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Abstract

Many single-agent search algorithms have parameters that need to be tuned to get the best perfor-

mance. Typically, the parameters are tuned offline, resulting in a generic setting that is supposed

to be effective on all problem instances. However, though the settings found by tuning will ex-

hibit strong average performance over the test set, it can be shown that parameter settings that are

problem-instance specific can result in substantially reduced search effort. We consider the use of

dovetailing as a way to deal with this issue. Dovetailing is a procedure that performs search with

multiple parameter settings simultaneously. In this thesis, we present results testing the use of dove-

tailing with the weighted A*, weighted IDA*, weighted RBFS, and BULB algorithms on the sliding

tile and pancake puzzle domains. Dovetailing will be shown to significantly improve weighted IDA*

with which it commonly improves run-time by several orders of magnitude. It will also generally

enhance the performance of weighted RBFS. In the case of weighted A* and BULB, dovetailing

will be shown to be ineffective when used with these algorithms. Dovetailing is also trivially par-

allelizable and we will demonstrate that the use of this procedure decreases the search time in all

considered domains.
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Chapter 1

Introduction

Consider the problem of finding a route from one location in a city to another when navigating

with a map. Before any travel can begin, a route for travel (or at least a partial route) must be found.

Unfortunately, there may be a large number of candidate partial paths that must be considered before

a complete route is found.

In this example, a single agent has the task of path finding. In general, all agents — whether

they be living or artificial — are faced with some number of tasks to perform. In order to complete

these tasks, agents must develop plans for action.

The effectiveness with which an agent plans is evaluated in terms of two different measures. The

first is the time required to find a plan that will complete the given tasks. The second is the cost of

the plan, the metric for which will be a function of the agent’s objectives. In the case of navigation,

the possibilities for plan cost include distance travelled if the agent is to find a short path, or the

expected travel time if the agent is to find a quick path (ie. when navigating in a map, such an agent

would prefer the use of highways over city streets).

In many domains, there is additional information that can be used to inform and thereby speed up

planning. For example, when navigating between locations in Edmonton, Canada, it is reasonable to

initially disregard routes through distant locations such as Madagascar. Moreover, if the destination

is east of the initial location, the first routes to consider are naturally those that initially proceed

eastward (if such paths exist).

Such information can be used to build heuristics which estimate the cost of the remaining path

to the goal from any area in the domain. The field concerned with the development of heuristics and

the construction of algorithms that use heuristics for planning is called single-agent search. In this

field, planning is performed with a heuristic guided search in the space of candidate partial plans.

Single-agent search remains an important field for research due to the large number of real-

world applications in which search algorithms have proven to be effective problem-solving tech-

niques. These applications include autonomous robot navigation, in which heuristics are used to

guide pathfinding [42]; DNA sequence alignment [33]; and, computer games [43].

There is a class of single-agent search algorithms that will provably find the lowest cost solution
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provided that the heuristic value of any area of the domain is guaranteed to never overestimate the

true distance from that part of the domain to the goal. Unfortunately, as problem domains grow

larger, these optimal algorithms will often take too long to find a solution. To address this issue,

suboptimal single-agent search algorithms have been developed which sacrifice solution quality for

a decrease in search time. These algorithms are ideal when a solution (often near optimal) is needed

quickly.

When constructing a single-agent search system, it must first be determined if suboptimal so-

lutions will suffice or if optimal solutions are desired. Another consideration is if planning will

precede execution or if the system is to work in real-time, with planning and execution being in-

terleaved. The system designer is then faced with decisions regarding the proper selection of an

algorithm and a heuristic function for the given domain(s). There are also often subtle choices such

as tie-breaking (the order in which equally promising candidate paths are considered) that can simi-

larly affect search speed. With all of these possible choices, properly recognizing and evaluating all

of the necessary design decisions is a vital aspect of building an effective search system.

In the case of suboptimal problem solving, additional options arise as almost all applicable algo-

rithms involve some kind of parameterization. For example, in the weighted variants of A*, IDA*

[30], and RBFS [31], the value of the weight parameter must be set. Similarly, beam-search variants

like BULB [18] and Beam-stack search [45] require the selection of a beam width. Parameterization

also occurs in the class of best-first search variants like KBFS [16], MSC-WA* [27], and MSC-

KWA* [19] in which a system designer can adjust the number of nodes expanded in parallel, the

number of nodes to commit to, and the combination of these two ideas, respectively.

Any adjustment of these parameter values can change both the solution quality and the search

speed. In a few cases, there are theoretical results that indicate how changing a parameter will affect

the search (such as the bounds on solution quality in weighted A*, weighted IDA*, and weighted

RBFS [31]). Unfortunately, it is much more common that a significant amount of pre-computation

is needed so as to determine the relationship between a parameter and these two metrics. In prac-

tice, parameter values are tested offline on a set of training examples through a process commonly

referred to as parameter tuning. The single parameter setting that satisfies any given constraints on

solution quality and exhibits the best average performance is then used in all future searches.

Parameter tuning customizes a search algorithm for each specific problem domain. As such,

the results of this expensive process cannot effectively be transferred across domains — a fact that

is of particular concern when designing general search systems such as automated heuristic search

planners. In these systems, general heuristics are used to guide a suboptimal search algorithm. In

general, planners such as HSP [4] commit to a single parameter value that will hopefully be effective

over a diverse class of problems.

Parameter tuning also suffers from another deficiency: there is no guarantee that a tuned value

will perform well on each individual problem. Tuning only finds the setting that has the best average

2



performance on the training set. On a per problem basis, there can be other parameter values which

significantly outperform the tuned setting. As we will demonstrate in Section 3.2, it is often the

case that if a search system could properly select the correct parameter setting for each problem, the

planning speed over a number of problems can be greatly improved.

In this end, we will consider the dovetailing procedure as an approach to this problem. Dovetail-

ing involves running several independent instances of an algorithm — each of which has a different

set of parameter settings — at the same time by interleaving the execution of the instances. The

procedure is also trivially parallelizable. This aspect of the algorithm is important due to the in-

creasing availability of multi-processor machines. As such, we will also analyze the performance of

the algorithm when used in this fashion.

The main contributions of this thesis can be summarized as follows:

1. The single-agent search algorithms of WA*, WIDA*, WRBFS, and BULB are described, and

the weaknesses of WA*, WIDA*, and WRBFS as suboptimal search algorithms are demon-

strated. The behaviour of these algorithms in the sliding tile and pancake puzzles as a function

of the weight parameter will also be shown. Similarly, the behaviour of BULB in these domain

as a function of the beam width will be demonstrated.

2. Dovetailing is explored as an approach to proper parameter selection. Dovetailing is shown

to significantly enhance WIDA* in the domains of the sliding tile puzzle and the pancake

puzzle. The parallel version of dovetailing is also shown to exhibit massive improvements

in search time when used with this algorithm. In the case of WRBFS, dovetailing without

any pre-computation is shown to improve the speed of the algorithm in the sliding tile puzzle

domain, and offer comparable performance in the pancake puzzle domain. Dovetailing with

WRBFS over operator orderings will also improve the quality of the solutions. We will also

demonstrate that parallel dovetailing offers an effective parallelization of this algorithm.

3. The sequential version of dovetailing will be shown to decrease the search speed of BULB

and WA*, but improve the quality of the solutions when considered over operator orderings.

The reasons for this behaviour are discussed. The parallel version of dovetailing will also

be shown to offer the best performance of all known parallelizations of WA* when higher

weights are used in the sliding tile puzzle domain.
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Chapter 2

Background

In Chapter 1, the idea of single-agent search was introduced through the use of the navigation ex-

ample. In this chapter, the single-agent search problem is formalized. The optimal algorithms A*,

IDA*, and RBFS are then introduced along with the notion of weighted heuristics. Two problem

domains, the sliding tile puzzle and the pancake puzzle, are then described, and the behaviour of the

weighted algorithms WA*, WIDA*, and WRBFS are demonstrated in these domains. Additional

properties of these algorithms are also considered. The chapter then concludes with a description of

the beam-search variant BULB and some experimental results for this algorithm in the aforemen-

tioned domains.

2.1 Formalization of Single-Agent Search

Underlying every single-agent search problem is a graph, the definition of which is given below.

Definition 2.1.1. A graph G is defined by two sets: the vertex set V and the edge set E ⊂ V × V .

The graph given by a vertex set V and edge set E will often be denoted as G(V,E).

A graph G(V,E) is said to be undirected if for every pair v1,v2 ∈ V , (v1, v2) ∈ E ⇔ (v2, v1) ∈
E. If this condition does not hold, the graph is said to be directed. Each edge e — whether it

be directed or undirected — will have an associated cost, denoted c(e) ∈ R or c(u,w) where

e = (u,w). In single-agent search, the cost of any edge e is assumed to be larger than some real-

valued constant ε > 0. In the case of undirected graphs the cost of an edge is the same regardless of

in which direction it is traversed.

While the techniques considered in this thesis can be applied to either directed and undirected

graphs, the experiments will only be performed on domains that correspond to undirected graphs

with a finite vertex set such that the edge set does not contain edges of the kind (v, v). As such, an

edge (v1, v2) will refer to both (v1, v2) and (v2, v1). If (v1, v2) ∈ E, v1 will be said to be adjacent

to v2 or a neighbour of v2.

An ordered sequence of vertices P = {v1, ..., vk} is called a path from v1 to vk in a graph

G(V,E) if every pair of consecutive vertices in P is adjacent. The cost of P , denoted C(P ) ∈ R,
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will be the sum of all the edges connecting consecutive vertices in P . We will also only consider

finite paths in which if vi, vj are in P , vi 6= vj unless i = j (ie. there are no cycles in the P ).

The main task of a single-agent search system is to find paths between sets of vertices. As such,

single-agent search algorithms are usually only applicable to problem-solving in discrete spaces.

In order to apply single-agent search techniques to a problem like navigation, the map must first

be discretized. It should be noted that the problem of modeling problem spaces as finite graphs

is beyond the scope of this thesis. When evaluating a single-agent search algorithm, it is only the

algorithm’s performance in the model that is of concern.

As these models can be arbitrarily large, the vertex set may not fit into memory. As such,

problem-solving on large graphs is usually performed on an implicit representation if possible. In

an implicit representation, the vertices are usually referred to as states and the vertex set is called

the state space. States can be thought of as annotated vertices. For example, a state in a navigation

problem will be annotated with the location on the map that the vertex corresponds to.

The edge set in an implicit representation is described by the successor function succ. For any

state s the successor function will return the set of states in S that are neighbours of s. Formally,

this function has S as its domain and the power set of S as its range. As we are only considering

undirected graphs, if s2 ∈ succ(s1) then s1 ∈ succ(s2).
If the successor function merely contains for each state s a list of adjacent states, the represen-

tation is no more compact than the full graph. Instead, the edge set of most single-agent domains

is expressed in terms of a set of operators O, some subset of which can be applied in any state.

The successor function will find the set of operators O′ ⊆ O that are applicable in any state s, and

generate the |O′| neighbours of s each found by executing a different o ∈ O′ in s. For example, in a

simple navigation example, the operators may entail proceeding one step in one of the four cardinal

directions: north, east, south, and west. At any location on a map, the applicable operators will be

those directions in which there are roads.

With these notions, it is now possible to define a single-agent search problem:

Definition 2.1.2. A single-agent search problem is determined by a state space S, an initial state

si ∈ S, a successor function succ, a function h : S → R called the heuristic function, and a boolean

function G : S → {1, 0}. The task is to find a path P that starts with si and ends in a state sg

such that G(sg) = 1, if such a path exists. The only constraint on h is that for any state s such that

G(s) = 1, h(s) = 0.

Let T denote the set of all solution paths, formally described as P ∈ T if and only if P is a

path from si to some state sg such that G(sg) = 1. The problem is said to be an optimal single-

agent search problem if the only acceptable paths are those with the minimum cost. The set of

minimum cost paths is denoted by Topt and is defined as P ∈ Topt if and only if P ∈ T and

C(P ) = minP ′∈T C(P ′). As there exists an ε > 0 such that all edge costs are at least as large ε,
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we are guaranteed the existence of this minimum. The cost of any path in Topt is called the optimal

cost and is denoted by C∗.

Usually the heuristic function is used to guide the problem-solving process. Intuitively, the value

of h(s) is an estimate on the cost of a path from s to a goal state. Several properties of heuristic

functions will be described in the next section.

The function G is called the goal test function and defines the desired conditions. By this defi-

nition there may be more than one goal state. For example, the goal of navigation may be either to

reach a specific supermarket or go to one of several supermarkets. Despite this general definition,

all experimentation in this thesis will be on domains that only have a single goal state denoted sg.

We leave experimentation with domains that have multiple goal states for future work.

2.2 Search Terminology

Before describing any algorithms, it is first necessary to introduce a number of terms. Central to

most single-agent search algorithms is the node data structure. A node n consists of a state s and

additional search information about s. Specifically, the node records the current candidate path from

si to s. This path is usually the shortest such path found thus far. The path is often stored recursively,

with each node holding a pointer to another node p that contains the state sp that is immediately prior

to s in the path from si to s. The node p is said to be the parent of s, and s is said to be a child of p.

The state within a node will be referred to as n.state and the parent will be referred to as n.parent.

The node ni containing si will not have a pointer to any other nodes.

Each node n also has a number of costs associated with it. The g-cost of a node n, denoted g(n),

will be the cost of the stored path from si. The h-cost of n is the heuristic cost of n. This value

corresponds to the heuristic estimate of the cost of traversing from n to a goal node.

For any state s, there will be at most one node n in memory at any time. If a node n is stored

in memory, and a path from the initial node ni to n is found that is shorter than the stored path, the

parent and g-cost of n is updated. Note, due to the correspondence between nodes and states, we

will often use the same notation for nodes and states interchangeably. For example, h(n) will be

used to refer to the h-cost of n. In reality, h(n) will be shorthand for h(n.state).

Similarly, a path will often be used to refer to a sequence of nodes such that consecutive nodes

are neighbours (ie. the corresponding states are adjacent). However, when we refer to a path P , we

will not necessarily be referring to a path being considered during the execution of any algorithm.

Though some algorithm may store all the nodes in P in memory at some time, it may be considering

alternative paths to each of the nodes in P instead of the path of P itself. As such, the g-cost of

some node n in P may not necessarily be equal to the cost of the portion of P from the beginning of

the path to n. Also note, that all paths will be assumed to start at the initial node ni unless otherwise

specified.

The notion of a node expansion of a node n is also fundamental to most single-agent search
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algorithms. As a first step of node expansion, the goal test is applied to n. If n is not a goal node,

the successor function is used to find the neighbours of n. For each neighbour c, a new node, nc, is

constructed which has c as its state. The parent of nc is set as n. These new nodes are said to be

generated.

This expansion of nodes will be used to construct a search tree in which the initial node forms

the root of the tree and below any node n are the children of n. If the successor function of a domain

is expressed in terms of b ∈ N operators where b > 0, the number of nodes generated during any

node expansion will be at most b. The value b will be called the brute-force branching factor of the

domain. If the search tree is constructed to a depth d, the number of nodes in the tree will therefore

have O(bd) nodes. If every node in a domain has exactly b children, the domain will be said to have

a uniform branching factor.

Where O = {o1, ..., ob} is the ordered set of operators, the successor function constructs a list L

of states by checking each operator in order for applicability. If an operator is found to be applicable

to the current state, the corresponding child is constructed and appended to L. Therefore, the order

of elements in L will depend on the order of operators inO. In general, a static ordering is set before

search begins and operators are checked for applicability in this order. As this operator ordering can

significantly impact the speed of the search, the ordering used in all experiments will be reported.

The order in which nodes in the search tree are expanded will also depend on the heuristic func-

tion. The heuristic functions that are used in practice are always somewhat inaccurate as otherwise

problem-solving would be trivial. One such metric for the effectiveness of a heuristic function and

an algorithm is the effective branching factor [35]. For a solution found at depth d of a problem

with a search tree containing M nodes, the effective branching factor b′ is calculated as the solution

to the equation 1 + b′ + b′2 + ... + b′d = M . The effective branching factor can be estimated by

solving some small problems. Note that as b′ becomes smaller, the search tree decreases in size and

the search becomes more efficient.

For the purposes of theoretical analysis, it is often useful to consider the perfect heuristic function

h∗, which returns the distance of the shortest path from s to the nearest goal state for any state s ∈ S.

This perfect heuristic function can also be used to define additional heuristic properties. A heuristic

function h is said to be admissible if for any state s in the state space, h(s) ≤ h∗(s). Intuitively, a

heuristic function is admissible if it never overestimates the distance to the goal. A heuristic function

h is also said to be consistent if for any adjacent states m and n, |h(m) − h(n)| ≤ c(m,n). It is

easily shown that if a heuristic function is consistent, it is necessarily admissible. However, the

converse of this statement is not true.

Note, any heuristic function h considered in the remainder of this thesis will have arbitrary

properties (ie. it may or may not be admissible), unless otherwise specified. The only guaranteed

condition is that the heuristic value of any goal state will be 0.
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2.3 The Best-First Search Algorithm

One popular approach to single-agent search problems is the best-first search algorithm. In this

algorithm, search is guided by a cost function F . The algorithm is shown in Figure 2.1. This figure

is based on the pseudocode presented in “AI: A Modern Approach” [40]. Many of the properties

found in this section can also be found in the work of Ira Pohl [37] although they may have appeared

in other papers before that one.

BestFirstSearch(Initial State si):
1: CLOSED← empty set
2: OPEN ← empty set
3: Construct initial node ni with state ni.state = si and ni.parent = null
4: Insert ni into OPEN
5: loop
6: if OPEN is empty then
7: return no solution exists
8: n← node in OPEN with the lowest cost value of F (n)
9: if n is a goal node then

10: return path from ni to n
11: generate children nodes C = {c1, ..., ck} of n
12: for all c ∈ C do
13: if ∃m ∈ OPEN, m.state = c.state and F (m) > F (c) then
14: m.parent← c.parent
15: else if ∃m ∈ CLOSED, m.state = c.state and F (m) > F (c) then
16: m.parent← c.parent
17: remove m from CLOSED and add m to OPEN
18: else if ∀m ∈OPEN∪CLOSED, m.state 6= c.state then
19: Add c to OPEN

Figure 2.1: The Best-First Search Algorithm.

The algorithm iteratively considers a set of partial candidate paths. Each iteration involves the

selection of the most promising partial path P and the expansion of the deepest node on P . The

cost, as given by F , of the deepest node on a path P ′ will determine how promising P ′ is. These

deepest nodes are contained in the OPEN set. The selection of a path P corresponds to the selection

of the deepest node n on P given by line 8 of Figure 2.1. The expansion of n will then add new

candidate paths to memory, each of which consists of P and a successor of n.

Also note that a node n′ is in the CLOSED set if it has already been expanded. By maintaining

this set, it is possible to prune duplicate paths to the same node and to reconstruct the solution path

once a goal node is found. These nodes are never removed from the CLOSED list and added to the

OPEN list unless a new path is found to n′ that is shorter than any previous such path.

Regardless of the cost function used, the algorithm will be complete: the algorithm will terminate

with a solution if one exists. However, the choice of cost function F will determine the style of

search performed. If F (n) is set to the number of nodes in the path from the initial node to n, the

search will be a breadth-first search. If F (n) = g(n), the search will be a Djikstra’s Search [40].
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Alternatively, consider the function f , the value of which is referred to as the f-cost of n:

f(n) = g(n) + h(n).

If the cost function F is set to be equal to this function f , the result is the A* algorithm.

The A* algorithm is guaranteed to find the optimal solution if the heuristic function is admissible.

However, it is limited by its memory requirements. At any depth d, A* will storeO(b′d) nodes where

b′ is the effective branching factor. This generation of an exponential number of nodes can occur

even when using very accurate heuristics [23]. As such, the A* algorithm can be problematic when

used in large domains.

2.4 The Iterative Deepening A* (IDA*) Algorithm

IDA* was developed so as to overcome the memory requirements of A*. An outline of the more

general algorithm Depth-First Iterative Deepening (DFID) which uses an arbitrary cost function F

is shown in Figure 2.2. The IDA* algorithm is a variant of DFID in which the cost function used is

the same f -cost function described in Section 2.3. The description of the algorithm and discussion

found in this section are based upon the work of Rich Korf [30].

DFID(Initial State si):
1: Construct initial node ni with state ni.state = si and ni.parent = null
2: threshold← F (ni)
3: loop
4: threshold← RecursiveDFID(n, threshold)
5: if solution has been found then
6: return solution extracted from recursion stack

RecursiveDFID(Node n, threshold):
1: thresholdnext ←∞
2: if n is a goal node then
3: return with the solution
4: generate children nodes C = {c1, ..., ck} of n
5: for all c ∈ C do
6: if F (c) ≤ threshold then
7: thresholdnext ← min(thresholdnext, RecursiveDFID(c, threshold))
8: else if F (c) > threshold and F (c) < thresholdnext then
9: thresholdnext ← F (c)

10: return thresholdnext

Figure 2.2: The Iterative Deepening A* Search Algorithm.

The IDA* algorithm has a global threshold that is initially set as the heuristic value of the initial

state. The algorithm then iteratively performs a series of depth-first searches that are limited to

only expanding nodes with an f -cost at most as large as the threshold. If a solution is found during

an iteration, the search ends and the solution is extracted from the recursion stack. If an iteration

completes without having found a solution, the threshold is increased to the minimum node f -cost
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seen during the iteration that exceeded the threshold. As such, it can be guaranteed that on the next

iteration, at least one new node will be expanded.

In DFID, only the nodes along the current depth-first search path and the neighbours of nodes on

this path are stored in memory. There will be no node updates since as soon as the depth-first search

backtracks past a node, any information related to that node is lost. As such, the g-cost of a node n

is simply the cost of the single path from ni to n that is held in memory.

Like A*, IDA* is a complete algorithm that is guaranteed to find the optimal solution if one

exists, given an admissible heuristic function. Also notice that IDA* can re-expand the same node

multiple times since every iteration is a proper subset of every subsequent iteration. However, if there

is some constant c > 1 such that for all iterations the number of nodes expanded is approximately

c times the number expanded in the previous iteration, IDA* will asymptotically expand the same

number of nodes as A*. Intuitively, this effect occurs because the work done in the last iteration will

dominate the amount of work done in all previous iterations.

Unfortunately, there are domains in which IDA* can be ineffective. If the nodes in the search

tree have a large number of unique f -cost values, the increase in the number of nodes expanded from

one iteration to the next will by small. In the worst case, only a single new node is expanded for

each new iteration. In this case, the number of nodes expanded by IDA* will actually be O(N2)

where N is the number of nodes expanded by A*.

IDA* will also have problems in domains in which there are many cycles with a small length

in the underlying graph. This issue occurs since there is no duplicate detection in IDA*. In these

domains, the same state may be expanded multiple times as part of different paths within the same

iteration.

Despite these deficiencies, IDA* remains a useful algorithm since it is a linear-space algorithm.

An algorithm is said to be linear-space if the memory requirement of the algorithm at any time is

O(d), where d is the depth of the search. This is because the only nodes stored in memory are the

d along the path currently being explored and the neighbours of these nodes, of which there are at

most b. As such, IDA* can often solve problems in much larger domains than A* (which is usually

limited by its large memory requirements).

2.5 The Recursive Best-First Search (RBFS) Algorithm

While IDA* has proven to be an effective linear-space search algorithm, it can exhibit odd behaviour

if the heuristic function is such that the cost function is not monotonically increasing. A cost function

F is said to be monotonically increasing if and only if for nodes n and m where m is a child of n,

F (m) ≥ F (n). It is easy to show that the cost function f is monotonic if and only if the heuristic

function is consistent.

In Figure 2.3, a small part of a search tree is depicted in which the heuristic function is not

consistent. Each circle represents a node and the value inside each circle corresponds to the heuristic
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value of the node. A line between nodes indicates that the nodes are neighbours, with the one above

the other being the parent. Assume that all edge costs are 1 and that if two nodes both satisfy the

cost threshold, the leftmost node is expanded first. This ordering of node expansions is caused by

the operator ordering. The f -cost of each node is shown beside the node.

55

43

53

32

53

A

B
Figure 2.3: Tree with non-monotonic cost function.

The threshold on the first iteration will be set to 5, and so all vertices shown will be expanded.

Due to the operator ordering, the node labelled “B” will be expanded before the node labelled “A.”

However, “A” has a lower f -cost and hence should be considered more promising. While node “A”

would be expanded prior to “B” in an A* search, this will not necessarily be the case in an IDA*

search.

The RBFS algorithm was developed as a linear-space algorithm that would address this problem.

In this section, the algorithm is described based upon the original RBFS paper [31]. The algorithm

is shown in Figure 2.4 for any cost function F . Note that in the rest of this thesis, RBFS will be used

to refer to the use of this algorithm where the cost function is the f -cost function used in A*.

The call to the RBFS algorithm is made to MainRBFS. This algorithm merely calls the recursive

function RecursiveBestFirstSearch on the initial node with a cost bound of infinity and a

lower bound equal to the f -cost of the initial node. The main component of the algorithm is the

recursive function.

The algorithm was designed so as to ensure that if a node n is generated for the first time and a

node m with f(m) > f(n) is generated for the first time after n, then n will be expanded before m.

This property is enforced through the use of the upper bound parameter. The upper bound records

the lowest f -cost among all nodes that have been generated but not expanded. When the recursive

function is called on any node n, no node with an f -cost greater than the upper bound in the subtree

below it will be expanded. If all nodes below n have a larger f -cost, the value of the smallest f -cost

exceeding the bound is returned so that any search in other parts of the tree will have this additional

constraint on the search.
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MainRBFS(Initial State si):
1: Construct initial node ni with state ni.state = si and ni.parent = null
2: RecursiveBestFirstSearch(ni,∞, F (ni))

RecursiveBestFirstSearch(Node n, Upper Bound B, Lower Bound l):
1: if F (n) > B then
2: return F (n)
3: if n is a goal node then
4: return solution extracted from recursion stack
5: if n has no children then
6: return∞
7: generate children nodes C = {c1, ..., ck} of n
8: for all c ∈ C do
9: if F (n) < l then

10: V alue(c)← max(l, F (c))
11: else
12: V alue(c)← F (c)
13: best← arg minc∈C V alue(c)
14: while V alue(best) ≤ B and V alue(best) <∞ do
15: if |C| > 1 then
16: boundsecond ← minc∈{C−best} V alue(c)
17: else
18: boundsecond ←∞
19: V alue(best)← RecursiveBestFirstSearch(best, min(B, boundsecond), V alue(best))
20: if a solution was found then
21: return found solution
22: best← arg minc∈C V alue(c)
23: return V (best)

Figure 2.4: The Recursive Best-First Search Algorithm.
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The V alue of any node is an estimate of how promising a node is. For a node n, this value is

initally set as the f -cost of n. V alue(n) is then updated to the value of the most promising node

that exceeds the upper bound in the subtree below n. Intuitively, this update occurs because of the

deficiencies in the heuristic function, and it is only through new knowledge found during exploration

of the search tree that better estimates on how promising a node are can be determined.

