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Abstract

Longitudinal studies of repeated observations on subjects are commonly

undertaken in medical and biological sciences. The responses on a given occa-

sion may be either univariate or multivariate. We concentrate on three topics

related to longitudinal and clustered data analysis. The first topic is the de-

velopment of a class of generalized linear latent variable models. The second

involves the modelling of count data with excess zeros. The third is the devel-

opment of a non-Gaussian linear mixed effects model for multiple outcomes.

In addressing the first problem, we propose random mean models to ac-

count for correlation among repeated measures. We extend random mean

models to include mixed outcomes, renaming them random mean joint mod-

els. The difficulty in joint modelling of continuous and discrete outcomes is

the lack of a natural multivariate distribution. We overcome the difficulty

by introducing two cross-correlated latent processes. We apply the Monte

Carlo EM (MCEM) algorithm to find the MLEs of regression coefficients and

variance components, by treating the latent variables as missing data.

This thesis also proposes regression models for count data with excess ze-

ros. We solve the problem from a perspective different from that of mixture

model framework. By employing the zero truncated distribution and the zero

modified distribution, we establish a broad class of distributions to model data

with excess zeros. We consider the zero modified Poisson regression model and

zero modified binomial regression model for cross-sectional data. We extend

the zero modified regression models to models with random effects. We further

extend random mean models to model zero-inflated data, and formulate the



corresponding zero modified random mean models.

A non-Gaussian linear mixed effects model for multiple outcomes is pro-

posed to the third question. The methodology is motivated by a glaucoma

study. The normality assumption for random effects may be unrealistic, rais-

ing concerns about the validity of inferences on fixed effects and random effects

if it is violated. To accommodate the skewness of the responses and the as-

sociations among multiple characteristics, we propose a mixed effects model,

in which non-normal random effects are assumed by the log-gamma distribu-

tion.
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Chapter 1

Introduction

Longitudinal studies of repeated observations on subjects are commonly un-

dertaken in medical and biological sciences. They are important in the study

of chronic diseases such as arthritis, nephritis, diabetes and chronic obstructive

pulmonary diseases. The primary interests in the analysis of longitudinal data

are the mechanisms of change over time, and the effects of covariates on the

progression of the diseases. The responses on a given occasion may be either

univariate or multivariate.

In this thesis, we concentrate on three topics related to longitudinal and

clustered data, which together cover a broad range of types of data and ap-

plications. The first topic is the development of a flexible class of generalized

linear latent variable models for univariate and bivariate longitudinal and clus-

tered data. The second involves the modelling of count data with excess zeros

in the cross-sectional and longitudinal studies. The third consists of the mod-

elling of bivariate longitudinal data with skewed random effects.

Part I

1



The theories for longitudinal data are well developed. Diggle et al. (1995)

[22] present a comprehensive introduction to the analysis of the longitudinal

data. Molengerghs and Verbeke (2005) [32] describe recent developments in

the analysis of discrete longitudinal data. The mixed effects models, the most

commonly used models in longitudinal and clustered data analysis, assume

that all correlations can be described by random effects. However, in some

case, it is likely that other sources of correlation may be present, for example,

time-series correlation. See Stiratelli et al. (1984) [89], Zeger et al. (1985)

[108], Kaufmann (1987) [52], Zeger (1988) [104], Zeger and Qaqish (1988)

[109], Chan and Ledolter (1995) [13], and Davis et al. (2000) [18].

Cox et al. (1981) [15] characterized two classes of models of time-dependent

data: the parameter-driven model, and the observation-driven model. The

parameter-driven model has been studied for count data and binary data

separately, albeit not in a unified way for the members in the exponential

family. In observation-driven models, also known as the transition models,

the conditional distribution of the response is specified as a function of past

observations. Although the observation-driven models have some advantages

from a computational point of view (Harvey and Fernandes (1989) [44]), the

parameter-driven model is conceptually more attractive.

In Chapter 2, we review generalized linear model, mixed effects models,

and as well as the Monte Carlo sampling rules. Chapter 3 and Chapter 4 ad-

dress the first topic of the thesis. In Chapter 3, we concentrate on univariate

data and propose a flexible class of generalized linear latent variable models

for responses with clustered and longitudinal structures. We consider a family

of models, called random mean models (RMMs) (Zhang (2006) [110]), to ac-

count for correlation among repeated measures. This class is parameter-driven

2



(Cox et al. (1981) [15]), and encompasses all the members in the exponen-

tial family. Our objective is to model the mean of the response as a function

of the covariates and an unobserved latent variable, with some specified co-

variance structure on the latent process. The responses are assumed to be

conditionally independent given the latent variable, both over time and across

subjects. The latent variable can provide an interpretation of the data gen-

eration mechanism. Linear mixed effects models and generalized linear mixed

effects models are special cases of random mean models, in which the latent

variables are modelled through random effects.

With regard to parameter-driven models for count data, Zeger (1988)

[104], and Chan and Ledolter (1995) [13] propose two different methods for

the statistical inference of regression parameters. Zeger (1988) employs a

quasi-likelihood approach resembling generalized estimating equations (GEE)

method developed for population-averaged methods, while Chan and Ledolter

(1995) use a Markov Chain Monte Carlo algorithm. For the statistical in-

ference in random mean models, we apply the adaptive Gaussian quadrature

method in the approximation of the integration of the marginal likelihood

function.

In Chapter 4, we extend random mean models to bivariate mixed out-

comes, renaming them random mean joint models. A number of joint mod-

elling strategies for mixed outcomes have been studied in the literature: those

of Catalano and Ryan (1992) [12], Fitzmaurice and Laird (1995) [29], Shah et

al. (1997) [86], Sammel et al. (1997) [84], Dunson (2000) [24], Gueorguieva

and Agresti (2001) [41]. The difficulty in joint modelling of continuous and

discrete outcomes is the lack of a natural multivariate distribution. In random

mean joint models, two cross-correlated latent processes are introduced to ac-

3



count for the correlation between different outcomes. For longitudinal data,

we propose a specific form of the cross covariance matrix of the latent process

using Kronecker product. We are able to simplify the log-likelihood function

of the latent variables, especially the inverse and the determinant of the high

dimensional covariance matrix.

A big obstacle to the development of the parameter-driven models for the

mixed outcome data is that the likelihood methods are computationally inten-

sive, and the Monte Carlo method may be employed. For the statistical infer-

ence of random mean joint models, we apply the Monte Carlo EM (MCEM)

algorithm to find the MLEs of regression coefficients and variance components,

by treating the latent variables as missing data. In the implementation of the

MCEM algorithm, we approximate the Q function by the importance sam-

pling approach, and use Laplace approximation to the posterior distribution

of the latent variables given the responses to find the approximate mean and

covariance of the instrumental distribution. We demonstrate the methodology

with two simulations and a kidney study data set.

Part II

In recent years there has been considerable interest in models for count data

that allow for excess zeros in the cross-sectional and longitudinal studies. The

generalized linear Poisson models for count data may encounter lack of fit due

to disproportionately large frequencies of zeros. The count data with excess

zeros are often overdispersed relative to Poisson distribution. This overdisper-

sion does not arise from heterogeneity, it arises from the large frequencies of

zeros. The variance-mean relationship must be correctly modelled. Addressing

this issue is the second topic of this thesis.

4



In the literature, Mullahy (1986) [69], Heilbron (1989) (1994) [46] [47], and

Lambert (1992) [55] pioneered the regression models based on the zero-inflated

Poisson (ZIP) distribution. The ZIP distribution can be viewed as an extreme

case of the mixture model of a Poisson distribution and the discrete distri-

bution with point mass of one at zero. Hence, the statistical inference, and

the lack of fit test of the ZIP regression models are inherited accordingly from

the mixture model framework. Hall (2000) [43] adapted Lambert’s method-

ology to an upper bounded count situation, and introduced the zero-inflated

binomial (ZIB) regression models.

In addition to the cross-sectional data, zero inflation may also occur with

repeated measures or longitudinal data. Many researchers have incorporated

random effects into a wide variety of regression models to account for corre-

lated responses and multiple sources of variance. Duijn and Bockenholt (1995)

[23] propose a mixture model, in which the distribution of the Poisson inten-

sity parameter is a step function and is modelled by a gamma distribution, to

analyze the overdispersed repeated count data. Zero-inflated regression mod-

els for continuous data with repeated measures have also been considered by

Olsen and Schafer (2001) [72], Berk and Lachenbruch (2002) [5], Tooze et al.

(2002) [96], and Yau et al. (2002) [103]. Hall (2000) incorporated random

effects into the ZIP and ZIB models to accommodate repeated measures, so

the within-subject correlation and between-subject heterogeneity typical of

repeated measures can be accommodated.

In Chapter 5, we focus on the second topic of the thesis: the construction

of regression models for count data with excess zeros. We solve the problem

from a perspective different from that of the mixture model framework. By

employing the zero truncated distribution, and the zero modified distribution,

5



we establish a broad class of distributions to model data with excess zeros,

including discrete distributions as well as continuous distributions.

We are mainly interested in count data in this topic. We consider the zero

modified Poisson regression model and the zero modified binomial regression

model for crosse-sectional data. We then extend the zero modified regression

models to the ones with random effects for clustered data. Two simulations

for the zero modified regression models with random intercept are conducted,

and a real data example is analyzed to illustrate the new methods. We also ex-

tend the random mean models introduced in Chapter 3 to model zero-inflated

data, and formulate the corresponding zero modified random mean models. A

simulation is conducted to evaluate the random mean model for the temporal

count data.

Part III

In Chapter 6, we present a non-Gaussian linear mixed effects model for multiple

outcomes. The methodology described in this chapter is motivated by a glau-

coma study. The normality assumption for random effects in the linear mixed

model may be unrealistic, raising concerns about the validity of inferences on

fixed effects and random effects if it is violated. For single-characteristic lon-

gitudinal data, it has been shown (Verbeke and Lesaffre (1996), (1997) [97]

[98]) that deviations from the normality assumption have little impact on the

estimation of the fixed effects and variance components, and much more on

the empirical Bayes estimates for random effects in linear mixed models, which

may still hold under multiple characteristics case.

In the preliminary study of the glaucoma data set, we found that the distri-

bution of one of the characteristics is skewed. To accommodate the skewness of

6



the responses and the associations among multiple characteristics, we propose

to extend the mixed effects model used in a single characteristic longitudinal

study in Zhang et al. (2008) [111], to the situation where non-normal random

effects are assumed by the use of the log-gamma distribution in the multiple

characteristics longitudinal study. We allow the number and time of repeated

measures to differ for different characteristics and units. Adapting the model

from one to two characteristics makes the modelling complicated. We are able

to reduce the computational complexity by introducing a linear transformation

matrix and reordering random effects according to whether they show skewed

pattern in the analysis of the within-subject regressions of each characteristics.

Prior to application of this model, it is essential to examine the necessity of

the adjustment for the skewed random effects. Having noted that the limiting

distribution of the family of log-gamma distributions is normal, we propose a

lack-of-fit test for comparing the log-gamma model and the Gaussian model,

based on the profile likelihood function of the shape parameter.

7



Chapter 2

Preliminaries

2.1 Generalized Linear Model

We describe the generalized linear model as formulated by Nelder and Wed-

derburn (1972) [71] in Rodŕıguez’s note (2007) [81]. We assume that Y comes

from a distribution in the exponential family if it has probability density

function

f(y| θ, ϕ) = exp{(yθ − b(θ))/a(ϕ) + c(y, ϕ)},

for known functions a(ϕ), b(θ) and c(y, ϕ), with parameters θ and ϕ. The

parameter ϕ stands for a certain type of nuisance parameter, such as the

variance σ2 of the normal distribution. Here θ is the canonical parameter, and

ϕ is the scale parameter. In all models considered in the thesis, the function

a(ϕ) has the form

a(ϕ) = ϕ/p,

8



where p is a known prior weight, usually 1.

The parameters θ and ϕ are called location and scale parameters. It can

be shown that Y has mean and variance

E(Y ) = b′(θ)

Var(Y ) = b′′(θ)a(ϕ),

where b′(θ) and b′′(θ) are the first and second derivatives of b(θ). The expo-

nential family includes normal, binomial, Poisson, exponential, gamma and

inverse Gaussian distributions as special cases.

In the generalized linear model, instead of modelling the mean, a one-to-one

continuous differentiable transformation g(µ) on the mean

η = g(µ),

is introduced to relate the mean to the linear predictor. The function g(µ) is

called the link function. Examples of link functions include the identity, log,

reciprocal, logit and probit etc.

The link function relates the linear predictor η = x′βββ to µ, the expectation

of Y . The most commonly used link function is the canonical link

θ = η = x′βββ.

9



2.2 Longitudinal and Clustered Data

Longitudinal studies involve repeated observations of variables obtained from

a single individual at different occasions. Observations for the same individ-

ual typically exhibit positive correlation. Longitudinal data usually have a

temporal order. The ordering of the repeated measures are importance in the

analysis. However, many studies in the health sciences give rise to data that

do not have a temporal order, but are clustered. As mentioned in Fitzmau-

rice et al. (2004) [31], clustered data arise in cases when intact groups are

randomized to interventions or when naturally occurring groups in the popu-

lation are randomly sampled. One example of the former is group-randomized

trial. In a group-randomized trial, also known as a cluster-randomized trial,

groups, rather than the individuals themselves, are randomized to different

interventions. Examples of the latter are data arisen from random sampling

of naturally occurring groups, where the sampling units could be families,

households, hospital wards, medical practices, neighborhoods, or schools.

In clustered data, measurements within a cluster are expected to be more

similar than the measurements in different clusters. The correlation or associ-

ation is usually used to measure the degree of clustering among the measure-

ments within the same cluster. Many standard statistical techniques require

independence assumption of the data, hence special models are proposed for

clustered data, which explicitly describe and account for the correlation or as-

sociation. As longitudinal data are special case for clustered data, albeit with

a natural ordering of the measurements within a cluster, a general method for

clustered and longitudinal data analysis is reviewed in this section.

The last few years have seen remarkable advances in methods for analyzing
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longitudinal and clustered data. In particular, there now exists a broad and

flexible class of models for correlated data based on a regression paradigm.

Regression models have been developed for correlated continuous, binary re-

sponses and count responses. Mixed effects models for repeated measures data

have become popular because their flexible covariance structure allows for non-

constant correlation among the observations from the same individual. Much

work has been done to extend the linear regression model and the generalized

linear models to repeated measures (Laird and Ware (1982) [54]; Stiratelli et

al. (1984) [89]; Liang and Zeger (1986) [57]; Zeger et al. (1988) [107]; Lind-

strom and Bates (1990) [59]). We first review the linear mixed effects models

for continuous response, and then the generalized linear mixed effects model.

2.2.1 Linear Mixed Effects Models

The most common approach for analyzing continuous clustered or longitudinal

data is linear mixed effects models (LMMs). The underlying premise of linear

mixed effects models is that the subset of the regression parameters vary ran-

domly from one individual to another, thereby accounting for the sources of

natural heterogeneity in the population. Individuals in the population are as-

sumed to have their own subject specific mean response trajectories over time

and a subset of the regression parameters are now regarded as being random.

We assume there are N individuals. For the ith individual, we have col-

lected ni repeated observations, with the response variable Yij measured at

time tij, i = 1, . . . , N, j = 1, . . . , ni. The linear mixed effects model can be

expressed as

Yi = Xiβββ + Zibi + ei,
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where βββ is a k× 1 vector of fixed effects; bi is a q× 1 vector of random effects

and usually bi ∼MVN(0, Gi(σ
2
1σ
2
1σ
2
1)); Xi is a ni× k matrix of covariates; Zi is a

ni × q matrix of covariates (usually q < k); ei is a ni × 1 vector of errors and

ei ∼MVN(0, Ri(σ
2σ2σ2)).

Conditional on the random effects bi and covariates Xi, the responses in

Yi from the same individuals are assumed to be independent. The marginal

or population-averaged mean and covariance can be calculated as

E(Yi) = E{E(Yi|bi)} = E(Xiβββ + Zibi) = Xiβββ,

and

Cov(Yi) = Cov{E(Yi|bi)}+ E{Cov(Yi|bi)}

= Cov(Zibi) + Cov(ei)

= ZiCov(bi)Z
′
i + Cov(ei)

= ZiGiZ
′
i +Ri.

The marginal covariance matrix is not diagonal, thereby accounting for the

correlation among the repeated observations on the same subjects in a longi-

tudinal study.

2.2.2 Generalized Linear Mixed Effects Models

The Generalized Linear Mixed Effects Models (GLMMs) (Schall (1991) [85],

Zeger and Karim (1991) [105], Breslow and Clayton (1993) [8]) are the most

frequently used random effects models in the context of discrete repeated mea-

surements, and are a popular way to model such type of data arising in clinical
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trials and epidemiological studies of cancer and other diseases. They are an

extension of the class of generalized linear models in which random effects

are added to the linear predictor. This modification extends the broad class

of generalized linear models to accommodate correlation via random effects,

while retaining the ability to model nonnormal distributions and allowing non-

linear models of specific form. The class of GLMMs includes the special cases

of linear mixed models, random coefficient models, random effects logistic re-

gression, and random effects Poisson regression, and etc.

The incorporation of random effects is a natural way to model or accom-

modate correlation in the context of a nonlinear model for nonnormal data.

It generates a rich class of correlated data models that would be difficult to

specify directly. Readily available, flexible, multivariate distributions analo-

gous to the multivariate normal distribution do not exist for most nonnormally

distributed data.

Inferences for these models can be of the usual variety, that is, modeling

the effect of predictors on the mean, in which case the random effects and

correlation are “nuisance” features of the model. In other situations, however,

both estimation and testing of the variances of the random effects, as well as

prediction of the realized values of the random effects, may be of interest.

As before, Yij, is the jth outcome for the cluster i, i = 1, . . . , N ; j =

1, . . . , ni and Yi is the vector of all measurements for the cluster i. We formu-

late the generalized linear mixed effects models using a two-step specification.

First-step: Assume that the conditional distribution of each Yij, given the

random effects bi, belongs to the exponential family with conditional mean
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connecting to the linear predictor through the link function g

g(E(Yij|bi)) = x′
ijβββ + z′ijbi.

Second-step: The b′
is are assumed to vary independently from one indi-

vidual to another and bi ∼MVN(0, Gi).

Maximum likelihood (ML) is the standard method of estimation for gener-

alized linear models. Evaluation of the likelihood and hence likelihood infer-

ence with GLMMs is computationally difficult. However, the random effects on

which the likelihood is conditioned must be integrated out of the distribution

prior to maximization as a function of the fixed effects. Although several use-

ful computational methods currently exist, the development of new methods

for GLMMs continues to be an active research area.

2.3 Background Material on Monte Carlo

We review the basics of Monte Carlo methods for the remainder of the chapter.

In statistics, we are often tasked with computing the expected value of a

function f(x) with respect to a probability density function p(x), where x ∈

Rn, especially when n is not small

I =

∫
x

f(x)p(x)dx.

If a cumulative distribution is non-decreasing and easily invertible then we

can draw samples from its distribution by using inverse sampling. However,

many distributions are difficult or impossible to invert, and in some cases a

closed-form representation might not exist or be computationally intractable
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to obtain. This is a problem since finding expected values of functions is often

a step in a lot of statistical problems. We outline two methods, importance

sampling, and rejection sampling, that are useful when direct simulation from

p is difficult or impossible but direct simulation from another distribution q

is possible. We refer to the distribution similar to p as the instrumental

distribution, and label it q.

2.3.1 Importance Sampling

The basic idea of importance sampling is to draw from a similar distribution

other than p(x), say q(x), and then correct for the bias introduced by sampling

from the wrong distribution. Suppose, we sample x(i), i = 1, . . . , N, indepen-

dently from the distribution q(x), then estimate the expectation of f(x) with

respect to p(x) by

Î =
1

N

N∑
i=1

p(x(i))

q(x(i))
f(x(i)). (2.1)

In (2.1), we can see the bias correction, or the importance weight p(x(i))/q(x(i))

can be determined exactly for a given sampling point x(i).

In practice, the actual p(x) or q(x) will often be unnormalized. The general

form of the approximation accounting for the unnormalized p̃ or q̃ can be

expressed as

Î1 =
N∑
i=1

ωif(x
(i)),
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where

ωi =
p̃(x(i))/q̃(x(i))∑N

k=1 p̃(x
(k))/q̃(x(k))

.

It is easy to see that E(Î) = I. The asymptotic variance σ2
q is defined as

σ2
q =

∫ [
f(x)p(x)

q(x)

]
2

q(x) dx− I2, (2.2)

and

Var(Î) =
σ2
q

N
.

As the number of samples is increased, the variance of the estimate Î will

decrease. The density q∗ that minimizes this asymptotic variance (2.2) is

known to be proportional to |f(x)|p(x) (Kahn and Marshall (1953) [51]). The

selection of q(x) will have a huge impact on the accuracy of our estimation. In

fact, one of the biggest problems with using the importance sampling method

is that a poor selection of the sampling distribution will lead to a high-variance

estimate Î, that yields the wrong answer without any indication.

2.3.2 Laplace Approximation

The Laplace approximation (Tierney and Kadane (1986) [95]) is very useful

for Monte Carlo as it may be used to construct accurate instrumental density,

q. The Laplace approximation is an analytic approximation to the expectation

with respect to a distribution p. We assume l(x) = log p(x) admits a second-

order Taylor expansion about the mode of p(x). Let x̂ denote the maximizer
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of l(x) satisfying the equation l
(1)
(x) = 0. The Laplace method can be applied

to approximate integrals of the form

∫
el(x)dx ≈

∫
exp

{
l(x̂) +

1

2
(x− x̂)′l

(2)

(x̂)(x− x̂)

}
dx

=

∣∣∣∣−2πl(2)(x̂)−1

∣∣∣∣ 12 el(x̂).
Similarly, we have

∫
x el(x) dx ≈

∣∣∣∣−2πl(2)(x̂)−1

∣∣∣∣ 12 el(x̂) x̂,
and

∫
xx′ el(x) dx ≈

∣∣∣∣−2πl(2)(x̂)−1

∣∣∣∣ 12 el(x̂)(x̂x̂′ − l(2)(x̂)−1

).

