
Understanding Object-Oriented Architecture Evolution via Change Detection

Zhenchang Xing and Eleni Stroulia
Computing Science Department

University of Alberta
Edmonton AB, T6G 2H1, Canada
{xing, stroulia}@cs.ualberta.ca

Abstract
Understanding the software architecture of a system

and the process by which it has evolved to its current state
is an important task that software developers are often
faced with. It becomes relevant when one needs to assess
a system for the purpose of adopting it in a new context,
or to further develop it to meet new requirements and
change requests. In this paper, we describe our work on
analyzing and understanding the evolution of an object-
oriented application at the class-design level. We
introduce a structure-matching algorithm for comparing
two or more versions of an architecture represented in
UML (XMI). The algorithm produces a "change tree" that
reports the differences of the compared versions in terms
of class/field/method additions, deletions, moves, and
renamings. Analysis of a series of change trees
corresponding to a series of versions can reveal
interesting and useful information about the evolution
history of the application architecture, such as evolution
styles, class evolution types, change patterns, etc. In this
paper, we discuss the algorithm, the change-tree data
structure, and the architecture-evolution analysis, and we
report on two case studies evaluating our approach.

1 Introduction
Change is ubiquitous during the lifecycle of a software

system: software is often developed using an evolutionary
process, such as extreme programming for example, and
after its release and deployment it is evolved to fix
defects, meet customer-driven functionality
enhancements, and adapt to changes in the deployment
environment. As a result, the actual design of a system is
due, to a great extent, to its evolution history.

Understanding the design rationale and its evolution is
an important aspect of the overall software-understanding
problem [9,14,7,18] that developers, maintainers, and
managers face. They often need a high-level
understanding of the complete system and in-depth
information on selected components and how they have
evolved to their current state. Consider, for example, the
case of a new developer, who has just joined a project and
has been assigned the task of modifying and extending the
behavior of a system class. She inspects the design history
of the subsystem she is working on and she discovers that
this subsystem has been regularly refactored to “inline”
methods and classes; therefore she hypothesizes that
improving run-time performance may have been a design

objective and, thus, she may decide to modify the existing
class without subclassing it, to keep in synch with the
spirit of the previous modifications of the system.

As another example, consider a software inspector who
wants to identify hot spots over the lifespan of software
system. By comparing a set of subsequent versions, he
may find out that a few classes have been substantially
changed in every new version, irrespective of what
features were modified in this version. This information
can help him focus his examination into the source code
of those classes, to determine what reason(s) may have
caused this problem, such as the fact that these are giant
classes that implement too many functionalities, and to
suggest potential remedies, such as design patterns that
attack the problem under investigation.

Finally, consider an instructor, supervising a set of
team projects for her software-engineering capstone-
project course. She needs to closely monitor the
development process of all the teams to make sure that
they are on the right track, and to intervene in a timely and
informative fashion if not. She needs to know what parts
of the system are being changed and how, and if there are
any “interesting” events or trends, such as, for example,
slow or explosive code growth or particular refactorings.

The objective of this work is an automated tool for
supporting design-level evolutionary analysis. Research in
understanding software evolution has traditionally focused
on analysis and visualization of information extracted
from version-management systems [9,11,14], or software
metrics of size and complexity [6,7,17]. The innovation of
our methodology lies in the fact that it does not examine
the development documentation and release history of the
application or the evolution of its code metrics, but
instead, it relies on recovering and analyzing the
modifications on the software design from one version to
the other through comparison of class hierarchies. Further
analysis of the recovered design-level modifications
results in interesting insights regarding the evolution
history of the software system under analysis.

Our tool compares designs to recover their differences.
Comparison of original designs against designs reverse-
engineered from code could reveal discrepancies between
the designers’ intent and the actual implementation. On
the other hand, comparison of a sequence of reverse-
engineered designs, corresponding to a sequence of
software-system versions, could recover the evolution
profile of individual application classes, identify

transformations brought about by refactoring, and
characterize the nature of evolution of the application
design.

The remainder of the paper is structured as follows. In
section 2, we place this work in the context of previous
related research. In section 3, we present the overall
methodology of our approach. In section 4, we discuss the
core algorithm of the change-detection process. In section
5, we discuss the rationale of the analysis of the recovered
changes. Section 6 presents the implementation of our
method including its visualization instruments. Two case
studies illustrating our approach are discussed in section
7. Finally, we conclude our discussion with a summary of
the lessons we have learned to date and our plans for
future work.

2 Related research
There already exists a substantial body of literature on

the subject of “software-evolution understanding.” Eick et
al. [9] analyze the change history of the code, which is
assumed to reside in a version management system.
Several derived attributes, i.e., “Code-Decay Indices”, are
calculated and the corresponding fault potential and
change effort can be predicted as a function of these
indices through regression analysis. The objective of this
research is mainly to support project management so that
code decay is delayed. The same team also developed
tools [10,11] for visualizing software statistics at source
code line level, and change data contained in version
management system, such as developer, size, effort, etc.
However, they do not visualize any “structural”
differences of UML models of software system.