The purpose of the lower-bound is to limit the re-expansion of nodes. A complete description of

how this parameter achieves this improvement is beyond the scope of this thesis, but can be found

in the original paper on RBFS.

RBFS shares many theoretical properties with both A* and IDA*. For example, the order in

which nodes are expanded for the first time during an RBFS search will be the same as the order

in which nodes are expanded by A* (aside from differences due to tie-breaking). RBFS is also a

complete algorithm that is guaranteed to find the optimal solution if one exists and the heuristic

function is admissible. Moreover, RBFS only requires memory linear in the depth of the search and,

under certain conditions which are out of the scope of this thesis, will asymptotically expand no

more nodes than A*.

Unfortunately, RBFS also shares many of the same deficiencies as IDA*. In domains in which

there are many cycles, the lack of memory for duplicate detection can cause RBFS to exhibit poor

performance. Similarly, if every node in the search tree has a unique f -cost, RBFS will again expand

O(N2) nodes, where N is the number of nodes expanded by A*.

2.6 Weighted Heuristics

While A*, IDA*, and RBFS are guaranteed to find a solution if the heuristic function is admissible,

the time for problem-solving (and the space requirements in the case of A*) can be very large.

When suboptimal solutions will suffice, it is often possible to speed up the search in exchange for

a decrease in solution quality. The most common way to do so is to use weighted heuristics. This

strategy was first proposed by Ira Pohl [37].

A weighted heuristic is constructed by multiplying an admissible heuristic function h by a con-

stant factor w ∈ R, where w ≥ 0. The resulting heuristic function h′(n) that is then used to guide

search is given by h′(n) = wh(n). The cost function used therefore reduces to

f(n) = g(n) + h′(n) = g(n) + wh(n).

Notice that if w = 1 then h(n) = h′(n). Moreover, if w ≤ 1, the value of h′(n) = wh(n) is

guaranteed to be less than the value of the perfect heuristic and hence is admissible. As such, we

will not consider weight values in this range for suboptimal search. Also note that in the remainder

of this thesis we will use WA*, WIDA*, and WRBFS to denote the use of A*, IDA*, and RBFS

respectively with weighted heuristics.
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2.7 Test Domains

In the following sections, we will analyze the behaviour of several suboptimal algorithms, including

those weighted variants introduced above. Before doing so, we will introduce two problem domains

so that the performance of these algorithms can be demonstrated through experimentation.

2.7.1 Sliding Tile Puzzle

The M × N sliding tile puzzle is a standard test domain for single-agent search algorithms. Each

state consists of a matrix of M columns and N rows. MN − 1 of these locations contain a tile,

each labelled with one of the unique integers from 1 to MN − 1. The other location is empty.

The available actions involve sliding one of the tiles adjacent to the empty location into that empty

location. The original tile location before sliding will be empty after the slide. As tiles cannot slide

in a diagonal direction, the four operators are up, down, left, and right, which correspond to

sliding a tile upward into the empty location, downward into the empty location, leftward into the

empty location, and rightward into the empty location. Unless otherwise specified, all experiments

are performed with the operator ordering O = {down, right, left, up}. The cost of each of

these operators is 1, but not all operators are applicable in every state. For example, if the empty

location occurs in the upper-left corner, the only applicable operators will be left and up. Figure

2.5 shows a 3× 3 puzzle state, and the neighbours of the state.

1 5 4
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3 8 7

6

1 5

2

8 7

63

4 5

2

3 8 7

61

41 5 4

3 8 7

62

Figure 2.5: Example State in the 3× 3 Puzzle and the Neighbours of this State.

A problem in this domain involves finding a sequence of operators that transform some initial

state into some desired goal state. In all experiments below, the goal state will remain constant. In

this static goal state, the upper-left corner position will be empty, and the remaining tiles will be in

consecutive order when read from left-to-right and top-to-bottom. For example, the goal of the 3×3

puzzle is shown in Figure 2.5.

The sliding-tile puzzle is an instance of a permutation puzzle in that any state can be represented

as a permutation of the positive integers from 0 to MN − 1. In this representation, if a number i
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Figure 2.6: The Goal State for the 3× 3 Puzzle.

is in position k of the permutation, then the tile marked i will be in column (k mod M) and row

bk/Mc. The permutation location containing 0 corresponds to the empty location. For example, the

top state in Figure 2.5 is represented by the permutation [1, 5, 4, 0, 2, 6, 3, 8, 7].

This representation shows that the number of states in the M ×N sliding tile puzzle domain is

(MN)!. However, the graph corresponding to this domain consists of two distinct, but equally sized

connected components. As such, there is only a path from any node to the desired goal for half of

the states in the domain. A state is said to be solvable if it is in the same connected component as

the static goal. All experiments in this thesis were performed on solvable states. Whether a state is

solvable or not can be determined with a parity test that will not be described here.

Let column(s, i) and row(s, i) be the column and row in state s in which tile i occurs, respec-

tively. The heuristic function we will use in our experiments is called the Manhattan distance. For

each tile i, this function calculates the horizontal and vertical grid distances from the current state s

to the goal state sg . Formally, this distance is calculated as follows:

hmanhattan(s) =
∑

i∈{1,2,...,MN−1}
(|column(s, i)− column(sg, i)|+ |row(s, i)− row(sg, i)|).

This heuristic function is both admissible and consistent. Also notice that the difference between

the heuristic value of a parent node and any of its children will be exactly 1 or −1. This is because

every operator will correspond to a shift of the row or column of only one tile.

2.7.2 Pancake Puzzle

The N pancake puzzle domain is another common test domain for single-agent search algorithms.

In this domain, there are a stack of N pancakes, each of a unique size. Each operator in this domain

is denoted by one of the numbers in the sequence 2, 3, ..., N. The application of an operator k

involves flipping the top k pancakes and therefore inverting their order. All N − 1 operators are

applicable in each state. Unless otherwise specified, the operator ordering used in all experiments

will be O = {N, N-1, ..., 2}. In Figure 2.7, an example 4 pancake puzzle state and the neighbours

of this state are shown.

As in the sliding tile puzzle, a single static goal state will be used in all experiments in the

pancake puzzle domain. In this goal state, the pancakes will be stacked from top to bottom in

ascending order of pancake size.
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Figure 2.7: Example State in the 4 Pancake Puzzle and the Neighbours of this State.

The N pancake puzzle is also a permutation puzzle with each permutation being of size N . For

this representation, each pancake will be uniquely labelled with one of the integers from 0 to N − 1

such that the pancake labelled i is the ith smallest pancake. For example, the state depicted at the

top of Figure 2.7 can be represented with the permutation [1, 3, 0, 2]. This representation clearly

demonstrates that the number of states in this domain is N !. Note, all pancake puzzle states are

solvable regardless of the goal chosen.

The heuristic functions that will be used for theN pancake puzzle are based on pattern databases

[12]. Pattern databases are built upon a particular kind of abstraction of a permutation puzzle do-

main. Consider a permutation state space S where each permutation is of size N . The abstraction is

built upon the idea of a pattern, which is a subset of the values in the permutation. A pattern will be

denoted < t1, ..., tk > where k < N and each ti is a unique value found in the permutation.

Let the state space of the abstract version of S be denoted Sa. In the abstract version of any

state s, the N − k symbols that do not occur in the pattern will be indistinguishable. Intuitively, this

transformation can be thought of as replacing theseN−k symbols in the permutation representation

of s by a don’t care element denoted by ¤.

For an example of such an abstraction, we consider the abstraction given by the pattern <

1, 2, 5 > on a permutation puzzle with 6 values. Consider a state s determined by the permuta-

tion [4, 5, 2, 0, 1, 3]. The permutation of the abstract state sa corresponding to s will be given by

[4,¤,¤, 0,¤, 3]. Note that state s′ given by [4, 1, 5, 0, 2, 3] will also be abstracted to sa. As such,

the function that transforms regular states into abstract states, denoted Fa : S ← Sa, is one-to-one

but not onto.

The only constraint on the selection of a pattern is that if an operator is applicable in a regular

state, it is also applicable in the abstract state. Moreover, if s′ is a neighbour of s in S, then Fa(s′)

is a neighbour of Fa(s) in Sa. Under these conditions, the length of a path between any two abstract

states is guaranteed to not overestimate the distance between any two corresponding regular states.

In the pancake puzzle, any pattern will guarantee this condition. In the sliding tile puzzle, the empty

space must be included in the pattern for this condition to be satisfied.

The purpose of the abstract space is to have a state space on which the exact distance from any

state sa to the abstract goal ga can be calculated. This is possible since the abstract space has size
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k!, where k is the number of tiles in the pattern. If k is small enough, the entire abstract state

space can be stored in memory. This allows for a pre-processing step by which for any state sa ∈ Sa,

the minimum distance between sa and ga can be calculated and stored in a table called a pattern

database.

The pattern database is then used during a search in S as follows: for any state s, Fa(s) is found,

and the distance from Fa(s) to ga is returned by the pattern database. This distance is then used as

the heuristic value of state s. The resulting heuristic function is both admissible and consistent.

There are a number of additional ways in which pattern databases can be used. These include

leveraging the symmetry [12] or the duality of permutation puzzles [17]. While these variants are

not used in this thesis, we will often build heuristics by maximizing over multiple pattern databases

[24]. In this variant, a number of pattern databases are built, each with a different pattern. The

resulting heuristic is then the maximum of the values returned by each of the individual pattern

databases. The resulting heuristic remains admissible and consistent.

2.8 Weighted A* (WA*)

Having introduced the two test domains described above, we can now analyze the performance of

several suboptimal search algorithms, of which WA* is the most commonly used. The effective-

ness of WA* was first reported by Ira Pohl [37] but it has also been studied extensively by other

researchers.

Part of the reason for the popularity of this algorithm is the fact that there is a proven bound on

the suboptimality of the solutions found. In this section, the proof of this bound is reproduced and

experiments are given that show WA* in practice.

2.8.1 Bound on Solution Quality

Below we will prove Theorem 2.8.5 which states that a WA* search will find a solution with cost

at worst w times the optimal solution cost. This bound was first shown for a related algorithm by

Ira Pohl [38], however below we reproduce a proof similar to the one given by Davis et al. [13].

This is not the simplest known proof of this bound, however it is instructive in that it demonstrates

which set of solution paths are candidates for WA* to return and a similar approach will be used to

prove the bound on the solution quality of WIDA* in Section 2.9.1. The following proof includes

statements that are more general, such as Lemmas 2.8.1, 2.8.2, and 2.8.3 which are applicable to any

arbitrary heuristic function h. For a simpler proof of Theorem 2.8.5, see the aforementioned paper

by Ira Pohl.

Before reproducing this proof, some notation must be introduced. First, recall that any path

P will be assumed to start at the initial node ni of some problem. Where n is a node on path P

(denoted n ∈ P ), let C(P, n) be the cost of the portion of the path from ni to n. C(P, n) is not

necessarily the g-cost of n since there may be shorter paths to n than the one taken by P . For a path
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P and a node n ∈ P , we will define f(P, n) = C(P, n) + h(n) and denote the M-cost of a path P ,

M(P ) as follows:

M(P ) = max
n∈P

f(P, n).

To illustrate these ideas consider Figure 2.8 which contains a sample graph with all edges being of

unit-cost. Each node is labelled with the node name. The number inside each node is the heuristic

value. Note that the heuristic function is constructed from an admissible heuristic with a weight of 3.

There are five solution paths in the figure: P1 = {ni, a, b, c, d, ng}, P2 = {ni, e, f, g, h, i, ng}, P3 =

{ni, j, g, h, i, ng}, P4 = {ni, e, f, k, l,m, n, ng}, and P5 = {ni, j, g, f, k, l,m, n, ng}. Notice that

only P1 and P3 are optimal.

6 6 6 3 3 0
n i ng

6

3669

12 6

a b c d

e g h i

j

f

33 3
lk m n

Figure 2.8: Example Domain.

Consider path P2. The value of f(P2, n) for each n ∈ P2 is 6, 7, 8, 9, 7, 8, and 6 from left to

right. Therefore, M(P2) = 9. Notice that there is a shorter route to node g than is taken by P2. This

means that the f -cost of node g is not necessarily 9, and may be 8. At any time during the search,

the actual value will depend on which paths to g have been discovered thus far. As such, for any

path P , M(P ) is not necessarily the largest f -cost of nodes on P .

Recall that T and Topt denote the set of all solution paths and the set of all optimal solution paths

for a problem, respectively. Q will now be defined as follows:

Q = min
P∈T

M(P )

Qopt will be defined similarly, except the minimization is only over paths in Topt. Since Topt ⊆ T ,

necessarily Q ≤ Qopt.

Now, let TQ be the set of solutions with M-cost Q and let Cmin
Q be the minimum cost of any

solution in TQ. We can now define Tmin
Q = {P | P ∈ TQ, C(P ) = Cmin

Q }. Intuitively, Tmin
Q is the

set of lowest cost paths in T with an M-cost of Q. Note, if T is non-empty, TQ and Tmin
Q will also

necessarily be non-empty.

In the case of the graph in Figure 2.8, Topt = {P1, P3} and T = {P1, P2, P3, P4, P5}. Since

M(P1) = 10, M(P2) = 9, M(P3) = 13, M(P4) = 9, and M(P5) = 13 then Q = 9 and
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Qopt = 10. Moreover, TQ = {P2, P4}. As P2 is shorter than P4, then Cmin
Q = C(P2) = 6 and

Tmin
Q = {P2}.

Finally, when the tth node is to be expanded during an A* search, U(t) will be used to denote

the largest value of minn∈OPEN f(n) seen thus far. For example, at t = 1 only ni is on theOPEN

list, and U(1) = f(ni). Let nc be the child of ni with the smallest f -cost. If f(nc) > f(ni),

then U(2) = f(nc) > U(1). However, if f(nc) ≤ f(ni), then U(2) = U(1). Clearly, U is

monotonically increasing with t.

Similar statements to Lemmas 2.8.1, 2.8.2, and 2.8.3 are found in the works of Davis et al. [13]

and Bagchi and Mahanti [3], however the proofs are left to the reader. Below, these lemmas are

proven in full as is the proof on the bound on solution quality given by Davis et al. [13].

Lemma 2.8.1. For any single-agent search problem with an arbitrary heuristic function h, and any

P ∈ T , C(P ) ≤M(P ).

Proof. The final node in ng ∈ P will be a goal node. In this case, f(P, ng) = C(P, ng) + 0 =

C(P ). By the definition of function M , f(P, ng) ≤M(P ) and so C(P ) ≤M(P ).

The following lemma will show that A* will be simultaneously considering all paths in Tmin
Q .

Lemma 2.8.2. After t − 1 node expansions of an A* search, if U(t) ≤ Q then for all P ∈ Tmin
Q ,

there is at least one node n on the OPEN list such that n ∈ P and g(n) = C(P, n).

Proof. This proof is by induction. The base case occurs when no nodes have been expanded. At

this point, only ni is in the OPEN list. As ni is on all solution paths, f(ni) ≤ Q and so necessarily

U(1) ≤ Q. As well, ni will have g-cost of 0 which satisfies the fact that C(P, ni) = 0 for any

P ∈ T . Therfore the statement is true in the base case.

Assume the statement is true after N nodes have been expanded, U(N + 1) ≤ Q, and n is the

N + 1st node to be expanded. Prior to expanding n, any path P ∈ Tmin
Q has at least one node

m ∈ P such that m is on the OPEN list with g(m) = C(P,m) by the induction hypothesis. It

is now necessary to show that after expanding n, m is unchanged or a new node n′ ∈ P is on the

OPEN list.

Consider the situation for which m = n. Let q be the node immediately after m in P . The path

found through m to q will have cost C(P, q) by the induction hypothesis. q will necessarily be a

child of m and will either have never been seen before; already reside on the OPEN list; need to

be removed from the CLOSED list and added to the OPEN list; or, already be in the CLOSED

list with a smaller g-cost than C(P, q). If it is this last case, let R be the path from ni to q with a

g-cost less than C(P, q). A new path P ′ can be constructed which begins with path R and continues

along the same sequence as P after q. The new path P ′ will clearly have a lower cost than P . Since

U(N + 1) ≤ Q, all nodes r on R wil be such that f(R, r) ≤ Q and M(P ) ≤ Q, then M(P ′) ≤ Q.

Together, these facts contradict the fact that P ∈ Tmin
Q . Therefore, q cannot already be on the

CLOSED list with a smaller g-cost.
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As such, q must be a new successor, already reside in the OPEN list, or be moved from the

CLOSED list to the OPEN list with an updated g-cost. In any of these cases, the g-cost assigned

to q will be C(P, n) + c(n, q). Therefore, g(q) = C(P, q) and the statement is satisfied for P .

Now consider the situation in which m 6= n. The only way that m will be affected in any way

by the expansion of n is if m is a successor of n and the g-cost of m is updated. However, by a

similar construction as above, a path P ′ can be found with M(P ′) = Q and C(P ′) < C(P ). This

contradicts the fact that P ∈ Tmin
Q and so the statement is satisfied for this situation. As these cases

cover all possible situations for P ∈ Tmin
Q , the inductive step is complete.

With the previous lemma, it is now possible to show that the only solutions that will be found

by an A* search, regardless of whether the heuristic is admissible or not, are those in the set TQ.

Combined with Lemma 2.8.1, we have the following statement.

Lemma 2.8.3. For a single-agent search problem with an arbitrary heuristic function h, any solu-

tion path P found by A* will satisfy the inequality C(P ) ≤ Q.

Proof. Note that no solution path will by found by A* until there have been at least t node

expansions such that U(t + 1) ≥ Q since for any P ′ ∈ T , there is some node n ∈ P ′ such that

f(n) ≥ Q (since M(P ′) ≥ Q). n will only be expanded when it is the node in OPEN with the

smallest f -cost.

As ni is on all solution paths, f(ni) ≤ Q and so U(1) ≤ Q. Now, assume that M(P ) > Q

and let n be the first node on P such that f(P, n) = M(P ). Before n can be expanded, U must

increase to M(P ). By Lemma 2.8.2, for any path P ′ ∈ Tmin
Q there will be some node n′ ∈ P ′

on the OPEN list while U(t) ≤ Q. Since U starts with a value at most Q, U will not be able to

increase beyond Q until every node on P ′ has been expanded. If this is the case, the algorithm will

return P ′ instead of P , which is a contradiction. Therefore M(P ) ≤ Q. Since M(P ) ≥ Q by

definition, M(P ) = Q. By Lemma 2.8.1, this gives us C(P ) ≤ Q.

The following lemma bounds the value of Q by a function of the optimal solution cost where the

heuristic function is bounded.

Lemma 2.8.4. For a single-agent search problem with an arbitrary heuristic function h, if for all s,

h(s) ≤ wh∗(s) for some w ≥ 1, then Q ≤ wC∗.

Proof. Consider any optimal path P ∈ Topt. Since the perfect heuristic value of the initial node

will by definition be equal to C∗, f(ni) ≤ wC∗. Any node n ∈ P will satisfy the following:

f(P, n) ≤ C(P, n) + wh∗(n) ≤ C(P, n) + w(C∗ − C(P, n)) ≤ (1− w)C(P, n) + wC∗ ≤ wC∗

since w ≥ 1. Therefore, M(P ) ≤ wC∗. As P is an arbitrary path in Topt, Qopt ≤ wC∗. Since

Q ≤ Qopt, Q ≤ wC∗.

With these lemmas, it is now possible to bound the solution quality of any path found by WA*.

Theorem 2.8.5. If a solution path P is found by a WA* search with weight w, C(P ) ≤ wC∗.
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Proof. Let h denote an admissible heuristic and consider some constant w ≥ 1. For any node

n, wh(n) ≤ wh∗(n) is satisfied. This means that for a WA* search with weight w (which uses

heuristic function h′ = wh), Q ≤ wC∗ by Lemma 2.8.4. By Lemma 2.8.3, C(P ) ≤ Q and so

C(P ) ≤ wC∗.
With this bound it is possible to control the suboptimality of a solution. However, as will be

shown below, WA* generally significantly outperforms these bounds. Also note that the bound

given by Theorem 2.8.5 applies with any arbitrary heuristic function hwhere for all nodes n, h(n) ≤
wh∗(n).

2.8.2 WA* in the Sliding Tile and Pancake Puzzles

In this section, we demonstrate the behaviour of WA* by experimenting with the algorithm in the

4× 4 sliding tile and 14 pancake puzzle domains. Due to the space requirements of A*, the number

of nodes stored during problem solving on any single problem was limited to a million states.

For the sliding tile puzzle, the test set used consisted of 1, 000 randomly generated solvable 4×4

puzzle states. The total optimal cost of all 1, 000 problems was found using IDA* and is 52, 522.

All the weights in the set W1 = {1.0, 1.5, 2.0, 2.5, ..., 25.0} were tested as were the weights in the

set W2 = {35, 45, ..., 95}. The results for the sliding tile experiments are shown in Figure 2.9. Due

to the memory restriction, WA* was only able to solve 241, 897, and 996 of the 1, 000 problems

with the weights of 1, 1.5, and 2, respectively. As such, these data points have been omitted from

Figure 2.9. Also note that a dotted line is shown in Figure 2.9(a) depicting the total optimal solution

length over all 1, 000 problems.
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Figure 2.9: WA* on 1, 000 4x4 Sliding Tile Problems

For the pancake puzzle, the test set is composed of 1, 000 randomly generated puzzle states.

The total optimal cost of all 1, 000 problems was found using WIDA* and is 12, 775. The heuristic

function used is given by the < 0, 1, 2, 3, 4, 5, 6 > pattern database. The results for WA* are shown

in Figure 2.10. Due to the memory limit, WA* was unable to solve all problems with the smaller

weights. For the weights of 1, 1.5, 2, and 2.5 only 459, 883, 987, and 993 of the 1, 000 problems

were solved, respectively. As such, these weights have been omitted from the figure. Also note that
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for this puzzle, all WA* searches with a weight of 10 or greater produced identical results. The data

points corresponding to weights larger than 10 have also been omitted from the the figures.
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Figure 2.10: WA* on 1, 000 14 Pancake Tile Problems

In both domains, the solution quality found by WA* during the experiments outperforms the

guaranteed upper bound by a large margin. As an example, consider the weight of 3 finds solution

paths that are on average 1.5 and 1.2 times more than the optimal cost in the sliding tile and pancake

puzzles, respectively. Moreover, with the weight of 10, the factor of suboptimality is only 2.3 and

1.3 in these puzzles, respectively. Figures 2.9(a) and 2.10(a) show that in these domains the solution

quality actually plateaus instead of growing linearly with the weight value.

Figures 2.9(b) and 2.10(b) show that as the weight increases, the search time generally decreases.

Part of the reason for this behaviour is the fact that in both of these domains, there is guaranteed to

be a solution in the subtree below any node n in the search tree. As such, taking a more greedy

approach by increasing the weight is an effective strategy. Note, that the amount of improvement in

search speed gained from increasing the weight diminishes for larger weight values.

2.9 Weighted IDA* (WIDA*)

WIDA* is another well-known suboptimal search algorithm in which a weighted heuristic is used

in IDA*. In this section, we will show that WIDA* has the same bound on solution quality as

WA*. Several other properties of this search technique will be highlighted, including several of the

deficiencies of the algorithm. Finally, we will demonstrate the behaviour of WIDA* experimentally.

2.9.1 Bound on Solution Quality

We have been unable to find a proof for a bound on the quality of solutions found by WIDA* in the

search literature. However, in the work of Davis et al. [13], a bound is found for an algorithm called

A+
δ which shares properties with both WA* and WIDA*. Below, we adjust this proof to make it

applicable to WIDA*, using much of the same notation as was used in Section 2.8.1.
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The first lemma is analogous to Lemma 2.8.3. In this proof, we will use the notation threshold(i)

to refer to the value of the global threshold on the ith iteration. The threshold function takes on a

similar role as the function U did in Lemma 2.8.3.

Lemma 2.9.1. For any single-agent search problem with a heuristic function h, any solution path

P found by IDA* will satisfy the inequality C(P ) ≤ Q.

Proof. Assume P is found on the ith iteration. P cannot be found until threshold(i) ≥ Q since

there is some node n ∈ P with f(P, n) ≥ Q and n will not be expanded during an examination of P

until threshold(i) ≥ f(P, n). Also notice, that if an iteration k starts such that threshold(k) > Q,

then all nodes on all paths in TQ can be expanded, and so a solution will necessarily be found before

the iteration completes. Below we will prove that threshold(i) must be exactly equal to Q.

Assume some iteration k begins with threshold(k) > Q without having an iteration k′ ∈
{1, ..., k − 1} such that threshold(k) = Q. As threshold(1) = h(ni) = f(P, ni) ≤ Q, k > 1.

Due to the depth-first nature of IDA*, every path P ′ will be examined up until the first node m ∈ P ′
is found such that f(P ′,m) > threshold. As the next threshold is set as the smallest such value,

the f -cost of a node that was generated but not expanded during iteration k − 1 was threshold(k).

For any PQ ∈ TQ, PQ was not found in iteration k−1. However, during this iteration some node

nQ ∈ PQ must have been generated but not expanded. As M(PQ) = Q, necessarily f(PQ, nQ) ≤
Q ≤ threshold(k). This contradicts the choice of threshold(k), and so iteration k cannot have

threshold(k) > Q unless an earlier iteration had a threshold of exactly Q.

Since the threshold value is also strictly increasing and threshold(i) ≥ Q, then threshold(i) =

Q. Therefore, M(P ) = Q. By Lemma 2.8.1, C(P ) ≤ Q.

It is now possible to prove the bound on WIDA*.

Theorem 2.9.2. If a solution path P is found by a WIDA* search with weight w, C(P ) ≤ wC∗.

