INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zecb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

NOTE TO USERS

The original manuscript received by UMI contains
broken,indistinct, and/or light print. All efforts were made to
acquire the highest quality manuscript from the author or
school. Page(s) were microfilmed as received.

This reproduction is the best copy available

UMI

University of Alberta

PERSONALIZED UPDATE MONITORING TOOLKIT UsSING CONTINUAL QUERIES: SYSTEM DESIGN
AND IMPLEMENTATION

Wei Tang @

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the
requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Fall 1998

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Waellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et .
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada

Your file Votre réference

Our fle Notre rétdrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-34426-6

University of Alberta

Library Release Form

Name of Author: Wei Tang

Title of Thesis: Personalized Update Monitoring Toolkit Using Continual Queries: System Design
and Implementation

Degree: Master of Science

Year this Degree Granted: 1998

Permission is hereby granted to the University of Alberta Library to reproduce single copies of this
thesis and to lend or sell such copies for private. scholarly or scientific research purposes only.

The author reserves all other publication and other rights in association with the copyright in the
thesis, and except as hereinbefore provided, neither the thesis nor any substantial portion thereof
may be printed or otherwise reproduced in any material form whatever without the author’s prior
written permission.

Wei Tang

615 General Services Building
University of Alberta
Edmonton. Alberta

Canada. T6G 2H1

Date: . \ZW 27/ .[?75’

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies
and Research for acceptance, a thesis entitled Personalized Update Monitoring Toolkit Using

Continual Queries: System Design and Implementation submitted by Wei Tang in partial
fulfillment of the requirements for the degree of Master of Science

Ling Liu

D

Randy G&ebel

Francis Y. Lau

Abstract

In rapidly growing open environments such as the Internet, users experience information starvation
in the midst of data overload, due to difficulties similar to finding a needle in a haystack. Update
monitoring is a promising area of research where we bring the right information to the user at the
right time, instead of forcing the user through manual browsing or repeated submission of queries.
In this thesis, we present the design and implementation of an event-driven update monitoring
system using continual queries {25, 27]. A Continual Query (CQ) is a standing query that moni-
tors update of interest and returns result whenever the update reaches specified thresholds. Each
continual query consists of three components: a query component, a trigger condition, and a stop
condition. In contrast to normal queries whose scope are limited to past and present data, the scope
of a continual query includes past, present, and future data. The main contributions of this thesis
is the design and implementation of the first prototype of the continual query system, capable of
push-enabled data management and event-driven information delivery. The key components of this
prototype systern are a continual query (CQ) manager. a trigger condition evaluator, and a set of
event detectors. The CQ manager is responsible for coordination of tasks and communications be-
tween CQ clients and CQ server and between CQ server and CQ wrappers. The condition evaluator
and event detectors are responsible for monitoring updates according to specified update thresholds
of interest and the time constraints. The distinct features of this continual query prototype system
include: reusing and extending conventional DBMS components, providing push-enabled services by
incorporating distributed event-driven triggers, and combining pull and push services in a unified

framework.

To my dear parents: Gangdou Tang and Xiangfan Zeng

Acknowledgements

[would like to express my thanks to Dr. Liu. my supervisor, for her invaluable
guidance and assistance. She always kept me focused and motivated during my thesis
work. [would also like to thank the members of the examining committee. Randy
Goebel and Francis Y. Lau for their insightful comments.

[am also grateful for the suggestions and help from team members of the CQ/DIOM
project and my friends. Special thanks are given to David Buttler. John Biggs, Wei

Han and Tong Zhou.

Finally I would like to thank my parents for their encouragements that helped me
to overcome all the new challenges encountered in my study and in my life. It is my
parents who helped me to becorne strong physically and spiritually.

Contents

1 Introduction

1.
L.
L.
L.
1.

1
2
3
4
3

Thesis Motivation
Why aren’t pull-based systems suffictent?
What can a push-enabled systemoffer?
Update Monitoring using Continual Queries
Scope and Organization of thisthesis

2 Continual Query Concept

2.
2.
2.
2.

1
2
3
4

Continual Query Concept
Continual Query Examples
Continual Queries vs. ECARules
Continual Query Specification
2.4.1 Specification Semantics L Lo L.,
2.4.2 Specification Syntax

3 System Architecture

3.1 Overview of the Mediator/Wrapper Concept
3.2 Overview of the CQ Systemn
3.3 Information Integrationin CQ-DIOM
3.4 Client-Server Design

4 Continual Query Execution Model

4.1 A Quick Look at Continual Query Execution
4.2 Continual Query Execution Model
4.2.1 Basic Coupling Modes
4.2.2 Continual Query Installation
4.2.3 Event Detection
424 Condition Evaluation
4.2.5 Issues on Efficient Condition Evaluation
4.3 Performance Evaluation Issues

5 Differential Evaluation Algorithm for Continual Queries

3.1 Motivation
5.2 Notations and Terminology
5.2.1 Differential Relations.
53.2.2 BasicOperations
5.3 Differential Evaluation of Continual Queries
3.3.1 Computing the Differential Results for Continual Queries
5.3.2 Optimization based on Differential Operators
5.3.3 The Differential Re-evaluation Algorithm
5.4 Processing Continual Queries: Simple Examples
3.5 Discussionl e e e e e e e e e e e

5.5.1 Strawman Performance Arguments e e

5.5.2 Query Refinement,

5.5.3 Garbage Collection of Differential Relations
5.5.4 Generationof DeltaRelations_........
5.6 Implementation Consideration for DRA
6 Prototype Design and Implementation
6.1 System Requirements Analysis
6.1.1 Analysis of Non-Functional Requirements
6.1.2 Analysis of Functional System Requirements
6.1.3 Functional Components
6.2 System Design
6.2.1 UIPcomponents
6.2.2 [P components,
6.23 CQPcomponents.,
6.24 OPcomponents.,
6.25 MST components.,
6.3 Coding Design
6.3.1 Perl Programming Language
6.3.2 Common Gateway Interface
633 DynamicHTML _
6.3.4 Online Database Accessing
6.3.5 Emerging Technologies
6.3.6 Online Live Demo of the Prototype
6.4 User Interface Walkthrough
6.4.1 Main Menu Window
6.4.2 Client Services
6.4.3 Administration Services
6.5 Further Discussions
7 Discussion and Related work
7.1 Pull. Push. and Continual Queries
7.1.1 Overview of Data Delivery Protocols
7.1.2 Overview of Data Delivery Modes
7.1.3 Pure Push versus Continual Queries_....
7.2 Related Workon DB Areas
7.2.1 Active Databases
7.2.2 DMatertalized Views L
7.2.3 Commercial database triggers
7.3 Related Work in Web-based Systems _
8 Conclusion and Future Work
8.1 Summary and Conclusion
8.2 Future Development
Bibliography

A Continual Query Syntax

List of Figures

3-1

3-3
3-4
3-5

5-1

6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-138
6-19
6-20
6-21
6-22
6-23

7-1
7-2

The cooperation network of mediators and wrappers
A Sketch of the CQ System architecture
DIOM System Architecture
A Sketch of the Distributed query scheduling framework in DIOM
Example Scenarios of the Client/Server coordination among CQ components

Delta Table Auto-generation Perl Code _

Top-level Architecture Flow Diagram of Continual Query System
UIP components
Truth Tables for Event Relational Operators
Wrapper Components
Sample Countinual Query Result Page
The CQ Services Main Window
User Registration Form
Choose Data Source Screen
Normal Query Entry Form Screeno
A sample result page for Normal Query
CQ Installation Step Iscreen
CQ Installation Step 2 (time-based) - Query Construction
CQ Installation Step 2 (time-based) - Trigger and Stop Condition
CQ Installation and Execution Log Information
CQ Installation Step 2 (content-based) - Trigger and Stop Condition
User Login Screen for Browsing CQ
View Installed CQ Screen
Source Meta Query Screen Lo
Data Source Login Screen
Table and Action Choice Screen
Data Update Screen
Continual Query Weather Watch source frontpage
Continual Query Installation(query input) for Weather Watch data source

The data delivery flow in a broadcast-based push service
The data delivery flow in a broadcast-based push service

Chapter 1

Introduction

1.1 Thesis Motivation

The World Wide Web (usually referred to as the Web) has made an enormous amount of data freely
accessible over the Internet. However, finding the right information in the midst of this mountain
of data has been likened to finding the proverbial needle in a haystack. This phenomenon has been
called “information starvation due to data overload.”! Commonly used search engines, including
web robots (e.g., AltaVista) and indexers (e.g., Yahoo!), have ameliorated the situation somewhat,
but the current exponential growth of the Web is quickly aggravating the fundamental problem.

We divide the problem of finding relevant information into two parts. The first part is the search
for historical data in the Web. Given its static nature, historical data is best suited for search
engines, and generally speaking, data warehousing tools. The second part of the problem is update
monutoring, which deals with the new information arriving into the Web and the databases. There
are many applications in both parts. Let us consider a simple example in decision support systems.
On one hand, historical data is used in long term projections and planning, for example. by Wal-
Mart in the selection of inventory. On the other hand, update monitoring is used in (near) real-time
decisions, for example, by investment bankers in the buying and selling of stock.

While both historical data and update monitoring have interesting applications and research
challenges, we focus on update monitoring in this thesis. There are three reasons for this bias. First,
managing read-only historical data is a more mature area, with many commercial data warehouse
systems available. Consequently. many of the most obvious research questions have been answered.
Second. many application domains today have the need for tracking changes in local and remote
data sources (e.g.. databases. HTML Web pages, unstructured files) and notifying changes if some
condition over the data sources is met. Wasteful polling by the users or applications can be avoided.
if the data management system monitors the update events of interest (e.g.. changes to the relevant
object classes or instances) on behalf of the users or applications, evaluates the condition only when

a potentially interesting change occurs, and issues planned queries (or actions) as well as change

1 Gio Wiederhold of Stanford University seems to have been among the first to use this phrase.

notification alerts whenever the update events of interest are signaled. Third. update monitoring
introduces special difficulties when heterogeneous data sources (e.g., from Web pages and relational
databases) are being monitored together. As a result, update monitoring presents some interesting

new research challenges.

1.2 Why aren’t pull-based systems sufficient?

Conventional data intensive systems (e.g., DBMSs) are pull-based data delivery systems: queries or
transactions are executed only when explicitly requested to do so by a user or an application program.
Most current web search engines (such as Altavista. Infoseek. Lycos, Excite. to name a few) are also
pull-based. passive information delivery systems, namely the transfer of data from servers to clients
is initiated by an explicit client pull. Many applications. such as situation assessment, office workflow
control. process control, battle management, which require timely response to critical situations, are
not well served by these passive pull-based data management systems. For these time-constrained
applications, it is important to monitor events occurring on states of databases, and whenever the
updates reach some specified thresholds or satisfying some timing constraints, specific actions (such
as queries) will be invoked. For example, inventory control in an automated factory or logistics
application requires that the quantity on hand of each item be monitored. If the quantity on hand
falls below a specified threshold for some item, then a notification procedure may have to be initiated
either immediately or at the end of the working day. Similarly, a situation assessment application
requires that various targets be tracked. If one is discovered to be within a critical distance, then the
alter code may have to be displayed on the commander’s screen with the highest possible priority.

This is also true for many applications using web-based pure pull information delivery systems.
With the ongoing advance in World Wide Web (WWW) technology, everyone can publish informa-
tion on the web independently at any time. On one hand. the flexibility and autonomy of producing
and sharing information on WWW is phenomenal. On the other hand, it becomes increasingly
difficult when using pure pull system as a solution to deal with the daunting challenge of both
navigating, collecting. processing. and tracking data in this dynamic and open information universe.
The problem is aggravated when source information changes constantly, but unpredictably. As a
result, users have to frequently poll the web sites of interest and fuse the newly updated information
manually to keep track of changes of interest, which is a great pain.

As more aspects of business and commerce migrate online, push-enabled data management sys-
tems becomes increasingly important because it offers system-supported update monitoring and
event-driven information delivery. and it provides timely response (or alert) to critical situations,
while reducing the time users spend hunting for the updated information and avoiding unnecessary

traffic on the net.

1.3 What can a push-enabled system offer?

Push-enabled data management systems are event-driven and time-critical: users specify to the
system the information they need (such as the events or the update thresholds they are interested
in). Whenever the information of interest is available, the system immediately delivers it to the
relevant users; otherwise, the system continually monitors the arrival of the desired information and
pushes it to the relevant users as it meets the specified update thresholds. In contrast to pull-based
systems. the transfer of data from servers to clients in push-based data delivery systems is initiated
by a server push in the absence of explicit request from clients. In addition to the difference in
data delivery mode (push vs. pull), push-based systems differ from pull-based systems also in data
delivery protocol and scope of a query.

Most pull-based systems use Request/Response protocol where clients send their request to servers
asking information of interest, and servers respond to the request of clients by delivering the infor-
mation requested: whereas push-based systems use either Publish/Subscribe protocol or Broadcast
protocol [2. 11]. The former delivers information based on the principle that servers publish in-
formation online, and clients subscribe to the information of interest: whereas the latter delivers
information to clients periodically. Clients who require access to a data item need to wait until the
item appears. Furthermore. in a conventional pull-based data management system (either DBMSs
or web search systems), the scope of a query is limited to past and present data, whereas the scope
of a query in a push-enabled continual query system includes past, present, and future data. For
example, a query “tell me the quantity on hand of items that have arrived” is a typical query in a
pull-based DBMS. which is defined over the list of items and their quantity on hand, which have
arrived up to the moment when this query is issued: whereas a similar query “report to me the
quantity on hand of items changes every day at 10:00am™ is a continual query in a push-enabled
system, the scope of this query covers the items and their quantity on hand at the installation time
of this continual query, plus the items whose quantities on hand may change as well as new items

that may arrive in the future.

1.4 Update Monitoring using Continual Queries

we have described the problem of update monitoring in open environments such as the Internet. By
update monitoring we mean the timely delivery of new information (updates) to users. This is a
challenging research problem because of several factors. First. it combines update processing (detec-
tion) and query processing (new information filtering). Second, the detection and synchronization
of updates in several heterogeneous data sources presents fresh problems of its own.

The Continual Queries (CQ) project is an example of research work being done in the update
monitoring area, aiming at developing techniques and software toolkit for update monitoring and

event-driven information delivery on the Internet. In contrast to conventional database queries, a

continual query is a combination of a normal query, a trigger condition and a termination condi-
tion. The continual execution cycle of the query starts at the continual query installation time and
stops when its termination condition becomes true. During the continual execution cvcle, when-
ever updates to the data sources satisfy the specified trigger condition. the query is conceptually
re-evaluated and new results returned to the user or the application that issued the query. The
trigger condition may be time event, e.g.. every Monday at 8am, or content-based event. such as
“Microsoft’s stock price going up by 10%”. The query can be either SQL-like queries for database
sources or keyword-based search for Web pages. We say that the query is conceptually re-evaluated
because of the variety of algorithms and approaches to the standing query re-evaluation.

For each continual query, an update monitoring program (CQ robot for short) creates distributed
programs that act together as an intelligent assistant, keep track of information sources that are
available (on the Web and elsewhere), how to access them, and the changes that happened. Whenever
updates at the data sources reach a specific update threshold or a timed event, the CQ robot
computes and integrates the new results and presents them to the user. Compared with the pure
pull (such as DBMSs, various web search engines) and pure push (such as Pointcast, Marimba,
Broadcast disks [1]) technology. the CQ project can be seen as a hybrid approach that combines
the pull and push models by supporting personalized update monitoring through an integrated

client-pull and server-push paradigm.

1.5 Scope and Organization of this thesis

This thesis presents the design and implementation of the first prototype system that support push-
enabled data management and event-driven information delivery in a distributed and open environ-
ment such as the Internet and intranets. The theoretical model and the architecture for specification
and execution of continual queries are developed based on the previous result of the CQ [27, 23]
project and the DIOM [26, 22] project. This prototype illustrates the ability to automate the update
monitoring process using the continual query concept with the ability to allow users to install both
time-based event triggers and content-based event triggers.

The main contribution of this thesis project is the systematic development and implementa-
tion of three-tier architecture for building a continual query system, especially the experiment in
constructing event-driven mediators and continual query enabled wrappers. Rather than starting
from scratch. the CQ prototype system development takes advantages of the conventional pull-based
DBMS services to the extent possible and adds push-based data delivery elements to them when
it is necessary. For instance. rather than introducing a new event-driven query language. we use
continual queries to express trigger conditions and unifies them with the regular SQL queries so that
continual queries may be expressed in SQL with minimal additions to the language. We provide
facilities for monitoring of user-defined operations such as decrease by percentage or value and in-

crease by percentage or value. Such operations allow users to model the event ‘stock price drop by

%10" defined over the data sources or abstract views. in addition to lower level database operations
like SQL INSERT, DELETE, and UPDATE. More concretely, the design and implementation of the

continual query prototype system addresses the following issues:

o The design of the continual query specification language. including the specification of time
events and content-based events. and the specification of continual query trigger condition and

stop condition.

o The implementation of a subset of the proposed syntax with an easy-to-use graphical user

interface.

¢ The design and implementation of the execution model for efficient processing of continual
queries. including the detection of base events such as updates on the source data of interest,
and the detection of composite events such as those events that are composed by means of

logical AND and/or logical OR as well as system built-in event operators.

¢ The implementation of interactive interface programs that allow users to install continual
queries, browse installed continual queries. trace the execution process of continual queries,

and test components of the prototype.

e The experiment of the continual query server kernel components such as event detectors and
trigger condition evaluator with different types of CQ wrappers such as the CQ weather watch

wrapper (HTML data sources) and the CQ bibliography information service (flat .bib files).

The first CQ system prototype chooses to implement the user interface as WWW application.
The main technologies used in the prototype implementation include CGI scripts for the main
modules of the CQ server and Java applets and servlets with the use of JavaScript for some portions
of the GUIL. We experiment with the prototype implementation with four different types of data

sources:
¢ An Oracle database which is remotely accessible through SQL. OraPERL, and SQLNet.
¢ An SQL database which is remotely accessible through JDBC.
e A collection of UNIX files which are accessible through a Perl script or a Java applet.

e An HTML source which is accessible through our semi-structured information wrapper and

filter utility.

Although all four sources support different access methods. the wrappers hide all source specific
details from the application/end-users. CQ users may pose a query on the fly, and install the
query as a continual query by specifying the interested update threshold using the CQ trigger and

specifying the continual duration using the CQ termination condition. We also provide a testbed

which consists of a simple interface to allow users to experiment the updates at the data sources
and watch the CQ system to compute the update threshold and evaluate the trigger, and alert or
notify the user by email the nex\; updates that match the query. In addition, we offer a set of client
and system administration services such as browsing and updating the installed continual queries,
cancelling some running continual queries upon request, and tracing the CQ trigger evaluation status
and the update monitor status.

The rest of the thesis is organized as follows: We present the concept of continual queries and
the continual query specification language in Chapter 2. We illustrate the continual query (CQ)
specification, in particular CQ trigger definitions, through a number of examples. In Chapter 3
we overview the architecture of the continual query system and its extension to the conventional
DBMSs and pure pull web search systems. We discuss the execution model of continual queries in
Chapter 4, including event detection and condition evaluation and different communication protocols
between triggering transactions (update transactions) and triggered queries and alert messages (such
as sending email notification, firing a subsequent execution of a query). These protocols range from
synchronous or asynchronous cooperation. causally dependent or independent scheduling, deferred
or immediate notification, to execution of triggered actions in a same or separate transaction as the
triggering event. Chapter 5 reviews the idea and algorithm for differential processing of continual
queries, and reports the implementation design consideration of the differential re-evaluation algo-
rithm (DRA). The system design and implementation issues are covered in Chapter 6. We discuss
the issues on information delivery in general and related work in Chapter 7 and summarize the

contributions of this thesis and directions for future work in Chapter 8.

Chapter 2

Continual Query Concept

Continual queries are standing queries that monitor updates and return results whenever the updates
have reached specified thresholds. A continual query consists of three key components: query, trigger,
and stop condition. In contrast to ad-hoc queries in conventional DBMSs or web search engines or
query systems. a continual query, issued once, runs continually over the set of information sources.
Whenever its trigger condition becomes true, the new result since th= previous execution of the
query will be returned. The trigger part of a continual query specifies events or situations to be
monitored. We distinguish primitive events from conditional (logical) events and allow events to
be composed of other events. We use primitive events to model basic database operations (such as
INSERT. DELETE, UPDATE). basic time events (such as at time-specification, every time-period.
and after time-period), or signals from arbitrary processes. We use conditional events to model
various conditional situations to be monitored. We provide a rich set of event composition operators
(such as logic operators: conjunction, disjunction. negation: and execution dependency operators:
serial, serial alternative, parallel, parallel alternative) to support composition of events.

Continual queries are useful both to external applications and as a convenient mechanism for
implementing push-based data delivery functions beyond conventional storage, retrieval, and update
of data in conventional DBMSs. Some examples of pull-based functionality can be implemented in

a unified way using continual queries and are described later in this chapter.

2.1 Continual Query Concept

A continual query is defined by a triple (Q. T¢q. Stop], consisting of a normal query Q (e.g., written
in SQL), a trigger condition T.,. and a termination condition Stop. The initial execution of a
continual query is performed as soon as it is installed. The first run of Q is performed over the past
and present data at the data source and the whole result is returned to the user. The subsequent
executions of Q are performed whenever a new update event occurs (is signaled) and the trigger
condition T, becomes true. For each execution of @, only the new query matches since the previous

execution are returned to the user unless specified otherwise. Thus continual queries are defined

-1

over past, present, and future data, whereas the domain of pull queries is limited to past and present
data.

Continual Semantics. Let us denote the result of running query @ on database state.S,-
as Q(Si). We define the result of running a continual query CQ as a sequence of query answers
{Q(5:).Q(S2).....Q(S.)} obtained by running query Q on the sequence of database states S, 1<
t < n, at each given state S; (i > 0), Q(S;) is triggered by T,y A —Stop.

The basic events that cause continual queries to fire may be standard database operations such
as INSERT, DELETE, UPDATE. or the events that cause clock signals (e.g., check the balance of
all bank accounts at 5:00pm everyday), or any user- or application-generated signals (e.g.. a failure
signal from a diagnostic routine on a hardware component). Furthermore, the trigger conditions
to be monitored may be complex, and may be defined not only on single data values or individual
database states. but also on sets of data objects (e.g., the total of orders of items exceeds the
current inventory level), transitions between states (e.g., the new position of the ship is closer to
the destination than the old position), trends and historical data (e.g.. the output of the sensor
increased monotonically over the last two hours).

We support two types of trigger conditions: time-based trigger condition and content-based

trigger condition. Three types of temporal events are supported for time-based trigger condition:

L. absolute points in time, defined by the system clock

For example, 7:30:00 pm.. March 30, 1998.

2. regular or irregular time interval

For example. every Monday or every two weeks (regular) or every first day of the month

(irregular)

3. relative temporal event

For example, 50 seconds after event A occurred

A content-based trigger condition can be expressed in terms of a database query, a built-in situation
assessment function, or a user-defined method. Examples include: a simple condition on the database
state (e.g.. execute Q whenever a deposit of $10,000 is made). an aggregate function on the database
state (e.g.. execute Q when a total of I million dollars of deposits have been made, or execute Q
when the stock price of Microsoft drops 5%). and a relationship between a previous query result and
the current database state (e.g., execute Q when a total of 1 million dollars of deposits have been
made since the previous execution of Q). One extreme case of content-based trigger is immediate:
report to me whenever a change to the source data occurs. In addition. composite events made up
from these primitive events (e.g.. the serial sequence of two events: event B occurs after event A)

are also supported.

The Stop condition specifies the termination condition of a continual query. Stop conditions can
be specified in terms of time-based or content-based event expressions. Both the trigger condition
T.q and the termination condition Stop are evaluated prior to each subsequent execution of the

query component Q.

2.2 Continual Query Examples

We below provide two continual query examples, the first one uses time-based triggering event and

the second one uses content-based triggering event.

Example 1 Given a continual query “report to the manager every day at 6:00pm all the banking
activities of the day for those customers whose total withdraws reach $2,000”. It is expressed as

follows:

Create CQ banking_activity_watch as
Query:
SELECT customer_id, account_no, withdraw_amount
FROM Account
GROUP BY customer_id having SUM(withdraw_amount) > 2000;
Trigger: 6:00pm everyday
Stop: 1 year (by default)

The trigger condition is specified by a regular time interval (everyday) and a starting time point
(6:00pm).

Example 2 Suppose we have a continual query installation request “notify me in the nert siz
months whenever the total of quantity on hand and quantity on order of items drops below their

threshold™. This request is captured by the following continual query expression:

Create CQ inventory_monitoring as

Query:
SELECT item_name, item_no, qty_on_hand, qty_on_order, threshold
FROM Item_Inventory;

Trigger:
qty_on_hand + qty_on_order < threshold;

Stop: six months

Here are some other examples of continual queries: “tell me the flight number whenever a plane has
been in this sector for more than 5 minutes”, “notify me whenever IBM stock price rises by 5%,
or “report to me the most recent transportation plan between port of Savannah and Fort Stewart
Military Reservation, whenever there is snow, heavy rain, or any other unexpected weather changes

in that region”.

2.3 Continual Queries v.s. ECA Rules

- Continual queries, at the first glance, may seem to bear resemblance to ECA rules in active
databases [6, 30]. One might view continual queries as a subset of ECA rules. However, they
are quite different not only in functionality coverage and usage perspective but also in execution
model and implementation architecture. In this section we briefly discuss the differences between
continual queries and ECA rules.

First, update events in ECA rules are explicitly specified by the users, whereas update events in
continual queries are implicitly implied in the trigger condition, and derived by the system during the
installation phase of the continual queries. Recall Example 2 given in Section 2.2. at the installation
phase of the continual query inventory monitoring, the update events identification module iden-
tifies three basic update events to be relevant to the trigger condition of the given continual query.
They are UPDATE qty_on hand(item), UPDATE qty.on_order(item),UPDATE threshold(item) for
itemin Item Inventory. This means that any update on qty.on_hand. qty.-on_order or threshold
will signal the evaluation of the trigger condition “qty.on_hand + qty_on_order < threshold”. How-

ever, using ECA rules, one may specify the follow rule:

Event: Update qty_on_hand(item)
Condition: qty_on_hand(item) + qty_on_order(item) < threshold(item)

Action: submit_order(item)

Note that this ECA rule has the same trigger condition as the continual query in Example 2.
However, this rule means that the condition is evaluated only when the update on qty.on_hand
occurs, even though the updates on qty_on_order or threshold may equally be possible to cause
the violation of the trigger condition “qty_on hand + qty.on_order < threshold”. In short, ECA
rules provide flexibility to allow users to explicitly specify what update events are of interest at will,
rather than restricting the update events to those that have direct impact on the trigger condition
within the same rule. Such flexibility, however, may results in passing over the situations that should
be alerted according to the trigger condition.

Second, continual queries require explicit specification of termination condition. In the absence
of Stop condition, a system default value (such as one year) will be used. Introducing termination
condition as a necessary component of continual queries guarantees that alerts or update reports
will send only to the right users at right time or under the specific constraints. While ECA rules
terminate a rule execution by requiring users to manually delete the rule from the rule base. No
system controlled termination is provided. We consider the support for system-controlled termina-
tion condition as a desirable and practical capability for a push-enabled active data management
system.

Thirdly, although situation monitoring is one of the canonical applications of ECA rules, they are

designed as building blocks for general purpose active database systems or production rule systems in

10

centralized data management systems. whereas continual queries are specifically designed for update
monitoring in distributed push-enabled data management systems. Continual queries emphasize on
effective and specialized support for personalized update monitoring. Continual queries can be seen
as an interesting and effective type of specialization to the ECA rules, which aims at providing more
efficient and effective support for personalized update monitoring in a distributed open environment.

Last but not least, actions in ECA rules can be update events which may in turn trigger the same
rule again directly or indirectly (i.e.. the cascading effects of rules); whereas actions fired, when the
trigger condition of a continual query is evaluated to be true, are restricted to the execution of the
same query expression, the change notification functions, and the methods to compute the differential
result. These actions are side-effect free actions with respect to the data set over which the trigger
condition and query component are defined. This feature simplifies many complex issues in ECA
Rules, especially those related to the consistency and concurrency issues in advanced transaction
management. Such simplification allows us to focus on addressing the issues that are specific to
update monitoring and push-based information delivery. We provide a further discussion on active

databases and other related work in Chapter 7.

2.4 Continual Query Specification
2.4.1 Specification Semantics

Continual queries, like all other forms of data, are treated as first class objects. There is a continual
query entity type, and every continual query is an instance of this type. The difference between
continual query entity type and other entity types is that the CQ systern understands the semantics
of continual queries and invokes a particular operation — fire automatically. The functions that

define the key components of the structure of a continual query are:

e Continual query identifier (cqid). Like any other entity, each continual query (CQ) has a
unique entity identifier. Such identifier is generated by the system after the installation of the

CQ is successful and the first run of the CQ is fired.
e Continual query name. This is a user-defined and optional attribute.

