variability in run-time
is even evident when only considering configurations that differ only in the random seed. These
distributions were shown to belong to the class of Pareto-Lévy of distributions which have an infinite
mean and variance.

One of the ways of identifying these distributions is to consider a log-log plot of the fraction of
configurations that required at least = time to solve some problem p. This is because Pareto-Lévy
distributions will show approximate linear behaviour in such plots. Note, the fraction of configu-
rations that required at least x times to solve p is the same as the cumulative distribution of work
needed on problem p subtracted from 1.

We are currently investigating single-agent search problems so as to determine what design
choices show a similar behaviour. Figure 6.1 is a log-log plot of the cumulative distribution sub-
tracted from 1 for 3 different search procedures on the hardest problem in the Korf test set. The line
marked “Without Dovetailing” is the cumulative distribution of work for a set of WIDA* configura-
tions subtracted from 1. The starting configuration set is of size 480. All configurations in this set are
identical, except each has been given a unique weight from the set {1, 1.05, 1.1, ..., 24.90, 24.95, 25}.

Notice that the relationship is not linear, particularly over the space in which the first 95% of the
problems are solved. The last 5% of the configurations, which are generally the smallest of weights,
somewhat skew this interpretation. If we remove these configurations from the set, we conclude
that the distribution does not belong to the class of Pareto-Lévy distributions. However, despite this
finding, the tail of the distribution can still be said to be long.

The work of Gomes et al. also demonstrated that the use of random restarts dramatically im-
proved the performance of the CSP solver by decreasing the length of the distribution tails. The
connection between dovetailing and random restarts has already been discussed in Section 3.5, and
the figure shows that the impact of dovetailing is similar to that reported for restarts. In the figure, we
show the cumulative distribution of work done subtracted from 1 when dovetailing over candidate
sets of size 5 and 20. These were found through dovetailing simulations. The candidate set used
consisted of the 480 configurations described above. For each candidate set size, we have considered

10, 000 randomly selected candidate sets.
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The introduction of dovetailing severely decreases the length of the tails of the distribution. The
larger the candidate set size, the smaller the tail becomes. The cost of dovetailing is also on display in
the figure. Notice that the minimum number of nodes needed by dovetailing over the candidate sets
of size 20 is larger than a significant proportion of the 480 configurations. However, the behaviour
of the worst case is improved substantially.

As the distribution of search effort does not appear to fall in the class of Pareto-Lévy distribu-
tions, we have been working in collaboration with Karen Buro [9] on determining what distributions
it is similar to. Preliminary results on a number of 4 x 4 sliding tile puzzle problems suggest that
the log of the distribution of work is most similar to a gamma or beta distribution. However, these
results require more analysis.

If the distribution of search effort for a domain is understood, this knowledge could potentially
be used to inform candidate set selection. In the next section, we consider some early ideas into

using the distribution to help determine an appropriate size for candidate sets.

6.3 Finding Effective Candidate Set Sizes

Consider the problem of finding an effective candidate set from a larger starting configuration set.
One approach which we are currently investigating involves first determining a candidate set size
that is expected to yield good performance. Once a candidate set size has been decided upon, it will
then be necessary to find an effective set of configurations of that size. An early approach to that

problem will be considered in Section 6.4.
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The issue of candidate set size selection involves balancing the coverage of the candidate set
against the cost of dovetailing. If the size is too small, the probability that the candidate set contains a
configuration that has good performance on every problem in a problem set will decrease. However,
as the size increases, so does the overhead of running a number of configurations simultaneously.

In order to estimate an effective candidate set size, we can use the distribution of the number of
nodes expanded by configurations in a starting configuration set {2 on a problem p. This distribution
will be given by the random variable X. So as to simplify the mathematics, {2 will be assumed to be
infinite.

Let us now consider candidate sets of size k that consist of random configurations from (2,
selected with replacement. Let ®(k) denote the expected amount of work needed by dovetailing
over any such random candidate set of size k. This value will be given by the expected minimum of
the number of nodes expanded by & configurations in 2, multiplied by k.