Gall et al. [14] use information in the release history of
a system to uncover logical coupling among modules.
Their method aims mainly at understanding co-evolution,
i.e., whether there exist modules that are always changed
together. In the similar vein, Zimmermann et al. [25] detect
the fine-grained coupling between program entities like
methods and fields. However, unfortunately, such
documentation is not always readily available, since, more
often than not, the rationale for a new version is not
documented. Even worse, even when such documentation
exists, it is seldom kept in synch with the code
modifications, and therefore it is an unreliable source of
system changes.

Demeyer et al. [7] define four heuristics based on code-
size and inheritance metrics to identify refactorings that
might have occurred on a piece of code. The refactorings
identified by this work are grouped into three general
categories and no concrete ones, i.e., the ones described in
[13], are identified.

Demeyer et al. [6] and Lanza [17] describe how to use
a simple two-dimensional graph to convey the implicit
information of software metrics of object-oriented entities.
Their work does not directly visualize the changes of the

object-oriented entities themselves; instead the analysis is
focused on the evolution of code metrics.

Collberg et al. [5] focus on the visualization of the
evolution of software using a temporal graph model. They
do not compare designs to surface the structural
differences through a structure-matching algorithm.

Emden et al. [12] present a tool for detecting and
visualizing code smells based on the analysis of extracted
facts of program structure, while our work focuses on the
“evolution smells” at the design level.

Egyed [8] has investigated rule, constraint based
transformation and comparison approach for consistency
checking between UML diagrams when developers add
new information to system model or modify existing ones.

Selonen et al. [21] have also developed a method for
UML transformations, including differencing. However,
none of these projects have explored the product of their
UML-diagram transformations in service of design
analysis and evolution understanding.

Finally, the general tree-to-tree correction problem has
been studied extensively [3], and has been applied to show
differences between XML data [28]. The major difference
between these general algorithms and UMLDiff is,
UMLDi f f takes into account the structural syntactic
information contained in the class model of application,
and it can identify the “move” of object-oriented entities,
which enable us to identify perfective changes that cannot
be identified from documentation like revision archives.

3 The design-evolution understanding
methodology

The primary data input of our design-evolution
understanding method is the design of the application
under analysis, as captured in its UML class diagrams.
Such class diagrams can be either produced in the
software-design phase or they can be reverse engineered
by the application code, using any of the currently
available roundtrip-engineering tools [29, 30]. Such tools
export the reverse engineered diagrams in XMI
(UML1.3), which is the assumed input-data representation
in our process for design-evolution analysis. Given the
XML-based syntax of the input data, it is parsed into a
class-hierarchy tree. Multiple-inheritance is handled by
duplicating the class node (not including its children)
under each of its super classes.

The basis of the change-detection process is a
heuristic tree-comparison algorithm that recognizes,
element “additions”, “deletions”, “moves” and
“renamings”. This tree-comparison algorithm essentially
implements a UML differencing operation that can
surface structural modifications to the application classes
and interfaces, their attributes, their methods and their
specialization-generalization relations.

The result of the comparison between two application
versions is represented in a change tree. Aggregate
information can then be extracted by examining a

sequence of such change trees, to characterize the
evolution history between two non-consecutive versions
of the application. By analyzing sequences of changes
trees, we can recover information about software
evolution at three different levels:
• At the system level, we can identify different

evolution phases, such as functionality extensions vs.
refactorings, and “interesting” events through the
application evolution history.

• At the class level, we can recognize different types of
classes according to their evolution profiles, such as
continuously modified classes vs. legacy classes, for
example.

• At the “change-tree level” we can identify various
change patterns, such as co-evolution and
refactorings, for example.

Finally, the collected design-evolution information can
be visualized to present different views of the application
evolution to the interested developers.

By examining and analyzing the above information,
one is able to get a quick overview of the whole
application history, to assess if the application has been
evolving in a consistent way, to identify interesting parts
of the design or parts that may suffer from “bad smells”,
such as code duplication and parallel inheritance
hierarchies. Furthermore, one can obtain plausible
answers to a set of interesting questions:
• What classes were changed and which methods

and/or fields are added, deleted, and moved in which
version?

• Are there unusual incidents over the life cycle of the
system?

• Which version(s) mainly involve additive or
perfective changes?

• What functionality is the focus of several consecutive
versions?

• Are there classes that have the same lifespan as the
whole system but never change at all?

• What classes change frequently or do not change over
several versions?

• What classes exist for only a very short time?
• Does class rapidly grow or shrink from one version to

another?
• Are there sets of classes that change together?
• What refactorings were made?

4 Class-hierarchy change detection
In this section, we discuss in detail the change-tree data

structure used for representing the differences between the
class models of two versions of a software application and
the tree-differencing algorithm for generating such trees,
given the XMI representations of two such models.
4.1 The change tree

In our approach, we have cast the problem of detecting
the class-model changes between two versions of an
object-oriented software application as a graph-difference

problem, since class models can be viewed as specific
types of directed graphs. To make the problem more
tractable – the general problem of comparing two directed
graphs is NP-complete – we have limited our initial
exploration to considering only the inheritance trees of the
class model, ignoring all other relations, such as
association and composition. This decision was also
motivated by the fact that most UML reverse engineering
tools do not do a good job at inferring such relations [16].