¢ Trigger condition. The trigger component specifies the event that causes the CQ system to
fire the subsequent executions of the continual query (CQ). Parameters may be defined for the
event; these parameters are bound to actual arguments when the next execution of this CQ is

fired.

e Stop condition. The Stop condition specifies the termination semantics of the continual
query. [t is described by an event expression. Both time-based events and content-based

events can be used.

11

e Query component. The query is one of the side-effect free action to be executed when the
trigger condition is evaluated to be true and the Stop condition is not met. The execution
coupling mode between the trigger condition and the query action can be specified explicitly at
the continual query installation time to override the system default (see Section 4.2 for further

detail).

Both Trigger and Stop conditions are specified in terms of event expressions. We distinguish
between primitive events, composite events, and conditional events. A primitive event is either a
basic update event (such as UPDATE qty.-on_hand(item))or a temporal event (such as every Monday,
9:00:00pm, March 2, 1998). A conditional event is a conjunction or a disjunction of events. of which
at least one of the component events is a conditional event. An atomic conditional event is an event
of the form attribute name <comparison_op> value,such as “stock.price > 100”. A composite

event is defined by an event composition expression following the BNF syntax below:

<composite_event> ::= <element_event> <event_op> <composite_event>
<element_event> ::= <primitive_event> | <atomic_conditional_event>
<primitive_event> ::= <basic_update_event> | <temporal_event>
<atomic_conditional_event> ::= <attribute_name> <comparison_op> <value>
<conditional_event> ::= <atomic_conditional_event>

<logic_op> <conditional_event>
<basic_update_event> ::= <db_operations> | <external_signals>

<logic_op> ::= CONJUCTION | DISJUNCTION | NOT

<comparison_op> ::= <string_op> | <arithmetic_op>

| <built_in_op> | <user_defined_op>

<temporal_event> ::= <absolute_time> | <regular_interval>
| <irregular_interval> | <relative_time>
<db_operations> ::= UPDATE | INSERT | DELETE

<event_op> ::= <logic_op> | <user_defined_op> | <system_built_in_op>

A complete BNF description of the CQ system event specification language and the formal semantics
of continual query speciation model, including the specification of primitive and composite events,
and the algorithm for decomposing the trigger condition components into basic update events and

conditional events, are beyond the scope of this thesis.

2.4.2 Specification Syntax

Syntactically, continual queries are defined by specifying trigger condition components in specialized
SQL-like FROM and WHERE clauses plus some special operators, by specifying Stop condition in tem-
poral event expressions, and by specifving query components in the SQL-like SELECT-FROM-WHERE

clauses. Users may give each of their continual queries a meaningful name (such as the continual

12

query name banking activity sentinel in Example 1). Continual queries may be defined across

over a set of data sources that are autonomous and possibly heterogeneous in nature. These data

sources may be structured, semi-structured, or unstructured. Mediators and wrappers are used to

decompose the query or trigger condition according to the number of data sources used to evaluate

the query or the trigger condition. Details for distribution aspect of the query processing and trigger

condition evaluation are beyond the scope of this thesis, interested readers may look at [26].

The following is a fragment of the BNF syntax of the continual query specification language. A

more detailed syntax is provided in Appendix A.

<CcQ> ::= <Query> <TriggerCond> <StopCond>

<Query> ::= SELECT <SelectList>

FROM <ObjectList>

[(WHERE <SearchCondition>]

[GROUP BY <AttributelList>]

{ORDER BY <SortSpecList>]

<TriggerCond>

<StopCond>

<TimeTriCond>

<ContentTriCond>: :=

<ContTriGroup>

<ContPrimitive> ::

<GrpConstraint> ::

<ContPrimitiveList> :

<EventOp>

<ContTriCondOp> ::

<AggreFunc>
<GrpJointOp>

.

<TimeTriCond> | <ContentTriCond>

<Month> ’~’ <Day> ’-’ <Year> ' '’

<Hour> ':’ <Min> ’ ’ <TimeZone>

<MinExpr> ’'&&’ <HourExpr> '&%&’' <DayOfMonExpr> ’'&&’

<MonthExpr> ’&&’ <DayOfWeekExpr>

<ContTriGroup> | <ContTriGroup>

<EventOp> <ContentTriCond>

<ContPrimitive> <GrpConstraint>

[<AggreFunc>(] <ObjectName>.<Attribute>[)]

<ContTriCondOp> [<Value>]

WHERE <ContPrimitiveList> [GROUPBY <Attributelist>]

:= <ContPrimitive> [<ContPrimitiveList>
<GrpJointOp> <ContPrimitive>

AND | OR | <sequence> | <parallel>

<> | =1<1>1] <=1 > | CHANGES | CONTAINS | LIKE

| INCBY | DECBY | INCBYP | DECBYP

AVG | COUNT | MAX | MIN | SUM

AND | OR

We provide some examples of continual queries written in SQL-like expression enhanced with user-

defined or system built-in functions. We first define a continual query weather watch that monitors

weather condition updates in the region from port of Savannah in Georgia to Fort Stewart Military

13

Reservation every 20 minutes and send mail to Todd using the function send_mail whenever the spec-
ified update event on weather condition is detected. Suppose that this continual query is defined over
a semi-structured data source — the national weather services center website (www.nws.nova.gov),
and the continual query name is specified in the Create CQ clause. The trigger condition is speci-
fied in the Trigger clause, the termination condition is specified in the Stop clause, and the query

component is specified in the Query clause. Here is the specification of this continual query:

Creat CQ Savannah_weather_watch as
Query: SELECT =*
FROM wuw.wns.nova.gov
WHERE location like ‘Savannah’ AND state = ‘Georgia’;
OR location like ‘Fort Stewart’;
Trigger: every 20 minutes;

Stop: 1 year (default).

This continual query specifies the request for monitoring updates on weather conditions at the
region from port of Savannah to Fort Stewart every 20 minutes, and detects the update on weather
condition at this region using a temporal event detector. Whenever an update event is signaled, the
system takes the action of notifying Todd by email and delivering the updated result using a specific
web URL pointer.

Note that the action of displaving the updates of weather condition at the specified Savannah
region, and the action of reporting to Todd by sending mail is implicitly inferred by the system, based
on either the fact that Todd is the owner (creator) of this continual query Savannah weather watch
or the fact that the creator of this continual query has entered a special request that the update
results be sent also to his/her manager, Todd. at the CQ installation time.

Interesting to note is that the trigger condition and the query component in a continual query
both can be specified in SQL -like expressions. When the trigger condition is defined over the same
set of objects as the query component, the FROM clause may be omitted (recall Example 2). Here
is an example where the trigger condition is defined over a set of object classes that are different

from those over which the query component is defined:

Creat CQ Savannah_weather_watch as
Query:

SELECT plan_no, plan_desc, plan_alt_routes

FROM Transportation_plan

WHERE plan_route like ‘Savannah to Fort Stewart’;
Trigger:

FROM www.wns.nova.gov

WHERE location like ‘Savannah’ AND state = ‘Georgia’

14

OR location like ‘Fort Stewart’;

Stop: next 3 months.

This continual query amounts to saying that “monitoring the weather condition between port of Sa-
vannah and Fort Stewart in the next 3 months, provide me with a list of alternative plans whenever
the weather condition changes in the region between Port of Savannah and Fort Stewart Reserva-
tion”. Note also that the Transportation_plan may be stored in a relational DBMS (e.g., Oracle),
a structured data source, and the weather information is available from the NWS website, a semi-
structured data source.

Another interesting feature of the CQ system is to allow users to specify their trigger conditions
using system built-in functions in addition to the common string comparison operators such as
CONTAINS. LIKE, and arithmetic operators <,<,>,>,=,<>. For example. the system built-in
functions for trigger specification include increased by r percent, denoted as IncreaseBy%(.X) < z.
and decreased by y percent, denoted by DecreaseBy%(Y) < y, where X and Y are field names of
the source data items. Using these system built-in functions. the continual query. “notify me in the
next two weeks whenever the stock price of Bayer drops by 5%, can be expressed conveniently as

follows:

Creat CQ Bayer_Stock_watch as

Query: SELECT company_symbol, stock_price, hi_last_wk, lo_last_wk
FROM Stock
WHERE company_name = ‘Bayer AG’;

Trigger: Stock.company_name = ‘Bayer AG’ AND
Stock.stock_price DecreaseByY, S;

Stop: 9:00:00 am, Oct. 26, 1998

Generally speaking, in specifying a continual query, the Query clause, Trigger condition clause, and
Stop condition clause are essential and thus mandatory. When there is nothing entered for the Stop
condition, a default value (e.g., two weeks) is used. When nothing is filled in the Query clause, an
error message is generated. When the trigger condition is not specified explicitly. the default is set
to a time-based trigger at a default time interval (say everyday). In addition, one can specify other
optional properties for a continual query. such as timing constraints, contingency plans, and external
events. Timing constraints include deadlines, priorities/urgencies or value functions. Contingency

plans describe alternative actions to be executed in case the timing constraints cannot be met.

Chapter 3

System Architecture

The Continual Query (CQ) system allows users to define their continual queries over multiple remote
and possibly heterogeneous data sources. Once a continual query is installed with the CQ system,
the CQ server will treat it as a persistent object whose life cycle begins at the installation time and
ends whenever its stop condition is met. For each installed continual query, the CQ server will send
a notification alert to its owner whenever the updates at the data sources satisfy the given update
thresholds (e.g., every 3 days or when the price of IBM stock drops). The CQ server will trigger the
execution of the query and return the result to the user.

The CQ system employs the Mediator/Wrapper architecture to provide uniform access to multi-
ple and heterogeneous data sources. We incorporate the distributed query scheduling facilities [32]
of DIOM (26], a mediator and wrapper based information mediation system for distributed and in-
teroperable information integration and management, in the design and implementation of the CQ
system.

In the following sections, we will briefly describe the concept of mediator and wrapper systems,
the CQ system architecture. and the DIOM distributed query processing components. Although the
DIOM interoperable architecture and its adaptive query mediation framework has been extensively
covered in [22. 26], to make this thesis self-contained, in this chapter we present a brief overview
of the fundamental points of the DIOM project. Qur attention is more concentrated on the parts
of the DIOM previous research that are directly related to the investigation of the continual query

processing and optimization.

3.1 Overview of the Mediator/Wrapper Concept

We view an open distributed information system (World Wide Web} as a dvnamic interconnection
between information consumers (e.g., normal web surfers) and information producers or sources
(e.g.. an online bookstore). instead of just as a static data repository system. In such a system, it
has always been a challenge for various information consumers to query and monitor information and

their updates from multiple and disparate information producers. Two issues that arise immediately

16

are: (1) heterogeneity of information producers’ data sources(text files, relational databases, object-

oriented databases, or bibliographic databases, etc.) and query capabilities as well as information
consumers’ query requests. and (2) scalability of distributed query services in the presence of a
growing number of information sources ! and the evolving requirements of both information sources
and information consumers.

In order to provide uniform access to information sources and to support more scalable and
seamless information integration. the notion of Mediator/Wrapper was introduced [39]. A wrapper
is a software component that transforms data or queries from one model to another. More concretely.
a wrapper is always tied to a particular data source and a particular information mediator or broker.
It provides the given mediator with some customized access to the particular information sources.
Thus a wrapper is data source-specific. In multi-agent systems [8, 9] a wrapper is called a resource
agent. In contrast to the wrapper concept. a mediator is a software component which represents
an information consumer’s view of data with respect to a particular domain. A mediator employs
wrappers to bridge the gap between the application domain and the information sources. Therefore,
a mediator is domain-specific. In the Mediator/Wrapper architecture, both the mediators and the
wrappers are extensible as the requirements of applications or information sources change. Figure 3-1

shows a networked architecture of mediators and wrappers.

| APPHCIORS pyctributed ObjectQuery
Services
‘) 5 S
S ;. © Meta .
w s y . Mediator
Mediator Pl romnt
. - — — _ lnterface
Mediator v Definons
.© Wrapper
. . Generator ~
A 7
4 1. a [/ . g:urw
- gistranon
Wrapper] Wrapper Wrapper Wrapper : Info.
1 S I 1
__/I T T =
_ Info. Infa. . Info. - Info.
 Source Source Source « Source ,

Figure 3-1: The cooperation network of mediators and wrappers

The network of mediators and wrappers allows a seamless incorporation of new information
sources into the CQ system. The clean separation of wrapper and mediator functionality allows the
distributed query services to be developed as source-independent middleware services which establish
the interconnection between consumers and a variety of information producers’ sources at the query
processing time. As a result, the addition of any new sources into the system only requires each

new source to have a CQ wrapper installed. The DIOM services can dynamically capture the newly

! We may use both information source and data source interchangeably in the thesis for narrative convenience.
However, they hold identical semantics.

17

available information sources and incorporate them into the distributed query scheduling process.
The information sources at the bottom of the diagram in Figure 3-1 may be one of the following

types of sources:
o well structured: such as relational or object-oriented database management systems,
e semi-structured: such as HTML files, bibliographical record files. other text-based records, or

e nonstructured: such as technical papers or reports, program source files, a collection of raw

image files. etc.

Each information source is autonomous - it may make changes without approval from the me-
diators. If, however, an information source makes a change in its export schema. including logical
structure, naming, or semantic constraints, then either it notifies the CQ/DIOM object server, or
the CQ/DIOM server will send out its robots periodically to check out if the data source has changed

its content structure.

3.2 Overview of the CQ System

The goal of the CQ system is to develop a toolkit for update monitoring with event-driven delivery in
an open and dynamic evolving environment such as the Internet and intranets. We pursue this goal
along two dimensions: The first dimension is to develop a set of methods and techniques that can
incorporate distributed event-driven triggers into the query evaluation and search process to enhance
information quality and improve system scalability and query responsiveness. The second dimension
is to build a working system that demonstrate our ideas, concepts. and techniques developed for
continual queries using real-world application scenarios. The method and key techniques of the CQ

system development include:

e using the notion of continual queries to support customized (or personalized) update monitor-

ing based on users’ preference and requirement (user pull followed by server push),

e incorporating pure push with pure pull data delivery mechanisms in the continual queries

service provision.

e integrating distributed query processing and dynamic optimization techniques into the contin-

ual query evaluation process for achieving effectiveness and responsiveness of the system.

The first generation of the CQ system has a three-tier architecture: client, server, and wrap-
per/adapter, as shown in Figure 3-2. This architecture is motivated by the need for providing effi-
cient support to composite event detection and complex condition monitoring of installed continual
queries, and the need for sharing information among structured, semi-structured, and unstructured

remote data sources.

18

Form Manager

~ Gemserice)

H H n:nz f i]
Client Tier I l osollation 2% CQClient |
Manager Sys. Admin. Service

Q.Teq.Swop
Admn. serviee calls
reg. form
System
Repository
R, S foemer
Triger Condition * n Object Manager
Evaluation Manager 5 7:, 1 (sys. + appl- objects)
!] |
Time-based Content-based Transaction

Server/Mediator Event Detector Event Detector Manager

Tier (Clock Event Detection) {Coupling Modes)

Query Evaluator
(naive alg. + differendal alg.)

Eo) (0 ted
2 (0 Dlsmbu"%%t:&ery S@

Sources l File Sys. Sources Web HTML Sources

Figure 3-2: A Sketch of the CQ System architecture

The client tier is primarily responsible for receiving users’ request and expressing such request in
the form of CQ query Qcq, CQ trigger Toq, and CQ termination condition Stop. The client manager
is also in charge of user registration and providing CQ users with system utilities such as browsing

or editing installed continual queries. The client tier currently has four components:

¢ Form manager
Provides the CQ clients with fill-in forms to register with the CQ system and install their
continual queries;

e Registration manager

For clients who are the first time users of the CQ system, they have to register to CQ system

to obtain their userid and password as well as to specify their notification means and email

19

addresses. The registration manager will record the user information {(user id, names, title,
password, email address, subscription duration) into CQ system. Upon success, the registration

manager will return the client a confirmation by a Web page and an email on his registration.

e Client and system administration services

Provide utilities for browsing, deleting, or updating installed continual queries, for testing
time-based triggers and content-based triggers. and for tracing the performance of update

monitoring of source data.

e Client manager

Coordinates different client requests and invokes different external devices. For instance, once a
continual query request is issued, the client manager will parse the form request and construct
the three key components of a continual query (Q. T.,, Stop), before storing it in the CQ

system repository.

Although not adirect part of the CQ system, one could imagine value-added update monitoring
services based on CQ, where a continual query request can be posted in natural language
through either voice or hand-writing or both. Recall the example given earlier: “notify me
whenever IBM stock price rises by 5% . By hooking up the CQ client with a natural language
text recognizer, we can parse this request and automatically gznerate the query, the CQ
trigger, and the Stop condition for this request. The results can be returned to the user also
by multiple methods, such as by email, by fax, or bulletin posting, or by displaying signals on
users’ desktop screens. User can choose to have the whole result of the CQ delivered to his
desktop or just get a brief electronic notification. such as an email or a single beep message on

the desktop.
The second tier is the CQ server which consists of the following components:

o Continual query manager (CQM)

The CQM is the top level server component which coordinates with event detectors and con-

dition evaluator as well as other server components.

o Event detectors (ED)

There are two types of event detectors: time event detector (TED) and content-based event
detector (CED). TED is to capture time-related events, such as “at 10:00am every Monday”
or “every 10 minutes”. CED is capable of detecting the updates at the information source
which satisfy the update threshold specified in the content-based trigger condition, e.g. “stock
price of Microsoft has dropped by 5% or “total amount of orders received is more than half

amount of the products in stock™.

20

e Trigger condition evaluation manager (TCEM)

The TCEM is in charge of evaluating the trigger condition for each installed continual query
whenever the time events or the content update events of interest are detected and signaled

by the event detectors.

e Query evaluator {QE)

The QE evaluates each user-installed continual query whenever its trigger condition Teq is
evaluated to be true. [t also provides a guard for the Stop condition to guarantee the semantic
consistency of the continual query (Q. Tc;. Stop). The current implementation of the QE
component uses two alternative algorithms: one is called Naive Algorithm, and the other is
called Differential Evaluation Algorithm. We will discuss these algorithms in Chapter 5. Each
of these algorithms is suitable for certain situations or certain application domains. It allows
the system to apply different algorithms for different user queries. The query evaluator is
hooked up with the DIOM Distributed Query Scheduler (see Section 3.3) which enables the

CQ system to scale up in order to handle hundreds of different information sources.

e Object manager (OM)

The OM manages all the objects within the CQ system, including system objects such as
user registration objects (recording user information and identified by userid), continual query
objects (each is identified by a cqid and recording information about the given continual query,
including a query component. a trigger condition, a stop condition, and the installation times-
tamp), cache for each continual query execution; and application objects such as the objects

that the client wants to monitor over the information sources.

o Change notification manager (CNM)

Once a continual query has detected the updates of interest and fired a new round of execution
for the user query, the CQ system must prepare to inform the user about the new result. The
CNM is responsible for obtaining the result from the query evaluator and construct an email
notification to the user. The notification could be just a URL which tells the user where the

new result can be fetched or the whole result of the query if the user wishes to do so.

e Transaction manager (TM)

When a user-installed continual is executed, a series of programs are invoked. The CQ system
must guarantee the execution of the event detector, trigger condition evaluation manager and
change notification manager to be predictable, following the designated execution synchroniza-
tion sequence, and under the control of the system. Just like the transaction management in
traditional database systems, we introduce the transaction manager in CQ system. The re-
sponsibility of TM is to guarantee atomicity, serializability, and durability of all the processes

{(we call them transactions).

21

The third tier is the CQ wrappers/adapters tier. The CQ query evaluator and the event-driven
update monitor talk to each information source through a CQ wrapper. A information source
could be structured (e.g., a relational database) or semi-structured (e.g.-, an HTML or XML page,
a bibliography file), or even non-structured(e.g., a text Perl script). A wrapper is needed for each
source because each one has a different way of requesting data and a different format for representing
its results. Each wrapper is a specialized data converter that translates the query into the format
understood by the remote data source. As the result comes back, the wrapper packages (translates)
the response from the source into the relational database format used by the CQ system. Interesting
to note is that a CQ wrapper to a data source S is a specialized version of a wrapper to S in the sense
that a CQ wrapper, in addition to the responsibilities of a normal wrapper. needs to provide the
difference function that can compare the current result obtained from the source with the previous

result and tells the CQ server if there is any change to the source data of interest.

3.3 Information Integration in CQ - DIOM

For global data sharing and access over heterogeneous information sources in a distributed envi-
ronment, the CQ system utilizes the mediator approach and incorporates a mediator architecture
called DIOM (26, 18] prototyped in the Department of Computing Science, University of Alberta.
The Distributed Interoperable Object Model (DIOM) introduces the approach that explicitly de-
fines the interfaces of an information consumer and connect informaticn consumer’s requests with
available information producers dynamically. Such run-time interconnection allows the DIOM sys-
tem to be able to interoperate and scale up with growing number of autonomous and heterogeneous
data sources as components. Figure 3-3 shows a sketch of the DIOM prototype system architecture.
DIOM keeps user profiles to gather the knowledge on user query requests and capture the query ob-
Jects in DIOM interface definition language. DIOM wrappers are utilized to bridge the gap between
the interoperable database systems and the individual component repositories.

In what follows, we will briefly review the distributed query mediation service provider com-
ponent. Readers who are interested in discussion on the other components of the DIOM system
architecture may refer to [L7].

The main task of a distributed query mediation service provider is to coordinate the communi-
cation and distribution of the processing of information consumer’s query requests among the root
mediator and its component mediators or wrappers (recall Figure 3-1). [26] has proposed the general
procedure of a distributed query scheduling process in DIOM. It primarily consists of the following

steps to process a user query submitted to the DIOM server:
1. query routing,
2. query decomposition,

3. parallel access plan generation,

Services at Medlator Tier

Compiler

1 1
' 1
] [}
] 1
5 intertace I
1
. DIOM Interface Repository '
' A '
' QL]
! Preprocassor / :
' 1
' Information :
t
) Distributed Quory p— Source Catalog '
]
X Medlation Service Supervi Manager '
' Provider '
' T t
N m e e, e, e s o e e m e rm e e . — - - —m e . .- —————-— - - - - PR —
el i GG PSPPI S, .
: Services at Wrapper Tiar y [
.
: / Impiemenation :
] o,
Rap Y]
, Query Wrapper Manager '
) Service Manag .
)
' :
t
' T >
]
' implementation :
1
1| Subquery Subquery Subquery Repository :
: Transiation Execution Result Packaging '
H
e e e e e e e '

Information Sources

Figure 3-3: DIOM System Architecture

4. subquery translation and execution, and
5. query result assembly.

Given a continual query defined over multiple heterogeneous data sources, its query component
and trigger condition evaluation component will be processed using the CQ query processor which
is built on top of the DIOM distributed query scheduler. Figure 3-4 shows the steps of how a user
query from the CQ system is processed inside the DIOM distributed query scheduler.

Query routing is the first step. The main task of query routing is to select relevant information
sources from available ones for answering the query. This is done by mapping the domain model
terminology to the source model terminology, by eliminating null queries, which return empty results,
and by transforming ambiguous queries into semantic-clean queries. Consumers’ query profiles and
producers’ data source profiles play an important role in establishing the interconnection between a
consumer’s query request and the relevant information sources.

The second step is called Query decomposition. It is done by decomposing a user query expressed

23

m S — , ,
/ Ug‘l. Domain Usage Model ™\ : Mediator Metadata

' Catalog Manager

_IQL "information Producers’ ¥
- Source Data Models
: e

qQuery - ,
request Query i " Query i ;Paralle! Access ' . Result |
—f Routing —e— Decomposition —Plan Generation, : Assembly |
' i i i ! : |

)

/—\' ' l

m Subquery Subquery - Local Result

=" Translation ™ Execution — ™ Packaging :

Catalog . ‘ |

|

Figure 3-4: A Sketch of the Distributed query scheduling framework in DIOM

in terms of the DIOM interface query language (IDL) into a group of subqueries, each targeted at
a single data source.

The third step is Parullel query planning where optimization of distributed query takes place.
The goal of generating a parallel access plan for a group of subqueries is to find a relatively optimal
schedule that makes use of the parallel processing potentials and the useful execution dependencies
between subqueries, resulting from built-in heuristics, to minimize the overall response time and
reduce the total query processing cost.

The next step is called Subquery translation and erecution. The translation process basically
converts each subquery expressed in the interface query language into the corresponding informa-
tion producer’s query language expression. and adds the necessary join conditions required by the
information source system.

After submitting the subqueries, the DIOM query scheduler is responsible for (1) packaging each
individual subquery result into a DIOM object (done at wrapper level) and (2) assembling results
of the subqueries in terms of the consumers’ original query statement (done at mediator level). The
semantic attachment operations and the consumers’ query profiles are the main techniques that we
use for resolving semantics heterogeneity implied in the query results. This step is referred to as

Query result packaging and assembly.

24

3.4 Client-Server Design

Depending on the need of the application, the CQ client manager, the CQ trigger evaluator, the
event-driven update monitor, the query router, query planner, and query result assembler could
be located on a single machine, or distributed among several computers connected through local
or wide area networks. The CQ system uses the most flexible client-server arrangement which is
customizable with respect to the particular system requirement of the applications. Figure 3-3 shows

three different scenarios for multi-layer client/server coordination among the CQ components.

o p—)

| CQ Client CQ Client
Manager CQ Client

Manager . Manager

CQ Server
Manager

— ~

[E .)
Q Wrappery CQ Wrappers
/Adapters /Adapters

-

Data Sources

Figure 3-3: Example Scenarios of the Client/Server coordination among CQ components

In this chapter, we have briefly introduced the main components in CQ systems and presented
the general picture of the main architecture and the application domain. The rest of the chapters in
this thesis will present the continual query execution model, the differential reevaluation algorithms
for efficient processing of continual queries, and the design and implementation details of the first

CQ prototype system in the context of this general picture.

Chapter 4

Continual Query Execution Model

The CQ system presents an extensible architecture for experimentation with push-enabled data
management and event-driven data delivery systems. Rather than starting from scratch, the CQ
system takes advantages of the conventional pull-based DBMS services to the extent possible and
adds push-based data delivery elements to them when it is necessary. For instance, rather than
introducing a new event-driven query language, the CQ system uses continual queries to express
trigger conditions and unifies them with the regular SQL queries so that continual queries may be
expressed in SQL with minimal additions to the language. In particular, the execution model of
the CQ system provides different communication protocols between triggering transactions (update
transactions) and triggered queries and alert messages (such as sending email notification, firing
a subsequent execution of a query). These communication protocols range from synchronous or
asynchronous cooperation, causally dependent or independent scheduling, deferred or immediate
notification, to execution of triggered actions in a same or separate transaction as the triggering
event.

In Chapter 2 we have presented the CQ extension to the conventional DBMSs and pure pull web
search systems and overviewed the continual query specification language, which is a slight extension
of SQL with the primitives introduced in Chapter 2. We illustrate the continual query specification,
in particular CQ trigger definitions, through a number of examples. In Chapter 3 we have described
the CQ system architecture. In this chapter, we discuss the execution model of continual queries.
We will describe the optimization techniques for continual query processing in Chapter 5 and report

our implementation design of the first CQ prototype system in Chapter 6.

4.1 A Quick Look at Continual Query Execution

Let us first take a quick look at the the execution process of a continual query. For more details on
the execution model of continual queries, see Section 4.2.
Recall the continual semantics described in Chapter 2, it specifies that, for each continual query

CQ..denoted by (Q.T.,.Stop). the first execution of CQ; is activated by the installation of the CQ;,

26

without going through the evaluation process of the condition T;q A =Stop: whereas the subsequent
executions of this continual query are fired only when the condition T.; A =Stop becomes true. More
concretely. when a continual query CQ; is entered (installed) the first time. the following activation

actions take place:
e CQ: is registered with a unique continual query identifier (cqid);

e Rather than activated by the condition evaluation manager. the first run of CQ; is fired by
the continual query activation manager (see Section 4.2.2 for further detail), which executes
the query component Q. There is no verification on trigger condition or stop condition except
simple syntax check. The first run of CQ; will return the whole answer of Q, and cached the

answer as the previous execution result of CQ;:

e The trigger condition Ti, is activated in the sense that the update events of interest are
identified, each associated with a conditional event; and the trigger activation variables (such as
transaction coupling mode, dependency coupling mode, schedule coupling mode, and execution

coupling mode) are initialized.