Proof. Let h denote an admissible heuristic and consider some constant w ≥ 1. For any node n,

wh(n) ≤ wh∗(n) is satisfied. As such, by lemma 2.8.4 Q ≤ wC∗ for WIDA* with weight w. By

lemma 2.9.1, C(P ) ≤ Q and so C(P ) ≤ wC∗.
While WIDA* and WA* both have the same bound on solution quality and are both limited to

returning solutions from TQ, in practice, the solution quality found by WIDA* is generally worse

than that found by WA*. This will be shown experimentally in Section 2.9.4. However, we will first

consider several other properties of WIDA*.

2.9.2 Effect of w on the Iterations of WIDA*

The first obvious question when analyzing WIDA* is how the search trees examined during any

iteration i changes when different weights are used. In the case of the first iteration, it can be shown

that larger weights will always examine a larger search tree. This idea will be formalized in the

following theorem:
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Theorem 2.9.3. Consider the first iteration of two WIDA* searches in which the search does not

terminate when a solution is found and the same admissible heuristic function h is being weighted

in both searches. The first search will be performed with weight w1 and the second with weight

w2 > w1. If a node n is expanded by the WIDA* search with weight w1 during the first iteration,

then it is also expanded by the WIDA* search with weight w2.

Proof. The proof is by induction. The base case is the node ni. As the threshold used in the first

iteration will be w1h(ni) and w2h(ni) for the weight w1 and w2 searches, rescpectively, clearly this

node will be expanded by both searches.

Now consider any path P of length N such that both WIDA* searches expand the first N − 1

nodes along P . Let n be the N th node on P . If n is not expanded by the weight w1 search, the

statement is vacuously true for n. Let fw1(n
′) refer to the f -cost of node n′ when searching with

weight w1, and define fw2(n
′) analogously. If n is expanded by the weight of w1, then fw1(n) ≤

w1h(ni). As such, g(n) + w1h(n) ≤ w1h(ni). This leads to the following algebraic manipulation:

g(n) + w1h(n) ≤ w1h(ni) (2.1)

g(n) ≤ w1(h(ni)− h(n)) (2.2)

g(n) ≤ w2(h(ni)− h(n)) (2.3)

g(n) + w2h(n) ≤ w2h(ni) (2.4)

fw2(n) ≤ w2h(ni) (2.5)

Line 2.3 is possible since w2 ≥ w1 and h(ni) − h(n) ≥ 0. Therefore, n will also be expanded by

the search with weight w2.

While the set of nodes expanded by any weight during the first iteration is guaranteed to be a

superset of the set of nodes expanded by any smaller weight during the first iteration, this is not the

case in subsequent iterations. An example of this behaviour is shown in Figure 2.11. In this figure, a

partial subtree is shown from left to right where each circle represents a node, the initial node is the

farthest leftward, and the lines represent edges. The number inside the node is the heuristic value

of the node. The number above the node is the f -cost of the node for a search with a weight of 1,

and the number below the node is the f -cost of the node for a search with a weight of 2. The initial

thresholds are set to the f -costs of the initial node. The nodes in bold correspond to the first iteration

for both weights. In this case the first iterations will be exactly the same.

The nodes labelled “A” and “B” will be generated but not expanded during the first iteration. On

the second iteration, the thresholds for the second iteration will be set to 12 and 21 for weights 1

and 2, respectively. Now consider “B” and all its descendents. The search with a weight of 2 will

expand all the nodes depicted, while the weight of 1 will expand all of these nodes except node “C”.

The fact that a larger weight will expand a larger set of nodes is unsurprising. However, consider

node “A”. This node will be expanded by the search with a weight of 1, but will not be expanded by
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Figure 2.11: Different Search Trees for Different Weights.

the search with a weight of 2. As such, on any iteration that is not the first, larger weights are not

guaranteed to search a superset of the nodes expanded by smaller weights.

2.9.3 Deficiencies of WIDA*

The main issue with WIDA* is that the search can become stuck searching large parts of the search

tree without any heuristic guidance. For example, consider a domain with a uniform branching

factor b in which all operators have a cost of 1. Let the admissible heuristic function being weighted

be denoted h and assume h is consistent. In such a domain, the heuristic value of a child nc can be

at most 1 more than the heuristic value of the parent np. In this case, f(nc) = g(nc) + wh(nc) =

g(np)+1+w(h(np)+1) = g(np)+wh(np)+w+1 = f(np)+w+1. As well, the heuristic value

of a child nc can be at most 1 less than the heuristic value of the parent np. By a similar calculation,

it can be shown that in this case, f(nc) = f(np)− (w − 1).

Assume the current threshold is H and that a node n is to be expanded. As the f -cost of any

node can be at most w+1 greater than the parent, all nodes to a depth b(H−f(n))/(w+1)c below

n will be expanded during the current iteration unless a solution is found first. The minimum size of

this subtree will be Z = bb(H−f(n))/(w+1)c. The key observation is that in this subtree, no pruning

will occur and WIDA* will be forced to perform a depth-first search with no heuristic guidance.

If h(n) is low, the value of H − f(n) will most likely be high and consequently so will Z.

Therefore, if a heuristic leads the search into an area of the state space with low heuristic values

but which is not actually near the goal, WIDA* must expand a large number of nodes before it can

backtrack to n. Even if there is a goal near n, WIDA* may still have to expand a large number of

nodes before finding it since the search has no guidance in the search tree of size at least Z.

In an extreme example of this behaviour, assume it is the first iteration (H = wh(ni)) and all

d moves that lead to n have decreased the heuristic value by 1. The f -cost of n is then f(n) =

d + w(h(ni) − d) = d(1 − w) + wh(ni). The minimum depth below n to which all nodes must

be expanded is therefore b(wh(ni) − [d(1 − w) + wh(ni)]))/(w + 1)c = bd(w − 1)/(w + 1)c.
Therefore the minimum number of nodes in the subtree below n that can be expanded during the
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current iteration is exponential in d and increases as w increases.

2.9.4 WIDA* in the Sliding Tile and Pancake Puzzles

The WIDA* algorithm was also tested on the 1, 000 4×4 sliding tile puzzle problems, and the 1, 000

14 pancake problems that WA* was tested on. For both puzzles, the weights tested were those from

the set W1 = {1.0, 1.5, 2.0, 2.5, ..., 25.0}. The results of these experiments are shown in Figures

2.12 and 2.13.

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 0  5  10  15  20  25

T
ot

al
 S

ol
ut

io
n 

C
os

t

Weight

WIDA*
Solution Upper Bound

(a) Solutions Costs  1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 0  5  10  15  20  25

T
ot

al
 N

od
es

 E
xp

an
de

d

Weight

(b) Nodes Expanded

Figure 2.12: WIDA* on 1, 000 4x4 Sliding Tile Problems
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Figure 2.13: WIDA* on 1, 000 14 Pancake Problems

In both puzzles, IDA* was able to solve all problems optimally unlike WA*. Figures 2.12(a)

and 2.13(a) demonstrate that while WIDA* outperforms the solution cost bounds guaranteed by

Theorem 2.9.2 (which are shown in the figure), the solution quality still degrades linearly. The

slopes of the total solution cost found by WIDA* are approximately 30, 325 and 8, 176 for the

sliding tile and pancake puzzles, respectively. Note, the slopes of the upper bound lines are given by

the optimal total solution costs of 52, 522 for the 4×4 puzzle and 12, 775 for the 14 pancake puzzle.

Figures 2.12(b) and 2.13(b) also show that both puzzles, the total number of nodes expanded

hits a minimum as the weight increases. However, in the sliding tile puzzle, increasing the weight

too far beyond this minimum causes the search efficiency to degrade quickly. This behaviour is not
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apparent in the pancake puzzle, in which the average search effort remains mostly stable beyond this

minimum. The minimum is hit at a weight of 5 for the 4 × 4 puzzle, although most of the weights

between a weight of 3 and 7 perform similarly. The minimum is hit at a weight of 9 for the 14

pancake puzzle although all weights from 4 to 25 perform similarly.

2.10 Weighted RBFS (WRBFS)

WRBFS also has the same bound on solution quality as the other two weighted algorithms. While

this will not be proved formally, the argument is based on the fact that RBFS will expand nodes in

the same order as A* aside from differences due to tie-breaking. As such, RBFS will necessarily

only find solutions in TQ, each of which will be at worst w times the length of the optimal solution.

In practice, WRBFS generally outperforms this bound and finds solutions with similar quality to

those found by WA*. This behaviour will be demonstrated in the two test domains.

2.10.1 WRBFS in the Sliding Tile and Pancake Puzzles

In Figures 2.14 and 2.15 the results are shown for the experiments involving the use of WRBFS

for problem-solving on the 1, 000 4 × 4 puzzles and 1, 000 14 pancake puzzles, respectively. Like

IDA*, RBFS was able to solve all problems in both problem sets optimally.
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Figure 2.14: WRBFS on 1, 000 4x4 Sliding Tile Problems

In terms of solution cost, WRBFS has similar behaviour in both domains. Specifically, the

solution quality found by WRBFS is very similar to that found by WA*.

In terms of solution effort, WRBFS actually performs quite differently on both domains. In the

sliding tile puzzle, the behaviour of WRBFS is similar to that of WIDA* in that the relationship

between the value of the weight and the search effort is concave. However, WRBFS is actually

outperformed by WIDA* on every single weight value, despite the fact that WRBFS was designed

so as to avoid some of the deficiencies of WIDA*.

Even when comparing the algorithms at their peak performance on the 4× 4 sliding tile puzzle,

WIDA* significantly outperforms WRBFS. The weight value for which WRBFS requires the least
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Figure 2.15: WRBFS on 1, 000 14 Pancake Tile Problems

amount of total nodes expanded over all problems is the weight of 3. As mentioned in Section 2.9.4,

the weight that required the least amount of total nodes expanded over the problem set is the weight

of 5.5, which expanded 2.6 times fewer total nodes than WRBFS did with a weight of 3. This

difference in the performance of the two algorithms is magnified when one considers the behaviour

reported in the original RBFS paper that the running time needed per node expansion of WRBFS is

greater than the running time needed per node expansion of WIDA*.

In the 14 pancake puzzle, the performance of WRBFS is quite similar to WIDA*. In WRBFS

all weights of value at least 10 produce an identical search, at which point a minimum is reached.

In WIDA*, the performance is quite stable for weights of size at least 4. WIDA* again outperforms

WRBFS on all weights with the only exception being the weight of 19 for which the number of

nodes expanded by WRBFS is slightly less than the number expanded by WIDA*. However, the

amount by which WIDA* generally outperforms WRBFS is much smaller. When comparing the

peak performance of these algorithms, WIDA* expands 1.9 times fewer nodes than WRBFS.

2.11 Beam Search and BULB

Another approach to suboptimal search is beam search. In this section, the general beam search

algorithm will be described. Enhancements that make beam search into the complete algorithm

known as BULB are then offered, and the behaviour of this algorithm is shown in experimentation.

Aside from the experiments, this section is based on the work of Furcy and Koenig [18].

2.11.1 Beam Search

Traditional beam-search is designed for unit-cost domains. The main data structure of a beam search

is the beam. Each beam is a container for at most B nodes, all at the same depth. B is referred to as

the beam width or beam size.

The algorithm begins with the construction of the initial beam beam0 which holds only the initial

node ni. ni is then expanded, and the successors of ni are sorted. At most B successors with the

28



lowest heuristic value then form the next beam: beam1. Similarly, the construction of an arbitrary

beam beamk requires the expansion of all nodes in beamk−1. The generated nodes are then sorted

and the bestB nodes that do not already exist in any of the other beams are then used to form beamk.

If a goal node is found during the expansion of beamk−1, the solution of length k is extracted from

the beams and returned.

The process of constructing new beams is continued until a goal solution is found or some

memory limit L is hit. As at most B nodes at any depth are ever considered, beam-search is an

incomplete algorithm.

2.11.2 Beam Search with Limited Discrepancy Backtracking (BULB)

BULB is a variant of beam search that includes backtracking. Aside from the beam width parameter

B, BULB takes in a limit on the number of states that can be stored in memory at any time, de-

noted L. By adding backtracking, BULB becomes a complete algorithm provided that there exists a

solution that has a length of at most L/B.

When the set of successors Sbeamj
of a beam beamj are generated and sorted, Sbeamj

can be

divided into a number of slices denoted B1, B2, ..., Bk where (k − 1)B ≤ |Sbeamj | < kB. In the

ordering of Sbeamj , Bi holds the nodes in positions (i− 1)B to iB − 1. For example, B1 holds the

top B nodes ordered by heuristic value.

The BULB algorithm is shown in Figure 2.16. One of the main concepts behind this algorithm

is the notion of a discrepancy developed by Harvey and Ginsberg [21]. As extended by Furcy and

Koenig, a discrepancy occurs when instead of using B1 in the construction of the next slice, some

slice Bj is used, where j > 1. For example, consider some beamj whose list of successors can

be split into 3 slices: B1, B2, and B3. Instead of constructing beamj+1 out of the nodes in B1 as

traditional beam search would, the new beam can be constructed from the nodes in B2. When a

beam is constructed in this way, a discrepancy is said to occur. Note, if the new beam is created with

B3, we still say only a single discrepancy has occurred.

The BULB algorithm runs iteratively with an increasing limit on the number of discrepancies

that can be used. Each iteration corresponds to one pass through the loop beginning at line 5 of the

BULB algorithm. The value of the discrepancy limit d on the first iteration will be 0. At any time

during an iteration with limit d, no more than d beams in memory can have been constructed using

some slice other than the first.

The order in which discrepancies are selected to occur is given by limited discrepancy backtrack-

ing. Backtracking begins whenever the memory limit is reached without having found a solution.

At this point, beams will be removed until some beamj is found such that beamj+1 was constructed

using a discrepancy. Where Bi was last used to construct beamj+1, Bi+1 will be used this time.

This behaviour is caused by line 10 of the RecursiveBulb which iterates through the discrep-

ancies. If no such Bi+1 exists, beamj+1 will be constructed without a discrepancy, using B1 (line
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BULB(Initial State si, Beam Size B, Memory Limit L):
1: d← 0
2: BEAMS ← empty set of beams
3: Construct initial node ni with state ni.state = si and ni.parent = null
4: Construct beam1 with ni being the only node on it and add beam1 to set BEAMS
5: loop
6: RecursiveBulb(BEAMS, B, L, d)
7: if a solution was found then
8: return found solution
9: d← d+ 1

GetSuccessors(BEAMS):
1: Generate successors Sbeamk

of deepest beam beamk ∈ BEAMS
2: Remove all Duplicates from Sbeamk

and any nodes already in some beam in BEAMS

RecursiveBulb(BEAMS, B, L, d):
1: Sb ←GetSuccessors(BEAMS)
2: if Sb is empty then
3: return without solution
4: else if (|Sb|+

∑
beamj∈BEAMS |beamj |) > L then

5: return without solution
6: else if Sb contains a goal node then
7: return solution extracted from BEAMS
8: if d > 0 and |Sb| > B then
9: num← d|Sb|/Be

10: for all j ∈ {2, 3, ..., num} do
11: Sort Sb and find jth slice Bj . Delete all other nodes in Sb

12: Construct new beam beamk+1 consisting of nodes in Bj

13: RecursiveBulb(BEAMS, B, L, d− 1)
14: if a solution was found then
15: return found solution
16: Remove beamk+1 from BEAMS
17: Sb ←GetSuccessors(BEAMS)
18: Sort Sb and find 1st slice B1. Delete all other nodes in Sb

19: Construct new beam beamk+1 consisting of nodes in B1

20: RecursiveBulb(BEAMS, B, L, d)
21: if a solution was found then
22: return found solution
23: Remove beamk+1 from BEAMS
24: return without solution

Figure 2.16: The BULB Algorithm.
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18). Note, if backtracking reaches the first beam and the second beam was constructed without a

discrepancy, then the number of discrepancies is incremented and a new iteration will begin.

This scheme is designed so as to first reconsider decisions made near the root of the tree where

the heuristic function is expected to be the least accurate. This behaviour is caused by line 8 of the

RecursiveBulb procedure which uses available discrepancies as soon as possible. Also notice,

that as there are no discrepancies allowed on the first iteration, this iteration will proceed identically

to a traditional beam search.

2.11.3 Properties of BULB

The main advantage that BULB has over standard beam-search is that BULB is complete. This

property is ensured by the limited discrepancy backtracking.

Unfortunately, unlike WA*, WIDA*, and WRBFS, there are no guaranteed bounds on the sub-

optimality of the solution returned by a BULB search. However, even without such guarantees,

there are clear trends. As the beam size of a beam search approaches 1, the search degenerates into

a greedy search. As the beam size approaches infinity, the search will degenerate into a breadth-first

search. As such, beam search (and subsequently BULB) will tend to increase the solution quality

with the beam size.

2.11.4 BULB and the Sliding Tile and Pancake Puzzles

BULB was tested on both the 4 × 4 sliding tile and 14 pancake test sets that the other algorithms

were tested on. A variety of beam widths from 2 to 1, 000 were considered. The value of L for all

of these experiments was set at 50, 000. The results are seen in Figures 2.17 and 2.18. Notice that

in both figures all axes are in logarithmic scale.
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Figure 2.17: BULB on 1, 000 4× 4 Sliding Tile Problems.

In the case of the 4× 4 sliding tile puzzle, the algorithm never had to backtrack under the given

memory constraints. As such, the results are the same as would be found by a standard beam search.

The only beam width for which backtracking was necessary on the 14 pancake puzzle was that of 2.
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Figure 2.18: BULB on 1, 000 14 Pancake Sliding Tile Problems.

In both puzzles, BULB exhibited the expected behaviour of finding poor quality solutions with

small beam sizes and high quality solutions with large beam sizes. This effect was most prominent

in the sliding tile puzzle for a beam size of 2 with which the average solution found was almost 29

times greater than the optimal solution length. In comparison, the beam size of 1000 found solutions

only 1.11 times greater than the optimal length.

In the case of search effort, BULB reaches a minimum in the sliding tile puzzle at a beam width

of 6. The minimum for the pancake puzzle was actually hit at a beam size of 2. Figures 2.17(b) and

2.18(b) show that the search effort grows significantly beyond these minimum beam widths.

2.12 Chapter Summary

This chapter began with the formalization of the single-agent search problem in Section 2.1. The

algorithms of A*, IDA*, and RBFS were then introduced in Sections 2.3, 2.4, and 2.5 respectively.

These algorithms are capable of finding the optimal solution paths for any single-agent search algo-

rithm provided that the heuristic function is admissible.

Unfortunately, these algorithms often require an excessive amount of problem-solving time or

have large memory requirements. One solution to this problem is the use of inadmissible heuristics

which often find solutions quicker at the expense of solution quality. The idea of weighting heuristics

so as to achieve an inadmissible heuristic function was then introduced in Section 2.6.

In order to demonstrate how different weights affect the search speed and solution quality found

by the aforementioned algorithms, the M × N sliding tile puzzle and N pancake puzzle domains

are introduced as test beds. A set of experiments are performed in these domains with the weighted

variants of A*, IDA*, and RBFS in Sections 2.8, 2.9, and 2.10, respectively. These sections also

include theoretical analysis of these weighted algorithms. Of particular importance is that if the

weight on a admissible heuristic used in these weighted algorithms is w ≥ 1, then the cost of any

solution found will be at most w times the optimal solution cost.

The chapter concludes with a description of the beam search algorithm, as well as the complete
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variant known as BULB. The performance of this algorithm in the sliding tile and pancake puzzles

is then demonstrated.
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Chapter 3

Configuration Selection and
Dovetailing

The problem of finding an effective set of parameters for an algorithm is not specific to single-agent

search. In this chapter, we examine some of the previous approaches to this problem, discuss their

applicability to suboptimal search algorithms, and then describe an alternative strategy called dove-

tailing. Instead of committing to a single set of parameters, dovetailing involves the simultaneous

consideration of multiple settings. The chapter will conclude with a description of the properties of

dovetailing and related work.

Before continuing, it is necessary to introduce some notation, much of which is based on the

work of Hutter et al. [26]. Let us first consider the idea of a configuration. A configuration θ for

an algorithm a will refer to the set of all design decisions made for the implementation and appli-

cation of a. These design decisions include those concerning heuristic function selection, random

number generator, seeds, operator ordering, parameter values, etc. Each of these choices may have

a numerical domain or be selected from a set (such as operator ordering). The instance of a with

configuration θ will then be referred to as a(θ).

In many of the experiments, all of the configurations in a finite set will share many of the same

design choices. For the sake of simplicity, these static choices will be omitted when describing the

different configurations. For example, if θ1 and θ2 are two configurations of WIDA* that differ only

in the weight parameter w, the configurations will be written as θ1 = {w = w1} and θ2 = {w =

w2}, where w1 and w2 are the values of the weight values in each configuration, respectively.

For any search problem p, we can now let exp(a, θ, p) denote the number of node expansions

required by a(θ) during problem solving on p. We will also define the batch results of a(θ) over a

problem set P as the total number of nodes expanded over all problems in P by a(θ). Formally, this

definition is given by the following:

batch(a, θ, P ) =
∑

p∈P

exp(a, θ, p).
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3.1 Batch Tuning

A natural approach to configuration selection is to evaluate the performance of a number of configu-

rations on a test set and select the configuration with the best average performance. This strategy will

be referred to as batch tuning. In general, batch tuning involves finding the configuration with the

smallest batch value over a test set. Note, while any variation of batch tuning is an offline procedure,

it may still require an immense cost in terms of time.

The simplest version of batch tuning involves testing all possible combinations of design choices.

In the literature, this strategy is referred to as full factorial design [26]. Unfortunately, this approach

is generally intractable due to the size of the design choice space.

An alternative approach to batch tuning is local search. Traditionally, this has been a manual

process that begins with some initial configuration. The researcher then adjusts the configuration in

hopes of improving performance. The perturbation of the configuration is mainly based on intuition

and experience. The process continues until either no further improvement is found or some resource

limit (such as time) is reached. The configuration with the best average performance is then used for

future searches.

In the work of Hutter et al., this local search procedure is automated [26]. The resulting pro-

cedure is called Iterative Local Search in the parameter space. In this procedure, the informed

perturbation is replaced with the random selection of a neighbour of a configuration, where the

neighbourhood relation is defined by the user. The natural definition of this relation, and that used in

practice, is such that two configurations are considered neighbours if the two differ by exactly one

design choice. For each new iteration, the configuration considered is the neighbour that improves

in performance over the perturbed configuration (if such a configuration exists). Ocassionally, the

algorithm will jump to a completely random configuration so as to avoid becoming stuck in a local

minimum. A faster variant of this algorithm, called Focused Iterative Local Search in the parameter

space, is also considered. We do not describe this algorithm in detail here.

3.2 Deficiencies in Batch Tuning

As described in Chapter 1, parameter tuning is both algorithm and domain specific. This behaviour

can be seen in the experimental results presented in Chapter 2. For example, compare Figures

2.14 and 2.15 which show that WRBFS can have widely different behaviour in different application

domains. As such, the offline process of parameter tuning needs to be performed independently for

each individual domain.

Another issue with parameter tuning is that even within the same domain, a setting which ex-

hibits strong performance on any one problem is not guaranteed to exhibit strong performance on

all problems. Even the single parameter setting that has the lowest average amount of search effort

may perform poorly on a number of individual problems.
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In order to demonstrate this behaviour, consider the following example: suppose that for any set

of configurations Θ, there exists a system that could indicate exactly which of the configurations in

Θ required the least amount of search effort in solving some problem p. This system will be referred

to as a configuration oracle. When solving p, the amount of search effort needed when informed by

such an oracle will be denoted by oracle(a,Θ, p). This value is given by the following formula:

oracle(a,Θ, p) = min
θ∈Θ

exp(a, θ, p).

Similarly, oracle(a,Θ, P ) will denote the total number of nodes expanded over an entire prob-

lem set P by the oracle, formally expressed as follows:

oracle(a,Θ, P ) =
∑

p∈P

oracle(a,Θ, p).

Now recall the experiments performed in Section 2.9.4 on the 4 × 4 sliding tile puzzle with the

WIDA* algorithm and the weight set {1.0, 1.5, 2.0, ..., 24.5, 25}. Each of these weights forms a

different configuration, the set of which we will refer to as W . A similar set of experiments were

also performed on a set of 100 4 × 4 puzzles. This test set is composed of the solvable puzzle

instances used in the original IDA* paper [30]. This test set will be used a number of times in the

remainder of this thesis and will be referred to as the Korf test set from now on. The configuration

in W which had the lowest number of total nodes expanded over all problems in this test set is the

configuration with the weight of 5.5. This configuration expanded a total of 2, 563, 731 nodes.

Testing these configurations involves the calculation of exp(WIDA*,w, p) for each problem

p and configuration w ∈ W . Once this data has been collected, it is trivial to calculate

oracle(WIDA*,W,p). The value of exp(WIDA*,{w = 5.5}, p)/oracle(WIDA*,W, p) is then an

indication of how close the weight of 5.5 is to the best weight in W on problem p. If the value of

this ratio is 1, then the weight of 5.5 is the best for the problem of all weights in the set. In Figure

3.1(a), for each of the 100 problems, the value of this ratio is shown. Problems are numbered in

ascending order of nodes expanded on that problem by the weight of 5.5. Note the logarithmic scale

of the y-axis.

Let θ5.5 denote the configuration {w = 5.5}. Notice that θ5.5 is the best configuration in W for

only 3 of the 100 problems and that for 48 problems there exists a configuration in W that requires

10 times fewer node expansions than θ5.5. If an oracle was available it would only expand a total

of 74, 987 nodes which corresponds to an expansion of 34 times fewer nodes than is done by the

configuration of θ5.5. These facts demonstrate that there is the potential to significantly outperform

the single configuration found by batch tuning if configurations could be correctly selected on a

problem-by-problem basis.

The same experiment was replicated for each of WRBFS, WA*, and BULB and the results are

shown in Figures 3.1(b), 3.1(c), and 3.1(d) respectively. The weight sets used for WRBFS and WA*

were the same as the candidate weight set used in WIDA*, and the best weights for these algorithms
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Figure 3.1: A Comparison of the Configuration with the Best Average Performance over 100 4x4
Sliding Tile Problems to an Oracle.

was found to be 5, and 9.5 respectively. The candidate beam size set is the same as that used in

Section 2.11.4, with the best beam size found being 7. Note that the different figures have different

scales for the y-axes.

WRBFS shows very similar behaviour as WIDA* in that the problems that were difficult for the

weight of 5 were beat the most by other weights. While a similar trend is evident for BULB, the

effect is not as pronounced. On the other hand, the problems which were hardest for WA* with a

weight of 9.5 were not necessarily significantly outperformed by other weights.