Given two class models, corresponding to two different
software versions, represented in XMI, the first step of the
process is to parse the class hierarchies they contain into
two labeled tree structures. The target representation
contains the application classes and interfaces, their
attributes, their methods and their specialization and
implementation relations. Next, the tree-differencing
algorithm, described in the next subsection, is applied to
the forests and identifies the after-before changes between
them. The result is represented as a change tree, i.e., a tree
of delta operations, which if applied to the earlier version
(before) would result in the later version (after). Figure 1
diagrammatically depicts an example change tree, which
will be further discussed in section 5. Its visualization will
be explained in section 6.1.

Figure 1: An example of change tree
4.2 The UMLDiff algorithm

The overall problem of detecting and representing
changes to data is important for version and configuration
management. It is an active research area on its own in the
area of data management. Probably the most well known
algorithm for textual comparisons, GNU diff, was
discussed as the string-to-string correction problem using
dynamic programming in [23]. Used in the context of
code differencing, it reports changes at the code line level.

As more data and documents are stored in XML
format, some sophisticated version control systems
include XML-aware features to handle XML documents.
However, these report changes as “XML element
modifications” ignoring the domain-specific semantics of
these nodes. Take the XMI as an example. When a class
implements a new interface, the general XML-
differencing tools would only report that a set of xml-
nodes was inserted, but not the implementation of a new
interface, since it does not understand the XMI semantics.

Furthermore, such change representations do not
necessarily correspond naturally with the developers’
intuition about change. For example, when an attribute or
method is moved from one class to another, the reported
changes are often reported as two separate activities, one
or more lines of code (xml-nodes) are removed from one
file and an equal number of lines of code (xml-nodes) are
added to the other one. It is difficult to detect and
represent the “move” of these lines (xml-nodes), which is
exactly what would be preferable to the developer.

Recognizing changes at this higher level of abstraction
and taking into account the UML-specific semantics of
XMI documents is exactly the motivation of this work. If
we rely on the structural syntactic information captured in
the class hierarchy, we could identify such activities as
“moves”; this is because the granularity of change
operations is larger and correspondences between
additions and deletions could be explored to uncover
higher-order operations such as “moves”.

The UMLDiff algorithm is tailored from tree-to-tree
correction algorithm [4] and is applied in the context of
class hierarchy-tree differencing. The algorithm can
identify many interesting structural changes of the class
model, such as the deletion, insertion, and change of
signature of classes, interfaces, methods, and fields, the
move of methods and fields, and the renaming of
methods. However, not all possible changes can be
automatically detected. To determine a “class renaming”,
for example, it would be necessary to check if most of the
subclasses, methods, and fields of two differently named
classes are the same, and that would be both time
consuming and also an “unsafe” inference. Furthermore,
“field renamings” are not considered. That is because
UMLDiff is based on name/attribute schema, and it is
difficult to determine a “field renaming” without
information about the field’s semantics. An interactive
step can be added after the analysis process to identify
such changes.

Attention should also be given to “move”. In general,
tree-differencing algorithms, like [3], do not consider
“move” as a primitive operation. But in the context of
software evolution, where local transformations, such as
refactoring, frequently involve moving elements from one
class to another, recognizing such “moves” is essential. A
“move” operation often represents the redistribution of
information or the reorganization of the class hierarchy,
modifications that are usually part of perfective changes
that are intended to improve the developer’s ability to
maintain the software without altering functionality or
fixing faults. Thus, it is important that we could recover
the method/attribute movement when analyzing software
evolution, in order to recognize “perfective maintenance”
phases in the software life cycle.

The outline of U M L D i f f, our class-hierarchy
comparison algorithm, in shown in Figure 2. The
algorithm takes as input two class hierarchy trees, T1 and

T2. The algorithm exploits the XMI node semantics: it

UMLDiff(T1, T2) {
/*T1 and T2 are the roots of class hierarchy
trees*/
MatchTwoTrees(T1, T2, Not_Inner_Class);
MatchTwoTrees(T1, T2, Not_Inner_Interface);
ChangeTree = GenerateChangeTree(T1, T2);

}

MatchTwoTrees(R1, R2, Label) {
/*R1 and R2 are the roots of two (sub)trees. This
function matches two trees rooted at R1 and R2

respectively*/
M = match(R1, R2, Label, equal_func);
M = M + match(R1, R2, Label_Unmatched,
equa1l_func);
For each pair (n1, n2) in M {

match(n1, n2, Field, equal_func);
match(n1, n2, Field_Unmatched, equal1_func);
match(n1, n2, Method, equal_func)
match(n1, n2, Method_Unmatched, equal1_func);
match(n1, n2, Method_Unmatched, equal2_func)
match(n1, n2, Interface_Impl, equal_func);
MatchTwoTrees(n1, n2, Inner_Class);
MatchTwoTrees(n1, n2, Inner_Interface);

}
match(R1, R2, Field_Unmatched, equal_func);
match(R1, R2, Method_Unmatched, equal_func);

}

match(r1, r2, Label, equal_func) {
/*r1 and r2 are the roots of two (sub)trees. This
function matches nodes with Label in two trees
rooted at r1 and r2 respectively using equal_func*/
M = null;
Add (r1, r2) to M; //match two roots
L1 = chain(r1, Label); L2 = chain(r2, Label);
M = M + lcs_func(L1, L2, equal_func);
For each unmatched node xŒ r1 with Label