The subsequent runs of CQ; will be fired whenever the trigger condition T, is evaluated to be
true, and the termination condition Stop is not true. Each subsequent execution of CQ; proceeds

as follows:

o Step l: U'pdate Events [dentification
This step is to identify the update events of interest from the trigger condition expression of
CQ;. It is done by decomposing the trigger condition T, into a list of T, triplets, each triplet
consists of a basic update event, an atomic conditional event. and a connector to the next

triplet in the list;

e Step 2: Update Events Detection
This step is to decide when to detect the changes and what to detect for the given trigger
condition. and which event detectors should be used. For each triplet generated in the Step 1.

the atomic condition is evaluated when the basic update event is signaled:

o Step 3: Logical Events (Condition)} Evaluation
This step is carried out by the condition evaluation manager, which first select a triplet from
the list of T, triplets generated in Step 1, if the connector is an AND connector (or an OR
connector), the AND logical event detector (the OR event detector) is invoked; if the connector
its WHERE, the next triplet in the list will be used as an add-on condition to the basic update

event component of this triplet; and so on. For further detail, see Section 4.2.3;

o Step 4: Differential Query Erecution and Result Delivery

If the condition evaluation in step 3 returns a true value, then the following pre-defined actions

(3]
-1

are scheduled to execute: (1) fire the next execution of the query component Q, (2) compute
the difference between the current run of Q and the result of the previous run, (3) notify the

user of the arrival of new updates of interest. and (4) deliver the differential result to the user.

A walkthrough example to illustrate this process is provided in Section 4.2.

4.2 Continual Query Execution Model

We have explained how one defines continual queries in the previous section. We now describe the
implementation of how the CQ system triggers and executes continual queries.

It is well known that in a conventional pull-based DBMS user application programs are executed
when explicitly requested to do so. Execution of such programs typically results in the processing
of a sequence of transactions, where each transaction is a unit of consistency and recovery. The
system guarantees atomicity (all updates issued by the transaction are installed in the database or
none are), serializability (the concurrent interleaved execution of a set of transactions is equivalent
to a serial no-interleaved execution), and durability (once a transaction is committed, its updates
will never be rolled back). In contrast, a continual query system must evaluate installed continual
queries under system control (not user or application control). More concretely, once a continual
query is installed, the system must decide not only how to detect the update events of interest, how
to evaluate the trigger condition, and when to fire the subsequent execution of the query component,
but also how the execution of these tasks should be treated with respect to user transactions. The

continual query execution model is an attempt to answer these questions.

4.2.1 Basic Coupling Modes

Continual queries in practice are often defined over multiple. autonomous and possibly heterogeneous
data sources. The local update transactions are usually orthogonal to the continual queries specified
over the same set (or a subset) of data. Furthermore, both trigger condition evaluation component
and query component of a continual query are side-effect free transactions. Due to the autonomy
and distribution of data sources and the side-effect free nature of continual queries, it is not only
important but also practical to allow a more flexible execution model.

A flexible execution model allows trigger condition evaluation and query execution to be broken
off into different execution threads from the triggering transaction (the transaction that carried out
the update operations). More concretely, it should be possible to allow the continual query evaluation
to be separated from the (triggering) transaction that carried out the actual updates. This would
allow the triggering transaction to commit earlier, and would potentially increase concurrency and
reduce wasted work (rollback of incomplete transactions after a crash). The CQ system execution
model for continual queries uses the notion of coupling modes to provide this flexibility.

In the CQ system. we support four basic coupling modes: transaction coupling mode: separate or

same, execution coupling mode: asynchronous or synchronous, dependency coupling mode: causally

28

dependent or causally independent, and schedule coupling mode: immediate or deferred. We view the

execution model of each continual query to consist of the following four participating transactions:
e (1) the triggering transaction that carries out the update operations,
¢ (2) the update event detection transaction that detects if the data of interest has been updated,

e (3) the trigger condition evaluation transaction that evaluates the condition based on the newly

updated data, and

e (4) the transaction that carries out the subsequent execution of the query component and

sends out the alerts or change notification messages.

Such arrangement provides more flexibility for utilizing multiple execution threads and paral-
lel execution for continual query processing, which are critical techniques to the effectiveness and
responsiveness of a push-enabled distributed cooperative information management system.

In the CQ system. it is possible that the coupling case for transaction types (1) and (2) may be
different from the coupling case for transaction types (2) and (3) as well as the coupling case for
transaction types (3) and (4).

We illustrate the meanings of each coupling mode using the coupling scenario for transaction
types (2) and (3), which relates to the trigger condition part of the continual queries. For the trigger
condition part of a continual query. the coupling mode specifies when the condition is to be evaluated

relative to the triggering event (i.e., the update event being monitored):

¢ Transaction coupling mode: separate or same

The transaction coupling mode separate means that the condition evaluation triggered by the
update event runs as a separate transaction with respect to the transaction that detects the

update events of interest.

The transaction coupling mode same means that the condition evaluation triggered by the
update event runs either as part of the transaction for detecting the update event in the case
that the updates performed by the triggering transaction are local operations, or as part of
the triggering transaction in the case that the updates are performed by the same user or

application program who installed the continual query.

¢ Execution coupling mode: asynchronous or synchronous

The asynchronous coupling mode means that the update event detection transaction may run

in parallel with the trigger condition evaluation transaction.

The synchronous coupling model means that if the trigger condition evaluation transaction is
triggered by the transaction that detected the update events, then the trigger condition evalu-
ation transaction is executed, and the execution control returns to the “triggering’ transaction

only after the condition evaluation transaction is committed.

29

¢ Dependency Coupling Mode: casually dependent or casually independent

The casually dependent coupling mode means that the trigger condition evaluation transaction
can be scheduled only after the ‘triggering’ transaction that detected the update event has

committed.

The casually independent coupling mode means that the scheduler is free to schedule the trigger
condition evaluation transaction independently of the update event detection transaction when

the update transaction is local.

e Schedule Coupling Mode: immediate or deferred

The schedule coupling mode immediate means that the trigger condition evaluation transaction
is fired as soon as the triggering transaction commits. When the updates are carried out by
a global update transaction issued by the same user or application program, the triggering
transaction refers to this global update transaction. When the updates are carried out by
local transactions or other remote and autonomous transactions, the triggering transaction

refers to the update event detection transaction.

The schedule coupling mode deferred means that the CQ trigger condition evaluation is fired

at the end of the update event detection transaction and before it commits.

By looking into the semantics implication of these coupling modes, We come to the following
conclusion: The schedule coupling mode deferred must be used in conjunction with the same

transaction coupling mode.

The same transaction coupling mode can be used only in conjunction with synchronous execution
coupling. The deferred schedule mode is applicable only in conjunction with the same transaction
coupling mode. However. the immediate schedule mode can be used in conjunction with botk same
and separate transaction couplings. Also both dependency couplings are applicable only to separate
transaction coupling. immed.ate schedule coupling. and asynchronous execution coupling.

In a similar manner, we may illustrate the possible coupling cases for transaction types (1) and
(2). the event detection part of the CQ, and for transaction types (3) and (4). the query scheduling
part of the CQ. For the query scheduling part of a CQ. each coupling case specifies when the
subsequent run of the query component is to be fired relative to the trigger condition evaluation
transaction.

[n the CQ system we allow users to define their application-specific coupling modes for any of the
three pairs of the participating transaction types. In the absence of user-specified coupling modes,

the system default coupling case will be used. The default coupleing modes are:
e Between (1) and (2): separate, asynchronous, causully independent

¢ Between (3) and (4): separate, synchronous, causully dependent

30

4.2.2 Continual Query Installation

Once a continual query CQ;, denoted by (Q, T.,.Stop). is defined, the user may install it directly
to the CQ system. At the installation time, the Install module of the client manager takes the
continual query and passes it to the CQ server. The server activates it using the activate command.

The activation process consists of the following three main tasks:

* making this continual query a persistent object and generating a unique identifier (cqid) for

it:

e execute Q for the first run of CQ; and cache the answer as the previous run result of the query

component:

e Initializing the execution attributes and data structures used for event detection and condition
evaluation of this given CQ. This task includes decomposing the user-specified CQ trigger
condition into a set of triplets, each triplet is described by a basic update event, an atomic
conditional event, and a connector; and setting up the initialization for the transaction coupling
mode, the dependency coupling mode, t.he schedule coupling mode, and the execution coupling

mode (recall Section 4.2.1).

The Activate command also returns a handle that will be used to deactivate this continual
query when its termination condition is expired.
Users can use the activate command to define the coupling modes according to application

specific requirements. The syntax of the activate command is given below:

Activate <cgid>
define communication protocol between
<transl1> and <trans2>
TransactionCoupling = same | separate
ExecutionCoupling = synchronous | asynchronous
DependencyCoupling = causally dependent | causally independent

ScheduleCoupling = immediate | deferred

Once a continual query is activated. it runs continually following the communication protocol
defined by the specific coupling case. The continual query is terminated when its Stop condition is
evaluated to be true. To terminate an installed continual query. the command Deactivate <cqid>
is invoked, which removes from the CQ system catalog the corresponding continual query object
identified by cqid, deactivates the related event detectors that are still active, and sends to the

owner of this CQ a notification that this CQ is expired.

31

4.2.3 Event Detection

The main task of event detection manager is to decide what to detect, when to detect. and how
to detect. The decision is made based on the update events identified from the trigger condition
specification and the type of events to be detected. As discussed in Section 2.4.1, the trigger condition
part of a continual query may be a primitive event, such as a temporal event: every two days or
every first day of the month: an atomic conditional event: the stock price is greater than 100 (price
> 100); or a composite event, which is formed by an event composition expression of the form “E;
<event_op> E>”, where E; and E- are primitive or composite events. Typical examples of composite

events are

Stock.price(IBM) IncreaseByl 5 OR Stock.price(Intel) DescreaseBy) 5
keyword CONTAINS ‘Java’ OR keyword CONTAINS ‘JDBC'®
qty_on_hand (item) > threshold(item)

qty._on_hand(item) + qty_on_order > threshold(item)

Each primitive event is detected by using a primitive event detector, which is either a basic temporal
event detector or an atomic conditional event detector. An operation signal is defined for the event

entity type, and is executed by the event detector components of the system.

4.2.3.1 Time-based Event Detection

For time-based continual queries, a temporal event detector, or so-called time-based event detector,
is used, which translates the time-based trigger condition into a clock event and installs the clock
event script to the CQ clock daemon. Whenever the clock event occurs, the trigger condition is
signaled. Thus the subsequent execution of the query component is fired. A distinct feature of
time-based continual queries is the use of user-controlled polling for update monitoring.

There are two key implementation techniques useful for time-based event detection: The first
technique is to design a generic transformation program that takes the user-defined time condition
and transforms it into a clock event expressed in the clock event scripting language; the clock
manager (daemon) will then take over the control and trigger the update event detection according
to the clock event installed; whenever the update event is signaled, the continual query manager
will call the query evaluator to fire the subsequent run of the query component, and call the change
notification manager to deliver the change notification message as well as the update result. The
second technique is to develop a clock event manager which. on one hand. provides a scripting
language to allow users to specify an arbitrary clock event and the action to be taken if the clock
event occurs, and on the other hand, provides triggering capability so that it can fire the specified

action (e.g., invoke a program) when a specific clock event is signaled.

32

4.2.3.2 Content-based Event Detection

In contrast to time-based continual queries, the content-based continual queries use the system-
controlled polling for update monitoring. Thus, there are more than one strategies possible for
implementation of the CQ trigger condition monitoring and event detection.

In order to carry out the content-based event detection, the first thing we need to do is to iden-
tify what update events are of interest to the given continual query. As mentioned in the continual
query activation procedure (recall Section 4.2.2). for each installed continual query (Q. Tvq, Stop).
its trigger condition T4 is decomposed into a list of T, triplets, each triplet is described by a basic
update event, an atomic conditional event, and a connector. For example. if the trigger condi-
tion is “Stock.price(IBM) IncreaseBy’ 5 OR Stock.price(Intel) DescreaseBy% S”, then the

following triplets are generated:

(Stock.price, Stock.price IncreaseBy’ 5, WHERE)
(Stock.company, Stock.company = IBM, OR)
(Stock.price, Stock.price IncreaseBy’ 5, WHERE)
(Stock.company, Stock.company = Intel, END)

For the trigger condition: qty on hand(item) > threshold(item). two triplets are generated.
They are: (qty.on_hand, true, >) and (threshold, true, END). Ncte that the connector WHERE
means that the next triplet is not an update event of interest but a constraint on the current
update event. In this case. UPDATE on the stock price is the event we would like to monitor, and
the condition Stock.company = IBM is simply a constraint, saying that we are only interested in
monitoring UPDATE on the stock price of IBM but not other companies’ stock prices.

Now we can determine what to detect based on the basic update events identified by the list

of T, triplets.
Example 3 Given the trigger condition:
“Stock.price(IBM) IncreaseBy’ 5 OR Stock.price(Intel) DescreaseBy% 5”,

the basic events of interests are UPDATE operations on Stock.price and Stock. company, as well
as INSERT and DELETE operations on the object class Stock. For trigger condition keyword
CONTAINS ‘Java’ OR keyword CONTAINS ‘JDBC’, if the condition field name keyword is mapped
to Document.title and Document.abstract available at the corresponding data source(s), then the
basic events of interests are INSERT and DELETE operations on Documents objects. and UPDATE

operations on Document.title and Document.abstract.

The next question is how to detect, namely we need to decide which mechanisms may be used
to detect the changes made by the update operations, possibly from some transactions that are local

to the data source; In the CQ system, we distinguish between the data sources that have built-in

33

trigger capability such as the data sources managed by trigger-enabled RDBMSs (incl. Oracle, DB2,
Informix, Sybase) and the data sources that have no built-in trigger capability such as most of the

web sites and file systems.

e For the data sources with built-in trigger facility. the CQ system may install the database
triggers on the data columns or objects of interest. Whenever there is an update, the database
transaction that carries out this upate will send an update signal to the corresponding CQ
wrapper. We provide the host-specific trigger installation program (such as Oracle trigger
installation program) to install triggers on those data objects and data columns that are

accessible to the CQ system.

e For the data sources with no built-in trigger facility, we use system-controlled polling with

system-defined interval {such as every 30 seconds).

Note that the capabilities of database trigger supported in commercial DBMSs today are not
sufficient, particularly in those cases where run-time installation of customized database triggers
is required, In these situations, a system-controlled polling will be used in conjunction with the
database triggers. Our experience tells that not all the RDBMSs allow database triggers to be
installed by a remote program through JDBC. In the first prototype of the CQ system, we implement
the content-based event detection using the system-controlled periodic polling.

Now, let us walk through the event detection process. Given a continual query CQ; defined by
(Q.Teq.Stop). Suppose that the trigger condition T, has been transformed into a list of T, triplets,
denoted by TripleSet(cqid, T.). To simplify the steps (that) we need to walk through, let us assume
that the connectors we use in this walkthrough are the most commonly used ones, namely WHERE,
AND, OR, END. For each triplet in TripletSet(cqid. T4). we form a event detection query, denoted

by Quetece. which is to be submitted to the relevant data sources to detect if an update is occurred.

¢ For a triplet of the form (7.4, T.Adv, AND) or (T.A, T.AJv,0R) or (T.4, T.AJv,END), where T
denotes the object class, A, B are instance variables of T, and 7 is the comparison operator,
let prev denote the value of instance variable 4 contained in the result of previous execution
of the given CQ. Thus. the corresponding event detection query Qgeec: is expressed as SELECT

A FROM T where A # prev.

¢ For a triplet of the form (T.A, T.AVw, WHERE), we fetch the next triplet, say (S.B, S.BJw,END)
from the remaining list of TripletSet(cqid, T.q). Thus, the event detection query Quececc is

expressed as SELECT T.A, S.B FROM T, S WHERE S.B ¢ w AND T.A # prev.

4.2.4 Condition Evaluation

In principle, one may want to detect all the update events of interest before starting the trigger

condition evaluation process. In practice, the CQ trigger condition evaluation is carried out in

34

conjunction with the process of basic update event detection, to guarantee the efficiency of the
condition evaluation. For example, if a condition is of the form (T.Avv4)A(T.BUvg), and if the event
detection query over the triplet (7.4, T.4.Jv,, AND) returns empty answer, then we can conclude
that the trigger condition is false without looking into the second triple: (T.B, T.Bdvg. END}.

Now, let us walk through the condition evaluation process for a continual query CQ; defined
by (Q,T..Stop). Let TripleSet(cqid.T.;) denotes the list of T, triplets generated by the CQ
activation process. Similar to the discussion on event detection. we simplify the steps we need to
walk through by assuming that the connectors used in this walkthrough are WHERE, AND, OR, END.

The condition evaluation process of CQ; proceeds as follows:

e Step l: It starts by selecting a triplet in TripleSet(cqid, Teq). and then check the connector

type of this triplet:

e Step 2: if it is an END connector, then this content-based trigger condition is evaluated to be

true, and the subsequent query execution is fired.

e Step 3: if it is a WHERE connector, let us denote the selected triplet as (7T.4.T.4Jv. WHERE).
and the next triplet is fetched from the remaining list of TripleSet(cqid, T.q). denoted by
(S.B,S.BYw, AND), then the update event detection query Qgerece is expressed as SELECT T.A,
S.B FROM T, S WHERE S.B ¥ w AND T.A # prev. If Qu.ccc: returns a non-empty answer, it
means the update event has occurred; go to step 6. If Qu.cecr returns an empty answer, we

can conclude that the corresponding trigger condition is false.

e Step 4: if it is an AND connector, let us denote the selected triplet as (T.A.T.Avv, AND), then
the update event detection query Quecec: is expressed by SELECT T.A FROM T where T.A #
prev. If the answer to this query Qu.ec: i empty, then the condition evaluation is false.

Otherwise (i.e., if the answer is non-empty), go to Step 6.

e Step 5: if it is an OR connector, let us denote the selected triplet as (T.4.T.Avv, OR), then the
update event detection query Quecec: is the same as the case for an AND connector. i.e., SELECT
T.A FROM T where T.A 3 prev. However, unlike the AND connector case, if the answer to this
query Qgecece s non-empty, then we conclude that the condition evaluation is true. Otherwise

(i.e., the answer is empty). we need to go to Step 6.

* Step 6: select another triplet from the remaining list of triplets in TripleSet(cqid. Tcq). and go

back to Step 2.

Obviously, the richer set of event composition operators is used, the more sophisticated the event
detection process will be. A complete description of event composition operators and their formal

semantics is beyond the scope of this paper. Readers may refer to [23] for further details.

4.2.5 Issues on Efficient Condition Evaluation

Users and application programs may define as many continual queries as they wish. Once these
continual queries are installed, they run continually as long-running side-effect free transactions with
checkpoints !. Despite all the query components, each from one installed continual query, the set of
all trigger conditions forms a potentially large set of predefined queries (1.e.. event detection queries)
that have to be evaluated efficiently. Furthermore, the trigger condition component of a continual
query may be more sophisticated than the query component when the update monitoring threshold
is defined over several different object classes and uses special operators (such as IncreaseBy’,) that
are not supported by the data sources upon which the condition is evaluated. Several techniques
have been identified as being useful for performance optimization of the condition evaluation:

The first technique is Multiple Condition Optimization and also called multiple query optimiza-
ticn in the literature [33]. This technique represents conditions (and the events that signal the
condition evaluation) by condition evaluation graphs, which resemble the query graphs commonly
used in query processing. The leave nodes of the graph are triplets of the form (R. R+, R—), where
R corresponds to a set of entity instances before the update. R+ corresponds to the set of instances
inserted into R by the update, and R— the set of instances deleted from R by the update. The
internal nodes correspond to operators of some convenient algebra into which the query language
can be compiled (e.g., select, project, join). The key idea of multiple condition evaluation consists of
identifying common subgraphs, and evaluating these subconditions once for a whole set of queries,
instead of once for every query [33]. For a continual query system, the common subconditions may
be detected at the algebraic level due to the distribution and autonomy of data sources, whereas
in a centralize data base system the common subconditions may also be detected at the lower level
(e.g.. use common access paths). The multiple query evaluation problem is complicated by the need
to ensure that the conditions will have to be evaluated simultaneously; e.g., they are triggered by
the same update event.

The second technique is Incremental Condition Evaluation. A main task of continual query
evaluation is to determine whether the answer to a previous execution cf the query component (say
at time ¢) has changed as a result of some update event to some of the query’s operands at time
t’. Let Q be a query defined over an entity set R, and Ans(Q,t) be the answer to the query Q at
time t. Let R’ = (R minus R— union R+). A brute force method for computing the change in
Q(R,t) would be to compute Ans(Q.t') = Q(R’), and then the symmetric difference of Ans(@.t)
and Ans(Q.t"). Incremental evaluation computes this svmmetric difference directly from R+, R—,
and Q. Sometimes R is also needed when Q involves joins [25]. Many algorithms have been proposed
in view materialization research for incremental maintenance of materialized views (see Chapter 7
for reference), and may be directly deployable for incremental condition evaluation in the continual

query systems.

!Each time when the trigger condition is evaluated to be true and the query is fired is referred to as a checkpoint.

36

An extreme case of incremental condition evaluation is the situation where it may be possible to
infer that there is no change in a query’s answer with respect to an update event without evaluating
the query. Put differently, we can ignore an update event E at t’ with respect to the execution of
query @Q at ¢. if we can tell that the symmetric difference between Ans(Q.t) and Ans(Q,t') is empty
by looking only at the update event E and query expression @. A trivial example is the update
event that modifies a data object that is irrelevant to the query Q. A less trivial example is an
update that modifies the Intel stock price to a higher value; clearly, this update event is ignorable
with respect to the trigger condition stock.price(Intel) DecreaseBy’ 5.

Also more opportunities for optimization may arise out of the interplay between the event de-
tection, the condition evaluation, and the subsequent execution of the query component. Generally
speaking, more work is needed to develop heuristics and cost models that the condition monitor can

use to explore the tradeoffs and benefits of these tactics and algorithms.

4.3 Performance Evaluation Issues

We have presented a design and selection of alternative architectures and algorithms for a distributed
push-enabled data management system that supports continual queries. Research on push-enabled
continual query systems must be accompanied by a careful performance evaluation effort. For the
CQ system, such an effort is under way. The goal of the first effort is rather modest, that is to verify
that a continual query system can indeed outperform a pull-based passive data delivery system
for applications that require time-constrained update monitoring. Towards this objective, a simple
condition monitor and a small situation monitoring application were implemented using C, Perl,
JDKI.1, JDBC. and Oracle 7.0, upgraded to Oracle 8.0. Three types of data sources are used in
this prototype: (1) an Oracle database which is remotely accessible through SQL, OraPERL, and
SQLNet; and a Microsoft SQL server database which is remotely accessible through JDBC and
SQL; (2) a collection of semi-structured UNIX files which are accessible through Java applets and
Java servelets. (3) a World Wide Web HTML source which is accessible through our htm! wrapper
and filter utility. We are planning to do a simple experiment, making a comparison between user
polling and continually monitoring using continual queries. We expect (with confidence) that this
simple experiment will verify the hypothesis that push-enabled data delivery system can outperform
(ad-hoc) polling over a pull-based passive data delivery system when the number of objects being
updates and monitored is proportionally large.

We are also interested in planning careful controlled experiments for comparing the performance
of alternative condition evaluation tactics. as well as effort on studying architectural alternatives for
the push-enabled continual query systems and their impact on performance, and possibly building
a performance testbed for studying the extent to which the final design of the CQ system is able
to meet or exceed the processing requirements of a distributed time-constrained update monitoring

and event-driven information delivery system.

37

Chapter 5

Differential Evaluation Algorithm
for Continual Queries

5.1 Motivation

Continual queries are standing queries that run continually until the termination condition becomes
true. Whenever an relevant update is performed, the CQ system will trigger the execution of the
corresponding continual queries. It is obvious that the subsequent execution of a given continual
query is only interested in those data that have been updated since the previous execution. In the
situation where the amount of updates is small, one way to optimize the subsequent executions of a
given CQ query is to use differential evaluation method such that queries that can be answered using
delta information (i.e.. the updated data) rather than the full set of base data. Similar techniques
have been widely used in incremental view materialization [3, 14, 19, 16, 34].

More concretely, recall Chapter 2, we have defined a CQ query as a sequence of query results.
modeled by Q.q(S1). -... Qcq(Sn), where Qcq(Si), (1 = 1, ...,n) is the result of running Q.4 on the
database state S;. Quite often there are situations where users are more interested in the difference
between Q.q(S:) and Qcq(Si4+1). This can be accomplished by naively executing the entire query
and then filtering out the part of the query result that is the same as the previous result. This
simple and straightforward approach can be quite expensive, especially in the Internet environment
where query results need to be gathered from multiple source data repesitories. An obviously more
attractive approach is the differential query evaluation method, which is particularly powerful when
Qeq(5i) is relatively large, and only a small percentage of the result changes from state S; to state
Sit1-

For example, suppose we have a join query R 0« S and let us assume for simplicity that R is
located at site 1 and S is located at another site, namely site 2. Suppose this query is installed as
a continual query that runs every 5 hours. [t means that the CQ server will check out the updates
at the source R and S every 5 hours. Whenever R or S objects at the sources change, the query

R < S will be reevaluated again. Suppose we have a new object o; added into the source R at time

38

t; after the initial installation of this CQ at tg, t; — tq < 5h. and this insertion is the only update at
source R and source S up to the time point ¢y + 5h. Obviously the change effect can be computed
by either executing R 0« S again and then computing the difference with the previous result, or
by computing the net change effect using {0;} 0a S. When the cardinality of R is very large, the
differential computation of net change effect is much cheaper than the re-evaluation of the original
query expression R < S from scratch.

[25] proposes a differential re-evaluation algorithm for continual queries. The key idea behind
this algorithm is to produce Q(S;4+1) by incrementally updating Q{S;). More concretely, in contrast
to a complete re-evaluation. differential re-evaluation means that after the initial execution of a CcQ,
the re-evaluation of each subsequent execution of this CQ will be performed by using the differential
form of the query. denoted as §Q.q. This way, we avoid reprocessing the entire query from scratch.
When the changes are substantially smaller compared with the latest query execution result, this
differential update will be more efficient than reprocessing the entire query.

The differential re-evaluation algorithm (DRA) is invoked by the CQ manager based on the
epsilon specification associated with the given CQ. We assume that the information available when

the DRA is invoked includes:

e the CQ specification (Qcq. Trigeq. Termeg);

the contents of each base relation after the last execution of the CQ;

the differential relations for each of those operand relations that have been changed since the

last execution of the CQ:

e the timestamp of the last execution of the CQ;

the complete set of the result of the CQ produced by the last execution.

In short. the Differential Re-evaluation Algorithm (DRA) is developed for incrementally comput-
ing the new query result from processing updates on top of the previous result. [24] proves that the
differential re-evaluation algorithm - DRA is functionally equivalent to the “recompute the query
from scratch™ solution, and, in many situations is more efficient.

Although the differential re-evaluation of continual queries has been extensively covered in [25,
24]. to make the discussion of our implementation design of the DRA easier to understand, and make
this thesis self-contained, in this chapter we will first present the notation and an brief overview of
the differential reevaluation algorithm, and then describe the design choices and implementation
plan that we have laid out for efficient realization of the DRA in the first prototype of the CQ
system.

The structure of this chapter is as follows: Section 5.2 describes the notation and terminology

required to explain the DRA algorithm. Section 5.3 describes the strategy to generate Q(S,) from

39

Q(Sa-1) incrementally. thus reducing both processing time and network transmission bandwidth.

Section 5.6 discusses the implementation consideration of the DRA algorithm.

5.2 Notations and Terminology

The relational terminology is used in this paper to specify continual queries. to record and manip-
ulate changes by differential relations and associated operators. This notation does not constrain
our algorithm and solutions to relational database management systems. In DIOM, information
consumers formulate queries with GUT tools, which are then translated into appropriate query lan-
guages for backend processing. such as SQL. On the other side, information producers need only
to generate the differential relations, which are simple tables of update operations, to communicate
with the consumers.

We assume that the reader is familiar with the basic concepts and notation concerning relational
database, as described in [28]. In this paper we refer to relational selection, projection. join. outerjoin,
union. and difference operators by &, II. t, Quterjoin!, J. and — respectively. For presentation
convenience. we sometimes use [I(R;X) to denote IIx(R), o(R:F) to denote cr(R), and a SPJ
expression to denote a Select-Project-Join expression.

We use differential relations to represent the net effect of a collection of updates to a relation.
either stored or derived. The differential relation for a stored relation is instantiated by the system
when the source is updated by insertion. deletion or modification (see Example 4). We define
an operator that computes differential relations for arbitrary SPJ expressions. The concept of
differential relations is. to some extent, similar to the concept of hypothetical relations used for
incremental updating materialized views{5. 14]. The difference lies in the usage and the detailed
structure. In the eager mechanism for materialized view update, a hypothetical relation represents
the net changes made by a single transaction to a base relation and can be dropped after the
transaction is committed and the materialized view is updated. In the continual query refresh
method, a differential relation actually maintains changes made by several transactions to a base
relation. Data in the differential relation can only be dropped when their timestamps are “older”
than the timestamp of the latest execution of erery relevant continual query.