Also notice that the effectiveness of the oracle is greatly dependent on the algorithm being used.

For example, the weight of 5 was only outperformed by the oracle by a factor of at least 10 on

30 problems. The oracle was even less effective in WA* and BULB. With WA*, the oracle only

outperformed the weight of 9.5 by at least a factor of 10 on 2 problems. In BULB, the oracle never

outperforms the beam width of 7 by a factor of 10 on any of the problems tested.

3.3 Per-Instance Tuning

These results suggest there is potential for the use of problem-by-problem configuration selection

or per-instance tuning. In this strategy, problem solving on a problem p begins with an information

collection stage and then a configuration is selected specifically for p.
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The EUREKA system is one such example of the use of per-instance tuning in single-agent

search [11]. EUREKA was designed to address the fact that different problems should be solved

optimally using different search parallelization techniques. For each problem, the EUREKA system

builds a custom parallel version of IDA*. The system does so by collecting statistics during a

breadth-first expansion of 100,000 nodes. These statistics are then fed into a decision-tree that builds

a parallel IDA* instance by selecting between various methods of task distribution, load balancing,

and node ordering. The decision tree is trained using a set of problem instances, each annotated with

the combination of techniques found to be most effective for that problem.

Per-instance tuning has also been successfully applied in other fields. For example, in local

search SAT solvers, there is often a noise parameter which determines how often the solver makes

random decisions as opposed to heuristically suggested decisions. In Auto-Walksat, a number of

initial iterations are used to estimate a particular invariant which is used to find a good value for

this noise parameter [36]. Other examples include the work of Horvitz et al. [25] which considers

determining a per-problem restart policy for constraint satisfaction problems and SAT solvers, and

the work of Lee and Bulitko [32] which considers the use of genetic algorithms as a way to improve

the development of policies for the automatic construction of image recognition systems through the

use of a classifier. A more complete description of these works is beyond the scope of this thesis.

3.3.1 Issues with Per-Instance Tuning

While the results in Section 3.2 suggest that the use of per-instance tuning in suboptimal search

algorithms has significant potential, there are several issues that must be overcome before the de-

velopment of any such system. The main requirement for such a system is the construction of a set

of features that do well to predict the configuration to use. Finding such a set is a difficult problem,

particularly if the system is expected to generalize across multiple domains.

The performance of the weighted linear-space algorithms of WIDA* and WRBFS demonstrate

an additional problem. Consider Figure 3.2 which shows the nodes expanded by WIDA* when using

weights in the set {2.0, 2.25, 2.5, 2.75, 3.0, ..., 24.75, 25.0} on two 4 × 4 sliding tile puzzle prob-

lems. These are the two hardest problems in the Korf test set for IDA*. The figure demonstrates that

the number of nodes expanded is not necessarily a smooth function of the weight. As small changes

to the weight value can result in drastic changes in search effort, even very small mistakes in classifi-

cation can result in poor performance. Moreover, as the peaks and valleys over the two problems do

not correspond, the figure offers further evidence as to the importance of proper parameter selection.

In Figure 3.3, the same experiment was run with WRBFS instead of WIDA*. While the function

shape for problem 100 is smoother than that for WIDA*, there are many artifacts from the discrete

nature of the domain in problem 99. Figure 3.3 also indicates that the selection of the weight

set can be very important to such classification. In this case, the relationship between weight and

work would appear much smoother if a coarser set of weights was initially used. This issue further

38



 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 5  10  15  20  25

N
od

es
 E

xp
an

de
d

Weight

(a) Second Hardest Problem in Korf Test Set  1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 5  10  15  20  25

N
od

es
 E

xp
an

de
d

Weight

(b) Hardest Problem in Korf Test Set

Figure 3.2: The number of nodes expanded by WIDA* on two 15-puzzle problem when using
weights 2 through 25 incremented by 0.25.

complicates any attempts for classification.
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Figure 3.3: The number of nodes expanded by WRBFS on two 15-puzzle problem when using
weights 2 through 25 incremented by 0.25.

While EUREKA [11] effectively uses a classifier for the selection of a configuration for parallel

IDA*, several of the features used for classification were specifically designed to inform parallel

configuration selection. For example, one of the features detected is the imbalance which is defined

as a measure of how evenly the subtrees of the search tree are distributed. A second feature is the it-

eration branching factor which determines the ratio of subsequent IDA* iterations and is considered

in more detail later in this thesis in Section 5.4. Both of these features are expected to significantly

aid in the selection of a task distribution technique, but it is unclear if these features can inform the

selection of a configuration for suboptimal single-agent search.

While per-instance tuning remains an interesting direction for future work — particularly through

the use of a classifier as is done by EUREKA — it will first be necessary to resolve the issues re-

garding feature selection and the sensitivity of search to small changes in parameter values. As such,

we will consider an alternative to both batch tuning and per-instance tuning in the next section.
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3.4 Dovetailing for Single-Agent Search

In Section 3.2 it was shown that there is significant room for improvement over the use of any single

parameter value as found by batch tuning. In Figures 3.2 and 3.3, we have also shown that the

parameter values that require a near minimum amount of work on any single problem need not be

similar. Together, these results suggest the idea of simultaneously searching the space with multiple

parameter values so as to increase the probability that at least one of the values will show good

performance on each problem instance. To this end, we consider the use of dovetailing.

Dovetailing is a strategy that takes as its input a problem p and a set of ordered pairs of search

algorithms and configurations A = {(a0, θ0), ..., (an, θn)} where for each i, θi is a configuration of

algorithm ai. The output of dovetailing is a solution to p. The set A is called an algorithm portfolio

and each pair in A will be called a candidate algorithm.

For our purposes, we will make several simplifications. We will assume that each candidate

algorithm performs the search in a series of steps and the work done during each step is comparable

between algorithms. Unless otherwise stated, it will also be assumed that all candidate algorithms

share the same base algorithm (ie. a0 = a1 = ... = an) and differ only in the configuration

being used. As such, we will often refer to the input of dovetailing as being a candidate set of

configurations for an algorithm a, instead of as a set of candidate algorithms.

Dovetailing is a technique by which a parallel algorithm is run on a single processor. Intuitively,

dovetailing involves interleaving the work done by each algorithm. Formally, dovetailing consists of

a number of rounds. Each round works as follows: each candidate algorithm will, in order, advance

its search by a single step. If some candidate algorithm finds a goal on its turn, the solution found

will be returned and dovetailing will stop. If a round completes without having found a solution, a

new round begins. Note that during dovetailing, each of the candidate algorithms is performing a

completely independent search. As such, there is no memory shared between configurations, and

communication is restricted to messages indicating that a solution has been found on the current

problem and the search should stop.

By having each algorithm advance by a single step during each round, dovetailing ensures that

at all times, any candidate algorithm in A will have performed approximately as much work as any

other. As such, the total problem-solving time taken by dovetailing on a problem p will be approxi-

mately |A| times the problem-solving time of the candidate algorithm with the best performance on

p.

We will also consider the parallelization of dovetailing, called parallel dovetailing, in which each

of the candidate algorithms in A is assigned to one of |A| processors each with its own memory. In

parallel dovetailing, each processor will perform a completely independent search on a problem

p. Communication is limited to messages indicating that p has been solved and processors should

proceed to the next problem. As such, the time of a search taken by parallel dovetailing using |A|
processors will be approximately a factor of |A| less than the time taken by dovetailing on a single
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processor.

In all experiments in this thesis, the algorithms have been implemented so that each step ad-

vances the search by exactly one node expansion. Under our additional assumptions, the number of

nodes expanded by dovetailing with an algorithm a over a candidate set of configurations Θ on a

problem p will be at most |Θ| ∗ oracle(a,Θ, p). While parallel dovetailing will perform the same

amount of total work over all processors as single processor dovetailing, the search time will be

approximately reduced to the time needed by a single processor to expand oracle(a,Θ, p) nodes.

3.4.1 Dovetailing and Memory

Many of the properties of dovetailing will be related to the properties of the candidate configurations.

For example, if each of the candidate algorithms has bounds on the solution suboptimality, the

solution suboptimality of the dovetailing search will be the maximum of the individual bounds.

Similarly, the memory requirement of both parallel and single processor dovetailing is exactly

the sum of the memory requirements of each of the individual algorithms. As such, dovetailing is

problematic for memory intensive algorithms such as weighted A* except in parallel systems where

each processor has its own memory. Systems of this type are said to have distributed memory.

3.4.2 Dovetailing and Diversity

If a search algorithm is misled by a heuristic it may spend a lot of time considering unneccessary

areas of the state space. One approach to this issue is to expand multiple candidate paths in parallel

so as to introduce diversity into the search. This is the strategy taken by beam searches and the

KBFS algorithm [16]. In practice, diversity helps to decrease the probability of becoming stuck in a

heuristic local minima or an area with many dead-ends.

Dovetailing will achieve diversity in search provided there is diversity in the behaviour of the

candidate algorithms selected. If the algorithms all search the state space in a similar manner, any

differences in search effort between candidate algorithms will be small. In these situations, any

improvement made by an oracle will be overwhelmed by the cost of running multiple algorithms.

For example, note that the worst case for dovetailing over k instances of an algorithm occurs when

the candidate algorithms are identical, in which case dovetailing will take k times as much time as

is necessary.

If the candidate algorithms do perform a diverse set of searches, there is an increased chance that

at least one of these algorithms will avoid dead-ends or heuristic local minima. In this way, diversity

in the candidate set allows for different configurations to overcome the weaknesses of others. It is

this aspect of dovetailing that will lead to its strong behaviour in practice.
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3.5 Related Work

As far as we know, dovetailing has only been previously considered for suboptimal search by Kevin

Knight [28]. This work concentrates on Real-Time A* (RTA*) which is a real-time variant of A*. A

key parameter for RTA* is the lookahead value. Increasing the lookahead value generally increases

solution quality. Small lookahead values also tend to increase the stochasticity of the algorithm.

For small lookaheads, RTA* is often forced to randomly break ties between states. Knight

observed that by dovetailing many instances of RTA* with a lookahead of 1, the solution quality

increased dramatically over running a single instance with a lookahead of 1. Dovetailing over many

instances with a lookahead of 1 also found solutions much quicker than having a single instance

with a larger lookahead that achieved a similar average solution quality.

Note, in the work by Knight, the only difference in the configurations is the random number

generator seed. In this thesis, we will be generalizing this idea and showing that dovetailing can be

used in suboptimal search on a variety of parameters.

Parallel Window Search (PWS) is a parallel version of IDA* [39]. In this algorithm, each pro-

cessor performs an IDA* search with a different cost threshold. These cost thresholds are selected so

as to correspond to a consecutive set of IDA* iterations. When a processor completes its iteration, it

begins again with the next smallest unexplored cost threshold. By simply returning the first solution

found by any processor, PWS can be used to find suboptimal solutions.

PWS is a special case of parallel dovetailing as each processor can be thought of as being as-

signed an incomplete algorithm that performs a single iteration of IDA*, each with a different thresh-

old. Since each iteration is a proper subset of all subsequent iterations, these searches will not be

diverse. This lack of diversity explains why PWS with multiple processors outperforms a single-

processor version of WIDA* (with weights selected so that the solution quality of the two algorithms

is similar) in terms of search time but not in terms of total work.

Dovetailing is also related to the use of restarts in SAT solvers such as MiniSat [14] and Chaff

[34]. These solvers perform a depth-first-like search where at each step, some variable is assigned a

value. After a certain number of partial variable assignments are found to be invalid, the depth-first

search restarts with all variables unassigned. Because SAT solvers can learn new constraints during

search, restarts allow the decisions made near the root of the search tree to be more informed.

One of the motivations for restarts is the fact that it may take a long time to prove that choices

made early in the depth-first search are poor. By restarting and instantiating with more information,

this effect can be minimized. Instead of restarting the search, dovetailing approaches this problem

by simultaneously searching with multiple algorithms so as to increase the probability that at least

one of them will perform well — provided there is diversity in the candidate configurations.

Fast Downward is a automated planning system which uses a multi-valued state representation

and a heuristic based on causal graphs [22]. Part of this system is the multi-heuristic best-first

search. In this search, there are two OPEN lists, each of which is ordered by a different heuristic.
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The algorithm alternates between open lists when selecting nodes for expansion so as to overcome

the deficiencies of each heuristic.

Both dovetailing and multi-heuristic best-first search simultaneously search the state-space with

different choices. The main difference is that dovetailing completely separates the different algo-

rithm variations while multi-heuristic best-first combines them. As multi-heuristic best-first search

is a specific enhancement to A*, and we are interested in ideas that generalize across algorithms, we

will not consider multi-heuristic best-first search again in this thesis.

In contrast to systems that select configurations on a per-problem basis, there are also those that

dynamically alter the configuration at each step of algorithm execution. In this end, Russell and

Wefald [41] considered estimating the amount of computation that may be necessary to improve

upon the best move found at any time in real-time systems. In their paper, the authors develop a

system which dynamically adjusts resource allocation based on this estimation. Alternatively, there

is the work of Bulitko et al. [5] in which both subgoal selection and lookahead depth in an LRTA*

search are adjusted dynamically based upon the recent history of the search. As these works perform

configuration selection at a different level of algorithm execution, we will not consider them further.

3.6 Chapter Summary

This chapter began with a description of the notation necessary for the consideration of configuration

selection. A first approach to this problem, batch tuning, is described in Section 3.1. Unfortunately,

batch tuning suffers from the fact that the configuration which has the best average performance on

a set a problems will often perform very poorly on several individual problems.

Another approach to configuration selection is per-instance tuning which is described in Section

3.3. While this remains an intriguing direction for future work, the approach is problematic since

any such classifier will be both domain and algorithm specific. Moreover, the relationship between

configuration settings and the search effort is not necessarily smooth which poses additional issues

for classification. Despite these problems, the potential of per-instance tuning suggests that this

approach remains a promising area for future work.

The strategy of dovetailing is then described in Section 3.4. This simple approach is an alter-

native to either batch and per-instance tuning and involves simultaneously searching with multiple

configurations at once. Several properties of this approach are outlined. The chapter then concludes

with a discussion of related work.
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Chapter 4

Dovetailing Over the Main
Parameter Spaces of Search
Algorithms

This section will be concerned with dovetailing over configurations that only differ in the value

assigned to the main parameter of each of the WA*, WIDA*, WRBFS, and BULB algorithms. The

parameters of interest for these algorithms will be the weight in the case of the weighted algorithms,

and the beam width in the case of BULB.

4.1 Experimental Design

Where Θ is a set of candidate configurations for an algorithm a, the number of nodes expanded

during search when dovetailing over Θ on a problem p will be denoted by dove(a,Θ, p). The

total number of nodes expanded over an entire problem set P will be denoted dove(a,Θ, P ) and is

calculated as follows:

dove(a,Θ, P ) =
∑

p∈P

dove(a,Θ, p).

Most of the experiments in this chapter and Chapter 5 were performed by simulating dovetailing

as detailed below. To help demonstrate this procedure, we will also include an example.

When testing the performance of dovetailing on an algorithm a, a set of configurations Ω was

initially selected. Ω will be referred to as the starting configuration set. For our example, the algo-

rithm of interest will be WIDA*, and the starting configuration set will consist of 4 configurations:

θ′5 = {w = 5}, θ′10 = {w = 10}, θ′15 = {w = 15}, and θ′20 = {w = 20}. {w = j} is defined as

the configuration with the weight value set to j.

For some problem set P , the value of exp(a, θ, p) was found for each p ∈ P and θ ∈ Ω by

running a(θ) on p. Table 4.1 shows this information for the 4 configurations in our example on the

3 easiset 4 × 4 sliding tile puzzle problems in the Korf test set. Notice that the number of nodes
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Solution Costs and Nodes Expanded
By Each Configuration

Problem θ′5 θ′10 θ′15 θ′20
Cost Nodes Cost Nodes Cost Nodes Cost Nodes

1 120 3,326 218 3,631 338 21,167 446 198,216
2 149 8,106 285 2,984 435 106,380 557 4,163
3 130 11,164 240 19,709 348 94,722 480 1,279

Totals 399 22,596 743 26,324 1,121 222,269 1,483 203,658

Table 4.1: The Number of Nodes Expanded by WIDA* with 4 Configurations on 3 4 × 4 Sliding
Tile Puzzles.

expanded by the configuration which expanded the least number of nodes on each problem is shown

in bold.

Once this data had been collected, dovetailing can be simulated for any set of candidate algo-

rithms Θ ⊆ Ω. To perform a simulation of dovetailing with Θ, the configurations in Θ are given

an order θ1, θ2, ..., θk, where |Θ| = k. For any problem p, the collected data was used to find the

configuration θi such that θi = arg minθ∈Θ exp(a, θ, p) and where θi is the ith configuration in the

ordering of the candidate sets. The exact number of nodes expanded when dovetailing over Θ with

the above ordering is then given by:

dove(a,Θ, p) = (exp(a, θi, p)− 1) ∗ k + i.

To see why this relation holds, consider the candidate set Θ′ consisting of the two configura-

tions of θ′5 and θ′20. The configuration ordering we will use is {θ′5, θ′20}. On the first problem, the

configuration in the subset that expands the least number of nodes is θ′5 which only expands 3, 326

nodes. During dovetailing, both configurations will each expand 3, 326− 1 = 3, 325 nodes without

finding a solution. On the 3, 326th round of dovetailing, θ′5 will expand a node, find the solution,

and stop the dovetailing procedure. Since θ′5 is before θ′20 in the ordering of the configurations, θ′20
will not perform a node expansion in this final round. In general, where the configuration that solves

the problem is the ith in the ordering of the configurations, i nodes will be expanded during this last

round. Therefore, the number of nodes expanded by dovetailing over the two configurations on this

problem will be (3, 326− 1) ∗ 2 + 1 = 6, 651.

On the second and third problems, θ′20 is the best configuration of the two in Θ′. By performing

the same calculation as above, we find that dovetailing over these two configurations will expand

8, 326 and 2, 558 nodes on the second and third problems respectively. Therefore, dovetailing over

these two configurations will expand a total of 17, 535 nodes on this 3 problem test set.

With regards to the solution costs found using dovetailing, it should be clear that this will depend

on which configuration solves each problem. With the selected candidate set, the 3 problems will be

solved with length 120, 557, and 480 respectively, for a total cost of 1, 157.

Notice that the difference between the number of nodes expanded by the best ordering of the
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configurations in the candidate set and the worst ordering of the set will be exactly k − 1 on any

single problem. In our experiments, dove(a,Θ, p) will usually be many orders of magnitude larger

than k and so the ordering of the configurations in the candidate set will have no significant impact

on search speed. As such, we will not consider the problem of configuration ordering again in either

this chapter or Chapter 5 except to note the ordering used. In this chapter, configurations are ordered

in ascending value of the main parameter value being considered, which will either be the weight or

beam width.

The purpose of testing through simulation is that it allows us to efficiently calculate the perfor-

mance of dovetailing on a large number of candidate sets. Where there are n configurations in the

starting configuration set, there are
(
n
k

)
possible candidate sets of size k. In practice, where n ≤ 15,

we will simulate dovetailing on all
(
n
k

)
sets. For larger initial starting configuration set sizes, the

number of candidate sets tested is capped at 10, 000 per candidate set size k and the subsets tested

are selected randomly.

For a set of n configurations and a configuration set size of k, the average number of nodes

expanded over all min(
(
n
k

)
, 10, 000) candidate sets tested will be recorded, as will the number of

nodes expanded by the candidate sets that have the shortest and longest search times. Going back to

our example with the starting configuration set that contains θ′5, θ′10, θ′15, and θ′20, let us consider all
(
4
2

)
= 6 possible candidate sets of size 2. The candidate set with the least amount of seach time is

given by {θ′10, θ′20} which expands 15, 786 nodes. The worst configuration set is {θ′15, θ′20} which

expands 53, 217 nodes. The average number of nodes expanded over all 6 configurations is 36, 553.

Most of the figures in this chapter will depict the number of nodes expanded by dovetailing

as a function of the candidate set size. For each tested candidate set size k, the figures will show

the performance of the best and worst candidate sets of size k and the average performance over

all candidate sets of size k tested. Note, different sized puzzles will be tested with each of the

algorithms considered due to the differences in the ability of each of the algorithms to scale to

larger domains. For the largest puzzle in each domain tested with an algorithm A (in which a large

number of configurations capably solved all problems), we will also depict the performance of A

with individual configurations and with parallel dovetailing over some starting configuration set, as

a function of the solution quality achieved.

Unfortunately, the large search time needed when problem-solving in the larger domains with

WIDA* and WRBFS prevented the calculation of exp(WIDA*, θ, p) and exp(WRBFS, θ, p) for all

configuration-problem pairs. For example, of the weights considered for WIDA* in the 6×6 sliding

tile puzzle, only the weight of 5 solved all puzzles in the problem set of size 100 after a week of

computation. As several of these weights were expected to require months of problem-solving time,

large-scale simulation was deemed infeasible in this domain.

Instead, a restricted set of data was collected so that dovetailing could at least be simulated over

the single candidate set containing all configurations in the starting configuration set. For all config-
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urations θ ∈ Ω, the search on a problem p was bound to expand no more than exp(WIDA*, {w =

5}, p) nodes. If θ was unable to do so, p was recorded as unsolved by θ.

However, where exp(WIDA*, θ, p) > exp(WIDA*, {w = 5}, p), the actual value of

exp(WIDA*, θ, p) does not matter when performing a simulation of dovetailing over any candi-

date set containing {w = 5}. This is because {w = 5}, if not some other faster configuration, will

solve p. Therefore, dovetailing over all configurations in Ω can still be simulated. Note, we have

taken this approach so that it would be possible to compare the performance of dovetailing to the

performance of the configuration with the lowest average search time on the problem set (which is

the configuration with the weight of 5 in this case).

Recall that when using parallel dovetailing over a candidate set Θ, the search time on any prob-

lem p will approximately be dove(a,Θ, p)/|Θ| when |Θ| processors are available. In general, we

will only describe the speedup achieved from parallel dovetailing over all configurations in the

starting configuration set. This value will be used to evaluate the effectiveness of dovetailing as a

parallelization technique. The one exception is in our experiments with parallel dovetailing over

WA* configurations on the 4 × 4 sliding tile puzzle. In this domain, we have found experimental

results regarding another algorithm known as wPBNF which parallelizes WA* [7]. As such, we will

examine the performance of parallel dovetailing more closely in this domain and compare it to this

other system.

With regards to the problems used in the experiments, in general we will consider test sets that

contain 1, 000 solvable problems. In certain experiments, we have limited the test sets to the size

of 100 due to the excessive time needed for the calculation of exp(a, θ, p) with all configuration-

problem pairs. The 100 problems selected are merely just those in the first 100 of the larger problem

sets. The one exception is in the 4 × 4 sliding tile puzzle, in which some experiments will be

performed using the Korf test set.

4.2 Dovetailing over Weights in WA*

As mentioned in Section 3.4.1, dovetailing over k configurations is not particularly appropriate for

memory intensive algorithms like WA* due to the factor of k increase in memory requirements. In

the case of parallel dovetailing, these memory issues go away if the system uses distributed memory.

There has been a number of investigations into the parallelization of A* search. These include

Parallel Retracting A* [15], best-first search using parallel structured duplicate detection [46], and

Parallel Best-NBlock-First Search (PBNF) [8]. However, there has been little investigation into the

parallelization of WA*. To the best of our knowledge, the only consideration is by Burns et al.

[7] in which the three methods mentioned above are extended and evaluated in their application to

suboptimal search using weighted heuristics. The algorithm which performed the best in almost all

domains tested is the weighted variant of PBNF, denoted wPBNF.

wPBNF works by abstracting the search space into node groups called nblocks such that for any
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node n that is abstracted to an nblock b, the abstract version of any successor of n will either be

in b or a neighbour of b in the abstract space. During search, each nblock has its own OPEN and

CLOSED lists. Due to this abstraction, separate threads can expand nodes in separate nblocks

without any communication as long as the nblocks do not share neighbours in the abstract space.

An nblock b is said to be free if b and all neighbours of b are not being worked on by any threads.

Free nblocks are stored in a heap sorted by the f -cost of the next node to expand in the OPEN list

for that nblock. If an nblock becomes free, it is added to the heap.

When a thread is assigned to an nblock b, it will make at least m node expansions, where m is

a parameter to the algorithm. At that time, the thread will continue expanding nodes in b until the

f -cost of the next node to be expanded in the nblock at the top of the heap is less than the f -cost of

the next node to be expanded in b. When this occurs, the thread will be assigned to the nblock at the

top of the heap.

There are a number of details that ensure the completeness of the algorithm as well as several

additional pruning techniques for use with weighted heuristics. We will not discuss those here.

However, we will note that the performance of wPBNF has been demonstrated to scale well with the

number of processors being used in several planning domains and in the grid pathfinding domain.

In the paper on wPBNF, the algorithm is tested on the easiest 43 problems in the Korf test set.

In this domain, all of the algorithms show poor performance for larger weights and larger numbers

of processors. While we have yet to perform a complete comparison of the algorithms, in Section

4.2.2 we will analyze the relative performance of wPBNF and parallel dovetailing on this domain

based upon the information in this paper.

In the case of single-processor dovetailing, configurations in the starting configuration set will

all have some memory limit L. The performance of dovetailing will then be compared to the per-

formance of each of the individual configurations. While a fairer comparison would be between

dovetailing over such candidate sets of size k and the performance of individual configurations with

the memory limit of kL, the results below will demonstrate that even in such favourable conditions,

dovetailing is a poor addition to WA* in the domains considered.

4.2.1 Dovetailing over Weights with WA* on the Sliding Tile Puzzle

Recall Figure 2.9 which showed the performance of WA* in terms of both search time and solution

quality on 1, 000 4 × 4 sliding tile puzzles. For the dovetailing simulations on both this puzzle

and the 4× 5 sliding tile puzzle considered later in this section, the starting configuration sets were

selected so as to consist of the first 15 integer weights that successfully solved all 1, 000 problems

under the memory limit of 1, 000, 000 states. In the case of the 4×4 sliding tile puzzle, these weights

are those integers in the range of 3 to 17 inclusive.

Figure 4.1 shows the performance of dovetailing over all subsets of this starting configuration

set. Note, the number of nodes expanded by the weight with the lowest batch results — the weight
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of 12 — is also shown in the figure. When using all 15 configurations, 5.8 times more nodes are

expanded than are expanded by the weight of 12 alone. While the average solution quality found

through dovetailing is closer to that found by the weight of 6, the number of nodes expanded is still

4.4 times larger than even this weight alone.
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Figure 4.1: Dovetailing over Weights in WA* on the 4× 4 Sliding Tile Puzzle.

