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Abstract

The concept of using piezoelectric actuators and sensors to identify damages in

advanced structural systems has drawn considerable interest among the research com-

munity due to its importance in preventing catastrophic failures. Recent progress in

piezoelectric technologies and manufacturing has made it possible to manufacture smart

multilayered multifunctional piezoelectric fibers. When these fibers are used in the

health monitoring of smart structures, they are generally under dynamic loads. How-

ever, the modeling and simulation of these fibers is even more complicated by the fact

that they are generally characterized by electromechanical coupling, anisotropy in the

transverse plane, and the possible bonding imperfection between their layers. With

this in mind, the current research program was undertaken to investigate the dynamic

behavior of multiple multilayered piezoelectric fibers in smart structure applications.

Four aspects of the work were accordingly examined. The first is the development of

an analytical model of the anisotropic layer in the multilayered piezoelectric fiber, which

is capable of predicting stress variations in the anisotropic layer, under dynamic loads.

The model is necessary for determining the overall behavior of a layered anisotropic

piezoelectric fiber. The analytical formulation is based on the use of Fourier expansion

and the separation of variables to reduce the original problem to a set of linear equations

in terms of Bessel functions. The resulting set of linear equations are normalized to

reduce the numerical ill-conditioning then solved for different boundary conditions.

The significance of this newly developed model is manifested by its versatility and

application with different material combination, loading frequencies and geometry.

The second is extending and applying the developed anisotropic layer model to an-

alyze the performance of the electromechanical behavior of a multilayered piezoelectric

fiber as an actuator or a sensor. The analytical formulation is based on the use of a
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newly developed piezoelectric layer model with a transfer matrix representation, which

can represent multiple layers including imperfectly bonded layers.

The third is concerned with the development of a general method for the interaction

between multilayered piezoelectric fibers and other scatterers. The theoretical formula-

tions are based upon the consistent use of the superposition procedure and cylindrical

function coordinate transformations using Graf’s theorem. This reduces the original

interaction problem to the solution of a set of a single multilayered piezoelectric fiber

and embedded scatterer problems. By using this single multilayered piezoelectric fiber

solution as the building block, this method provides a general approach to deal with

interactions involving complex boundary/interfacial conditions.

The fourth is concerned with the numerical simulation of applying the developed

models for the identification of multiple damages using both global and local opti-

mization algorithms. This problem is formulated as an inverse problem which uses

optimization techniques to minimize the error between the observed voltage readings

induced by damages from a numerical experiment and the calculated voltage predic-

tions induced by trial damages from theoretical simulations on an array of sensors.

The models and techniques developed previously are applied to determine the size and

location of damages using a newly developed optimization algorithm. The algorithm

converges faster than conventional algorithms for single and multiple damages with two

types of damages investigated: a circular void and a curved crack.

The methods proposed in this thesis can be used to understand the dynamic behavior

of multiple multilayered piezoelectric fibers interacting with damages for the general

design of smart structures and the applications of smart structural health monitoring.
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Chapter 1

General Introduction

This chapter is an introduction to the dynamic behavior of multilayered piezoelectric
fiber in smart structural health monitoring. It contains a brief background, motivations
for undertaking this study, problem statement, an outline of the research objectives and
a preview of the general layout of the study.

1.1 Background

Smart structures are a class of structures which can intelligently self-monitor their
health state, act, and execute multiple functionalities in response to detected damages
and sensed changes in their surroundings either externally or internally. Typically,
a smart structure is composed of a host substructure medium, a network of sensors,
actuators, and intelligent controllers. Smart structural health monitoring mimics the
human body: the host substructure provides the body, the network of sensors provides
the sensory system receiving the external or internal stimuli, the network of actuators
provides the muscles or the diagnostic signal, and the intelligent controllers provide
the brains to process and analyze the data from the sensory system. In such an inte-
grated structure, in order to monitor the structure’s health, possible damages should
be detected, evaluated, and quantified.

A multilayered piezoelectric fiber is a layered fiber with one or more layers being
piezoelectric. Compared with other materials used as sensors and/or actuators such
as shape memory alloys, magnetostrictive materials, electrorheological fluids, piezoelec-
tric actuators/sensors (whether polymer or piezoceramics) are the most popular and
promising choice in smart structures since they offer a number of advantages over other
materials, such as high degree of linearity, high power density, wide range of actua-
tion/sensing frequency, greater efficiency, and low manufacturing costs (Chopra, 2002).
Moreover, the same piezoelectric can be used as both a sensor and/or actuator i.e. offer-
ing dual transduction functionalities. These advantages make them a good and reliable
candidate not only in traditional smart structures but also in the damage identification
processes, and therefore, are usually used in structural health monitoring.
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Figure 1.1: A space vehicle using a network of multilayered piezoelectric fibers

Piezoelectric actuators/sensors have been applied or considered to be applied in dif-
ferent industries with typical examples such as, active vibration suppression of aircraft
wings, the control of satellites and space structures, the position control of flexible robot
arms, and active noise and vibration suppression of helicopter rotor blades (Li et al.,
2011; Lin et al., 2013; Williams et al., 2002b). Piezoelectric fibers have also been con-
sidered for use in structural health monitoring (Konka, Wahab, and Lian, 2011; Schulz
et al., 2000). There have been mainly two types of piezoelectric fiber composites, Active
Fiber Composite (AFC) (Bent and Hagood, 1997; Bent, Hagood, and Rodgers, 1995;
Bent and Pizzochero, 2000), and Macro Fiber Composite (MFC) (Wilkie et al., 2000;
Williams et al., 2002a; Williams et al., 2002b). However, recent progress in fabricating
multimaterials (Egusa et al., 2010) and mass manufacturing of multilayered piezoelec-
tric fibers makes it possible to develop new low-cost multifunctional fibers, which can
be used in different high-frequency applications (Hadimani et al., 2013; Lu, Qu, and
Skorobogatiy, 2017). The recently developed multilayered piezoelectric fiber (Hadimani
et al., 2013; Lu, Qu, and Skorobogatiy, 2017) can be applied efficiently in the health
monitoring of smart structures.
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1.2 Motivation and problem statement

Structural health monitoring techniques are required for many critical structures such
as aerospace structures, nuclear reactors, marine structures, submarine structures, large
defense/civil structures to ensure functionality, structural integrity, safe operation and
prevent catastrophic failures. The lack of or poor structural health monitoring resulted
in many major disasters, for example Chernobyl on April of 1986, Aloha airlines Boe-
ing 737 on April of 1988 and Space Shuttle Columbia on February of 2003. Traditional
nondestructive testing/evaluation (NDT/NDE) techniques, such as X-radio-graphic de-
tection (X-ray) and ultrasonic evaluation, have been successfully used for the inspection
of large structures; however, these techniques usually require bulky instruments, and are
often conducted off-site during repairs or scheduled inspection cycles. In the aerospace
industry alone, it is estimated that at least 25% of the average aerospace vehicle’s
life cycle costs are spent on inspection and repair (Chang, 2013; Diamanti and Soutis,
2010). This includes civil, commercial, and military vehicles amounting to a large figure
which excludes the downtime costs associated when vehicles are grounded for scheduled
maintenance (Giurgiutiu, 2007; Giurgiutiu and Santoni-Bottai, 2011).

Realizing the social and economic impact caused by the catastrophic failures, dif-
ferent organizations and agencies sponsored programs to counteract or mitigate them.
Major industrial programs were funded in the aerospace industry with the goal of man-
aging the health of aerospace vehicles. For example, NASA has sponsored the Integrated
Vehicle Health Management IVHM program (Ross, 2016), similarly Boeing sponsored
the Airplane Health Management AHM program (Boller, 2001). As a result of those
programs, research studies have proposed the use of networks of actuators/sensors for
structural health monitoring (Giurgiutiu and Santoni-Bottai, 2011). Similar technolo-
gies have been tested, used, or considered for use in F-22, F-35, and other aerospace
vehicles.