We would like to mention that the relational model is not essential to our approach, but it sim-
plifies the representation of database changes, allows use of the relational algebra, and avoids the

need to explain the semantics of a particular object model.

l0uterjoin keeps all tuples in both the left and right relations when no matching tuples are found. padding them
with null values as needed [23].

40

5.2.1 Differential Relations

We introduce the concept of differential relation, a relation that can represent changes to another
relation, and design a set of basic operations to facilitate the manipulation of such relations. The
goal for defining differential relations, instead of using hypothetical relations described in [5, 14],
is to provide a unified treatment of changes, not separate treatments of insertions, deletions, and
modifications resulting in several algorithms for generating and combining individual results.

Let R denote a relation scheme described by a set of attributes Ay, Aa,..., A,. Let R denote a
relation instance of R consisting of a collection of tuples whose values are taken from the domains
of the set of attributes of R. t.4; (1 < i < n) denotes the value of attribute 4; for tuple ¢. Each
tuple has an attribute, denoted as tid, which provides a unique immutable identifier. When a tuple
is deleted and later re-appended to R, it will have a new ¢tid assigned. The unique tuple identifier
tid makes it easier to connect tuples that hold values of the same object before and after changes.

In fact, the primary key can be used as the unique identifier for each tuple of R.

Definition 1 (Differential relation)

Let R = (tid, A, Ao, 4,) be a relation scheme. For each relation R of scheme R, we define a

differential relation, denoted by AR, to represent changes.
AR = (tid<etd> ATeld> | g%0ld> pig<new> g<new> | g<new> ¢ipestamp),
where
o AS> refers to old attribute values and
o AS™®> (1 < i < n) refers to new attribute values.

e For any tuple t € AR,

— tid<*'> and tid<"**> cannot both be null.

If tid<°'*> is null, so are all t.459¥> (1 < i < n).

Similarly. if £id<"**> is null. so are all £.AF"**> (1 < i < n).

If both ¢id<™**> and tid<%¥> are not null, then tid<mc¥> = tid<o1d>

e For each tuple in AR, the system assigns a timestamp at its creation time as its identifier.

Differential relations can represent tuples (or objects) where only the tid field is nonnull. No tid
can appear in multiple rows. For addition, the attributes A<°¢> (1 < i < n) are null. For deletion,
the attributes AS™*%> are null. For modification, attributes AL°Y> hold old values and attributes
AS™> hold newly modified values. The timestamp field is set to the current time (from a system
clock, or any other monotonically increasing source of timestamps) whenever a tuple is appended to

AR.

41

Example 4 Consider the relation Stocks with attributes such as name and price per 100 units.

Stocks:
tid Name | Price
120992 | DEC 150
092394 | OLI 145
032090 | ODI 120
041977 | USL 100

Assume that the transaction T updates the Stocks relation by insertion, deletion and modification:

Transaction T {
Insert (101088, MAC, 117);
Modify (120992, DEC, 150) = (120992, DEC, 149);
Delete (092394);

}

The following differential relation AStocks captures the changes that the transaction T made to

Stocks:
AStocks:
tid<?4> | Name<??> | Price<??> | £id<"**> | Name<™**> | Price<"**> | timestamp
- - - 101088 MAC 117 10
120992 DEC 150 120992 DEC 149 25
092394 OLI 145 - - - 50

In the rest of this section. for presentation clarity the field timestamp is omitted when no con-

fusion is incurred. We sometimes simply use “delta relations’ to refer to differential relations.

5.2.2 Basic Operations

We first define renaming functions that add or remove the superscripts old and nev from attribute

names in a relation scheme R.

Definition 2 Let R = (tid, A;. 4a,...,A,) be a relation scheme and R be a relation of scheme
R. Let the relation S be of relation scheme S = (tid<°!4> Ago4> 4<old>) The differential

relation schema of R. is denoted by AR.
L. old(R) = {tid<old> Agod> | 4Sold>y,
2. new(R) = {tid<new> AL ¥ > [ASnew>)

3. detach(S; 01d(S)] returns the same relation with each attribute name detached from the

superscript <old>.

4. attach[R; o1d(R}] returns the same relation with each attribute name attached by the super-

script <old>.

The second group of operators is used to project the old or new values of a differential relation,
and to compute the updated relation. say R’, by combining the relation R with its differential

relation AR.

Definition 3 (High-level projection operators)
Let R be a relation of R = (tid, A1, Aa.....4,) and AR be a relation of the differential relation

schema AR. We define the operators deletions, insertions and combine as follows:
1. deletelog(AR) = II(AR. 01d(R)).
2. insertlog(AR) = [I(AR. new(R)).
3. deletions(AR) = detach[deleteLog(AR): o1d(R)].
4. insertions(\R) = detach{insertLog(AR); new(R)].
5. combine(R. AR) = (R— deletions(AR)) |J insertions(AR).

These high-level projection operators are derivations of the basic operations for differential rela-
tions. We define them here mainly for presentation convenience, because they are used frequently

in our differential re-evaluation strategies for continual query processing.

Example 5 Consider the relation Stocks and the differential relation AStocks in Example 4.

deleteLog(AStocks)
tid<*¢> | Name<°¥> | price<o®>
120992 DEC 150
092394 OLI 145

insertions(AStocks)

tid Name | Price

101088 | MAC 117
120992 | DEC 149

Stocks'’ = combine(Stocks, AStocks)
tid Name | Price
120992 | DEC 149
032090 | ODI 120
041977 | USL 100
101088 | MAC 117

5.3 Differential Evaluation of Continual Queries

In this section we present a differential re-evaluation algorithm (DRA) for processing a continual
query efficiently. In contrast to a complete re-evaluation. differential re-evaluation means that after

the initial execution of a CQ, the re-evaluation of each subsequent execution of this CQ will be

43

performed by using the differential form of the query. The DRA is invoked by the CQ manager
based on the epsilon specification associated with the given CQ. We assume that the information
available when the DRA is invoked includes: (i)the CQ definition; (ii)the contents of each base
relation after the last execution of the CQ; (iii)the differential relations for each of those operand
relations that have been changed since the last execution of the CQ; (iv)the timestamp of the last
execution of the CQ; (v)the complete set of the result of the CQ produced by the last execution.
Note that the CQ manager will use (iv) to append the proper timestamp predicate(s) into the
differential form of the CQ, which limits the search space to only those tuples that were written to
the differential relations by the updates occurred after the last execution of this CQ (recall Example 6
for an illustration). We also formally study the correctness of the DRA with respect to the complete
re-evaluation solution.

In what follows, we first formally define an operator that computes the differential relations for
the data derived by arbitrary query expressions in Section 5.3.1. In Section 5.3.2 we introduce the
differential forms for the three basic relational algebraic operations: Select, Project. and Join. We
prove that instantiation of Propagate(Q: PL) for relational select. project. and join are functionally
equivalent to their differential forms: DiffSelect, DiffProj and DiffJoin. The differential re-

evaluation algorithm is described in Section 5.3.3.

5.3.1 Computing the Differential Results for Continual Queries

In this section we introduce a high level operator, called Propagate. to describe how the result
relation of a continual query changes when at least one of its operand relations changes. This operator
computes the difference between two consecutive executions of a CQ by complete re-evaluation of
the query for each execution. It can be considered as an instantiation of complete re-evaluation
solution. The main purpose of introducing the operator Propagate is to formally prove that our
differential re-evaluation algorithm to continual queries is functionally equivalent to the “recompute
the query from scratch” solution, and, in many situations is more efficient.

Before giving the definition of the operator propagate. we define an operator that compute the

difference of two relations of the same scheme.

Definition 4 (The operator Diff)
Let R; and R» be two relations of the same scheme R. The operator Dif£ (R, R-) is defined as the

Outerjoin.;q of tuples in Ry — R» and R2 — R; under the join condition “tid<%4> = gid<new>",
Diff(R;, R2) = Outerjoincis(attach((R; — Ra):i01d(R)]. attach{(R2 — R;):new(R)]).

It returns a differential relation AR that describes their differences. Null values are used to pad

tuples that appear in only R; — R2 or Rz — R;. The relation scheme of AR is 01d(R) U new(R).

Definition 5 (The Propagate operator)
Let R; be a relation of scheme R; (1 < i < n), AR; be a differential relation of R;, and R} denote

44

combine(R;. AR;). Let Q(Ry,..
(1 i<k, k< n)} denote the differential substitution list. The Propagate operator is defined as

.+ Ry) denote an arbitrary continual query and SL = {[R;, ARj] |

follows:

Propagate(Q(Ry,..., Ra); SL) = Diff(Q(Ry,..., Rn), Q(R},-... RL)) (n>1).

It returns the differential relation of query Q. denoted by ARg, with the scheme Rq.

We may also denote Propagate(Q(Ry, ..., R,); SL) by AQ(Ry, ..., Ra).

Example 6 Consider the query Q: Oprice>120(Stocks) as a continual query. Let E; be the ith
execution of Q at time ¢; and E;(Q, t;) denote the result of the ith execution of Q (i =0,...,x).
Now assume that the base relation Stocks is changed, after the last executicn E; and before the
current execution E;;;, by the update transaction T given in Example 4. Let Q(Stocks) = E;(Q,
t;} denote the result of the ith execution of Q over Stocks. Let Stocks® denote the base relation
after updates to Stocks by transaction T. and Q(Stocks’) = E;;1(Q, t;+1) denote the result of the
current execution of Q. over the relation Stocks’.

Based on Definition 3, to express how the result E;(Q, ¢;) may change after the updates by the
transaction T. we may simply compute Propagate(Q(Stocks);[Stocks,AStocks]), the difference
between the result relation before the updates: Q(Stocks) and the result relation after the update:
Q(stocks?).

Q(Stocks) = Gprice>120(Stocks) = {(120992,DEC, 150), (092394,0LI, 145)}.

Q(Stocks’) = Oprice>120 (Stocks’) = {(120992,DEC, 149)}.

Q(Stocks)—Q(Stocks’) = {(120992,DEC, 150), (092394,0LI,145)}.

Q(Stocks’)—Q(Stocks) = {(120992,DEC,149)}.

The differential result AQ(Stocks) below represents the net effect made by all the updates

occurred between the the last execution E; and the current execution E;4;.

AQ(Stocks) = Diff(Q(Stocks),Q(Stocks’))

£tid<9%> | Name<%9> | Price<#¥> [tid<Pe¥> | Name<"¢*> | Price<"*¥>
120992 DEC 150 120992 DEC 149
092394 OLI 145 - - -

In this example, the differential result of the query oprice> 120 (Stocks), since the last execution of Q.
is computed by directly evaluating the function: Propagate(cprica>120(Stocks);[Stocks,AStocks]).
Assume the previous execution result E;(Q, t;) is saved. The evaluation of Propagate directly from
its definition requires first a scan of the modified relation Stocks’ in order to compute Q(Stocks’).
Such recomputing from scratch is often wasteful, and in many cases unacceptable.

Observe that when (i)the size of the source relation Stocks is large, (ii)the selectivity fac-
tor of the query Q over Stocks is not high, and (iii)the number of tuples written by the up-
dates, occurred between the two consecutive executions E; and E;;,, is relatively small, it would

be more efficient to compute the differential result of the query Q before and after the updates

45

by evaluating the query over the differential relation AStocks instead. It is because comput-
ing Propagate(oprice>120(Stocks);[Stocks.AStocks]) is functionally equivalent to the evaluation
of the differential query: or(AStocks), where F denotes the predicate price<??> > 120 A
price<™*®¥> > 120 A timestamp> ¢;!. This is true even when the user needs the complete composite
set of the query result, because computing the union of Q(Stocks) and insertions{sr(AStocks))
is cheaper than recomputing the expression Oprice>120(Stocks?’) from scratch.

Furthermore, using a differential evaluation approach, we can show those tuples that were re-
moved between the two consecutive executions of Q, simply by computing deletions(or(AStocks)).
In general, for any continual query Q over the relation R. let E;(Q,¢;) be the last execution of Q at
time ¢;. A complete set of the result of current execution of Q can be obtained by computing the
expression:

(Ei(Q.t:) — Gtimestamp>c, (deletions(AR))) U Grimescamp>e,(insertions(AR)).

The expression 6timestamp>e,(insertions(AR) returns all the records that have been appended

to R since the last execution of Q; whereas the expression Otimestamp>t, (deletions(AR) returns all

the records removed from R since the last execution of Q.

5.3.2 Optimization based on Differential Operators

For many forms of queries, Propagate(Q; SL) can be computed more efficiently than by directly
evaluating the definition of the Propagate operator. These computations use the differential relations
heavily and sometimes exclusively, instead of computing on the base relations, which tend to be much
larger.

In this section we define the differential forms for the three basic relational algebraic operations:
Select, Project, and Join. We prove that instantiation of Propagate(Q; SL) for relational select,
project, and join are functionally equivalent to their differential forms: DiffSelect, DiffProj and
DiffJoin. The predicates contained in these operators can be atomic or composite by logical “AND”
and logical “OR”. The attributes involved in the predicates or the projection list are single valued
attributes. Aggregate functions such as SUM, COUNT, MAX, MIN are allowed in this framework with
some additional consideration. For example, when the query expression contains the aggregate
function MAX(A), we need to compare the A field of each < new > tuple in the differential relation
with the value of HAX(A), and to reset MAX(A) if necessary. Similar treatment applies to SUM, COUNT,
MIN. However when the query contains the aggregate function AVG. the recomputation of the query

is needed.

5.3.2.1 The Differential Select Operator

Definition 6 (Differential select)

Let F denote a predicate defined on the relation R of scheme R, and ¢[R;F] denote the associated

!The condition timestamp> ¢, is appended by the CQ manager for incorporating correct amount of updates and
limiting the query search space. Section 5.5.3 provides some further discussion.

46

relational selection operator. Let F<#¢> and F<"®“> denote the same predicate with all attribute
names superscripted accordingly. We define the operator DiffSelect as follows:

DiffSelect[AR;F]= Outerjoin,4(c{deleteLog(AR);F <**>] glinsertLog(AR);F<new>]).

Proposition 1 Propagate(c[R;F|;[R,AR]) = DiffSelect[AR;F].

The formal proof of this proposition is omitted here. Readers may refer to [24] for further detail.
This proposition shows that Definition 6 gives an implementation of DiffSelect which does not
reference the base relation, and which can be implemented by one pass over AR, determining for
each tuple of AR whether it induces an insertion. deletion. or modification to oc{R:F].

When |R| > |AR)|, it is cheaper to re-evaluate the query expression op(R) by using the differential

select operator DiffSelect(AR; P) rather than recomputing the expression op(R) from scratch.

5.3.2.2 The Differential Project Operator

Definition 7 (Differential project)

Let R be a relation (base or derived) of scheme R = (A;.....Aq). Let X = {4;,,..., A} denotes
a subset of the attributes in R, tid€ X, and i; € {1,...,n} (1 < j < k). Let P denote the predicate
V‘l;=,.(.-1.l-<;"d> # Af,"“”) if R is a (persistent) base relation; otherwise P denote the truth value

true. The differential project operator DiffProj is defined as follows:

DiffProj[AR:X] = op(I[AR: 01d(X)new(X)]).

The following proposition shows that DiffProj is an efficient differential form that can be used
to implement Propagate(II[R:X]:(R. AR)). because they are functionally equivalent, Dif£fProj runs

one pass over AR, and the Propagate runs over R’ which tends to be much larger than AR.

Proposition 2 Propagate([I[R:X]: (R, AR)) = DiffProj[AR: o1d(X)Jnew(X)].

Similarly. the formal proof of this proposition is omitted here. Readers may refer to [24] for further

detail.

Example 7 Consider the following two queries over the relation Stocks in Example 4:
Q: = [I[Stocks: Name].
Q2 = H[oprice>120 (Stocks); Name].
Let HighStocks = o(Stocks; Price>120). By Definition 3, the evaluation of
Propagate(oprice>12¢(Stocks); [Stocks,AStocks]) requires as the inputs both the base relation

Stocks before the updates and the base relation after the updates, which is Stocks’. According to

47

Proposition 2 and Definition 7, it would be more efficient to process both queries (Q; and Qa) using

the differential operator DiffProj than directly using the definition of Propagate.

¢ Propagate([I[Stocks; Name]; [Stocks,AStocks])
= DiffProj[AStocks; Name].

tid<oe>

Name<old>

tid<ree>

Name<new >

092394

OLI

101088

MAC

e Propagate(II[HighStocks: old(Name)Unew(Name)]; [HighStocks, AHighStocks])

= DiffProj[AHighStocks: old(Name)Unew(Name)]
= DiffProj[Propagate(HighStocks;[Stocks,AStocks]); old(Name)Unew(Name)]
= DiffProj[DiffSelect(AStocks); old(Name)Unew(Name)].

tid(a[d) Name(old) tid<n=w> Name(new)
120992 DEC 120892 DEC
092394 OLI - -

5.3.2.3 The Differential Join Operator

We first consider the join over two relations R; and Ra (i.e., n = 2). In this case changes to the
resulting relation can be induced by changes to either input operand or both of them. Therefore,
the differential join operator DiffJoin should consider the following three cases when computing
the total changes to the result relation of R; ba Ra: (i)only R; changes; (ii)only Ra changes; and

(iii)both R; and R> change.

Definition 8 (Differential join)

Let Pjoin be a predicate on R; and R, and let tid; € R; and tid. € R respectively. Let Pﬁ;’f,b
and PSi“” denote the predicates obtained from Pjoin by attaching each attribute name with
superscript < old > and < new > respectively. Let P(tid;,tid2) denote the predicate “(tidf"ld) =
tid3™ ¥ >) AND (tid$°'%> = tid§$"*¥>)". Let R denote R; UR2. We define the operator DiffJoin
as follows:

DiffJoinprid, tidy)(Ri. Ra)
= DJoinp,,, (AR, Ra)DJoinp,, (R1. AR2)UDJoinp,,, (AR, ARa).

where
¢ DJoinp .. (ARy, Ra)
= Outerjoinp(q4, rid,)(attach(xpcaes (deletions(AR;). Ra); old(R)].
Jasn
attach[cdp<new> (insertions(AR;), Ra); new(R)]).
josn
e DJoinp,,, . (Ri,AR>)
= Outerjoinp(riq, rid.)(attach{eapcoas (R, deletions(ARa); 01d(R)],
josn

attach[pdp<news (Ry,insertions(AR,); new(R)]). -

48

e DJoinp, .. (AR, AR))
= Outerjoinp(siq,,cid,}(Pdp<ota> (deleteLog(AR;), deleteLog(A Ra}),
jarn

PIp<new> (insertLog(AR;). insertLog(AR,)).

Proposition 3 Let the differential substitution list SL be {{R{, AR;],[Ra, AR1]}.
Propagate(s<p,,,, (R1. Ra); {[R1, AR;],[R2, AR»]}) = DiffJoinprid, ridy)(R1, Ra).

This development can be generalized to the join of an arbitrary number of base relations. Let Q =
Ryt Raoa....,00 Ry (n > 2) denote an arbitrary join expression. The equation Propagate(R; o«

Ryoa...0a R,: SL) =DiffJoinp,, (Ry, Ra. ..., Ra) holds in general. Also, when the number

setedpy

k (k < n) relations have been changed since the last execution of Q, to evaluate

DiffJoinp,, (Ry, Ra...., R,), we need to consider only 2% — 1 cases, each representing one

trda
type of change effects. The total changes to the result of Q will be the union of these cases. According
to the associative and symmetric property of relational join, we may assume that the first & relations
(ie.. Ry o Raoq, ... ,0a Ri. k < n) are those that have been changed without loss of generality.
By associating a truth table T, with k columns and p = 2* — 1 rows, to the query Q, it is easy
to compute each possible combination of joins, which needs to be considered when computing the
changes to the result of Q after & operand relations have been changed. Each column of the T
table corresponds to an updated relation in Q since the last execution of Q. Each row represents

one possible case that the computation of DiffJoin(R; oa R2 o4, ...,4 R,) considers. The formal

proof of this proposition is also omitted here. Readers may refer to [24] for detail.

Example 8 For a query Q = R; 0 Rz <....,0d4 R, (n > 2), consider the case when & = 3
and k < n. Based on the T table associated with Q below, we need to consider only seven cases:
(1)Ri1. R2, R3 all change: (2)only R;, R2 change; (3)only R,.Rj3 change; (4)only R., R3 change;
(5)only R; changes; (6)only R changes; (7)only R3 changes. Each row in the T table corresponds
to one possible combination of join required to compute the changes to the result of Q.

TT T2 T3 DiffJoin(R;. R, Ra.....R,) =
DJoin(AR;, Ra, Ra...., Ry)
U DJoin(R;, ARz, R3...., R
U DJoin(Rl,Rg,ARa,...,Rn)

U DJoin(AR;,ARa, R3,...,R,)
U DJoin(AR;, R2,AR3,....R,)
U DJoin(Rl, ARa, AR;, ... Rn)
U DJoin(ARL, AR.. AR, ..., Rn)

Let R; be the scheme of relation R; (1 < i < 3) and R denote UP_;R;. The definitions for the

n)

’

= O O+ O

H O KM OO0
= = - O+ OO0

1

above DJoins are similar to those in Definition 8. For instance,
DJoinp . (AR, Ra, Rs,.... Ry)
= Outerjoinq4(attach[deletions(AR;)od Rata Rz ...x R,); old(R)],

attach[insertions(AR;)o<d R20da Rz td ... 04 Ry); new(R)]).

49

(AR[y sz AR3' .oy Rﬂ)
= Outerjoin:q4(attach[deletions(AR;)oa R2 b<deletions(ARs)ed...0a Ry); old(R)],

DJoinp

Josn

attach[insertions(AR;)jod R2 oainsertions(ARs)ed ... oa Ry); new(R)]).

Observe that the above example exhibits an interesting optimization problem, namely, the effi-
clent execution of a set of n-ary join expressions in which intermediate results can be reused among
several SPJ expressions. For instance, when n > 4 in the above query Q, let W} = Ryeq...x R,
and V2 = Raoa Rz oa 1. Saving W) and W5 as intermediate results, and then re-using them in
the evaluation of each of the seven DJoin expressions above. we may easily speed up the processing
of DiffJoin. This mechanism works effectively when n is larger than k.

The idea of using the truth table to facilitate the combination of possible joins was borrowed
from the research in updating materialized view [3, 14]. We minimize the cost of constructing such
a table by using as the columns of the table only the number of changed relations, instead of the n
operand relations in the query expression [Ix(cr(Ri > Ra o, ...,0q R,)).

Moreover, in the DIOM system. we apply several conventional query optimization techniques used
in both centralized and distributed environment to further reduce the cost of DiffJoin operation.
For example, given a continual query Q. denoted by IIx (6 (R; < Ra o, . ..,0< Rsg)), which request
access to 50 classes/relations from 20 different information sources. Assume only two relations (say
Ry and R») have been updated since the last execution of the query Q. By using the commutativity of
selection and projection over joins and associativity of joins. this query @ will first be decomposed
into the following two subqueries: SubQ; = Ilx (¢F (R3 < Ry tq,...,0¢ R3g)) and SubQ. =
[Ix,(cF (R < R2 b Result(Sub@,)})), where X = X U X, and Fj is a selection condition over
R3.R4....,Rsp and F5 is a selection condition over Ry, Ra, and the result of SubQ;. Now the
evaluation of the DiffJoin operator over Q is reduced to DiffJoin over the subquery SubQ. The
system performance for processing this CQ will be greatly improved, because (i)the evaluation of
Sub@Q, can be done directly against the previous execution result of @ cached at the client side, and
(itjcomparing with the original query Q. the size of R; o< R, o< Result(SubQ,) is much smaller both
in cardinality and in degree than (R, o< Ra <, ..., o< Rs0). This approach is particularly benefical

when the selectivity of F is high and the project list X} is small.

5.3.3 The Differential Re-evaluation Algorithm

We now outline an algorithm for re-evaluating continual queries (limited to SPJ expressions) differ-

entially.

Algorithm 1 (The DRA algorithm)
Input:

¢ the SPJ definition of the continual query Q. i.e., Q = [Ix(or(R; > Rapq,...,52 Ry,)), where

X denotes the projection list and F denotes the selection predicate over Ry, .".., Ra;

50

e the contents of the base relations R; (1 < i < n) after the last execution of the CQ;
o the differential relations AR; (1 < i < n):
e the timestamp of the last execution of this CQ, say E;:

the complete set of the result produced by the last execution of the CQ.

Output: the result of the current execution of the query Q.

Procedural Steps:

1. Build the truth table T with & columns (k < n) and p rows, p = 2". Each column is
corresponding to a relation in the SPJ expression, which has been changed since the last

execution of Q.

2. For each row ¢ (1 < i < p) of the table T, construct the associated SPJ expression, by
substituting R; in Q with AR; when the binary variable Tij = 1. For each of these SPJ
expression, denoted by G = S; o1 S» o<....,0q S,, evaluate G by its differential form

DJoin(S) 0 San,...,0a 5,).

3. Perform the union of the results obtained from each computation in Step 2.

4. Based on the epsilon specification of the CQ, assemble the final set of the result to be returned

to the users.
For example, let ARg denote the result generated by Step 3.

e If the user wishes to see only the differential result since the last execution of the Q. say
Ei(Q.t;). without deletion notification, the result to be returned can be computed by

Otimestamp>e,(insertions(ARg)).

e If the user needs to see the complete set of the result matching the query, we return

Ei(Q.t:) U Gtimestamp>e, (insertions(ARg)).

o [f the user wants to be notified all the deleted tuples since the last execution of the CQ. we

simply compute the Grimestamp>t,(deletions(ARg)).

We use the relational model to describe the DRA algorithm. This is a design choice. In principle.
CQs could be written in query languages that assume other data models. In this chapter, we do
not address the issue of query language translation. which by itself is a significant research topic.
The extension of the DRA algorithm to object-oriented models will become important when more
data become available on object-oriented databases, and more queries are written in object-oriented
query languages. At present, most of organized data are stored in relational database management
systems and queries written in SQL. Similarly, most of unorganized data (such as WWW pages) are
stored in files and queries over these data are submitted through simple GUIs and can be translated

into SQL.

51

5.4 Processing Continual Queries: Simple Examples

In this section, we use examples to illustrate the differential evaluation based on differential relations
(log data) for processing continual queries. We also compare our approach with the timestamp-based
transformation strategy [37], and demonstrate the benefits of using differential evaluation strategy

in a database environment WHERE data items can be appended, removed, or modified dynamically.

Example 9 Suppose the user wants to install the following two queries as continual queries:

Q1: SELECT * FROM Stocks
WHERE price < 120

Q2: SELECT * FROM Stocks
WHERE name = "DEC" OR name = "MAC"

(1) Using the differential evaluation based on differential relations. we may easily transform the
above queries into the queries over the differential relation AStocks as follows:

IQi: SELECT * FROM AStocks WHERE price < 120
IG2: SELECT * FROM AStocks WHERE name = "DEC" OR name = "MAC"

The initial execution of Q1 returns (1.01088, USL, 100). The initial execution of Q2 returns
(120992, DEC, 150). After the initial execution of a continual query. say Q1 or Q2, the subsequent
executions of the same query will be carried out by the differential query IQ1 or IQ2. Suppose now
the database is changed by the transaction T described in Example 4. According to the Stocks’
relation given in Example 5. two tuples (101088, USL, 100) and (101088, MAC, 117) are qualified
for Q1. The first one remains the same and the second one is a new tuple inserted by T. The
execution of the differential query IQ1 guarantees that only the newly added tuple (101088, MAC,
117) is returned. When the base relation is large in size, using the differential query evaluation
based on differential relations will drastically reduce the computation cost of the continual queries.
Similarly, executing Q2 as a continual query after transaction T is committed, the tuples (120992,
DEC, 148} and (101088, MAC, 117) will be returned by IQ2.

(2) Using the timestamp based transformation approach proposed by [37], two preconditions

must be satisfied:

e The database is restricted to append only in the sense that data items are appended to the

database as they arrive and are never removed or modified [37].

¢ Each object instance (relation tuple) should have a timestamp associated with to represent its

creation time.

The queries Q1 and Q2 will first be transformed to time-stamped queries by adding timestamp

related conditions to the query expression, for example:

MQ1: SELECT * FROM Stocks p
WHERE price < 120 AND p.st < CURRENT_TIMESTAMP

MQ2: SELECT * FROM Stocks p
WHERE name = "DEC" OR name = "MAC"
AND p.st < CURRENT_TIMESTAMP

If the the system may provide the timestamp, say d. of the previous execution of a continual

query, then the above time-stamped queries may be further rewritten to reduce the search space.