Figure 4.2 shows the performance of WA* on 1, 000 4 × 5 sliding tile puzzle problems. In the

figure, the first 15 integer weights that completely solved all states in the problem set are shown.

These weights are those at least as large as 5 and no larger than 19. Figure 4.3 shows the results

of the dovetailing simulations in which these 15 weights are used to form a starting configuration

set. The number of nodes expanded by the single weight with the best batch results — namely the

weight of 18 — is shown in the figure.
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Figure 4.2: WA* on 1000 4× 5 Sliding Tile Puzzles

The figure demonstrates that dovetailing remains an ineffective procedure even in the larger

domain. Dovetailing over all 15 configurations requires 4.8 times as many node expansions as the

best weight alone. Again, the average solution quality found is better than the weight with the best
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Figure 4.3: Dovetailing over Weights in WA* on the 4× 5 Sliding Tile Puzzle.

batch results. The solution quality is more similar to the weight of 8, but the dovetailing procedure

still requires the expansion of 3.9 times more nodes than this weight alone.

These results should be expected when considering Figure 3.1(c) which demonstrates that even

an oracle does not significantly outperform the weight with the best batch value. This is due to

the behaviour shown in Figures 2.9(b) and 4.2(b) which indicate that increasing the weight almost

monotonically improves the search speed, and this is similarly true on individual problems. A higher

weight causes the search to favour node expansions in the search tree that are deeper and in areas

with a low heuristic value. As there is a solution below any branch in the search tree of these

domains, this behaviour of WA* is favourable in these environments. The largest valued weight

in the candidate set with therefore rarely be significantly outperformed by any other weight on a

problem-to-problem basis.

4.2.2 Parallel Dovetailing over Weights with WA* on the Sliding Tile Puzzle

In this section, we will consider the performance of parallel dovetailing by first comparing this

technique to wPBNF. The experiments in the wPBNF paper were performed with 16 GB of shared

memory. The test set used consisted of 43 4 × 4 puzzle problems from the Korf test set that were

solvable by A* with this memory limit.

We do not know the exact set of problems used in their experiments and the set of problems

which satisfy this condition well depend on their implementation of A*, and so we will use the 43

problems that were found to be easiest to solve by IDA*. We suspect that this set is similar to the

set used in the wPBNF experiments. Moreover, we restrict ourselves to these 43 problems since

wPBNF is said to perform better in comparison to WA* on the harder problems. Including harder

problems may therefore unfairly favour parallel dovetailing when it is compared to wPBNF.

The experiments with parallel dovetailing will also be performed through simulation and we
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Speedup With Different Numbers of Processors
wPBNF Parallel Dovetailing

Weight 2 4 5 8 2 4 5 8
2 0.37 0.62 1.34 1.46 6.42 9.0 9.85 11.7
3 0.74 0.62 0.9 0.78 1.71 2.4 2.6 3.12
5 0.6 0.76 0.72 0.64 1.58 2.22 2.43 2.88

Table 4.2: The Speedup of wPBNF and the Average Speedup of Parallel Dovetailing on 43 4 × 4
Sliding Tile Puzzle Problems.

will consider both the distributed and shared memory situations. The starting configuration set used

consists of the 15 configurations, each with a different integer weight in the range of 2 to 16 inclusive.

For the distributed memory experiments, each processor will be assumed to have enough memory to

store 1, 000, 000 nodes. In the case of shared memory, the total memory among processors will be

1, 000, 000 nodes. Therefore, when collecting the initial data for the experiments with k processors,

the searches were forced to expand no more than 1, 000, 000/k nodes. Note, this is a significant

handicap when compared to the memory limits imposed upon wPBNF which we speculate allowed

their system to hold at least 50, 000, 000 at a time.

The behaviour of the algorithms is shown in Table 4.2. For wPBNF, the table shows for each

weight w, the speedup factor achieved from the weight w wPBNF search when compared to a serial

WA* search with weight w. The total time taken by wPBNF is only less than that taken by WA* if

the speedup is greater than 1. Moreover, larger factors of speedup imply shorter search times. Note,

these numbers are taken from the combination of a conference paper [7] and a workshop paper [6].

Where the numbers conflict, the results from the more recent conference paper are shown.

For parallel dovetailing, almost all the weights in the starting configuration set were able to

solve all 43 problems even with only being able to store 125, 000 nodes (which corresponds to 8

processors sharing the 1, 000, 000 node limit). The only exception was the weight of 2. However,

any candidate set containing the weight of 2 will also contain some other weight which will be able

to handle problems unsolved by 2. As such, the results in the table correspond to both memory

architectures since the experiments for both distributed and shared memory performed exactly the

same. For each weight w and number of processors k, the table shows the average speedup of

parallel dovetailing over all
(
15
k

)
possible candidate configurations when compared to a sequential

WA* search with a weight of w. Note, the number of nodes expanded by parallel dovetailing does

not change within the same column. The speedup changes because the number of nodes expanded

by the weight it is being compared against changes.

The figure shows that wPBNF does not offer much speedup over serial WA*, particularly for

larger weights and numbers of processors. The authors believe that in this domain the overhead

of communication is not overcome for larger weights because WA* alone requires so few node

expansions. However, parallel dovetailing over weights does improve upon the performance of WA*
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even if the value of w is larger. It should be noted that the inclusion of high weights in the candidate

sets causes the average solution quality to suffer. While the average solution quality does improve

slightly as the number of processors increases, the average solution length is generally similar to that

found with a weight 5 WA* search. When using 2 processors, the solution quality is 2% worse than

the weight of 5. When using 8 processors, the solution quality is 5% better. However, this solution

quality is also 23% and 16% worst than the weight of 2 when using 2 and 8 processors respectively.

We can also compare parallel dovetailing against the performance of the best configuration in

the starting configuration set with a distributed memory architecture. We will do so in the 4× 4 and

4 × 5 sliding tile puzzles with the 1, 000 puzzle problem sets. The starting configuration sets are

the same as those considered in the dovetailing experiments at the beginning of this section. When

using 15 processors, we find that the search time is decreased by 2.28 in the 4× 4 sliding tile puzzle

when compared to the single weight with the best batch results on a single processor.

In the case of the 4× 5 sliding tile puzzle, consider Figure 4.4 which shows the performance of

WA* and parallel dovetailing over WA* configurations for all candidate set sizes tested as a function

of the solution quality. Each WA* point corresponds to the total number of nodes expanded over the

entire problem set when using a single different configuration. Each dovetailing point corresponds to

using a different candidate set size k, where each configuration is assigned to one of k processors. In

the case of the parallel dovetailing points, we show the number of nodes expanded by each processor

over the entire problem set. Since there is minimal communication between processors, this value

will be proportional to the total run-time of parallel dovetailing.
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Figure 4.4: The Performance of Parallel Dovetailing over Weights as a Function of Solution Quality
in WA* on the 4× 5 Sliding Tile Puzzle.

The figure shows that the average solution quality achieved by dovetailing actually outperforms

many individual configurations, and that even parallel dovetailing over the worst of all considered

candidate sets will usually be faster than any individual configuration alone. When parallel dove-
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tailing with 15 processors over all 15 configurations, the speedup is by a factor of 3.18.

4.2.3 Dovetailing over Weights with WA* on the Pancake Puzzle

In Figure 2.10, the performance of WA* on the 14 pancake puzzle using the heuristic given by the

< 0, 1, 2, 3, 4, 5, 6 > pattern database was summarized. However, all weights greater than or equal

to 10 performed exactly the same. Therefore, having multiple weights with a value of at least 10

in any candidate set will cause a duplication of search effort due to the lack of diversity. The fact

that such performance can be seen in practice suggests that the selection of good candidate sets is

an important problem. This issue will be discussed in Chapter 6.

Due to the equivalence in the search effort of different weight values, the starting configuration

set selected for the dovetailing simulations was set as the 8 configurations that differ only in weight

value, with each being assigned a different integer weight in the range of 3 to 10. While the larger

weights in this set do perform similarly, they do not produce identical searches. However, as can

be seen in Figure 4.5, the performance of dovetailing over these configurations in the 14 pancake

puzzle is poor. For example, dovetailing over all 8 weights in the starting configuration set requires

6.4 times as many node expansions as the weight of 10 alone.
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Figure 4.5: Dovetailing over Weights in WA* in the 14 Pancake Puzzle.

Concerning solution quality, the average length of solutions found when dovetailing over all

8 weights is similar to that found by the weight of 4 alone. Unfortunately, dovetailing over all 8

weights still requires 5.4 times as many node expansions as the weight of 4.

The performance of dovetailing over WA* configurations was also considered for the 16 pancake

puzzle. The heuristic function used in these experiments is given by the maximization of the <

0, 1, 2, 3, 4, 5 > and < 6, 7, 8, 9 > pattern databases. Figure 4.6 shows the performance of the first

15 integer weights found that successfully solved all 1, 000 problems in the test set. Note that in this

case, WA* does not smoothly improve performance with the weight and actually finds a minimum

53



at the weight of 6.
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Figure 4.6: WA* on 1, 000 16 Pancake Puzzles

For the 16 pancake puzzle, the starting configuration set includes the integer weights from 4 to

18, inclusive. The results of these simulation experiments are shown in Figures 4.7 which demon-

strates that dovetailing remains an ineffective enhancement to WA* even in the larger 16 pancake

puzzle. In this case, dovetailing over all 15 weights requires 9.7 times more search effort than the

best single weight of 6, and 9.3 times more nodes than the weight of 5 alone, with which dovetailing

finds the most similar average solution quality.
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Figure 4.7: Dovetailing over Weights in WA* on the 16 Pancake Puzzle.

Figure 4.8 shows the performance of parallel dovetailing when compared to the individual con-

figurations alone, and indicates that dovetailing achieves a solution quality that is significantly better

than all but two of the configurations considered. These results indicate that only modest speedups

are found when using parallel dovetailing over WA* configurations as a parallel search algorithm

in the pancake puzzle domain. In the case of the 14 pancake puzzle, the speedup found is only

1.3 when using 10 processors. In the 16 pancake puzzle, the speedup is only 1.6 when using 15
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processors.
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Figure 4.8: The Performance of Parallel Dovetailing over Weights as a Function of Solution Quality
in WA* on the 16 Pancake Puzzle.

The increased ineffectiveness of dovetailing in the pancake puzzle domain when compared to the

sliding tile puzzle domain may be related to the fact that solutions to pancake problems are much

shorter than those for the sliding tile problems. As there is also guaranteed to be a solution under

any branch in the search tree, the use of any high weight again proves to be an effective strategy.

4.3 Dovetailing and WIDA*

In this section, we consider the effectiveness of dovetailing as an enhancement to WIDA*. As the

memory requirements of WIDA* are small, comparisons can be made between the performance of

single configurations to dovetailing without any concern as to the difference in resources used by

the different problem-solving methods. It is only on excessively large candidate sets that memory

may become an issue. However, it is expected that the overhead of simultaneously running so many

instances will prohibit the use of dovetailing over WIDA* instances long before memory does. In

this thesis, we will only be using candidate sets no larger than 24 and so this issue will not be

considered further.

Below we will show that parallel dovetailing offers a very simple and effective form for par-

allelizing. While there has been much investigation into the parallelization of IDA* in the search

literature, we are unaware of any work regarding parallelizing WIDA*. Additionally, we are sim-

ilarly unaware of any consideration as to how well the techniques parallelizing IDA* generalize to

the weighted variant of the algorithm. As such, we have not compared parallel dovetailing to any

other parallel technique.
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4.3.1 Dovetailing over Weights with WIDA* on the Sliding Tile Puzzle

As WIDA* has proven to be an effective algorithm for solving permutation puzzles, the experiments

in this section will be on larger puzzles than those tested in Section 4.2.1. We will first consider the

use of dovetailing in the 4×5 puzzle. Figure 4.9 shows the performance of WIDA* in terms of both

search effort and solution quality in this environment. Note that in Figure 4.9(b), the y-axis is shown

in a logarithmic scale.
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Figure 4.9: WIDA* on 1, 000 4× 5 Sliding Tile Puzzles

Figure 4.10 shows the behaviour of dovetailing when applied to this puzzle. The starting con-

figuration set consists of the 15 configurations that differ only in that each is assigned a different

integer weight in the range of 2 to 16. The number of nodes expanded by the best weight in the

starting configuration set, that of value 5, is also shown in the figure.
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Figure 4.10: Dovetailing over Weights in WIDA* on the 4× 5 Sliding Tile Puzzle.

The figure indicates that dovetailing over WIDA* configurations that differ only in weight sig-

nificantly improves over even the single best configuration alone. In this case, if the candidate set

size is at least 4, even the worst of the
(
15
4

)
candidates sets outperforms the weight 5 search. If
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the candidate set contains all 15 configurations, the improvement in terms of search effort over the

weight of 5 alone is by a factor of 7.9. With regards to solution quality, dovetailing over all 15

configurations results in a total cost that is similar to that found by the weight of 8.5.

Unlike WA*, in which the efficiency of search degraded when used with dovetailing, WIDA*

shows significant speed increases when enhanced with this technique. This is because of the be-

haviour seen in Figure 3.1(a) which shows that the weight with the best average performance will

often exhibit poor performance on a certain number of problems. This was not the case with WA*,

in which increasing the weight generally improved search speed on a problem-by-problem basis.

These results indicate that in this domain, parallel dovetailing exhibits super-linear speedup

in search time. A parallelization of an algorithm exhibits super-linear speedup when the use of

k processors results in a speedup in the running time that is greater than k. In the case of parallel

dovetailing over all 15 configurations in this starting configuration set on the 4×5 sliding tile puzzle,

the speedup is by a factor of 119.21. Note that whenever a single-processor dovetailing outperforms

the best configuration in the candidate set, then parallel dovetailing will necessarily be exhibiting

super-linear speedup in that domain. This is true for any algorithm in all experiments in this thesis.

The performance of WIDA* on 1, 000 5 × 5 puzzle problems is shown in Figure 4.11. In this

case, the single weight with the fastest average search time is the weight of 5. Note that the y-axis

in Figure 4.11(b) is also shown in a logarithmic scale.
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Figure 4.11: WIDA* on 1, 000 5× 5 Sliding Tile Puzzles

When the dovetailing simulations are performed on these 5×5 sliding tile puzzles while using the

same starting configuration set as above, the performance improvements are even more impressive.

These results are shown in Figures 4.12. The performance of parallel dovetailing, in which each

configuration is assigned to a different processor, is shown in Figure 4.13. In this figure, each

WIDA* point corresponds to a different single configuration run of WIDA*. Each dovetailing point

corresponds to a different candidate set size. Notice that the scale of the y-axis in both figures is

logarithmic.

In this puzzle, the candidate set sizes must be 4 and 6 respectively before the average and worst

candidate sets exhibit better performance than the weight of 5 alone. However, when the candidate
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set contains all 15 configurations, the improvement over the use of the single best configuration

is greater than the improvement found in the 4 × 5 puzzle. Specifically, dovetailing over all 15

configurations performs 42.5 times fewer node expansions than the weight of 5 alone. The solution

quality found by such a search is similar to the solution quality found by the weight of 9 alone. With

regards to parallel dovetailing, when using all 15 configurations each on a different processor, the

speedup is by a factor of 637.
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Figure 4.12: Dovetailing over Weights in WIDA* on the 5× 5 Sliding Tile Puzzle.
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Figure 4.13: The Performance of Parallel Dovetailing over Weights as a Function of Solution Quality
in WIDA* on the 5× 5 Sliding Tile Puzzle.

Figure 4.13 shows that the candidate sets with the worst performance are those with poor solution

quality. This is because these candidate sets generally consist mostly of high weights. While parallel

dovetailing over any such candidate set will outperform all the weights in the set alone, there are

too many problems in which all weights perform poorly. This causes these candidate sets to exhibit
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slower search speeds when compared with other candidate sets.

Just as the effectiveness of dovetailing increased from the 4 × 5 sliding tile puzzle to the 5 × 5

sliding puzzle, a similar trend is seen when dovetailing over WIDA* configurations is considered

for the 6 × 6 puzzle. This puzzle proved to be too large to collect all the necessary data needed

to perform the simulation experiments even when the problem set was decreased to a size of 100.

However, as described in Section 4.1, it is still possible to calculate the number of nodes expanded

over the 15 candidate weights in the range from 2 to 16.

For each problem p in the problem set, Figure 4.14 shows the value of dove(WIDA*,Θ, p) and

exp(WIDA*, {w = 5}, p) where Θ is the set of 15 configurations described above. The configura-

tion of the weight of 5 was the only configuration in the candidate set that successfully solved all

100 problems in the time allotted, and can therefore be considered the configuration with the best

average search time. Note that the y-axis in Figure 4.14 is in a logarithmic scale and that problems

in the set P are ordered in ascending value of exp(WIDA*, {w = 5}, p).
In total, dovetailing over the 15 configurations expands 121 times fewer nodes than the configu-

ration of {w = 5} alone. For parallel dovetailing over the candidate set Θ, the factor of improvement

in terms of search time is 1826. This result offers further evidence that the improvement offered by

dovetailing over weight sets in WIDA* scales in the sliding tile puzzle domain along with the state

space size.
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Figure 4.14: Dovetailing over Weights in WIDA* on the 6× 6 Sliding Tile Puzzle.

Another question that arises from these results is as to how much this enhancement depends

on the starting configuration set. In this end, we will consider dovetailing with 3 different starting

configuration sets. The first will be the starting configuration set considered above — specifically,

the set containing one configuration for each of the integer weights in the range from 2 to 16. This

set will be referred to as the consecutive integer set. The narrow set will consist of configurations

each with a unique weight value from the set Wnarrow = {2, 2.5, 3, 3.5, ..., 8.5, 9}. The wide set
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will consist of configurations, each with a unique weight value from the set Wwide where Wwide is

the union of Weven = {2, 4, ..., 22, 24} and W ′ = {7, 13, 21}. The wide set consists of all even

weights in the range 2 to 24, as well as 3 additional equally spaced odd weights. Notice that all three

starting configuration sets include exactly 15 configurations.

For any candidate set size k, Figure 4.15 shows the average performance over all
(
15
k

)
possible

candidate sets by each of the narrow, consecutive integer, and wide sets. The performance of the

best weight alone of all those considered, namely that of weight 5.5, is also shown in the figure.

The figure demonstrates that regardless of the starting configuration set, the average results achieved

with dovetailing significantly outperforms the weight of 5.5 once the size of the candidate sets is

large enough. Also notice that for larger candidate set sizes, the performance of the 3 starting

configuration sets is quite similar.

When comparing the solution quality achieved by the different sets, the results are unsurprising:

sets with a lower average weight outperform those with a higher average weight. However, for every

single candidate set size, the narrow set also outperformed both the consecutive integer and wide

sets in terms of nodes expanded. Similarly, the consecutive integer set outperformed the wide set on

every candidate set size.

This effect is most pronounced for small candidate weight sizes because the average is skewed by

a few bad candidate sets. For example, in the wide set, the candidate set of size 2 which had the worst

performance was that of weights 21 and 22. As shown in Figure 4.9(b), these weights alone require

a large number of node expansions. While dovetailing will allow weight 22 to compensate for some

of the errors that weight 21 makes when navigating its search tree (and vice versa), there will still be

too many problems in which both exhibit poor performance. In the narrow and consecutive integer

sets, there are fewer weights with such poor performance and so this behaviour occurs less often.

However, even for the candidate set size of 15 the narrow set still outperforms the others. This

behaviour can again be explained by the fact that the narrow set contains the highest number of

weights with good individual performance. While the weights in this set are the closest together of

any of the sets, there is evidently enough diversity in the search trees induced by these weights such

that they complement one another well.

4.3.2 Dovetailing over Weights with WIDA* on the Pancake Puzzle

In this section, dovetailing over WIDA* configurations that differ only by weight will be applied to

the 14 pancake puzzle and the 16 pancake puzzle. The heuristic functions used for these puzzles

will be those given by the pattern database < 0, 1, 2, 3, 4, 5, 6 >, and the maximization over the

< 0, 1, 2, 3, 4, 5 > and < 6, 7, 8, 9 > databases respectively.

The performance of WIDA* on the 14 pancake puzzle with the < 0, 1, 2, 3, 4, 5, 6 > pattern

database heuristic function has already been shown on in Figure 2.13. The results of the dovetailing

simulations on the 14 pancake puzzle are shown in Figure 4.16. In this case, the average performance
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Figure 4.15: The Performance of Different Starting Configuration Sets on the 4 × 5 Sliding Tile
Puzzle.
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of dovetailing bests the single best weight as soon as the candidate set size is at least of size 3. When

dovetailing is performed over all 15 configurations, dovetailing improves upon the single best weight

of 9 by a factor of 1.5. In this case, the solution quality found with dovetailing is very similar to that

found by the weight of 9. Also note that in this puzzle, all of the worst candidate sets include the

weight of 2 which suggests that this weight is not contributing much to the configuration portfolio.
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Figure 4.16: Dovetailing over Weights in WIDA* on the on the 14 Pancake Puzzle.

The performance of WIDA* on the 16 pancake puzzle is shown in Figure 4.17. Note, the figure

only includes data for integer weights from 2 to 12 due to that fact that it took too long to calculate

all the necessary data for larger weights. Among the weights shown, the weight of 5 was the most

effective.
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Figure 4.17: WIDA* on 1, 000 16 Pancake Puzzles.

Dovetailing exhibits similar strength when applied to the 16 pancake puzzle. Figure 4.18 shows

the results of the dovetailing simulations on the 16 pancake puzzle. Figure 4.19 shows the per-

formance of parallel dovetailing as a function of solution quality. When dovetailing over the 11

configurations, each with a unique integer weight from 2 to 12, the average performance of dovetail-
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ing surpasses the weight of 5 when the candidate set size is at least of size 5. The number of nodes

expanded by dovetailing over all 11 configurations is 1.9 times lower than the number expanded by

the weight of 5 alone. Dovetailing in this way also results in a solution quality similar to that found

by a weight of 7. Notice that again, the worst candidate sets tend to be those with a poor solution

quality because they contain mostly high weights.
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Figure 4.18: Dovetailing over Weights in WIDA* on the on the 16 Pancake Puzzle.
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Figure 4.19: The Performance of Parallel Dovetailing over Weights as a Function of Solution Quality
in WIDA* on the 16 Pancake Puzzle.

While Figure 4.19 indicates that parallel dovetailing is achieving super-linear speedups with the

11 configurations mentioned above, dovetailing was also simulated over all 15 integer weights from

2 to 16 on the 16 pancake puzzle as described in Section 4.1. Dovetailing in this way outperformed

the weight of 5 by a factor of 1.8 and had an average solution quality similar to that found by the

weight of 6. This performance indicates that parallel dovetailing will exhibit super-linear speedups
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and will therefore be a useful way of parallelizing WIDA* in this domain even when the candidate

set size is allowed to grow to 15. This is similarly true on the 14 pancake puzzle.

As the use of abstraction introduces the opportunity to test with many different heuristic func-

tions, an interesting question emerges: how is the effectiveness of dovetailing related to the ac-

curacy of the heuristic? To address this issue, we consider solving the 16 pancake puzzle with 3

different heuristics. The first function is given by the maximization over the < 0, 1, 2, 3, 4, 5 > and

< 6, 7, 8, 9, 10 > pattern databases. The second heuristic function considered is the maximization

over the < 0, 1, 2, 3, 4, 5 > and < 5, 6, 7, 8, 9, 10 > pattern databases. The final heuristic func-

tion considered will be the maximization over the < 0, 1, 2, 3, 4, 5 >, < 5, 6, 7, 8, 9, 10 >, and

< 10, 11, 12, 13, 14, 15 > pattern databases.

These heuristic functions have been ordered in ascending order of memory used and hence will

be referred to as the low memory, medium memory, and high memory heuristic functions, respec-

tively. Typically, an increase in memory used in a pattern database will increase the accuracy of the

corresponding heuristic function. This is certainly true in this case as the lower memory abstractions

are subsets of the higher quality ones. To demonstrate the difference in the accuracy of the functions,

consider Figure 4.20 which compares the performance of WIDA* when using these three different

heuristics with all of the integer weights from 2 to 16. In all but one case, higher memory heuristics

outperform the lower memory ones. Note that the y-axis in Figure 4.20(b) is in a logarithmic scale.

Also notice that in general, increasing the accuracy also increases the solution quality.

Now consider 3 different starting configuration sets, the high memory, medium memory, and

low memory sets, in which all configurations use the corresponding heuristic function. Each set will

consist of 15 configurations, each with a unique integer weight in the range from 2 to 16.

When comparing the performance of the different sets, the results are as expected: for any

candidate set size k, the average performance of the high memory set outperforms the average

performance of the medium memory set. Similarly, the average performance of the medium memory

set outperforms the average performance of the low memory set. However, if instead of comparing

the average performance, we consider how dovetailing over each configuration compares to the

configuration in that set that has the best performance alone, we see a different relationship. In Figure

4.21, for each candidate set we have plotted the ratio of the average number of nodes expanded

during the dovetailing simulations of all
(
15
k

)
candidate sets to the number of nodes expanded by the

single best configuration in each corresponding set. The configurations that had the fewest number

of total nodes expanded in the low memory, medium memory, and high memory sets correspond to

the weights 5, 5, and 4, respectively. Note, if a point is greater than 1 this means that dovetailing

required more nodes on average than did the single best weight.

While dovetailing over all 3 sets results in poor performance when compared with the single

best configuration in each set, it is the high memory set which exhibits the worst relative behaviour.

While the other two sets show very similar performance by this metric, for most of the candidate set
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Figure 4.20: WIDA* with 3 Different Heuristics on 1, 000 16 Pancake Puzzles.
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Figure 4.21: The Ratio of the Average Performance of Dovetailing over Weights in WIDA* to the
Single Best Weight with 3 Different Heuristics on the 16 Pancake Puzzle.

sizes the medium memory set exhibits slightly poorer performance than does the low memory set.

Recall that the performance of dovetailing with the heuristic given by the maximization over the

< 0, 1, 2, 3, 4, 5 > and < 6, 7, 8, 9 > pattern databases was examined earlier in Figure 4.18. This

heuristic requires even less memory and is less accurate than those in Figure 4.21. In the case of this

very poor heuristic case, the performance of dovetailing outperformed the single best configuration.

As such, the trend that emerges is that as the accuracy of the heuristic decreases, dovetailing becomes

a more effective procedure.