Considering all the aforementioned issues, this study is motivated by applying the
newly developed radially polarized multilayered piezoelectric fibers in the health moni-
toring of smart structures. Since the same piezoelectric can sense and actuate, a network
of multilayered piezoelectric fibers could be embedded in those structures with many ap-
plications in different industries, such as in aerospace vehicles as shown in the schematic
figure 1.1. The network of piezoelectric actuator(s) sends diagnostic signals through the
structure medium, the same network of sensors receives the distorted signals then the
controller analyzes the received signals to determine the state of the structure. A funda-
mental issue in using newly developed multilayered piezoelectric fibers (Hadimani et al.,

3



Host substructure

Mulitlayered piezoeletric fibers

Void

 Crack

Incident wave

Figure 1.2: Schematic of an array of multilayered piezoelectric fiber sensors for the
identification of irregular damages

2013) for damage identification is to determine the dynamic behavior of the radially
polarized piezoelectric fibers, the effect of imperfect interfaces on their performance,
their interactions and their use to identify developed damages. Another important as-
pect related to the design of smart structural system is the determination of interfacial
debonding that may affect the structural integrity. An accurate assessment of the cou-
pled electromechanical behavior of an integrated structure would, therefore, require the
determination of the stress distribution in the composite structure. The piezoelectric
layers in these fibers are generally anisotropic in the transverse direction and therefore
difficult to analyze when dynamic loads are involved. The dynamic behavior of recently
manufactured multilayered piezoelectric fiber (Chocat et al., 2011; Tao et al., 2015) has
not been fully understood. The current study develops analytical models for studying
the dynamic behavior of multilayered piezoelectric fibers with or without interfacial
imperfections and their application in smart structural health monitoring. The devel-
oped models can also simulate the interaction of multilayered piezoelectric fibers with
irregular damages under harmonic incident waves and identifies damages, such as voids
and/or cracks as shown in figure 1.2.
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1.3 Research objectives

It is therefore, the objective of this study to conduct a systematic investigation of the
electromechanical behavior of multilayered piezoelectric fibers in smart structures and
their application in damage identification. Specifically, it is desired to:

1. develop a new anisotropic layer model for a layered cylindrical piezoelectric fibers
to investigate the dynamic mechanical behavior of piezoelectric fiber in an elastic
medium,

2. extend the developed anisotropic layer model to multilayered piezoelectric fiber
to investigate the electromechanical performance of the piezoelectric layer as a
sensor and/or actuator with and without interface imperfections,

3. implement the multilayered piezoelectric fiber model into a multiple wave inter-
action method for cylindrical piezoelectric layer to account for interaction effects
between different multilayered fibers with damages,

4. simulate for identifying embedded damages using an array of piezoelectric sensors
subject to harmonic elastic waves.

1.4 Approach and research scope

The following section describes the approach road map as used to achieve the afore-
mentioned research objectives:

Modeling and analysis of the dynamic mechanical behavior of a single piezo-
electric fiber

Using analytical methods, a new model for examining the dynamic elastic field resulting
from a single layered piezoelectric fiber embedded in an elastic solid was developed.
The analytical methods are based on the use of a simplified model for the anisotropic
piezoelectric layer and Fourier expansion which reduces the original problem to a set
of linear equations in terms of Bessel functions. The resulting linear equations are
normalized to achieve numerical stability and then solved.

Modeling and analysis of partially bonded multilayered piezoelectric fiber

The newly developed anisotropic layer model is extended to study the dynamic elec-
tromechanical behavior of multilayered piezoelectric fibers. The extended model in-
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cludes the electric and piezoelectric coupling effects and is represented by transfer ma-
trices. The significance of this representation is manifested by its versatility and ability
to represent multiple layers including imperfectly bonded layers. The analytical solu-
tion for a partially bonded interface, an arc interface crack, is derived explicitly using
Fourier expansion along circumferential direction. The effects of the geometry of the
partially bonded interface, elastic material properties and the frequency of the applied
loads upon the resulting dynamic stresses are examined.

Multiple wave interactions between multiple multilayered piezoelectric fibers
and damages

The electromechanical field in the presence of multiple multilayered fibers and damages
is studied based upon the consistent use of superposition principle and cylindrical func-
tion coordinate transformations using Graf’s theorem, reducing the original interaction
problem into the solution of a set of single multilayered piezoelectric fiber problems.
The multilayered fiber could have a perfectly bonded or an imperfectly bonded layer as
the assumed damages. The dynamic interaction between multiple multilayered fibers
and damages such as a crack and/or a void under plane deformations is investigated
in details. The solution of the interacting problem provides a numerically stable and
reliable prediction of the dynamic stress variations between the fibers, damages and the
host structure.

Simulation for multiple damage identification

Numerical simulation is performed based on the previously developed models and tech-
niques for the identification of multiple damages using an improved two-stage opti-
mization method. The first stage is a global optimization based on an intelligently
predesigned genetic algorithm while the second is a local optimization using gradient
based optimization algorithm. The voltage signals recorded on an array of piezoelectric
fiber sensors are used to identify the embedded damages in the structure through min-
imizing the differences between the numerical experiment voltage recordings and the
theoretical voltage predictions.

The individual models, methods, and techniques developed are verified each in-
dependently by comparing the results with that from limiting cases, other published
studies, and numerical solutions using a finite element model. The overall theoretical
approach encompassing all models, methods, and techniques is further verified using
a different finite element model that is considered as the numerical approach for con-
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ducting experiments. These numerical experiments generate the observable recorded
voltages induced by damages on the array of multilayered piezoelectric fibers. The
theoretical approach is then used to simulate the predicted voltages calculated by the
guessed damages. The discrepancy between the two voltages is minimized by searching
different guessed damages. In addition to identifying multiple damages, the identifi-
cation process provides a further overall verification to the newly developed models,
methods, and techniques since the two different approaches are used independently in
this process.

1.5 Thesis Layout

In addition to this introductory chapter, this thesis contains six self-contained chapters,
each of which is either a published or to be published article. The current introductory
chapter introduces the problem, justifies the undertaking of the study, sets the objec-
tives and outlines the methods of approach adopted. A critical literature review of the
relevant work is conducted in the second chapter. An elastic anisotropic layer model is
developed and verified in chapter three. The anisotropic layer is modeled as an inter-
phase layer element to overcome the difficulties associated with the dynamic response
of the anisotropic layer. The layer model is extended to include the piezoelectric effect
in chapter four. With the newly adopted transfer matrices representation consolidating
the multilayered piezoelectric fiber an imperfect layer is also considered. Bessel’s ad-
dition theorem combined with a numerically stable multiple wave interaction between
fibers and multiple damages are studied in chapter five. Finally, identifying embedded
damages subject to harmonic waves is presented in chapter six. The overall conclusions
and future work are discussed in chapter seven. In summary, the thesis contains new
models and methods to investigate the dynamic electromechanical behavior of multi-
layered piezoelectric fibers embedded as actuators or sensors and identify damages in
smart structures.
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Chapter 2

Fundamentals and literature review

In addition to the existing mono-functionality of traditional smart structures, such as
the ability to respond intelligently with a specific functionality to an external stimu-
lus, multifunctional smart structures could also offer multifunctionalities (Bystricky,
2012; Gibson, 2010; Ray, Koh, and Tian, 2000) and, therefore, are receiving significant
attention from the research community (Li et al., 2011; Lin et al., 2013). Multifunc-
tional components such as multilayered piezoelectric fibers and some types of piezoelec-
tric composites are essential for these novel multifunctional smart structures (Ferreira,
Nóvoa, and Marques, 2016; Mitra and Gopalakrishnan, 2016). Recent advances in mul-
timaterial composites technology enable the fabrication (Egusa et al., 2010) and the
mass manufacturing of multilayered piezoelectric fibers (Crawley, 1994; Diamanti and
Soutis, 2010). Those recent advances and their rapid expansion in applications have
been extensively reported, including their manufacturing (Matt, Bartoli, and Scalea,
2005; Staszewski, Boller, and Tomlinson, 2004), optical properties, and prospects in
biomedical field (Chocat et al., 2012; Manbachi and Cobbold, 2011; Wang et al., 2017).

A multilayered piezoelectric fiber is a special kind of multimaterial composites where
the materials are shaped into layers of a fiber with one or more layers being piezoelectric.
Multimaterial composites, in general, and multilayered piezoelectric fibers, in particular,
have undergone a rapid development during the past decade and have been used or
considered for use in multifunctional smart structures. A lot of research has been
done on multilayered piezoelectric fiber since its theoretical inception (Abouraddy et
al., 2007) with an initial focus on the development, fabrication and manufacturing
(Chocat et al., 2011; Egusa et al., 2010; Hadimani et al., 2013). After its realization,
research has focused on its basic elementary functions since multilayered piezoelectric
fibers are multifunctional elements; however, very few published studies have reviewed
the modeling of the recently developed multilayered piezoelectric fibers for structural
health monitoring applications.

The objective of this chapter is to present a critical literature review on the dynamic
behavior of multilayered piezoelectric fiber as actuators, sensors, and/or as a network
of integrated systems embedded inside structures for use in different applications with
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a focus on structural health monitoring applications. The general layout of the var-
ious subsections attempts to organize the presented material in the following order:
terminology, earlier historic work, basic concepts, recent publications, related discus-
sions with critic, and potential considerations/applications. The research needs as well
as research gabs are discussed under related subsections and then summarized in the
conclusions.