Let F'y (b) denote the cumulative density function of Y, formally defined as Fy (b) = P(Y < b).
fy will be used to denote the probability density function of Y, formally described as the derivate of
Fy (b) with respect to b. Finally, let X1, ..., X}, denote the distributions over each of the k randomly
selected configurations, and let U denote the distribution of the minimum over these & random

variables. This means that Fiy (z) = 1 — P(N¥_, X; > ). The following algebraic expressions then

follow:
Fy(z) = 1-PN,X; > ) (6.1)
= 1-P(X; >2)P(X2>2z)...P(X) > 1) (6.2)
= 1-P(X >ax) (6.3)
= 1-[1-Fx(z)* (6.4)

Line 6.2 follows since the configurations were selected at random and therefore the associated ran-
dom distributions are independent. Line 6.3 follows from the fact that the configurations are all
taken from the same starting configuration set and so all of the X;’s share the same distribution,
namely X. Line 6.4 is true by the definition of the cumulative distribution function.

With this expression, it is now possible to calculate the probability density function fy(z). By
simply differentiating Fy () with respect to z, we find that fg (z) = kfx (z)[1 — Fx(z)]*~ %
Where E(Y) denotes the expected value of Y, it should be clear that ®(k) = kE(¥). As the

expected value of a distribution Y is given by E(Y) = [ yFy (y)dy, we find the following:

(k) = K2 /Ooo fx (@)1 — Fx (),

By simply evaluating this formula for different values of k, it will be possible to estimate the
candidate set size which leads to the minimum expected amount of work, denoted k*. k* can then
be used as the candidate set size for all other problems in the same domain, based on the assumption

that different problems in the same domain share similar distributions.
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Unfortunately, closed-form solutions can only be found for certain distributions. For example,
k

similar calculations have resulted in exact solutions of E(X/ . ) where X is the exponential or
geometric distribution [10]. In order to use this formula in practice, it will be necessary to evaluate
the expression numerically.

When considering WIDA* configurations, the value of E'(W) is strongly related to the parameter
of ag described in Section 5.4. Whereas ag is the expected proportion of the work needed in the
final iteration, E(¥) considers the entire search time of the procedure. This consideration of the
distribution of work is also a more general model that is not necessarily constrained to the case of
optimal search.

The effectiveness of this model in estimating a good value for £* will depend on how well the
underlying assumptions apply. One of these assumptions is in regards to how much the performance
of the configurations will correlate between problems. When dovetailing over WA* configurations
that differ in the weight walue, the model will fail since higher weights tend to do better on all
problems. When dovetailing over WIDA* configurations that differ in operator ordering, there is
little correlation between problems. As such, the model is expected to work better in this case.

The other assumption involves the similarity of the work distributions between problems. Our
preliminary results on the 4 x 4 puzzle suggest that in that domain, the assumption holds over

WIDA* configurations that differ in weight value. However, more investigation is needed into this

claim, particularly as it applies to other domains and other algorithms.

6.4 Finding Effective Candidate Sets of Size £

Once a good size for candidate sets has been found, a set of configurations of that size still needs to
be selected. In certain situations, randomly selecting % configurations from the starting configura-
tion set will be an effective policy. One such case would be where the algorithm relies heavily on
stochastic behaviour and the configurations only differ in the random number generator. However,
generally there is expected to be some stronger relationship between configurations, and diversity in
the candidate set should be an aim. For example, consider configurations that only differ in the static
operator ordering. It would be expected that in most cases, candidate set configurations should avoid
having the same operator as the first in the ordering so as to avoid having multiple configurations
expanding nodes in a similar order. As such, selecting configurations at random is not expected to
be a general solution.

In this section, we will outline one idea for candidate set selection of size k, that begins with an
arbitrary set of configurations from a starting configuration set €2, and improves this set based on
information gathered through the solving of problems. This idea will be based on the consideration
of candidate selection as a modified N-armed bandit problem.

First, we will define the traditional version of the problem. We follow the definition given by

Sutton and Barto [44]. The NN-armed bandit problem can be described as follows: an agent is
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faced with N slot machines, each of which will have a different distribution of rewards. These
distributions are unknown to the agent who must successively select a slot machine to play. The
agent’s task is to maximize its payoff over time. To do so effectively, the agent must build a model
of the payoffs of each machine and play the machines which offer the highest expected outcome
most often. However, the agent must also avoid over-playing these machines due to the fact that the
stochasticity of the machines can lead to errors in the models.