This relationship is caused by the fact that as the heuristic increases, fewer mistakes will be made

in the traversal of the search trees. The searches will therefore become less diverse, and there will

be more duplication of work between configurations. As one of the main impacts of dovetailing is

to minimize the effect of any single configuration being led astray, dovetailing will therefore offer

less and less as the heuristic function becomes more accurate.

4.4 Dovetailing and WRBFS

As WRBFS is also a linear-space algorithm like WIDA*, dovetailing can be performed with this al-

gorithm without any significant concerns regarding restrictions on available memory. In this section

we will show that while dovetailing over weights is not as effective as it is for WIDA*, it can still

enhance the performance of WRBFS on larger puzzles.

4.4.1 Dovetailing over Weights with WRBFS on the Sliding Tile Puzzle

The performance of WRBFS on the 4× 4 sliding tile puzzle was demonstated previously in Figure

2.14. For the dovetailing simulations, the starting configuration set was selected as the 15 configu-

rations that differ only in that each is assigned a different integer weight in the range from 2 to 16.
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The results of these simulations are shown in Figure 4.22.
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Figure 4.22: Dovetailing over Weights in RBFS on the 4× 4 Sliding Tile Puzzle.

While the performance of the worst candidate set is quite poor, the average performance is

similar to that of the best weight of 3. Dovetailing over all 15 configurations requires 1.7 times as

many node expansions as does the weight of 3 alone. The solution quality found by this candidate

set is similar to that found by the weight of 4.5.

While the performance of dovetailing over all 15 configurations does not match that of the single

best weight, it is less than 2 times worse. However, recall that no tuning was performed in the

construction of this candidate set. As tuning would be needed to determine that the weight of 3 is

indeed the best weight, this additional cost could be considered as an acceptable overhead.

The performance of dovetailing over WRBFS configurations appears even more promising when

it is applied to the larger 4 × 5 puzzle. Figure 4.23 shows the performance of WRBFS with 15

different configurations, each with a different integer weights in the ranfe of 2 to 16. The best

weight is again the weight of 3.
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Figure 4.23: WRBFS on 1, 000 4× 5 Sliding Tile Puzzles.
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The dovetailing simulations were performed with the starting configuration set consisting of

those 15 tested configurations. The simulation results are shown in Figure 4.24. While the worst

candidate set still shows poor performance when compared to the single best weight of 3, the average

performance is better than this single weight once the candidate set size is at least 6. When the

candidate set is of size 15, dovetailing requires 2.5 times fewer node expansions than the weight of

3.
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Figure 4.24: Dovetailing over Weights in RBFS on the 4× 5 Sliding Tile Puzzle.

Figure 4.25 shows the performance of parallel dovetailing as a function of solution quality. The

figure indicates that the average solution quality found by dovetailing, particularly for the larger can-

didate set sizes, is better than that found by most of the individual weights alone. For example, the

solution quality found by the candidate set containing all configurations in the starting configuration

set is between that found by the weights of 5 and 6 alone. Similar to the behaviour of dovetailing

with WIDA*, the worst candidate sets are those containing mostly high weights — hence the poor

solution quality. Again, these weights have generally poor behaviour alone, and are often unable to

overcome the deficiencies of one another as well as other candidate sets.

These results indicate that parallel dovetailing offers a simple, yet effective way to trivially

parallelize WRBFS. In the case of the 4 × 4 puzzle, the speedup from using 15 processors is by

a factor of 9.0. For the larger puzzle, we see a super-linear speedup of 37 when using only 15

processors. Overall, parallel dovetailing appears to be an effective form of parallelization of the

algorithm. Note, to the best of our knowledge, there have been no other attempts to parallelize either

the RBFS or WRBFS algorithm.

While we have not tested WRBFS on the larger puzzles, the above results do suggest that the

effectiveness of dovetailing scales with the size of the puzzle. This behaviour is again related to

the fact that dovetailing helps to avoid mistakes made early in the search due to inaccurate heuristic

values. The cost of making such mistakes increases with the domain size. As it was in WIDA*,
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Figure 4.25: The Performance of Parallel Dovetailing over Weights as a Function of Solution Quality
in WRBFS on the 4× 5 Sliding Tile Puzzle.

dovetailing offers a simple way of minimizing this effect.

4.4.2 Dovetailing over Weights with WRBFS on the Pancake Puzzle

In this section, we perform the same experiments on the 14 and 16 pancake puzzles as were per-

formed with the WA* and WIDA* algorithms. Recall that the heuristic functions used are given

by the < 0, 1, 2, 3, 4, 5, 6 >, and the maximization over the < 0, 1, 2, 3, 4, 5 > and < 6, 7, 8, 9 >

pattern databases, respectively.

The behaviour of WRBFS on the 14 pancake puzzle with the aforementioned heuristic was

shown previously in Figure 2.15. Recall that for any weights of size at least 10, all searches were

identical. This again highlights the issue of candidate set selection, which will be considered later.

For the dovetailing experiments, the starting configuration set chosen consists of the 9 config-

urations each with a different integer weight in the range of 2 and 10 inclusive. The results of the

simulations are shown in Figure 4.26. As with WA* on this puzzle, dovetailing actually degrades

the performance when compared to the single best weight of 10. For example, when dovetailing

over all 9 configurations, 5.5 times more nodes need to be expanded during problem-solving. While

the average solution quality is closer to that found by the weight of 3, dovetailing still requires 2.5

times more node expansions than this weight alone.

In the case of the 16 pancake puzzle, the behaviour of WRBFS is shown in Figure 4.27(a). Due

to the length of time for problem-solving, we only present the statistics for the integer weights from

2 to 12. Notice that like WA*, RBFS does not improve its performance as the weight increases, as

both algorithms did in the 14 pancake puzzle. Instead, the performance hits its peak performance at

the weight of 5.

Doevtailing also offers more benefits to WRBFS on the 16 pancake puzzle than it does on the 14
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Figure 4.26: Dovetailing over Weights in RBFS on the 14 Pancake Puzzle.
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Figure 4.27: WRBFS on 1000 16 Pancake Tile Puzzles.
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pancake puzzle. The starting configuration set consists of the 11 configurations shown individually

in Figure 4.27. The results of these experiments are shown in Figure 4.28. Figure 4.29 also shows

the performance of parallel dovetailing in this domain as a function of the solution quality.
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Figure 4.28: Dovetailing over Weights in RBFS on the 16 Pancake Puzzle.
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Figure 4.29: The Performance of Parallel Dovetailing over Weights as a Function of Solution Quality
in WRBFS on the 16 Pancake Puzzle.

In this puzzle, the results of dovetailing are much closer to the single best weight of 5. When

using all 11 configurations, dovetailing expands 3.3 times as many nodes as does the weight of 5.

The solution quality found by this candidate set is similar to that found by the weight of 4, which

expands 2.8 times fewer nodes than does dovetailing. Figure 4.29 also demonstrates that even the

solution quality found by the weakest candidate sets generally outperform the solution quality found

by the weights of 5 and higher alone.

However, if dovetailing is performed over all 15 integer weights in the range of 2 to 16 inclusive,
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dovetailing appears as a much more attractive enhancement. In this case, dovetailing only requires

1.7 times as many node expansions as the weight of 5. Again, this cost can be considered an

acceptable overhead since no pre-computation was required. These results also indicate that parallel

dovetailing becomes an effective method for parallelizing WRBFS on larger puzzles as the procedure

yields a speedup of 8.8 when using 15 processors in the 16 pancake puzzle. In the 14 pancake puzzle,

the speedup is only by a factor of 1.6 times when using 9 processors.

It should also be noted that the effectiveness of dovetailing also degrades as the heuristic func-

tion increases in accuracy. For example, when using 15 configurations on the 16 pancake puz-

zle, each with an integer weight in the range from 2 to 16 and the heuristic function given by the

< 0, 1, 2, 3, 4, 5 > and < 6, 7, 8, 9, 10 > pattern databases, dovetailing expands 9.3 times as many

nodes as does the single best weight alone.

4.5 Dovetailing over Beam Widths in BULB

Recall that one of the parameters to the BULB algorithm is the memory limit L, which is the max-

imum number of states in memory at any time. In the case of dovetailing, this limit can be used to

control how much memory is allocated to each configuration.

In all the following experiments, we will take a similar approach as is taken in Section 4.2. All

configurations will be assigned the same limit L and dovetailing over k such configurations will be

compared to the single best configuration in the set (which also has the limit L). While the memory

requirements of dovetailing will actually be kL, we are considering experiments in this way with

an eye toward parallel machines with distributed memory. Like WA*, even under these favourable

conditions, dovetailing over BULB configurations will still yield poor performance.

In all dovetailing simulations in this section, the starting configuration set will consist of 15

identical configurations that only differ in the beam width. The beam widths used will be those in

the set BW = {3, 5, 7, 10, 15, 25, 30, 40, 50, 60, 75, 100, 150, 200, 300}. These widths have been

chosen so as to offer a diversity in the solution quality and search efficiency.

4.5.1 Dovetailing over Weights with BULB on the Sliding Tile Puzzle

In this section, we will consider the performance of dovetailing over BULB configurations on the

5 × 5 and the 6 × 6 sliding tile puzzles. Figure 4.30 shows the performance of the algorithm when

using BULB with different beam widths on 1, 000 5 × 5 sliding tile problems. The memory limit

used in these experiments is 100, 000 states. Note, for all beam widths from 6 to 175, all 1, 000

problems could be solved without any backtracking, and both axes in the figure are in a logarithmic

scale.

The results of the dovetailing simulations are shown in Figure 4.31. The starting configuration

set used is given by the beam width set BW mentioned above. The figure demonstrates that dove-

tailing over beam widths is ineffective in the 5× 5 domain. For all candidate set sizes, even the best
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Figure 4.30: BULB on 1, 000 5× 5 Sliding Tile Puzzles.

set expanded more nodes than did the beam width of 10 alone. Dovetailing over all 15 configurations

requires 9.4 times as many node expansions as the beam width of 10 alone. Even when compared to

the beam width of 25, with which dovetailing has the most similar solution quality, dovetailing still

expands 5.8 times as many nodes.
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Figure 4.31: Dovetailing over Weights in BULB on the 5× 5 Sliding Tile Puzzle.

The performance of dovetailing on the 6 × 6 puzzle is not much better. First, consider the

performance of the individual configurations, each with a unique beam width and the memory limit

of 200, 000. Figure 4.32 shows the performance of such configurations on 100 6 × 6 sliding tile

puzzles. Note, only the beam widths of 7, 8, 9, and 10 were able to solve all problems without any

backtracking and both axes have a logarithmic scale. The beam width in the set BW with the best

performance is that of the weight 10.

The results of the dovetailing simulations over the configuration set given by widths in BW

are shown in Figures 4.33, which demonstrates that dovetailing is ineffective even in this larger

domain when compared to the single best configuration of beam width 10 alone. For all candidate
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Figure 4.32: BULB on 1, 000 6× 6 Sliding Tile Puzzles.

set sizes, even the best set again performs worse than the beam width of 10. Dovetailing over all

15 configurations also takes 8.4 times more node expansions than the beam width of 10 alone, and

2.0 times more node expansions than the beam width of 60 alone, with which the set has the most

similar average solution quality.
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Figure 4.33: Dovetailing over Weights in BULB on the 6× 6 Sliding Tile Puzzle.

The above results demonstrate that dovetailing over beam widths is not suitable for use with the

BULB algorithm in this domain. Figure 4.34 (which has a logarithmic scale for both axes) shows the

performance of parallel dovetailing as a function of solution quality. This figure shows that parallel

dovetailing is a poor form of parallelization of the BULB algorithm, as the speedup gained from the

use of 15 processors are only 1.6 and 1.8 on the 5× 5 and 6× 6 puzzles, respectively. While we are

unaware of any other attempts to parallelize BULB, parallel dovetailing appears to be a poor use of

resources in this domain. We will consider why dovetailing is ineffective when used with BULB at

the end of the next section.
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Figure 4.34: The Performance of Parallel Dovetailing over Weights as a Function of Solution Quality
in BULB on the 6× 6 Sliding Tile Puzzle.

4.5.2 Dovetailing over Weights with BULB on the Pancake Puzzle

Dovetailing over BULB configurations that differ only by beam width is similarly ineffective in

the pancake puzzle. The results of the dovetailing simulations for the 14 pancake puzzle domain

when using the < 0, 1, 2, 3, 4, 5, 6 > pattern database heuristic are shown in Figure 4.35. These

results are for the problem set of size 1, 000. The memory limit used in these experiments was set at

50, 000 states. Recall that Figure 2.18 depicted the performance of many BULB configurations on

this problem set.
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Figure 4.35: Dovetailing over Weights in BULB on the 14 Pancake Puzzle.

While dovetailing is somewhat more useful in this domain than on either of the sliding tile puz-

zles, the procedure still remainds mostly ineffective. When dovetailing over all 15 configurations,

there are 2.5 times more nodes expanded than are expanded by the beam width of 50 which has
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the best performance of all configurations. Dovetailing also expands 2.1 times more nodes than the

beam width of 100 with which it has the most similar average solution length.

The performance of dovetailing on the 16 pancake puzzle with the heuristic function given by

the maximization over the < 0, 1, 2, 3, 4, 5 > and < 6, 7, 8, 9 > pattern database heuristics is even

worse. Figure 4.36 shows the performance of a number of configurations with the memor limit of

50, 000 states, on a problem set of size 1, 000. Note that only beam widths of 2, 3, and 4 required

any backtracking.
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Figure 4.36: BULB on 1, 000 16 Pancake Puzzles.

Figure 4.37 shows the results of the dovetailing simulations using the configuration set given by

BW . In this case, dovetailing results in much poorer performance than the best width of 15 alone.

When dovetailing over all 15 configurations, 5.3 more node expansions are needed to solve all

problems than are required by the beam width of 15 alone. The solution quality of such dovetailing

is similar to that found by the beam width of 60 which expands 4.1 times fewer nodes than the

dovetailing procedure.

As was the case in the sliding tile puzzle, parallel dovetailing exhibits poor performance in this

domain. To see this, consider Figure 4.38 which shows the performance of parallel dovetailing as

a function of solution quality on the 16 pancake puzzle. While parallel dovetailing is somewhat

effective in the 14 pancake puzzle, for which it results in a speedup of 6 when using 15 processors,

the performance is quite poor on the 16 pancake puzzle for which the speedup is only by a factor of

2.8 when using the same number of processors.

These results suggest that dovetailing is poorly suited for BULB configurations in both the pan-

cake puzzle and the sliding tile puzzle, largely because the beam search algorithm already addresses

some of the issues that dovetailing tackles. Beam search naturally considers multiple alternative

paths at the same time through the parallel expansion of all nodes on the beam. As for dovetailing,

the consideration of multiple paths means that if any single path is led astray, there are others that

will hopefully compensate. Since beam search inherently has this property, dovetailing can offer

little to the algorithm. As a result, the overhead of running multiple instances of the same algorithm

in parallel dominates the search time and causes the poor performance seen above.
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Figure 4.37: Dovetailing over Weights in BULB on the 16 Pancake Puzzle.
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4.6 Chapter Summary

In this chapter, we considered the performance of dovetailing and parallel dovetailing over the main

parameter spaces of WA*, WIDA*, WRBFS, and BULB. In the case of WA* and BULB, dovetailing

caused a degradation in the search speed for all domains tested. In WA*, this behaviour is related to

the fact that aggressively proceeding down any branch of the search tree is a strong policy in these

domains. As the heuristic functions will cause the algorithm to make mistakes during expansion,

the fact that the algorithm holds all generated states in memory means that it is capable of quickly

changing to an alternate candidate path if the current line of play is lead astray. The ineffectiveness

of dovetailing with the BULB algorithm is caused for similar reasons. BULB already simultaneously

considers alternate paths through the state space thereby minimizing the impact if any single path is

guided poorly. As dovetailing solves a similar problem, it adds little to BULB at the cost of running

many instances in parallel.

On the other hand, dovetailing was generally successful when applied to WRBFS as it was

usually solved all problems nearly as quickly as the single best configuration alone if not better,

and it did so without any offline tuning. Dovetailing was also shown to significantly improve the

performance of WIDA*. As these algorithms only consider a single line of play at any time, the

cost of making a mistake due to poor heuristic guidance is magnified. In the case of WIDA*, this

effect may lead the algorithm to blindly search large areas of the state space as discussed in Section

2.9.3. On the other hand, poor heuristic guidance causes WRBFS to perform a lot of backtracking.

Dovetailing helps to mitigate these effects by simultaneously considering multiple paths and thereby

decreasing the chance that all paths have been lead in a bad direction.

Parallel dovetailing over the main parameter spaces al all algorithms considered has also been

shown to offer at least some speedup in all domains tested. In particular, this procedure offers super-

linear speedups in all WIDA* experiments and in the WRBFS sliding tile experiments. Parallel

dovetailing also offers near-linear speedups when applied with WRBFS in the pancake puzzle do-

main. While the results are less impressive when dovetailing is applied with WA* and BULB, we

have shown that parallel dovetailing over WA* configurations does compare favourably with state-

of-the-art systems in the sliding tile puzzle domain. As such, parallel dovetailing represents a simple

yet effective algorithm for multicore machines.
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Chapter 5

Dovetailing Over Operator
Orderings

Another design choice that can have a large impact on search speed is the operator order. In this

chapter, we will consider dovetailing over candidate sets in which the configurations differ in the

static operator ordering used during the search. All experiments in this chapter will be performed

through the use of dovetailing simulations as outlined in Section 4.1.

To test the effectiveness of dovetailing over operator orderings, we will consider one puzzle

size from each of the sliding tile and pancake domains. Each of WA*, WIDA*, and WRBFS will

be tested with a number of different starting configuration sets denoted Sw. In any such Sw, all

configurations will have the same weight value ofw but differ in operator ordering. In the figures, the

starting configuration sets will be denoted by the corresponding weight value. The BULB algorithm

will be tested similarly, except each starting configuration will contain configurations that all have

the same beam width. Also note that due to the large number of parameters being tested, we will

only consider problem sets of size 100 in this chapter.

In the case of the sliding tile puzzle, recall that regardless of the puzzle size, there are exactly 4

operators. As such, there are 4! = 24 operator orderings. The starting configuration sets used for all

dovetailing experiments will therefore consist of 24 configurations, each with a constant weight or

beam width, but a different operator ordering.

In the case of the pancake puzzle, the number of operators will depend on the number of pan-

cakes. Specifically, for the N pancake puzzle, there are N ! operators. As it is infeasible to consider

all possible operator orderings, we will only consider N − 1. The first two operator orderings are

{2, 3, 4, ..., N − 1, N} and {N,N − 1, ..., 4, 3, 2}. The N − 3 remaining operator orderings where

constructed as follows: each ordering had its first element assigned as a unique member of the set

{3, 4, 5, ..., N − 2, N − 1}, and the remaining operators were ordered randomly. This construc-

tion ensures that all N − 1 operator orderings in the starting configuration set have a different first

operator.

Recall that when performing the dovetailing simulations, the ordering of configurations in a
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candidate set will have a small impact on the search quality. We will again ignore this factor and

instead use a single strategy for ordering all sets. For the ordering of configurations in the sliding

tile puzzle candidate sets, each operator order was assigned a unique positive integer. The configu-

rations are then ordered in ascending value of this integer. In the pancake puzzle candidate sets, the

configurations are ordered in ascending value of the first operator.

Note that in several of the figures in this chapter, we will compare the average performance

of dovetailing against the average performance of all configurations in the starting configuration.

This is unlike the figures in Chapter 4 in which the performance of dovetailing is compared against

the configuration in the starting configuration set with the best performance. The evaluation of

dovetailing over operator orderings is done in this way because it is common for researchers to

select an arbitrary operator ordering with little or no experimentation. The reasoning behind this

decision is given below.

Recall that the figures in Chapter 2 showing performance of WA*, WIDA*, WRBFS, and BULB

on the 4 × 4 sliding tile puzzle and 14 pancake puzzles suggest that the average performance over

a number of problems will change relatively smoothly with the value of parameters. As such, when

looking for strong average performance it is usually possible to quickly find a configuration with

high average performance by performing a binary search in the parameter space. Such a binary

search can only be performed in parameter spaces that are either real or integer valued. In the

case of operator order, we usually do not have a natural ordering of configurations over which

performance is expected to be relatively smooth. Combined with the fact that there is usually little

a priori information to guide in the selection of an operator ordering, it is common to simply select

any ordering and stick to it. Due to such random selection, it is therefore more accurate to consider

the average performance over all configurations than just the single best configuration.

Also note that the figures will show one of two ratios. The first is the ratio of the average number

of nodes expanded by all min(
(
n
k

)
, 10, 000) candidate sets of size k (where the starting configuration

set is of size n) divided by the average number of nodes expanded by the n configurations in the

starting configuration set. This ratio will be used in cases where dovetailing performs worse than

selecting a configuration at random. All data points greater than 1 will indicate that dovetailing is

performing worse than the average configuration.

One such figure is 5.1 which summarizes the results of the WA* dovetailing simulations in the

4 × 5 sliding tile puzzle. Each line corresponds to a different starting configuration set. In this

case, dovetailing does not work well for most of the candidate set sizes, so the value shown for any

size k is the ratio of the the average performance of dovetailing over candidate sets of size k to the

average of the batch results for each of the 24 operator orderings. For example, consider the line

for the weight 6 starting configuration set. The average number of nodes expanded over 10, 000

candidate sets of size 11 is 3, 273, 214. The average number of nodes expanded by the 24 weight 6

configurations alone is 2, 221, 011. Therefore, the value shown for the candidate set size of 11 on
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the weight 6 line is 3, 273, 214/2, 221, 011 = 1.47. This means that dovetailing over candidate sets

of size 11 is on average expanding 1.47 times more nodes than the average configuration.

In cases where dovetailing outperforms the average configuration, the inverse relation will be

depicted. Specifically, this relation is the number of nodes expanded by the average configuration

to the average expanded by dovetailing. In these figures, all data points greater than 1 correspond

to instances in which dovetailing is outperforming the average configuration. One such figure is 5.3

which shows how many times fewer nodes dovetailing is expanding when compared to the average

WIDA* configuration.

We use these two different ratios to make it clear how many times worse or better dovetailing is

doing in comparison to the average configuration. The ratio shown will be indicated in the figure.

5.1 Dovetailing over Operator Orderings in WA*

In the case of WA*, operator ordering will affect in which order elements are added to the OPEN

list. Since the nodes in the OPEN list are sorted, the ties between nodes that are generated by the

same parent and have an equal f -cost and g-cost will be broken differently based on the order in

which these elements are added to the list. This will cause the order in which nodes are selected for

expansion to change.

This difference can cause a significant change in the number of nodes expanded. For example,

we tried using the 24 different WA* configurations to solve 100 4 × 5 problem instances. All 24

configurations had the weight of 3 and a memory limit of 1, 000, 000 states, but each has a different

operator ordering. When performing such experiments, all configurations solved between 97 and

100 problems with only 7 of the 24 configurations solving all problems. Of those that solved all

of the problem instances, the ordering that required the least amount of work expanded 6, 657, 411

nodes while the ordering that required the most amount of work expanded 8, 766, 492 nodes. Note,

unless otherwise mentioned, we will only consider dovetailing with starting configuration sets in

which all configurations successfully solved all problems in the test set.

Figure 5.1 summarizes the set of experiments regarding WA* dovetailing simulations on the 4×5

sliding tile puzzle. The figure shows that on some small candidate set sizes and larger weights, the

average performance of dovetailing actually outperforms the average performance of the individual

configurations. However, as the candidate set size increases, the overhead of running multiple in-

stances of WA* simultaneously dominates the run time. Regarding parallel dovetailing, when using

24 processors where each is assigned a different configuration in the starting configuration set with

a weight of 10, the improvements in search time are by factors of 8.8 and 6.6 over the average time

needed by a single-processor with any of the 24 operator orderings and the most efficient ordering,

respectively. The performance of parallel dovetailing over operator orderings will be compared to

wPBNF in Section 5.1.1.

Figure 5.2 shows the results of the equivalent set of 16 pancake puzzle experiments. The heuristic
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Figure 5.1: Dovetailing over Operator Ordering in WA* on the 4× 5 Sliding Tile Puzzle.

function used for these experiments is given by the maximization over the < 0, 1, 2, 3, 4, 5 > and

< 6, 7, 8, 9 > pattern databases. As in Figure 5.1, only values less than 1 indicate that the average

performance of dovetailing is better than the average performance of individual configurations.
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Figure 5.2: Dovetailing over Operator Ordering in WA* on the 16 Pancake Puzzle.

Dovetailing over operator ordering with WA* again appears ineffective. Similarly, parallel dove-

tailing only offers modest speedups. For example, when using 15 processors where each is assigned

a different configuration in the weight 10 starting configuration set, the improvement in search time

is by a factor of 4.1 over the average time needed by individual configurations. When parallel dove-

tailing over all configurations with the weight of 10 is compared against the single best configuration

with the weight of 9, the speedup is by a factor of 3.6.

One of the trends evident in both Figures 5.1 and 5.2 is that dovetailing is usually more effective

on the starting configuration sets with larger weights than on those with smaller weights. This effect
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occurs because while there is a solution below every branch in the search tree in these domains, the

amount of work needed to find that solution will differ between branches. In WA*, larger weights

cause the algorithm to increasingly commit to a single line of play. The difference in tie-breaking

caused by different operator orderings can change which line of play is being committed to. Dove-

tailing over operator orderings helps overcome issues that arise when WA* commits to lines of play

that require a lot of work in order to find a solution.

Also of note, increasing the candidate set size has shown to improve the average solution quality

of the solutions found. For example, consider the weight 3 starting configuration used in the 4 × 5

sliding tile puzzle. The average total cost of all solutions found with each of the 24 configurations

in this set when run individually is 11, 843. The average total solution cost found when dovetailing

over candidate sets of size 2 is 11, 869. However, the solution quality found when dovetailing over

all 24 configurations is 11, 765. This behaviour is even more pronounced for larger weights. For

the weight 10, the average total solution cost found when dovetailing over candidate sets of size 2

with the weight of 10 is 17, 755, which is actually better than any individual configuration in this

set. When dovetailing over all 24 configurations, the total solution cost is 16, 219 which represents a

12% improvement over the average total solution cost of the configurations alone. Similar behaviour

is also seen in the pancake puzzle domain.