For each unmatched node yŒ r2 with Label
If equal_func(x ,y) Then Add(x, y) to M

Return M;
}

GenerateChangeTree(T1, T2) {
Duplicate T2 into changeTree;
Mark all unmatched nodes of T1 “delete”;
Visit the nodes of T1 in breadth-first order

Let x be the current node, y be the parent of x;
Let z be the partner of y in changeTree
If x is “delete” Then Attach x under z;
If x is “matched” Then

Let w be the partner of x in changeTree;
Let v be the parent of w;
If z ≠ v Then

Mark x “movesrc”; Mark w “movetrg”;
Attach x under z;

Mark all unmatched nodes of changeTree “insert”;
Remove the total matched nodes of changeTree;
Return changeTree;

}
Figure 2: The change-detection algorithm

does not attempt to match nodes of different types, for
example, Method and Field, Interface and Method, etc.
For each matched pair of Class or Interface nodes, the
algorithm attempts to match their methods, fields,
implemented interfaces, and inner classes. That is, the
algorithm avoids unnecessary matches between arbitrary
pair of methods contained in class hierarchy trees.

The basic idea of the function match is to use the
longest common subsequence (LCS) routine [20] to match
nodes of specific type of object-oriented entities, such as
field, for example, in two (sub)trees. It first obtains two
node sequences by chaining together all nodes with a
given type in two trees rooted at r1 and r2 respectively,
and then calls the LCS routine, lcs_func. The function
lcs_func computes the LCS of two sequences in time
O(ND) , where N=|S1|+|S2| and D =N-2|LCS(S1,S2)|. It
takes three parameters: two sequences L1 and L 2 to be
compared, and an equality function equal_func(x,y) used
to compare xŒL1 and yŒL2 for equality. Three equality
functions are defined as follows:

• equal_func: returns TRUE if the value of all
attributes of two nodes are the same;

• equal1_func: returns TRUE if the attribute “name” of
two nodes are the same, but the value of some other
attributes are different. It is used to identify “change
signature of entity”.

• equal2_func: returns TRUE if the value of all
attributes but “name” are the same. It is used to
identify “rename method”.

During the matching phase, the algorithm annotates
each node in T1 and T2 with the “memory (status)” of the
type of changes that should be applied to it, to transform
T1 to T2. Finally, the function GenerateChangeTree is
used to generate the change tree, T2-T1, after matching
two class hierarchy trees. It first duplicates T2 into the
initial change tree, then traverses T1 in breadth-first order
to copy “delete” nodes and “movesrc” nodes into the
change tree, and finally traverses the change tree in post-
order fashion to delete completely matched nodes, i.e., the
nodes that are marked as “matched” and so are all their
descendents. The resulting change tree represents a set of
structural modifications, which if applied to T1 would
produce T2.

5 The design-evolution analysis
A sequence of change trees between subsequent

versions provides an audit trail of the design changes of
the class model when software system evolves. They are
conveniently saved as XML files. Consequently the
powerful tools, like XSLT and XPath, can be used to
process them for further information extraction and
design-level evolution analysis.

Evolution phases and styles. These change trees are
processed further to gain an insight into the overall
evolution process of software system or its individual
classes.

Based on this analysis, one can easily identify different
phases, such as growth, maintenance, and steady going. In
growth phases, the change activities are mainly the
addition of new class, interface, method, and field. The
maintenance phases contain much method and attribute
movement. That is, the major activities of maintenance
phases often involve the reorganization of class hierarchy,
the redistribution of information, etc. Such activities are
usually aimed at improving the system’s clarity and
maintainability. The steady-going phases are the phases
that have relatively few change activities, when most of
the software system or classes are stable.

Furthermore, a method similar to the one described in
[2] is used to reveal evolution styles, such as constant
small modifications, occasional large modifications, etc.
[2] classify the software evolution into different styles
based on the result of phasic analysis.

Growth spurts and unusual incidents. We can
identify individual interesting versions of software system
or classes, such as versions with aggressive growth spurts,
unusual sharp increase or decrease in size, and so on.

By growth spurts, we mean that the amount of changes
made to the system or class is relatively high in these
versions. Particular attention should be given to versions
with such aggressive growth spurts. They usually imply
big expansion in system features and/or functionalities.
Sometimes the overall “quality” of the system design may
deteriorate due to such expansions. For example, the
development team may not realize the commonalities that
are being created between classes as similar features are
implemented in multiple classes; in such cases, an
inheritance-based structure is usually imposed later to
extract the commonalities in the ancestor classes and
encapsulate the variability in their descendants [13].

The unusual incidents represent anomalies in the
software development process, for example, an unusual
increase in size of system followed by a sharp decrease.

Class-evolution types. We can classify classes
according to their change profiles. For example, a class
can be defined as short-lived, if the interval between the
class creation and deletion is less than a user-defined
constant. We have identified several interesting types of
class-evolution profiles, described below, and we have
also implemented a set of corresponding XSLT programs
to identify classes of these types in a system.

An active class keeps being modified over several
versions. Many changes occur, which may be the
additions of functionality, the removal of obsolete
features, and refactorings. Active classes are hotspots
from the view of software evolution. They may be giant
classes, whose functionality should be fanned out, or
incohesive classes, resulting from bad design choices, that
need to be improved.