MQ1i: SELECT * FROM Stocks p
WHERE price < 120 AND p.st > d

MQ2: SELECT #* FROM Stocks p
WHERE name = "DEC" OR name = "MAC"
AND p.st > d

In our view, adding timestamp to every tuple of the existing legacy systems is far more expensive
than maintaining differential relations, especially when the database is large in size. Also many
real-world applications, for which continual queries would be a useful tool, allow data items to be

appended, removed or modified at any time.

5.5 Discussion

In previous sections we have defined the differential forms for the three basic relational algebraic op-
erations: Select, Project, and Join, and developed a differential re-evaluation algorithm (DRA).
The key idea of the DRA method is to transform a continual query over the source data (base rela-
tions) into a differential query that runs over the corresponding delta relations. As formally proved
in [24], for any SPJ expression, using differential re-evaluation method is functionally equivalent to
the complete re-evaluation of the query.

In this section we discuss a number of issues related to performance optimization opportunities

for continual query processing.

5.5.1 Strawman Performance Arguments

Although there is no space in this chapter for a detailed performance analysis, we argue informally
that there are many important scenarios in which DRA wins over algorithms that operate on the

base data instead of results.

First of all, we observe that the overwhelming majority of queries return a table of results that
is much smaller than the base data. (Otherwise, the query would be considered not selective enough
and the results not particularly useful.) Therefore, DRA processing of the next query execution on
top of results will be much faster, reducing both I/O and CPU requirements and communication
overhead. In general, caching the results on the client side makes the servers more scalable with
respect to the number of clients.

Second, since results are combined from many sources into a local table, DRA processing of
results will avoid both translation from the base data to an interoperable format. Moreover. if the
volume of relevant updates is smaller than the results (which is the common case), then we are
further reducing the network traffic.

Third, each server only generates delta relations when communicating with the clients. This is
easier for interoperation than trying directly to integrate active databases and materialized views.
To the best of our knowledge, there are no practical methods for combining them in a heterogeneous
environment.

On the other hand, we note some limitations of the DRA algorithm. For example, when the
results turn out to be large (poor selectivity of the query), then a lazy evaluation and transmission
of results is necessary. Another important assumption of the DRA algorithm is the availability of
delta relations from every information producer. This may not be trivial for legacy databases. But
as we mentioned before, there is no easy way to integrate legacy active databases or materialized

views, either.

5.5.2 Query Refinement

First. we should test the CQ condition based on the differential updates before every execution. If the
updates occurred in between of the two consecutive executions have no irnpact on the previous query
result set. we consider them as irrelevant updates to the continual query. Thus, no computation
is performed for this CQ, because in this case, nothing needs to be returned if the user is only
interested in the differential result. When the user asks for the complete answer. we simply return
the result of previous execution.

In addition. for each SPJ expression in step 2 of the DRA algorithm. it is necessary to determine
its execution strategy. One way to find a good execution strategy is simply to use the heuristics
such as Select before Join, extracting common subexpressions, cheaper selection predicate before
expensive ones). This approach might be most appropriate if one does not have access to an appro-
priate query optimizer. An alternative approach is to have a DBMS query optimizer generate the
strategies. The differential form of a query can be regarded as a query to a database that consists

of base relations and differential relations.

54

5.5.3 Garbage Collection of Differential Relations

As the source data changes, their differential relations grow accordingly. To keep the differential
relations to a bounded size. we need to garbage collect the portions of the differential relations
that are no longer useful. The technical details of the solution are beyond the scope of this paper.
We outline the basic idea here. First let us consider the case of a single active CQ in the system.
Each time a new query result Q(S;) is obtained, we can retire the differential relations referring
to database states prior to t;. This is intuitively easvy to understand since only the data in the
differential relations with the timestamps later than t; will be needed for the processing of Q(S;i4+1).
Informally, we call these portions of the differential relations “active delta zone™.

With multiple active CQs in the system, the garbage collection algorithm is an extension of the
basic idea outlined above. For each CQ, we define its active delta zone. For the whole system, we
define the system active delta zone as the union of the active delta zones of all CQs. Assuming that
each CQ will make progress. its active delta zone will move forward in time. The system active delta
zone will move forward as a consequence, with its boundary delimited by the “oldest™ active delta
zone. All the data in the differential relations that fall outside the system active delta zone can be

garbage collected., since they will not be used by any active CQ.

5.5.4 GGeneration of Delta Relations

It should be pointed out that, although we use the relational model terminology and concepts in
the design and description of the DRA for clarity and simplicity, the DRA itself takes as input the
updates from different information sources. These updates are described as differential relations in
this paper, as differential relations have a very simple and clear form and content for representing
updates in terms of modifications, insertions, and deletions. For the relational information source
providers, the generation of different relations is quite straightforward. For those information sources
other than relational databases, simple translators (as part of the DIOM services [20]) will be used
to catch the updates in the form of differential relations. For example, file system updates can be
captured by either operating system or middleware and translated into a differential relation and fed
into DRA. This is in contrast to the conceptual difficulties in the integration of active databases and
view materialization, as well as the practical difficulties of implementing these powerful database

techniques in non-database environments such as file systems.

5.6 Implementation Consideration for DRA

The DRA implementation is under development in the prototype CQ system. It has not reached the
working stage yet. However, some tools and utilities have already been implemented for the DRA

development. The description of the available tools and future implementation plan is listed below:

W
n

e Step 1:
Automatically generate delta tables for objects of a particular data source, which capture the

updates on the source objects .

A wrapper function has been implemented in Perl to facilitate auto-generation of delta tables

for target data objects.! The code for the delta table generation tool is shown in F igure 5-1.

For example, if we want to create the delta table for the source object table “STOCK™ at data
source “FINANCIAL”, given the structure of “STOCK"™ as follows:

[SYMBOL | PRICE |

A delta relation with the name “DELTA_FINANCIAL.STOCK™ will be created (tid is not

necessary since it can be derived from the key attributes):

| OLDSYMBOL [OLD_PRICE | NEW_SYMBOL | NEW_PRICE | TIMESTAMP |

This delta table will record all the updates on the stock objects performed locally at the data
source. The CQ server will make use of this delta table to execute differential queries on

“STOCK” object.

e Step 2:
Given a continual query , Teq. Stop). transform the querv component Q into an algebraic
quers q P query P g
query graph with selection. projection. join operators as the internal nodes and data source

objects as the leaf nodes.

e Step 3:
Design and implement delta query operator for each primitive algebraic operations such as

DiffSelect, Dif fProj. and Dif fJoin.

e Step 4:
Design and implement a generic delta query transformation module which maps an arbitrary

query in algebraic expression into a delta query expression.

e Step 5:
Design and implement the refresh strategies to keep the delta relations up to date with the state
of data sources. There will be a system component (we call it Refresher) running continually in
background, which is independent of the continual query component. Basically, the Refresher

will insert into the delta relations the new updates at the data source.

1 The data objects from the target data source are first mapped to the continual query system object model, which
is a relational model as in RDBMSs.

56

e Step 6:
Design and implement a garbage collection module for delta relations. Since the delta relations
grow whenever the Refresher updates them. Consequently, delta relations may become larger
than the base tables. As a matter of fact, the objects in the delta table may not be useful any
more when there is no continual query in the system that is using them(recall Section 5.5.3).
Thus we have implemented a2 Garbage Collector which removes those delta objects that are
out of date. More concretely, when the timestamp T; of a record r; in the delta relation
DELTA SRC.OBJ is older than the last execution timestamp of a particular continual query,
it means that the corresponding update of the source object must have been accounted for
during the last execution of the continual query. Therefore, record ry is considered “garbage”
for the particular continual query. When T is older than all the timestamps of the registered
continual queries related with the object SRC.OBJ, record r; can be deleted from the delta

relation. The Garbage Collector is also scheduled to be running periodically.

(4]
-3

8! /usr/local/bin/parl

8Celta tables auto-generation program

Sgenerate delta tables in CJ meta database

8call comvantion:

ScreaceDelta.pl source_name source_logianame {src_tbname(,src_tbnamel}

E §3 : 3 2288888 £ %13 22282 288822882822 222222 28882
use Oraperl;

require “dbenv.pl";

$PREGLD = "OLD"; tprefix for old columns in delta tablas

SPRENEW = "NEW"; tprafix for nevw columns in delta tables

SCREATEFILE = "creataDelta.sql"”;#oucput SQL file for delta table creation
SCROPFILE = “dropDelta.sql™; goutput SQL fila for delta table deletion
main:
{

$scurce = GARGV(0]:;

$src_login = QARGV(il;

shift QARGV;

shift QARGV;

$passud = $PASSTAB{$srclog:inl};

$metadb_login = “C3";

Smetadb_passvd = $PASSTAB{$mecadb_login};

open(CREATE,"> $CREATEFILE");
open(DROP,"> $DROPFILE");

gget the names of all the source tablaes
83createStr stores the SQL statement to creats the delta tabla
foreach $tbname (QARGV) {
$createStr = "CREATE TABLE DELTA_$source_S$tbnamae(
timestamp DATE \n';

$query = “salact ¢ from $tbhname™;

$csr = RrunQuery($source, $src_login, src_passwd, Squery) || kdberror;
fget the names of the scurce table columns

QcolsTitle = Rora_titles($csr, 0);

8got the data types of the source table columns

Qtypes = kora_types($csr);

$numdfCols = $8colsTitla + 1;
for ($1 = 0; $i < $numOfCols: $1+4+) {

$createSer .= “${PREOLO}_$colsTitle($:] ;

$tmp = “Soratypas{$cypas{$il},”;

$createSer .= $tmp."\n":

$creataStr .= “${PRENEW}_QcolsTicle($:] ".$tamp."\n";
}
chop($createStr); Serase the last "\n"
chop($createScr); #arase the last ",”
tadd the finish parenthesis for the CREATE TABLE SQL statement
$creaceStr .= ")

trunQuery($socurce, $src_login, $src_passwd, $createStr) || kdberror;
print CREATE “${createStr}; \m\n";
priant DROP "drop tablae ${delta_dbname}.DELTA_S$tbrame; \n";
}
close (CREATEFILE);
clese (EROPFILE) ;
}

Figure 5-1: Delta Table Auto-generation Perl Code

Chapter 6

Prototype Design and
Implementation

We have discussed the overall architecture of the CQ system and the underlying algorithms in the
previous chapters. In this chapter. we will focus on the design and implementation details of the
first prototype of the CQ system in the context of the software life cycle. Despite the difference
among several software process models [31, 29], any software development is seen as an engineering
process which follows the five basic steps: requirement analysis, specification, design. implementation
(coding), and testing. In the following sections we report our design aad implementation decision
and effort with respect to these basic steps. The theoretical results obtained and shown in the
previous chapters also serve as the baselines for the software development covered in this chapter.
Thus we omit the technical feasibility study phase of software engineering and start from system
requirements analysis. We also demonstrate. through this working prototype of the CQ system. the

concepts of continual query and its usefulness for several mission-critical application domains.

6.1 System Requirements Analysis

System requirement analysis is very critical to the success of a software system project. The quality
of requirement analysis depends to a great extent on how well and thoroughly the requirements for
the target software have been analyzed. We proceed the requirements analysis following a top-down
and general-to-particular process, in which software requirements are gradually refined and finalized

in some form that is acceptable to the next phase. software design [31].

6.1.1 Analysis of Non-Functional Requirements

The non-functional requirements refer to the desirable properties of tha prototype system. In this
section we outline three most desired non-functional requirements that were considered at the initial
prototype design stage: evolutionary prototyping approach, system and component portability, and

system and component extensibility.

6.1.1.1 Evolutionary Prototyping

“A software prototype is similar to the idea of building a mock-up or model of something.
1t allows developers to understand compler problems by erperiencing them first hand, and

to use this exrperience to guide the development process”. ([31])

The CQ prototype system exploits the continual query concept, which itself needs testing and ver-
ification. At the beginning of the prototype implementation. we were facing several facts: first,
the concept of continual queries is fresh, but the requirements and user needs have not been fully
understood at the time when this project was initiated. Second, the functional and non-functional
requirements of the CQ system still evolves as the need and the understanding of the CQ concept and
expectation progresses. Therefore, the prototype must be flexible and extensible to allow seamless
addition of new functionality. Thus, Evolutionary Prototyping {29] was chosen as one of the main
non-functional requirement in the prototype building process. Evolutionary Prototyping is used to
describe the system that has the capability to refine a solution given that the problem will evolve

with time and that the system requirements evolve which in turn will generate new requirements.

6.1.1.2 Portability

One of the goals of the CQ prototype system is to create a value-added software package for event-
driven update monitoring in an open distributed environment such as the Internet. This software
prototype should be portable across platforms, and runnable by the applications via a network
connection without a need for installation or compilation. All the necessary components must be
downloadable and executable, possibly with the use of the necessary application viewing tool that is
platform-specific but ubiquitous enough to be present at most platforms. For example. we need to
provide a graphical user interface. which uses such standard interface components as control buttons.
text components. execution logs. etc. Portability of such interfaces, at least for major platforms,

should be achieved without having to implement separate versions of GUI for each platform.

6.1.1.3 Robustness and Extensibility

The proposed prototype implementation is an experiment - it covers neither all aspects of continual
query processing and optimization algorithms nor all types of event composition operators. However,
it must provide an extensible framework that would provide reasonable flexibility for adding new
CQ optimization algorithms and new event composition operators as well as new mechanisms for
event detection and change notification. The addition of new functionalities and algorithms should
not affect the existing operation of the system nor the use of the existing functional components.
Another desirable property is to allow these new modules be downloaded dynamically at run time,

without the need to recompile the entire software package.

60

6.1.2 Analysis of Functional System Requirements

Functional requirements analysis is one of the most important steps in a software design process.
[n the functional requirement analysis step. we need to identify user needs and system constraints,

and define system boundary, i.e., what functionalities the system is going to offer.

6.1.2.1 User Needs

The Internet and the Web have linked hundreds of thousands of data sources together all over the
world. We can view the Web as an evolving information universe. Users can search and find useful
information and at the same time publish information in any way and at any time. The amount of
information sharing is phenomenal. However, in order to monitor a particular information source
or a particular type of information sources such as stock trade, users typically have to go to the
particular site where the source data is published. fuse and compare the data to obtain the changes.
When the sources change frequently. one has to either visit the site more frequently or write a specific
monitoring program to watch the updates at the source. The continual query system is intended to
provide convenient and generic update monitoring services that allow users to use installed continual
queries to watch the changes at the sources and notify the users whenever the changes reach certain
update thresholds. Thus the user need for such system is an user-friendly GUI which let users to
install the continual queries whenever there is a need of update monitoring, to stop the installed
continual query by explicit specification of termination condition and the use of delete function to
remove the installed CQ before it is expired. Other user-end services include browsing or modifying
installed continual queries, and walking through different types of data sources being monitored as
well as system administration services which are designed to provide convenient interfaces for the
CQ system developers to test and monitor the system operations.

In summary, the main goal of the CQ system is to provide an easy-to-use, cross-platform person-
alized data update monitoring toolkit for online users. The user can define what kind of information
he wants, when he wants it. and how he wants it. The CQ system will deliver the information to
the user electronically (e.g., email. fax. pager. etc.) based on the user defined query and delivering

criteria.

6.1.2.2 System Constraints

To start the prototype development with the existing computing environment and system software
tools, we made certain decisions on the choice of platforms, operating systems, DBMSs, and pro-
gramming languages (PLs). We view the following decisions as the major constraints of the first

prototype CQ system:

1. Client Side

61

e Graphical Web browsers which supports HTML3.0 or above and Javascript. Javal.l
support is preferred for future compatibility)
Many services of the CQ system incorporate client-side dynamic HTML scripting with
Javascript for easier and more friendly user interface. Javal.l compliant browsers are
preferred for future system add-ons. We have tested on Netscape 3.0 and Navigator (part
of the Communicator suite). Other browsers which claim to support HTML3.0 or above

and Javascript should work as well.

2. Server Side

¢ Unix operating system
The CQ server was developed on top of the Unix system. It is supposed to run under
many different variants of Unix platforms, such as SunOS. Solaris. AIX, Irix, HP-UX, or
Linux.

¢ Programming languages
Perl (Practical Extraction and Report Language) interpreter is used for the CQ system
development. The system has been tested under Perl5 as well as Perl4. Perl is publicly
available from the Web.

¢ Relational database or meta data management

In order to manage the meta data in CQ system as well as the simulation of online
RDB data sources, we used an Oracle relational DBMS as the backend repository of the
prototype. We have tested on Oracle RDBMS 7.1.6, 7.3.3, and Oracle8. Other RDBMS,

such as Sybase and Informix, which support database triggers would also work.
3. Protocols, API's. and interfaces

o HTTP protocol
The underlying information transporting vehicle used in the CQ system is HTTP (Hyvper-
Text Transfer Protocol). HTTP is the underlying protocol used by the World Wide Web.
which has become the center of the Internet activities becaus= of its easy accessibility via
a URL (Universal Resource Locator). Currently. we are using HTTP1.0.

e SMTP Protocol
SMTP (Simple Mail Transfer Protocol) is the standard e-mail protocol on the I[nternet.
The CQ system currently uses email as the update notification method.

e Web server

We created our own web server to provide different services by the CQ system. Apache
and Java Web Server (JWS) can be used for setting up the web servers. Both of them

are publicly downloadable:

62

Apache: http://www.apache.org/dist

JWS: http://java.sun.com/products/java-server/jwsi11i.html

¢ Relational database access interface through CGI or JDBC
Access to the meta database and simulated source database through the Web is via

CGI(Common Gateway Interface). Three options are available: a) Oraperl for Oracle
7.x '. b) DBI+DBD=Perl5 for Oracle§ 2. ¢) JDBC.

o LIBWWW.Per]
Libwww-perl is a library of Perl packages/modules which provides a simple and consistent
programming interface to the World Wide Web. It supports HTTP/1.0. It’s also publicly

available at:

http://www.ics.uci.edu/pub/websoft/libwww—perl.

6.1.3 Functional Components

The top-level function and information flow in CQ system are shown in Figure 6-1. This diagram also
shows major subsystems and components in CQ system. Each component is connected with other
components through the control and/or data flow relationships. Figure 6-1 presents a sketch of the
Architecture Flow Diagrams [31] of the CQ prototype design. We will discuss detailed functionality
of each component and the interconnections between components in subsequent sections.

[n the first CQ prototype implementation. we group software components into five categories
according to their functionality: (1) user interface processing, (2) Input processing. (3) Continual
query processing, (4) Output processing, and (3) Maintenance and self-testing. To present a road
map to the readers, we will first give a brief overview of each of these categories and then entering

into a more detailed discussion.

6.1.3.1 User Interface Processing (UIP)

The UIP component provides an easy-to-use and uniform GUI to the CQ users. It takes the user’s
requests, passes them to other system components, and displays answers back to the user. The
core of UIP is the Form Entry and Report Subsystem. A more detailed task breakdown of the UIP

component is given in in Section 6.2.1.
6.1.3.2 Input Processing (IP)

The IP component is responsible to feed inputs to the Continual Query Processing components

for further processing. Inputs include user information, normal SQL-like queries issued by the

! Oraperl is a version of Perl which has been extended to manipulate Oracle databases
2DBI (Database Interface} is a database access Application Programming Interface (API) for the Perl Language.
It is database independent. DBD (Database Driver) is vendor-specific database driver module for Perl

63

User [nterface Processing

Online user Form Entry and) Query results,
requests Report subsystem reports, displays

A{

Input Prdcessing Continual Query Processing Output processing

/ Object mamging (" Data source J
. I subsystem ccess subsystem
ser [nformation SY i y

7

[A
Change
Notification

Y

Continual Query - -
Event Detection Result formating
subsystem subsystem

A A

Email
Normal Query {)
v

-
rigger condition Continual Query]
valuation — Evaluation

Time Eveats ubsystem \subsystem

i Content Events

|

—
o —
Maintenance operation
Cnd logging subsystem I
Maintenance and Self-Test
Legend

—> data and control flow
Figure 6-1: Top-level Architecture Flow Diagram of Continual Query System

CQ clients. continual queries installed by the CQ clients, including the event specification and
the termination condition specification. Section 6.2.2 provides more discussion on the tasks of [P

component.

6.1.3.3 Continual Query Processing(CQP)

CQP is the main component of the CQ system. It controls the actual processing of continual queries
installed by the CQ users. CQP consists of six main subcomponents: object manager component,
event detection manager component, condition evaluator component, continual query evaluation

manager component, remote data access component, and result formatting component.

o The object manager component takes care of all the system and user objects.

64

* The event detection component detects all relevant events (time events or content-based events)
and invokes the trigger condition evaluation component once certain events are detected and

signaled the corresponding continual queries.

e The trigger condition evaluation component then evaluates whether the trigger conditions of

the corresponding installed continual queries are true or false.

e The continual query evaluation component will be invoked if the trigger condition is true. The
continual query evaluation component will then evaluate the query based on the naive (brute-
force) algorithm or DRA. If a difference between the current and the previous evaluation of
a specific continual query is detected, the continual query evaluation component will call the

change notification component of the output processing subsystem.

o The change notification component of the output processing subsystem will inform the owner
of the continual query about the new changes via email. The notification mechanisms may

vary from email. to voice message. fax and other signaling methods.
e All the data source access is done via the data source access component.

¢ The results obtained from the data sources are processed in result formatting component before

they are passed to other system components.
Section 6.2.3 provides detailed task specification of the CQP component.
6.1.3.4 Output Processing(OP)

The main purpose of the OP component is to send the change notification, including the specific
continual query identifier and the differential result to to the creator or owner of the corresponding
continual query. In the first prototype we plan to support the change notification via email only (see

Section 6.2.4 for further details).

6.1.3.5 Maintenance and Self-Test(MST)

The MST component is designed to facilitate the testing of the prototype system. It includes main-
tenance operation and logging component which allow the user to test and diagnose other functional
system components. Detailed description of the maintenance operation and logging component is

given in Section 6.2.5.

6.2 System Design

[n this section. we discuss the design of the main functional components of the CQ system shown in
Figure 6-1. Our discussion proceeds in the order of user interface, input, continual query processing,

output. maintenance and self-test.

6.2.1 UIP components

As discussed earlier. the UIP component provides the GUI interfaces to allow the CQ users to
register the CQ system using User Registration Form module and query the CQ data sources without
installation of the query as a continual query using the Normal Query Form. For any user who wants
to install a continual query, he/she would need to log in using his/her userid and password. The
installation of continual queries can be done by selecting time-based CQs or content-based CQs.
Content-based continual queries may have triggering events that combine time event with content-
based events. An example could be “Notify me whenever an airplane enters this sector for more
than 5 minutes™. The monitoring target event of this CQ is the sector and the constraint for this
monitoring task is the time event 5 minutes. Once a user installs a number of continual queries.
he/she may use the CQ browsing form to browse all the CQs he/she installed so far. Figure 6-2
shows the breakdown of the UIP components (connections to other CQ system components are not
shown in this figure):

User Requests Feedback, Reports Dispaly

User Registration Normal Query User Login Form
Form Entry From

l l

Continual Query Continual Query
Browsing Form

Installation Form

Other CQ system components: [P, CQP. MST

Figure 6-2: UIP components

6.2.1.1 Common GUI components

All the UIP components have two common GUI function buttons. one is the Action Button which
carries out the functionality of the parent UIP component; ! and another one is the Reset Button
which sets the contents of the parent UIP component to original default ones. The Action Button
may have different labels as the action function changes. Examples are =Submit Registration”,

“Submit Query”, “Install CQ", or simply “Submit”.

! We call component A the parent of component B if component A contains component B

66

6.2.1.2 User Registration Form

In order for user to install continual queries in the CQ system. the user has to register to the system
first. The User Registration Form ? is used to register relevant user information to the system.
Once the user information is stored in the system, it is treated as a persistent object. The [’ser

Registration Form has the following GUI components, which are shown in Figure 6-7.

e Login name input
This component is to enter the login name chosen by the user. It is used as the ID of a user.
The maximum length for this component is 15 characters. Because every user is uniquely
identified by his login name, we make sure there are no two users under the same user name.
If the login name entered by the user has already been used by another user. the user will be

prompted to try another login name. This component is mandatory.

e Password input
This component is designed for the user to enter his password. For security considerations.
every user is required to choose a password for himself. The password should be at least 4
characters and at most 12 characters long. The longer the password is, the more secure it
becomes. But it will be more difficult to remember and type if the password is too long.
The user will be asked for the password associated with his login name if he wants to iastall

continual queries or get other CQ services later on. This component is required.

e Pussword confirmation input
To insure that the user enters the password correctly, we require the user to confirm his
password. This component is mandatory. If the contents in the Password input and the
Password confirmation input mismatch, the user will be given an error message. He has to

re-enter them.

o Title input
This input component is to store the title or a particular user, such as Mr., Ms., Dr.. Professor.

This component is optional.

o First name input

It is to take the input of the user’s first name. This component is optional.

e Last name input
Similar to the First name input, this component is to get the user’s last name. It's also
optional. But we recommend the user to input his first name and last name, thus he can

receive more personalized emails from the system.

2Note that a Farm here may physically be one Web page. span several Web pages, or be part of a page

e Ema:l address input
Because the system relies on emails to send users results of their installed continual queries, it

ts very important that users provide correct email addresses. This component is mandatory.

o Subscription duration selection
The component is designed to record the length of the user’s subscription. Once the subscrip-
tion expires. the user is no longer a valid user in CQ system. But he can renew his subscription.

The default subscription duration is one month. This component is mandatory.

6.2.1.3 Normal Query Entry Form

This function is designed for users who would like to pose ad-hoc queries to the CQ system rather
than installing continual queries. Users can use normal query ! to issue a query over the data sources
accessible from the CQ system without being registered in the system. The Normal Query Entry

Form has the following GUI components:

o Data Source Selection
This component is to let the user to choose which domain of data sources he wants to query. In
CQ, we build continual query services and wrappers according to different domains of interest.
Examples include the logistics applications domain, the current weather watch domain. the
bibliography services domain. Users may choose each domain by selecting the representative
data source listed in this menu. The data sources could be in the form of relational databases,
HTML web pages. bibtex files and other unstructured files. In this thesis. we will cover two
types of application domains. One is the data sources wrapped using the DIOM wrappers and
most of them are relational data sources, the other is 'S Weather Watch which wrap the data

on US national weather service center web sites.

o Table Description
This component is a hyperlink which, when clicking, will show the definitions of meta objects
from the chosen domain of data sources. These definitions will be shown in HTML table
format. This component is designed to help the user to browse the attributes and properties

of source data objects.

o SELECT clause tnput
This component is used for the entry of a list of output attribute names (or aggregate functions)
of the query. The given list of attributes presents a projection list of objects which match the
query condition specified in the WHERE input. This component is mandatory. By default,
the selection is “”, which represents all the attributes from the object classes specified in the

FROM clause of the query.

1\We use SQL-like queries in CQ system simply because the query expressiveness of SQL(Structured Query Lan-
guage) {10} and its wide use in relational databases. A SQL query is of the form SELECT <attribute list> FROM
<table list> WHERE <condition>. i

68

o FROM clause input
This component holds a list of object class (table) names of the data sources, whose attributes
may appear in the SELECT input. This FROM input is also mandatory. There are three
sub-components in this component: a multiple selection list, a text box, and another display
list. By default, all the available object class (table) names will be displayed in the multiple
selection list. The user can choose one or more class (table) names from the selection list. For
user convenience, the text box will show the total number of object classes (tables) selected
in the selection list; and the display list will show the names of selected objects. Users cannot
type in any input in the text box and the display list, but he/she can modify the selection in

the multiple selection list.

o WHERFE clause input
This is a multiple line component where the user can type in the query condition. The condition
could be a boolean expression which consists of several sub-conditions. The SQL syntax applies
here. This WHERE class defines the selection condition of the query. When no query condition
is given, the complete set of objects specified in the FROM clause will be returned with the

projection list as the result format. This component is optional.

e GROUP BY clause input
This component is used for the entry of grouping attributes. which appear in the SELECT
input. The SQL syntax applies to GROUP BY input. An illustration of the usage of this field

is given in the example below. The GROUP BY clause is optional.

e ORDER BY clause input
This component specifies by which one or more attributes the query result is sorted. It is

optional.

The layout of the Normal Query Entry Form is shown in Figure 6-9. An example usage of this

form is

SELECT *

FROM ALP_INV_STORAGE, ALP_INV_ORDER

WHERE QTY_ON_HAND + QTY_ON_ORDER > THRESHOLD
GROUP BY ITEM_CAT

ORDER BY ITEM_NAME

6.2.1.4 User Login Form

For security reasons. we designed the User Login Form to check the user’s ID and password before

he can take certain actions. The two GUI components are:

o [ser ID input

69

o Password input

If a user login with an invalid user ID or password (e.g., the input user ID does not exist or the
password is incorrect). an error message will be displayed. The User Login Form can be embedded

in other UIP components.