2.1 Piezoelectric fibers and composites in smart struc-

tures

The word piezo is derived from a Greek word which means pressure. When mechanical
stresses are applied certain materials generate electricity that is called the direct piezo-
electric effect. The direct piezoelectric effect was first demonstrated in 1880 by the Curie
brothers using crystals of quartz (Curie and Curie, 1880a) and Rochelle salt (Curie and
Curie, 1880b). They interpreted the piezoelectric effect using their knowledge of the
underlying crystal structures.

The Curie brothers, however, did not predict that the application of electricity
would generate strain which is termed the converse (indirect/reverse) piezoelectric ef-
fect. The converse effect was mathematically derived from the principles of thermody-
namics (Lippmann, 1881). In the same year, the Curies published a confirmation of
the existence of the converse effect and derived a quantitative proof of the complete re-
versibility of electric charges to mechanical elastic deformations in piezoelectric crystals
(Curie and Curie, 1881).

Piezoelectricity was not applied and remained in research laboratories till World
War I (1914-1918). The first direct practical application system was the sonar for
submarine detection. The system consisted of two transducers one emitted a high
frequency (ultrasonic) pulse using quartz crystals’ direct piezoelectric effect and the
other transducer picked up the sound bouncing off an object. The object distance
was calculated by measuring the travel time and knowledge of the sound speed in
a medium. During World War II (1939-1945), independent researchers were able to
synthesize and create the first man-made piezoelectric materials leading to PZT (Lead
Zirconate Titanate) (Yang, 2006).

The piezoelectric effect is related to the occurrence of electric dipole moments in
solids. The piezoelectric material is composed of microscopic electric dipoles which usu-
ally have random orientation rendering a small overall dipole density (Doddsa, Meyersb,
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and Loh, 2012; Lee and Tarbutton, 2014). The dipole density or electric polarization
is responsible for producing the piezoelectric effect. In order to produce an efficient
piezoelectric material, it has to be initially oriented such that the electric dipoles align
together. This process of forcing the dipoles to orient themselves is called poling or
electric polarization. The process usually involves subjecting the material to some type
of loading such as stretching, compressing, heating and applying high voltages.

Piezoelectric fiber composites are composed of more than one material with dif-
ferent properties where either the fiber or its layers are piezoelectric and usually the
later is called a multimaterial piezoelectric composite or a multilayered piezoelectric
fiber if the materials are shaped into layers. In addition to the advantages of engineer-
ing the composition of composite materials to desired needs, the usage of composites
is necessary to overcome the limitations of piezoceramics mainly its brittleness there-
fore, allowing for easier surface conformability specially in curved surfaces. Polymer
piezoelectric are flexible but have weaker inverse piezoelectric properties, lower elastic
stiffness, and weaker actuation performance compared to the same dimension piezo-
ceramic. In addition to these limitations, typical manufacturing conditions did not
permit the embedding of polymer piezoelectrics into many materials because they lose
their piezoelectric properties under those conditions thus limiting their usage in many
smart structures. However, recent advances in multimaterial technologies were able to
overcome these limitations.

2.1.1 Theories of piezoelectric

The multi-physics of elastodynamics/electrostatic of a piezoelectric solid continuum is
a cross-disciplinary science combining two (seemingly different) branches of continuum
physics research (Eringen and Maugin, 2012; Maugin, 2013; Pao, 1978; Tzou, 2012).
The foundations of these research sciences were developed in the same period and are
associated with the same research scientists such as Cauchy, Faraday, Fresnel, Gauss,
Green, Maxwell, Navier and Voigt. In 1821, Navier established the theory of elastic
bodies motion which was later adopted by Cauchy and Poisson to model light waves
in aether (a hypothesized elastic medium that was thought to carry light-by the early
20’s century the aether was abolished) (Pao, 1978). Cauchy’s theory of elastodynamics,
published in 1827-1828, was developed to investigate the propagation of light waves
(Eringen and Maugin, 2012; Pao, 1978). While the theory of elastodynamics is con-
cerned with the deformation of elastic bodies under the influence of loads (forces and
couples) within the elastic loading zone, the theory of electrostatic is concerned with
studying the electric charges in the absence of magnetic field (no time variation in
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magnetic fields). All varying quantities of elastodynamic and electrostatic are being
considered as fields, i.e. functions of space and time. The two fields are combined and
coupled together through the constitutive piezoelectric material which constitutes the
space (See the mathematical theories of a piezoelectric continuum solid in appendix A).

2.1.2 Piezoelectric fibers

Most of the existing piezoelectric materials are transversely anisotropic, with the anisotropy
occurring in the electric polarization direction. If the poling direction is chosen (per
IEEE standards recommendations (Standard, 1987)) to be direction 3, the constitutive
elastic material constants tensor C can be expressed in a matrix form as (Nayfeh, 1995)

(2.1)C =



c22 c12 c23 0 0 0

c12 c22 c23 0 0 0

c23 c12 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 1
2

(c22 − c12)


.

The coupling coefficients e tensor for most piezoelectric materials, is in the form of

(2.2)e =

 e13 e23 e33 0 0 0

0 0 0 e24 0 0

0 0 0 0 e35 0


T

where the superscript T represents the transpose, (see table 2.1) for commonly used
piezoelectric material). The two independent constant coefficients in most piezoelectric
materials are e32 and e33. The e33 coefficient is called the longitudinal coefficient,
which describes the electric polarization generated in the same direction as the applied
stress. The e32 coefficient is called the transverse coefficient, which describes the electric
polarization generated in a direction perpendicular to the direction of the applied stress.
It is common to use the terminology mode 3-1 and mode 3-3 to distinguish the two
transduction mechanisms (Ramadan, Sameoto, and Evoy, 2014).

Researchers realized the importance of utilizing the transduction mode 3-3 by align-
ing the direction of the piezoelectric effect with the direction of the applied loads to
increase transduction efficiency (Bent and Pizzochero, 2000; Sodano, Inman, and Park,
2004). Three leading industrial types of piezoelectric fibers were developed using mode
3-3. These three types are Active Fiber Composites (AFC), Macro Fiber Compos-
ites (MFC), and multilayered piezoelectric fibers. Figure 2.1 shows the three industrial
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Material
Elastic Constants Density Piezoelectric Relative
×1010(N/m2) 103 (kg/m3) ×100(C/m2) Permittivity

c22 c33 c12 c23 c44 ρ e32 e33 e24

ε33

ε0

ε11

ε0isotropic λ+ 2µ λ λ µ
PVDF .25 .9 .075 .072 .025 1.78 .046 -.3 -.01 12 14
P(VDF-TrFE) .47 .45 .257 .213 .12 1.3 .045 -.18 -.1 12.7 14
PZT-4 13.9 11.5 6.78 7.43 2.5 7.5 -5.2 15.1 12.7 631 728
PZT-5A 16.9 13.2 8.20 9.00 3.3 7.4 -1.7 10.9 12.7 830 916

Table 2.1: Commonly used piezoelectric material properties.

types of piezoelectric fibers, with their time progress, applications, future prospects and
cross sections showing their basic components (Konka, Wahab, and Lian, 2011; Schulz
et al., 2000; Williams et al., 2002b).

Active Fiber Composites are fabricated by extruding piezoceramic fibers then em-
bedding them in an epoxy matrix with interdigitated electrodes (Lin et al., 2013; Lin
and Sodano, 2013). Then, laminated composites can be easily laid up from Active
Fiber Composites as initially developed at the Active Materials and Structures Labo-
ratory (AMSL) of Massachusetts Institute of Technology (MIT) (Bent, Hagood, and
Rodgers, 1995). Typical research applications of AFC are active vibration control and
noise levels reduction of helicopter rotor blades as shown in figure 2.1. In addition to
vibration suppression, and noise reduction, Active Fiber Composites are able to adjust
the twist of the blades which controls helicopter maneuverability thereby improving the
overall performance of these blades reduces noises, enhances the experience for riders,
and increases stealth. Research studies on Active Fiber Composites have focused on
using them as actuators (Bent, Hagood, and Rodgers, 1995) and enhancing their perfor-
mance (Bent and Hagood, 1997); however, very few have investigated their application
in structural health monitoring (Schulz et al., 2000).