Unfortunately, the amount of diversity introduced through the use of different operator orderings

is still not enough to make dovetailing a useful enhancement to WA*. As changing operator order-

ings will only change the order in which nodes with the same parent are added to the OPEN list,

most of decisions made by different configurations will be very similar. As such, before dovetailing

will successfully enhance WA*, it will be necessary to find another aspect of WA* algorithm design

that introduces much more diversity.

5.1.1 Comparing Parallel Dovetailing over Operator Orderings with WA* to
wPBNF

In this section, the dovetailing experiments will be performed in the same manner as was described

in Section 4.2.2. As was done above, several different starting configuration sets will be considered,

each of which will contain configurations with a different associated weight. The configurations

within the same starting configuration set will again differ only in the operator ordering used.

For the smaller weights in the shared memory case, there were several occurrences of multiple

configurations in the same candidate set being unable to solve the same problem. This only occurred

when using higher numbers of processors since each thread is assigned a smaller fraction of the total

memory. To handle this problem, the following strategy was taken: if none of the configurations

in a candidate set can solve a problem p, all but one of the processors are stopped. The remaining

processor is then allowed to use all the memory available while the other processors remain idle.

Further, we assume the worst case possible: the configuration that continues searching is the config-
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Speedup With Different Numbers of Processors
Parallel Dovetailing

wPBNF Shared Memory Distributed Memory
Weight 2 4 5 8 2 4 5 8 2 4 5 8

1.4 1.12 1.65 1.92 2.62 1.00 0.99 0.98 0.98 1.00 1.01 1.02 1.02
1.7 0.76 1.37 1.50 1.49 0.95 1.04 1.06 1.07 0.95 1.04 1.06 1.08
2.0 0.62 1.10 1.34 1.46 1.00 1.15 1.19 1.23 1.00 1.15 1.19 1.24
3.0 0.62 0.90 0.84 0.78 1.06 1.65 1.83 2.11 1.06 1.65 1.83 2.11
5.0 0.60 0.76 0.72 0.64 1.25 1.75 1.9 2.18 1.25 1.75 1.9 2.18

Table 5.1: The Speedup of wPBNF and the Average Speedup of Parallel Dovetailing over Operator
Orderings on 43 4× 4 Sliding Tile Puzzle Problems.

uration in the candidate set that requires the highest number of node expansions in order to solve the

problem. While this approach gives a pessimistic evaluation of shared memory parallel dovetailing,

we will show it will have minimal impact on the results.

Table 5.1 shows the speedup of both wPBNF and parallel dovetailing on the 43 easiest 4 × 4

sliding tile puzzle problems. For wPBNF, the table shows the speedup achieved from the weight w

wPBNF search when compared to a serial WA* search with weight w.

In the case of parallel dovetailing, the weight w row indicates that the starting configuration

used contains only configurations with a weight of w. The value shown in the weight w row and

k processors column is the average speedup seen by parallel dovetailing over k processors with the

weight w starting configuration set, when compared with the single configuration in that starting

configuration set with the best performance alone. Note, we compare with the best configuration in

this case since the wPBNF papers may have done the same.

For each weight and each number of processors in the table, we also show the highest speedup in

bold. Also note that the algorithms only require less time than the serial version of WA* for entries

larger than 1.

First, let us compare the shared and distributed memory versions of parallel dovetailing. The

performance of the two memory architectures are only different for low weighted starting configu-

ration sets and high numbers of processors. This is because these are the only situations in which all

the configurations in a candidate set run out of memory before any single configuration has found

a solution. In these cases, a distributed memory architecture will outperform the shared memory

which has to default to the worst case procedure outlined above. However, the table shows that the

effect of this worst case procedure is minimal, and only occurs where the speedup gained through

parallel dovetailing is small.

The table shows that for low weights, wPBNF outperforms parallel dovetailing over operator

orderings. For these weights, there is little diversity in the performance of the operator orderings.

On the other hand, wPBNF handles these cases well as the processors are working on mutually

exclusive sets of the state space during expansion.
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As mentioned in Section 4.2.2, wPBNF shows poor performance in this domain for larger

weights. In contrast to this result, the best speedup achieved with parallel dovetailing is with the

largest weight considered. Recall that due to the behaviour of WA*, this is also the weight that

requires the least amount of search effort in the serial case. Therefore, parallel dovetailing is able to

enhance even the best performance of WA* while wPBNF cannot.

5.2 Dovetailing over Operator Orderings in WIDA*

As described in Section 2.9.3, WIDA* is often forced to examine large portions of a search tree

without any heuristic guidance or pruning. In these areas of the search space, the order in which

nodes at any branch of the search tree are considered is completely determined by the operator

ordering. If the the portion of the search tree contains a goal, some operator orderings may find

it quickly while others will require a large number of node expansions before doing so. As such,

proper operator ordering selection for WIDA* on a problem-by-problem basis will potentially yield

large gains in the search efficiency.

In Figure 5.3, experiments are shown regarding dovetailing over operator orderings with WIDA*.

The figure is similar to Figure 5.1, except the inverse relation is depicted. Here, values greater than 1

imply that dovetailing required fewer nodes expanded on average when compared to using a single

ordering.
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Figure 5.3: Dovetailing over Operator Ordering in WIDA* on the 5× 5 Sliding Tile Puzzle.

The figure indicates that dovetailing over configurations that differ only in operator orderings

offers large speed increases when compared with the average WIDA* instance. In Table 5.2, it is

shown that the improvement over even the operator ordering with the best performance for each

particular weight is also large. Notice that the minimum in terms of nodes expanded by dovetailing

over all 24 operator orderings occurs at the weight of 8. This is in contrast to the fact that when
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Nodes Expanded By Nodes Expanded By Factor of
Weight the Best Order Dovetailing over 24 Orders Improvement

3 273,782,770 49,318,913 5.6
4 246,230,595 16,968,531 14.5
5 411,505,075 11,092,577 37.1
6 441,818,307 10,280,071 43.0
7 487,919,186 10,216,976 47.8
8 325,019,519 9,646,247 33.7
9 541,136,094 11,210,600 48.3

10 1,866,590,738 13,096,426 142.5

Table 5.2: Dovetailing over Operator Ordering in WIDA* Compared to the Best Single Order on the
5× 5 Sliding Tile Puzzle.

using a single configuration, the minimum number of nodes expanded occurs with the weight of 4.

Dovetailing over operator orderings also extends the range of weight values over which WIDA*

is an efficient search algorithm. For example, Table 5.2 shows that the number of nodes expanded

by even the best configuration in the starting configuration sets with weights of 9 and 10 is quite

high in comparison to the performance of the weight of 4. However, the performance of dovetailing

over all 24 orders is actually similar (and quite low) on all three of these starting configuration sets.

Both Figure 5.3 and Table 5.2 also indicate that the improvement gained through the use of

dovetailing over operator ordering increases with the value of the weight. This is because of the

behaviour described in Section 2.9.3 in which increasing the weight causes WIDA* to search a larger

subtree without heuristic guidance. Running multiple operator orderings simultaneously through

dovetailing decreases the chance of this happening.

In Figure 5.4, we show the performance of dovetailing over operator orderings on the 16 pan-

cake puzzle. The figure shows that dovetailing is outperforming the average configuration on all

candidate set sizes, for all weights starting configuration sets considered. Note, the y-axis is shown

in logarithmic scale.

In this puzzle, dovetailing does not improve WIDA* on the low weights as much as it does on the

5×5 sliding tile puzzle. However, the improvements seen with high configuration sets and the larger

weights is more dramatic. This is again due to the fact that larger weights are more susceptible to

making poor decisions while traversing the search tree. The improvement is similarly large when we

compare the performance of dovetailing over all 15 orders to the best configuration in each starting

configuration set. This trend can be seen in Table 5.3.

The above results indicate that parallel dovetailing over operator orderings is a very effective

parallelization of WIDA*. The speedups gained through such parallel dovetailing can be calculated

for each of the starting configuration sets considered above by simply multiplying the factor of

improvement in Tables 5.2 and 5.3 by the number of processors used: 24 in the case of the sliding

tile puzzle, and 15 in the case of the pancake puzzle. The speedup is super-linear for all starting

configurations considered.
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Figure 5.4: Dovetailing over Operator Ordering in WIDA* on the 16 Pancake Puzzle.

Nodes Expanded By Nodes Expanded By Factor of
Weight the Best Order Dovetailing over 24 Orders Improvement

3 4,234,363 3,835,205 1.1
4 1,671,646 1,187,152 1.4
5 1,733,165 668,793 2.6
6 2,120,445 911,044 2.3
7 2,505,688 1,003,828 2.5
8 5,881,005 1,323,972 4.4
9 19,229,160 1,249,807 15.4

10 80,527,176 1,033,192 77.9

Table 5.3: Dovetailing over Operator Ordering in WIDA* Compared to the Best Single Order on the
16 Pancake Puzzle.
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In many cases, the speedup from parallel dovetailing is very large. For example, consider the

weight 8 starting configuration used in the 5 × 5 sliding tile puzzle. As sequential dovetailing over

24 operator orderings involves the expansion of 9, 646, 247 nodes, the time required by parallel

dovetailing will be approximately that needed for 9, 646, 247/24 = 401, 927 node expansions. This

means that parallel dovetailing with 24 processors will actually take 612 times less search time

than the single best configuration in any starting configuration set considered — namely, the best

configuration in the weight 4 set.

While dovetailing over operator orderings significantly improves the search time of WIDA*,

the effect on solution quality is mostly negligible. This is also true when considering individual

configurations. For example, in the weight 10 starting configuraton set used in the sliding tile puzzle

experiments, the difference between the fastest and slowest configurations is by a factor of 5.1.

However, the difference in the average solution quality found by these configurations is 0.2%. The

difference between the average total solution quality found by dovetailing over candidate set sizes

of 2 when compared to the candidate set sizes of 24 is only 0.03%. Both of these candidate set sizes

also find solutions that are almost identical to the average over the configuration sets. The results

are similar in the pancake puzzle domain.

5.3 Dovetailing over Operator Orderings in WRBFS

Recall that when a node n is expanded for the first time by WRBFS, the children of n are sorted by

their f -cost. The initial order of the children (before sorting) will effect how the sorting algorithm

breaks ties between nodes with an equal f -cost. This initial order is given by the operator ordering.

Therefore, different operator orderings can change the order in which nodes are expanded for the

first time.

When a node is re-expanded, the value assigned to any child c is the maximum of f(c) and

the minimum threshold of all f -costs seen thus far. Often, this results in several children being

assigned the same f -cost. As described above, the operator ordering will affect the order in which

nodes are expanded in the presence of ties. This increase in ties will thereby increase the impact

of the operator ordering. As such, operator ordering will also affect the order in which nodes are

re-expanded. In this section, we will show that dovetailing will often effectively enhance WRBFS

due to the diversity introduced to the search tree traversal in these two ways.

In Figure 5.5, the results of the simulations regarding dovetailing over operator orderings in

WRBFS are shown. Note that like the figures in Section 5.2, a value greater than 1 for any candidate

set size k indicates that dovetailing over k configurations on average requires fewer node expansions

than the average configuration.

Several interesting trends emerge from Figure 5.5. First, notice that much like the performance

of WIDA* on the 5 × 5 puzzle, the relative improvement is greater for the larger weights than it

is for the smaller weights. The reasoning behind such behaviour is similar to that given for WA*
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Figure 5.5: Dovetailing over Operator Ordering in WRBFS on the 4× 5 Sliding Tile Puzzle.

Nodes Expanded By Nodes Expanded By Factor of
Weight the Best Order Dovetailing over 24 Orders Improvement

3 82,013,967 94,798,145 0.9
4 110,396,467 87,437,546 1.3
5 73,823,540 22,595,097 3.3
6 114,610,812 49,159,763 2.33
7 89,791,503 19,555,388 4.6
8 183,524,940 37,268,972 4.9
9 165,478,833 22,314,006 7.4

10 373,128,797 64,443,033 5.8

Table 5.4: Dovetailing over Operator Ordering in WRBFS Compared to the Best Single Order on
the 4× 5 Sliding Tile Puzzle.

which exhibited similar trends. Also note that while using all 24 operator orderings does work well

on all weights, the best average performance is found with smaller numbers of configurations. The

candidate set size with the best average performance for a weight w starting configuration set, also

increases with the weight.

When the comparisons are made between dovetailing and the single best configuration, the be-

haviour is slightly different. This relationship is shown in Table 5.4. Here we see similar behaviour

to that observed in Figure 4.23, in that when comparing consecutive integer weights, the odd weights

always outperform the even weights. The performance of dovetailing over the different starting con-

figuration sets shows a similar trend. Currently, we do not have a reason for why odd weights

outperform even weights in this domain and leave such an investigation for future work.

While the results shown above suggest that dovetailing over configurations that only differ in

operator ordering is an effective enhancement to WRBFS, the results on the 14 pancake puzzle are

mixed. Figure 5.6 shows these results. The y-axis in this figure shows the same relation that it does

in Figure 5.5.

89



 0

 1

 2

 3

 4

 5

 6

 7

 8

 2  4  6  8  10  12  14  16

R
at

io
 o

f 
A

ve
ra

ge
 C

on
fi

gu
ra

tio
n

 to
 A

ve
ra

ge
 o

f 
D

ov
et

ai
lin

g

Candidate Set Size

Weight 3
Weight 4
Weight 6
Weight 9

Weight 10

Figure 5.6: Dovetailing over Operator Ordering in WRBFS on the 16 Pancake Puzzle.

Nodes Expanded By Nodes Expanded By Factor of
Weight the Best Order Dovetailing over 24 Orders Improvement

3 6,929,572 41,818,769 0.17
4 2,762,023 12,378,956 0.22
5 2,165,567 7,113,658 0.30
6 2,263,928 5,238,205 0.43
7 3,113,635 4,654,909 0.67
8 6,628,702 10,101,465 0.66
9 19,446,612 10,950,786 1.8

10 75,287,230 35,951,542 2.1

Table 5.5: Dovetailing over Operator Ordering in WRBFS Compared to the Best Single Order on
the 16 Pancake Puzzle.

The performance of dovetailing is highly dependent on the weight in this domain. Dovetailing

degrades the performance of small weights yet significantly improves the performance of larger

weights. A similar trend is seen when comparing the performance of dovetailing to the performance

of the configuration in each starting configuration set that has the best performance. This comparison

is shown in Table 5.5. Clearly, dovetailing is doing well to minimize the effect of the mistakes made

by the high weights. Unfortunately, with the lower weights, the search trees are evidently too similar.

When considering the parallel variant of dovetailing over operator orderings, the results again

depend on the domain. For every starting configuration except the weight 3 set, the speedups are

super-linear in the 4× 5 sliding tile puzzle when dovetailing over all 24 configurations. This is not

the case in the pancake puzzle in which the speedups depend on the starting configuration set. For

the small weighted starting configuration set, dovetailing over operator ordering is an ineffective

form of parallelization. However, super-linear speedups are seen with the higher weights.

Much like WA*, dovetailing over increasing numbers of operator orderings in WRBFS also

improves the quality of the solutions found. The behaviour is similarly magnified for larger weights.
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Due to the similarity of the observed behaviour of WRBFS with WA*, we will only consider the

weight 10 starting configuration set used in the sliding tile puzzle experiments. The average total

cost of the 24 configurations in the set is 18, 112 when the configurations are used individually.

When dovetailing over candidate sets of size 2, the average total cost is 17, 743. The total cost

found when dovetailing over the candidate set containing all 24 configurations is 16, 817. This is an

improvement of almost 8%.

5.4 Dovetailing For Optimal Problem Solving

For weight values of at least 3, Sections 5.2 and 5.3 demonstrate that dovetailing over operator

ordering can often help to improve upon the standard WIDA* and WRBFS algorithms. These results

suggested the following question: can dovetailing (or parallel dovetailing) over operator orderings

be used with a weight of 1 to speed up optimal search?

In particular, we are interested in the performance of dovetailing over operator orderings with

RBFS and IDA* since the linear-space nature of these algorithms allows them to optimally solve

problems in larger domains than an algorithm like A*. Below, we will examine the performance

of these linear-space algorithms in two test domains: the 4 × 4 sliding tile puzzle domain and

the 14 pancake puzzle. The heuristic functions will be given by the Manhattan distance and <

0, 1, 2, 3, 4, 5, 6 > pattern database, respectively. For the 4 × 4 sliding tile puzzle, the test set used

is the Korf test set. For the 14 pancake puzzle, we will use a test set containing 100 problems.

Table 5.6 shows the results from the dovetailing over operator ordering simulations. The set of

operator orderings considered are the same as those considered with the weighted algorithms. For

every candidate set size k, the table shows the ratio of the average number of nodes expanded when

dovetailing over k configurations to the average number of nodes expanded by each of the configu-

rations. This value is shown for each algorithm on both domains. If the value is greater than 1, then

the average dovetailing simulation required more node expansions than did the average configura-

tion alone. Note, the average speedup found by parallel dovetailing can be found by dividing the

candidate set size by the factor of nodes expanded by single-processor dovetailing. For example,

the average speedup found in the sliding tile puzzle domain when using parallel dovetailing over 4

IDA* instances, each on a separate processor, will be 4/2.8 = 1.4.

The table shows that in all situations tested, the average configuration outperforms the average

performance of dovetailing. Similarly, parallel dovetailing over operator orderings is clearly not an

effective form of parallelization for these algorithms. For example, the speedup achieved on the

4 × 4 puzzle when using 24 processors is only by a factor of 1.6 for both algorithms. The speedup

achieved on the 14 pancake puzzle when using 13 processors is also 2.0 for both algorithms.

Below, we will analyze why dovetailing is ineffective in the case of optimal problem-solving

with IDA* and suggest that a similar argument can be made for RBFS. Some of this work is similar

to the analysis done by Powley and Korf in their evaluation of the effectiveness of Parallel Window
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Ratio of the Nodes Expanded by Dovetailing
To the Nodes Expanded by the Average Configuration

4× 4 Sliding 14 Pancake
Tile Puzzle Puzzle

Candidate Dovetailing Dovetailing Dovetailing Dovetailing
Set Size With IDA* With RBFS With IDA* With RBFS

2 1.6 1.7 1.6 1.5
3 2.2 2.3 2.1 2.0
4 2.8 2.8 2.6 2.4
5 3.3 3.4 3.1 2.9
6 3.9 4.0 3.6 3.3

13 8.0 8.1 6.6 6.4
24 15.0 14.7 NA NA

Table 5.6: Dovetailing over Operator Ordering for Optimal Problem-Solving.

Search [39].

First, notice that the total amount of work performed during all iterations except the last one will

be identical. During these non-final iterations, the search will involve raising the threshold to the

cost of the optimal solution path. Changing the operator ordering only changes the order in which

potential solution paths in the search space are considered. Any difference in search time between

operator orderings occurs because the final iteration is stopped as soon as a solution is found.

Before continuing, we need to introduce the notion of the iteration branching factor. The it-

eration branching factor bi is the ratio of the number of nodes expanded when searching to a cost

threshold t to the number of nodes expanded in the previous iteration for a large t. This value is an

estimate of how the size of iterations grow. With this definition, it should be clear that on any prob-

lem p that requires d iterations to solve, the average number of nodes expanded on some non-final

jth iteration is cbj−1
i , where c is the average number of nodes expanded during the first iteration.

The total number of nodes expanded in the first d−1 iterations, denoted ψ, is given by the following:

ψ = c+ cbi + cb2i + ...cbd−1
i (5.1)

= cbd−1
i (b2−d

i + b3−d
i + ...b1i + 1) (5.2)

Now let x = 1/bi and substitute in 5.2. The result is the following: ψ = cbd−1
i (1+x+x2 + ...+

x2−d). If we assume bi > 1, x < 1. Therefore, ψ can be approximated as ψ = cbd−1
i (1+x+x2+...)

since 1+x+x2 + ... converges to 1/(1−x) for x < 1. Substituting bi back into the equation yields

ψ = cbd−1
i (bi/(bi−1)) = cbdi /(bi−1). Note, this value will remain constant over all configurations

that have the same value of bi.

The total number of nodes in the search tree of the final iteration is cbdi . This means that the

ratio between the total number of nodes expanded in the final iteration to ψ is cbdi /(cb
d
i /(bi − 1)) =

(bi− 1). However, only a fraction of the nodes in the final iteration will be expanded since search is
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stopped once a solution is found. Let aθ denote the average proportion of the last iteration expanded

by a configuration θ. Using the above ratio, this means that the average number of nodes expanded

in the final iteration of a search using θ can be expressed as aθ(bi − 1)ψ.

Now let us compare the expected number of nodes expanded by configuration θ against dovetail-

ing. The expected number of nodes expanded by θ will be Tθ = ψ+aθ(b−1)ψ = (1+aθ(b−1))ψ.

Let αΘ be expected proportion of the final iteration that is expanded by the configuration in the can-

didate set Θ that required the minimum number of node expansions on p. When dovetailing over Θ

where |Θ| = k, the expected number of nodes expanded will be TΘ = kψ + kαΘ(bi − 1)ψ. The

expected ratio of TΘ to Tθ is then given by k(1 + αΘ(bi − 1))/(1 + aθ(bi − 1)). Dovetailing over

Θ will only outperform some configuration θ if this ratio is less than 1. Notice that as bi increases

to∞ the ratio reduces to αΘk/aθ.

The poor performance exhibited by dovetailing in the 4×4 sliding tile puzzle and the 14 pancake

puzzle implies that the average of this ratio is greater than 1 in these domains with the corresponding

heuristics. Below, we will empirically estimate the values of aθ, αΘ, and bi so as to evaluate the

effectiveness of this model. To perform these calculations, two test sets were constructed from the

easiest 50 problems from each of these domains. Each problem was solved using IDA* such that

the search continued even when a solution was found. The ratio of the number of nodes in the last

iteration to the total number of nodes in all previous iterations was then used to estimate bi − 1.

Having expanded the entire final iteration on each problem, it is simple to calculate the pro-

portion of nodes in the final iteration expanded by each configuration using the data collected for

the dovetailing simulations previously considered in this section. The average minimum proportion

over all configurations of the final iteration examined is also calculated for each problem. Averaging

these values over all 50 problems gives us aθ and αΘ.

In the 4 × 4 sliding tile puzzle, the candidate set Θ contains all 24 operator ordering config-

urations. The value for bi found is 6.2. The value of aθ, where θ is the average configuration is

0.27. The value of αΘ is 0.06. This predicts that the ratio of TΘ to Tθ is 13.2. This compares well

to the actual average ratio of the number of nodes expanded by dovetailing to the average number

expanded by individual configurations over all 50 problems, which was found to be 13.1. Note, the

actual average ratio over all 100 problems is 13.3.

In the 14 pancake puzzle, the value for bi is also larger than the brute-force branching factor of 12

(13 operators are applicable per state, but one returns the state to the parent and can be immediately

pruned). For these experiments, the candidate set contains all 13 configurations considered above.

The value for bi found over the 50 problems is 21.5. For the average configuration, aθ was calculated

as 0.32. The value of αΘ over all 13 configurations is 0.04. This predicts that the ratio of TΘ to Tθ

is 3.1 which can be compared to the actual average ratio of 4.0 over the 50 problems. The actual

average ratio over all 100 problems is 4.4.

Note that this analysis is not immediately applicable to dovetailing over configurations all with
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the same weight w, where w > 1. This is because the iterations do not grow as uniformly as they

do in optimal search. Typically, WIDA* will perform a small number of very small iterations (in

the case of the 4 × 4 puzzle all non-final iterations expanded fewer than 25 nodes), with the final

iteration dominating search time. We leave such modelling as future work.

5.5 Dovetailing over Operator Orderings in BULB

In this section, we will consider applying dovetailing over operator orderings to the BULB algo-

rithm. Recall that in beam search, all the nodes in the deepest beam are expanded and sorted. In

practice, this list of successors L is built by iteratively expanding nodes in the deepest beam. These

nodes are then appended to L. It is only once all nodes in the deepest beam have been expanded that

L is sorted.

The order in which nodes are appended to L is given by the operator ordering. The operator

ordering will therefore affect the way ties are broken by the sorting algorithm. This can change in

which beam slice a node ends up in after the sort. For example, consider a BULB search with a beam

width of 4. Consider the successors of some beam b. If the number of successors with the minimum

h-cost is 6, only 4 of these nodes will be in the first slice. Let n be one of these 6 successors. Some

operator orderings will result in n being in the first slice, and others will have n being in the second

slice. As the slice that a node is in will change the order in which it is expanded, operator ordering

can significantly affect the traversal of the search tree.

Figures 5.7 and 5.8 show the results of the dovetailing simulations for different BULB starting

configurations in the 6 × 6 sliding tile puzzle and 16 pancake puzzle domains, respectively. Each

starting configuration corresponds to a different beam width. In the figures, dovetailing is only

outperforming the average configuration if the ratio is less than 1.

Notice that in both domains, dovetailing is generally a more effective enhancement with the

smaller beam widths. Smaller beam widths result in a greedier search of the space. If a greedier

search is mislead, it requires extra effort when trying to correct itself. Dovetailing minimizes this

problem by having multiple instances running at the same time in the hopes that not all instances

will be mislead. Smaller beam widths also have an increased chance of splitting nodes with an equal

f -cost among multiple slices. Therefore, the amount of diversity between configurations is much

greater for small beam widths than it is for larger beam widths.

The only starting configuration set which did not follow this trend is the beam width 7 starting

configuration set in the 6×6 sliding tile puzzle. In this set, only one of the configurations ever needed

to backtrack, and it only needed to do so on a single problem. This is unlike the rest of the starting

configuration sets considered in which backtracking was needed by all configurations. Without any

backtracking, all configurations in the beam width 7 set end up solving the problems in a similar

amount of time. As such, dovetailing yields poorer performance in this starting configuration set

than it does in starting configuration sets with a larger beam width.
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Figure 5.7: Dovetailing over Operator Ordering in BULB on the 6× 6 Sliding Tile Puzzle.

Overall, the performance of dovetailing and parallel dovetailing offers little to BULB in both

domains except on the smallest of beam widths. In the case of parallel dovetailing, either super-

linear or near-linear speedups are seen for the starting configuration with the beam width of 3.

However, as the beam width increases, the speedups seen decrease rapidly. For example, with the

beam width 100 starting configuration set, the speedup is only by a factor of 3.8 when using 24

processors in the 6 × 6 sliding tile puzzle, and 2.1 when using 15 processors in the 16 pancake

puzzle.
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Figure 5.8: Dovetailing over Operator Ordering in BULB on the 16 Pancake Puzzle.