6.2.1.5 Continual Query Installation Form

A registered user can install continual queries in the CQ system at any time. The Continual query
Installation Form is the major GUI component in UIP.

There are two steps to install a continual query. Also, there are two types of continual queries:
time-based and content-based. Time-based continual queries use time events are the trigger con-
ditions and content-based continual queries use trigger conditions that combine time events with
content-based events. For the first prototype implementation, we restrict that the content-based
triggers contain no time events.

Each continual query installation process proceeds in two steps: login and fill-in continual query
specification. We below explain the GUI components of each step:

Step 1: login, select the domain of data sources and the type of continual queries.

The User Login Form described in Section 6.2.1.4 is the GUI component used for user login service.
Figure 6-11 shows a screenshot of the User Login Form. The Data Source Selection described in
Section 6.2.1.3 is for data source selection and is also shown in Figure 6-11. The third GUI component
in Step 1 is the Trigger Type Radio Bor input. This component is designed for users to choose the
type of the continual query that he wants to install, either time-based or content-based (recall the
concepts in Chapter 3). The user may click either one of the two radio buttons to make the selection.
Currently. time-based CQ can be installed for all the data sources wrapped by the CQ or DIOM
wrappers. However we only support content-based continual query installation over DIOM Data
Sources.

Step 2: Enter query component, tirgger component, and termination condition component.

The first component is the Query Entry Form. This component, as shown in Figure 6-12, is used
to enter the query component of a continual query. The svntax description is the same as the query
specification for Normal Query Entry Form, described in Section 6.2.1.3. The second component is
the Trigger Condition Entry Form. Two types of trigger conditions (time-based and content-based)
can be entered in this component. For the semantics and syntax of both types, see Chapter 3 and
Appendix A for details.

For time-based trigger conditions, we support two types of temporal events in the CQ
prototype system: (1) absolute points in time, defined by the system clock, e.g. “16:25, June 2,
1998”. The precision is up to minute. (2) regular or irregular time interval, such as “every Monday”
(regular) or “at 10:00 every first day of the month” (irregular) and “at midnight and noon every

weekday” (irregular). The format of the time-based trigger condition is based on the specification

70

of UNIX crontab file . The following GUI components are designed for users to enter their time

events of interest:

¢ Trigger Template Selection
This component is to provide some easy-to-use examples of trigger specification. Basically,
after a user has selected a template from the selection list. this component will fill in the
following five components respectively. It is designed primarily for the convenience and easy-
to-use of users. However the templates covers only a subset of the fullest set of time event
expressions that the CQ system supports. In order to fully exploit the expressiveness of the
time-based trigger condition. we allow users to manually fill in the following five temporal

components using the designated syntax.
e Minute Input can have values in the range 0 through 59.
e Hour Input can have values in the range 0 through 23.
¢ Day of Month Input has the domain range from I through 31.
e Month Input is in the range 1 through 12.

¢ Day of Week Input can have values in the range 0 through 6. Sunday is day 0 in this

scheme.

Note that it is often not necessary to fill in all the five temporal fields together. But at least one
of them should not be null. Otherwise, either a system default selection is chosen or there will be
an error message displayed. To express a specific time specification. we may use a combination of
the five components. Any of the five fields can be a list of values seperated by commas. A value
can either be a number, or a pair of numbers separated by a hyphen. indicating all the times in the
specified range. The specification of days may be made by two fields: Day of Month and Day of
Week. If both are specified as a list of elements, both apply. Some examples of time-based trigger

condition is shown in the following table:

[Min | Hour | Day of Month | Month | Day of Week |
0 0 1.15 1-5
0 0,30 6.0

The first example sets the trigger condition to be at midnight every weekday as well as the first
day and 15th day of each month. The second example says that the continual query trigger is set
at every half hour on Saturday and Sunday. As we can see, this specification of time events is
rather generic and powerful. We can use it to map almost all the natural language time expressions.

Figure 6-13 shows the screen shot for this component.

1See crontab(5) in UNTX man page.

For content-based trigger condition, the basic event element (or basic event group) is ex-

pressed using the following expression:
Table. Attribute < ContentOp > [Value] (6.1)

User may add extra components to the basic event group or combine several event groups together
using event operators, namely to compose composite event groups and support richer expressiveness
of the CQ trigger condition specification. The extra components are: Group Functions, WHERE
erpression. GROUPBY ezpression, and miscellaneous event operators !. In the CQ system, the
trigger conditions are specified in the form of SQL-like expressions. As a matter of fact, the CQ
triggers are evaluated as queries. Basically, each event group will be converted to an equivalent
query expression over the data sources to detect the changes on the objects and their attributes of

interest. The syntax for expressing the query equivalence of the basic event expression 6.1 is:
select < Listof Attribute > from < DataSourceNames > (6.2)

The return values of the event query expression are compared with [Value] in the basic event expres-
sion 6.1 when evaluating the trigger condition. Further discussion on ‘rigger condition evaluation
will be continued in Section 6.2.3.3.

The content-based trigger condition installation has the following GUI components:

o Group Function Selection
Let the user choose the group functions from the given list. The functions include: AVG,
COUNT. MAX, MIN, SUM. When the user clicks the selection. the corresponding text will
appear in the Trigger Condition Multiple Text Input Board described later.

o Table Selection
This component when clicked will reset the contents of the Attribute Selection component to

list only those attributes that belong to the clicked table object.

e Attribute Selection
User can click an attribute whose value he wants to monitor. When clicked, this component

will put the name of the attribute in the Trigger Condition Multiple Text Input Board.

¢ Content Operator Selection
Currently. the content update monitoring operators supported in the CQ first prototype
include: "CHANGES™. “<>"(not equal). “="(equal), “<"(less than). “>” (greater than),
“<="(less than or equal to). “>="(greater than or equal to). “CONTAINS”(substring).
“LIKE"?, “INCBY (increase by value), “DECBY" (decrease by value), “INCBYP" (increase

! The syntax of the enriched trigger condition expression is given in Appendix A

2 LIKE allows comparison conditions on only parts of a character string. It is similar to the “LIKE” comparison
operator in standard SQL. Two wild card characters can be used in the comparison. ‘%’ represents arbitrary number
of characters and *_’ replaces a single arbitrary character.

-~
(]

by percent), “DECBYP" (decrease by percent). These content operators can be classified in

different ways:

1. Unary or Binary operators
Only "CHANGES" is an unary operator. Other content operators are all binary opera-
tors.

2. Numerical or String operators

We list the categorization of the operators in the following table.

| Operator Type | Operators
Numerical INCBY DECBY INCBYP DECBYP
String CONTAINS LIKE
Hybrid CHANGES <> = < > <= >=

3. Cache or Non-cache operators
Some operators need to know the previous values of the attributes in order to perform
the comparison operation. These are called Cache operators. Other operators only use
the current value of the input attributes and thus are referred to as Non-cache operators

(see the table below).

[Operator Type | Operators |

Non-cache <> =< > L= >=
Cache CHANGES INCBY DECBY INCBYP DECBYP

e Value Input
This component takes the inputi string entered as the value of the attribute. When press
<Enter> on the keyboard. the string value will display in the Trigger Condition Multiple Text
Input Board. The value input can be either numerical value or character string. If it is a string,

a single quotes () is used to enclose it.

¢ Grouping or Event Relational Operator Radio Buttons
Several sub-components are contained in this group of buttons: WHERE Input, GROUPBY
Input, Joint WHERE Operator Input, AND Input, and OR Input. As those GUI components
in the content-based trigger condition entry form, these subcomponents are either event com-
position operators or event constraint modifiers. They are used to specify the trigger condition
of the continual query in the Trigger Condition Multiple Tert Input Board when being clicked.

We describe each operator as follows:

- WHERE Operator
Sometimes a single base event group is not sufficient to identify the real events of interest.
For example, if we want to set the trigger condition to “when IBM'’s stock price is greater
than $1007, a simple event such as STOCK.PRICE ; 100 can not precisely express this
condition. In this case, the base event of interest is the price of stock but our interest

is only on IBM stock price changes, thus the base event STOCK.PRICE > 100 has to be

73

specified with the constraint STOCK.SYMBOL = '[BM". In the actual implementation,
we monitor the price changes and filter the IBM stock price as the conceptual event that
we are interested in. That is why we use WHERE clause to explicitly distinguish the base
event to be observed continually and the constraint that restricts the scope of the obser-
vation to those updates of interest. The following expression is the correct specification

of the trigger condition “when [BM's stock price s greater tiian $100”.

STOGCK.PRICE > 500 WHERE STOCK.SYMBOL = 'IBM’

— GROUPBY Operator
This operator is used to specify those events that contain aggregate functions such as
the trigger condition: ~notify me whenever the average sales of in each department are

greater than $40.000". The condition expression is:

AVG(DEPT.SALE) > 40000 GROUPBY SALE.ITEM

— Joint WHERE Qperator
This operator is designed to combine different WHERE clause in the same event group.
Basically. its function is the same as the boolean “AND”. In order not to be confused
with the reserved event logical operator “AND”. we use “A” to denote this operator.

— Event Relational Operators
This group of operators are used to specify the relationships among all the event groups.
Currently. we support “AND” and “OR” in the CQ system prototype. The Truth Table

for the two operators is:

AND OR
Event Group | | Event Group2| Value Event Group 1 | Event Group2| Value
FALSE FALSE FALSE FALSE FALSE FALSE
FALSE TRUE FALSE FALSE TRUE TRUE
TRUE FALSE FALSE TRUE FALSE TRUE
TRUE TRUE TRUE TRUE TRUE TRUE

Figure 6-3: Truth Tables for Event Relational Operators

e Finish Radio Button
When the user completes the specification of the trigger condition, by pressing this button.
his or her condition specification is committed (finalized) and the display of Trigger Condition

Multiple Tezt Input Board is updated.

¢ Clear Radio Button
This component is used to clear the content in Trigger Condition Multiple Tert Input Board

as well as other GUI components in Trigger Condition Entry Form.

e Trigger Condition Multiple Text Input Board
This component acts as the display or input board of the current trigger condition string. User
can use only mouse clicks (except the entry of attribute values). To input the trigger condition.
users may selectively click some of the trigger condition entry form's GUI components. The
condition string in this board can also be updated using keyboard input as long as the user

follows the syntax of the trigger condition.

Figure 6-135 displays the screen shot of the CQ content-based trigger specification.

The third component is the Stop Condition Entry Form. This component is used to specify the
stop condition of a particular continual query. Currently, we only support an absolute stop time in
the stop condition. This form consists of several selection lists and text input sub-components. They
are: Year Selection, Month Selection, Day Selection. Hour Input, Minute Input '. Put differently.
the time values are automatically set to the time zone in which the user is located. The default stop
condition is two hours later than the current time. Of course, users can change their stop conditions
as they wish.

After the user has completed the entries for Query, Trigger Condition, and Stop Condition and
clicked the “Install CQ” action button. the input will be sent to the Input Processing Subsystem for
verification. If there is no error in the input, this continual query will be installed at the CQ server.

Otherwise, an error message will be displayed along with the diagnosis information.
6.2.1.6 Continual Query Browsing Form

This component provides the user a tool to view his installed continual queries or delete some of
his/her installed continual queries if they are not yet expired but he/she would like to stop them.

The GUI components are:

e User Login Form: It is the same as stated in Section 6.2.1.4, which provides access control to

installed continual queries.

e Installed CQ Management Form: Using this component, a user can view and remove any or
all the continual queries he/she has installed. The user can also input the ID of the continual
query in the CQID Input Bor. then press Delete to remove a single CQ from the system. Or
he can choose Delete ALL to remove all the continual queries previously installed by him or
her. However, a user can only delete his/her own installed continual queries. Otherwise. his

action will be blocked and an error message will be displayed.

!Note that in a distributed environment as the Internet, times should be represented in a distributed manner, i.e.,
timezone information should be maintained along with the time specification. In the CQ system, we get the timezone
information automatically from the Web browser and record this information. Thus the user doesn't have to input it.

-]
(S]]

Figure 6-16 and Figure 6-17 are the screens that users use to browse or delete his/her installed

continual queries.

6.2.2 IP components

6.2.2.1 User Information

A User Information object is instantiated by the ['ser Registration Form and will be passed to the
Object Manager subsystem in Continual Query Processing unit. Then it is registered as a persistent
object in the CQ system. It contains all the information about a valid user. The object description

is as follows (the meanings of the attributes are self-explanatory):

CREATE Meta-Object User_Info {

UserID String, //unique object ID
Password String,

FirstName String,

LastName String,

Title String,

EmailAddress String,

Subscription Date,

SubscriptionDuration String

}

6.2.2.2 Normal Query

The Normal Query object (See Section 6.2.1.3) is instantiated by the .Normal Query Entry Form
and passed directly to the Data Source Access subsystem. The result report is returned by the Result

Formatting subsystem to the user through UIP components.

This is another system maintained object as the User Information object. It is instantiated by
the Continual Query I[nstallation Form and passed to the Object Managing subsystem. It is then
registered in the CQ system as a persistent object. It contains all the necessary information about
a valid continual query. The object description is the following (the meanings of the attributes are

self-explanatory):

CREATE Meta-Ojbect CQ_Info{

€QID long, //unique object ID
UserID String,

Name String,

Type Char,

DataSources String,
Query String,

TriggerCondition String,

StopCondition DateTime,
Timezone Char,
InstallDate DateTime,

LastEvaluateDate DateTime,
EvaluateNumber Long
}

6.2.2.4 Events

There are two tvpes of events that are monitored by the CQ system:

o Time Event
Basic time events are initiated by clock signals in the CQ system. As mentioned earlier, the CQ
system supports two types of time events: (1) absolute points in time(e.g.. “11:59, December
31, 19997): (2) regular or irregular time interval(e.g., “every hour™ for regular interval and

“midnight every first day of the month” for irregular interuval).

e Content Event
The basic content type events can be standard database operations such as INSERT, DELETE,
UPDATE on single database objects. Furthermore, complex content events may be defined
not only on individual data values or current database status. but also on sets of data objects
and the transitions between database states. For example, a content event could be simply

“IBM'’s stock price changes™ or more complex: “IBM's stock price is increased by 10%”.

6.2.3 CQP components
6.2.3.1 Object Manager Component

The Object Manager Component manages all the objects within the CQ system. Other CQP com-
ponents have to coordinate with this component in order to access various CQ objects. The objects

managed by this component include:

e System QObjects
System objects in the Continual Query System include: the User Information object, Continual
Query object. and Cache object. The User Information object is discussed in section 6.2.2.1.
The Continual Query object is discussed in section 6.2.2.3. Because Continual Queries are
evaluated continually. we need to keep track of the “previous” results in order to give the user
a report on new contents. Therefore, we keep the cache of the previous run (most recently) of

the continual query for each user installed CQ.

e User Objects
The user objects are objects that the client wants to monitor over data sources. For example,
if the user has a time-based continual query installed in the CQ system: “tell me all the new
Java books available for sale every Monday and stop by the midnight of December 31, 1998.7

[t is expressed as follows:

Query:
SELECT title, author, isbn#, year, price
FROM BOCK
WHERE category=’computer’;
Trigger:
every Monday;
Stop;
12-31-1998 00:00:00

In this example. the BOOK objects are user objects in the CQ object model. which has “title™,
“author”, “isbn#”, “year”, “price” and “category” as its attributes (there are possibly other

attributes for the BOOK objects).
6.2.3.2 Event Detection Components

We design two event detection components according to the two types of continual queries (Recall

Section 4.2.3 for concept definition and examples):

o Time-based Event Detector

For time-based continual queries, a temporal event detector is used, which translates the time-
based trigger condition into a clock event and registers the clock event to the CQ clock manager.
The implementation of a clock manager is a system-specific decision. One may either choose
to design a clock manager specifically for this purpose. or reuse the clock manager provided
by an operating system. In the first prototype of the CQ system, it is implemented under
Unix system. we make use of Cron as the clock manager because it is widely available under
Unix-compatible platforms and is powerful for routine job scheduling. Ve can also make use
of Cron’s logging system to monitor and diagnose the execution. We define the semantics of
the time-based trigger condition based on the crontab file format which is generic enough to
express temporal events. no matter they are absolute time points, regular time intervals, or
irregular time intervals.

But there are some restrictions on the execution of Cron jobs. For example, when executing
a Cron job, the Cron daemon usually starts up a Shell process to handle the job, which is not
efficient. We are considering to write our own clock manager in the next prototype release to

further enhance the efficiency of the system.

78

e (Content-based Event Detector

Given an installed continual query, the main task of the content-based event detector is to

decide what to detect and how to detect.

What to detect

A content-based continual query is designed to monitor the user-defined events over the source
data (compared with events over time). Therefore. the objects being detected or observed are
not just time events as those cases in the time-based continual queries. The most common
content-based events are updates on source data. Let us look at an example of content-based
trigger condition (see Figure 6-15): “report to me whenever [BM's stock price dropped by 35
percent or the marimum stock transaction volume is less than 2.390,000°. We can express this

content-based trigger using the syntax described in Section 6.2.1.5 as follows:

STOCK.price DECBYP S WHERE STOCK.companyname = ‘IBM’
OR MAX(STOCK.trans_volume) < 2390000

Given the above trigger condition. we know that the events to be detected are INSERT. DELETE,
and UPDATE operations on STOCK . trans volume and STOCK. price because the updates on price
are conducted by these operations and those changes may cause the trigger condition to change

between TRUE and FALSE.

Houw to detect

Once we have identified what to detect, the next step is to decide how to detect. We need to
choose the mechanism to detect the changes made by the update operations (INSERT, DELETE,
and UPDATE). In the CQ system. we distinguish between the data sources that have built-in
trigger capability such as the data sources managed by trigger-enabled RDBMSs(including Or-
acle. DB2. Sybase, and Informix) and the data sources that have no built-in trigger capability

such as most of the Web sites and file systems.

— For data sources with built-in trigger capability, the CQ system may install database
triggers on data columns or objects of interests. Whenever there is an update on the
trigger-monitored data objects, an update signal will be sent to corresponding CQ wrap-
per. which couid include an update notification board that records which objects are
updated and when they are updated. The information on the update notification board
is open for external applications to query. We provide the host-specific trigger installation
scripts (such as Oracle trigger installation Perl script) to install database triggers on data

objects and data columns that are accessible to the CQ system.

~ For data sources with no built-in trigger capability, we use CQ system controlled polling

with system-defined interval (e.g., every 5 minutes).
6.2.3.3 Trigger Condition Evaluation Components

Trigger Condition Evaluation Components are designed to evaluate the trigger conditions of installed
continual queries. Similar to event detection components, there are two Trigger Condition Evaluation

Components:

o Time-based Trigger Condition Evaluator

Time-based trigger condition evaluation is done by the clock manager, which is the Cron
daemon in the currently prototype of CQ system. The clock manager checks the registered
clock events in system-maintained event list (which is crontab file in our prototype). Once
the clock event threshold is met. the clock manager triggers the Continual Query Evaluation

Component to schedule a new round of CQ execution.

e Content-based Trigger Condition Evaluator

A content-based trigger condition may be a composite event group composed of several basic

event element which is a triplet of the form:
<Table.Attribute> <ContentOp> <Value>

The composite trigger condition construction operators are: WHERE, GROUPBY, Joint
WHERE Operator, and Event Relational Operators (AND/OR) (Recall Section 6.2.1.5 for
discussion on these operators).

We use the example in Section 6.2.3.2 to illustrate how we evaluate a content-based trigger

condition. In the example. the trigger condition is decomposed into two basic event groups:

1. Group 1: STOCK.price DECBYP 5 WHERE STOCK.companyname = ‘IBM’, which means
“IBM’s stock price dropped by 3 percent”
2. Group 2: MAX(STOCK.trans volume) < 2390000, which means the maximum transac-

tion volume in market is less than 2.390.000.

In addition, we identify the event relational operators among the event groups. In this case,
it is the “OR™ operator.

When the Content-based Trigger Condition Evaluation Component is triggered by the content-
based event detector, it is ready to schedule the trigger condition evaluation. First, it maps
each individual event group to a source-specific query. If there are more than one event groups
in the trigger condition, the Content-based Trigger Condition Evaluation Component will check

to see (1) whether to evaluate the next event group and (2) which group to chose to be the

80

next based on the event relational operators. In the above example, event group 1 is evaluated
first. If it returns FALSE, then the second event group will be evaluated. Otherwise, the
" whole trigger condition is TRUE without even evaluating event group 2. The truth table for
Event Relational Operators are shown in Figure 6-3. Note that there are a number of ways
that we can introduce optimization opportunity for condition evaluation. For instance, given
a trigger condition expressed in the form of event groups connected with event operators, we
can make use of the associativity to re-order the sequence of the event groups in a given trigger
condition so that we can always choose to evaluate the most inerpensive (e.g., the event with

high selectivity factor) event group first.

For the content-based trigger condition, we adopt standard relational operators as well as
enhanced system defined operators as the content operators. They are: “CHANGES”, “<>",
=T, 0T, 457, fk=T, *>=", “CONTAINS”, “LIKE”, “INCBY”, “DECBY”, “INCBYP~,
“DECBYP”. One thing to note is that these operators are not language specific. Instead, they
are defined by the CQ system. independent of any specific platform. We can even override
them. For example, in some programming languages, “=" is the assignment operator, while
in CQ system, it is the relational operator that can be applied to either numerical values or

string values. It is similar for “*<>", ‘<", *>", “<=", and “>=". See Section 6.2.1.5 for more

details.

6.2.3.4 Continual Query Evaluation Component

Once the trigger condition evaluation component evaluates the trigger condition to be true, then
it signals the Continual Query Evaluation Component to fire a new iteration of the CQ query
evaluation execution. The CQ Query Evaluation Component will first check to see if the installed
continual query has expired. To do this, the CQ Evaluation Component talks to the Object Manager
Component to get the CQ_Info object which records all the information about each installed continual
query. The current time stamp is compared with the Stop condition. If the Stop condition satisfies,
then this continual query will be removed from the CQ system (incl. Invoking the CQ garbage
collector to clear all the cache generated by this continual query), and a notification message will be
sent to the user. If the Step condition of this CQ is not expired, the CQ Query Evaluation Component
will compute the differential results by comparing the new query results with the previous cached
results for a particular conttnual query and notify the user about new updates if there is any. The
new results are then cached for the next iteration run of the continual query. Two CQ evaluation
algorithms are Designed: naive and differential re-evaluation algorithms. In the first prototype only

the naive algorithm is fully implemented for the CQ system prototype.

e Naive Algorithm

The basic idea of Naive Evaluation Algorithm is to re-evaluate the Complete query over the

raw data sources whenever the trigger condition is true. This algorithm is simple, but may

81

introduce a lot of unnecessary Computation as well as network traffic. especially when the
update frequency of the data source is low, the amount of changes per update is small. the
CQ trigger condition has short interval, and the number of continual queries installed over the

same set of data sources is large (Recall Chapter 5 for detailed technical discussion).

e DRA
Differential Re-evaluation Algorithm is designed to address the problems with Naive Algorithm.
We have outlined the DRA algorithm. the benefit cases, and the implementation design detail
in Chapter 5. Due to the fact that the implementation of DRA is still undergoing, we will not

report more detailed implementation effort in this Chapter.

6.2.3.5 Data Source Access Component

The CQ system is designed to handle user queries over different types of data sources:

e Structured Data Source such as relational databases(e.g., Oracle. Sybase) and object-oriented

databases(e.g.. Objectstore. O2. Gemstone).
e Semi-Structured Data Source such as HTML pages and bibliography files.
® Un-Structured Data Source such as a LaTex file or C program files.

Each data source may have certain requirements or Restrictions (such as firewall) and its data
presentation structures may not be Compatible with the object model of the CQ system. Therefore,
the CQ system adapts the mediator-wrapper architecture and associate each data source (or each
type of data source) with a wrapper to handle source-specific data access. The Data Source Access
Component consists of a set of source wrappers. The source access is made transparent to external

users (or programs). Figure 6-4 shows the context of the Data Source Access Component:

Query Request Query Result IN
Data Source Wrapper Sets Wrapper
Data Source
RDBMS || OODBMS || SGMLPage| Bibliography|y Access
Wrapper Wrapper Wrapper File
Wrapper A Result
[) 3 } ; Format Unit
! ‘
Web page Bib files ,
ouT
00060

Figure 6-4: Wrapper Components

82

A relation database(Oracle) access wrapper, a weather web site HTML wrapper, a bibliography
file wrapper are implemented in the CQ system prototype. We include a segment of Perl source

code for Oracle database access in Section 6.3.

6.2.3.6 Result Formatting Component

After the query results are assembled from the multiple data sources. they have be formatted to
the representation structure of the data consumer (such as the programs to display the results or
postprocessing of the results). More concretely, if the results is passed to the user to be viewed in
a Web browser, then the data consumer is the browser, and the display format is HTML; if they
are to be passed to another CQ system component for processing, then the other component is the
data consumer. and some special control information may be inserted into the raw data to meet
the input requirements of the component. The context of Result Fermatting Component is shown in
Figure 6-4. In Section 6.3, we attach a fragment of the Perl routine source code which adds HTML

tags to the raw data.

6.2.4 OP components

The component in the Output Processing subsystem is the Change Notification Manager. Its respon-
sibility is to send change notification or status notification to the user whenever there is new result
for his installed continual query returned by the continual query evaluator. We have designed a rich
set of notification services to keep the CQ clients informed about their installed continual queries
and to keep the other value-added CQ components informed of any abnormal situations.

Each notification policy needs to address the following questions:

o When fo notify
A notification will be sent out in the following situations: when a previously installed continual
query expires; or a user installed continual query gets new result; or an error happened when

evaluating the continual query; or the CQ system needs to be unavailable for some time.

o Who to notify
The continual query expiration notification will be sent to the owner of the CQ; notifications
about new query results are sent to the owner of the CQ as well; when an error occurred,
depends on the type of the error, a notification will be sent to either the user(an application
error. such as data query over the source times out) or the CQ system administrator(a system
error. such as unable to create cache); when the CQ server is going to be upgraded or has
to be down for some system maintenance reason, the server will broadcast a message to all

registered users.

e [Vhat to notify

An error message containing detailed error information{error type, time, context, etc.); a URL

83

where the user can find the diff-report of the new continual query evaluation result: or a

broadcast message about some incidences happened on the CQ server.

e Houw to notify
Emails are used as the notification method in the current prototype. We are looking into the
possibilities of incorporating other notification methods such as fax. voice mails into the CQ

svstem.

A sample notification upon detecting new results of an installed continual query is as fol-

lows(continual query #208 by user “wtang”):

Subject: Your installed CQ #208 has new results!

To: wtang€cs.ualberta.ca

Dear Mr. Wei Tang,

Your registered Continual Query #208 got new contents.
You can find it at:

http://chinook.cse.ogi.edu:8888/"cq/CQresult/CQwtang208.html

For more information on the CQ project, please visit us at:

http://www.cse.ogi.edu/DISC/CQ

To play with the CQ prototype demo, please visit:
http://chinocok.cse.ogi.edu:8080/ wtang/CQ/html/CQ.html
or:

http://www.cse.ogi.edu/DISC/CQ/demo

Best regards,

The CQ project team (cq@cse.ogi.edu)
The corresponding result page (CQwtang203.html) is shown in Figure 6-5:

6.2.5 MST components

In order to facilitate the debugging and maintenance effort of the CQ system, we keep diagnostic and
log information of major continual query execution steps. An example is the trace log we generate
for each CQ installation execution As shown in Figure 6-14.

Other MST components include CQ system administration services which allow authorized users

to experiment the updates at the data source(simulated) and watch how the CQ system evaluates

84

N Netsc:

Press&gl_t&ibmmyourbmwsetfymsawdnspagebefoxe. }L. i N R §
' Thedeletedrecordsate: BRI S

fmm f;; -
Theinsertedrecomare:

rms‘rm

Theunchangetl;ecordsare: i‘_ ‘_»'_'- L .

% e S0 2|

Figure 6-3: Sample Continual Query Result Page

the trigger condition, get the notification message, and checks the new query results. We also have
facilities for users to view installed or delete continual queries. What is more, we can manage all
the meta data through a simple easy-to-use web CGI interface and view the meta data of the CQ
system in a well-structured HTML table format which is much better and more convenient than
using the standard database utilities such as SQL*Plus. [t is fast as well. By doing this, we can

closely observe the behavior of the CQ system and debug the system more efficiently.

6.3 Coding Design

In the current CQ system prototype, we use Perl script as the server-side processing language. We
also use Perl CGI {(Common Gateway Interface) scripts and JavaScript to handle HTML Forms

processing and provide enhanced dynamic HTML pages.