An idle class rarely changes after it is added into the
system. They could be root classes, well-designed classes,
or stand-alone features, but they could also be dead code.

Particular attention should be given to these classes whose
lifespan is the same as that of the software system. They
may have already been disused but no one “dares” to
remove them.

A short-lived class exists only in a few versions of the
system and then disappears. They may have been used to
prototype a feature or to test another class, etc.

A rocket class sharply increases its size at certain point
of evolution. Sometimes, developers tend to write code
before they have figured out where is the best place to put
it. Thus, we should examine those classes since they may
introduce bad smells, such as code duplication, into the
system. The shrink class is the opposite of rocket class. Its
size sharply decreases at certain point. If a class lost most
of its functionality and is not doing very much, an “Inline
class” refactoring can be applied to move all its features
into another class and delete it [13].

A die-hard class is a class that is removed from the
system but most of its functionalities are moved to other
classes. A legacy class is just the opposite of die-hard
class. Such classes are added into system at certain point
of evolution, but most of their attributes and methods are
moved in from other classes. The die-hard and legacy
classes represent evidence of redistribution of
functionality or the reorganization of class hierarchy.

Note that these class-evolution profiles are only the
most distinct ones. More categories may be possible to
identify with further analysis. Finally these categories
introduced here are not mutually exclusive, i.e. a class can
be active over several versions and then become a die-
hard class eventually.

Co-evolving classes. The change trees record what
classes has been modified (including creation and
deletion) in which versions. A simple XSL stylesheet can
collect information like Table 1, from change trees. The
black dot represents that class has be changed in particular
version.

Table 1: Class change history
Class A Class B Class C

Version 1 • •
Version 2 • •
Version 3 •

Using this information as a dataset, we can apply data-
mining analysis techniques [1] to mine co-evolving
classes. In our implementation, we programmatically use
Weka [31], a Java library of machine learning algorithms
that implements [1], to discover co-evolving classes that
have common change behaviors. Co-evolution represents
potential dependencies among classes, which are not
evident in source code. They may point out potential
structural shortcomings where the refactoring
opportunities exist. For example, the original design of a
software system follows the MVC model. But after
several versions of implementations, we find out several
classes in presentation layer often change together with a

few classes in data model layer. That may reveal the high
coupling between presentation and data model layer,
which means that the implementation deviates from the
original design. A “Separate presentation from data
model” refactoring could be applied to improve the
cohesion and reduce the coupling. We can also utilize the
co-evolution relationship to advice preventive-
maintenance activities. For example, if three classes are
often changed together, when the developers modified two
of them, we could recommend him to check out if they
also need to make some changes to the third one.
Change patterns. The class-hierarchy trees represent
inheritance relations among the classes of a software
system. The change trees reveal the modifications to the
class hierarchy trees. The change tree in Figure 1

corresponds to the differences between version 27 and 28
of the extended refactoring sample from M. Fowler’s
book [13] as found in [26]. In version 28, a new abstract
class, “Statement”, was created with three newly created
abstract methods, “eachRentalString”, “footerString”, and
“headerString”. The “value” methods of its two
subclasses, “HTMLStatement” and “PlainStatement”,
were pulled up into the new class “Statement”. . This
change tree represents the modifications to class hierarchy
after an “Extract Superclass” refactoring, which is
described as follows: “if you have two classes with similar
features, then create a superclass and move the common
features to the superclass [13]”. We have developed
XSLT programs that implement such heuristics to identify
the following types of refactorings contained in change
trees:
• Collapse hierarchy, Inline class;
• Extract class, Duplicate observed data;
• Extract superclass/subclass;
• Extract interface;
• Form template method;
• Replace type code with subclass;
• Pull up/down method/field;
• Move method/field;
• Add/remove parameter, Rename/Hide method.

6 UMLDiff in Eclipse
The design evolution analysis methodology presented

in this paper is implemented as an Eclipse [27] plugin, an
integral part of JRefleX project [24], whose goal is to
develop a set of tools to monitor the collaboration process
of software teams [18] and to aid the understanding of
changes in software design.
6.1 Visualization1

In addition to the UMLDiff algorithm and the heuristics
analysis XSLT programs we have already discussed, the
plugin includes several visualization instruments to
present the change trees, the aggregate data, and the

1 The full color figures in this section can be downloaded from

www.cs.ualberta.ca/~xing/screenshots.zip.

design evolution analysis results.

Figure 3: Evolution analysis perspective
Tree view. A change tree, its subtrees, and the

identified refactorings can be represented naturally in a
tree view, like the one shown in Figure 1, the top-left
corner of Figure 3, and the right-hand side of Error!
Reference source not found.. The different icons
represent the different object-oriented entities, “class”,
“interface”, “method”, and “field” respectively. The top-
right adornments show the modifiers of the object, for
example, “abstract”, “static”, etc. The bottom-right
adornments represent the status of particular object. It can
be plus sign for “insert”, minus sign for “delete”, filled
triangle for “rename”, empty triangle for “change
signature”, arrow with minus sign for “move source”,
arrow with plug sign for “move target”. The tree view
presents the developers the detailed structural
modifications to the class model of software system.