In the case of selecting a candidate set of size k, we can consider the arms to each correspond
to a configuration in 2. However, instead of selecting only a single arm to play, the agent will
simultaneously play £ arms. A play will be made for each problem instance that is to be solved, and
the arms selected will correspond to the candidate set to use for that problem. That candidate set
will then be used for problem-solving.

In order to apply bandit algorithms, a procedure for the assignment of rewards is necessary.
Currently, we use the following strategy: where © C () is selected as the candidate set to use on
problem p and 6 € © is the configuration which solves p during dovetailing, 6 is assigned a reward
of 1. All other configurations in © are assigned a reward of 0 since they failed to solve the problem.

We can then use a modified version of the UCB1 algorithm [2]. UCB1 was initially designed for
the traditional V-armed bandit problems. It starts by selecting each of the bandit arms once. In order
to make the ¢ 4 1st play, where t > N, the algorithm requires the calculation of the UCBI-value,

denoted V' (5), of each arm j. V (j) is defined as follows:
V(j) =& + Cy/Int/t;

where z; is the average reward for arm j seen thus far; C' is a positive, real-valued algorithm pa-
rameter; and ¢; is the number of times that arm j has been selected thus far. The ¢ + 1st play is then
made as the arm with the highest UCB1-value. Note, in the original formulation of the algorithm,
C = /2. The extension to other constants was introduced by Kocsis and Szepesviri [29].

For candidate set selection, we use a modified version of the UCB1 algorithm called UCBI
dovetailing. When selecting a candidate set of size k, the set is first filled with configurations that
have yet to be used in any candidate set thus far. For any such configuration 6, ty = 0. If only &’ such
configurations remain (where k' < k), then the candidate set is filled with the k¥ — &’ configurations
with the highest UCB1-values. This candidate set is then used to solve some problem p in the
problem set. When problem solving completes, the rewards are assigned, and the value of ¢y is
incremented for all configurations in the candidate set. The process then repeats when a candidate
set is to be selected for the next problem. Notice that this approach to candidate set selection has no
information regarding the problem to solve. Instead, decisions are based on statistics collected from
previous problem-solving instances.

The execution of UCB1 dovetailing is deterministic. However, there are several design choices

that can affect the performance of the algorithm. The most obvious of these is the value of C.
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This C' parameter allows for the designer to tune how much the algorithm balances exploitation and
exploration. The algorithm is said to make an exploitive selection when a configuration is added to
the candidate set that has shown to have a high average reward thus far. As mentioned before, this
model of the value of a configuration can be flawed. As such, other configurations that appear less
desirable should be selected from time to time so as to avoid exploiting the wrong configuration.
Increasing C' will increase how likely the algorithm makes such exploratory selections.

Another aspect of the algorithm that affects its performance is the way in which configurations
are selected for the candidate set in the presence of ties. This includes selecting between two con-
figurations that have yet to ever be used in a candidate set. In our experiments, ties are broken by a
static ordering of the starting configuration set 61, 05, ..., 6. Configurations with a smaller index in
this ordering are always preferred in the presence of ties.

To see how the static ordering of configurations can significantly impact the performance of the
algorithm, consider a starting configuration set {61, 03, 03,604}. Assume k = 2 and that configura-
tions ¢ and 05 perform poorly on all problems in the problem set, while 5 and 6, perform well
on all problems. If the initial ordering is given by the ascending order of index, then the candidate
set {01,602} will be tested on the first problem, and {63,604} will be tested on the second problem.
Assume that #; and 63 solve problems 1 and 2 during dovetailing, respectively. The average rewards
of these configurations after solving the first two problems will be 1, and the average rewards found
by 602 and 6, will be 0.

If the ordering is given by {61,063, 02,04}, the candidate sets used on problems 1 and 2 will
be {01,065} and {63,04} respectively. After solving these problems, the relative ordering of the
configurations by reward value is much more accurate than it is after solving the 2 problems with
the above ordering. While the algorithm will converge to a correct model of each configuration
eventually — even with the first ordering — this may take a lot of time. As we are considering
problem sets with a relatively small finite size, the impact of having the second ordering exploit the
correct configurations more often, particularly early on, may be quite large.

Figure 6.2 shows a preliminary test with this algorithm. The starting configuration set consists
of 15 WIDA* configurations that differ only in the value of the weight. Each configuration has a
unique integer weight in the range from 2 to 16, inclusive. The problem set consists of 1000 5 x 5
sliding tile puzzle problems. For each candidate set size, 10, 000 different random orderings of the
starting configuration set are considered.