Macro Fiber Composites are manufactured from rectangular piezoceramic fibers,
which are cut from piezoceramic wafers using a computer-controlled dicing saw, and
hence, saving the overall costs compared to AFC (Wilkie et al., 2000). Macro Fiber
Composites (Williams et al., 2002a) are considered in the vertical tail fins of fighter
aircraft. The two sides of tail fins have few Macro Fiber Composites actuators embedded
under the fiberglass plates as seen in figure 2.1. The fins undergo bending and torsional
stresses during flying and the actuators counteract these stresses. This reduction in
stress has increased performance and led to longer fin life. Few research studies on
applying surface bonded Macro Fiber Composites to generate and sense elastic waves
have been conducted (Raghavan, Cesnik, et al., 2007).
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Active Fiber Composites (Bent and Hagood, 1997; Bent, Hagood, and Rodgers,
1995; Bent and Pizzochero, 2000) and Macro Fiber Composites (Wilkie et al., 2000;
Williams et al., 2002a; Williams et al., 2002b) use interdigitated electrodes where the
electric field has to pass through the composite matrix dissipating energy (Raghavan and
Cesnik, 2005; Raghavan, Cesnik, et al., 2007). Typically, piezoelectric fiber composites
are bonded to the surface of a structure in the form of a patch or laid up as active layers
along with fiber-reinforced lamina and were designed for mono functional structures
as structural sensing and actuation. Although piezoelectric fiber composite provides
advantages over monolithic piezoceramics, they were not integrated in structures and
were not intended to provide any additional functionality not even a load- carrying
functionality.

Researchers realized the limitations of the piezoelectric fiber composites (AFC and
MFC) and developed other alternatives such as the hollow Active Fiber Composites
(Brei and Cannon, 2004) and the Active Structural Fiber composites. The Active
Structural Fiber Composites were conceptualized (Lin and Sodano, 2008), fabricated,
and characterized (Lin and Sodano, 2013) to perform sensing and actuation, in addition
to providing critical load-carrying functionality; however, they did not use mode 3-3.
The recently developed multilayered piezoelectric fiber (Egusa et al., 2010; Hadimani
et al., 2013) uses mode 3-3 efficiently with the electrodes directly connected to the
piezoelectric material allowing for individual fiber transduction and control.

The multilayered piezoelectric fibers are fabricated by assembling a large scale pre-
form and repeated drawing from the initial preform to the desired final fiber (Abouraddy
et al., 2007; Chocat et al., 2011; Egusa et al., 2010; Stolyarov et al., 2013; Tao, Stol-
yarov, and Abouraddy, 2012). Researchers proposed large scale continuous production
using standard extrusion machines as well as changing the constitutive piezoelectric
material meanwhile others considered combining piezoceramics to PVDF (Bian, Liu,
and Hui, 2016; Hadimani et al., 2013; Lu, Qu, and Skorobogatiy, 2017). Recent progress
in fabricating and mass manufacturing (Hadimani et al., 2013) of multilayered piezo-
electric fibers with a transverse poling direction in the cross section makes it possible
to develop new multifunctional smart composites, which can be used in different high
frequency applications. The multiple functionality fiber can sense pressure, tempera-
ture and light as well as it can generate pressure, and light can pass through it. In
other words the piezoelectric fibers can see, hear, sense and communicate (Abouraddy
et al., 2007). Studies suggest that polymer piezoelectric such as PVDF exhibits better
sensing performance than piezoceramic (Rathod et al., 2010).
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Figure 2.1: Piezoelectric fibers progress landmarks, applications, future prospectives
and cross section.

14



2.2 Modeling techniques of multilayered piezoelectric

fibers in structures

Mathematical modeling forms the basis of several studies of theoretical and experimen-
tal structural dynamics, such as the dynamic response of structures under elastic waves,
and the research concerning the excitation and focusing of waves, among others. The
working range of piezoelectric application is in the high-frequency spectrum. Many
investigations have been conducted in the field of piezoelectric, smart structures and
elastic wave modeling. This section discusses the mathematical modeling of structural
dynamics with a focus on the elastodynamics of multilayered piezoelectric fibers.

Mathematical modeling could be divided into modeling the dynamics of anisotropic
fibers, multilayered models, interaction models and variational analysis based models.
The piezoelectric layer and multilayered models deal with the research work concern-
ing a single layered fiber or cylinder under electromechanical loading while interaction
models examine the multiple interactions between multiple fibers and damages.

2.2.1 Dynamics of anisotropic fibers

An important issue in modeling piezoelectric materials in general is that they are
anisotropic. Since newly manufactured multilayered piezoelectric fibers are poled trans-
versely in the cross section, existing models for isotropic or transversely-isotropic layers
are not sufficient for describing the behavior of the layer.

The analytical solution is quite complicated (for mathematical details see appendix
B), involving the solution of eigenvalue problems with three types of elastic waves
propagating in an anisotropic media, one quasi-longitudinal and two quasi-transverse
(Nayfeh, 1995). The roots of Christoffel equation are the eigen values representing
phase velocities cL, cSV , cSH which correspond to the displacement polarization direc-
tions. For a given material, there are three normalized eigen vectors which are depen-
dent on their corresponding eigen values. The normalized eigen vectors are the unit
displacement polarization direction vector û. For an arbitrarily selected direction in an
anisotropic material, three elastic waves can propagate one quasi-longitudinal and two
quasi-transverse. In the general case, none are pure longitudinal nor pure transverse.
Pure mode is a situation in which the displacement polarization direction coincides with
the propagation direction.

In general cases, the dynamic displacement field in an anisotropic elastic medium
can no longer be decomposed into independent displacement potentials (Towfighi and
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Ehsani, 2002). Therefore, well-known solution techniques applicable to isotropic me-
dia, based on displacement potentials, cannot be applied directly to anisotropic media.
The interaction between elastic waves and anisotropic layers in planar layered media
has been studied analytically and numerically (Rokhlin and Huang, 1992; Rokhlin and
Huang, 1993). The corresponding problems for cylindrical layers have also been studied
under simplified geometric or loading conditions, such as assuming isotropy in the cylin-
der cross section (Honarvar and Sinclair, 1996; Nayfeh, 1995; Nayfeh, Abdelrahman,
and Nagy, 2000; Nayfeh and Nagy, 1996; Sodagar and Honarvar, 2010).

Plate and shell models have also been used in modeling the electromechanical be-
havior of piezoelectric layers (Dimitriadis, Fuller, and Rogers, 1991; Tzou, 2012). These
models were developed based on the assumptions of Kirchhoff-Love for vibration analy-
sis of plates and shells. The formulation of the governing equations is based on angular
momentum.

For the current case of anisotropic elastic media coupled with dielectric properties
through the piezoelectric coefficients, there are no analytic solutions available. However,
there have been various attempts to solve the problem numerically (De Basabe and Sen,
2007; Wang and Rokhlin, 2004).

2.2.2 Multilayered piezoelectric fibers

A multilayered piezoelectric fiber is usually formed by many concentric cylindrical lay-
ers with at least one piezoelectric layer. Elastic waves in a medium with layers are
often classified according to their displacement polarization directions. Displacement
polarization directions that are out of the fiber cross section plane and in the plane of
the layers are called SH waves (horizontal shear) or Love waves (1911). Displacement
polarization directions that are in the fiber cross section plane and perpendicular to the
layers are called P-SV waves (pressure and vertical shear) or Rayleigh waves (1912).
Both SH and P-SV waves are dispersive (Love, 2013). On the interface between dif-
ferent media, there is another type of wave traveling along the elastic solid medium,
found by Rayleigh in an isotropic halfspace and by Stoneley at the interfaces of solids.
Interface waves decay exponentially away from the interface. Half-space surface waves
propagating at the interface of fluid-solid are widely known as surface acoustic waves
(SAW). When interface waves are guided between layers they are referred to as guided
waves. A waveguide is formed by guiding the wave by a plane or by a cylindrical surface.

Host structures can be considered as an embedding layer and an infinite or un-
bounded layer in cases where this embedding layer’s dimensions are relatively larger
than the fiber radius. In host structures and for an arbitrarily selected direction in an
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Wave type Particle motion, main assumptions
P-waves Parallel to the direction of wave propagation
S-waves Perpendicular to the direction of wave propagation
Flexural waves Elliptical, plane sections remain plane
Love (SH) waves Out of plane horizontal shear in layers
P-SV waves In plane pressure and vertical shear in layers
Interface waves Elliptical, amplitude decays quickly from interface
Guided waves Elliptical, guided by plane or cylindrical surfaces

Table 2.2: Wave types in elastic solids.

anisotropic material three elastic waves can propagate one quasi-longitudinal and two
quasi-transverse. In the general case, none are pure longitudinal nor pure transverse.
All displacement polarizations are pure mode and the transverse wave is arbitrarily po-
larized in isotropic elastic media. The propagation of two types of elastic waves, P-wave
and S-wave in isotropic media, and three types of elastic waves in anisotropic media,
one quasi-longitudinal and two quasi-transverse, were found by Cauchy and Poisson
(1828). P-waves are primary (or alternatively called pressure, dilatational, irrotational,
longitudinal) waves and S-waves are secondary (or alternatively called shear, rotational,
distortional, transverse) waves. The different types of elastic waves are shown in ta-
ble (2.2).