It suggests that p is approximately normally distributed with mean x̂, and

variance −l(2)(x̂)−1
. The Laplace approximation will be exact when l(x) is a

quadratic function of x. The integrand f(x) can be unnormalized posterior

distributions of the random effects. Tierney and Kadane reviewed the use of

Laplace’s approximation for moments of the posterior distribution in Bayesian

problems, and discussed modifications that result in higher-order accuracy. In

chapter 4, we will use the Laplace approximation to estimate the mean and

variance of p, and use these to construct an accurate instrumental distribution

function by shifting and scaling a heavy tailed t distribution by the approxi-

mate mean and standard deviation respectively.
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2.3.3 Rejection Sampling

Rejection sampling is a way to generate an i.i.d. sequence from the target

distribution p by thinning out an i.i.d sequence from q

p(x) = af(x)q(x), (2.3)

where a is the normalizing constant. This type of density function in (2.3) is

quite common in the random effects model and the random mean model, in

which f is the conditional density function of the response given the random

effects or the latent variable, and q is the density function of the random effects

or the latent variable.

A random sample from p can be selected as follows by multivariate rejection

sampling.

Step 1: Generate x from q and sample u from the uniform (0, 1) distribu-

tion.

Step 2: Accept x, and let z = x, if u ≤ f(x)/τ where τ = sup{f(x)}.

Otherwise, go to step 1.

This simple method of simulating from p is often very fast even if the

acceptance rate is quite low provided that it is easy to simulate from the

assumed random effects density.

Theorem 2.1: The random variables generated from the rejection sampling

algorithm are i.i.d. with distribution p.
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Proof:

P (Z ≤ z) = P (X ≤ z|X accepted)

=
P (X ≤ z, U ≤ f(X)/τ)

P (U ≤ f(X)/τ)

=

∫ z

−∞ q(x)f(x)/τ dx∫∞
−∞ q(x)f(x)/τ dx

=

∫ z

−∞

q(x)f(x)∫∞
−∞ q(x)f(x) dx

dx.

The derivation is easily extended for the multivariate case.
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Chapter 3

Random Mean Models

3.1 Introduction

In longitudinal and panel studies, random effects models are popular choices

for modelling unobserved heterogeneity. In these models, the outcomes are

modelled as independent variables conditionally on the subject-specific random

effects, and the covariance of the marginal distribution of the responses can be

expressed as functions of time, but also a function of the subset of covariates.

The induced correlation structure from the random effects seems somewhat

awkward and may be unrealistic in most cases. Moreover, it is likely that

other sources of correlation, such as time series correlation, may be present.

A better model would take into account the possible serial dependence within

subject-specific measurements.

Considerable effort has been devoted to the development of methods. Zeger

(1988) [104], Campbell (1994) [10], Brannas and Johansson (1994) [7], Chan

and Ledolter (1995) [13], Davis et al. (2000) [18], and Hay and Pettitt (2001)

[45] discussed models for regression analysis with a time series of counts. Cor-
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relation is assumed to arise from an unobservable process added to the linear

predictor in a log linear model. The mean function is specified by a lin-

ear predictor modified by a latent process. An alternative model is Poisson

counts mixed by gamma random effects to give negative binomial marginal.

Henderson and Shimakura (2003) [48] considered a Poisson-gamma model to

account for between-subjects heterogeneity and within-subjects serial corre-

lation. Thall (1988) [91] proposed a family of Poisson regression models in-

corporating a mixed random multiplicative component in the rate function of

each subject. Duijn and Böckenholt (1995) [23] considered a mixture model

with two gamma distributions for the Poisson parameter.

In this chapter, we consider a family of flexible models, random mean

models (RMMs) in Zhang (2006) [110], to characterize the correlation among

the repeated measures in the longitudinal and clustered data. In RMMs, a

latent variable is assumed to be associated with the mean function of the

response for each individual. The introduction of the latent variables is to

account for the correlation of the repeated responses, but they are not really

of intrinsic interest. The linear mixed effects models and the generalized linear

mixed effects models are special cases of random mean models, in which the

latent variables are modelled through the random effects.

The epileptic seizures data set analyzed by Thall and Vail (1990) [92],

and by Breslow and Clayton (1993) [8], is a motivation data set for the new

model. The scientific question concerned the effectiveness of the drug pro-

gabide to reduce the rate of epileptic seizures. Seizures data were collected

from a placebo-controlled clinical trial of 59 epileptics, which aimed to examine

the effectiveness of the drug progabide in treating epileptic seizures. Patients

suffering from partial seizures were enrolled in the study, and were randomly
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assigned to progabide or a placebo, in addition to a standard chemotherapy.

For each patient, the number of baseline epileptic seizures before the study

was recorded in the preceding eight weeks. The number of epileptic seizures

was then reported during four consecutive two-week periods after the random-

ization.

Breslow and Clayton (1993) considered subject level and unit level random

variation in their Model III. The set of independent random effects associated

at unit level with each visit was included in the log-linear model to represent

nonspecific overdispersion beyond that introduced by the subject-to-subject

variation. However, the random mean model, would be better suited to ex-

plaining the possible serial dependence within subject-specific measurements

than their Model III, in the computational consideration and in the modelling

itself.

The formulation and discussion of the random mean models are provided

in Section 3.2 and Section 3.3. The discussion particularly focuses on the

count data and continuous data, whose marginal moments can be explicitly

expressed by the parameters in the probability function of the latent variable.

Section 3.4 is about the statistical inference of the random mean model. We

apply the adaptive Gaussian quadrature method in the approximation of the

integration of the marginal likelihood function. We revisit and analyze the

epileptic seizures data set in Section 3.6. Concluding remarks are presented in

Section 3.7.
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3.2 Model Formulation

Let y = (y1, . . . ,yN) be the observed data vector, where yi = (yi1, . . . , yini) is

the vector of responses for the ith individual, i = 1, . . . , N , and xij be vector of

covariates associated with the jth response, j = 1, . . . , ni. Conditional on the

latent variable uij, the response yij is assumed to be arisen from a distribution

in the exponential family

f(yij|uij,βββ, ϕ) = exp{(yijθij − b(θij))/(aij(ϕ)) + c(yij, ϕ)},

with linear predictor, ηij = x′
ijβββ+uij, where βββ is the vector of regression coef-

ficients, and the conditional mean µij = E(Yij|Uij = uij) satisfies g(µij) = ηij,

for some link function g. The transformed conditional mean linearly depends

on both fixed effects βββ and the latent variable Uij. In addition, given the

random variable Ui = (Ui1, . . . , Uini), the responses Yij’s are independent of

one another. At the second level of the hierarchy, it is assumed that Ui is

a ni-variate random variable from a parametric distribution qi(ui;σσσ
2
1) with

variance components σσσ2
1. A common assumption is that Ui comes from a mul-

tivariate normal distribution with mean 0 and covariance matrix Σi = Σi(σσσ
2
1).

The Ui’s are assumed to be independent from one individual to another. The

conditional mean, conditional variance and canonical parameter are related

through the equation µij = b′(θij) and Var(Yij|uij) = b′′(θij)aij(ϕ) (McCullagh

and Nelder (1989) [63]).

We assume that the latent variable Ui = (Ui1, . . . , Uini), i = 1, . . . , N ,

is realization from a stationary process, whose variance and covariance func-

tions are not arbitrary but follow some pattern. For example, the covariance
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structure of the latent process could be compound symmetry, toeplitz, autore-

gressive, exponential and other patterns. The empirical observations about

the nature of the correlation among repeated measures in longitudinal studies

indicate that: (i) the repeated measures are positively correlated, (ii) the cor-

relations often decrease with increasing time separation, i.e., measures taken

closer together in time are expected to be more highly correlated than mea-

sures further apart in time. By selecting a covariance structure for the latent

variableUi, the random mean models can better accommodate the dependence

among data.

For example, when the number of measurement occasions is relatively

small, and all individuals are measured at the same set of occasions, we may

choose an unstructured covariance matrix



σ2
1 σ12 . . . σ1n

σ21 σ2
2 . . . σ2n

...
...

. . .
...

σn1 σn2 . . . σ
2
n


. (3.1)

Other covariance patterns could be compound symmetry, with constant vari-

ance across occasions, and constant correlation coefficients

σ2



1 ρ ρ . . . ρ

ρ 1 ρ . . . ρ

ρ ρ 1 . . . ρ

...
...
...
. . .

...

ρ ρ ρ . . . 1


; (3.2)
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The Toeplitz covariance patterns for any pair of responses that are equally

separated in time have the same correlation, and constant variance across

occasions

σ2



1 ρ1 ρ2 . . . ρn−1

ρ1 1 ρ1 . . . ρn−2

ρ2 ρ1 1 . . . ρn−3

...
...

...
. . .

...

ρn−1 ρn−2 ρn−3 . . . 1


; (3.3)

or the autoregressive model for equally spaced or approximately equally spaced

data

σ2



1 ρ ρ2 . . . ρn−1

ρ 1 ρ . . . ρn−2

ρ2 ρ2 1 . . . ρn−3

...
...

...
. . .

...

ρn−1 ρn−2 ρn−3 . . . 1


. (3.4)

3.3 Longitudinal Count and Continuous Data

In this section, we will discuss how the marginal moments of the response are

related to the regression coefficients and parameters in the probability density

function of the latent variable. Firstly, we express the marginal covariance

function of the responses in a general form under the random mean model.

Lemma 3.1: The marginal covariance between any pair of responses Yij and
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Yik, for j ̸= k, in the random mean model can be expressed as

Cov(Yij, Yik)

= E[Cov{Yij, Yik| σ(Uij, Uik)}] + Cov[E{Yij| σ(Uij, Uik)}, E{Yik| σ(Uij, Uik)}]

= Cov{E(Yij|Uij), E(Yik|Uik)}

= Cov{g−1(x′
ijβββ + Uij), g

−1(x′
ikβββ + Uik)}, (3.5)

where g is the link function. The second equality is from the conditional

independence assumption.

3.3.1 Count Data

In the case of count data, we are able to express the marginal covariance func-

tion of the responses explicitly in terms of the parameters in the distribution

of the latent process (see Zeger (1988) [104], and Davis et al. (2000) [18]).

We now derive how the latent process introduces the autocorrelation into

repeated measures. Suppose that, given the latent variable Uij, the response

Yij is from Poisson distribution with conditional mean E(Yij|Uij) = exp(x′
ijβββ+

Uij). For each individual, conditional on the latent variable Ui, Yi is a se-

quence of independent counts. We now show the marginal moments of the

response can be expressed as a function of the log linear regression coefficients

and the variance components of the distribution function of the latent variable

Ui.

Suppose that Uij is normally distributed with mean 0 and variance σ2, and

the latent variable Ui has an autoregressive covariance structure

Cov(Uij, Uik) = σ2ρ|k−j|, 0 ≤ ρ ≤ 1.
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By treating eUij is from the lognormal distribution, the marginal mean of the

response can be calculated as

E(Yij) = exp(x′
ijβββ + σ2/2). (3.6)

From (3.6), the unconditional mean of the response depends on the mo-

ment of the latent variable, which seems undesirable in the regression content.

Particularly, in order to have E(Yij) = exp(x′
ijβββ), it is required that Uij has

mean −σ2/2 under the normality assumption. However, as long as Ui is mean

stationary, all regression coefficients except the intercept are invariant under

changing assumptions about E(Uij).

By Lemma 3.1, the marginal covariance can be calculated as

Cov(Yij, Yik) = Cov{exp(x′
ijβββ + Uij), exp(x

′
ikβββ + Uik)}

= exp(x′
ijβββ + x′

ikβββ)Cov(e
Uij , eUik)

= exp(x′
ijβββ + x′

ikβββ){eσ
2(1+ρ|k−j|) − eσ2}

= E(Yij)E(Yik)(e
σ2ρ|k−j| − 1), for j ̸= k. (3.7)

The marginal variance can be calculated as

Var(Yij) = E{Var(Yij|Uij)}+Var{E(Yij|Uij)}

= E{Var(Yij|Uij)}+Var(µij)

= exp(x′
ijβββ + σ2/2) + exp(2x′

ijβββ)(e
2σ2 − eσ2

)

= E(Yij) + E(Yij)
2(eσ

2 − 1). (3.8)

By (3.7) and (3.8), the normalized covariance function can be calculated
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as

ρY (j, k) =
E(Yij)E(Yik)(e

σ2ρ|k−j| − 1)

[{E(Yij) + E(Yij)
2(eσ2 − 1)}{E(Yik) + E(Yik)

2(eσ2 − 1)}] 12

=
eσ

2ρ|k−j| − 1

[{E(Yij)−1 + eσ2 − 1}{E(Yik)−1 + eσ2 − 1}] 12
. (3.9)

From the above calculations, we see how the latent process introduces

both overdispersion and autocorrelation into the responses. For the binomial

distribution, we are unable to obtain closed form of the marginal mean and

marginal covariance function of the responses, but the numerical evaluation is

possible.

3.3.2 Continuous Data

In the case of continuous responses, the conditional mean of the response Yij,

given the latent variable Uij is expressed as

E(Yij|Uij) = x′
ijβββ + Uij + eij, (3.10)

where eij is the measurement error and independent of the latent variable.

The marginal covariance function of the responses is

Cov(Yij, Yik) = Cov(Uij, Uik),

for j ̸= k.
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3.4 Statistical Inference and Estimation

The joint probability for the response yi and the latent variable ui can be

expressed as

f(yi,ui) = f(yi|ui;βββ, ϕ) qi(ui;σσσ
2
1),

where

f(yi|ui;βββ, ϕ) =

ni∏
j=1

f(yij|uij),

under the conditional independence assumption. Since the latent variable ui

is unobserved, the inference about the parameters βββ, ϕ and σσσ2
1 is based on the

marginal likelihood function of the observed data

L(βββ, ϕ,σσσ2
1;y) =

N∏
i=1

∫
f(yi|ui;βββ, ϕ) qi(ui;σσσ

2
1) dui. (3.11)

The maximum likelihood estimates of βββ, ϕ and σσσ2
1 are simply those values

of βββ, ϕ and σσσ2
1 that maximize this likelihood function. However, as the case

of the generalized linear mixed effects models, the introduction of the latent

variables in the random mean models produces a greater degree of analytic

complexity. The marginal likelihood function of the random mean model,

obtained after integration over the latent variables, nearly always involves

intractable integrals.

In general, no analytic expressions are available for the integrals in (3.11),

and numerical approximations are needed. The numerical approximations can

be subdivided into two categories. One is based on the approximation of the
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integral, and the other is based on an approximation of the data. The Gaus-

sian quadrature method, simply approximates the integral in the marginal

likelihood function as a weighted sum of integrand evaluated over selected set

of abscissas. The adaptive gaussian quadrature rules (Liu and Pierce (1994)

[60], Pinheiro and Bates (1995) [73]) are the numerical integration centered at

the mode of the integrand, and rescaled according to the curvature of the log

function of the integrand. The penalized quasi-likelihood (PQL) and marginal

quasi-likelihood (MQL) are examples of the approximation of the data, in

which data are decomposed into the mean and error term, with a Taylor ex-

pansion of the mean (Goldstein (1991) [36]; Schall (1991) [85]; Breslow and

Clayton (1993) [8]; McGilchrist (1994) [65]). The difference among differ-

ent methods is the order of the Taylor expansion and the point at which the

approximation is expanded. Unfortunately, PQL approximate estimation pro-

cedure exhibits many numerical problems and it is not so uncommon that it

fails to converge in practical applications.

When the dimension of the integral is small, the numerical approximation is

preferable over the Monte Carlo methods. We will adopt the adaptive Gaussian

quadrature method in the evaluation of the marginal likelihood function of

random mean models.

3.5 Adaptive Gaussian Quadrature Approxi-

mations

In this section, we describe the adaptive Gaussian quadrature approximation

to evaluate the integral of the log-likelihood function of the random mean
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models. The ordinary Gaussian quadrature is used to approximate integrals

with respect to a given kernel by a weighted average of the integrand evalu-

ated at predetermined abscissas. The weights and abscissas used in Gaussian

quadrature rules for the most common kernels can be obtained from the tables

of Abramowitz and Stegun (1964) [1] or by using an algorithm proposed by

Golub and Welsch (1969) [38], and Golub (1973) [37].

A natural candidate for the kernel function for the quadrature rule is the

distribution of the latent variable, N (0,Σi). The Gaussian quadrature rule can

be viewed as a deterministic version of a Monte Carlo integration algorithm, in

which random samples of the latent variable are generated from the N (0,Σi)

distribution. The samples and the weights in the Gaussian quadrature rule

are fixed, while in the Monte Carlo integration algorithms they are left to be

randomly chosen.

However, several authors (Albert and Follmann (2000) [2], Lesaffre and

Spiessens (2001) [56]) have pointed out that ordinary Gaussian quadrature

can perform poorly for too few quadrature points even in quite simple models.

Essentially, the problem with ordinary Gaussian quadrature is that the inte-

grand is evaluated on a fixed grid of points, regardless of its behavior over the

range of integration. Regions in which the integrand behaves badly may be

underrepresented or even completely missed in the ordinary Gaussian quadra-

ture method. In such cases, it is advantageous to customize the quadrature to

the shape of the integrand, by concentrating quadrature points in the regions

of the bad behavior. This is the idea behind adaptive Gaussian quadrature.

In adaptive Gaussian quadrature (Liu and Pierce (1994); Pinheiro and

Bates (1995)), the grid of abscissas is centered at the conditional modes of

the integrand, rather than at 0 as in the ordinary Gaussian quadrature, and
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rescaled according to the curvature of the log function of the integrand. The

requirement for effective results with adaptive Gaussian quadrature is that

the ratio of the integrand to some Gaussian curve be a moderately smooth

function. This arises frequently, when the integrand is a likelihood function,

such as the product of a likelihood function and a Gaussian density function,

and the product of several likelihood functions, etc (Liu and Pierce (1994)).

There exists a close relationship among the Laplace approximation, impor-

tance sampling, and adaptive Gaussian quadrature rule (Pinheiro and Bates

(1995)). Moreover, the importance sampling tends to be much more efficient

than the Monte Carlo integration (Geweke (1989) [33]).

We now derive the adaptive Gaussian quadrature rule for the marginal

likelihood function of the random mean models. Let θθθ′ = (βββ′, ϕ, σσσ2
1
′
) denote

the vector of all unknown parameters. The log-likelihood of the marginal

distribution function can be written as

l(θθθ;y) =
N∑
i=1

log

∫
f(yi|ui;βββ, ϕ) qi(ui; Σi(σ

2
1σ
2
1σ
2
1)) dui, (3.12)

where f(yi|ui;βββ) is the conditional probability function of responses yi given

the latent variable ui.

Let f(yi,ui) denote the joint density function of the response and the latent

variable. The first and second derivatives of the log function of f(yi,ui) with

respect to ui are calculated as

∂logf(yi,ui)

∂ui

=

ni∑
j=1

Ij(yij − µij)− Σ−1
i ui (3.13)

∂2logf(yi,ui)

∂ui∂uT
i

= −Wi − Σ−1
i , (3.14)
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where Ij is ni dimensional unit vector with 1 at the jth element, µij is the

conditional mean E(Yij|uij), and the diagonal matrix Wi has the conditional

variance Var(Yij|uij) as the diagonal element.

It follows from (3.14) that
∂2logf(yi,ui)

∂ui∂uTi
is negative-definite and, as a result,

logf(yi,ui) is a strictly concave function of ui. Therefore, there is a unique

point of maximum ûi corresponding to
∂logf(yi,ui)

∂ui
= 0. By taking a second-

order Taylor expansion of logf(yi,ui) around ûi, the integrand in (3.12) is

approximately N (ûi,−∂2logf(yi,ui)
∂ui∂uTi

−1

|ui=ûi) up to a normalizing constant.

The critical step for the success of importance sampling is the choice of an

importance distribution that approximates the integrand. For RMMs, the in-

tegrand f(yi,ui) is approximated by N(ûi,−∂2logf(yi,ui)
∂ui∂uTi

−1

|ui=ûi) density, after

accounting for some constant coefficient. This is the importance distribution

used in the adaptive Gaussian quadrature rule, so that the grid of abscissas

is centered around the conditional modes ûi and
√
2(−∂2logf(yi,ui)

∂ui∂uTi
|ui=ûi)

− 1
2 is

used for scaling.

Define uk = (uk1 , . . . , ukni )
′, where ukl and ωkl , kl = 1, . . . , NGQ, denote,

respectively, the abscissas and the weights for the one-dimensional Gaussian

quadrature rule based on the N (0, 1) kernel. Centering and scaling the abscis-

sas uk according to

ũik = ûi +
√
2

(
−∂

2logfT (yi,ui)

∂ui∂uT
i

∣∣∣∣ui=ûi

)
− 1

2uk, i = 1, . . . , N.

Gaussian quadrature rules for multiple integrals are complex. However,

using the structure of the integrand in the random mean models, we can break

the problem into successive applications of simple one-dimensional Gaussian

quadrature rules. Each component of ũik follows the one dimensional adaptive
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Gaussian quadrature rule. The adaptive Gaussian quadrature approximation

to the log-likelihood function is

lAGQ(θθθ;y) =
N∑
i=1

ni

2
log2− log

(
−∂

2logf(yi,ui)

∂ui∂uT
i

∣∣∣∣ui=ûi

)
1
2 + log

NGQ∑
k

f(yi, ũik)Wk,

where Wk = exp(∥uk∥2)
∏ni

l=1 ωkl .

3.6 Data Example: Epileptic Seizures Data

We revisit the epileptic seizures data set analyzed by Thall and Vail (1990)

[92], and Breslow and Clayton (1993) [8]. Seizures data are from a placebo-

controlled clinical trial of 59 epileptics. For each patient, the number of base-

line epileptic seizures before the study was recorded in the preceding eight

weeks. The number of epileptic seizures was then reported during four con-

secutive two-week periods after the randomization.