85

6.3.1 Perl Programming Language

Perl (Practical Extraction Report Language) is an interpreted language optimized for scanning
arbitrary text files, extracting information from those text files. and printing reports based on that
information. It provides powerful regular expressions in pattern matching. and can be used to easily
search or replace patterns in strings or text files. In the CQ system, the data we process most are
HTML web pages, query results from the database or cached text files. Therefore, we take advantage
of Perl’s power in text scanning and manipulating in building the prototype system.

Furthermore, Perl is an interpreted language. Thus we do not need to compile it every time we
run it. It is also quite easy to debug Perl scripts. Of course, since Perl is interpreted. it may not run
as fast as compiled programs. However, in the CQ implementation, we do not use Perl to perform
CPU intensive jobs. All the time-consuming tasks such as database query handling are done by a
powerful database server. Perl is used simply to parse the query result and manipulate the texts.
After test-running of the CQ prototype system for months, we have found that Perl is pretty capable
for the work. It would be interested to try out other language options. such as Java and C, through

a thorough performance analysis and evaluation.

6.3.2 Common Gateway Interface

The Common Gateway Interface (CGI) is a standard for external gateway Programs (CGI programs)
to interface with information servers such as HTTP servers or Web servers.

A CGI program is any program designed to accept and return data that conforms to the CGI
specification (see http://hoohoo.ncsa.uiuc.edu/cgi/interface.html for further details about
CGI specification). CGI is quite handy in processing HTML FORMs on the Web. The following is
a piece of HTML source code with 2 FORM in it:

<HTML>
<TITLE>FORM Example</TITLE>
<BODY>
<FORM method=GET
action="http://chinook.cse.ogi.edu:8080/ wtang/cgi-bin/formtest.cgi">
<INPUT TYPE=text NAME=test>
<INPUT TYPE=submit>
</FORM>
</BODY>
</HTML>

Basically, the Web browser will pass the form input to the Web server (called chinook.cse.ogi.edu.
8080 is the port number) as an HITTP GET request. The server then starts a process to run the

CGI program and passes back to the client the output from the CGI program (formtest.cgi in

86

this case). The CGI program can be written in any programming language, including C, Perl. Java.

Visual Basic or even Unix shell scripts. Take my formtest. cgi as an example:
e In Perl

#!/usr/local/bin/perl

AR AR AR A AR SR A R S AR R SR AR R SRR
#get the input from an HTML form

#then display its content in another page
RRRR BRI R AN RAR AR B RARARBRBBEES
print "Content-type: text/html \n\n";

print "The input is: $ENV{’QUERY_STRING'}";

o In Shell script

#!/bin/sh

echo "Content-type: text/html"
echo

echo "The input is: $QUERY_STRING"

These two scripts simply display in an HTML page the input from the web form and print out
its content. We use these simple examples to show how a CGI script interacts with the web client

and the server.

6.3.3 Dynamic HTML

In contrast with static HTML which means an HTML page that never changes, dynamic HTML
refers to HTML Web pages that may change each time it is viewed. For example, the same URL

could result in a different page depending on the number of parameters used, such as:
e Geographic location of the reader
e Current time
¢ Previous page viewed by the reader
¢ Profile of the reader

There are many technologies for producing dynamic HTML. including CGI scripts, Server-Side
Includes (SSI). cookies, JavaScript, and ActiveX. We choose CGI scripts and JavaScript to generate
dynamic HTML pages. Compared with Java, JavaScript is more light-weight and is well supported
by various Web browsers !. JavaScript does not have the programming overhead of Java. We do not
have to wait for minutes for the JavaScript program to be initiated as Java program does, though
JavaScript programs are less powerful than Java programs. Unless we want to process a large set

of objects and intensive user interactions, JavaScript is more light-weight and easier to use. In the

! JavaScript was developed by Netscape which can interact with HTML source code, enabling Web authors to spice
up web pages with dynamic content. It is endorsed by a number of software companies and is an open language.
Microsoft Internet Explorer also supports a large subset of JavaScript, which it calls Jscript.

87

CQ prototype design. we do not have a lot of GUI components and user interactions. Much of the
processing is done offline. Another advantage of combining client-side JavaScripts and server-side
CGI scripts is that we can balance the workload between the client-side and the server-side by
moving some of the error checking and data manipulation from server-side CGI scripts to client-side
JavaScripts. Also we usually pass the user requests in a chunk to be processed by the server-side

CGI scripts in order to reduce the communication cost.
Below we show a fragment of the CGI script that generates the HTML Representation for the
raw query results returned from an Oracle SQL query.

B R R R R S AR R R SRR AR R R R AR R BB AR AR BR RS SS
In: (Sdbname, $login, $passwud,Squery)
Qut: Scsr #rav query result(an Oracle cursor)
call: print &runQuery($dbname, $login, Spasswd,Squery);
B R SR AR AR S A R R R R B R R R BB RRR RSB BAR BB BB RS RS
sub runQuery{
local ($dbname, $login, $passwd, $query) = Q_;
local($1da, Scsr);

&setOraEnv(Sdbname, $login, $passwud);

$lda = %ora_login($in{"DB"},$in{"LOGIN"},$in{"PASSWD"})
|| &oracleError;

Scsr = &ora_open($lda, $query) || &oracleError;

return $csr;

s&z#aw&&sww#wﬁ&waw%aww&mmmwwmmw
set global environment variables
In: $dbname, Slogin, $passwd
B R R R A R A R AR AR R A R R R AR AR BB R AR B UB BB R AR ARG SRS
sub setOraEnv{

local ($dbname, Slogin, $passwd) = Q_;

$in{"DBMS"} = "ORACLE";

$in{"DB"} = Sdbname;

$in{"LOGIN"} = $login;

$in{"PASSWD"} = $passwvd;

““3#3“3‘““W“iw:‘;iw&wwQW‘N‘“WW“W“WW%W;WQWW
print out QOralce error message
Out: exit the program
333“33“WWW““W;W“NW?W“WW“W“WWW““W“W“;
sub oracleError{

print "<H1>Qracle Error</Hi> <HR>";

print "Sora_errstr";

exit(1);
}

6.3.4 Online Database Accessing

CGI scripts have been the initial mechanism used to make Web sites interact with databases and
other programs. especially Perl CGI scripts. The latest Perl5 provides better support for remote
database accessing. It has a buili-in DBI{DataBase Interface) module which coordinates with other

vender-provided DBD(DataBase Driver) modules for various database accessing. In the CQ proto-

88

type system, we tried initially using Oraperl (an extended Perl4 with database access capabilities) to
access Oracle 7.1.6 database. During the development of the CQ system. we experienced database
upgrading (from OracleT to Oracle8). We then moved to Perl5 with DBI and DBD modules. The
transitions were seamless, which prove the great portability of Perl scr.ipts and the database access
modules.

There are other promising alternatives to the Perl DBD (DBI) CGI accessing of online databases.
Java JDBC (Java DataBase Connectivity) has drawn great attention of the Internet community.
JDBC is a programming interface that allows Java applications to access databases via the SQL
language. Since nearly all relational database management systems support SQL. and because Java
itself runs on various platforms, JDBC makes it possible to write a single application that can run
on different platforms and access different DBMSs.

Below we use a fragment of the CGI script for remote access to Oracle databases as an example

to illustrate the code design of this functionality.

In: Scsr #raw result of the query(an Oracle cursor)
Out: S$table #an HTML table string
call: print &runQueryHTML(Scsr);

B R e B R B R B B B B B B B B B B B B B P B BB B BB BB 1 D oo P e e e e e B e s h 1Bt o Bt DO e B0 PP B0 e e o e

sub runQueryHTML{
local($csr) = 0_;
local($table, Qcolstitle, $numOfCols, $rownum, @rowdata);

Qcolstitle = Zora_titles ($csr, 0); #get column names
$numCfCols = $#colstitle + 1; #get total column numbher
$rownum = 1;

Stable = "<table border=2>";
making table headers

$table .= "<th bgcolor=cyan align-middle >®</th>";
for ($i=0; 31 < $numOfCols; $i++) {

Stable .= "<th bgcolor=yellow>";
$table .= "Scolstitle[$il";
$table .= "</th>";
}
*#making table contents
while (Qrowdata = &ora_fetch (Scsr)) { #get table row data
$table .= "<tr>";

$table .= "<td bgcolor=cyan> $rownum </td>";
for ($i = 0; $i < S$num0fCols; $i++) {
Stable .= "<td>";
if (Srowdatal$i] !~ /~\sshttp:\/\//) {
#if the column text is not a URL

$table .= "$rowdata($i]";

}else{
#if the column text is a URL, the add HTM1l anchor tag
$table .= " $rowdatalSi]";
$table .= "</td>";

#recognize image type and add a thumbnail image

89

$suffix3 = gupper(substr(Srowdatal$i]l, -3, 3));
$suffix4 = fupper(substr(Srowdatal$il, -4, 4));
if (3suffix3 eq "GIF" || #GIF image?
$suffix3 eq "JPG" || Ssuffix4 eq "JPEG") #JPEG image?
{
$table .= "<td>";
$table .= "<img src=Srowdatal[$i]
width=40 height=40>";
Stable .= "</td>";
}
}
$table .= "</tr>";
$rownum++;
}
}
$table .= "</table>";
return $table;

}

6.3.5 Emerging Technologies

Recently. Java servlets are becoming increasingly popular as an alternative to CGI programs. A
Java applet runs in a Web browser environment, whereas a Java servlet is a piece of Java code that
runs on a server.

The biggest difference between Java servlets and CGI programs is that servlets are persistent,
which means that once a servlet is started, it stays in memory and thus can fulfill multiple requests.
In contrast, a CGI program disappears after it serves a request. When next time another request
comes, the server has to start a totally new CGI program process to answer the request. A lot of
overhead is introduced in this way, especially when user requests are frequent and large.

In order for Java servlets to function, a Java Virtual Machine (JVM) must run on the server, and
the server has to support the Java Servlet API as well. JVM is widely available for many platforms.
Java Servlet API is a set of Java classes that can be downloaded directly from Sun. It also comes
with a set of simple plug-ins that add servlet support to Web servers like Netscape, IIS (Internet
Information Server from Microsoft) and NCSA's Apache server. Java Web Server(JWS) come with
built-in servlet support.

Servlets are very promising for sharing information among multiple invocations of the servlet
and among multiple users because servlets are persistent. For example, if a user want to submit
something to a database, he can start the task in separate Java threads and they are working in
parallel.

Another good feature of servlets is that they are modular, each servlet can perform a specific
task and they can talk to each other when tied together via “servlet chaining”, which means the
output of one servlet can be forwarded to the next servlet in a “chain” to process.

We have begun to convert some the CGI programs to Java Servlets. We use Java Web Server

and JDK1.1.5, servlet development and configuration are both quite smooth. We use JDBC in Java

90

servlets to handle database access. We are also planning to use Java programs simply because it
can provide more GUI components and support better user interactions. The only problem is that
it may takes quite some time for the browser to load the applets the first time. We believe this can
be solved in the near future with the new generation of Java technology.

Java at client side(applet) provides rich GUI components and can handle user Interactions hand-
somely. while Java at server side(servlet) speeds up performance. Thus we make good use of Java’s
“write once. run anywhere” feature and maximize the system’s portability and extensibility. This
combination has a bright future. Client-side JavaScript is also a good candidate because it is more

light-weighted than Java applet.

6.3.6 Online Live Demo of the Prototype

The online demo can be accessed using a JavaScript-enabled Web browser through the following
URL:

http://chinook.cse.ogi.edu: 8080/ wtang/CQ/html/CQ.html

6.4 User Interface Walkthrough

In this section, we walk through the user interface usage of the CQ prototype system, which is called
“Continual Query Services™. The content of this section is targeted at the end-users of the software

package.

6.4.1 Main Menu Window

The top level page has a frameset which displays a CQ banner at the top, a service content menubar

at the bottom which has the links to all the CQ services. and the main display area in the middle:

6.4.2 Client Services

6.4.2.1 User Registration

To become a valid user in the CQ svstem, one has to register to the CQ system using ['ser Registration

Form which is shown in Figure 6-7. The main controls are:
Choose a Login Name text box allows the user to input a unique login name.

Choose Password text box is to let the user type his password. A good password usually has more

than 4 characters and less than 12 characters.

Confirm Password field is for the user to re-type his password to ensure the password he entered in

the Choose Password box is what he expected.

Title input box holds the string of the title of the user. It is optional.

91

'g wg Bookmarkr&. Locaﬂon. Et:q; //chmook. cse. og;z eél-x'GOSO/-wvtanq/CO/htll/t:O heal
Continual Query Services
A New Infrastructure for Distributed Information Dissemination Syste.

R R4 selectCOMPANYNAME HIGH, LOW,
ERNE __\')#Q"’m‘“l““y 'VOLUME from stack

>

am every Monday

tme-based

GH INCBYP 20 WHERE
Content—based %WANYNAME = TBM”

23pm Jame 1, 1999

o

Figure 6-6: The CQ Services Main Window

First Name allows the user to fill in his first name. This field is optional.
Last Name is for the user’s last name input. It is also optional.

Email Address text input box is used for the user to type in his email address where he will receive

messages from the CQ system. This field MUST be filled in with the user’s correct email

address.

Subscription Duration selection control has the value list for the length of the user’s subscription to
CQ system. The default length is one month. If the user’s subscription expires, he will be

removed from the CQ system.

Submit Registration button submits the current content of the page to CQ system. Upon success of

the subscription, the user will get a confirmation email.

Reset button clears all text fields on the page and set the Subscription Duration to the default value.

92

Wiil de used as your [D

Your password should be at least #
characters and less than 12 characrers

Confirm your I' long
Password: -
Title: i Mr.. Ms.. Dr., Professor, ...
First Name: :
[Your full nane will be sent with all later
mazl messages
Last Name: [_

Email Address: ! [I

Sospton o

Reset| Submit Registration|

| M 435 e P 2

Figure 6-7: User Registration Form

6.4.2.2 Normal Query

Before a user subscribes to CQ system, he may use :Normal Query service to query over the data
sources wrapped by the CQ system and get a flavor of what kind of data are accessible. In order to
pose a normal query, a user needs to choose the type of the data sources (i.e., a specific domain of
interest) first, as shown in Figure 6-8.

After the user chooses DIOM Data Sources from the selection list and clicks the Submit button,
he will be brought to the screen shown in Figure 6-9 to construct his query component of the CQ.

The main controls are as follows:

See Table Descriptions hypertext is linked to a form which describes the types of the attributes for

all the objects(tables) at the data source. This is helpful for the user to refine his queries.

SELECT , FROM, WHERE, Group By and Order By are used to construct the SQL query. The FROM

selection list is automatically filled in with all the data objects(tables) available at the data

93

File Edit View Go Communicafor :

W e

AT e

Datasécuce: DIOM Data Soiwce: . | 2

ey

Figure 6-8: Choose Data Source Screen
source. By default. the query will return all the attributes of the objects selected in FROM,
which is denoted by a **’ in the SELECT text input box.

Selected text box displays the current number of objects the user has selected. It will change

according to the user input in FROM selection list.
Table List display box lists the names of selected data objects.
Reset button sets the values for all inputs to default.
Submit Query button submits the query.

When the user clicks the Submit Query button, a new page with the execution log information
and the query result will be displayed. A sample query result page is shown in Figure 6-10 (the
query is select * from IMAGEGALLERY):

6.4.2.3 Installation of a CQ
The first step to install a continual query in the CQ system is shown in Figure 6-11.

User ID and Password text inputs are used to type in login information. They are used to check if a

user is a registered user. If not, an error message will come up.

Data Source selection list allows the user to choose the data source from a list to install his continual

query on. There are currently two data sources: DIOM Data Source and US Weather Watch.

Trigger Type radio button group is to let the user choose the type of the continual query between

time-based and content-based. The default type is time-based.

94

N Hetscape: Database Query

File Edit View Go Communicalor . . -

Fill'the form below to

-

SELECT:

FROM:

E

PRt

BIB_INFO
BIB_SRC

BIB_USER
COMPANY

w0

Figure 6-9: Normal Query Entry Form Screen

N HNetscape: =] E3
File Edt WView Go Communicator =~~~ ° 10 0 Tt LTI T LUt s s ey

Gettingchientinformation - - - o s

& Chent HOST Nemwe: bareali. cze.0g% edu -
s q;mmwzz”ssmz

Parsing query... L o

& Pasing clause SELECT: *
L] Pumgchseﬂbﬂ.mm
& Pursing clause WHERE:

® Parsing clause GROUPBY: -
[Pumg:!meORDmBY

Pamng the queryto the data source..

& Connecting to- dausom:129.95401$ T
® Executing query
® Geting result from data source

TITLE |[CATEGORY AUTHOR [TYPE [DESCRIPTION

. unrise at.
Fgm scenery ChinaNer fphots ountTel,

EE;
e |
P9 .

]

i

Emmmmzuﬁxm T
58

Figure 6-10: A sample result page for Normal Query

96

N Hetscape: Continuad Query Instllabon - Step 1

Fie Edit View -Go .Communicator

PR T
CQ Installation FStep1of2 . .

DIOM Data Source - I

Figure 6-11: CQ Installation Step | screen

Continue >> button is to enable next step of the installation.
Reset button will clear all contents in the text fields and set all other controls to default values.

In the second step. the user will fill in the information for the continual query he wants to install,
which includes Query, Trigger Condition and Stop Condition. Based on the type of the trigger

condition. the interfaces are slightly different.

¢ Time-based Installation in Step 2

The interface for the query construction part is shown in Figure 6-12. The controls are:

CQ Name text input allows the user to type in a name for his continual query. It can act as a
reminder of the content of the CQ. This field is optional.
SELECT , FROM, WHERE, Group By, Order By, selected and Table List are the same as those in

the Normal Query Form which is displayed in Figure 6-9.

The interface for the trigger condition and stop condition installation is presented in Figure 6-

13. The controls are:

Templates selection list holds a list of time-based trigger condition templates which are more
frequently used by users. On selecting any of the choices in the list, corresponding text

fields below are filled with appropriate strings.

97

Step 2 (e based)

N Hetscape: Contuncd Query s Lallation

" {BIB_INFO
s+ 0" |BIB_SRC
FROM: pig ysen
* {COMPANY

N

. [Group By]: |

T

Figure 6-12: CQ Installation Step 2 (time-based) - Query Construction

Min text input box lets the user type in minute specification in the trigger condition.
Hour text input box lets the user type in hour specification in the trigger condition.

Day of Month text input box is for the input of Day of Month specification in the trigger

condition.
Month text input box lets the user fill in month specification in the trigger condition.

Day of Week text input box is to let the user input Day of Week information in the trigger

condition.
Stop Year selection is to choose the stop year for the continual query.
Stop Month selection lets the user choose the stop month from the list.
Stop Day selection specifies the stop day for the continual query.

Stop Hour and Stop Minute are two text fields which allows the user to input the hour and

minute information for the stop condition specification.

Install CQ button will submit the contents of the page and pass them to the CQ system to

install the continual query. Upon success, the user will see a page similar to Figure 6-14.
Reset button clears the contents of all the input components or set their values to default.

Help button when clicked will bring up a new page with help information of how to install a

time-based CQ

98

I Mh@ésé)li Hmin;is;li tnvéu@iﬁ;ﬁﬁw&iﬁi{fx_bmtvm 5

-y

Stop at: Year 1993.-[41—4@‘ May ‘_L[Dag.
e L

_ _Cér:;'inﬁalﬁoﬁei'esg

s

Figure 6-13: CQ Installation Step 2 (time-based) - Trigger and Stop Condition

¢ Content-based Installation in Step 2
The interface of the query construction part for content-based continual query installation is
similar to that for time-based installation(except the page title) as shown in Figure 6-12.
The interface for the content-based trigger and stop condition installation is presented in

Figure 6-15. The descriptions of the controls are as follows:

— For the trigger condition input, the GUI components are described below:

Group Function Selection, Table Selection, Attribute Selection, Content Operator Selection.
Value Input, Grouping or Event Relational Operator Radio Buttons (WHERE, GROUPBY,
Joint WHERE Op). Event Relational Operators (AND, OR) controls
are all visual controls which help the user enter the content-based trigger in the
Trigger Condition Multiple Text Input Board. When they are clicked, their associated
values will be flushed to the Trigger Condition Multiple Text Input Board whose content
represent the current value of the trigger condition. The user may also type the trigger
condition directly in the Trigger Condition Multiple Text Input Board provided that he
follows the syntax. (See Section 6.2.1.5 for details)

Finish button
is to update the current value of the trigger condition to the Trigger Condition Muitiple

Text Input Board and finalize the condition string.

99

N Netscape: o 7 ' EEE

File Edit. View . Go Communicator

C Q- Imtallatfonanﬂ. ExecuﬁortMonitoﬂng

Gettmgchentmszmam?

® Clicnt HOST Nanie: kmh.mq:._u! -
. cnmxunmrmme SR

Getting CQ name...

» NAME:7ims-desed CQTase |

s Recognize TRIGGER TYPE: Zims-dased.
s Recognize TRIGGER CONDITION:
&&& L& &l d0,1,23,45,6
Chtdon; mcm CONDITION.

Parsing stop comhtmn... .

. meogmnsrorconnmon- 3

Passmgthequeryto thedatasmrce o

Cmﬁnmdznmrmﬁﬁ !5

- Gcmnguant&omdausmc L

Installing Contirmal Quel:gr on. CQ server... ,

Com«ungtnCvac 129.95.40.15
s Insexting an entry for Scheduling Managex
= Updating user installed CQ list. .
] Cxathzmhztoxth:condmnlqmy

Nowyolrunv&wtu uwlt. L

Figure 6-14: CQ Installation and Execution Log Information

100

——

File " Edit: . Vigw:: Communicatos”

N Hetscape: Continual Query Installation - Step 2(content-based)

GROUP

FONC *TABLE *ATTRIBUTE
!:(JUN"I’VA IMAGEGALLERY 5N CHANGEPERCENT
o | ¢ §uce
wno |
_gsum 7 - §TEST 7

* [SWHERE wGROUPBY Wlemt WHEREOp - . =" |

STOCK. PRICE DECBYP S WHERE STOCK. COMPANYNAME « °IBX’ QR
MAX(STOCK. VOLIME) < 239000q

\J - B . [N

mum@mmww(s g

Figure 6-15: CQ Installation Step 2 (content-based) - Trigger and Stop Condition

Clear button
clears the content in the Trigger Condition Multiple Text Input Board, sets the trigger

condition to VULL, and reset all the visual controls for the trigger condition input.

- For the stop condition input, the GUI controls are the same as those for time-based stop

condition input which is described earlier in this section(in time-based CQ installation
step 2).
Install CQ, Reset, and Help buttons have the same functions as those described earlier(in

time-based CQ installation step 2).

6.4.2.4 Browse Installed CQ

o User Login Screen Every user can only view or delete his own continual queries. A User Login

Form is provided for the access control. It is displayed in Figure 6-16.

e View I[nstalled CQ Screen After the user clicks the Submit button on User Login Form, if the
login information is valid, the user will see a similar page as shown in Figure 6-17. Then the
user may view his installed CQs or delete some of them. The controls are described below:
CQ ID text input box holds the single ID of the continual query the user wants to delete.

Delete button will send the “Delete” command to the CQ server to delete a registered continual

query whose ID appears in the CQ ID input box.

101

el

Figure 6-16: User Login Screen for Browsing CQ

Delete ALL button will submit the “Delete All” command to the CQ server to delete all the

registered continual queries owned by the user.

6.4.3 Administration Services

For management and debugging purpose, the CQ Services include a set of Administration Services

which can be used by the CQ system administrators.

6.4.3.1 Source Meta Query

The Source Meta Query is used to query over meta data of the CQ system. It is a service for the
CQ system administrator, not for normal CQ users. The data password is required. Source Meta
Query Form is similar to Normal Query Entry Form(See Section 6.2.1.3 for details). The difference
is that the FROM control does not have the limitation of only the data tables. The administrator
can select from all the meta tables in CQ system to check their contents. Figure 6-18 presents the

source meta query screen.

6.4.3.2 Source Data Update

In order to simulate the data source update event, we provide this Source Data Update service. We
then are able to observe and check the continual query evaluation behavior. First, we also need to
login to the data source. The screen shows in Figure 6-19.

After logging into the data source, the Table and Action Choice page comes up. There are four

visual components on the page: (1) the data table list; (2) Insert action button; (3) Delete action

102

N Hetscape:

=i ‘ . — — = g-&'%@?ﬂ[

Figure 6-17: View Installed CQ Screen

button; (4) Update action button. The three buttons represent three database update operation
types.

We take the [‘pdate button for example. After we choose the Update button on the Table and
Action Choice page, the layout of the result page is shown in Figure 6-21 (suppose we chose the

BIB_SRC table for update).

6.5 Further Discussions

The current CQ system prototype is still under development. New components are being introduced
into the prototype. For example, the Weather Watch data source is available with time-based
continual query facility. Bibliography CQ server will soon be operational online as well. Figure 6-22
and Figure 6-23 demonstrate both the data source front page and the query installation interface.
In the meantime, we are facing new technologies everyday, as well as emerging new Web stan-
dards, such as XML (Extensible Markup Language) and HTTP1.1 protocol. We are actively watch-

ing new technologies that can be incorporated into the current CQ prototype system.

103

File Edit Vlew Go Communlcator

N Hetscape: System P.dmmlstrator Query Facmty

(Growp By |1

[Order i;y]: f

br__!M&Qmi«t, mw_» "

s e

Figure 6-18: Source Meta Query Screen

104

N

Datasource: DIOM DataSource 1

o

Figure 6-19: Data Source Login Screen

N Hetscape: Database Update ' 7 T N [=] B3
Flle Edit View Go. Communicator: =~ = ;7 "= , AR f[

- N

oy o~

| Isex | Delexe] f Updare|

Figure 6-20: Table and Action Choice Screen

105

N Hetscape: _ . _ M3

Fle Edit View Go Communicator ~ = & = - @ - TN mue amni o T Helg
B

[Il [OWNER [CATEGORY | URL [COMPLETED [SUBCAT | SRC_ID |LAST UPDATE | TYPE |LAST REFRESH |
E 4 Mave §Computer {her {0 Databa {247 1998-05-12 jbibt §5974

2ils {lingl s hee Jo R E i I i

% + dave {Tomputer fJhee jO Databa {3 1998-05-15 [bibt J5201

E 4 fwes ©s hee |0 push t [}1 i i i

g 4 fbuttl §Computer fhee {0 Dacaba |5 I i i

g 4 dave JTComputer fhet i3 Databa {248 1998-05-15 Qhibt 35422

@ <4 ding !:Conpucet hte §0 ijJataba 21 1998-05-15 g bibt §35499

é 4 ling | Computer fhet §0 Databa [|22 1998-05-15 fdbibt §35201

< {dave {Tomputer Jhtt §0 Databa B 1998-05-15 fbibc J5201
[E 4 Qling fTomputer fhee JD Databa §23 1 i i
l| Updere|
’ ’ < ’ ’ V . ,>““A ’ - -)

COB! H'G, Q“‘ﬂ@;-ﬁ Lasemodified by 52 Tiog,, CQ project tram membez, sofcac o2 o }
= Do | - T 48 ok 8@ N2

Figure 6-21: Data Update Screen

106

N Hetscape: Weather reports in U.S. States

File Edit. View Go Communicater -~ °

Qontinual Queries

--Weather Watch Demo

o Alabama ® Lovuisiana

o Alaska & Maine

® Arizana o Maryiend

® Arksnsas ¢ Massachusetts
o Cabfarnia ® Michigan

e Colorado o Mimnnesota

& Camnecticut ® Mississippi

® Delaware ¢ Missouri

o Florida o Montana

® Geargia ¢ Nebraska

o Hawadi ¢ Nevada

o [daho ¢ New Hampshire
o [Engis o New Jerse

¢ Indiana ® New Mexico
e Iowa ¢ New York

o Kansas 8 Noxth Carclna
o K o Narth Dakota

e Ohio

o Oklahoma

& Oregan

* Pemnsylvania

¢ Rhode Island

® South Carclina
¢ South Dakota
o Temmessee

e Texas

e UOtah

¢ Vermont

® Virgimia

¢ West Virginia
o Wiscansin

o Wyaming

5 Tk a® 2|

Figure 6-22: Continual Query Weather Watch source front page

N Hetscape: akWeather Data 7 [=1E3

Flle "Edit "View Go - Commu

Sky Condition
Temperature

n=PRML

vinstall Weather CQ “Query ! Enter Reset

= | B

45 S a® 2|

Figure 6-23: Continual Query Installation(query input) for Weather Watch data source

108

Chapter 7

Discussion and Related work

7.1 Pull, Push, and Continual Queries

Here we discuss the concept of pure pull data delivery and pure push data delivery. and compare

them with the concept of continual queries and the event-driven data delivery using continual queries.