Considering the fact that the piezoelectric layer is relatively thin in comparison to
the radius of the fiber, simplified layer models could be used to overcome the difficulties
associated in dealing with the anisotropy. Modeling of thin layers in composite materials
has been extensively investigated (Kushch et al., 2011; Rajabi and Hasheminejad, 2009;
Zhong and Meguid, 1997). In these cases; the interphase, which may represent a third
phase between the fiber and host medium (Wang et al., 2005), a bonding layer (Wang
and Meguid, 1999) or an imperfect interface caused by deterioration (Chu and Rokhlin,
1995), is usually modeled by distributed interface springs. The spring model (Aboudi,
1987; Bian, Chen, and Lu, 2008; Librescu and Schmidt, 2001; Zhong and Meguid, 1997)
however, ignores the hoop stresses and the inertial effect, assuming that the stresses are
uniform across the thickness of the layer. As a result, the equations of motion of the
layer are not satisfied. When high frequency dynamic loading is applied, the inertial
effect of the anisotropic layer needs to be considered.

Numerical solutions for more general anisotropic cylindrically layered media under
elastic waves have also been reported in the recent literature (Gsell and Dual, 2004;
Norris and Shuvalov, 2010; Norris and Shuvalov, 2012). A possible method in modeling
the layer is to simplify it as distributed interface springs to simulate the traction-
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displacement relation across the layer. But simplified analytical models for transversely
anisotropic cylindrical layers under general dynamic loading are limited to interface-
spring models. For the case of radially poled piezoelectric fibers, the piezoelectric layer
poses problems in modeling the mechanical behavior because of both its anisotropy
and curvature. Abdel-Gawad and Wang (2013) proposed a simple yet an accurate
anisotropic layer model.

For relatively few layers the direct approach can be used (Abdel-Gawad and Wang,
2013). However, as the number of layers increases, the direct approach becomes cum-
bersome, and the transfer matrix technique becomes viable. According to Nayfeh,
Abdelrahman, and Nagy (2000), the transfer matrix was originally introduced for flat
interfaces by Thomson (1950) and later developed by Haskell (1953). The transfer ma-
trix was later used by many other researchers (Hasheminejad and Alaei-Varnosfaderani,
2012; Huang, Wang, and Rokhlin, 1996; Huang, Rokhlin, and Wang, 1995; Lan and
Wei, 2013; Nayfeh and Nagy, 1996; Rajabi and Hasheminejad, 2009) and was catego-
rized as a propagator matrix (Pao, 1983). In this technique, a local layer’s transfer
matrix relates field variables (i.e. stresses and displacements) between the layer inter-
faces. Then by extending the solution from one layer to the next while satisfying the
continuity condition, a global matrix can be obtained (Wu, Chiu, Wang, et al., 2008).

The weakness of the transfer matrix method is its instabilities when the relative
frequency is large (Dunkin, 1965; Lowe, 1995). The cause of the problem is the numeric
instability of the transfer matrices due to a combination of both decaying and growing
coefficients when inhomogeneous waves are present. Few investigations to develop a
numerically robust transfer matrix were conducted (Bouchon, 2003; Kennett and Kerry,
1979).

An alternative to the transfer matrix, and a quite different, method is the direct
global matrix method (Knopoff, 1964) and later developed for numerical stability of
cylindrical layers by Ricks and Schmidt (1994). In direct global matrix method, the
wave fields at all the interfaces and boundaries are assembled together in a single matrix
consisting of rows for each equation of each layer, therefore, producing a very large
matrix for multilayered media. This method is numerically stable but relatively slow.

Elastic wave functions or Bessel-Fourier functions are the solution tools of analysis
for elastic waves in homogeneous isotropic media in curvilinear coordinates. For waves
in a cylinder or a sphere, they are derived by separation of variables each depending
only on one spatial coordinate (for mathematical details see appendix B). Solutions
of the wave equation are called the wave functions in circular cylindrical coordinate
(r, θ, z), they are linear combinations of Bessel-Fourier,
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(2.3)H(1),(2)
n (kr)einθeiγze−iωt

where H(1),(2)
n (.) is a linear combination of Bessel functions of the third kind also known

as H(1)
n (.) Hankel function of the first kind and H(2)

n (.) Hankel function of the second
kind. The difficulties of solving elastic wave equations for anisotropic and inhomoge-
neous media is caused by the inability to separate variables. Wave function expansion
are not the only tools of analysis available but there are other tools of analysis for
example, the integral representation, state space, method of optimal truncation, eigen-
function expansion and mix of methods (Auld, 1990; Honein et al., 1991; Mow and Pao,
1971; Opsal and Visscher, 1985).

The transition or T-matrix is a computational technique introduced by (Waterman,
1969) initially for light wave scattering then for acoustic and elastic waves (Waterman,
1969; Waterman, 1976; Waterman, 2009). In this method which is different from the
transfer matrices, the T-matrix relates the unknown scattering coefficients to the inci-
dent wave coefficients. The formulation is usually based on the integral representation
(Morse and Feshbach, 1953). The method has been extensively researched (Varadan,
1978; Varadan and Varadan, 1979; Varatharajulu and Pao, 1976).

Elastic waves in an inhomogeneous medium are treated by various approxima-
tion methods such as perturbation over the averaged material properties of a random
medium (Karal Jr and Keller, 1959) and the geometric ray theory (Cerveny, 2005).
Most of these approximations are not accurate to identify damages but are suitable for
treating the whole inhomogeneous medium as an equivalent substitute composite.

2.2.3 Multiple wave interactions

Multiple interactions refers to “how” multiple piezoelectric fibers interact with each
other and “how” they interact with damages. The main reason for studying elastic
wave interaction involving piezoelectric fibers and damages is mostly for its potential
application to structural health monitoring and damage diagnostics. This and other
applications such as the general design of aerospace, nuclear, and submarine structures
have generated a great deal of interest in the high-frequency scattering of elastic waves
and diffraction by a body with imperfect interfaces. The scatterers, the bodies causing
the scatter of waves, are either the piezoelectric or the embedded damages which involve
all sorts of damages: voids, inclusions, and cracks, mostly irregularly shaped in finite
geometries with complicated free surfaces nearby.

Since the main focus is on the dynamic behavior of piezoelectric fiber, multiple
wave interactions are refraction, reflection, diffraction and transmissions as shown in
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Figure 2.2: Reflection, refraction, transmission of an incident wave on a multilayered
fiber.

figure 2.2. Refraction is the change in the direction of propagation of a wave due to a
change in its transmission medium. Reflection is the change in the propagation direction
of a wavefront at an interface between two different media so that the wavefront returns
into the medium from which it originated. Diffraction is the deviation of the wave from
its original path and it refers to various phenomena which occur when a wave encounters
an obstacle or a slit. Diffraction involves the transmission and bending of waves around
an obstacle (Bogan and Hinders, 1994; Kraut, 1975).

There is no general wide consensus on the term scattering and it is often confused
with diffraction since researchers use them interchangeably to express different wave
phenomena. Rayleigh expressed the scattered wave as the difference of the total wave
field observed in the presence of an obstacle and the incident wave, the scattered wave
then consisted of the reflected part by the obstacle into the illuminated zone, and both
the refracted and diffracted by the obstacle into the shadow zone. In that sense, the
definition of wave scattering has a broader implication than the original meaning of
"wave diffraction" referring to the general phenomenon of wave changes in propagation
direction or splitting into several waves upon encountering a physical boundary (Cai,
1998). However, in the course of studying diffraction of waves, reflections and refractions
are integral parts and they both generally describe the wave behavior. Thus "scattering"
and "diffraction" are often used to describe the same wave phenomenon. When the
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diffracted portion of the scattered waves are of importance, especially in connection
with the passage of waves through an object with sharp edges, the usage of "diffraction
of waves" usually prevails. When the diffracted part has a lesser role, especially in the
case of an obstacle without sharp edges, the title of "scattering of waves" is usually
preferred. Since the scattering of elastic waves is not different from the scattering of
sound or electromagnetic waves, diffraction can be defined as the deviation of the wave
from its original path while scattering is the radiation of secondary waves from the
obstacle. In an elastic medium, the obstacle is usually a damage in the form of a cavity,
a crack or an inhomogeneity (a substance with a different elastic property from the
medium).