We model the seizure data through random mean model. Specifically,

the conditional mean of the response is assumed to linearly depend on the

covariates and latent variable on the log scale

log(µij) = basei + β0 + β1 trti + β2 logagei + β3 visitj + uij,

i = 1, . . . 59, j = 1, . . . , 4,

with some covariance pattern structure imposed on the latent process. In this

data set, the dependence arises from the potential serial correlation between

years for each patient. We consider the autoregressive covariance structure,

and compound symmetry structure for the latent process. Model III in Breslow
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Parameter Estimate Standard Error P-value
intcpt −1.0838 1.0736 0.3171
trt −0.3179 0.1419 0.0291
logage 0.3580 0.3175 0.2645
visit −0.0503 0.0402 0.2160
σ2 0.3459 0.0598 <.0001
ρ 0.6896 0.0767 <.0001

Table 3.1: Estimates of the fixed effects and variance components of RMM
with AR(1) covariance structure

Parameter Estimate Standard Error P-value
intcpt −0.9469 1.1336 0.4072
trt −0.3081 0.1498 0.0445
logage 0.3166 0.3361 0.3503
visit −0.0511 0.0330 0.1272
σ2 0.3578 0.0647 <.0001
ρ 0.6416 0.0866 <.0001

Table 3.2: Estimates of the fixed effects and variance components of RMM
with compound symmetry covariance structure

and Clayton (1993) corresponds to a random mean model with compound

symmetry covariance structure. We also model the data through GLMM with

random intercept for the purpose of model comparison.

Table 3.1 lists the estimates and standard errors of of the fixed effects

and variance components of RMM with AR(1) covariance structure for the

latent variables. Table 3.2 lists the estimates and standard errors of the fixed

Parameter Estimate Standard Error P-value
intcpt −0.8837 1.1427 0.4424
trt −0.3132 0.1513 0.0429
logage 0.3184 0.3395 0.3522
visit −0.0591 0.0203 0.0051
σ2 0.2692 0.0618 <.0001

Table 3.3: Estimates of the fixed effects and variance components of GLMM
with random intercept
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Model AIC BIC -2loglike
AR(1) 1267.9 1280.3 1255.9
Compound Symmetry 1265 1277.4 1253
Random Intercept 1346.9 1357.3 1336.9

Table 3.4: Model Comparison

Mean Std Dev Min Max
0.04043 0.49727 -1.27969 1.63323

Table 3.5: Summaries of the empirical estimates of the latent variables

effects and variance components of RMMwith compound symmetry covariance

structure of the latent variables. Table 3.3 lists the estimates and standard

errors of the fixed effects and variance components of GLMM with random

intercept.

The model selection criteria (both Akaike information criterion (AIC) and

Bayesian information criterion (BIC)) suggest that compound symmetry co-

variance structure is preferred over AR(1) covariance structure. From Ta-

ble 3.2, we see that treatment effect is statistically significant and the data

provide evidence that the treatment is helping to lessen the disease symptoms.

The AIC and BIC of the two random mean models with AR(1) and com-

pound symmetry covariance structures are pretty close to each other. Some-

times, if the correlation of the response is of real interest, we can choose the

model with AR(1) covariance structure, and the correlation function is calcu-

lated by formula (3.9). We take the patient with id number 104 for example,

and plot the estimated correlation function over time separation in Figure 3.1.

The correlation of changes over time separation decreases rapidly as the time

separation increases.

Table 3.5 summarizes the empirical estimates of the latent variables. We

locate the patient 227 and patient 206, who have the maximum and minimum
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empirical estimates of the latent variable. Patient 206 has observations 11,

0, 0, 5, with predicted latent variables -0.46853, -1.27969, -1.26316, -0.82414.

Patient 227 has observations 18, 24, 76, 25, with predicted latent variables

0.33872, 0.57229, 1.63329, 0.68067. We also identify patients 225 and 112 as

having the highest overall count levels based on the empirical estimates. Our

findings are similar to those from Breslow and Clayton.

1.0 1.5 2.0 2.5 3.0

0.
20

0.
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30
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35

time separation
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Figure 3.1: Plot of the estimated correlation function

The residual plots in Figure 3.2 show that the mean of the residuals is

approximately zero, with the increase of variability with the mean. This is

expected for Poisson count data, since the variance is supposed to increase
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Figure 3.2: Plots of the residuals verses the square root of the fitted values
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linearly with the mean. The largest residuals are 225, 225, 227, 135 at visits

1, 2, 3, 4, separately.

3.7 Conclusion

In summary, random mean models have many attracting implications. Firstly,

RMMs provide a more reasonable description of longitudinal and clustered

structures of the data than do LMMs and GLMMs. The LMMs and GLMMs

impose a strong assumption on the mean model of the responses, where the

overall effect of the unobserved factors linearly depends on the subject-specific

effects. By contrast, the latent variables introduced to model the overall effects

of unobserved factors in RMMs, make the modelling of the correlation in the

responses much easier to interpret. The latent processes can also reflect the

natural heterogeneity due to many unmeasured factors.

The second advantage of RMMs is from the computational side. Except for

the normal distribution, there is no closed form of the marginal distribution

function of the responses. The preferred model should be computationally ef-

ficient. In GLMMs, if many subject effects and additional random error terms

that represent nonspecific overdispersion beyond those introduced by the sub-

ject effects are specified, it will increase the computational complexity of the

marginal likelihood function. See, for example, Model III of the seizure data

set in Breslow and Clayton (1993) [8]. However, the dimension of the inte-

gration over latent variables in RMMs is the number of observations for each

individual, which is usually small in practice. This is because the unobserved

latent variable is usually composed of a small number of replications, and a

large number of repeated measures.
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Thirdly, RMMs can accommodate the modelling of longitudinal and clus-

tered data in a broader sense. It is able to describe all the distributions in the

exponential family. We showed how the marginal moments of the repeated

measures depend on the parameters in the distribution function of the latent

variable for count and continuous data. Conceptually, we can extend the idea

to the other distributions in the exponential family. Specifically, an unobserv-

able process is added to the linear predictor, and the linear predictor is related

to the conditional mean through the link function. Besides the autoregressive

correlation structure, other covariance structures for the latent process can be

selected.
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Chapter 4

Random Mean Joint Models

4.1 Introduction

The modelling of various forms of clustered data, such as repeated measure-

ments in a longitudinal study, has received much attention in recent years.

Most research has concentrated on a single outcome variable, but many studies

in health and medicine application produce mixed outcomes for each subject.

In this chapter, we extend the random mean models to clustered continuous

and discrete outcomes.

Joint models are potentially advantageous in several statistical and prac-

tical respects. Jointly modelling different outcomes can address the questions

of interest - the overall relationships between those outcomes and the joint

influence of factors on them. These questions can not be answered directly by

analyzing different outcomes separately. Further, joint analysis avoids mul-

tiple testing and naturally leads to global tests, thus resulting in increased

power and better control of Type I error rates. See Pocock et al. (1987) [75],

Fitzmaurice and Laird (1997) [30].
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Models for multivariate clustered data require accounting for two types of

correlation: correlation among different outcomes and correlation among re-

peated measures of the same outcome over time. A number of joint modelling

strategies for mixed outcomes have been studied in the literature: Catalano

and Ryan (1992) [12], Fitzmaurice and Laird (1995) [29], Shah et al. (1997)

[86], Sammel et al. (1997) [84], Dunson (2000) [24], Gueorguieva and Agresti

(2001) [41]. The general approach first specifies a model for the joint distribu-

tion of mixed outcomes, then fits the model to data at hand, and finally uses

the model to make an inference. A difficulty in joint modelling of continuous

and discrete outcomes is the lack of a natural multivariate distribution.

One of the approaches directly specifies the joint distribution by factoriz-

ing it into a conditional distribution of one type of outcomes and a marginal

distribution of the other type of outcomes. For the mixed clustered data,

Catalano and Ryan (1992) [12] parameterized the model such that the joint

distribution is factorized as the product of the marginal distribution of the

continuous response and the conditional distribution of the discrete response

given the continuous response. They assume that the binary response has a

corresponding unobserved continuous latent variable, and the latent variable

and the continuous response have a joint Gaussian distribution. The marginal

distribution of the continuous response is related to covariates through a lin-

ear link function, and the conditional distribution of the binary response is

related to covariates through a probit link function. The lack of a marginal

interpretation and the lack of robustness to misspecification may be consid-

ered unattractive features of their approach. Fitzmaurice and Laird (1995)

[29] factorize the joint distribution as the product of a marginal Bernoulli dis-

tribution for the discrete response, and a conditional Gaussian distribution for
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the continuous response given the discrete one. They describe an extension

of this model to model clustered data, using generalized estimating equations

method, (see Liang and Zeger (1986) [57], and Zeger and Liang (1986) [106]).

Cox and Wermuth (1992) [16] compare a number of models for the joint dis-

tribution of continuous and binary response variables.

Another approach directly formulates a joint model for both types of out-

comes. It involves the introduction of the correlated random effects to incor-

porate correlations among mixed outcomes. Daniels and Normand (2006) [17]

adopt a Bayesian approach to jointly modelling multilevel multidimensional

continuous and discrete outcomes with serial dependence. Fieuws and Ver-

beke (2006) [28] propose a pairwise modelling strategy, in which all possible

pairs are modelled separately based on a mixed model. The inference is based

on pseudo-likelihood principles. Faes et al. (2008) [25] extend the approach

of Fieuws and Verbeke (2006) to different types of outcomes. An alternative

strategy uses the copulas to account for the correlations (see Song et al. (2009)

[88], and DeLeon and Wu (2011) [20]).

In this chapter, we extend random mean models to mixed characteristics

and discuss random mean joint models for clustered continuous and discrete

outcomes. Specifically, two correlated latent processes are introduced into

the modelling. One is for the continuous outcomes, and the other is for the

discrete outcomes. The correlation among two different outcomes is accounted

through the correlation of two latent processes. For the longitudinal data, we

propose a specific form of the cross-covariance matrix of the latent variables

using Kronecker product. The expression of the log-likelihood function of the

joint latent variables, especially the inverse and the determinant of the high

dimensional covariance matrix is hence simplified.
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For the statistical inference, we apply the Monte Carlo EM (MCEM) al-

gorithm to find the MLEs of regression coefficients and variance components

of the generalized linear latent variable model, by treating the latent vari-

ables as missing data. In the implementation of the MCEM algorithm, we

approximate the Q function by the importance sampling approach, and use

the Laplace approximation to the posterior distribution of the latent variables

given the responses to give the approximate mean and covariance of the in-

strumental distribution. We demonstrate the methodology with simulations

and a kidney study data set.

The remaining chapter is organized as follows. Section 4.2 and Section 4.3

are model formulation and statistical inference of random mean joint models.

Simulation studies of count and continuous data with different cluster sizes

are presented in Section 4.4. The kidney data is analyzed in Section 4.5. The

conclusion remarks and the appendix for the derivative of the log-likelihood

function of the latent variable are given in Section 4.6 and Section A.

4.2 Model Formulation

For modelling the observations, let Ykij denote the kth response variable at

time j of the ith subject, and xkij be vector of covariates associated with the re-

sponse ykij, k = 1, 2, i = 1, . . . , N , j = 1, . . . , ni. LetY1i = (Y1i1, Y1i2, . . . , Y1ini)

andY2i = (Y2i1, Y2i2, . . . , Y2ini) denote the sequences of outcomes of continuous

and discrete responses, respectively, for the ith subject, i = 1, . . . , N .

Joint analysis of mixed outcomes, requires either direct or indirect spec-

ification of the joint density f(y1i,y2i), i = 1, . . . , N , and incorporates the

association between two different types of outcomes at each time point, as
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well as the association from repeated measurements of the same type of out-

come.

Similar to the case of single type of outcomes, we introduce latent variables

to account for the correlation among the repeated measurements for mixed

outcomes. Specifically, conditional on the latent variable Ukij, the response

Ykij is assumed to be arisen from a distribution in the exponential family

f(ykij|ukij,βββk, ϕk) = exp{(ykijθkij − bk(θkij))/akij(ϕk) + ck(ykij, ϕk)}, (4.1)

with linear predictor, ηkij = x′
kijβββk + ukij, where βββk is the vector of regres-

sion coefficients, and the conditional mean µkij = E(Ykij|Ukij = ukij) satisfies

gk(µkij) = ηkij, for some link function gk, k = 1, 2, i = 1, . . . , N , j = 1, . . . , ni.

The transformed mean linearly depends on both the fixed effects βββk and la-

tent variable ukij. At the second level of the hierarchy, it is assumed that

Ui = (U′
1i,U

′
2i)

′ is a 2 × ni-variate random variable from a parametric dis-

tribution qi(ui;σσσ
2
1) with variance components σσσ2

1. A common assumption is

that ui comes from a multivariate normal distribution with mean 0 and co-

variance matrix Σi = Σi(σσσ
2
1). The Ui’s are assumed to be independent from

one individual to another. The conditional mean, conditional variance and

canonical parameter are related through the equations µkij = b′k(θkij) and

Var(Ykij|ukij) = b′′(θkij)akij(ϕk)(McCullagh and Nelder (1989) [63]).

To complete the model specification, we need to introduce the association

between two latent processes.

Definition: Let (U1t , U2t) represent a pair of stochastic processes that are

jointly wide sense stationary. Then the cross-covariance function is defined
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as

γ
U1U2

(τ) = E[(U1t+τ − µ1)(U2t − µ2)],

for all time t, where µ1 and µ2 are the means of U1t and U2t respectively.

The cross-covariance function of weakly stationary processes is a function

of time separation or lag τ . The cross-correlation function between two time

series is described by the normalized cross-covariance function.

Definition: The cross-correlation function is defined as the normalized cross-

covariance function

ρU1U2
(τ) =

γ
U1U2

(τ)√
γ
U1
(0)γ

U2
(0)

, (4.2)

where γ
U1
(·) and γ

U2
(·) are the autocovariance functions of processes U1t

and U2t , respectively.

When two series, U1t and U2t , satisfy the equation

U2t = AU1t + ωt, (4.3)

whereA is a known constant, a simple form of the expression of cross-covariance

function can be derived. Equation (4.3) just says that one series is predictable

from the other series plus an additional error term. We assume that, for con-

venience, U1t and U2t have zero means, and the noise ωt is uncorrelated with

U1t . For such two processes, it can be shown that the cross-covariance function
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can be calculated as

γ
U2U1

(τ) = E(U2t+τU1t) (4.4)

= A E(U1t+τU1t) + E(ωt+τU1t)

= A γ
U1
(τ),

and

γ
U1U2

(τ) = A γ
U1
(τ). (4.5)

By (4.2), (4.4) and (4.5), as long as the autocorrelation function of the

process U1t is known, the cross-correlation function ρ
U1U2

(τ) is determined.

Returning to random mean joint models, we model the correlation between

different types of outcomes by the cross-correlation function of two latent pro-

cesses. Specifically, assuming that the latent processes U1i and U2i, satisfying

equation (4.3), are AR(1) processes with the same autocorrelation coefficient

ρ, the resulting covariance matrix of the latent variable Ui = (U′
1i,U

′
2i)

′ is

Σi =

 σ2
1 Aσ2

1

Aσ2
1 σ2

2

⊗


1 ρ · · · ρni−1

ρ 1 · · · ρni−2

· · · · · · · · · · · ·

ρni−1 ρni−2 · · · 1


(4.6)

= R⊗ Ti, (4.7)

where σ2
1 and σ2

2 represent the variances of two series U1i and U2i separately.

In (4.7), Ti has an autoregressive covariance structure. In practice, other

patterns could be chosen, which depends on the feature of the particular data
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set.

The Kronecker product of two matrices possesses very nice properties in

terms of the operations of inverse and determinant. It is known that Σ−1
i =

R−1 ⊗ T−1
i and |Σi| = |R|ni|Ti|2, which can simplify the computation of the

inverse and determinant of a high dimensional matrix significantly.

By (4.7), the density function of the latent variable Ui can be written as

(2π)−ni(|R|ni|Ti|2)−
1
2 exp

{
−1

2
u′
i(R

−1 ⊗ T−1
i )ui

}
, (4.8)

and the log-likelihood function of Ui is

− nilog(2π)−
ni

2
log|R| − log|Ti| −

1

2
u′
i(R

−1 ⊗ T−1
i )ui. (4.9)

The parameters in the covariance matrix, Σi, are either appearing in R, or

in Ti. The derivatives of Σi with respect to each parameter are still the Kro-

necker products of two matrices, with R or Ti replaced by the corresponding

derivative matrix. In the appendix section, the first and second derivatives of

(4.9), the log-likelihood function of the latent variable, with respect to each

parameter are provided.

Some discussions about the properties of the cross-correlation function

for the two latent processes are given below. By (3.9) and (4.3), the cross-

correlation function is calculated as

ρ
U1U2

(0) =
Aσ2

U1√
A2σ2

U1
+ σ2

ω

√
σ2
U1

=
A√

A2 + σ2
ω

σ2
U1

,
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since

σ2
U2

= A2σ2
U1

+ σ2
ω. (4.10)

We know that ρ
U1U2

is bounded by -1 and 1. It is not surprising to see that as

|A| approaches infinity, |ρ
U1U2

(0)| has a limit 1. The cross-correlation function

can measure the predictability of another series from a given series.

When closely examining the equation (4.3), we observed that there is a

natural constraint on the range of the coefficient A. By (4.10), we have

A2 <
σ2
U2

σ2
U1

,

which implies that R in (4.7) is definite positive.

4.3 Statistical Inference and Estimation

The joint probability function of Yi = (Y′
1i,Y

′
2i)

′ and Ui = (U′
1i,U

′
2i)

′, i =

1, . . . , N , can be expressed as

f(yi,ui) = f(yi|ui;βββ, ϕ) qi(ui;σσσ
2
1),

where

f(yi|ui;βββ, ϕ) =
2∏

k=1

ni∏
j=1

f(ykij|ukij;βββk, ϕk),

under the conditional independence assumption. Since the latent variables

ui’s are unobserved, inference about the parameters βββk, ϕk and σσσ2
1 is based on
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the marginal likelihood function of the observed data

L(βββ, ϕ,σσσ2
1;y) =

N∏
i=1

∫
f(yi|ui;βββ, ϕ) qi(ui;σσσ

2
1) dui. (4.11)

The maximum likelihood estimates of βββ = (βββ′
1,βββ

′
2)

′, ϕ = (ϕ1, ϕ2) and σσσ2
1

are simply those values of βββ, ϕ and σσσ2
1 that maximize this likelihood function.

However, the integration (4.11) always involves intractable integrals. Much

work has been focused on approximate techniques that seek to avoid the inte-

gration.

Besides the numerical approximation methods mentioned in Chapter 3,

alternative attempts to carry out the integrations are via fully Bayesian anal-

ysis using the Markov chain Monte Carlo (MCMC) techniques (Zeger and

Karim, (1991) [105]) or using the Monte Carlo EM algorithm to implement

“exact” likelihood analysis (Tanner (1993) [90]; McCulloch (1997) [64]; Booth

and Hobert (1999) [6]). McCulloch (1997) suggested obtaining a sample via

Markov chain Monte Carlo techniques, in particular the Metropolis-Hastings

algorithms. Estimates obtained from the MCMC are presented without re-

liable standard errors. The reason is possibly that calculating the standard

error of an estimate is often not trivial in the MCMC methods. Indeed, es-

tablishing the existence of a central limit theorem for a Monte Carlo estimate

based on a Markov chain can be difficult (Chan and Geyer (1994) [14]; Meyn

and Tweedie (1993) [68]; Tierney (1994) [94]). The usual way of establishing

the existence of central limit theorems is to show that the Markov chain itself

is geometrically ergodic. Although many Markov chains in the MCMC algo-

rithms have been shown to be geometrically ergodic, myriad complex MCMC

algorithms are currently in use to which these results do not apply (see (Hobert
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and Geyer (1998) [49]; Mengersen and Tweedie (1996) [67]; and Roberts and

Rosenthal (1999) [80])). Furthermore, even though a CLT exists, estimating

the asymptotic variance may not be easy (see Geyer (1992) [34] and Mykland

et al. (1995) [70]).

The Monte Carlo EM (MCEM) algorithm, introduced by Wei and Tanner

(1990) [100], and Tanner (1996) [90], is an extension of the EM algorithm that

estimates the expectation in the E-step with a Monte Carlo approximation.

Booth and Hobert (1999) [6] proposed to use rejection sampling and multi-

variate t importance sampling to generate independent samples to construct

Monte Carlo approximations at the E-step. Because of the hierarchical struc-

ture of the random mean model, we can apply the Monte Carlo EM algorithm

for the inference of the random mean joint models.

4.3.1 EM and Monte Carlo EM Algorithms

The EM algorithm is based on the idea of replacing one difficult likelihood

maximization with a sequence of easier maximization whose limit is the so-

lution to the original problem. It is particularly suited to “missing” data

problems, as the missing data can sometimes make calculations cumbersome.

However, filling in the “missing data” will often make the calculation become

more smoothly (Casella (2001) [11]).

In general, if y = (y1, . . . , yn) denotes the incomplete data, and u =

(u1, . . . , un) denotes the augmented data, making (y,u) the complete data.

Let L(θθθ|y) be the incomplete-data likelihood, and L(θθθ|y,u) be the complete-

data likelihood. When L(θθθ|y) is difficult to work with, it will sometimes be

the case that the complete-data likelihood will be easier to work with. From
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an initial value θθθ(0), we create a sequence θθθ(r) according to the value that

maximizes the Q function

Q(θθθ, θθθ(r)) = E[log L(θθθ|y,u)| y;θθθ(r)], (4.12)

The E step imputes the unobserved log-likelihood of the complete data, con-

sisting of the observed data and the missing data, by the conditional expecta-

tion of the complete data log-likelihood given the observed data.

A Monte Carlo version of EM was introduced by Wei and Tanner (1990)

[100], and Mcculloch (1997) [64]. In this section, we apply the Monte Carlo

EM algorithm to the random mean joint models, in which the Q function in the

E-step of the EM algorithm is replaced by a Monte Carlo approximation. It

also involves Monte Carlo approximations of the gradient vectors and hessian

matrices by using independent sampling. Since it is independent samples,

rather than Markov chain sampling, it is easier to assess standard error and

faster to converge.

In the EM algorithm, the E step imputes the log-likelihood of the com-

plete data, consisting of the observed data and the latent variables, by the

conditional expectation of the complete data log-likelihood given the observed

data. An important property of the EM algorithm is that the likelihood of the

observed data always increases along an EM sequence. For the MCEM algo-

rithm, this property does not hold. But it is shown that (Chan and Ledolter

(1995) [13]), under suitable regularity conditions, the MCEM sequence will,

with high probability , converge to the maximum likelihood estimate. In the

Monte Carlo EM algorithm, the conditional expectation of the log-likelihood

of the complete data is estimated by averaging the conditional log-likelihoods
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of simulated variates.