As was the case in WA* and WRBFS, dovetailing over an increasing number of operator order-

ings also improves the solution quality when the procedure is applied to BULB. This effect is the

most pronounced on the low beam widths. On the starting configuration set with beam width 3, the

average total cost in the 6 × 6 sliding tile puzzle is 3, 132, 084 and 913, 421 for candidate set sizes
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of 2 and 24 respectively. These correspond to an improvement in solution quality over the average

solution quality of the configurations alone by factors of 1.13 and 3.88, respectively.

The solution quality also improves with the number of candidate sets by a significant amount

when using large beam widths. For example, with the beam width 100 starting configuration, dove-

tailing over all 24 configurations achieved an improvement of 2.4 in the solution quality over the

average configuration alone.

5.6 Chapter Summary

In this chapter, dovetailing over configurations that differ only in the static operator ordering used

was considered for the WA*, WIDA*, WRBFS, and BULB algorithms. When using a starting

configuration set in which all configurations have a weight w, dovetailing was shown to improve the

solution quality of the WA* and WRBFS algorithms when compared to the average solution quality

found when searching with the configurations alone. In the case of WA*, this significantly increased

the search time. A similar result was seen in the BULB.

Dovetailing over operator orderings was also considered as a parallelization of WA* and was

compared to the wPBNF algorithm in the sliding tile puzzle domain. wPBNF has been shown to

perform well with low weights, although it was unable to speedup the search with larger weights.

In contrast, the amount of speedup gained through parallel dovetailing actually increased with the

weight value and outperformed wPBNF in these situations.

In the case of WRBFS, the performance of dovetailing over operator orderings was dependent

on the domain considered. In the sliding tile puzzle, the algorithm saw significant speedups with

dovetailing. In the pancake puzzle, dovetailing significantly effectively enhanced weighted starting

configuration sets but significantly increased the search time for low weighted sets.

WIDA* was the only algorithm which showed improvement in both domains when dovetailing

over operator orderings was applied to it. This improvement increased as the weight became larger.

The only weights on which dovetailing was less effective was on very small weights. In the extreme

case of this behaviour (ie. with a weight of 1), dovetailing over operator ordering was shown to

be an ineffective procedure when used for optimal problem-solving with the IDA* algorithm. The

same was also shown to be true for RBFS.
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Chapter 6

Conclusion

Recall that the initial problem we considered was that of proper configuration selection for single-

agent search algorithms. One of the motivations behind such an investigation is that while batch

tuning does well to find a single configuration that has a good average performance over problems

in a domain, this configuration will often perform poorly on a number of individual problems. In

such cases, configuration selection should be performed on a problem-by-problem basis.

Unfortunately, a number of issues arise when developing such as system, as outlined in Section

3.3.1. As an alternative, we considered the use of dovetailing as a enhancement to the WA*, WIDA*,

WRBFS, and BULB single-agent search algorithms. Dovetailing involves simultaneously searching

with a configuration portfolio as opposed to a single configuration. Dovetailing allows configura-

tions to overcome the weaknesses of one another, as opposed to the traditional use of a batch tuning

which can result in poor performance due to the over-reliance on a single configuration.

Dovetailing Speedup over the Single Best Configuration
On the Largest Puzzle Problem Tested

Using 15 Configurations Using 15 Configurations
in the Sliding Tile Puzzle in the Pancake Puzzle

Algorithm Sequential Parallel Sequential Parallel
WA* 0.21 3.2 0.10 1.6

WIDA* 121 1826 1.8 27
WRBFS 2.5 37 0.59 8.9
BULB 0.12 1.8 0.19 2.9

Table 6.1: A Summary of Speedup Results for Dovetailing Over the Main Parameter Space of
Algorithms.

Table 6.1 shows the speedup found when dovetailing in the largest puzzle tested with each al-

gorithm in each domain. This table is concerned with dovetailing and parallel dovetailing over the

main algorithm parameter spaces. The speedups shown are for the candidate sets that contain all

the configurations in the starting configuration set used with that algorithm. The numbers shown

represent the speedup gained from performing dovetailing when compared to the single best con-
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figuration in the candidate set. The parallel values assume that each configuration is assigned to a

separate processor.

Table 6.2 shows an analogous summarization of results for dovetailing over operator orderings.

In this case, the comparison is between sequential dovetailing and the average performance over all

configurations in the candidate set. All configurations in the candidate sets are identical except that

each uses a different operator ordering. The setting of the main parameter in the candidate set is

shown beside the algorithm name (ie. all configurations in the candidate set used with WA* have a

weight of 6).

Dovetailing Speedup over the Average Configuration
On the Largest Puzzle Problem Tested

Using 24 Operator Orderings Using 15 Operator Orderings
in the Sliding Tile Puzzle in the Pancake Puzzle

Algorithm Sequential Parallel Sequential Parallel
WA* with weight 6 0.40 9.6 0.25 3.8

WIDA* with weight 6 223 5352 4.3 65
WRBFS with weight 6 6.1 146 0.67 10

BULB with beam width 15 0.24 5.8 0.33 5.0

Table 6.2: A Summary of Speedup Results for Dovetailing Over Operator Orderings.

While these tables show that dovetailing offers significant speedups in many situations (or at

least similar behaviour without any offline tuning), it does not actually solve the problem of proper

configuration selection. Instead, the task of selecting a single effective configuration is replaced with

the task of selecting an effective candidate set of configurations. Where offline time is available,

batch tuning over possible candidate sets is one solution. The use of a more sophisticated automatic

configuration tuner, such as the aforementioned Iterative Local Search system described in Section

3.3, is also a possibility.

Where offline time is not available — such as is the case with general systems that must be able

to handle many different domains — previous approaches cannot be used. In such situations, we

assert that the use of a single configuration is more error-prone approach than is the selection of a

candidate set. This is because the use of multiple configurations helps overcome the deficiencies of

any single configuration at a linear cost in the candidate set size.

When using only a single configuration, there is no such backup. Even if a strong single configu-

ration is found, it cannot be expected to do well on all problems in all domains. Such a configuration

can always be placed in a candidate set so as to help prevent poor performance on certain problems

found to be difficult by that configuration.

As a future direction of research, we consider the problem of automatically constructing good

candidate sets for a specific domain. In the remainder of this chapter, we will detail some prelim-

inary research into several aspects of this topic. First, we will address the issue of having multiple
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configurations in a candidate set which duplicate search effort. We will then describe some prelim-

inary ideas towards understanding the distribution of work performed over a set of configurations,

using a distribution to estimate the ideal size k for a candidate set, and finding the best candidate set

of size k from a larger starting configuration set. Finally, we will finish with some closing remarks.

6.1 Removing Duplicates From Candidate Sets

In Sections 2.8.2 and 2.10.1, it was shown that on the 14 pancake puzzle, all weights larger than

10 yield identical searches when used with both WA* and WRBFS. If the automatic construction

of candidate sets is not performed carefully, dovetailing can perform unneccessary work due to

presence of essentially duplicate configurations in the candidate set.

To address this issue, we suggest the use of the following procedure, which we will explain by

example. Consider having a candidate set Θ for some WRBFS search, where |Θ| = k. On the first

problem in the problem set, all configurations will begin working on only a single search tree instead

of k trees as is done normally. Each configuration will maintain its own bounds at every level of the

tree. However, as soon as some configuration θ disagrees with the rest of the k − 1 configurations

in terms of which node should be expanded next, θ will break away from the others. This break will

involve having the search tree being copied. Work on the two subtrees — that being worked on by θ

and that be worked on by Θ/θ — will then continue in a dovetailing fashion.

This process can be generalized as follows. Instead of having only a single configuration split

away, θ will be separated into subsets θ1, ..., θj such that there is no intersection between these

configuration sets, θ1 ∪ ... ∪ θj = θ, and each of these subsets selects a unique node to expand.

At this point in the search, the search tree is copied j times and each of the subsets is assigned an

independent search tree. This process of splitting off into separate search trees continues until a

solution is found. All configurations will then be contained in a set of groups g1, ..., gl, where for

all i, the configurations in gi performed identically. For any future searches, θ can be pruned of all

configurations except one in each of gi.

This procedure allows for the removal of essentially duplicate configurations from the candidate

set. It should be clear that this procedure requires no more work or memory than dovetailing itself.

The main disadvantage of using this procedure is that it significantly complicates the implemen-

tation of the algorithms. Further domains need to be considered so as to determine if in practice,

many design choices will induce configurations that are different in parameter values but the same in

execution. For example, it is all but impossible for different beam widths to induce the same search.

Similarly, different operator orderings are expected to induce different searches even in algorithms

that involve sorting, as long as each node in the search tree does not have a unique f -cost. As such,

the presence of “essentially duplicate” configurations may be rare enough such that it is not worth

complicating dovetailing with the use of this procedure.
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6.2 Analyzing the Distribution of Work Performed by a Starting
Configuration Set

One of the properties of a candidate set that determines whether dovetailing will be effective is the

distribution of search effort required by the configurations in the set. For example, if the search

effort needed by the configurations in some candidate set Θ is similar on many problems, using

only a single configuration in Θ will outperform dovetailing due to the overhead of simultaneously

running multiple configurations.

In the work of Gomes et al., the distributions of search effort over sets of cofigurations for

constraint satisfaction problems were shown to have very long tails [20]. The variability in run-time

is even evident when only considering configurations that differ only in the random seed. These

distributions were shown to belong to the class of Pareto-Lévy of distributions which have an infinite

mean and variance.

One of the ways of identifying these distributions is to consider a log-log plot of the fraction of

configurations that required at least x time to solve some problem p. This is because Pareto-Lévy

distributions will show approximate linear behaviour in such plots. Note, the fraction of configu-

rations that required at least x times to solve p is the same as the cumulative distribution of work

needed on problem p subtracted from 1.

We are currently investigating single-agent search problems so as to determine what design

choices show a similar behaviour. Figure 6.1 is a log-log plot of the cumulative distribution sub-

tracted from 1 for 3 different search procedures on the hardest problem in the Korf test set. The line

marked “Without Dovetailing” is the cumulative distribution of work for a set of WIDA* configura-

tions subtracted from 1. The starting configuration set is of size 480. All configurations in this set are

identical, except each has been given a unique weight from the set {1, 1.05, 1.1, ..., 24.90, 24.95, 25}.
Notice that the relationship is not linear, particularly over the space in which the first 95% of the

problems are solved. The last 5% of the configurations, which are generally the smallest of weights,

somewhat skew this interpretation. If we remove these configurations from the set, we conclude

that the distribution does not belong to the class of Pareto-Lévy distributions. However, despite this

finding, the tail of the distribution can still be said to be long.

The work of Gomes et al. also demonstrated that the use of random restarts dramatically im-

proved the performance of the CSP solver by decreasing the length of the distribution tails. The

connection between dovetailing and random restarts has already been discussed in Section 3.5, and

the figure shows that the impact of dovetailing is similar to that reported for restarts. In the figure, we

show the cumulative distribution of work done subtracted from 1 when dovetailing over candidate

sets of size 5 and 20. These were found through dovetailing simulations. The candidate set used

consisted of the 480 configurations described above. For each candidate set size, we have considered

10, 000 randomly selected candidate sets.
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Figure 6.1: Log-Log Plot of the Cumulative Distribution of Work over WIDA* Configurations Sub-
tracted From 1 on a 4× 4 Sliding Tile Puzzle, With and Without Dovetailing.

The introduction of dovetailing severely decreases the length of the tails of the distribution. The

larger the candidate set size, the smaller the tail becomes. The cost of dovetailing is also on display in

the figure. Notice that the minimum number of nodes needed by dovetailing over the candidate sets

of size 20 is larger than a significant proportion of the 480 configurations. However, the behaviour

of the worst case is improved substantially.

As the distribution of search effort does not appear to fall in the class of Pareto-Lévy distribu-

tions, we have been working in collaboration with Karen Buro [9] on determining what distributions

it is similar to. Preliminary results on a number of 4 × 4 sliding tile puzzle problems suggest that

the log of the distribution of work is most similar to a gamma or beta distribution. However, these

results require more analysis.

If the distribution of search effort for a domain is understood, this knowledge could potentially

be used to inform candidate set selection. In the next section, we consider some early ideas into

using the distribution to help determine an appropriate size for candidate sets.

6.3 Finding Effective Candidate Set Sizes

Consider the problem of finding an effective candidate set from a larger starting configuration set.

One approach which we are currently investigating involves first determining a candidate set size

that is expected to yield good performance. Once a candidate set size has been decided upon, it will

then be necessary to find an effective set of configurations of that size. An early approach to that

problem will be considered in Section 6.4.
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The issue of candidate set size selection involves balancing the coverage of the candidate set

against the cost of dovetailing. If the size is too small, the probability that the candidate set contains a

configuration that has good performance on every problem in a problem set will decrease. However,

as the size increases, so does the overhead of running a number of configurations simultaneously.

In order to estimate an effective candidate set size, we can use the distribution of the number of

nodes expanded by configurations in a starting configuration set Ω on a problem p. This distribution

will be given by the random variable X . So as to simplify the mathematics, Ω will be assumed to be

infinite.

Let us now consider candidate sets of size k that consist of random configurations from Ω,

selected with replacement. Let Φ(k) denote the expected amount of work needed by dovetailing

over any such random candidate set of size k. This value will be given by the expected minimum of

the number of nodes expanded by k configurations in Ω, multiplied by k.

Let FY (b) denote the cumulative density function of Y , formally defined as FY (b) = P (Y ≤ b).
fY will be used to denote the probability density function of Y , formally described as the derivate of

FY (b) with respect to b. Finally, let X1, ..., Xk denote the distributions over each of the k randomly

selected configurations, and let Ψ denote the distribution of the minimum over these k random

variables. This means that FΨ(x) = 1−P (∩k
i=1Xi > x). The following algebraic expressions then

follow:

FΨ(x) = 1− P (∩k
i=1Xi > x) (6.1)

= 1− P (X1 > x)P (X2 > x)...P (Xk > x) (6.2)

= 1− P (X > x)k (6.3)

= 1− [1− FX(x)]k (6.4)

Line 6.2 follows since the configurations were selected at random and therefore the associated ran-

dom distributions are independent. Line 6.3 follows from the fact that the configurations are all

taken from the same starting configuration set and so all of the Xi’s share the same distribution,

namely X . Line 6.4 is true by the definition of the cumulative distribution function.

With this expression, it is now possible to calculate the probability density function fΨ(x). By

simply differentiating FΨ(x) with respect to x, we find that fΨ(x) = kfX(x)[1− FX(x)]k−1.

Where E(Y ) denotes the expected value of Y , it should be clear that Φ(k) = kE(Ψ). As the

expected value of a distribution Y is given by E(Y ) =
∫∞
−∞ yFY (y)dy, we find the following:

Φ(k) = k2

∫ ∞

0

xfX(x)[1− FX(x)]k−1.

By simply evaluating this formula for different values of k, it will be possible to estimate the

candidate set size which leads to the minimum expected amount of work, denoted k∗. k∗ can then

be used as the candidate set size for all other problems in the same domain, based on the assumption

that different problems in the same domain share similar distributions.
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Unfortunately, closed-form solutions can only be found for certain distributions. For example,

similar calculations have resulted in exact solutions of E(Xk
min) where X is the exponential or

geometric distribution [10]. In order to use this formula in practice, it will be necessary to evaluate

the expression numerically.

When considering WIDA* configurations, the value ofE(Ψ) is strongly related to the parameter

of αΘ described in Section 5.4. Whereas αΘ is the expected proportion of the work needed in the

final iteration, E(Ψ) considers the entire search time of the procedure. This consideration of the

distribution of work is also a more general model that is not necessarily constrained to the case of

optimal search.

The effectiveness of this model in estimating a good value for k∗ will depend on how well the

underlying assumptions apply. One of these assumptions is in regards to how much the performance

of the configurations will correlate between problems. When dovetailing over WA* configurations

that differ in the weight walue, the model will fail since higher weights tend to do better on all

problems. When dovetailing over WIDA* configurations that differ in operator ordering, there is

little correlation between problems. As such, the model is expected to work better in this case.

The other assumption involves the similarity of the work distributions between problems. Our

preliminary results on the 4 × 4 puzzle suggest that in that domain, the assumption holds over

WIDA* configurations that differ in weight value. However, more investigation is needed into this

claim, particularly as it applies to other domains and other algorithms.

6.4 Finding Effective Candidate Sets of Size k

Once a good size for candidate sets has been found, a set of configurations of that size still needs to

be selected. In certain situations, randomly selecting k configurations from the starting configura-

tion set will be an effective policy. One such case would be where the algorithm relies heavily on

stochastic behaviour and the configurations only differ in the random number generator. However,

generally there is expected to be some stronger relationship between configurations, and diversity in

the candidate set should be an aim. For example, consider configurations that only differ in the static

operator ordering. It would be expected that in most cases, candidate set configurations should avoid

having the same operator as the first in the ordering so as to avoid having multiple configurations

expanding nodes in a similar order. As such, selecting configurations at random is not expected to

be a general solution.

In this section, we will outline one idea for candidate set selection of size k, that begins with an

arbitrary set of configurations from a starting configuration set Ω, and improves this set based on

information gathered through the solving of problems. This idea will be based on the consideration

of candidate selection as a modified N -armed bandit problem.

First, we will define the traditional version of the problem. We follow the definition given by

Sutton and Barto [44]. The N -armed bandit problem can be described as follows: an agent is
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faced with N slot machines, each of which will have a different distribution of rewards. These

distributions are unknown to the agent who must successively select a slot machine to play. The

agent’s task is to maximize its payoff over time. To do so effectively, the agent must build a model

of the payoffs of each machine and play the machines which offer the highest expected outcome

most often. However, the agent must also avoid over-playing these machines due to the fact that the

stochasticity of the machines can lead to errors in the models.

In the case of selecting a candidate set of size k, we can consider the arms to each correspond

to a configuration in Ω. However, instead of selecting only a single arm to play, the agent will

simultaneously play k arms. A play will be made for each problem instance that is to be solved, and

the arms selected will correspond to the candidate set to use for that problem. That candidate set

will then be used for problem-solving.

In order to apply bandit algorithms, a procedure for the assignment of rewards is necessary.

Currently, we use the following strategy: where Θ ⊆ Ω is selected as the candidate set to use on

problem p and θ ∈ Θ is the configuration which solves p during dovetailing, θ is assigned a reward

of 1. All other configurations in Θ are assigned a reward of 0 since they failed to solve the problem.

We can then use a modified version of the UCB1 algorithm [2]. UCB1 was initially designed for

the traditionalN -armed bandit problems. It starts by selecting each of the bandit arms once. In order

to make the t + 1st play, where t ≥ N , the algorithm requires the calculation of the UCB1-value,

denoted V (j), of each arm j. V (j) is defined as follows:

V (j) = x̄j + C
√

ln t/tj

where x̄j is the average reward for arm j seen thus far; C is a positive, real-valued algorithm pa-

rameter; and tj is the number of times that arm j has been selected thus far. The t+ 1st play is then

made as the arm with the highest UCB1-value. Note, in the original formulation of the algorithm,

C =
√

2. The extension to other constants was introduced by Kocsis and Szepesvári [29].

For candidate set selection, we use a modified version of the UCB1 algorithm called UCB1

dovetailing. When selecting a candidate set of size k, the set is first filled with configurations that

have yet to be used in any candidate set thus far. For any such configuration θ, tθ = 0. If only k′ such

configurations remain (where k′ < k), then the candidate set is filled with the k − k′ configurations

with the highest UCB1-values. This candidate set is then used to solve some problem p in the

problem set. When problem solving completes, the rewards are assigned, and the value of tθ is

incremented for all configurations in the candidate set. The process then repeats when a candidate

set is to be selected for the next problem. Notice that this approach to candidate set selection has no

information regarding the problem to solve. Instead, decisions are based on statistics collected from

previous problem-solving instances.

The execution of UCB1 dovetailing is deterministic. However, there are several design choices

that can affect the performance of the algorithm. The most obvious of these is the value of C.
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This C parameter allows for the designer to tune how much the algorithm balances exploitation and

exploration. The algorithm is said to make an exploitive selection when a configuration is added to

the candidate set that has shown to have a high average reward thus far. As mentioned before, this

model of the value of a configuration can be flawed. As such, other configurations that appear less

desirable should be selected from time to time so as to avoid exploiting the wrong configuration.

Increasing C will increase how likely the algorithm makes such exploratory selections.

Another aspect of the algorithm that affects its performance is the way in which configurations

are selected for the candidate set in the presence of ties. This includes selecting between two con-

figurations that have yet to ever be used in a candidate set. In our experiments, ties are broken by a

static ordering of the starting configuration set θ1, θ2, ..., θN . Configurations with a smaller index in

this ordering are always preferred in the presence of ties.

To see how the static ordering of configurations can significantly impact the performance of the

algorithm, consider a starting configuration set {θ1, θ2, θ3, θ4}. Assume k = 2 and that configura-

tions θ1 and θ2 perform poorly on all problems in the problem set, while θ3 and θ4 perform well

on all problems. If the initial ordering is given by the ascending order of index, then the candidate

set {θ1, θ2} will be tested on the first problem, and {θ3, θ4} will be tested on the second problem.

Assume that θ1 and θ3 solve problems 1 and 2 during dovetailing, respectively. The average rewards

of these configurations after solving the first two problems will be 1, and the average rewards found

by θ2 and θ4 will be 0.

If the ordering is given by {θ1, θ3, θ2, θ4}, the candidate sets used on problems 1 and 2 will

be {θ1, θ3} and {θ2, θ4} respectively. After solving these problems, the relative ordering of the

configurations by reward value is much more accurate than it is after solving the 2 problems with

the above ordering. While the algorithm will converge to a correct model of each configuration

eventually — even with the first ordering — this may take a lot of time. As we are considering

problem sets with a relatively small finite size, the impact of having the second ordering exploit the

correct configurations more often, particularly early on, may be quite large.

Figure 6.2 shows a preliminary test with this algorithm. The starting configuration set consists

of 15 WIDA* configurations that differ only in the value of the weight. Each configuration has a

unique integer weight in the range from 2 to 16, inclusive. The problem set consists of 1000 5 × 5

sliding tile puzzle problems. For each candidate set size, 10, 000 different random orderings of the

starting configuration set are considered.

For two values of C, the figure shows the average performance over the 10, 000 orderings for

each of the candidate set sizes. For comparison, we also show the average performance of regular

dovetailing over the same starting configuration set.

The figure shows that with both values of C, the average performance of UCB1 outperforms the

average performance of regular dovetailing on all candidate set sizes. The same is true when C was

set as 0.1,
√

2, and 10. However, the improvement is generally small except on the smaller candidate
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Figure 6.2: A Comparison of Regular Dovetailing and UCB1 Dovetailing on the 5× 5 Sliding Tile
Puzzle.

set sizes. For example, consider the candidate set size of 2. With this set size, 3 of the 5 values of

C tested improved the average performance by at least a factor of 3, 1 of the 5 values improved the

performance by almost a factor of 2; and the final value, 10, showed almost identical performance

to regular dovetailing.

Our investigation of UCB1 dovetailing remains in its early stages. A more in-depth analysis as

to where UCB1 dovetailing succeeds and fails is still needed.

6.5 Contributions and Closing Remarks

In this thesis, we have considered the problem of configuration selection for suboptimal single-

agent search algorithms. In this end, we considered the performance of WA*, WIDA*, WRBFS,

and BULB in two domains: the sliding tile puzzle and the pancake puzzle. It was shown that while

offline tuning can capably find a configuration that has good average performance, this configuration

will often exhibit poor performance on some number of individual problems. To deal with this

issue, we considered the use of dovetailing which simultaneously runs multiple instances of the

same algorithm, each with a different configuration, by interleaving execution.

Chapters 4 and 5 were concerned with the evaluation of the performance of dovetailing as an

enhancement to suboptimal single-agent search algorithms. The design choice spaces over which

dovetailing was considered were those of operator orderings and the main parameters in the afore-

mentioned algorithms. The results of single-processor dovetailing with WA* and BULB were nega-

tive: dovetailing caused the speed of both of these algorithms to degrade in all domains considered.
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However, when parallel dovetailing, at least some speedup is seen in almost all tests. For example, it

has also been demonstrated that parallel dovetailing outperforms the state-of-the-art parallelization

of WA* in the sliding tile puzzle domain for higher weight values. This suggests that while dove-

tailing is not an effective addition to these algorithms, parallel dovetailing remains an intriguing

approach to parallel single-agent search.

When dovetailing was used with WRBFS, the results are mixed. In the larger sliding tile puzzles,

dovetailing improves upon the use of any individual configuration alone. Parallel dovetailing also

showed super-linear speedups in this domain. In the pancake puzzle, dovetailing over configurations

that differ in the weight value performed similarly to the single best configuration found with batch

tuning. However, dovetailing did not require any offline computation in order to do so. When

considering the use of configurations in this domain that only differ in operator ordering, dovetailing

was only effective for the higher weight values. Parallel dovetailing was also shown to be an effective

parallelization of the WRBFS algorithm in most of the situations tested.

The algorithm which benefited the most from the use of dovetailing is WIDA*. Dovetailing

significantly improved the performance of WIDA* in almost all tests performed. It was not unusual

to see dovetailing improve upon even the single configuration with the best average performance

by several orders of magnitude. The results suggest that WIDA* should never be used without

dovetailing except where the configurations use weight values that are near 1.

While we have shown that dovetailing can be an effective enhancement for suboptimal search

algorithms and that the procedure helps to deal with the issue of configuration selection, this work

also suggests a number of areas for future work. Among these is an investigation into automatic

configurations selection. While we have included some preliminary results on this topic earlier in

this chapter, much work remains to be done in this area.

Another important step is to consider other design choices of the examined algorithms so as to

determine additional methods of introducing diversity among configurations. For example, we are

currently experimenting with dovetailing over incomplete versions of BULB, where each config-

uration only performs a single iteration of a BULB search. This is similar to the approach taken

by the Parallel Window Search algorithm described in Section 3.5. BULB has shown to be a very

effective algorithm in practice, and so by introducing such diversity it may be possible to further

extend the size of problems it can solve. Additionally, dovetailing over configurations that differ in

the heuristic function being used, or even completely different algorithms, remains an interesting

area of research.

Finally, dovetailing should also be tested with the above algorithms in more domains. In the do-

mains already considered, there is a solution below any branch in the search tree. In many domains,

this is not true, and instead there are dead-ends in the tree. Dovetailing is expected to perform well

in these domains as the use of multiple configurations is expected to mitigate the issues that occur

when any configuration becomes stuck in a dead-end. However, this remains to be shown.
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