There are many different definitions to the term “damage” according to the area
of study. In the area of structural health monitoring, damage(s) can be understood
as a defect, an imperfection or failing which hinders engineering structures functional
and working conditions. In the most general terms, damages can be defined as changes
introduced into a structure that negatively affect its current or future performance.
Traditionally, the concept that damages are not meaningful without a comparison be-
tween two different states of the system, one of which is assumed to represent the
initial reference, and often undamaged, reference baseline state can be part of the def-
inition, however, this concept has been modified since the undamaged state is usually
unavailable (Anton, Inman, and Park, 2009). The definition of damages in this article
will be limited to changes either in the material and/or geometric properties of these
structures since the main focus is on the study of structural health monitoring using
multilayered piezoelectric fibers. These changes include boundary conditions, interface
imperfections, voids, inhomogeneities and embedded cracks, which adversely affect the
current or future performance of these structures.

Defects, flaws and/or faults are terms used to represent damages although are not
universally accepted. The terms defects or flaws are more often used in the industrial
and manufacturing industry to indicate manufacturing defects or flaws in products (Sun,
Waisman, and Betti, 2016; Zhao et al., 2007). Fault(s) is a closely related term used
more frequently in electrical and reliability engineering (Ruffino and Delsanto, 1999).
Defects, flaws or faults could grow and coalesce at various rates depending on loading
conditions to cause component and then structural operation deficiencies to failures.
The term damage does not necessarily imply a total loss of the system functionality,
but rather that the system is no longer operating in its optimal conditions.

Drastic idealization is necessary in order to compute scattering interactions, and
all theories, past, and present, make many simplifications. Some simplifications are
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done on the differential solution by using eigen functions (Bessel-Fourier) although the
singular behavior of the crack opening displacement (COD) cannot be described using
eigen functions. It was shown that although the edge singularity in the COD is crucial
to the computation of near field local stresses, it has a minor direct effect on the overall
field and the overall scattering (Opsal and Visscher, 1985; Visscher, 1981). The total
wave outside the scatterer is

(2.4)u = uin + usc

where uin is the incident wave and usc is the scattered wave.
The near field stress of the inclusion or inhomogeneity recursively interacts with

the incident wave developing stress concentration (Mow and Pao, 1971; Thompson and
Wadley, 1989). Stress concentration is the sharp increase of stress over a nominal
value in a localized region of a structural member due to diffraction and scattering
from geometric discontinuities such as holes, corners, notches and cracks. Therefore,
one of the most fundamental issues regarding the use of piezoelectric fibers in smart
structures is to accurately evaluate the resulting elastic waves. Elastic waves scattering
of circular and cylindrical cavities were studied by Lee and Cao (1989) and Lee and
Karl (1992). The interaction of waves with arrays of vertical circular cylinders in water
was studied by Linton and Evans (1990). Existing solutions which account for the
dynamic interaction and scattering deal mainly with defects using boundary element
method (Manolis and Beskos, 1988; Mykhaskiv, 2005; Rizzo, Shippy, and Rezayat,
1985), Bessel’s addition theorem (Lee and Cao, 1989; Lee and Karl, 1992; Martin, 2006),
surface integral methods (Varadan, 1978; Varadan and Varadan, 1979; Varatharajulu
and Pao, 1976), statistical approximations of effective field methods (Varadan, Varadan,
and Pao, 1978), the superposition technique (Meguid and Wang, 1995), and the pseudo
incident wave method were used to deal with cracks (Meguid and Wang, 2000; Meguid
and Wang, 2013; Wang and Meguid, 1997; Wang and Meguid, 1999). Semi-analytical
integral equation methods have been used for solving elastic waves in a plate with
multiple circular holes (Lee and Chen, 2010) and studying the composite fibers (Bose
and Mal, 1974), (Yang and Mal, 1994), layered circular elastic cylinders (Cai, 2004) and
(Sumiya, Biwa, and Haïat, 2013). Simplified models have been used to simulate radially
polarized piezoelectric embedded actuator dynamics either by considering axisymmetric
loading (Kim and Lee, 2007; Lü et al., 2009) or by assuming an isotropic piezoelectric
material (Sedighi and Shakeri, 2009).

In spite of the fact that the multiple interaction of fiber reinforced composite has
received considerable attention, only a very limited number of published studies treat
the electromechanical interaction of wave fields around multilayered piezoelectric fiber
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subject to plane elastic waves i.e. longitudinal (P-waves) and in-plane shear (Shear
Vertical SV-waves). This is mainly due to the difficulties associated with the mode
conversions that occur at the boundaries resulting from the coupling of P/SV wave
modes in the dynamic equations and the lack of explicit solutions for anisotropic layers
under dynamic loads. In addition, many available techniques, result in a system of
equations which are highly singular and cannot be solved directly by numerical methods.
Analytical methods are highly accurate, but they are developed for simple specific
geometries i.e. for a plate or a cylinder and they are unable to model complex arbitrarily
geometries.

The scattering of elastic waves by damages and specially cracks can be investigated
by the use of integral equation representation (Erdogan and Gupta, 1972). The bound-
ary conditions around the damage are established which is mixed boundary conditions
for cracked surfaces. The integral equations can be analytically solved, for simple cases,
by expanding the unknown crack opening displacement in the integral equation in a
set of orthogonal polynomial functions and the integral equation is projected onto the
same set of functions (Estrada and Kanwal, 2012; Krenk, 1975). The procedure can
be used automatically for hypersingularity in the integral equation or by reducing sin-
gularity order (Bostrom, 2003; Chan, Fannjiang, and Paulino, 2003). The number of
terms needed to numerically solve the expanded polynomial is related to the relative
frequency by kR + 6 with truncation after 50 terms for kR < 50 (Bostrom, 2003).

2.2.4 Variational modeling and numerical analysis

Although analytical solutions have been proposed for a wide variety of cases, sometimes
the geometry and/or the boundary conditions increase the mathematical complexity of
the solution to such a degree that numerical methods are required to obtain a solution.
The variational principles of elastodynamics/electrostatic can be used to reformulate
the governing equations so they are amenable for approximate solutions and numerical
calculations (Altay and Dokmeci, 2007; Oden and Reddy, 2012).

Finite Element (FE) method is a widely used method to numerically analyze com-
plicated structures. In the analysis of elastic waves, FE method can be divided into
time-domain and frequency domain analysis. Time-domain FE methods are obtained
by integration over time of the discretized equations. The solution for an elastodynamic
problem is based on an assumed polynomial approximation for displacements. These
assumed displacement polynomials are required to satisfy the weak form of the govern-
ing differential equation, which yields the stiffness and the mass matrices. Time-domain
analysis has been used to predict the performance of ultrasound transducers (Hossack
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and Hayward, 1991; Lerch, 1990; McKeighen, 2001; Mills and Smith, 2002; Zhou, Wu,
and Ma, 2006). The effect of multiple layers, bonding layer and electrodes on the per-
formance of the transducer can be addressed using this technique (McKeighen, 2001;
Zhou, Wu, and Ma, 2006).

The frequency domain FE is based on discretizing the Fourier transform of the
governing equation (Gopalakrishnan and Mitra, 2010) and the solutions are obtained
in terms of the frequency. The Fast Fourier Transform-Spectral Element (FFT-SE)
method is essentially a finite element method formulated in the frequency domain
(Beskos and Narayanan, 1983; Gopalakrishnan, Chakraborty, and Mahapatra, 2007;
Rizzi and Doyle, 1992; Zagrai et al., 2010). Frequency-domain FEM has been broadly
used to analyze piezoelectric structures and ultrasound transducers (Bai et al., 2004;
Mukdadi and Datta, 2003; Mukdadi et al., 2002; Pauley and Dong, 1976; Siao, Dong,
and Song, 1994; Taciroglu et al., 2004) since it can easily identify resonant frequencies.
However, some boundary conditions and complicated geometries are difficult to ana-
lyze in this domain (Ballandras et al., 2005; Ballandras et al., 2003; Predoi et al., 2007;
Wilm, Ballandras, and Laude, 2004; Wilm et al., 2005).

The Spectral Element (SE) method is also reported in the literature to refer to the
time domain spectral spatial analysis in which the interpolation nodes of the elements
are located at points corresponding to zeros of an appropriate family of Jacobi poly-
nomials (usually Legendre or Chebyshev). A set of local shape functions consisting of
Lagrange polynomials, which are defined at these points, are built and used. In his first
work on this subject, Patera (1984) proposed a sub-parametric approach for standard
FEM. This means that the high-order polynomials are used for field variable approx-
imation while the geometry is described by a low order polynomial. He introduced
high-order Lagrange interpolants along with the Chebyshev-Gauss-Lobatto integration
rule leading to a diagonal mass matrix allowing for efficient computation. The spectral
element method in time domain could be considered a special case of the p-version
FEM with the exception for the specific approximation functions it uses.