Let θθθ = (βββ′, ϕ′,σσσ2
1)

′ denote the vector of unknown parameters. To set up

the MCEM algorithm in the context of the random mean joint models, we

consider the latent variable, u, to be the missing data. Let f(y,u;θθθ) represent

the joint density of the complete data, (y′,u′)′. At the E-step of the MCEM

algorithm, the interest lies in using Monte Carlo averages of simulated variables

to estimate

Q(θθθ, θθθ(r)) = E[log f(y,u;θθθ)| y;θθθ(r)], (4.13)

where the expectation of the log-likelihood function of the complete data is

with respect to h(u| y;θθθ(r)), the conditional distribution of the latent variable

u given the response y with parameter value θθθ(r). Generally, we have

h(u| y;θθθ) ∝ f(y| u;βββ, ϕ) q(u;σσσ2
1),

where the normalizing constant is the marginal likelihood function of y. By

drawing a random sample, u1, . . . ,uL, from h(u|y, θθθ(r)), the Monte Carlo ap-

proximation of Q(θθθ, θθθ(r)) is given by

Q̂r+1(θθθ, θθθ
(r)) =

1

L

L∑
l=1

log f(y,ul;θθθ). (4.14)

In the implementation of the MCEM, due to independence among sub-

jects, one may sample from h(ui| yi, θθθ
(r)) for the ith individual, i = 1, . . . , N .

Because of the introduction of Monte Carlo error at the E-step, the incom-

plete data log-likelihood (4.14) is not guaranteed to increase at every iteration.

However, the Monte Carlo EM algorithm still converges to the maximum like-
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lihood estimate under suitable regularity conditions Chan and Ledolter (1995)

[13].

The M-step maximizes the approximate Q function (4.14) obtained in the

Monte Carlo E-step, with respect to θθθ to obtain θθθ(r+1). The MCEM algorithm

iterates between the “approximate” E-step and the M-step, drawing a sample

of the unobserved variables at each iteration from the conditional distribution

given the observed data at the updated parameter value; and maximizing

the approximate Q function obtained from the new sample to update the

estimate of the parameter. As McCulloch (1997) [64] has pointed out, the

Monte Carlo M-step is usually relatively simple in the generalized linear mixed

model context. This is still true under the random mean model setting. The

reason is that Q̂r+1(θθθ, θθθ
(r)) is the sum of log-likelihood functions from two

generalized linear models. The first term involves βββ and ϕ, and the second one

involves only σσσ2
1. The first term depends on the distribution f(y| u;βββ, ϕ), so

it can be maximized via iteratively reweighted least squares. The maximizer

of the second term can sometimes be written in closed form.

In summary, the choice of missing data has two advantages. First, on

knowing the u, the y′s are independent. Second, the M-step of the EM algo-

rithm maximizes (4.14) with respect to βββ, ϕ and σσσ2
1 could be separated into two

parts. The M-step with respect to βββ and ϕ only needs f(y|u), so it becomes

to a standard generalized linear model problem, with the values of u treated

as known. The maximizer of the second term can sometimes be written in a

closed form. The MCEM algorithm for the random mean models is as follows

1. Choose starting values θθθ(0), and initial sample size L.

2. Generate L random samples, u1
r, . . . ,u

L
r from h(u|y, θθθ(r)) using rejection
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or importance sampling methods.

3. Using the approximation (4.14) to obtain θθθ(r+1) by maximizing Q̂r+1(θθθ, θθθ
(r)).

4. If convergence is achieved, then declare θθθ(r+1) to be the maximum like-

lihood estimate of θθθ; otherwise, return to Step 2.

4.3.2 Implementation

The implementation of the Monte Carlo E-step involves sampling the unob-

served u from the conditional distribution h(u|y, θθθ(r)). This requires us to

choose an “appropriate” Monte Carlo sampler that simulates u from a distri-

bution that is as close as possible to the target distribution h(u|y, θθθ(r)). The

choice could be rejection sampling, importance sampling, or dependent sam-

ples from an invariant target distribution based on the Markov chain Monte

Carlo methods. Rejection sampling is more efficient when sample sizes are

small, whereas importance sampling is better with larger sample sizes. Both

of them are useful when direct simulation from h is difficult or impossible but

direct simulation from another distribution similar to h is possible. When the

acceptance rate for the rejection sampler is very low, it may be more efficient

to use importance sampling.

We have discussed the rejection sampling and importance sampling schemes

in the preliminary section. It is straight forward to implement the rejection

sampling scheme in the random mean joint model. However, the application

of the importance sampling is not easy, hence we mainly discuss the impor-

tance sampling in this section. Specifically, we apply the Laplace importance

sampling method to the approximation of the Q function. The approximation

of (4.13) based on the importance sampling is
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Q̂r+1(θθθ, θθθ
(r)) =

L∑
l=1

ωl log f(y,u
l;θθθ), (4.15)

where

ωl =
exp{log f(y,ul;θθθ)}/h∗(ul)∑L

k=1 exp{log f(y,uk;θθθ)}/h∗(uk)
, (4.16)

and ul are random samples from the importance density h∗.

We consider the Laplace approximation to suggest the proposal distribu-

tion. Booth and Hobert (1999) [6] proposed the multivariate Student t im-

portance density whose mean and variance match the mode and curvature of

h. More specifically, we write h(ui|yi, θθθ) = ai exp{l(ui)}, where ai is the un-

known normalizing constant. By using the notation introduced in section 4.2,

l(ui) can be expressed as

2∑
k=1

ni∑
j=1

log{f(ykij| ui;βββk, ϕk)} −
1

2
log|2πΣi| −

1

2
u′
iΣ

−1
i ui.

Let l(1)(ui) denote the vector of the first derivatives of l(ui), and l(2)(ui)

denote the hessian matrix of the second derivatives of l(ui) with respect to ui

l(1)(ui) = vec

{
vec

{
ykij − µkij

akij(ϕ)b′′k(θkij)g
′(µkij)

}
j

}
k − Σ−1

i ui,

and

l(2)(ui) = −Wi − Σ−1
i ,
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where Wi is the diagonal matrix of iterative weights

diag

{
diag

{
1/{akij(ϕk)b

′′
k(θkij)g

′(µkij)
2

}
j

}
k,

for j = 1, . . . , ni and k = 1, 2. Suppose that ũi is the maximizer of l(ui)

satisfying the equation l(1)(ui) = 0. The Laplace approximation of the mean

and variance are ũi and −l(2)(ũi)
−1 respectively. Of course, we can also choose

multivariate normal distribution with mean and variance are ũi and−l(2)(ũi)
−1

as the importance function.

The approximations to the conditional mean and variance of ui are

E(ui|yi) ≈ ũi (4.17)

Var(ui|yi) ≈ −l(2)(ũi)
−1. (4.18)

One important consideration in implementing the Monte Carlo EM is the

specification of L. It is inefficient to start with a large value of L when θθθ(r) is

far from the mode. Rather, one may increase L as the current approximation

moves closer to the true value of the maximizer. We implement the Monte

Carlo EM algorithm through R package.

4.3.3 Information Matrix

Denote the MLE from the MCEM algorithm by θ̂θθ. Louis (1982) [61] showed

that the observed information matrix is given by

−E
{
∂2l(θθθ| y,u)
∂θθθ∂θθθ′

}
θθθ=θ̂θθ
− Var

{
∂l(θθθ| y,u)

∂θθθ

}
θθθ=θ̂θθ
,
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where the expectation and variance are with respect to h(u|y, θ̂θθ). Within

the context of the Monte Carlo EM, the observed information matrix of the

observed data at the posterior mode θ̂θθ can be estimated via

−
L∑
l=1

ωl
∂2

∂θθθ∂θθθ′
log f(y,ul;θθθ)

∣∣∣∣θ̂θθ − L∑
l=1

(
ωl
∂

∂θθθ
log f(y,ul;θθθ)

∣∣∣∣θ̂θθ)(ωl
∂

∂θθθ
log f(y,ul;θθθ)

∣∣∣∣θ̂θθ)′

.

4.4 Simulation Study

We conducted simulation studies to investigate the performance of the pro-

posed method. We report on cases of longitudinal continuous and count mixed

responses with different cluster sizes.

4.4.1 Simulation Study I

In each of 100 Monte Carlo data sets, observations y1ij and y2ik, j = 1, . . . , ni =

5, k = 1, . . . , ni = 5, were generated for the ith individual, i = 1, . . . , N =

150. The components in yi = (y′
1i,y

′
2i)

′, are assumed to be conditionally

independent given the latent variable ui = (u′
1i,u

′
2i)

′.

The conditional distributions of the continuous and count responses are

y1ij|u1ij ∼ N(µ1ij, σ
2), where

µ1ij = β10 + x1ijβ11 + u1ij,

and y2ik|u2ik ∼ Poisson (µ2ik), where

log(µ2ik) = β20 + x2ikβ21 + u2ik.
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We choose the autoregressive covariance structure (4.6) for the latent vari-

able ui. The data were simulated according to the above model with β10 =

6.71, β11 = 1.35, β20 = 1, β21 = 1.6, σ2 = 0.09, σ2
1 = 0.5, σ2

2 = 1, ρ = 0.7,

A = 1.2, x1ij = j/15, and x2ik = k/15.

In the implementation of the MCEM algorithm, we started at the above

values, and used the importance sampling scheme L← L+L/m with m = 10

and initial L = 50. The multivariate Student t distribution with 40 degrees of

freedom was chosen as the instrumental distribution. The mean and variance

of the t distribution are calculated by (4.17) and (4.18) at each iteration. The

algorithm is stopped when the relative change in the parameter values from

successive iterations is small

max|θθθ(r+1) − θθθ(r)| < δ,

where δ is predetermined as 0.001.

In table 4.1, the average of the estimates over 100 data sets, the average of

estimated standard errors, and the empirical mean square error for the esti-

mates are listed from the third column to the fifth column. All the estimates

of parameters in the regression model and the variance components are un-

biased. By comparing the average of the standard error estimates and the

standard deviations of the parameter estimates, the Monte Carlo error can be

judged. From Figure 4.1 to Figure 4.9, we plot the estimates of parameters

over the iteration times in one simulation data set. After about 50 iterations,

all estimates are stabilized.
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Model Parameter(True) Average Estimated Empirical
estimate SE SE

Linear β10(6.71) 6.70589 0.05697 0.05877
β11(1.35) 1.37775 0.25765 0.25079

Log-linear β20(1) 1.00137 0.08168 0.08361
β21(1.6) 1.61480 0.34933 0.36108

Variance σ (0.3) 0.29741 0.01030 0.02657
Component σ2

1 (0.5) 0.49681 0.06699 0.04059
σ2
2 (1) 0.99098 0.13365 0.07586
ρ (0.7) 0.69613 0.03207 0.03006
A (1.2) 1.19985 0.06088 0.06321

Table 4.1: Simulation results for 100 data sets from normal and Poisson ran-
dom mean joint model
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of one simulated data set
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4.4.2 Simulation Study II

In the second simulation study, we reduce the cluster size of repeated measure-

ments from 5 to 3. In each of 100 Monte Carlo data sets, observations y1ij and

y2ik, j = 1, . . . , ni = 3, k = 1, . . . , ni = 3, were generated for the ith individual,

i = 1, . . . , N = 150. The components in yi = (y′
1i,y

′
2i)

′, are assumed to be

conditionally independent given the latent variable ui = (u′
1i,u

′
2i)

′.

The conditional distributions of the continuous and count responses are

y1ij|u1ij ∼ N(µ1ij, σ
2), where

µ1ij = β10 + x1ijβ11 + u1ij,

and y2ik|u2ik ∼ Poisson (µ2ik), where

log(µ2ik) = β20 + x2ikβ21 + u2ik.

We choose the autoregressive covariance structure (4.6) for the latent vari-

able ui. The data were simulated according to the above model with β10 =

6.71, β11 = 0.35, β20 = 1, β21 = 0.6, σ2 = 0.09, σ2
1 = 0.5, σ2

2 = 1, ρ = 0.7,

A = 1.2, x1ij = j/15, and x2ik = k/15.

In the implementation of the MCEM algorithm, we started at the above

values, and used the importance sampling scheme L← L+L/m with m = 10

and initial L = 50. The multivariate Student t distribution with 40 degrees of

freedom was chosen as the instrumental distribution. The mean and variance

of the t distribution are calculated by (4.17) and (4.18) at each iteration. The
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algorithm is stopped when

max|θθθ(r+1) − θθθ(r)| < δ,

where δ is predetermined as 0.001.

In table 4.2, the average of the estimates over 100 data sets, the average

of the estimated standard errors, and the empirical mean square error for the

estimates are provided from the third to the fifth columns. By comparing

the average of the standard error estimates and the standard deviations of

the parameter estimates, the Monte Carlo error can be judged. However, the

difference between the two may also reflect inadequacy of asymptotic stan-

dard error estimates for the cluster sizes used. The result of Simulation II,

with smaller cluster size, exhibits larger standard errors of the estimates and

empirical standard errors.

Model Parameter(True) Average Estimated Empirical
estimate SE SE

Linear β10(6.71) 6.70955 0.06406 0.07527
β11(0.35) 0.31594 0.44483 0.50411

Log-linear β20(1) 1.00415 0.09986 0.11104
β21(0.6) 0.49150 0.68730 0.73820

Variance σ2 (0.3) 0.29647 0.01026 0.03066
Component σ2

1 (0.5) 0.50485 0.06656 0.05161
σ2
2 (1) 1.00144 0.13212 0.10134
ρ (0.7) 0.69969 0.03465 0.03441
A (1.2) 1.19789 0.06049 0.07580

Table 4.2: Simulation results for 100 data sets from normal and Poisson ran-
dom mean joint model

66



4.5 Example

Data on 120 patients who received a renal transplant from year 1998 to 2003

were extracted from Organ Procurement and Transplant Network (OPTN)

and United Network for Organ Sharing (UNOS), which direct the transplant

community to reduce disparity in access to transplant, allocate organs over as

wide of a geographic area as possible, and ensure organs to be allocated on

the basis of medical necessity. The most common measure of kidney function

is considered to be estimated glomerular filtration rate (eGFR), which was

repeatedly measured after the first transplant in the study, and calculated by

the formula ”4-variable MDRD” (serum creatinine, age, race, and gender).

Kidney function is considered to be normal, when eGFR is larger than 90. On

the other hand, when eGFR is less than 15, the kidney function is treated as a

failure by the nephrologist. Patients need to have another kidney transplants

or back to dialysis. We model the kidney function status after the first kid-

ney transplant among the following-up approximately equally spaced periods.

Specifically, we treat eGFR as the continuous variable and retransplant status

as the binary variable. We then combine them together as mixed outcomes to

jointly describe how kidney function changes and the disease progresses over

time after the first transplant. We model this data set through the random

mean joint model to account for the association between mixed outcomes over

time following the first kidney transplant, and include covariates, such as, age,

gender and time, in the regression model.

Let y1ij and y2ik denote eGFR and the retransplant status, where i =

1, . . . , N , j = 1, . . . , ni, and k = 1, . . . , ni. The binary response y2ik takes 1, if

the retransplant occurs, otherwise 0. We assume y1ij and y2ik are conditionally
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independent given the latent variable ui = (u′
1i,u

′
2i)

′ with the conditional

distributions y1ij|u1ij ∼ N(µ1ij, σ
2), where

µ1ij = β10 + β11time + β12age + β13gender + u1ij,

and y2ik|u2ik ∼ Binary (µ2ik), where

logit(µ2ik) = β20 + β21time + β22age + β23gender + u2ik.

We assume the distribution of the latent variable ui = (u′
1i,u

′
2i)

′ is Mul-

tivariate Normal with mean 0 and covariance matrix Σi in (4.6). We applied

the Monte Carlo EM algorithm with the importance sampling method. A

multivariate Student t distribution with 40 degrees of freedom was chosen as

the instrumental distribution. We started with L = 50, and increased by

L = L+ L/10, until L = 5000.

An important issue in implementing the Monte Carlo EM algorithm is to

assess the convergence of the algorithm. We used the criteria that when the

relative change in the parameter values from successive iterations is small,

max|θθθ(r+1) − θθθ(r)| < δ,

where δ is predetermined constant. We set δ = 0.0001. The method involves

prespecified θθθ(0), and the resulting approximation is local in nature. Thus we

iterate our procedure a few times by updating θθθ(0) to the current estimate of

θθθ. We also evaluate the marginal likelihood at several parameter values.

The ML estimates of the regression parameters and the variance compo-

nents are displayed in Table 4.3. The estimate of the time slope of the contin-
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Parameter Value S.E.
β10(Intercept) 95.9255 0.5846
β11(time) −8.6714 0.0924
β12(Age) −1.1467 0.0147
β13(Gender) 14.3259 0.3856
β20(Intercept) −28.9379 2.2122
β21(time) 3.8350 0.3345
β22(Age) 0.2596 0.0425
β23(Gender) −4.3563 1.0924
σ2
1 946.0577 153.5951
σ2
2 98.0738 16.9252
σ 2.0720 0.5549
ρ 0.7030 0.0393
A −0.3020 0.0107

Table 4.3: Estimates and standard errors from joint model for the transplant
data

uous variable eGFR is −8.6714, which is statistically significant at the 0.001

level, and the negative sign indicates that eGFR decreases over time after the

first transplant. In addition, the estimate of the time slope of the binary vari-

able retransplant is 3.835, which is also statistically significant at the 0.001

level. The positive sign shows that the probability of getting a second trans-

plant is increasing over time. The estimate of autocorrelation coefficient ρ in

(4.6) is 0.703, which shows that there is a positive correlation in the latent pro-

cesses U1i and U2i , i = 1, . . . , N . The joint risk to a patient of a restransplant

treatment and low eGFR reading can be estimated directly.

Amemiya (1985) [3] proposed a two-stage approach, which involves fitting

two regression models. After modelling the first outcome as a function of

covariates, one models the second outcome, including the predicted values

from the first regression as covariates. The two-stage approach typically is

used when interest focuses on modelling one of the outcomes, with appropriate
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adjustment for the other. However, we are interested in jointly modelling both

outcomes. Our approach allows for test on the covariate. For example, the

covariate time is considered to affect both outcomes in the study.

4.6 Conclusion

In this chapter, we developed a flexible class of generalized linear latent vari-

able models, random mean joint models, for bivariate mixed responses with

clustered and longitudinal structures. We overcame the difficulty in joint mod-

elling of mixed continuous and discrete responses by introducing two cross

correlated latent processes. The Kronecker product is adopted in the formu-

lation of the cross-covariance matrix, and the nice properties of the Kronecker

product simplify the expression of the log-likelihood function of the joint la-

tent variables, especially the inverse and determinant of the high dimensional

covariance matrix. We also connected the joint modelling of two latent pro-

cesses with autoregressive covariance structures to two time series satisfying a

predictive equation. However, this simplicity of the cross-covariance matrix is

sacrificed by the freedom of specifying different correlation coefficients of two

latent processes. That is to say, random mean joint models require that two

latent processes have the same correlation function.

For the statistical inference, we applied the MCEM algorithm to find the

MLEs of regression coefficients and variance components of the random mean

joint models, by treating the latent variables as missing data. The parameters

that characterize the unobservable latent variables and coefficient A can be

estimated directly. In the implementation of the MCEM algorithm, at each

E-step, we approximated the Q function by using the importance sampling
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approach and used the Laplace approximation of the posterior distribution of

the latent variables given the responses to find the approximate the mean and

covariance of the instrumental distribution.

We demonstrate the methodology with two simulations and a kidney study

data set. The simulation results show that the estimates of parameters in the

regression model and the variance components are unbiased. The Monte Carlo

error is relatively smaller, when the cluster size is larger. The difference be-

tween the average of the standard error estimates and the standard deviations

of the parameter estimates may reflect inadequacy of asymptotic standard er-

ror estimates for the cluster sizes used. For simulations with smaller cluster

size, the result exhibits larger standard errors of the estimates and empirical

standard errors, when compared to simulations with larger clustered size.
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Chapter 5

Zero Modified Models

5.1 Introduction

In recent years there has been considerable interest in models for count data

that allow for excess zeros. A large amount of attention has been paid to

dealing with such data. Ridout et al. (1998) [78] review the literature and

cite examples of applications from manufacturing, patent applications, road

safety, biology, medical consultations, and the use of recreational facilities, and

others.

The feature of count data with excess zeros is that they are often overdis-

persed relative to Poisson distribution. This overdispersion does not arise

from heterogeneity, as is the case when the Poisson model is generalized to

the negative binomial model. Instead, it arises from the large frequencies of

zeros. In practice, the presence of overdispersion may come from one or both

of these sources (Mullahy (1986) [69]). The variance-mean relationship must

be correctly modelled.

Mullahy (1986) [69], Heilbron (1989), (1994) [46] [47], and Lambert (1992)
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[55] pioneered regression models based on zero-inflated Poisson (ZIP) distribu-

tion. In a ZIP regression model, the count response variable is assumed to be

distributed as a mixture of a Poisson(λ) distribution and a distribution with

point mass of one at zero, with mixing probability p. Both p and λ are allowed

to depend on covariates through the link functions. Hall (2000) [43] adapted

Lambert’s methodology to an upper bounded count situation, and introduced

the zero-inflated binomial (ZIB) regression models.

In addition to cross-sectional data, zero inflation may also occur with re-

peated measures or longitudinal data. Many researchers have incorporated

random effects into a wide variety of regression models to account for corre-

lated responses and multiple sources of variance. In a mixture model context,

Duijn and Bockenholt (1995) [23] presented a latent class Poisson model for

analyzing overdispersed repeated count data. Zero-inflated regression mod-

els for continuous data with repeated measures have also been considered by

Olsen and Schafer (2001) [72], Berk and Lachenbruch (2002) [5], Tooze et al.

(2002) [96], and Yau et al. (2002) [103]. Hall (2000) incorporated random

effects into the ZIP and ZIB models to accommodate the repeated measures,

so the within-subject correlation and between-subject heterogeneity typical of

repeated measures can be accommodated.

In many applications where a preponderance of zero counts is observed, it is

important to assess whether the ZIP model assumption is indeed appropriate.

In the literature, Broek (1995) [9] considered a score test for testing a standard

Poisson regression model against a zero-inflated Poisson alternative under the

framework of the zero-inflated Poisson regression model with a constant pro-

portion of excess zeros. It was extended to the general situation where the zero

probability is allowed to depend on covariates (see Jansakul and Hinde (2002)
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[50]). Deng and Paul (2000) [21] developed the score tests for the generalized

linear models against zero inflation. Ridout et al. (2001) [79] provide a score

test for testing zero-inflated Poisson regression models against zero-inflated

negative binomial alternatives. For correlated count data, Xiang et al. (2006)

[101] develop score test for testing the zero-inflation Poisson mixed regression

model.