Evolution matrix and histogram. The evolution
matrix, like the one in the bottom-right corner of Figure 3,
provides a quick overview to the overall history of
evolution of the system or individual classes through its
development lifecycle. Each column represents a version
of the software, while each row represents the different
types of changes. Rows 1 to 10 show the following: ??a
newly created class (1), a deleted class (2), a newly
created method (3), a deleted method (4), a moved method
(5), a renamed method (6), a newly defined attribute (7), a
deleted attribute (8), a moved attribute (9), and a signature
change (10). The area of the bubble represents the amount
of such types of changes. Thus, a bubble of size s at the

(x,y) point in the matrix indicates that s number of
changes of type y happened between version x-1 and x.

The histogram, like the one reported Figure 4, depicts
the change profile of the system or individual classes. It is
a color stacking bar chart. The horizontal axis of the
histogram represents the versions of the software system,
while the vertical axis represents the amount of change.
The different colors represent the different type of
changes. The changes of type except those of type
“Delete” have positive values, and those of type “Delete”
have negative values.

Both the matrix and the histogram provide a good way
to visualize the high-level evolution information of a
software system. The matrix is good at presenting
evolution phases and styles, growth spurts, and unusual
incidents, while the histogram is effective for displaying
the amount of change and class evolution types.

Pie chart. The pie chart, like the one reported in the
bottom-left corner of Figure 3, is a primary tool to
summarize data. We use it to show the amount of different
types of changes and their ratios when system or a
particular class evolves from one version to the next. It
complements the matrix and histogram with actual
number and ratio of changes.
6.2 Usage scenario

Eclipse developers using the evolution-analysis plugin
start with a set of XMI models of a software system. They
can analyze any two versions, or run the plugin
incrementally. The plugin reads in the XMI models,

parses their class-hierarchy trees, applies the UMLDiff
algorithm against these trees and saves the deltas into
change trees, and finally extracts and analyzes the
aggregate information, which are visualized in the various
views discussed above in an Eclipse perspective shown in
Figure 3.

The change trees are shown in a tree view in the top-
left corner, Change Tree view. This view works similarly
to the navigator pane of many IDEs. The user can expand
or collapse tree to see more information. To look into the
source codes of a specific element, one can double click
on the element to bring out the java-source editor, shown
in the top-left corner. To inspect previous or next change
trees, one has to click the arrow button to move backward
or forward.

The bottom-left corner, Change Summary view, shows
a pie chart that summarizes the amount of different types
of changes and their ratios from one version to the next.

The bottom-right corner stacks three views, System
Evolution view, Class Evolution view, and Refactoring
view. The System Evolution view in Figure 3 shows the
evolution matrix of the system. The users can toggle
between the matrix and the histogram view. The detailed
information about what happened in a particular version
can be obtained from the Change Tree and the Change
Summary views. An editable comment view can be
toggled to let the users input any information they may
want to note about the system evolution.

Figure 4: Class-evolution view
The Class Evolution view of Figure 4 shows the

histogram of a class. It also lets the users toggle between
the matrix and histogram views. The plugin analyzes the
change profiles of individual classes, classifies them into
one or more of the evolution types that are shown in the
view title, and adds the default comments on evolution
types as shown in the right-hand side editable comment
window. A query mechanism is implemented to enable
the users to select and show the classes of evolution types
they are interested in. The plugin also identifies co-
evolving classes of individual classes. The users can select
one of them from the drop down menu of the class
evolution view to show the evolution information of that
class, if any.

The Refactoring view shown in Error! Reference
source not found. shows at the left-hand side a list of all

the identified refactorings that have been made in a
particular version. The right-hand side is a tree view that
displays the snippet of the change trees corresponding to
the selected refactoring.

Figure 5: Class-evolution view

7 The case studies
The objective of our evolution-analysis work is to

support developers and inspectors to understand software
evolution at the design level by identifying, analyzing, and
visualizing class hierarchy changes. In this section, we
discuss two case studies that we conducted to evaluate the
effectiveness of our method.

It is important to note here that the analysis of the case-
study data was performed by the first author alone, who
was not involved in the development of these software
systems. All his intuitions are in synch with the second
author’s-who happens to be the supervisor of these
software projects-post-mortem understanding of the
development progress.
7.1 Longitudinal architecture-evolution

analysis
Mathaino [15] is a research prototype tool that can be

used to migrate text-based legacy interfaces to modern
web-based platforms. It underwent 90 builds from July
2000 till February 2001. The first version has 64 classes,
284 methods, and 256 attributes. The last version has 143
classes, 1770 methods, and 1886 attributes.