The Semi Analytical Finite Element (SAFE) combines both the finite element and
analytical model to overcome some of their modeling deficiencies. Early research on the
(SAFE) method was conducted to solve the problems of guided wave propagation in a
laminated orthotropic cylinder (Nelson, Dong, and Kalra, 1971) and a waveguide with
an arbitrary shape but uniform cross-section (Lagasse, 1973). The SAFE method was
used to study guided wave propagation in rods, rails, and pipes (Hayashi, Song, and
Rose, 2003; Lee, 2006). The SAFE method was used to detect the condition of bonded
joints with viscoelastic damping (Matt, Bartoli, and Scalea, 2005) and was recently
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used to analyze guided wave propagation in hollow cylinders with viscoelastic coatings
(Mu and Rose, 2008).

The Finite Difference (FD) method solves the elastodynamic wave equations by re-
placing the derivatives in space and time with their finite-difference approximations.
This numerical approach needs a grid of points to be set up in a structured way. Ac-
cording to this method, the Taylor expansion of a continuous function around some
point is truncated after an arbitrary number of terms that determines the order of
accuracy of the finite difference formula. FD method was used in modeling the scat-
tering of elastic waves by cracks (Harker, 1984; Scandrett and Achenbach, 1987; Wu
and Gong, 1993). The FD method was used to simulate the ultrasonic waves for the
inspection of the inner-surface breaking cracks with time-domain signal analysis and
processing of displacement propagation (Scandrett and Achenbach, 1987). The FDM
with staggered grid was used to study impact induced transient elastic waves in het-
erogeneous plates with cavities or inclusions (Wu and Gong, 1993). The FD method
was applied to study the scattering of Lamb waves in cracked plates (Harker, 1984)
and the potential of using the FD method in modeling non destructive testing system
was demonstrated by many researchers (Harker, 1984; Scandrett and Achenbach, 1987;
Wu and Gong, 1993). A combination of FD method with the Perfectly Matched Layer
(PML), an absorbing layer to model unbounded media, has been done to study bulk
elastic wave propagation and scattering in an infinite media (Satyanarayan et al., 2008;
Satyanarayan et al., 2007; Sridharan et al., 2006; Yin, Morris, and O’Brien Jr, 2003).
Also, the use of commercially available FD method software packages is not uncommon
(Yang, Cascante, and Anna Polak, 2009).

Another related approach to the finite difference is the Local Interaction Simulation
Approach (LISA) (Delsanto et al., 1997) which discretizes the system into a grid or lat-
tice like finite difference method. The formulation is based on replacing the spatial and
temporal derivatives in the elastodynamic equilibrium equations by recursive relations
based on FD transformations. It was initially developed to study wave propagation in
isotropic heterogeneous media in parallel computation computers (Delsanto, Schechter,
and Mignogna, 1997; Delsanto et al., 1992; Delsanto et al., 1994). Experimental val-
idations of LISA for both isotropic and anisotropic media were later conducted and
reported (Ruffino and Delsanto, 1999). Another LISA was compared with experimen-
tal results using laser vibrometer for elastic plates. LISA was used for studying the
non-linear interaction of waves and cracks (Shen and Cesnik, 2017).

The development of the generalized finite difference (GFD) method is considered as
an evolution of the FD method by combining the variational principles and element free
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Galerkin methods (meshless methods) (Gavete, Gavete, and Benito, 2003). The GFD
can be applied over general or irregular clouds of points thus simulating irregular shapes.
The main drawback of the GFD method is the possibility of obtaining ill-conditioned
nodes (Benito, Urena, and Gavete, 2007).

The Boundary Element method (BEM) is a numerical computational method for
solving linear partial differential equations which have been formulated in integral form
and the formulation is derived by applying Green’s identity. This identity converts a
volume (domain) integral to a surface (boundary) integral, therefore, the name bound-
ary integral equation method (BIEM). This reduction in dimensions is a significant
advantage over domain-type approaches like the FEM and the FDM. However, BEM
has been widely used in solving various vibration analysis problems when compared to
studies of elastic wave scattering (Manolis and Beskos, 1988).

The Pseudo-spectral (PS) method could be considered as an extension to the finite
difference method in which the value of the local derivative of a single collocation point
is dependent on all the values of the function at all the collocation points. In periodic
boundary conditions, the mesh of points is uniform and the approximating function is
expanded in terms of Fourier series. In the case of non-periodic boundary conditions,
the mesh is non-uniform and the approximating function is as a type of the Jacobi family
of polynomials, usually Chebyshev or Legendre is used (Trefethen, 2000). SE method
differs from both PS and conventional FE methods in two aspects: 1) spectral methods
utilize high degree approximating functions with support over the entire domain, and 2)
FE methods use low degree approximating functions with compact support (piecewise
polynomials). SE method exploits the advantage of high degree functions, along with
the flexibility finite element methods provide in representing geometrically complex
domains (Sprague and Geers, 2008).

Trefftz methods are a type of finite element in which the test and trial functions
are solutions of the governing differential equation. For elastic wave problems, their
trial functional space contain oscillating basis functions and are expected to achieve
better approximation properties than classical piecewise-polynomial spaces. The main
difficulties encountered in the implementation are the assembly and the ill-conditioning
of linear systems, some strategies have been proposed to cope with these problems
(Hiptmair, Moiola, and Perugia, 2015).

The eXtended Finite Element Method XFEM extends the traditional finite element
(FEM) by exploiting the partition of unity property (Melenk and Babuška, 1996) which
allows enriching the solution with discontinuous functions. It retains the advantages
of meshfree methods (Gavete, Gavete, and Benito, 2003) and alleviates the limitations
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of classical finite element; therefore, it has been used to model various discontinuities:
strong (cracks) and weak (material interfaces) (Moes, Dolbow, and Belytschko, 1999).
The method has been successfully applied in solving damage identification of isotropic
medium mostly in static problems (Sun, Waisman, and Betti, 2013; Sun, Waisman,
and Betti, 2014a; Sun, Waisman, and Betti, 2014b) with few publications handling
some cases of the dynamic problem (Jung and Taciroglu, 2016; Rabinovich, Givoli, and
Vigdergauz, 2007). In one case, the time harmonic of a reduced elastic wave (with only
one wave number was considered) which is equivalent to considering SH waves. The
other case considered the transient elastodynamic of plates (Jung and Taciroglu, 2016).
Special care should be given to the mesh size while handling the dynamic problems
using conventional XFEM (Livani, Khaji, and Zakian, 2018).

Although most of FE methods can model complicated geometries and loads, they
are not as efficient as analytical methods in modeling high frequencies since their mesh
size needs to be 10 to 20 times the wavelength of the highest frequency contents of
interest for proper modeling (Lee, Kim, Leung, et al., 2000). High frequency contents
are expected in micro and nano fibered structures which is the size range of multilayered
piezoelectric fibers with a ∼ 500 µm radius and a layer of ∼ 40 µm in thickness. The
wavelength contents are comparable to the fibers and damages embedded in those
structures. The absolute frequency contents for MEMS, NEMS are high although their
dimensionless frequency might be small in which FE fails to model it. FE methods
suffer from numerical dispersion leading to false waves (Ostachowicz and Kudela, 2011).
The use of FE methods in unbounded media is also an issue (Ekevid and Wiberg, 2002;
Kawamura et al., 2011; Pettit et al., 2014; Rajagopal et al., 2012; Wolf and Song, 1996).
Almost all FE methods need remeshing for each configuration when searching the space
of solutions as in damage identification; therefore, the need to rely on analytical models
is essential.

2.3 Applications of piezoelectrics

This section discusses current applications, present research and future of piezoelectric
prospectives with a focus on piezoelectric fibers. While the research, development
and fabrication of piezoelectric fiber systems is important, the ability to realize these
composite structures into realistic applications has dramatically evolved.

27



Tennis racket
Piezoelectric surgery

Precision Robot

Satellite
Sonar wave sensit ive skin

Airplane

Igniter

Fabric

Shoe

Bionic hand

Automotive

Figure 2.3: Applications of piezoelectric in smart composites structures.

2.3.1 General and traditional applications

Numerous research studies have been dedicated to implementing piezoelectrics in gen-
eral into realistic and industrial applications. Traditional applications of piezoelectric
in smart-structures are active vibration control, active vibration suppression of aircraft
tail, the position control of flexible robot arms, the smart skin systems for submarines,
the control of satellites and space structures and the shape control of advanced struc-
tures (Li et al., 2011; Lin et al., 2013; Williams et al., 2002b). Piezoelectrics are being
used or considered for use in the different applications outlined in figure 2.31 with ex-
amples in different fields, industries, and prospects in multifunctional smart structures.