For two values of C, the figure shows the average performance over the 10,000 orderings for
each of the candidate set sizes. For comparison, we also show the average performance of regular
dovetailing over the same starting configuration set.

The figure shows that with both values of C, the average performance of UCB1 outperforms the
average performance of regular dovetailing on all candidate set sizes. The same is true when C' was

setas 0.1, v/2, and 10. However, the improvement is generally small except on the smaller candidate
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set sizes. For example, consider the candidate set size of 2. With this set size, 3 of the 5 values of
C tested improved the average performance by at least a factor of 3, 1 of the 5 values improved the
performance by almost a factor of 2; and the final value, 10, showed almost identical performance
to regular dovetailing.

Our investigation of UCB1 dovetailing remains in its early stages. A more in-depth analysis as

to where UCB1 dovetailing succeeds and fails is still needed.

6.5 Contributions and Closing Remarks

In this thesis, we have considered the problem of configuration selection for suboptimal single-
agent search algorithms. In this end, we considered the performance of WA*, WIDA*, WRBFS,
and BULB in two domains: the sliding tile puzzle and the pancake puzzle. It was shown that while
offline tuning can capably find a configuration that has good average performance, this configuration
will often exhibit poor performance on some number of individual problems. To deal with this
issue, we considered the use of dovetailing which simultaneously runs multiple instances of the
same algorithm, each with a different configuration, by interleaving execution.

Chapters 4 and 5 were concerned with the evaluation of the performance of dovetailing as an
enhancement to suboptimal single-agent search algorithms. The design choice spaces over which
dovetailing was considered were those of operator orderings and the main parameters in the afore-
mentioned algorithms. The results of single-processor dovetailing with WA* and BULB were nega-

tive: dovetailing caused the speed of both of these algorithms to degrade in all domains considered.
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However, when parallel dovetailing, at least some speedup is seen in almost all tests. For example, it
has also been demonstrated that parallel dovetailing outperforms the state-of-the-art parallelization
of WA* in the sliding tile puzzle domain for higher weight values. This suggests that while dove-
tailing is not an effective addition to these algorithms, parallel dovetailing remains an intriguing
approach to parallel single-agent search.

When dovetailing was used with WRBFS, the results are mixed. In the larger sliding tile puzzles,
dovetailing improves upon the use of any individual configuration alone. Parallel dovetailing also
showed super-linear speedups in this domain. In the pancake puzzle, dovetailing over configurations
that differ in the weight value performed similarly to the single best configuration found with batch
tuning. However, dovetailing did not require any offline computation in order to do so. When
considering the use of configurations in this domain that only differ in operator ordering, dovetailing
was only effective for the higher weight values. Parallel dovetailing was also shown to be an effective
parallelization of the WRBFS algorithm in most of the situations tested.

The algorithm which benefited the most from the use of dovetailing is WIDA*. Dovetailing
significantly improved the performance of WIDA* in almost all tests performed. It was not unusual
to see dovetailing improve upon even the single configuration with the best average performance
by several orders of magnitude. The results suggest that WIDA* should never be used without
dovetailing except where the configurations use weight values that are near 1.

While we have shown that dovetailing can be an effective enhancement for suboptimal search
algorithms and that the procedure helps to deal with the issue of configuration selection, this work
also suggests a number of areas for future work. Among these is an investigation into automatic
configurations selection. While we have included some preliminary results on this topic earlier in
this chapter, much work remains to be done in this area.

Another important step is to consider other design choices of the examined algorithms so as to
determine additional methods of introducing diversity among configurations. For example, we are
currently experimenting with dovetailing over incomplete versions of BULB, where each config-
uration only performs a single iteration of a BULB search. This is similar to the approach taken
by the Parallel Window Search algorithm described in Section 3.5. BULB has shown to be a very
effective algorithm in practice, and so by introducing such diversity it may be possible to further
extend the size of problems it can solve. Additionally, dovetailing over configurations that differ in
the heuristic function being used, or even completely different algorithms, remains an interesting
area of research.

Finally, dovetailing should also be tested with the above algorithms in more domains. In the do-
mains already considered, there is a solution below any branch in the search tree. In many domains,
this is not true, and instead there are dead-ends in the tree. Dovetailing is expected to perform well
in these domains as the use of multiple configurations is expected to mitigate the issues that occur

when any configuration becomes stuck in a dead-end. Howeyver, this remains to be shown.