In this chapter, we model the count data with excess zeros from a different

point of view, and hence the statistical inferential method. The hurdle model

(Mullahy (1986)), and the two-part model (Heilbron (1994)) for count data

are special cases of our model, while ours can accommodate a broad class of

distributions. For example, our model can handle a semicontinuous variable,

which has a portion of responses equal to a single value (typically 0) and a

continuous distribution among the remaining values (Feuerverger (1979) [27],

Farewell (1986) [26], Meeker (1987) [66]).

We are seeking to investigate the modelling of count data with excess zeros

through the (a, b, 0) class and (a, b, 1) class of distributions, the zero trun-

cated distribution, and the zero modified distribution, which are commonly

used in the actuarial and econometric literature. The zero-inflated distribu-

tion (Lambert (1992) [55], Hall (2000) [43]) is a reparametrization of the zero

modified distribution. However, the statistical inference based on the two dif-

ferent formulations would be totally different as well as the interpretation of

the parameters.

We start the discussion of modelling data from the truncated distribution.

We verify that the zero truncated Poisson and zero truncated binomial distri-

butions are members of the exponential family. For the statistical inference of

the generalized linear models for the truncated distributions, the commonly
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used algorithms Newton Raphson and Fisher Scoring still have the same form

as the one of the generalized linear models, except for the mean and variance

replaced by the truncated mean and the truncated variance. We then extend

the modelling of the zero truncated data to data with excess zeros, by intro-

ducing an indicator variable to identify the responses as zero or nonzero. A

regression model for the probability of nonzero response, and a conditional

model for nonzero responses, are two model components which describe this

type of data.

We also propose zero modified random effects models for clustered data

with excess zeros. We discuss the maximum likelihood estimation of parame-

ters in the zero modified random effects models by approximate Fisher Scoring

algorithm based on the adaptive Gaussian quadrature approximations. Simu-

lations for two regression models including random intercepts are conducted,

and a real data example is used to illustrate the new method. We then extend

random mean models introduced in Chapter 3 to data with excess zeros, and

formulate the corresponding zero modified random mean models. A simula-

tion is conducted to evaluate random mean model for the temporal count data

with excess zeros.

5.2 Zero-inflated Poisson Regression

We shall consider data with excess zeros particularly in relation to the Pois-

son distribution, but the term may be used in conjunction with any discrete

distribution to indicate that there are more zeros than would be expected on

the basis of the non-zero counts. Of course it is also possible to have fewer

zero counts than expected, but this is much less common in practice. Lambert
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(1992) described zero-inflated Poisson distribution regression for count data

with excess zeros. We present Lambert’s model to elaborate the terminolo-

gies, which appear in this chapter.

The zero-inflated Poisson (ZIP) distribution is an extreme case of mixture

distribution. A proportion p of data take value 0, and the remainder proportion

1− p follow Poisson distribution with parameter λ. The probability function

of a zero-inflated Poisson random variable Y is

Pr(Y = y) =

{
p+ (1− p)e−λ, y = 0,

(1− p)e−λλy/y! , y > 0.
(5.1)

It is possible for p in equation (5.1) to assume negative values, resulting

in a zero-deflated distribution. Zero-deflated data seldom arise in practice,

however, and we shall assume 0 ≤ p < 1. Zero-inflated forms of other count

distributions, such as the negative binomial, can be defined similarly. Gupta

et al. (1996) [42], for example, investigate the zero-inflated form of the gener-

alized Poisson distribution.

For the zero-inflated Poisson distribution, the mean and the variance are

E(Y ) = (1− p)λ = µ,

Var(Y ) = µ+

(
p

1− p

)
µ2.

Lambert (1992) considered models in which the Poisson and proportion pa-

rameters depend on the covariates

log(λi) = x′
iβββ,

logit(pi) = g′
iγγγ,
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where xi and gi are vectors of covariates, and βββ and γγγ are vectors of parameters.

The two sets of covariates may or may not coincide. When they do coincide,

more parsimonious models may be developed by supposing that the two linear

predictors are related in some way. Lambert proposed such a simple model,

ZIP(τ) model, which has

log(λi) = x′
iβββ,

logit(pi) = τx′
iβββ,

where τ is a scalar parameter. A great variety of alternative models can be

generated by using different link functions for λ and/or p. Greene (1994) [39]

gives details of analogous zero-inflated negative binomial regression models.

5.3 Modification and Truncation at Zero

In this section, the definitions of the (a, b, 0) class, the (a, b, 1) class, the zero

truncated distribution, and the zero modified distribution from Klugman et

al. (2009) [53] will be provided.

Definition: The distribution of a discrete random variable is said to be a

member of the (a, b, 0) class of distributions if its probability mass function

pk satisfies

pk
pk−1

= a+
b

k
, k = 1, 2, 3, . . . ,

for any constants a and b, where p0 is a constant satisfying 0 < p0 < 1.

The binomial distribution, the Poisson distribution and the negative bino-
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Distribution a b p0
Poisson 0 λ e−λ

Binomial − p
1−p

(m+ 1) p
1−p

(1− p)m

Negative Binomial β
1+β

(r − 1) β
1+β

(1 + β)−r

Table 5.1: Members of the (a, b, 0) class

mial distribution belong to this class of distributions, with each distribution

represented by a different sign of a. The parameters of these distributions are

determined by both a and b. By substituting in the probability function for

each of the Poisson, binomial, and negative binomial distributions on the left-

hand side of the recursion, it can be seen that each of these three distributions

satisfies the recursion.

At times, the distributions in the (a, b, 0) class do not adequately describe

the characteristics of data encountered in practice. This is because the tail of

the negative binomial is not heavy enough or because the distributions in the

(a, b, 0) class cannot capture the shape of the data set in some other part of

the distribution.

The problem of a poor fit at the left-hand end of the distribution, in par-

ticular, the probability at zero, is addressed through an adjustment of the

probability at zero. It is easily handled for the Poisson, binomial, and nega-

tive binomial distributions.

Definition: Let pk be the probability function of a discrete random variable.

It is a member of the (a, b, 1) class of distributions provided that there exists

constants a and b such that

pk
pk−1

= a+
b

k
, k = 2, 3, 4, . . . ,
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where p1 is a constant satisfying 0 < p1 < 1.

The only difference between the (a, b, 1) class and the (a, b, 0) class is that

the recursion starts at p1 rather than p0. The shape of the distribution function

from k = 1 to k =∞ is the same as the one in the (a, b, 0) class, up to a scale

constant. The effect of the scale constant is either to stretch or to contract

the graph of the distribution function. It is flexible to set the scale constant,

since the summation of
∑∞

k=1 pk and p0 equals to 1.

In the situation where p0 = 0, we name such type of distribution as zero

truncated distribution, noted as pTk . Specifically, there are zero truncated

Poisson, zero truncated binomial, and zero truncated negative binomial distri-

butions. In the other situation, where p0 > 0, we name this type of distribution

as zero modified distribution, noted as pMk . The zero modified distributions

can be viewed as a mixture of an (a, b, 0) distribution and a degenerate distri-

bution with all the probability at zero. The zero truncated distributions can

be considered as special case of the zero modified distributions, with p0 = 0.

In general, the probability distribution function of a zero truncated distri-

bution is

pTk =
1

1− p0
pk, k = 1, 2, . . . ,

and the probability distribution function of a zero modified distribution is

pMk = (1− pM0 )pTk =
1− pM0
1− p0

pk, k = 1, 2, . . . ,

where pM0 is an arbitrary number between 0 and 1, assigning to 0. The zero

modified distribution is also the weighted average of a degenerate distribution
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Distribution Mean Variance
Poisson λ/(1− e−λ) λ[1− (λ+ 1)e−λ]/(1− e−λ)2

Binomial mp
1−(1−p)m

mp[(1−p)−(1−p+mp)(1−p)m]
[1−(1−p)m]2

Negative Binomial rβ
1−(1+β)−r

rβ[(1+β)−(1+β+rβ)(1+β)−r]
[1−(1+β)−r]2

Table 5.2: Mean and variance of zero truncated distributions

and the zero truncated member of the (a, b, 0) class.

The mean and variance of zero truncated distributions are summarized in

table 5.2. The mean and variance of the corresponding zero modified distri-

bution are

E(Y M) = (1− pM0 )E(Y T ),

Var(Y M) = (1− pM0 )Var(Y T ) + pM0 (1− pM0 )E(Y T )2.

5.4 Truncated Distributions

In this section, we verify that zero truncated Poisson and zero truncated bi-

nomial distributions are members of the exponential family.

5.4.1 Truncated Poisson Distribution

The probability mass function of zero truncated Poisson distribution is

f(yi) =
1

1− e−λi

λyii e
−λi

yi!
, yi = 1, 2, 3, . . . ,

for some λi > 0. Taking logs we find

log f(yi) = yilog(λi)− λi − log(1− e−λi)− log(yi! ).
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Looking at the coefficient of yi, we see immediately that the canonical

parameter is

θi = log(λi).

The second and third terms in the p.d.f are

b(θi) = eθi + log(1− e−eθi ).

The last remaining term is a function of yi only, so we identify

c(yi, ϕ) = −log(yi! ),

and take ai(ϕ) = ϕ and ϕ = 1. We have verified that zero truncated Poisson

distribution belongs to the exponential family. Also, we can show the mean

and variance are the first and the second derivatives of the cumulant function

b(θi)

E(Yi) = b′(θi) =
eθi

1− e−eθi

Var(Yi) = b′′(θi) = eθi [1− (eθi + 1)e−eθi ]/(1− e−eθi )
2

.

5.4.2 Truncated Binomial Distribution

The probability mass function of zero truncated binomial distribution is

f(yi) =
1

1− (1− πi)mi

(
mi

yi

)
πyi
i (1− πi)mi−yi , yi = 1, 2, . . . ,mi,
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for some πi > 0. Taking logs we find that

log f(yi) = yilog
πi

1− πi
− log[(1 + e

log πi
1−πi )

mi − 1] + log

(
mi

yi

)
.

Looking at the coefficient of yi, we see immediately that the canonical

parameter is

θi = log
πi

1− πi
.

The second term in the p.d.f is

b(θi) = log[(1 + eθi)mi − 1].

The last remaining term is a function of yi only, so we identify

c(yi, ϕ) = log

(
mi

yi

)
,

and take ai(ϕ) = ϕ and ϕ = 1. We have verified that the truncated binomial

distribution belongs to the exponential family. Also, we can show the mean

and variance are the first and the second derivatives of the cumulant function

b(θi)

E(Yi) = b′(θi) =
mie

θi(1 + eθi)mi−1

(1 + eθi)mi − 1

Var(Yi) = b′′(θi) =
mie

θi(1 + eθi)2mi−2 −mie
θi(1 +mie

θi)(1 + eθi)mi−2

[(1 + eθi)mi − 1]2
.
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5.5 Generalized Linear Models for Truncated

Data

The Generalized Linear Models defined in Nelder and Wedderburn (1972) [71]

are characterized by

• A dependent variable y whose distribution with parameter θ is one of

the class in the exponential family.

• A set of independent variables x1, . . . , xp is related to the linear predictor

through η =
∑
βixi.

• A linking function η = g(θ) connecting the parameter θ of the distribu-

tion of y with the η’s of the linear model.

In this section, we mainly discuss the truncated Poisson and the truncated

binomial distributions. However, the truncated distributions for other mem-

bers in the exponential family can be formulated accordingly.

5.5.1 Truncated Poisson Regression Models

First, the likelihood function of responses from zero truncated Poisson distri-

bution is

L(βββ) =
n∏

i=1

Pr(Yi = yi) =
n∏

i=1

1

1− e−λi

λyii e
−λi

yi!
,

with parameter λi of Poisson distribution related to various predictors through

the log link function

log(λi) = x′
iβββ.
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Then the log-likelihood function is

l(βββ) =
n∑

i=1

{yilog(λi)− λi − log(1− e−λi)} −
n∑

i=1

log(yi! ).

To find the maximum likelihood estimate of βββ, we first calculate the score

function

S(βββ) =
n∑

i=1

xi

(
yi −

ex
′
iβββ

1− e−ex
′
i
βββ

)
,

and then solve the equation S(βββ) = 0 to get β̂ββ. We may not find the closed form

of the MLEs in most cases. Newton Raphson and Fisher Scoring algorithms

are used to find the numeric solution. The observed Fisher information matrix

is

I(βββ) = X′
iWiXi,

where Wi has the truncated variance as the diagonal element, ex
′
iβββ[1− (ex

′
iβββ +

1)e−ex
′
iβββ ]/(1 − e−ex

′
iβββ)2. The updating formula for the Newton Raphson and

the Fisher-Scoring algorithm is given by

βββ(r+1) = βββ(r) + I(βββ(r))−1S(βββ(r)).
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5.5.2 Truncated Binomial Regression Models

First, the likelihood function of responses from zero truncated binomial distri-

bution is

L(βββ) =
n∏

i=1

Pr(Yi = yi) =
n∏

i=1

1

1− (1− πi)mi

(
mi

yi

)
πyi
i (1− πi)mi−yi ,

with parameter πi of binomial distribution related to various predictors through

the logit link function

logit(πi) = x′
iβββ.

Then the log-likelihood function is

l(βββ) =
n∑

i=1

yilog
πi

1− πi
+milog(1− πi)− log[1− (1− πi)mi ]−

n∑
i=1

log

(
mi

yi

)
.

To find the maximum likelihood estimate of βββ, we first calculate the score

function

S(βββ) =
n∑

i=1

xi

(
yi −

mie
x′
iβββ(1 + ex

′
iβββ)mi−1

(1 + ex
′
iβββ)mi − 1

)
,

and then solve the equation S(βββ) = 0 to get β̂ββ. We may not find the closed form

of the MLEs in most cases. Newton Raphson and Fisher Scoring algorithms

are used to find the numeric solution. The observed Fisher information matrix

is

I(βββ) = X′
iWiXi,
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where Wi has the truncated variance as the diagonal element

mie
x′
iβββ(1 + ex

′
iβββ)

2mi−2 −mie
x′
iβββ(1 +mie

x′
iβββ)(1 + ex

′
iβββ)

mi−2

[(1 + ex
′
iβββ)

mi − 1]2
.

The updating formula for the Newton Raphson and the Fisher-Scoring algo-

rithm is given by

βββ(r+1) = βββ(r) + I(βββ(r))−1S(βββ(r)).

5.5.3 Discussion

Zero-inflated forms of other count distributions, such as the negative bino-

mial, can be defined similarly. The negative binomial distribution belongs to

(a, b, 0) class, however, is not a member of the exponential family. Only the

negative binomial distribution with known stopping-time parameter belongs

to the exponential family. Grogger and Carson (1991) [40] discuss the fitting

of zero truncated negative binomial models. The Newton Raphson or Fisher

Scoring algorithms for the maximum likelihood estimates of the negative bino-

mial regression models can still be derived. Greene (1994) [39] gives details of

zero modified negative binomial models. There is always a connection between

the negative binomial regression and the Poisson regression. If we consider a

random effects model where the multiplicative random effect is a gamma vari-

able with unit mean, accordingly, the marginal distribution of the response is

negative binomial (Greene (1994)). In this chapter, we will skip the negative

binomial distribution.

86



5.6 Zero Modified Regression Models

For the modelling of data with excess zeros in cross-sectional study, we in-

troduce an indicator variable to identify the responses as zero or nonzero. A

regression model for the probability of zero response, and a conditional model

for nonzero responses are components to describe this type of data.

5.6.1 Zero Modified Poisson Regression Model

The probability function of zero modified Poisson distribution is

fi(yi) =

{ 1−pMi
1−e−λi

λ
yi
i e−λi

yi!
, yi = 1, 2, 3, . . . ,

pMi , yi = 0.
(5.2)

When pMi = 1, we have the trivial case in which only zeros occur. When

pMi = 0, it is simply zero truncated Poisson distribution. We model λi and p
M
i

with log-linear and logistic regression models

log(λi) = x′
iβββ

logit(pMi ) = g′
iγγγ, i = 1, . . . , n,

where xi and gi are vectors of known covariate values associated with the

response, Yi.

Let ψψψ = (γγγ′,βββ′)′ be the parameter vector. We introduce an indicator

variable Ii = 1 if Yi = 0, and Ii = 0 otherwise. The likelihood function of ψψψ is

given by

L(ψψψ; y) =
n∏

i=1

(pMi )
Ii
(1− pMi )1−Ii

[
e−λiλyii

(1− e−λi) yi!

]
1−Ii

.
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We break zero modified Poisson regression model into two separate ones:

the logistic regression model for observations identified as either zero or nonzero;

and zero truncated Poisson regression model for nonzero observations. The fit-

ting of parameters of the latter was discussed in the previous section.

When the same covariates affect λi and p
M
i , it is useful to consider a model

that involves the complementary-log-log link function for pMi

log(λi) = x′
iβββ

log[−log(1− pMi )] = g′
iγγγ, i = 1, . . . , n.

This model was first proposed by Mullahy (1986) [69]. The above model re-

duces to the Poisson regression model, when βββ and γγγ are the same. A likelihood

ratio test for testing Poisson regression model against zero modified Poisson

regression model as the alternative can be derived for the complementary-

log-log link function for the Bernoulli success probability of zeros. Twice the

difference of log-likelihoods should be approximately chi-square. The degrees

of freedom should be equal to the difference in the number of parameters in

the two models.

5.6.2 Zero Modified Binomial Regression Model

The probability function of zero modified binomial distribution is

fi(yi) =

{ 1−pMi
1−(1−πi)mi

(
mi

yi

)
πyi
i (1− πi)mi−yi , yi = 1, 2, . . . ,mi,

pMi , yi = 0.

When pMi = 1, we have the trivial case in which only zeros occur. When
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pMi = 0, it is simply zero truncated binomial distribution. We model λi and

pMi with logistic regression models

logit(πi) = x′
iβββ

logit(pMi ) = g′
iγγγ,

where xi and gi are vectors of known covariate values associated with the

response, Yi, i = 1, . . . , N .

Let ψψψ = (γγγ′,βββ′)′ be the parameter vector. We introduce an indicator

variable Ii = 1 if Yi = 0, and Ii = 0 otherwise. The likelihood function of ψψψ is

given by

L(ψψψ; y) =
n∏

i=1

(pMi )
Ii
(1− pMi )1−Ii

[
1

1− (1− πi)mi

(
mi

yi

)
πyi
i (1− πi)mi−yi

]
1−Ii .

We break zero modified binomial regression model into two separate ones:

the logistic regression model for observations identified as either zero or nonzero;

and zero truncated binomial regression model for the nonzero observations.

The fitting of parameters in the latter was discussed in the previous section.

5.6.3 General Hypothesis Testing: Likelihood Ratio Test

The hypothesis testing problem is to compare two nested models: the model

under H0 (nested model) with p1 parameters, and the model under HA with p2

parameters (full model). Suppose θ̂H0 is the MLE of θ under null hypothesis,

and θ̂HA is the MLE under alternative hypothesis. The likelihood ratio test is
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defined as

Λ = 2{l(θ̂HA)− l(θ̂H0)}.

Since the likelihood is always larger for the full model, we will have that Λ ≥ 0.

If the data come from the model under H0, the two models almost give the

same fitting to the data and therefore the statistic Λ should not take too large

values. On the other hand, if the data come from the model under HA, the

full model provides much better fitting and therefore Λ should be quite large.

Theorem 5.1: When the sample size is large, under usual regularity condi-

tions

Λ ∼ χ2
ν approximately,

where ν = p2 − p1 degrees of freedom.

5.6.4 Example

The biologists are interested in how many fish are caught by fishermen at a

state park. Visitors are surveyed how long they stayed, how many people were

in the group, whether there were children in the group and how many fish were

caught. Some visitors do not fish, but there is no information on whether a

person fished or not. Some visitors who did fish but did not catch any fish.

So there are excess zeros in the data set, because some people did not fish.

We have data on 250 groups that have been to the park. Each group

was questioned about how many fish they caught (count), how many children

were in the group (child), how many people were in the group (persons), and
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Model Parameter Estimate Standard Error P-value
Log-liner intercept(β0) −0.8262 0.1723 <0.0001

persons(β1) 0.8348 0.0441 <0.0001
child(β2) −1.1390 0.0929 <0.0001
camper(β3) 0.7336 0.0934 <0.0001

Logit intercept(γ0) 2.3087 0.4612 <0.0001
persons(γ1) −1.1104 0.1911 <0.0001
child(γ2) 2.1380 0.3107 <0.0001
camper(γ3) −1.0179 0.3246 0.0019

Table 5.3: Estimates of parameters in the zero modified Poisson regression
model

whether or not they brought a camper to the park (camper).

Besides predicting the number of fish caught, biologists are interested in

predicting the occurrence of excess zeros. Both bad luck fishing and no fishing

during the visit are the possible sources. We include child, persons, and camper

as covariates in the zero modified Poisson regression model. We model the

Poisson parameter and Bernoulli probability through the log-linear and logistic

regression models

log(λi) = β0 + β1persons + β2child + β3camper

logit(pMi ) = γ0 + γ1persons + γ2child + γ3camper, i = 1, . . . , 250.

The first block of Table 5.3 includes estimates and standard errors of co-

efficients in the log-linear model. The second block corresponds to the logit

model predicting the zeros. All the predictors in both the log-linear and in-

flation portions models are statistically significant. The interpretation of the

parameters in zero truncated Poisson regression model is different from that of

the standard Poisson regression. The exponential of the coefficient is the rel-

ative change in Poisson parameter, for one-unit increase of the corresponding
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Model Parameter Estimate Standard Error P-value
Log-liner intercept(β0) −0.8262 0.1723 <0.0001

persons(β1) 0.8348 0.0441 <0.0001
child(β2) −1.1390 0.0929 <0.0001
camper(β3) 0.7336 0.0934 <0.0001

Complementary-log-log intercept(γ0) 1.0106 0.2639 0.0002
persons(γ1) −0.7034 0.1266 <0.0001
child(γ2) 1.3260 0.1791 <0.0001
camper(γ3) −0.6183 0.1942 0.0016

Table 5.4: Estimates of parameters in the zero modified Poisson regression
model with the complementary-log-log link function

predictor. Based on the logit model, we can predict the probability of zeros

and non zeros. The mean of the modified distribution is the product of the

predicted probability of non zeros and the mean of the truncated distribution.