7.1.1 Overview of Data Delivery Protocols

Data delivery is defined as the process of delivering information from a set of information sources
(servers) to a set of information consumers (clients). There are several possible ways that servers
and clients communicate for delivering information to clients. such as clients request and servers
respond, servers publish what are available and clients subscribe to only the information of interest,
or servers disseminate information by broadcast. Each way can be considered as a protocol between
servers and clients, and has pros and cons for delivering data in an open and dynamic information

universe.

7.1.1.1 Client Request and Server Response

The Requcst/Response protocol follows the data delivery mechanism that clients send their request
to servers to ask the information of their interest, servers respond to the requests of clients by
delivering the information requested.

Current database servers and object repositories deliver data only to clients who explicitly request
information from them. When a request is received at a server, the server locates or computes
the information of interest and returns it to the client. The advantage of the Request/Response
protocol is the high quality of data delivery since only the information that is explicitly requested by
clients is delivered. In a system with a small number of servers and a very large number of clients,
the Request/Response mechanism may be inadequate, because the server communication and data
processing capacity must be divided among all of the clients. As the number of clients continuous to
grow, servers may become overwhelmed and may respond with slow delivery or unexpected delay,

or even refuse to accept additional connections.

109

7.1.1.2 Servers Publish and Clients Subscribe

The Publish/Subscribe protocol delivers information based on the principle that servers publish infor-
mation online. and clients subscribe to the information of interest. Information delivery is primarily
based on the selective subscription of clients to what is available at servers and the subsequent
publishing from servers according to what is subscribed.

As the scale and rate of changes for online information continues to grow, the Publish/Subscribe
mechanism attracts increasing popularity as a promising way of disseminating information over
networks. Triggers and change notifications in active database systems bear some resemblance to
the Publish/Subscribe protocol based on point-to-point communication [2]. The Publish/Subscribe
mechanisms may not be beneficial when the interest of clients changes irregularly because in such
situations clients may be continually interrupted to filter data that is not of interest to them. A
typical example is the various online news groups. Another drawback is that publish/subscribe is
mostly useful for delivering new or modified data to clients, but it cannot be used to efficiently
deliver previously existing data to clients. which the clients later realize they need. Such data are

most easily obtained through the request/respond protocol.

7.1.1.3 Servers Broadcast

The Broadcast mechanism delivers information to clients periodically. Clients who require access
to a data item need to wait until the item appears. There are two typical types of broadcasting:
selective broadcast (or so called multicast) and random broadcast [11]. Selective broadcast delivers
data to a list of known clients and is typically implemented through a router that maintains the list of
recipients. Random broadcast. on the other hand. sends information over 2 medium on which the set
of clients who can listen is not known a priori. Note that the difference between selective broadcast
and Publish/Subscribe is that the list of recipients in selective broadcast may change dynamically
without explicit subscription from clients.

The Broadcast protocol allows multiple clients to receive the data sent by a data source. It is
obvious that using broadcast is beneficial when multiple clients are interested in the same items. The
tradeoffs of broadcast mechanisms depend upon the number of clients who have the commonality of

interest and the volume of information that are of interest to a large number of clients (1L, 2].

7.1.2 Overview of Data Delivery Modes

With the rapid growth of the volume and variety of information available online. combined with
the constant increase of information consumers, it is no longer efficient to use a single mode of
data delivery. A large-scale modern information system must provide adequate support for different
modes of data delivery in order to effectively cope with the various types of communications between
clients and servers to improve query responsiveness. Another benefit of providing different modes

of data delivery is to allow the system to be optimized for various criteria according to different

110

requirements of data delivery. In this section we identify three potentially popular modes of data
delivery and compare them with the types of delivery protocols that can be used. They are client

pull-only option, server push-only option, and client pull with server push combined option.
7.1.2.1 Pull-only Mode

In the Pull-only mode of data delivery, the transfer of data from servers to clients is initiated by a
client pull. When a client request is received at a server, the server responds to it by locating the
requested information. The Request/Respond style of client and server communication is pull-based.

The main characteristic of pull-based delivery is that the arrival of new data items or updates to
existing data items are carried out at a server without notification to clients unless clients explicitly
poll the server. Also, in pull-based mode, servers must be interrupted continuously to deal with
requests from clients. Furthermore, the information that clients can obtain from a server is limited
to when and what clients know to ask for. Conventional database systems (including. relational
and object-oriented database servers) and most of the web search engines offer primarily pull-based

data delivery.

7.1.2.2 Push-only Mode

In Push-only mode of data delivery. the transfer of data from servers to clients is initiated by a server
push in the absence of specific request from clients. The main difficulty of push-based approach is
to decide which data would be of common interest, and when to send them to clients (periodically,
irregularly. or conditionally). Thus. the usefulness of server push depends heavily on the accuracy
of a server to predict the needs of clients. Broadcast style of client and server communication is a
typical push-only type.

In push-based mode. servers disseminate information to either an unbounded set of clients (ran-
dom broadcast) who can listen to a medium or a selective set of clients (multicast) who belong
to some categories of recipients that may receive the data. It is obvious that the push-based data
delivery avoids the disadvantages identified for client-pull approaches such as unnoticed changes. A
serious problem with push-only style, however, is the fact that in the absence of a client request the
servers may not deliver the data of interest in a timely fashion. A practical solution to this problem
is to allow the clients to provide a profile of their interests to the servers. The Publish/Subscribe
protocol is one of the popular mechanisms for providing such profiles. Using publish/subscribe,
clients (information consumers) subscribe to a subset of a given class of information by providing a
set of expressions that describe the data of interest. These subscriptions form a profile. When new
data items are created or existing ones are updated, the servers (information providers) publish the

updated information to the subscribers whose profiles match the items.

I11

7.1.2.3 Hybrid Mode

The hybrid mode of data delivery combines the client-pull and server-push mechanisms. The con-
tinual query approach [25] presents one possible way of combining the pull and push modes, namely,
the transfer of information from servers to clients is first initiated by a client pull and the subsequent
transfer of updated information to clients is initiated by a server push.

The hybrid mode represented by continual queries approach can be seen as a specialization of
push-only mode. The main difference between hybrid mode and push-only mode is the initiation
of the first data delivery. More concretely, in a hybrid mode, clients receive the information that
matches their profiles from servers continuously. In addition to new data items and updates, pre-
viously existing data that match the profile of a client who initially pull the server are delivered to
the client immediately after the initial pull. However, in push-only mode, although new data and
updates are delivered to clients with matching profiles. the delivery of previously existing data to

clients who subsequently realize that they need it is much more difficult than through a client pull.

7.1.3 Pure Push versus Continual Queries

In a pure bush environment such as broadcast services. the server broadcast the update periodically
and the clients may tune the channels to listen to those broadcast information that is of particular
interest to them. Thus, the data is pushed from source to the broadcast server and then pushed from

the server to the client. Figure 7-1 shows the typical data delivery flow in a pure push environment.

Push Push
».. Server Client

Data Sources

Figure 7-1: The data delivery flow in a broadcast-based push service

Continual Queries server is not a pure-push based server since the request is initiated by a client
pull. Once the client pulled the CQ server at the time of installing a CQ, the CQ server starts
pushing the subsequent updates that satisfy the update threshold specified in the CQ to the client
continually until the termination condition is met. The data delivery flow is shown in Fig. 7-2.

Incremental

Pull Push
*__ Server Client

Data Sources

Figure 7-2: The data delivery flow in a broadcast-based push service

112

7.2 Related Work on DB Areas

The concept of continual queries was motivated and evolved by the increasing demand on event-
driven information delivery. It was also inspired by the work on continuous queries by Terry et
alia (37} at the early stage of the development. Comparing with Terry et al [37]'s proposal, there are
a number of functionality differences. First. their proposal made severa! assumptions that seriously
restricted the applicability of their technique to the Internet. Perhaps the most significant assump-
tion is the limitation of database updates to append-only. disallowing deletions and modifications.
Since this assumption is used in their query transformation algorithm, it has been difficult to relax
it [4], when following their definition of continuous queries. Second, the specification model for
update monitoring is purely time-based. There is no clean separation of query and trigger condition
in the specification.

In addition, there has been considerable research done in the monitoring of information changes
in databases. Powerful database techniques such as active databases and materialized views have
been developed. The design of the CQ system is mostly inspired by the research in these fields. The
following discussion should not be seen as a critique of these techniques. Rather, these techniques
have been proposed primarily for “data-centric” environments, where data is well organized and
controlled. When applied to an open information universe as the Internet, these assumptions no
longer hold (see [21] for a summary of desired system properties in the Internet). and some of the

techniques do not easily extend to scale up to the distributed interoperable environment.

7.2.1 Active Databases

Most of active database systems [38] provide facilities [6. 30, 35] that allow users to specify. in the
form of rules, actions to be performed following changes of database state. Despite their conceptual
generality. rules have been so far supported in a fairly restrictive form in practical systems, for
example, by built-in triggers [15] in relational database management systems such as Oracle, Sybase,
and Informix (see a further discussion On Commercial database trigger below). Active queries,
introduced in Alert [35], is yet another form of ECA rules. Active queries are more sophisticated
than database triggers, since they can be defined on multiple tables, on views, and can be nested
within other active queries. However, active queries heavily rely on the use of active tables as system
built-in capability and a number of concrete extensions to a particular system — [IBM Starburst

DBMS [13].

7.2.2 Materialized Views

Materialized views store a snapshot of selected database state. When a database is updated, the
materialized view must be refreshed to reflect the updates. A naive solution is to rematerialize
the view from the base data. In contrast, incremental update algorithms are believed to carry

lower execution cost if changes to the database are moderate [14, 19]. Three approaches have been

113

described previously. The first approach refreshes the view immediately after each update to the
base table [5]. The second defers the refresh until 2 query is issued against the view [34]. The third
refreshes the view periodically {19]. -The main tradeoff in choosing among these approaches is the
staleness of the view data vs. the cost of updating it. Most of the algorithms in the literature {5, 14.
12] work in a centralized database environment, in which the materialized view and its base tables
co-reside. The study on distributed materialized view management has been primarily focused on
determining the optimal refresh sources and timing for multiple views defined on the same base
data [36]. Other works on distributed environments include quasi-copies for replication [3] and

update anomalies in data warehouses [40]

7.2.3 Commercial database triggers

Conceptually a database (built-in) trigger is an event-condition—action (ECA) rule in a restrictive
form. Commercial DBMSs have been introducing support for database triggers at various levels,
mainly due to the customers’ need for better support for integrity constraints. In the SQL standard,
checking of constraints, such as price > 0 or referential integrity constraints. is triggered by the
DBMS. Users can specify whether constraints are to be checked at the end of each SQL statement.
However, support for triggers in SQL standard is limited. The trigger events can only be built-in
SQL operations (update, insert, delete) on a single base table. The triggers can be specified only
on a single base table. Triggers over views are not allowed. Database triggers can only be part of
the triggering transactions and triggers can not be nested. For instance, Unlike continual queries,
Sybase allows only one trigger to be associated with an operation on a table. The action part of
the trigger is limited to a sequence of SQL statements. Further, triggering is restricted to one level

where triggered actions themselves do not cause triggers to be fired.

7.3 Related Work in Web-based Systems

The most distinct features of the World Wide Web is the vast amount of information published
online and the fact that the information on the Web may change at any time and in any way. These
rapid and often unpredictable changes to the information sources create a new problem: how to
detect. represent, and notify these changes.

In addition to the Continual Queries project, there are several systems developed towards mon-
itoring source data changes. One type of systems are the extension of Web search engines or search
software by monitoring the URL changes and notifying the users when the URLs of the data sources
of interest have changed. A representative system is the URL-Minder (http://www.netmind.com/.
Another interesting web page change notification tool is the Web-site News monitor (by AT&T
at http://www.research.att.com/ chen/web-demo/. [t allows users to watch some selected web
site pages for changes from a small and fixed selection of Web sites. Another type of projects

is the change detection over HTML pages, such as the C3 7] project at Stanford. (http://www-

114

db.stanford.edu/c3/c3.html) It addresses the problem of change management by using change detec-
tion mechanisms such as fetching pages from the source sites and making difference with the previous
results. Another interesting feature of C3 is to allow users to query over the change databases and
provide query subscription service to allow users to subscribe to the change notification system such
that the change will be notified by the users. Another way is to use polling and allow users to learn
about changes in a number of ways: (1) whenever changes of certain kind occurs, (2) by weekly or
daily report, or (3) by explicit request only.

The main difference between the continual queries systems and the domain of applications is
the its event-driven nature and its support of polling and filtering based on the users application
requests. For example. the CQ system is able to install a continual query “Notify me whenever IBM

and ATET each drops more than 5% .

Chapter 8

Conclusion and Future Work

8.1 Summary and Conclusion

The thesis describes the design and implementation of a prototype system for data update monitoring
in a distributed open environment (such as the Internet). It uses the continual query concept as a
powerful means for supporting continual monitoring of information updates. The work presented
here is built on top of previous work in Continual Queries [23, 24] as well in DIOM [26]. The main

contribution of this thesis can be summarized as follows:

e We have defined the continual query specification language and implemented a subset of the

continual query language syntax.

e We have experimented and realized the continual query concept in a working distributed sys-
tem and proved the power of the continual query concept in supporting event-driven update

monitoring.

e We have designed and implemented the first prototype system architecture which incorporates
DIOM distributed query scheduling framework, and have built the first version of a working
system using several software tools such as Perl programming language, HTML, and JavaScript

through CGI and HTTPDL1.0.
The most attractive features of the Continual Query prototype system implementation include

e a graphical Web interface offering user registration service, online queries over heterogeneous
data sources. continual query installation and other client services, as well as system adminis-

tration tools;
e asystem meta data structure for managing and maintaining system and application metadata;

e a relational database (Oracle) wrapper with reusable modules such as automatic trigger in-

stallation module, system-controlled polling module;

116

o a suite of Continual Query server kernel modules, including Object Manager, Event Detector,
Trigger Condition Evaluator, Continual Query Evaluator using naive-algorithm, and Email-

based Change Notification Manager,

e a design and realization of the integration of CQ server kernel modules with other continual
query system components developed by other team members such as the Weather-Watch source
wrapper and the bibliography source wrapper. thus providing Continual Query services to

applications in diverse domains.

8.2 Future Development

As mentioned in previous chapters, the first prototype of the Continual Query system has made
explicit simplification on the proposed Continual Querysystem architecture in several aspects. First,
it does not solve all the update monitoring problems in a distributed environment. For example,
the applicability of the current implementation relies on the construction of CQ wrappers in order
to be used for any new information sources. The techniques used in the current prototype for
building wrappers are not generic enough to allow rapid generation of CQ wrappers to any given
type of new information sources. In order to make the implementation close to a production-quality
system. more research work and implementation steps need to be carried out. However, this first CQ
prototype system will be used as a testbed for further development and experiment of the continual
query concept and algorithms as well as the study of general infrastructure for event-driven update
monitoring in 2 distributed open environment. Here we outline some directions of future development

of the system:

o The first aspect to be enhanced is the GUI components to provide users with more functionality
and flexibility, and make them easier to use. We intent to use Java applets at client side instead

of the current combined use of CGI and JavaScript.

e We would like to experiment with JDBC to access database sources instead of Perl DBI:DBD

modules to allow the implementation more interoperable with external systems.

e We plan to replace all the CGI scripts with Java servlets to improve the overall system perfor-
mance, which may include the design and implementation of an extensible and reusable Java

servlet package

e We would also like to enrich the continual query semantics and syntax to include richer event
expressions, offer more flexibility in termination condition specification and means for notifi-

cation.

e We plan to design a full fledged object model. event model. observation (event detection)

model and notification model in the next generation of the continual query system.

117

e We are interested in studying various algorithms and strategies for continual query evaluation

optimization and cache management optimization.

e We plan to incorporate the DRA in continual query evaluation manager and furthermore to

conduct performance evaluation of continual query evaluation algorithms.

We believe that the Continual Query system presents an interesting architecture for Internet scale
event-driven information delivery.

Personally I have learned a lot through research and hand-on experience with the CQ prototype
system development, and have had a lot of fun in addition to hard work. It was a real good feeling
seeing the prototype running on the Web, especially seeing the smooth integration of the CQ server

kernel modules with the other CQ wrappers that are developed independently.

118

Bibliography

(1] S. Acharya. R. Alonso, M. Franklin, and S. Zdonik. Broadcast disks: Data management for
asymmetric communications environments. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, San Jose, CA, May 1995.

(2] S. Acharya, M. Franklin, and S. Zdonik. Balancing push and pull for data broadcast. In
Proceedings of the ACM SIGMOD International Conference on Management of Data, Tucson.
Arizona, May 1997.

{3] R. Alonso, D. Barbara, and H. Garcia-Molina. Data caching issues in an information retrieval
system. ACM Transactions on Database Systems, 13(3):359-384, September 1990.

[4] D. Barbara and R. Alonso. Processing continuous queries in general environments. Technical
report, Matsushita Information Technology Laboratory, Princeton, NJ, June 1993.

(3] J. Blakeley. P. Larson, and F. Tompa. Efficiently updating materialized views. In Proceed-
ings of the ACM-SIGMOD International Conference on Management of Data, pages 61-T1,
Washington, DC, May 1936.

[6] S. Chakravarthy. Architectures and monitoring techniques for active databases: An evaluation.
In Technical Report TR-92-041, University of Florida. Gainesville, FL, 1992.

[7] S. Chawathe, S. Abiteboul, and J. Widom. Managing and querying changes in seminstructured
data. In Proceedings of the ACM SIGMOD International Conference on Management of Data,
Tucson, Arizona. May 1997.

(8] P. Cohen, A. Cheyer, M. Wang, and S. Baeg. An open agent architecture. In AAAI Spring
Symposium, pages 1-8, March 1994.

[9] P. Cohen and H. Levesque. Communicative actions for artificial agents. In Proceedings of the
International Conference on Multi-Agent Systems, AAAI Press, June 1995.

(10] R. Elmasri and S. B. Navathe. Fundamentals of Database Systems. The Benjamin/Cummings
Publishing Company, Inc., 1994.

[L1] M. Franklin and S. Zdonik. Dissemination-based information systems. [EEE Bulletin of the
Technical Committee on Data Engineering, 19(3):20-30, September 1996.

{12] A. Gupta, L. Mumick, and V. Subrahmanian. Maintaining views incrementally. In Proceed-
ings of the ACM-SIGMOD International Conference on Management of Data, pages 157166,
Washington, DC, May 1993.

[13] L. Haasi, W. Chang. G. Lohman, J. McPherson, P.Wilms, G. Lapis. B. Lindsay, H. Pirahesh,
M. Carey, and E. Shekita. Starburst mid-flight: As the dust clears. IEEE Transactions on
Rnouwledge and Data Engineering. pages 377-388, March 1990.

[14] E. N. Hanson. A performance analysis of view materialization strategies. In Proceedings of
the ACM-SIGMOD International Conference on Management of Data, pages 440-433, San
Francisco, CA, May 1987.

(15] Informix Software. Inc. Informir Guide to SQL: Syntar (Version 6.0), 1994.

{16] B. Kahler and O. Risnes. Extending logging for database snapshot refresh. In Proceedings of
the International Conference on Very Large Data Bases, pages 389-398, Brighton, England,
September 1987.

119

(17] Y. Lee. Rainbow: A prototype of the diom interoperable system. MSc. Thesis, Department of
Computer Science, University of Alberta, July, 1996.

(18] Y.-S. Lee. Rainbow: Prototyping the diom interoperable system(tr96-32). Technical report,
Department of Computer Science, University of Alberta, Edmonton, Alberta, Fall 1996.

(19] B. Lindsay, L. Haas, and C. Mohan. A snapshot differential refresh algorithm. In Proceed-
ings of the ACM-SIGMOQD I[nternational Conference on Management of Data, pages 53-60.
Washington, DC, May 1986.

[20] L. Liu and C. Pu. The diom approach to large-scale interoperable information systems. Technical
report, TR95-16, Department of Computing Science, University of Alberta, Edmonton, Alberta,
March 1995.

[21] L. Liu and C. Pu. The distributed interoperable object model and its application to large-
scale interoperable database systems. In ACM International Conference on Information and
Rnowledge Management (CIRM’95), Baltimore, Maryland. USA, November 1995.

(22] L. Liu and C. Pu. A dynamic query scheduling framework for distributed and evolving in-
formation systems. In IEEE Proceedings of the 16th International Conference on Distributed
Computing Systems, Baltimore, May 27-30 1997.

(23] L. Liu and C. Pu. Complex event specification and event detection for continual queries.
Technical report, OGI/CSE, Portland. OR, March 1993.

[24] L. Liu. C. Pu, R. Barga, and T. Zhou. Differential evaluation of continual queries. Technical
Report TR-95-17, Department of Computer Science, University of Alberta, July 1995.

(25] L. Liu, C. Pu, R. Barga, and T. Zhou. Differential evaluation of continual queries. In [EEE
Proceedings of the 16th I[nternational Conference on Distributed Computing Systems, Hong
Kong, May 27-30 1996.

[26] L. Liu, C. Pu, and Y. Lee. Adaptive approach to query mediation across heterogeneous in-
formation sources. In International Conference on Cooperative Information Systems{CooplS),
Brussels, Belgium, June 1996.

[27] L. Liu, C. Pu, W. Tang, J. Biggs, D. Buttler, W. Han, P. Benninghoff, and Fenghua. Cq: A
personalized update monitoring toolkit. [n SIGMOD 98, 1998.

[28] D. Maier. The Theory of Relational Databases. Computer Science Press. 1933.

[29] T. Maude and GrahamVillis. Rapid Prototyping: the Management of Software risk. Pitman
Publishing, 1991.

{30] D. McCarthy and U. Dayal. The architecture of an active database management system. In
Proceedings of the ACM-SIGMOD International Conference on Management of Data, pages
215-224, May 1989.

[31] R. S. Pressman. Software Engineering: a Practitioner’s Approach 3rd Edition. McGraw-Hill,
1992.

[32] K. Richine. Distributed query scheduling in the context of diom: An experiment. MSc. Thesis.
Department of Computer Science, University of Alberta, April, 1997.

[33] A. Rosenthal and U. Chakarvarthy. Anatomy of a modular multiple query optimizer. In The
International Conference on Very Large Data Bases, 1988.

[34] N. Roussopoulos and H. Kang. Preliminary design of adms+: A workstation-mainframe inte-
grated architecture for database management systems. In Proceedir:gs of the 12th [nternational
Conference on Very Large Data Bases, pages 355-364, Kyoto, Japan, August 1986.

[35] U. Schreier, H. Pirahesh, R. Agrawal, and C. Mohan. Alert: An architecture for transforming
a passive dbms into an active dbms. In Proceedings of the International Conference on Very
Large Data Bases, pages 469-478, Barcelona, Spain, September 1991.

[36] A. Segev and W. Fang. Currency-based updates to distributed materialized views. In Proceed-
ings of the Gth International Conference on Data Engineering, pages 512-520, Los Alamitos,
February 1990.

120

[37] D. Terry, D. Goldberg, D. Nichols, and B. Oki. Continuous queries over append-only databases.
In Proceedings of the ACM-SIGMOD International Conference on Management of Data, pages
321-330, San Diego, CA, January 1992.

(38] J. Widom and S. Ceri. Active Datanase Systems. Morgan Kaufmann, 1996.

[39] G. Wiederhold. Mediators in the architecture of future information systems. [EEE Computer,
March 1992.

[40] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View maintenance in a warehousing

environment. In Proceedings of the ACM-SIGMOD I[nternational Conference on Management
of Data, San Jase, CA, May 1995.

121

Appendix A

Continual Query Syntax

The syntar below is just a subset of the Continual Query syntar. The first Continual Query
prototype system tmplementation is based on this simplified syntar.

<CQ> ::= <Query> <TriggerCond> <StopCond>

<Query> ::= SELECT <SelectList>
FROM <ObjectList>
[(WHERE <SearchCondition>]
[GRQUP BY <AttributeList>]
{ORDER BY <SortSpecList>]

<TriggerComnd> ::= <TimeTriCond> | <ContentTriCond>
<StopCond> ::= <Month> ’-’ <Day> ’'-’ <Year> ’ '’

<Hour> ’:’ <Min> ’ ’ <TimeZone>
<SelectList> ::= * | <Attributelist>

<AttributeList>:= <Attribute> | <Attribute> [, <AttributeList>]

<Attribute> ::= id | <ObjectName>.<AttributeName> | <AggreSpec>
<ObjectName> ::= String

<AggreSpec> ::= COUNT(*) | <AggreFunc>(<Attribute>)
<AggreFunc> ::= AVG | MAX | MIN | SUM | COUNT

<ObjectList> ::= <ObjectName> | <ObjectName> [, <ObjectList>]
<SearchCondition> ::= <BoolExpr> { [NOT] <BoolExpr>
<BoolExpr> ::= <BoolTerm> | <BoolTerm> <LogicOp> <BoolExpr>
<LogicOp> ::= AND | OR

<BoolTerm> ::= <Predicate> | <ValueExpr>

<Predicate> ::= <ValueExpr> <Op> <ValueExpr>

<0p> ::= <CompOp> | [NOT] <LikeOp>

<Complp> ::=<> | =] < | >] <= | >=

<LikeQp> ::= LIKE

<ValueExpr> ::= <NumValExpr> | <StrValExpr>

122

<NumValExpr> ::= <Term> | <NumValExpr> + <Term> | <NumValExpr> - <Term>

<Term> ::= <Factor> | <Term> * <Factor> | <Term> / <Factor>

<Factor> ::= [+|-] | <NumValue>

<NumValue> ::= number | <Attribute> | (<NumValExpr>)

<StrValExpr> ::= <StrValue>

<StrValue> ::= String | <Attribute>

<SortSpecList> ::= <SortSpec> | <SortSpec> [, <SortSpec>]

<SortSpec> ::= <Attribute> [<OrderKey>]

<0rderKey> ::= ASC | DESC

<TimeTriCond> ::= <MinExpr> ’&&’ <HourExpr> ’&&’ <DayOfMonExpr> ’&&’

<MonthExpr> ’&%&’ <DayOfWeekExpr>

<MinExpr> ::= <MinFactor> | <MinFactor> [, <MinExpr>] | <NotSpecified>

<MinFactor> ::= <MinVal> | <MinVal> <To> <MinVal>

<NotSpecified> ::= null

<MinVal> ::= [0-5] [0-9]

<To> ::= -

<HourExpr> ::= <HourFactor> | <HourFactor> [, <HourExpr>] | <NotSpecified>

<HourFactor> ::= <HourVal> | <HourVal> <To> <HourVal>

<HourVal> ::= [0-11[0-9] | [2][0-3]

<Day0OfMonExpr> ::= <DayOfMonFactor> | <DayOfMonFactor> [, <DayOfMonExpr>]
| <NotSpecified>

<DayOfMonFactor> ::= <DayOfMonVal> | <DayOfMonVal> <To> <DayOfMonVal>

<DayOfMonVal> ::= [0-2][0-9] | (3](0-1]

<MonthExpr> ::= <MonthFactor> | <MonthFactor> [, <MonthExpr>] | <NotSpecified>

<MonthFactor> ::= <MonthVal> | <MonthVal> <To> <MonthVal>

<MonthVal> ::= [0-9] | [1][0~-1]

<DayOfWeekExpr> ::= <DayOfWeekFactor> | <DayOfWeekFactor> [, <DayOfWeekExpr>]
| <NotSpecified>

<DayOfWeekFactor> ::= <DayOfWeekVal> | <DayOfWeekVal> <To> <DayOfWeckVal>

<DayOfWeekVal> ::= [0-6]

<ContentTriCond> ::= <ContTriGroup> | <ContTriGroup> <EventQOp> <ContentTriCond>

<ContTriGroup> ::= <ContPrimitive> <GrpConstraint>

<ContPrimitive> ::= [<AggreFunc>(J<0ObjectName>.<Attribute>[)]

<ContTriCondOp> [<Value>]

123

<GrpConstraint> ::= WHERE <ContPrimitiveList> [GROUPBY <AttributelList>]

<ContPrimitiveList> ::= <ContPrimitive> | <ContPrimitiveList>
<GrpJointdp> <ContPrimitive>

<EventOp> ::= AND | OR | <sequence> | <parallel>

<ContTriComrdOp> ::= <> | = | < | > | <= | >= | CHANGES | CONTAINS | LIKE
| INCBY | DECBY | INCBYP | DECBYP

<GrpJointQOp> ::= AND | OR
<ContTriVal> ::= String

<Year> ::= [0-9][0-9]1[0-9] [0-9]
<Month> ::= <MonthVal>

<Day> ::= <DayOfMonVal>

<Hour> ::= <HourVal>

<Min> ::= <MinVal>

<TimeZone> ::= [-]|+][0-1] [0-9]

124

IMAGE EVALUATION
TEST TARGET (QA—3)

2

EE
R EE

111
L EEEEPTI

16

= IMAGE . Inc

14

~ou

150mm
6

2|

125

© 1993, Applied Image, Inc., All Rights R