107



Bibliography

[1] Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, July 22-26,
2007, Vancouver, British Columbia, Canada. AAAI Press, 2007.

[2] Peter Auer, Nicold Cesa-Bianchi, and Paul Fischer. Finite-time Analysis of the Multiarmed
Bandit Problem. Machine Learning, 47(2-3):235-256, 2002.

[3] Amitava Bagchi and Ambuj Mahanti. Search Algorithms Under Different Kinds of Heuristics-
A Comparative Study. J. ACM, 30(1):1-21, 1983.

[4] Blai Bonet and Hector Geffner. Planning as heuristic search. Artif. Intell., 129(1-2):5-33,
2001.

[5] Vadim Bulitko, Mitja Lustrek, Jonathan Schaeffer, Yngvi Bjornsson, and Sverrir Sigmundar-
son. Dynamic control in real-time heuristic search. J. Artif. Intell. Res. (JAIR), 32:419-452,
2008.

[6] Ethan Burns, Seth Lemons, Wheeler Ruml, and Rong Zhou. Parallel Best-First Search: Opti-
mal and Suboptimal Solutions. In Proceedings of the International Symposium on Combina-
torial Search (SoCS-09), 2009.

[7] Ethan Burns, Seth Lemons, Wheeler Ruml, and Rong Zhou. Suboptimal and Anytime Heuris-
tic Search on Multi-Core Machines. In ICAPS, 2009.

[8] Ethan Burns, Seth Lemons, Rong Zhou, and Wheeler Ruml. Best-First Heuristic Search for
Multi-Core Machines. In IJCAI, 2009.

[9] Karen Buro, 2009. Private communication.

[10] Gianfranco Ciardo, Lawrence M. Leemis, and David Nicol. On the Minimum of Independent
Geometrically Distributed Random Variables. Technical Report TR-94-12, 1994.

[11] DianeJ. Cook and R. Craig Varnell. Maximizing the Benefits of Parallel Search Using Machine
Learning. In AAAI pages 559-564, 1997.

[12] Joseph C. Culberson and Jonathan Schaeffer. Searching with Pattern Databases. In Gordon I.
McCalla, editor, Canadian Conference on Al, volume 1081 of Lecture Notes in Computer
Science, pages 402—-416. Springer, 1996.

[13] Henry W. Davis, Anna Bramanti-Gregor, and Jin Wang. The Advantages of Using Depth and
Breadth Components in Heuristic Search. In ISMIS, pages 19-28, 1988.

[14] Niklas Eén and Niklas Sorensson. An Extensible SAT-solver. In Enrico Giunchiglia and
Armando Tacchella, editors, SAT, volume 2919 of Lecture Notes in Computer Science, pages
502-518. Springer, 2003.

[15] Matthew P. Evett, James A. Hendler, Ambuj Mahanti, and Dana S. Nau. PRA*: Massively
Parallel Heuristic Search. J. Parallel Distrib. Comput., 25(2):133-143, 1995.

[16] Ariel Felner, Sarit Kraus, and Richard E. Korf. KBFS: K-Best-First Search. Ann. Math. Artif.
Intell., 39(1-2):19-39, 2003.

[17] Ariel Felner, Uzi Zahavi, Jonathan Schaeffer, and Robert C. Holte. Dual Lookups in Pattern
Databases. In IJCAI, pages 103-108, 2005.

[18] David Furcy and Sven Koenig. Limited Discrepancy Beam Search. In IJCAI, pages 125-131,
2005.

108



[19] David Furcy and Sven Koenig. Scaling up WA* with Commitment and Diversity. In IJCAI,
pages 1521-1522, 2005.

[20] Carla P. Gomes, Bart Selman, and Nuno Crato. Heavy-tailed distributions in combinatorial
search. In Gert Smolka, editor, CP, volume 1330 of Lecture Notes in Computer Science, pages
121-135. Springer, 1997.

[21] William D. Harvey and Matthew L. Ginsberg. Limited Discrepancy Search. In IJCAI (1),
pages 607-615, 1995.

[22] Malte Helmert. The Fast Downward Planning System. J. Artif. Intell. Res. (JAIR), 26:191-246,
2006.