The versions between 0-8, 20-41, and 43-80 were
growth phases, since the change activities in these
intervals were mainly the increase of class, interface,
method, and field, in which versions like 14, 23, 35, 40,
64, and 77 were growth spurts. The versions 7-9, 18-19,
and 40-42 were identified as maintenance phases, since
they contain much method and field movement. Several
refactorings, like Extract superclass, Extract class, Move
method, etc., were identified in these phases using
analysis method described in section 5, which was also
validated by the developer’s report in [22]. The versions
between 81-90 are a steady-going phase. Very few change
activities occurred in this phase. The software system was
stable. There was an unusual increase in size of system in
version 13 and a sharp decrease in version 18. The
inspection of change trees of version 13-12 and 18-17
revealed that there are many user interface related classes
added in version 13 but most of them are deleted in

version 18. All the evolution types of classes listed in
section 5 were identified.
7.2 Collaborative software development of

small undergraduate teams
In this subsection, we discuss a case study of the term

projects of five undergraduate teams that took place
during a single-term (about four months) software
engineering course. This course is organized in a three-
phase lifecycle, and the deliverables of three phases are
paper design, user-interface prototype implementation and
complete implementation. Currently, these three
deliverables are the points where the instructor can
identify design problems. Since the student-provided
documentation is not consistent throughout the various
documents, comparative analysis is difficult and problems
may go undetected. We chose to evaluate our design-
evolution method on this data, in order to explore its
potential impact in project-based software-engineering
education.

The objective of the particular term project was to
develop a daily event Calendar that can be used to plan
future appointments and to place reminders such as
holidays and events. Five student teams authorized us to
use their software products for this case study. We took
weekly snapshots of their projects from their CVS
repositories, from January 20th, 2003 through April 14th,
2003, resulting in 13 versions for each project.

Based on evolution-phase analysis, we discovered that
teams (A) and (E) defined a few classes in the first place,
and proceeded to develop them one step at a time. Their
change activities involved continuous small modifications.
Another characteristic of these two teams is that major
changes were made in the middle of their project
development, mainly between weeks 7 and 10. They did
not try to implement their project at the last minute, like
teams (B) and (C).

The evolution processes of teams (B) and (C) contain
two versions with aggressive growth spurts. Their projects
started with a few classes, and did not change a lot until
week 7. However, there is a sharp increase in the size of
their projects at week 8, which is followed by small
changes until week 10, in which another growth spurt is
observed. These occasional large modifications coincide
with the deadlines for project part 2 and part 3. This
means that most features and/or functionalities of their
projects were implemented just before the deadline - a bad
but not untypical practice. Teams (B) and (C) exhibited
similar evolutionary development styles. But, since team
(C) adopted the MVC model as the application
architecture, their work is more organized than that of
team (B), and their project quality as evaluated by the
course TA2 was better. This result validates our intuition
that good architecture enables software quality.

2 For each deliverable, all team projects were marked by the same

TA.

Team (D) exhibited a very interesting evolution style.
The most changes were made within the first two
consecutive versions when they started the development
of their project, in weeks 4 and 5. They may have a very
good requirement analysis and high-level system design in
the first place. Therefore, they seem to know what
architecture should be adopted, what functionalities
should be supported, and further how to implement them.
In that way, they were able to put almost everything in
place when they started implementation. Actually, they
obtained the best mark for the first deliverable which is
essentially a requirements-and-design document, Their
change activities at the class level are well-planed and that
is just the opposite to those of most other teams. Most
other teams added many new classes when the project
deadline was approaching in week 10. Team (D) just
added a few things, but the most remarkable thing for
team (D) at week 10 is that they moved some methods
among classes, which means they were trying to improve
the system structure, when most other teams were
struggling to meet their requirements.

In these five projects, we were able to find in stances of
all the class-evolution types but die-hard and legacy. We
believe that the reason is the nature of the undergraduate
term projects. They are relatively small and must be
completed within about 3 months. The structure of system
is simple, and thus it does not need such maintenance
activities that bring about die-hard and legacy classes. On
the other hand, due to time constraints students aim at
completing a working system and are usually unwilling to
perform such maintenance activities. However, we found
evidence of refactoring. For example, at the snapshot
taken on week 11, team (E) created a utility class named
“DateWorker” and date-related functionality was moved
from the pre-existing “Appointment” class to the new
“DateWorker” class. This is an example of the “class
extraction” refactoring.

8 Conclusions
In this paper, we discussed our recent work on

understanding the evolution history of object-oriented
applications by analyzing the changes of their class-
inheritance hierarchies.

At the crux of this work is the change-tree data
structure that summarizes the structural differences
between two versions of the application’s class hierarchy.
UMLDiff, the change-tree construction algorithm that
produces the change tree, unlike earlier string- and XML-
differencing algorithms, is able to recognize element
moves in addition to element additions, deletions, and
renamings; thus, modifications that were reported as
unrelated deletions and additions become noticeable.
Furthermore, it reports the detected changes in terms of
UML semantics, thus better matching the developers’
intuition about their system. In addition to UMLDiff, we
have also developed a suite of analysis tools and

visualization instruments used to make design-evolution
information intuitive to software developers and
inspectors. These tools capture evolution information at
several levels of granularity: the system level, the
individual-class level and the change-pattern level. To
date, we have evaluated this work in the context of two
different case studies, both of which revealed interesting
information about the design of the subject software
systems to an analyst with no prior knowledge of their
development.

In the future, we plan to extend the process with an
interactive step for heuristically discovering further types
of changes, such as field renamings for example. We plan
to investigate the comparison of original designs against
designs reverse-engineered from code to identify
discrepancies between the designers’ intent and the actual
implementation. We also plan to evaluate the impact of
our methodology when available to developers in the
process of development. We expect that this analysis
should enable them to better monitor and control the
progress of their work.

References
1. R. Agrawal and R. Srikant, “Fast Algorithms for Mining

Association Rules”, Proceedings of the 20th International
Conference on Very Large Databases, Santiago, Chile,
September 1994.