The change in log(λ) for one-unit increase of child was -1.1390. Groups

with campers (camper = 1) had log(λ) 0.7336 higher than groups without

campers (camper = 0).

The log-likelihoods of the full model and the null model are -751.61823 and

-1127.02294, respectively. The chi-squared value is 2(-751.61823 + 1127.0229)

= 750.8094. Since we have six predictor variables in the full model, the degrees

of freedom for the chi-squared test is 6. This yields a p-value <.0001. Thus,

the overall model is statistically significant.

We also model the data through the log-linear and complementary-log-log

link functions

log(λi) = β0 + β1persons + β2child + β3camper,

log[−log(1− pMi )] = γ0 + γ1persons + γ2child + γ3camper, i = 1, . . . , 250,

where λi is the Poisson parameter.
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Model Parameter Estimate Standard Error P-value
Log-liner intercept(β0) −1.9818 0.1523 <0.0001

persons(β1) 1.0913 0.0393 <0.0001
child(β2) −1.6900 0.0810 <0.0001
camper(β3) 0.9309 0.0891 <0.0001

Table 5.5: Estimates of parameters in the Poisson regression model

The first block of Table 5.4 includes estimates and standard errors of the

log-linear model. The second block presents estimates and standard errors of

the complementary-log-log model predicting the zeroes. All the predictors in

both log-linear and inflation portions of the model are statistically significant.

We can predict the probability of zeros and non zeros from the complementary-

log-log model.

To assess whether the zero modified Poisson model assumption is indeed

appropriate, we fit the Poisson regression model as the null model to the alter-

native zero modified Poisson regression model with the complementary-log-log

link function for the probability of zeros. The -2log-likelihoods = 2(1674.14-

1505.9) = 336.48. The degrees of freedom for the chi-squared test is 4. This

yields a p-value <.0001. Thus, the overall model is statistically significant.

5.7 Zero Modified Random Effects Models

Starting from this section, we will discuss zero modified regression models

for longitudinal and clustered data. We first formulate zero modified random

effects models for repeated measures with clumping at zero.
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5.7.1 Zero Modified Poisson Random Effects Models

Suppose the responseY = (Y′
1, . . . ,Y

′
N)

′ contains data from N clusters, where

Yi = (Yi1, . . . , Yini)
′, i = 1, . . . , N . We assume that conditional on the random

effect bi, the response Yij is from zero modified Poisson distribution with

probability function

Pr(Yij = k) =

{ 1−pMij

1−e−λij

λkije
−λij

k!
, k = 1, 2, 3, . . .

pMij , k = 0,

for i = 1, . . . , N, j = 1, . . . , ni. We model λij and pMij through the log-linear

and logistic regression models

log(λij) = x′
ijβββ + z′ijbi

logit(pMij ) = g′
ijγγγ,

where xij, zij and gij are vectors of known covariate values associated with

the response, Yij. We assume the random effect bi is the random variable with

a parametric density function qi(bi; Σi(σσσ
2)).

Let ψψψ = (γγγ′,βββ′,σσσ2)′ be the parameter vector. We introduce an indicator

variable to identify the response as zero or nonzero, Iij = 1 if Yij = 0, and

Iij = 0 otherwise.

The likelihood function of ψψψ is given by

L(ψψψ;y) =
N∏
i=1

∫
f(yi|bi;γγγ,βββ) qi(bi; Σi) dbi,
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where

f(yi|bi;γγγ,βββ) =

ni∏
j=1

(pMij )
Iij
(1− pMij )1−Iij

[
e−λijλ

yij
ij

(1− e−λij) yij!

]
1−Iij

.

5.7.2 Zero Modified Binomial Random Effects Models

Suppose the response vectorY = (Y′
1, . . . ,Y

′
N)

′ contains data fromN clusters,

where Yi = (Yi1, . . . , Yini)
′, i = 1, . . . , N . We assume that, conditional on the

random effect bi, the response Yij is from zero modified binomial distribution

with probability function

Pr(Yij = k) =

{ 1−pMij
1−(1−πij)

mij

(
mij

yij

)
π
yij
ij (1− πij)mij−yij , k = 1, 2, . . . ,mij,

pMij , k = 0,

for i = 1, . . . , N, j = 1, . . . , ni. We model πij and pMij through the logistic

regression models

logit(πij) = x′
ijβββ + z′ijbi

logit(pMij ) = g′
ijγγγ,

where xij, zij and gij are vectors of known covariate values associated with

the response, Yij. We assume the random effect bi is the random variable with

a parametric density function qi(bi; Σi(σσσ
2)).

Let ψψψ = (γγγ′,βββ′,σσσ2)′ be the parameter vector. We introduce a variable

Iij = 1 if Yij = 0, and Iij = 0 otherwise.
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The likelihood function for ψψψ is given by

L(ψψψ;y) =
N∏
i=1

∫
f(yi|bi;γγγ,βββ) qi(bi; Σi) dbi,

where

f(yi|bi;γγγ,βββ) =

ni∏
j=1

(pMij )
Iij
(1− pMij )1−Iij

[
1

1− (1− πij)mij

(
mij

yij

)
π
yij
ij (1− πij)mij−yij

]
1−Iij

.

5.8 Zero Modified Random Mean Models

The induced correlation structure from random effects may be unrealistic in

some cases. When there is time series correlation in the data, the random mean

model would be a better option, which takes the possible serial dependence

within subject-specific measurements into account.

5.8.1 Zero Modified Poisson Random Mean Models

Suppose the response vectorY = (Y′
1, . . . ,Y

′
N)

′ contains data fromN clusters,

where Yi = (Yi1, . . . , Yini)
′, i = 1, . . . , N . We assume that, conditional on the

latent variable, uij, the response Yij is from zero modified Poisson distribution

Pr(Yij = k) =

{ 1−pMij

1−e−λij

λkije
−λij

k!
, k = 1, 2, 3, . . .

pMij , k = 0,
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where λij and pij are modelled through the log-linear and logistic regression

models

log(λij) = x′
ijβββ + uij

logit(pij) = g′
ijγγγ,

where xij and gij are vectors of known covariate values associated with the

response, Yij, for i = 1, . . . , N, j = 1, . . . , ni. To complete the model specifi-

cation, some covariance structure is imposed on the latent variable ui.

5.8.2 Zero Modified Binomial Random Mean Models

Suppose the response vector Y = (Y′
1, . . . ,Y

′
N)

′ contains data from N clus-

ters, where Yi = (Yi1, . . . , Yini)
′, i = 1, . . . , N . We assume that, conditional

on the latent variable, uij, The response Yij is from zero modified binomial

distribution

Pr(Yij = k) =

{ 1−pMij
1−(1−πij)

mij

(
mij

yij

)
π
yij
ij (1− πij)mij−yij , k = 1, 2, . . . ,mij,

pMij , k = 0,

where λij and pij are modelled through the logistic regression models

logit(λij) = x′
ijβββ + uij

logit(pij) = g′
ijγγγ,

where xij and gij are vectors of known covariate values associated with the

response, Yij, for i = 1, . . . , N, j = 1, . . . , ni. To complete the model specifi-

cation, some covariance structure is imposed on the latent variable ui.
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5.9 Adaptive Gaussian Quadrature Approxi-

mations

In this section, we describe the adaptive Gaussian Quadrature approximation

to evaluate the integral of the log-likelihood in the zero modified random effects

models. The log-likelihood of the marginal distribution function of the zero

modified random effects models can be written as

l(ψψψ;y) =
N∑
i=1

ni∑
j=1

Iijlog(p
M
ij ) + (1− Iij)log(1− pMij )

+
N∑
i=1

log

∫
fT (yi|bi;βββ) qi(bi; Σi(σ

2σ2σ2)) dbi, (5.3)

where fT (yi|bi;βββ) is the conditional probability function of zero truncated

distribution given the random effect bi. We are interested in the approximation

of the integral in (5.3)

N∑
i=1

log

∫
fT (yi|bi;βββ) qi(bi; Σi(σ

2σ2σ2)) dbi. (5.4)

Let fT (yi,bi) denote the joint distribution of the positive responses and the

random effect. The simple approximate formulas for the mean and variance of

fT (yi,bi) can be derived using Laplace approximation (de Bruijn (1981) [19]).

Firstly, find the first and the second derivatives of the log-likelihood function

of fT (yi,bi) with respect to bi

∂logfT (yi,bi)

∂bi

=

ni∑
j=1

zij(yij − µT
ij)− Σ−1

i bi (5.5)

∂2logfT (yi,bi)

∂bi∂bT
i

= −Z′
iWiZi − Σ−1

i , (5.6)
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where µT
ij is the mean of zero truncated distribution, and the diagonal matrix

Wi has zero truncated variance Var(Y T
ij ) as the diagonal element.

It follows from (5.6) that
∂2logfT (yi,bi)

∂bi∂bTi
is negative-definite and, as a re-

sult, logfT (yi,bi) is a strictly concave function of bi. Therefore, there is a

unique point of maximum b̂i corresponding to
∂logfT (yi,bi)

∂bi
= 0. By taking

a second-order Taylor expansion of logfT (yi,bi) around b̂i, the integrand is

approximately N (b̂i,−∂2logfT (yi,bi)
∂bi∂bTi

−1

|bi=b̂i
) up to a normalizing constant.

The critical step for the success of importance sampling is the choice of

an importance distribution that approximates the integrand. For the integral

(5.4), the integrand fT (yi,bi) is approximated by N(b̂i,−∂2logfT (yi,bi)
∂bi∂bTi

−1

|bi=b̂i
)

density, after accounting for some constant coefficient. This is the importance

distribution used in the adaptive Gaussian quadrature rule, and the grid of ab-

scissas is centered around the conditional modes b̂i and
√
2(−∂2logfT (yi,bi)

∂bi∂bTi
|bi=b̂i

)−
1
2

is used for scaling.

Define uk = (uk1 , . . . , ukni )
′, where ukl and ωkl , kl = 1, . . . , NGQ, are the

abscissas and the weight for the one-dimensional Gaussian quadrature rule

based on the N (0, 1) kernel. Centering and scaling the abscissas uk according

to

b̃ik = b̂i +
√
2

(
−∂

2logfT (yi,bi)

∂bi∂bT
i

∣∣∣∣bi=b̂i

)
− 1

2uk.

The adaptive Gaussian quadrature approximation of the integral (5.4) is

lAGQ(ψψψ;y) =
N∑
i=1

q

2
log2− log

(
−∂

2logfT (yi,bi)

∂bi∂bT
i

∣∣∣∣bi=b̂i

)
1
2 + log

NGQ∑
k

fT (yi, b̃ik)Wk,

where Wk = exp(∥uk∥2)
∏q

l=1 ωkl . The optimization of the likelihood function
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can also be implemented through proc nlmixed in SAS.

5.9.1 Empirical Estimates

Given ML estimates of ψψψ, the random effect bi can be predicted as follow

b̂iEE = E(bi|yi; ψ̂ψψ).

That is, the predicted random effect for the ith subject is simply “esti-

mated” as the conditional mean of bi given yi. It is the by-product from the

adaptive Gaussian quadrature approximation. The empirical estimate of the

random effect is simply b̂i, the solution to

∂logfT (yi,bi)

∂bi

= 0,

as in (5.6).

The adaptive Gaussian Quadrature approximation to the integral of the

log-likelihood function of the zero modified random mean models is similar

to that of the random effects models. Hence, we omit the formulation of the

details of its approximation.

5.10 Simulation Study

We conducted simulation studies to investigate performance of the zero mod-

ified random effects models and the zero modified random mean models.

100



5.10.1 Simulation Study I

In the first simulation, we consider the following zero modified Poisson regres-

sion model with random intercept

Pr(Yij = k) =

{ 1−pMij

1−e−λij

λkije
−λij

k!
, k = 1, 2, 3, . . .

pMij , k = 0,
(5.7)

where λij and p
M
ij are modelled with the log-linear and logistic regression mod-

els

log(λij) = x′
ijβββ + bi, (5.8)

logit(pMij ) = g′
ijγγγ, i = 1, . . . , N, j = 1, . . . , ni. (5.9)

Each of the 100 simulation data sets was comprised of N = 150 clusters

with size ni = 5. The observations in each cluster are conditionally indepen-

dent given the random intercept. The data were simulated according to the

above model with fixed effects of the log-linear model (β0, β1) = (1,−2.2),

the regression coefficients of the logit model (γ0, γ1) = (1.1,−8.5), the vari-

ance of the random intercept σ2 = 1, and the covariates xij = (1, j/15)′ and

gij = (1, j/15)′.

In table 5.6, we summarized the parameter estimates and standard errors

from the 100 simulations. The parameter estimate is the average of the 100

estimates, and the estimated SE is the average of the 100 estimated standard

errors. The empirical SE is standard deviation of the 100 parameter estimates.

We also calculated the actual coverage of the 95% confidence intervals are

95%, 94%, 90%, 94%, and 94% for β0, β1, σ
2, γ0 and γ1, respectively.
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Model Parameter(True) Average Estimated SE Empirical SE
Log-linear β0(1) 1.00989 0.12298 0.11917

β1(-2.2) −2.21878 0.34748 0.34600
Logit γ0(1.1) 1.08914 0.18494 0.18074

γ1(-8.5) −8.48799 0.91613 0.91946
Variance
Component σ2 (1) 0.98072 0.16473 0.18325

Table 5.6: Simulation results for 100 data sets from zero modified Poisson
regression model with random intercept

Mean Std Dev Min Max
0.09012 0.81877 −1.17984 2.25768

Table 5.7: Empirical estimates of the random intercept from a simulated data
set

We calculate the empirical estimates of the random intercept in a sim-

ulated data set. Table 5.7 summarizes the mean, the standard deviation,

the minimum and the maximum of the predicted random intercepts from the

150 clusters. We locate the minimum and the maximum empirical estimates

occurred at cluster 65 and cluster 122. We observe that cluster 122 has obser-

vations 18, 22, 0, 13, 16, which has much higher level of response than others;

and cluster 65 has observations 1, 1, 1, 0, 1.

5.10.2 Simulation Study II

In the second simulation, we consider the following the zero modified binomial

regression model with random intercept

Pr(Yij = k) =

{ 1−pMij
1−(1−πij)

mij

(
mij

yij

)
π
yij
ij (1− πij)mij−yij , k = 1, 2, . . . ,mij,

pMij , k = 0,
(5.10)
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Model Parameter(True) Average Estimated SE Empirical SE
Logit(π) β0(1) 1.00122 0.13118 0.12224

β1(-2.2) −2.21911 0.41088 0.42202
Logit(pM) γ0(1.1) 1.11836 0.18537 0.18391

γ1(-8.5) −8.62215 0.91898 0.91983
Variance
Component σ2 (1) 0.98694 0.14937 0.15103

Table 5.8: Simulation results for 100 data sets from zero modified binomial
regression model with random intercept

where λij and p
M
ij are modelled with logistic regression models

logit(πij) = x′
ijβββ + bi,

logit(pMij ) = g′
ijγγγ, i = 1, . . . , N.

Each of the 100 simulation data sets was comprised of N = 150 clusters

with size ni = 5. The observations in each cluster are conditionally inde-

pendent given the random intercept. The data were simulated according to

the above model with the fixed effects of the logit model (β0, β1) = (1,−2.2),

the regression coefficients in the logit model (γ0, γ1) = (1.1,−8.5), the vari-

ance of the random intercept σ2 = 1, and the covariates xij = (1, j/15)′ and

gij = (1, j/15)′.

In table 5.8, we summarized the parameter estimates and standard errors

from the 100 simulations. The parameter estimate is the average of the 100

estimates, and the estimated SE is the average of the 100 estimated standard

errors. The empirical SE is standard deviation of the 100 parameter estimates.

We also calculated the actual coverage of the 95% confidence intervals are

94%, 95%, 93%, 95% and 96%, for β0, β1, σ
2, γ0, and γ1 separately.

We calculate the empirical estimates of the random intercept in a simu-
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Mean Std Dev Min Max
−0.00894 0.83084 −2.16234 1.71253

Table 5.9: Empirical estimates of the random intercept of the simulated data
set

lated data set. Table 5.9 summarizes the mean, the standard deviation, the

minimum and the maximum of the predicted random intercepts from the 150

clusters. We locate the minimum and the maximum empirical estimates oc-

curred at cluster 42 and cluster 36. We observe that cluster 36 has observations

0, 0, 15, 20, 0 with correspondingm equal to 2, 11, 17, 20, 14, which has higher

level of response than others; and cluster 42 has observations 0, 0, 1, 0, 1 with

corresponding m equal to 13, 4, 12, 15, 14.

5.10.3 Simulation Study III

In the third simulation, we intend to compare the zero modified random effects

model and the zero modified random mean model, especially when there is

serial pattern in the clustered data. We consider the following zero modified

Poisson random mean model

Pr(Yij = k) =

{ 1−pMij

1−e−λij

λkije
−λij

k!
, k = 1, 2, 3, . . .

pMij , k = 0,
(5.11)

where λij and p
M
ij are modelled with the log-linear and logistic regression mod-

els

log(πij) = x′
ijβββ + uij,

logit(pMij ) = g′
ijγγγ, i = 1, . . . , N.
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Model Parameter(True) Average Estimated SE Empirical SE
Log-linear β0(1) 1.02756 0.17745 0.16971

β1(-2.2) −2.31844 0.82266 0.83880
Logit γ0(1.1) 1.11744 0.21131 0.19658

γ1(-8.5) −8.65723 1.20624 1.17635
Variance
Component σ2 (1) 0.99166 0.15716 0.15745

ρ (0.8) 0.79380 0.05883 0.06058

Table 5.10: Simulation results for 100 data sets from zero modified Poisson
random mean model

Mean Std Dev Min Max
0.10841 0.66448 −1.01132 3.17191

Table 5.11: Empirical estimates of the latent variables of a simulated data set

Each of the 100 simulation data sets was comprised of N = 150 clusters

with size ni = 4. The observations in each cluster are conditionally inde-

pendent given the latent variable. The data were simulated according to the

above model with the fixed effects of the log-linear model (β0, β1) = (1,−2.2),

the regression parameters in the logit model (γ0, γ1) = (1.1,−8.5), the vari-

ance of the latent variable σ2 = 1, the correlation coefficient ρ = 0.8, and the

covariates xij = (1, j/15)′ and gij = (1, j/15)′.

In table 5.10, we summarized the parameter estimates and standard errors

from the 100 times simulations. The parameter estimate is the average of

the 100 estimates, and the estimated SE is the average of the 100 estimated

standard errors. The empirical SE is standard deviation of the 100 parame-

ter estimates. We also calculated the actual coverage of the 95% confidence

intervals are 95%, 90%, 95%, 91%, 94%, and 94% for β0, β1, γ0, γ1, σ
2, and ρ

separately.

We calculate the empirical estimates of the latent variable in a simulated

data set. Table 5.11 summarizes the mean, the standard deviation, the mini-
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Model Parameter(True) Average Estimated SE Empirical SE
Log-linear β0(1) 1.10740 0.13137 0.20221

β1(-2.2) −2.27877 0.50381 1.01597
Logit γ0(1.1) 1.11744 0.21131 0.19658

γ1(-8.5) −8.65727 1.20624 1.17635
Variance
Component σ2 0.83711 0.14914 0.15138

Table 5.12: Simulation results for 100 data sets fitted by the zero modified
Poisson random intercept model

mum and the maximum of the predicted latent variables of the 150 clusters.

We locate the minimum and the maximum empirical estimates occurr at clus-

ter 54 and cluster 105. We observe that cluster 54 has observations 4, 0, 30,

38, which has much higher level of responses than others; and cluster 105 has

observations 1, 1, 1, 0.

For each of the simulated data sets, we also fit the zero modified Poisson

random intercept model. In Table 5.12, the estimates of parameters in the

log-linear model are unbiased. However, the estimated standard errors of

estimates are much smaller than the corresponding empirical standard errors.

It indicates that the zero modified random intercept model may underestimate

the standard errors of the estimates in the log-linear model, and the zero

modified random intercept model may be insufficient to model the data with

serial correlation.

5.11 Measles Data

We revisit the measles data studied by Sherman and le Cessie (1997) [87]. The

annual measles data were collected for each of 15 counties in the United States

between 1985 and 1991. For each county, the annual number of preschoolers
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cases 0 1 2 3-5 6-10 11-20 21-30 31-100 >100
freq 31 19 5 9 8 7 6 6 14

Table 5.13: Histogram of cases

with measles was recorded as well as factors possibly affecting measles inci-

dence: immunization rate and density of preschoolers per county. Table 5.13

are preliminary summary of the annual number of preschoolers with measles.

We study the relationship between the annual number of preschoolers with

measles and the immunization rate in two year old children. The immunization

rate is assumed to be constant during the period 1985-1991. There seems a

strong negative relationship between the immunization rate and the incidence

of measles, but there is also wide variability in measles incidence from year to

year. For example, in county 6, with the lowest immunization rate, there are

four years with a large number of preschool measles, but three years with a

negligible number of cases.

Let Yij be the number of cases in county i and in year j, i = 1, . . . , 15, j =

1, . . . , 7. Let nij, be the total number of preschool children in county i and

year j. We model the measles data through zero modified Poisson regression

model with random county effects bi

Pr(Yij = k) =

{ 1−pMij

1−e−λij

λkije
−λij

k!
, k = 1, 2, 3, . . .

pMij , k = 0,
(5.12)

where λij and p
M
ij are modelled with the log-linear and logistic regression mod-
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Model Parameter Estimate Std Err P-value
Log-linear β0 1.1008 1.7180 0.5320

β1 −0.1331 0.0248 <.0001
Logit γ0 −2.6010 1.7412 0.1574

γ1 0.0249 0.0247 0.3309
Variance component σ2 0.6362 0.2507 0.0237

Table 5.14: Parameter estimates from the zero modified Poisson random in-
tercept model for Measles data

Mean Std Dev Min Max
0.0107 0.7764 −1.4326 1.0682

Table 5.15: Summaries of empirical estimates of the random intercept of
Measles data

els

log(λij) = β0 + β1rateij + bi + log(nij), (5.13)

logit(pMij ) = γ0 + γ1rateij, i = 1, . . . , 15, j = 1, . . . , 7. (5.14)

Table 5.14 summarizes the parameter estimates and standard errors by

fitting the zero modified Poisson random intercept model. Table 5.15 summa-

rizes the mean, the standard deviation, the minimum and the maximum of

the predicted random intercepts of the 15 counties. We locate the minimum

and the maximum empirical estimates occurred at county 12 and county 11.