[23] Malte Helmert and Gabriele Roger. How Good is Almost Perfect? In Dieter Fox and Carla P.
Gomes, editors, AAAI, pages 944-949. AAAI Press, 2008.

[24] Robert C. Holte, Jack Newton, Ariel Felner, Ram Meshulam, and David Furcy. Multiple
Pattern Databases. In Shlomo Zilberstein, Jana Koehler, and Sven Koenig, editors, ICAPS,
pages 122—-131. AAAI 2004.

[25] Eric Horvitz, Yongshao Ruan, Carla P. Gomes, Henry A. Kautz, Bart Selman, and
David Maxwell Chickering. A Bayesian Approach to Tackling Hard Computational Prob-
lems. In Jack S. Breese and Daphne Koller, editors, UAI, pages 235-244. Morgan Kaufmann,
2001.

[26] Frank Hutter, Holger H. Hoos, and Thomas Stiitzle. Automatic Algorithm Configuration Based
on Local Search. In AAAI [1], pages 1152-1157.

[27] Y Kitamura, M Yokoo, T Miyaji, and S Tatsumi. Multi-state commitment search. In Tools for
Artificial Intelligence, pages 431-439, 1998.

[28] Kevin Knight. Are Many Reactive Agents Better Than a Few Deliberative Ones? In IJCAI,
pages 432437, 1993.

[29] Levente Kocsis and Csaba Szepesvari. Bandit Based Monte-Carlo Planning. In Johannes
Fiirnkranz, Tobias Scheffer, and Myra Spiliopoulou, editors, ECML, volume 4212 of Lecture
Notes in Computer Science, pages 282-293. Springer, 2006.

[30] Richard E. Korf. Iterative-Deepening-A*: An Optimal Admissible Tree Search. In IJCAI,
pages 1034-1036, 1985.

[31] Richard E. Korf. Linear-Space Best-First Search. Artif. Intell., 62(1):41-78, 1993.

[32] Greg Lee and Vadim Bulitko. GAMM: genetic algorithms with meta-models for vision. In
Hans-Georg Beyer and Una-May O’Reilly, editors, GECCO, pages 2029-2036. ACM, 2005.

[33] Matthew McNaughton, Paul Lu, Jonathan Schaeffer, and Duane Szafron. Memory-Efficient
A* Heuristics for Multiple Sequence Alignment. In AAAI/IAAI pages 737-743,2002.

[34] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an Efficient SAT Solver. In Design Automation Conference, pages 530—
535. ACM, 2001.

[35] Nils J. Nilsson. Principles of Artificial Intelligence. Springer, 1982.

[36] Donald J. Patterson and Henry A. Kautz. Auto-Walksat: A Self-Tuning Implementation of
Walksat. Electronic Notes in Discrete Mathematics, 9:360-368, 2001.

[37] Ira Pohl. Heuristic Search Viewed as Path Finding in a Graph. Artif. Intell., 1(3):193-204,
1970.

[38] Ira Pohl. The Avoidance of (Relative) Catastrophe, Heuristic Competence, Genuine Dynamic
Weighting and Computational Issues in Heuristic Problem Solving. In IJCAI, pages 12-17,
1973.

[39] Curt Powley and Richard E. Korf. Single-Agent Parallel Window Search. IEEE Trans. Pattern
Anal. Mach. Intell., 13(5):466-477, 1991.

[40] Stuart Russell and Peter Norvig. Artificial Intelligence, A Modern Approach. Prentice Hall,
1995.

109



[41] Stuart J. Russell and Eric Wefald. Principles of metareasoning. Artif. Intell., 49(1-3):361-395,
1991.

[42] Anthony Stentz. The Focussed D* Algorithm for Real-Time Replanning. In IJCAI, pages
1652-1659, 1995.

[43] Bryan Stout. Smart moves: Intelligent Pathfinding. Game Developer Magazine, October:28—
35, 1995.

[44] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT
Press, 1998.

[45] Rong Zhou and Eric A. Hansen. Beam-Stack Search: Integrating Backtracking with Beam
Search. In Susanne Biundo, Karen L. Myers, and Kanna Rajan, editors, ICAPS, pages 90-98.
AAAL 2005.

[46] Rong Zhou and Eric A. Hansen. Parallel Structured Duplicate Detection. In AAAI [1], pages
1217-.

110