2. E. J. Barry, C.F. Kemerer, and S.A. Slaughter, “On the
Uniformity of Software Evolution Patterns”, Proceedings of
the 25th International Conference on Software Engineering,
Portland, Oregon, May 2003, pp. 106-113.

3. D. Barnard, G. Clarke and N. Duncan, "Tree-to-tree
Correction for Document Trees", Technical Report 95-375,
Queen's University, January 1995.

4. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J.
Widom, “Change detection in hierarchically structured
information”, Proceedings of the ACM SIGMOD
International Conference on Management of Data,
Montréal, Québec, June 1996, pp. 493-504.

5. C. Collberg, S. Kobourov, J. Nagra, J. Pitts and K.
Wampler, “A system for graph-based visualization of the
evolution of software”, Proceedings of the 2003 ACM
symposium on Software visualization, San Diego,
California.

6. S. Demeyer, S. Ducasse, and M. Lanza, “A hybrid reverse
engineering platform combining metrics and program
visualization”, Proceedings of 6th Working Conference on
Reverse Engineering, IEEE, Oct. 1999.

7. S. Demeyer, S. Ducasse, and O. Nierstrasz, “Finding
refactorings via change metrics”, ACM SIGPLAN notices,
2000, 35(10):166-177.

8. A. Egyed, “Scalable Consistency Checking between
Diagrams - The VIEWINTEGRA Approach,” Proceedings of
the 16th IEEE International Conference on Automated
Software Engineering, San Diego, USA, 2001.

9. S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and A.
Mockus, “Does Code Decay? Assessing the Evidence from
Change Management Data”, IEEE Transactions on
Software Engineering, 2001, 27(1):1–12.

10. S. G. Eick, J.L. Steffen, and E.E. Sumner, “SeeSoft—A
tool for visualizing line-oriented software statistics”, IEEE
Trans. Software Engineering, 1992, 18(11):957–968.

11. S. G. Eick, T.L. Graves, A.F. Karr, A. Mockus, and P.
Schuster, “Visualizing Software Changes”, Software
Engineering, 2002, 28(4):396-412.

12. E. V. Emden and L. Moonen, “Java Quality Assurance by
Detecting Code Smells”, Proceedings of 9th Working
Conference on Reverse Engineering”, Oct, 2002.

13. M. Fowler, “Refactoring: Improving the Design of Existing
Code”, Addison-Wesley, 1999.

14. H. Gall, K. Hajek and M. Jazayeri, “Detection of Logical
Coupling Based on Product Release History”, Proceedings
of the International Conference on Software Maintenance,
Bethesda, Washington D.C., November 1998.

15. R. Kapoor and E. Stroulia, “Mathaino: simultaneous legacy
interface migration to multiple platforms”, Proceedings of
9th International Conference on Human Computer
Interaction, 2001.

16. R. Kollmann, P. Selonen, E. Stroulia, T. Systa, A. Zundorf,
“A study on the Current State of the Art in Tool-Supported
UML-Based Static Reverse Engineering”, Proceedings 9th

Working Conference on Reverse Engineering, IEEE.
17. M. Lanza, “The Evolution Matrix: Recovering Software

Evolution using Software Visualization Techniques”,
Proceedings of International Workshop on Principles of
Software Evolution, 2001.

18. M. M. Lehman and L. A. Belady, “Program Evolution-
Processes of Software Change”, Academic Press, London,
1985, 538pps.

19. Y. Liu and E. Stroulia, “A Lightweight Project-
Management Environment for Small Novice Teams”,
Proceedings of 3rd International Workshop on Adoption-
Centric Software Engineering, 2003, pp. 42-48.

20. E. Myers, “An O(ND) difference algorithm and its
variations”, Algorithmica, 1986, 1(2):251-266.

21. P. Selonen, K. Koskimies, M. Sakkinen, “Transformations
between UML Diagrams”, Journal of Database
Management, Vol. 14, No. 3, 2003.

22. E. Stroulia and R. Kapoor, “Metrics of Refactoring-based
Development: An Experience Report”, Proceedings of the
7th International Conference on Object-Oriented
Information Systems, Calgary, AB, Canada, 27-29 August
2001, pp. 113-122, Springer Verlag.

23. R. A. Wagner and M.J. Fischer, “The string-to-string
correction problem”, Journal of the ACM, January 1974,
21(1):168-173.

24. K. Wong, W. Blanchet, Y. Liu, C. Schofield, E. Stroulia,
and Z. Xing, “JRefleX: Towards Supporting Small Student
Software Teams”, IBM Eclipse Workshop at OOPSLA
2003 (to appear).

25. T. Zimmermann, S. Diehl, and A. Zeller. “How History
Justifies System Architecture (or not)”. Proceedings of
International Workshop on Principles of Software
Evolution, Helsinki, Finland, September 2003.

26. http://www.cs.unc.edu/~stotts/COMP204/refactor.
27. Eclipse, http://www.eclipse.org.
28. Mosell EDM Ltd, http://www.deltaxml.com.
29. Rational Rose, http://www.rational.com.
30. Together, http://www.togethersoft.com.
31. Weka, http://www.cs.waikato.ac.nz/~ml/weka