The county 11 has observations 6, 43, 1, 0, 0, 136, 0; while county 12 has

observations 1, 6, 0, 1, 7, 58, 1.

5.12 Conclusion

In this chapter, we propose regression models for count data with excess zeros

in cross-sectional and longitudinal studies. Aided with zero truncated distri-
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bution, and zero modified distribution, we establish a class of distributions to

model data with excess zeros.

Firstly, we formulate the generalized linear models for truncated data, and

mainly discuss zero truncated Poisson and zero truncated binomial regression

models. We then extend the zero truncated regression models to data with

excess zeros, by introducing an indicator variable to identify the responses as

zero or nonzero. It includes a regression model for the probability of zero

response, and a conditional model for nonzero data.

Secondly, we propose zero modified random effects models for clustered

data with excess zeros. In contrast to the fitting of ZIP and ZIB mixed ef-

fects models through the use of EM algorithm as in Hall (2000), the fitting

of the zero modified random effects models is simpler, in that we need only

the numerical approximation method to evaluate the integral in the marginal

likelihood function. In particular, the adaptive Gaussian quadrature method

is applied in this chapter. The optimization of likelihood function can also be

implemented through proc nlmixed in SAS. Simulations for two zero modified

random intercept models are conducted, and Measles data is used to illustrate

the new method.

Lastly, we apply the random mean models introduced in Chapter 3 to clus-

tered data with excess zeros, and formulate the corresponding zero modified

random mean models. A simulation is conducted to evaluate the zero modified

random mean model for the temporal count data. For each of the simulated

data sets, we also fit the zero modified Poisson random intercept model. We

find the zero modified random intercept model may underestimate the stan-

dard errors of the estimates in the log-linear model, and may be insufficient

to model the data with serial correlation.
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The limit of the implementation of zero modified random mean models is

the computational issue. To fit zero modified random effects models and zero

modified random mean models, we use adaptive Gaussian quadrature method,

which works well when the dimension of the integration is small, say 5. But

for higher dimension of the integration, we need to seek other approximation

methods.
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Chapter 6

Log-Gamma Linear Mixed

Models for Multiple

Characteristics

6.1 Introduction

The multiple characteristics model is used when responses on two or more char-

acteristics are observed over time for each individual in longitudinal studies.

Such data are commonly collected in the health sciences and epidemiological

studies. The methodology described in this chapter is motivated by a glau-

coma study. The purpose of this study was to investigate the longitudinal

structure and function association in glaucoma and the evolution of this as-

sociation over time, including an assessment of rates of change. Glaucoma is

an optic neuropathy characterized by progressive neuroretinal rim thinning,

excavation, and loss of the retinal nerve fiber layer. These structural changes

are usually accompanied by functional losses. Although there is an unques-
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tionable relationship between structural and functional damage in glaucoma,

the precise association and the evolution of this association over time are still

unclear. The elucidation of the longitudinal relationship between structural

and functional tests and their rates of change over time is essential in order

to enhance our understanding of the glaucomatous process and to determine

the relative utility of these tests in monitoring different stages of the disease.

The evaluation of rates of visual field change during follow-up was performed

using the visual field index (VFI). The VFI represents the percentage of nor-

mal age-corrected visual function, and it is intended for use in calculating the

rates of progression and the staging of glaucomatous functional damage. The

VFI can range from 100% (normal visual field) to 0% (perimetrically blind

field). Retinal nerve fiber layer (RNFL) retardation measurements were ob-

tained on a 3.2-mm-diameter calculation circle around the optic nerve head.

The global average RNFL thickness (calculated as the average of the RNFL

measurements obtained on the 360◦ around the optic nerve) was used in this

study.

There has been a great deal of literature dealing with multivariate lon-

gitudinal data. Reinsel (1984) [77] considered the random effects model for

multiple characteristics with a complete and balanced design. Shah, Laird,

and Schoenfeld (1997) extended linear mixed models to allow for multiple

longitudinal outcomes in the case where the number and timing of observa-

tions may differ from individual to individual. Roy and Lin (2000) [82] ex-

tended latent variable models to multivariate longitudinal data. There are two

sources of within-subject correlation that should be reflected in the multiple-

characteristics model: i) among different characteristics; ii) among repeated

measures of the same outcome over time. Although one can perform separate
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analyses of the two outcomes, this does not address the main question of in-

terest: how overall treatment practices have changed over time. Moreover, the

analysis will have increased power if information from all of the outcomes is

used (Pocock, Geller, and Tsiatis (1987) [75]).

The normality assumption for random effects in the linear mixed model

may be unrealistic, raising concerns about the validity of inferences on fixed

effects and random effects if it is violated. For single-characteristic longitu-

dinal data, it has been shown (Verbeke and Lesaffre (1996), (1997) [97] [98])

that deviations from the normality assumption have little impact on the esti-

mation of the fixed effects and variance components, and much more on the

empirical Bayes estimates for random effects in linear mixed models. Allowing

the random effects distribution to have more complex features than a sym-

metric normal density may provide insights into the underlying heterogeneity.

Verbeke and Lesaffre (1996) and Magder and Zeger (1996) [62] have extended

the linear mixed model with a mixture of normals as the random effects distri-

bution. Pinheiro et al. (2001) [74] considered the multivariate t distribution

for the modelling of both the random effects and the within-subject errors,

and they demonstrated its robustness against outliers through examples and

simulations. Zhang et al. (2008) [111] considered the log-gamma distribution

for the modelling of the skewed random effects.

From the preliminary study of the glaucoma data set, we found the distri-

bution of responses from one characteristic is skewed. We propose to extend

the mixed effects model to accommodate skewed responses and associations

among multiple characteristics by the use of the log-gamma distributed ran-

dom variable. For the multiple characteristics model, there are only a few

results related to the consequences of misspecifying the random-effects dis-
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tribution. Ghosh et al. (2007) [35] developed a Bayesian approach to the

bivariate mixed effects model through the use of a multivariate skew-normal

distribution. However, there is no closed form of the marginal distribution

of the responses when the random effects are assumed to be nonnormal. In

this chapter, we present a non-Gaussian linear mixed effects model for mul-

tiple outcomes, which is feasible mathematically and has less computational

complexity.

We express the reordered random effects through the product of the lin-

ear transformation matrix with unknown entries and the random vector with

independent components, and we specify that one component in the random

vector follows skewed distribution with the others coming from the multivari-

ate normal distribution. The introduction of the linear transformation matrix

not only accounts for correlated random effects, but also ensures that the di-

mension of the numerical integration of the marginal likelihood is one, since

the convolution of two normal distributions is still normal. Various techniques

can be chosen to compute the integral approximation of the marginal log-

likelihood: quadrature, Laplace, Monte Carlo, and Markov chain Monte Carlo

methods. We consider density functions in the family of the log-gamma distri-

butions with mean zero for modelling of skewed random effects. We allow the

number and time of repeated measures to differ for different characteristics

and units. We propose a lack-of-fit test for comparing the log-gamma model

and the Gaussian model, based on the profile likelihood function of the shape

parameter.
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6.2 Model and Assumptions

Let Yi = (Y′
i1, . . . ,Y

′
ip)

′ be the vector of stacked responses for the ith subject

with p characteristics, where Yik = (Yi1k, . . . , Yinikk)
′ is the collection of nik

observations for the kth characteristic. We assume a linear mixed effects model

to be of the form

Yi = Xiβββ + Zibi + εεεi, i = 1, . . . , N, (6.1)

where βββ = (βββ′
1, . . . ,βββ

′
p)

′ is a vector of fixed effects, bi = (b′
i1, . . . ,b

′
ip)

′ is a

vector of random effects, Xi = diag(Xi1, . . . ,Xip) is the design matrix of fixed

effects, Zi = diag(Zi1, . . . ,Zip) is the design matrix of random effects, and

εεεi = (εεε′i1, . . . , εεε
′
ip)

′ is the vector of error terms. The vectors of responses, Y′
is,

for the N subjects are assumed to be independent of one another. In addition,

we assume that the Yi are conditionally independent, i.e., given the random

effects bi, the components in Yi are independent of one another. The usual

distributional assumption for the random effects is multivariate normal, but

the maximum likelihood would work for other distributions as well.

We model some components of bi through the log-gamma distribution to

account for the skewed random effects. Suppose bi is a q × 1 vector with

components bi1, bi2, . . . , biq. To develop the model, we rearrange the compo-

nents in bi and divide them into two parts. Denote the reordered vector

b∗
i = (b∗i1, . . . , b

∗
i,q0
| b∗i,q0+1, . . . , b

∗
i,q)

′. The distributions of the first q0 compo-

nents are skewed, and those of the remaining q−q0 components are symmetric.

The reordering also results in the interchange of the columns in the design ma-

trix Zi according to the subscripts of b
∗
i . To allow correlated random intercepts
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and random slopes, we define b∗
i = Rs∗i , where the linear transformation ma-

trix R is an upper triangular matrix with unknown entries rij, 1 ≤ i < j ≤ q,

and 1′s on the diagonal, and the components of the vector s∗i are independent

of one another. Expressing the transformation in matrix notation gives



b∗i1

b∗i2
...

b∗iq


=



1 r12 · · · r1q

0 1 · · · r2q

· · · · · · · · · · · ·

0 0 · · · 1





s∗i1

s∗i2
...

s∗iq


. (6.2)

For ease of computation, we specify that just one component in s∗i , say

s∗i,q0 , is from the log-gamma distribution. The remaining components of s∗i are

assumed to be multivariate normally distributed with mean 0 and a diagonal

covariance matrix G. If the distribution of the random effect b∗i,q0 is posi-

tively skewed, then a minus log-gamma distribution should be selected for s∗i,q0

because the log-gamma distribution is negatively skewed. For other skewed

components b∗ij, 1 ≤ j < q0, the sign of the corresponding coefficient rj,q0 in

front of s∗i,q0 , determines the direction of skewness. The advantage of intro-

ducing the linear transformation matrix R rather than specifying correlated

random effects directly is that it produces a comparatively simple model and

also makes it easy to implement the log-gamma mixed effects model.

The log-gamma distribution represents a flexible class of symmetric, neg-

atively skewed, positively skewed, and very skewed distributions. The proba-

bility density function of the standard log-gamma random variable W is

fW (w) =
1

Γ(κ)
e−ew+κw, w ∈ R, (6.3)
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where κ > 0 is the shape parameter. For the location parameter µ ∈ R and

the scale parameter η > 0, the log-gamma location-scale family of probabil-

ity density functions (1/η)fW ((w − µ)/η) has mean µ + ηψ(κ) and variance

η2ψ′(κ), where ψ and ψ′ are the digamma and trigamma functions. Due to the

identifiability consideration, the mean of the log-gamma random variable s∗i,q0

is set to zero by choosing the location parameter as µ = −ηψ(κ). The density

functions with mean zero in the location-scale family (1/η)fW ((w−µ)/η) with

standard pdf fW (w) in (6.3) are chosen to model s∗i,q0 .

6.3 Inference

Since the joint distributions of both the responses and the random effects are

fully specified, we base the estimation and inference on the likelihood func-

tion. We first discuss the maximum likelihood estimation of the fixed effects

βββ, the covariance components in G = Cov(s∗i,1, . . . , s
∗
i,q0−1, s

∗
i,q0+1, . . . , s

∗
i,q), the

elements in the transformation matrix R, the log-gamma shape parameter

κ, the log-gamma scale parameter η, and the conditional covariance parame-

ters Σi = Cov(εεεi) = diag(σ2
1Ini1 , σ

2
2Ini2 , . . . , σ

2
pInip ). We denote all the above

parameters θθθ. The inferences for the fixed effects, the components in the co-

variance matrix, and the parameters in the log-gamma distribution are based

on the marginal likelihood function, which is given by

L(θθθ) =
N∏
i=1

∫ {∫
· · ·

∫
ϕ(yi|s∗i ) · ϕ(s∗i,1, . . . , s∗i,q0−1, s

∗
i,q0+1, . . . , s

∗
i,q)

ds∗i,1 · · · ds∗i,q0−1ds
∗
i,q0+1 · · · ds∗i,q

}
·f(s∗i,q0)ds

∗
i,q0
, (6.4)
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where f(s∗i,q0) represents the density function from the location-scale family of

the log-gamma distributions with standard pdf in (6.3). However, there are

no simple, closed-form solution to the integral. Instead, numerical integration

techniques are required to maximize the likelihood function. Under suitable

conditions (discussed later), the MLEs of θ̂θθ are consistent and asymptotically

normal with the asymptotic covariance matrix equal to the inverse of the Fisher

information matrix.

Newton Raphson algorithm is often the choice for finding the MLE. In

many cases, deriving the Hessian matrix or the Fisher information matrix is

analytically intricate, and therefore alternative numerical strategies are desir-

able. We invoke a Gauss-Newton algorithm (Ruppert (2005) [83]), in which the

Fisher information matrix is approximated by B(θθθ) =
∑N

i=1 ·li(yi;θθθ)·li(yi;θθθ)
′.

Thus, only the first-order derivatives of the log likelihood are involved. The

key step of this algorithm is to halve the value of δ, which guarantees a steady

increase in the likelihood from the previous iteration. To be more precise, the

(k + 1)th iteration should proceed as

θθθk+1 = θθθk + δ{B(θθθk)}−1·l(θθθk), (6.5)

where δ is the step-halving term. The step-halving starts with δ = 1 and halves

δ until l(θθθk+1) > l(θθθk). The algorithm stops when an increase in the likelihood

is no longer possible, or the difference between two consecutive updates is

smaller than a prespecified precision level. The starting values can be found

either using an inefficient, but easily calculated, estimator, or by maximizing

the likelihood on some grid. Thiébaut et al. [93] (2002) discussed how to fit

the bivariate linear mixed models using SAS proc MIXED. The results from
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the SAS output can be used to set starting values for our new algorithm, but

there are many other choices to consider.

The estimates of random effects reflect between-subject variability, which

makes them helpful for detecting outlying individuals or individuals evolving

differently in time. The posterior distribution of b∗
i is given by

f(b∗
i |yi) =

ϕ(yi|b∗
i )f(b

∗
i )∫

ϕ(yi|b∗
i )f(b

∗
i )db

∗
i

. (6.6)

The posterior mean of (6.6) is used to predict the random effects b∗
i , with

the unknown parameters replaced with their maximum likelihood estimates.

We use the Markov chain Monte Carlo to simulate direct draws from the

posterior distribution in (6.6) to obtain the posterior means.

6.4 Lack-of-fit Test

For the lack-of-fit test, we use the property that the limiting distribution of the

log-gamma distribution is standard normal (Bartlett and Kendall (1946) [4];

Prentice (1974) [76]). The mean and variance of the standard log-gamma dis-

tribution W in (6.3) are respectively E(W )=ψ(κ) and Var(W)=ψ′(κ), where

ψ and ψ′ are the digamma and trigamma functions, and they behave like logκ

and κ−1 for large κ. The transformed log-gamma variate Z = κ1/2(W − logκ)

has density function

f0(z) =
κκ−1/2

Γ(κ)
e−κeκ

−1/2z+κ1/2z, z ∈ R. (6.7)

The generalized log-gamma model is then the three-parameter family of dis-

tributions for which Z = (S − u)/b has pdf (6.7). It can be shown that as

119



κ→∞, Z converges to the standard normal distribution.

Consider the generalized log-gamma version of the marginal likelihood

function for the scaled response y∗
κi
= κ1/2yi,

f(y∗
κi
, θθθ) =

∫ {∫
· · ·

∫
ϕ(y∗

κi
|s∗i ) · ϕ(κ1/2s∗i,1, . . . , κ1/2s∗i,q0−1, κ

1/2s∗i,q0+1, . . . , κ
1/2s∗i,q)

ds∗i,1 · · · ds∗i,q0−1ds
∗
i,q0+1 · · · ds∗i,q

}
·1
b
f0(

s∗i,q0 − u
b

) ds∗i,q0 , (6.8)

where u = −bκ1/2(ψ(κ) − logκ). Then, the generalized log-gamma version of

the marginal likelihood function of the response y = 1
κ1/2 y

∗
κ is

L0(θθθ) =
N∏
i=1

1

κni/2
f(

1

κ1/2
y∗
κi
, θθθ). (6.9)

Now, the parameter of interest in θθθ is κ, and the remaining parameters in

θθθ are treated as nuisance parameters and we denote them θθθ1. It is straightfor-

ward to maximize (6.9) with fixed κ to obtain θ̃θθ1(κ). The profile log-likelihood

function is lp(κ) = logL0(θ̃θθ1(κ), κ) for κ. Tests of the hypothesis H0 : κ = κ0

vs. Ha : κ ̸= κ0 can be based on the likelihood ratio statistic Λ(κ0)

Λ(κ0) = 2lp(κ̂)− 2lp(κ0), (6.10)

where κ̂ is the MLE that maximizes lp(κ). For finite κ0 the distribution of

Λ(κ0) is asymptotically χ2
1 under H0. A slight technical difficulty arises in

testing the normal model, since κ0 =∞ is on the boundary of the parameter

space. However, the nuisance parameters θθθ1 with true values are not on the

boundary, if the variance components in θθθ1 are transformed onto the log scale.

When κ0 =∞, the asymptotic distribution of Λ(κ0) is a 50 : 50 mixture of χ2
0
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and χ2
1; then for a ≥ 0, Pr(Λ(∞) ≤ a) = 0.5 + 0.5Pr(χ2

1 ≤ a) (Self and Liang

1987).

6.5 Asymptotic Properties

The asymptotic properties of the maximum likelihood estimates in the linear

mixed model were discussed in Weiss (1973) and Jiang (2001). In the Ap-

pendix, we state the conditions for the asymptotic consistency and normality

of the MLEs of the marginal likelihood function of the mixed effects model, and

then show that the marginal likelihood function derived from the Log-Gamma

mixed effects model satisfies those conditions.

Let s denote the dimension of θθθ. The full log-likelihood function is given

by

l(θθθ) =
N∑
i=1

li(θθθ,yi). (6.11)

Theorem 6.1: Let the observations be y1, . . . ,yN , each with the marginal dis-

tribution function fi(yi|θθθ) in (6.4). Under the conditions (A0)− (A6), with

probability tending to 1 as N →∞, there exist solutions θ̂θθN = (θ̂1N , . . . , θ̂sN)

of the likelihood equations

∂

∂θj
l(θθθ) = 0, j = 1, . . . , s, (6.12)

such that

(a) θ̂θθN is a consistent estimator for θθθ0;
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(b) B
1/2
N (θ̂θθN − θθθ0)→ MVN(0, I), where θθθ0 is the true parameter point, and

BN =
N∑
i=1

Eθθθ0

{(
∂

∂θθθ
li

)(
∂

∂θθθ
li

)T }
. (6.13)

Remark: The marginal distributions of the Y′
is are not identical. The stan-

dard conditions for the asymptotic properties of the maximum likelihood

estimation cannot apply directly in the mixed models. (A6) is the condition

of the central limit theorem for the sum of independent but not identically

distributed random variables. The marginal distribution derived from the

new class of mixed models has nice properties and satisfies all the conditions

required for asymptotic consistency and normality. It is then convenient to

conduct hypothesis tests or to find confidence intervals for the parameters

in the model.

6.6 Data Analysis

A total of 1939 repeated measures for VFI and RNFL from 203 patients were

used for the analysis. The measures of the two characteristics were collected

from each of the N = 203 patients at different times. The VFI scores are pro-

portional data, so that a logit transformation is applied in the analysis. Mea-

sures of RNFL are regular continuous values. It is believed that the disease

progression is a linear function of time, and the slope depends on the individ-

ual patient. For the ith patient, the baseline measures of the kth (k = 1, 2)

characteristic recorded can be expressed as βk0+bik0, where βk0 is an unknown

parameter and bik0 is the random intercept. Several measures are collected at

time tijk, for j = 1, . . . , nik . The coefficient βk1 is an unknown parameter and
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bik1 is the random slope for the ith patient, and the subject-specific progression

rate can be expressed as βk1 + bik1tijk. Furthermore, a random error is associ-

ated with each time measurement. Using the vector and matrix notation, the

linear mixed effects model can be written as

Yi1

Yi2

 =

Xi1 0

0 Xi2


βββ1

βββ2

+

Zi1 0

0 Zi2


bi1

bi2

+

εεεi1

εεεi2

 (6.14)

where

Xik = Zik =



1 ti1k

1 ti2k
...

...

1 tinikk


, k = 1, 2. (6.15)

Based on findings from the preliminary analysis, the intercepts of VFI

scores, the first characteristic, show a negatively skewed pattern when only the

linear mixed model for the Yi1
′s is fitted. Histograms of regression coefficients

for the within-subject regressions of two characteristics on time are shown in

Figure 6.1. The scatterplots of intercepts and slopes obtained from the single

subject models between the two characteristics (VFI on the x-axis and RNFL

on the y-axis) are displayed in Figure 6.2. They not only verify that the

distribution of subject-specific intercepts for VFI is negatively skewed but also

clearly indicate the relationship between the two random intercepts and that

of the two slopes.

The random intercept of the first characteristic bi10 in bi is the only skewed

element. It is in the first position, so there is no need to reorder bi to obtain
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Figure 6.1: Coefficients for the within-subject regressions of two characteristics
on time
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Parameter Value Std Err P-value
β10 3.9194 ( 3.9671) 0.0623 (0.0919) <0.0001
β11 −0.0265 (−0.0290) 0.0128 (0.0148) 0.0378
β20 47.5025 (47.4261) 0.2167 (0.4630) <0.0001
β21 −0.5645 (−0.5746) 0.0681 (0.0713) <0.0001
σ2
bi10

0.9117 ( 1.5998) 0.0609 (0.1705) <0.0001
σ2
bi11

0.0026 ( 0.0104) 0.0006 (0.0040) <0.0001
σ2
bi20

35.4466 (41.6805) 0.2269 (4.3238) <0.0001
σ2
bi21

0.3243 ( 0.3948) 0.0807 (0.1034) <0.0001
σ2
1 0.2201 ( 0.2396) 0.0083 (0.0119) <0.0001
σ2
2 2.1456 ( 2.4707) 0.1229 (0.1778) <0.0001

Table 6.1: Estimates of the fixed effects and the variance components of the
log-gamma and normal random effects models (The numbers in parentheses
are estimates from the normal model)

the desired form. Then, we define the linear transformation bi = Rsi with

R =



1 r1 r2 r3

0 1 r4 r5

0 0 1 r6

0 0 0 1


, (6.16)

where si = (si10, si11, si20, si21)
′, with independent components. We model si10

through the log-gamma distribution, and the remaining components in si are

multivariate normal. Since the distribution of the log-gamma is negatively

skewed, it results in bi10 being negatively skewed also. Conditioning on the

random effects, the responses for a particular individual are assumed to be

independent and conditionally normal:

Yi|si ∼ N(Xiβββ + ZiRsi,Σi), i = 1, . . . , N. (6.17)

We use MATLAB for the computation. Table 6.1 provides the estimates
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of the parameters in the log-gamma and normal random effects models. The

estimates of the parameters in the log-gamma model are close to those in the

normal model. In the single-characteristic case, deviations from the normality

assumption have little impact on the estimation of the fixed effects and the

variance components. Based on the parameter estimates in Table 6.1, the same

observation is suggested for the multiple case. The multivariate delta method

and the asymptotic properties of the maximum likelihood estimates θ̂θθ are ap-

plied to calculate the standard errors of the variance components of bi. The

introduction of the linear transformation matrix R does not lead to any diffi-

culties in the computation of the standard errors of the variance component es-

timates. The computational complexity is similar to that for the setting of the

random effects in the normal case; they are usually specified with a nondiag-

onal covariance matrix. The estimated average regression coefficients for VFI

and RNFL are −0.0265 and −0.5645, respectively. For both characteristics,

larger values of the regression coefficients of time indicate slower deterioration.

Therefore, negative slopes indicate disease progression over time.

The profile likelihood values lp(κ) are based on maximizing

lp(κ) = logL0(θ̃θθ1(κ), κ),

with κ fixed. The profile log-likelihood is maximized at κ̂ = 0.41. The

likelihood-ratio statistic Λ(∞) is 2402.4. The p-value is extremely small: less

than 0.0001. There is strong evidence to reject the null hypothesis of the nor-

mal random effects model, suggesting that the log-gamma model is a better

fit to the data.

Table 6.2 lists the means and standard errors of the N = 203 predicted
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Figure 6.2: Scatterplots of intercepts and slopes for the within-subject regres-
sions of two characteristics on time

Log-gamma Normal
Random effect Mean SE Mean SE

bi10 0.0313 1.2022 -0.0000 1.2444
bi11 0.0039 0.0434 0.0000 0.0538
bi20 −0.0951 6.3831 -0.0002 6.3864
bi21 −0.0062 0.3875 0.0001 0.3978

Table 6.2: Results for the posterior distribution of random effects under the
log-gamma and normal models
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Figure 6.3: Scatterplots of empirical estimates of the intercepts and slopes
from the posterior distributions of the random effects of the log-gamma model
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Figure 6.4: Scatterplots of empirical estimates of the intercepts and slopes
from the posterior distributions of the random effects of the normal model

random effects under the log-gamma and normal models, the means of the

posterior distributions of bi given Yi. In the log-gamma model, given the

ML estimates of fixed effects, variance components, and R, the random effects

b′
is were predicted from 18,000 sample points of 3 chains generated from the

posterior distribution f(bi|yi), with the first 4000 sample points discarded for

burn-in. In the normal model, the random effects b′
is were predicted from

Empirical Bayes estimates. Figure 6.3 displays distribution of the estimate of

the random effect bi from the N = 203 posterior means under the log-gamma

model. We found that the distribution of the predicted random effects bi10
′s is

negatively skewed, which confirms the observed skewness from the preliminary

study. The estimate of the skewness parameter κ = 3.4212 is moderately high.

Figure 6.4 shows the scatterplot of the empirical estimates of the intercepts

and slopes from the normal model.
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Figure 6.5: Distributions of the empirical estimates of the random effects under
the log-gamma model

Log-gamma Normal
corr Estimate SE Estimate SE

(bi10, bi20) 0.4421 0.0210 0.5044 0.0568
(bi11, bi21) 0.1896 0.4728 0.3280 0.2210

Table 6.3: Correlations of random effects under the log-gamma and normal
models
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Correlations between two random intercepts, ρ0, and between two random

slopes, ρ1, of the two characteristics are of most interest. Correlations of pairs

of random effects and their standard errors are obtained from the log-gamma

and normal mixed effects models in Table 6.3. Under the log-gamma model,

for the null hypothesis H0 : ρ0 = 0, a Wald test gives z = 21.0803 with p-

value 0, which shows that there is significant positive relationship between

the two random intercepts of the regressions of the two tests results on time.

The positive relationship between the intercepts of the two characteristics

is also indicated in the scatterplot of the intercepts from the single-patient

regression analysis in Figure 6.2. The Wald test for hypothesis regarding the

correlation of slopes H0 : ρ1 = 0 reports z = 0.4009 with p-value 0.3442.

The intercepts represent the level of disease at the start of the study. The

positive correlation coefficient of the two random intercepts indicates that the

structural and functional characteristics are consistent with each other. The

patient has a high level baseline in one test will be associated with a high level

in the other. However, the rates of progressive RNFL loss are not significantly

associated with the rates of functional change in glaucoma.

Under the normal model, the test for H0 : ρ0 = 0 gives z = 8.8771 with p-

value 0, and the test for slopes H0 : ρ1 = 0 has z = 1.4845 with p-value 0.1377.

Apparently the model with misspecified distributions of random effects reports

less reliable conclusion on the correlations of random effects. The normal

model overestimates the correlation of random slopes of the two characteristics,

and underestimates its standard error, which results in a large value in the test

statistic and a small p-value (0.067 for a one-sided alternative hypothesis). The

performance of the log-gamma model and normal model in terms of estimating

the correlations of random effects can also be illustrated by the comparison
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of scatterplots of subject-specific effects in Figure 6.2 to 6.4. The analysis

from the single patient regressions shows that the two random intercepts are

positively correlated, but the two random slopes may be uncorrelated. The

log-gamma model draws the same conclusion as the single patient regression

analysis. The normal model gives a similar scatterplot for the two random

intercepts, but indicates a positive correlation of the two random slopes, which

is against the preliminary analysis.

6.7 Discussion

We propose a class of log-gamma linear mixed models for modelling multiple

characteristics longitudinal data, applying it to a glaucoma study. To address

the main scientific questions of whether the structural and functional mea-

surements are associated and how the progressions of the two characteristics

related, hypotheses are tested based on the fitting of the proposed model. We

conclude that the progressions of the structural and functional characteristics

are positively correlated, but the rates of changes in the two are uncorrelated.

Further studies, either methodological or new investigations with more data,

are warranted.

Besides that fact that they reflect the covariance structure of the multi-

variate responses, the main advantage of the class of log-gamma mixed effects

models lies in their simplicity in accounting for the skewness of the random

effects, which results in more efficient estimation of the parameters. The ex-

pression of the reordered random effects by the product of the linear trans-

formation matrix and the random vector of independent components avoids

high-dimensional integration in the marginal log likelihood function and makes
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the implementation feasible. This new class provides a generalized method for

estimating the correlation between two or more slopes. In the case of a sin-

gle response, the model reduces to that in Zhang et al. (2008). The family

of log-gamma distributions possesses the nice property that the limiting dis-

tribution is normal and a lack-of-fit test on the adequacy of the log-gamma

distributional assumption of the random effects can be derived. It would be

of interest to extend the model to the case of mixed multivariate responses in

which the continuous characteristic response shows a skewed pattern.
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Chapter 7

Future Work

7.1 Joint Models for Multivariate Mixed Out-

comes of Repeated Measurements.

Observations of multiple outcomes across space and over time occur often

in environmental and ecological studies. Compared to the number of spatial

models for a single outcome variable in the exponential family of distributions,

fewer statistical tools are available for multiple outcome variables that are not

necessarily Gaussian. Wang and Wall (2003) [99] considered the exponential

family of distributions for multiple-response variables, but only a univariate

spatial process for a single latent variable. Zhu et al. (2005) [112] extended the

model in Wang and Wall (2003) and developed a flexible class of generalized

linear latent variable models for multivariate spatial-temporal data.

We have discussed the joint modelling of bivariate mixed outcomes of re-

peated measurements. The random mean joint models proposed for the joint

analysis of two longitudinal sequences are less applicable to more sequences.
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Even if a plausible joint model can be formulated in terms of the random

mean joint models, the fitting of these high-dimensional models can be very

cumbersome. Working on extending the random mean joint models to allow

for multivariate outcomes, containing more than one continuous response and

more than one discrete response, is a possible direction for future work.

One possible solution is to extend the random mean joint models for bivari-

ate outcomes to multiple outcomes by using the composite likelihood meth-

ods. The composite likelihood is an inference function derived by multiplying

a collection of component likelihood functions. The application areas include

geostatistics, spatial extremes, and clustered and longitudinal data. We can

consider the modelling of each pair of different types of outcomes by the ran-

dom mean joint models. Assuming that, conditional on the latent variables,

the responses are independent. A multivariate distributional assumption is im-

posed on the latent variables to account for the association between different

outcomes.

For the model fitting, we can consider pairwise fitting. It is a pairwise

pseudo-likelihood approach. Molenberghs and Verbeke (2005) [32] proposed a

method of pairwise fitting, a composite marginal likelihood constructed from

all pairs of outcomes. Instead of maximizing the log-likelihood function of the

full joint model, all pairwise bivariate models are fitted separately in the first

step. In the second step, the parameters obtained from the pairwise models are

combined to obtain single estimate for each parameter in the full joint model.

The pseudo-likelihood methods are often less efficient that the full maximum

likelihood function. However, the simulation results of Fieuws and Verbeke

(2006) [28] suggest that the loss of efficiency is negligible, if there is any.

135



7.2 Goodness of Fit for the Zero Modified Re-

gression Model with Random Effects

Zero-inflated Poisson mixed regression models are popular approaches to an-

alyzing clustered count data with excess zeros. Prior to application of these

models, it is essential to examine the necessity of the adjustment for zero out-

comes. The existing literature, however, has focused only on score tests for

testing the suitability of zero-inflated models for correlated count data or other

alternative approaches to the test, such as, the Wald and likelihood ratio tests

for zero-inflation in correlated count data Xiang and Teo (2011) [102]. Under

the zero modified regression model setting, it is essential to check whether or

not the data are indeed zero-inflated relative to what are predicted by the

standard models.

Investigating the goodness of fit under the zero modified regression model

with random effects is of interest. For the independent count data, when the

same covariates affect the probability of zeros and the Poisson parameter, it

is useful to consider the model that involves the complementary-log-log link

function for the probability of zeros and the log link for the Poisson parameter.

This model can reduce to the generalized linear Poisson regression model when

the coefficients of the two models are equal. In the zero modified regression

models with random effects, there is no such result.
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7.3 Zero Modified Regression Models for Semi-

continuous Distributions

A semicontinuous variable, which has a portion of responses equal to 0, and

a continuous distribution among the remaining values, has been described

by the lognormal and gamma distributions for the continuous component.

The zero modified regression models can easily be extended to semicontinuous

distributions. For example, we can define the zero modified regression models

with the normal distribution, and the discrete distribution with all mass at 0.

By assigning an arbitrary value of the probability of zeros, we can scale the

normal distribution according to the adjusted value.

A Poisson-gamma model has been introduced to account for between-

subjects heterogeneity and within-subjects serial correlation occurring in lon-

gitudinal count data in Henderson and Shimakura (2003) [48]. The model

extends the usual time-constant shared frailty approach to allow time-varying

serially correlated gamma frailty whilst retaining standard marginal assump-

tions. They illustrate pairwise likelihood inference for the composite likeli-

hood model in Lindsay (1988) [58] with the analysis of a clinical trial on the

number of analgesic doses taken by hospital patients in successive time inter-

vals following abdominal surgery. We can investigate the Poisson-correlated

gamma-frailty zero modified model for data with excess zeros.
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Appendix A

Derivatives of Log-likelihood

Function

Suppressing the dependence on i, the first and second derivatives of (4.9), the

log-likelihood function of the latent variable u, with respect to θθθ in R, and ρ

in T are

∂l

∂θk
= −n

2

1

|R|
∂|R|
∂θk
− 1

2
u′
(
∂R−1

∂θk
⊗ T−1

)
u,

∂l

∂ρ
= − 1

|T |
∂|T |
∂ρ
− 1

2
u′
(
R−1 ⊗ ∂T−1

∂ρ

)
u,
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and

∂2l

∂θ2k
=
n

2

1

|R|2

(
∂|R|
∂θk

)
2 − n

2

1

|R|
∂2|R|
∂θ2k

− 1

2
u′
(
∂2R−1

∂θ2k
⊗ T−1

)
u,

∂2l

∂θk∂θj
=
n

2

1

|R|2
∂|R|
∂θj

∂|R|
∂θk
− n

2

1

|R|
∂2|R|
∂θk∂θj

− 1

2
u′
(
∂2R−1

∂θk∂θj
⊗ T−1

)
u,

∂2l

∂θk∂ρ
= −1

2
u′
(
∂R−1

∂θk
⊗ ∂T−1

∂ρ

)
u,

∂2l

∂ρ2
=

1

|T |2

(
∂|T |
∂ρ

)
2 − 1

|T |
∂2|T |
∂ρ2

− 1

2
u′
(
R−1 ⊗ ∂2T−1

∂ρ2

)
u,

where ∂|R|
∂θk

, ∂|T |
∂ρ

, ∂R−1

∂θk
, ∂T−1

∂ρ
, ∂2|R|

∂θ2k
, ∂2|R|

∂θk∂θj
, ∂2R−1

∂θ2k
, ∂2R−1

∂θk∂θj
, ∂2T−1

∂ρ2
, and ∂2|T |

∂ρ2
are

easy to be calculated.
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Appendix B

Asymptotic Properties of the

Log-Gamma Mixed Effects

Models

We first state the conditions:

(A0) The distributions of the observations Y′
is have common support, so that

the elements of the set Ai = {yi : fi(yi|θθθ) > 0} are independent of θθθ for

all i.

(A1) The distributions fi(yi|θθθ) are identifiable.

(A2) The observations y1, . . . ,yN are independent.

(A3) There exists an open subset ω of Ω containing the true parameter point

θθθ0 such that for almost all y′
is, the density fi(yi|θθθ) has third derivatives

with respect to θθθ ∈ ω.
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(A4) The first and second derivatives of li satisfy the equations

Eθθθ0

(
∂

∂θj
li

)
= 0 for 1 ≤ i ≤ N, 1 ≤ j ≤ s (2.1)

and

Eθθθ0

(
∂

∂θj
li ·

∂

∂θk
li

)
= Eθθθ0

(
− ∂2

∂θj∂θk
li

)
. (2.2)

(A5) There exists a function M(yi) such that

∣∣∣∣ ∂3

∂θj∂θk∂θl
li(θθθ,yi)

∣∣∣∣≤M(yi) for allθθθ ∈ ω, (2.3)

where Eθθθ0{M(Yi)} <∞.

(A6) Eθθθ0(| ∂
∂θj
li|d), 1 ≤ i ≤ N, 1 ≤ j ≤ s, are bounded for some d > 2.

Proof. (a) Existence and consistency follow from the fact that the marginal

probability (6.4) clearly satisfies the conditions (A0)-(A5).

(b) Asymptotic Normality. This part of the proof is basically to verify con-

dition (A6) for the marginal probability densities. Consider the integrand in

the braces of (6.4):

∫
· · ·

∫
ϕ(yi|s∗i ) · ϕ(s∗i,1, . . . , s∗i,q0−1, s

∗
i,q0+1, . . . , s

∗
i,q) ds

∗
i,1 · · · ds∗i,q0−1ds

∗
i,q0+1 · · · ds∗i,q.

It is still normal, since the convolution of normal distributions is normal. Let

Vi denote the covariance matrix of the above multivariate normal distribution.

Expressing the log likelihood function in a general way, we have

li(θθθ,yi) = ln

∫
1

(2π)
ni
2 | Vi |

1
2 Γ(κ)

· exp{Fi(s)} ds, (2.4)
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where

Fi(s) = −
1

2
M′

iV
−1
i Mi − e

s+ηψ(κ)
η +

κ

η
{s+ ηψ(κ)} (2.5)

and

Mi = Yi −Xiβββ −G0(s), (2.6)

the components in G0(s) are polynomials in s of at most degree one, and ni

is the number of observations of the p characteristics for the ith individual.

Differentiating the log likelihood with respect to the parameters, we obtain

the following equations:

∂li(θθθ,yi)

∂βββ
=

∫
exp{Fi(s)} ·X′

iV
−1
i Mids∫

exp{Fi(s)} ds
(2.7)

∂li(θθθ,yi)

∂θj
=

∫
exp{Fi(s)} · {−1

2
M′

i
∂V−1

i

∂θj
Mi − 1

2
|Vi|

−1 ∂|Vi|
∂θj
} ds∫

exp{Fi(s)} ds
(2.8)

∂li(θθθ,yi)

∂κ
=

∫
exp{Fi(s)} · { sη − ψ

′(κ)e
s+ηψ(κ)

η + κψ′(κ)} ds∫
exp{Fi(s)} ds

(2.9)

∂li(θθθ,yi)

∂η
=

∫
exp{Fi(s)} · {κs− se

s+ηψ(κ)
η + η} ds

η2
∫
exp{Fi(s)} ds

(2.10)

where θj is the variance component in G,R, and Σi.

We first show the steps for proving that the first derivatives of the log

likelihood function with respect to the fixed effects βββ satisfy condition (A6).

The proofs for the variance components and the log-gamma parameters are
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similar.

Eθθθ0(|
∂

∂βββ
li|d) =

∫ ∣∣∣∣∂li(θθθ,yi)

∂βββ

∣∣∣∣d · [∫ 1

(2π)
ni
2 | Vi |

1
2 Γ(κ)

· exp{Fi(s)} ds
]
dyi

=

∫ [ ∣∣∫ exp{Fi(s)} ·X′
iV

−1
i Mids

∣∣d
(2π)

ni
2 | Vi |

1
2 Γ(κ)

∣∣∫ exp{Fi(s)} ds
∣∣d ·

∫
exp{Fi(s)} ds

]
dyi

=

∫ ∣∣∫ exp{Fi(s)} ·X′
iV

−1
i Mids

∣∣d
(2π)

ni
2 | Vi |

1
2 Γ(κ)

∣∣∫ exp{Fi(s)} ds
∣∣d−1

dyi

=

∫ ∣∣∫ exp{Fi(s)} ·G1(s,yi) ds
∣∣d

(2π)
ni
2 | Vi |

1
2 Γ(κ)

∣∣∫ exp{Fi(s)} ds
∣∣d−1

dyi,

where the vector G1(s,yi) = X′
iV

−1
i Mi has as components polynomials in s

or elements in yi of at most degree one.

By Hölder’s inequality, for d > 1, we have

∣∣∣∣∫ exp{Fi(s)} ·G1(j) ds

∣∣∣∣
≤

∫ [
(exp{Fi(s)})

d−1
d

] d
d−1

ds

 d−1
d

·
∫ ∣∣∣(exp{Fi(s)})

1
d ·G1(j)

∣∣∣d ds 1
d

=

[∫
exp{Fi(s)} ds

] d−1
d

·
[∫ ∣∣exp{Fi(s)} ·Gd

1(j)
∣∣ ds] 1

d

,
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where G(j) is the jth component of G1(s,yi). Thus,

∫ ∣∣∫ exp{Fi(s)} ·G1(j) ds
∣∣d

(2π)
ni
2 | Vi |

1
2 Γ(κ)

∣∣∫ exp{Fi(s)} ds
∣∣d−1

dyi

≤ 1

(2π)
ni
2 | Vi |

1
2 Γ(κ)

∫ [∫ ∣∣exp{Fi(s)} ·Gd
1(j)

∣∣ ds] dyi

=
1

(2π)
ni
2 | Vi |

1
2 Γ(κ)

∫ [∫
exp(−1

2
M′

iV
−1
i Mi) · |Gd

1(j)| dyi

]
·exp

{
−e

s+ηψ(κ)
η +

κ

η
(s+ ηψ(κ))

}
ds

<∞.

The verifications of condition (A6) for the remaining parameters in θθθ are sim-

ilar to those of βββ.
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[81] G. Rodŕıguez. Lecture notes on generalized linear models, 2007.

[82] Jason Roy and Xihong Lin. Latent variable models for longitudinal data

with multiple continuous outcomes. Biometrics, 56(4):pp. 1047–1054,

2000.

154



[83] David Ruppert. Discussion of ”maximization by parts in likelihood in-

ference,” by song, peter x.-k. and fan, yanqin and kalbfleisch. Journal

of the American Statistical Association, 100(472):pp. 1145–1167, 2005.

[84] Mary Dupuis Sammel, Louise M. Ryan, and Julie M. Legler. Latent

variable models for mixed discrete and continuous outcomes. Journal of

the Royal Statistical Society. Series B (Methodological), 59(3):pp. 667–

678, 1997.

[85] Robert Schall. Estimation in generalized linear models with random

effects. Biometrika, 78(4):pp. 719–727, 1991.

[86] Amrik Shah, Nan Laird, and David Schoenfeld. A random-effects model

for multiple characteristics with possibly missing data. Journal of the

American Statistical Association, 92(438):pp. 775–779, 1997.

[87] Michael Sherman and Saskia le Cessie. A comparison between bootstrap

methods and generalized estimating equations for correlated outcomes

in generalized linear models. Communications in Statistics - Simulation

and Computation, 26(3):901–925, 1997.

[88] Peter X.-K. Song, Mingyao Li, and Ying Yuan. Joint regression analysis

of correlated data using gaussian copulas. Biometrics, 65(1):60–68, 2009.

[89] Robert Stiratelli, Nan Laird, and James H. Ware. Random-effects models

for serial observations with binary response. Biometrics, 40(4):pp. 961–

971, 1984.

[90] Martin A. Tanner. Tools for Statistical Inference. Springer, 3 edition,

1996.

155



[91] Peter F. Thall. Mixed poisson likelihood regression models for longitu-

dinal interval count data. Biometrics, 44(1):pp. 197–209, 1988.

[92] Peter F. Thall and Stephen C. Vail. Some covariance models for longi-

tudinal count data with overdispersion. Biometrics, 46(3):pp. 657–671,

1990.
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