In aerospace industry, the piezoelectrics have been used in active morphing un-
1All graphics in figure 2.3 are redrawn
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manned aerial vehicles wings and tails, active vibration suppression of aircraft wings,
the control of satellites and space structures (Barbarino et al., 2011; Li et al., 2011;
Lin et al., 2013). Bulk piezoelectric composites, which are manufactured by embedding
piezoelectric elements mainly fibers into a matrix material usually a polymer, have been
successfully used as composite panels typically in applications where high structural
rigidity and low weight are required which are typical in the aerospace industry. The
composite panels serve as a multi-functional component forming an airplane fuselage
body, reducing the internal noise levels and sensing the outside pressure conditions.

In submarine industry, piezoelectrics have been applied as the smart skin systems
for submarines, depth finders and ultrasonic sensing (Uchino, 1996). With the advent
of meta-materials as an emerging technology realizing what seemed to be impossible
to achieve such as cloaking has been achieved (Haberman and Norris, 2016). The
piezoelectrics would be an essential component in the active control of meta-materials
(Casadei et al., 2012) with potential applications in cloaking of submersibles vehicles
(Cummer and Schurig, 2007; Gustavo Mendez et al., 2017; Rajabi and Mojahed, 2018).

In manufacturing industry, piezoelectrics are used in ultrasonic machining, the po-
sition control of flexible robot arms (Williams et al., 2002a). In automotive, they have
been applied in airbag sensor, air flow sensor, audible alarms, fuel atomiser, key-less
door entry, seat belt buzzers, knock sensors, ultrasonic detectors and lane change sen-
sors (Lin et al., 2013). Bulk piezoelectric composite panels can serve as structurally
integrated components forming the body of vehicles while storing energy.

In biomedical industry, piezoelectrics have been used in piezoelectric surgery, health
monitoring sensor, energy harvesting, ergonomics bio-interfacing structures and bionic
shape control (Manbachi and Cobbold, 2011; Sodano, Inman, and Park, 2004). Piezo-
electric surgery is an outstanding successful blood free precision surgery using piezo-
electric transducers with a range of frequencies which can be adjusted to produce the
desired micro-vibrations. These adjusted micro-vibrations have the ability to cut bones,
teeth and hard mineralized tissue without cutting neurovascular tissue and other soft
tissue.

Piezoelectric can also be found in disc drives, ink-jet printers, cigarette lighters, fish
finders, humidifiers, jewelry cleaners, musical instruments, speakers, and telephones.
The use and application of multi-functional piezoelectric components and sets or ar-
rays of piezoelectric has been driven by recent advances in the ability to manufacture
such sophisticated devices. Recent applications focus on the multiple functional char-
acteristics (Ferreira, Nóvoa, and Marques, 2016) of piezoelectric composite and their
unconventional integrated usage for shape morphing of unmanned aerial vehicles wings,
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aircraft tails (Barbarino et al., 2011; Li et al., 2011) and as a structurally integrated
batteries for energy storage (Gibson, 2010). Since much of the defense industry funds
the majority of piezoelectric fiber research, it would be difficult to clearly document all
existing recent applications unless the research application has been publicly published.

Piezoelectrics have been traditionally used in biomedical application as stated earlier
however, the focus was not on integrating the different components intelligently with
their multi-functionality. The majority of ultrasound therapy, such as cancer treatment
and physiotherapy, uses piezoelectric ultrasound transducers as their basis. The piezo-
electric fiber has been used or has potential application in all of the above mentioned
biomedical application while adding the multiple functionality for example, the fibers
can be used in cutting using both ultrasound and laser while visualizing using optical
capabilities of the fiber. Piezoelectric fibers can be woven or integrated in wearable
suits so the suit will harvest power during normal human activities (Gowthaman et al.,
2016; Nilsson et al., 2013; Saini, Bajpai, and Bajpai, 2013) enabling it to be integrated
with exoskeleton (Asbeck et al., 2014). Among the suit’s applications and in addition
to harvesting power, the suit could also monitor the soldier condition (Nilsson et al.,
2013; Saini, Bajpai, and Bajpai, 2013).

Although the use of networks of piezoelectric for both organic and non-organic health
monitoring is traditional, it has been re-investigated in terms of recent technological
advances in materials, manufacturing and functionality (Lynch and Loh, 2006). Recent
research shows a trend in applying multiple functional piezoelectrics in therapy, power
harvesting, surgery and detection (Manbachi and Cobbold, 2011). The detection is
usually accomplished using an array of piezoelectric accompanied by imaging algorithms
to display results (Hajati et al., 2012).

Multilayered piezoelectric fibers are multifunctional if integrated in structures they
lead to multifunctional smart structures. Such structures are composed of multifunc-
tional components: a host substructure medium, a network of sensors, actuators, and
intelligent controllers; therefore, they can execute multiple functionalities in response
to their surroundings either externally or internally. They ultimately mimic the human
body: the host substructure provides the body, the network of sensors provides the sen-
sory system receiving the external or internal stimuli, the network of actuators provides
the muscles, and the intelligent controllers provide the brains to process and analyze
the data from the sensory system (it also controls the actuation). In addition to the
existing functionality of traditional smart structures, smart multi-functional structures
could also offer additional functionalities, therefore, encompassing the mono functional
smart structures such as self-monitoring smart structures.
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2.3.2 Smart structural health monitoring

At the start of the 1970s, Non-Destructive-Testing/Evaluation (NDT/NDE) of struc-
tures using ultrasonic techniques was advancing from the stage of detecting a crack
or a void to the stage of identifying its dimensions and properties (Thompson, 1983;
Thompson and Thompson, 1985). Since piezoelectric fibers can be easily fabricated
into different desired sizes and different cross-sectional shapes (Abouraddy et al., 2007;
Egusa et al., 2010; Tao, Stolyarov, and Abouraddy, 2012), the concept of using a net-
work or array of actuators/sensors to form a self-monitoring smart system in smart
structural design has attracted significant attention from the industrial and research
communities (Drinkwater and Wilcox, 2006; Giurgiutiu and Cuc, 2005; Schmidt et al.,
2013; Wang and Huang, 2002; Wang and Huang, 2003; Wang and Huang, 2004a).
Unlike the traditional ultrasonic nondestructive testing technique, where the wave can
be applied only from the surface of the structure, the usage of piezoelectric actua-
tors/sensors makes it possible to generate elastic waves from other desired positions of
the structure and provide more reliable detection of embedded damage. However, the
elastic waves resulting from damages may become very complicated, because of the fact
that the scattered waves will scatter from the boundaries of scatterers or damages to
the host structure then sensed by the sensors.

The main difference between NDT and Structural Health Monitoring (SHM) equip-
ments is noticed from their hardware architecture. NDT techniques, such as X-radio-
graphic detection (X-ray) and ultrasonic acoustics require large bulky equipment and
this is not practical for some on-line structures (Chang, 2013; Giurgiutiu, 2000; Giurgiu-
tiu, Zagrai, and Bao, 2004; Kessler, Spearing, and Soutis, 2002; Kessler, 2002). In the
case of an SHM system, sensors and actuators are embedded within, built into or in-
tegrated with the structure, while NDT is an external system with an independent
(not integrated with the structure) set of sensors and actuators (Giurgiutiu and Cuc,
2005; Wang and Huang, 2008). Historically speaking SHM is the evolvement of NDT
(GRAFF, 2012; Ursu, Enciu, and Toader, 2017).

Self-health monitoring structures use a network of sensors usually integrated, per-
manently embedded, in their structures to self monitor changes in their health status.
They can be broadly classified as active or passive structures depending on their abil-
ity to generate a diagnostic signal to actively zoom into the damage characteristics
(location and size). Passive structures need a more dense network of sensors over the
corresponding active structures to identify the same damage with the same level of
accuracy. The integration of actuation, sensing, and an intelligent controller into the
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structure leads to modern concepts of smart structures. Therefore, a smart health
monitoring structure must consist of the following basic components:

1. a network of sensors for sensing and collecting performance data;

2. a data analysis algorithm/software acting as the brain for interpreting the data,
which represent the physical conditions of the structure.

An actuator or a network of actuators for generating the diagnostic signal is desirable
since it can be used for generating as well as directing the diagnostic signal; nonetheless,
an optional component that can be replaced by other sources of signals. In this case,
the intelligent controller may control the diagnostic signal.

In order to evaluate the structure reliability and plan its maintenance, damages
should be detected, evaluated, monitored, and quantified. The quantitative identifica-
tion by locating and sizing damages plays a critical role in structural health monitor-
ing. Smart structural health monitoring is the process of intelligently monitoring the
functional, operational, and performance of a structural integrity throughout its entire
lifetime. While classical (traditional) structural health monitoring refers to the ability
to function, perform and maintain structural integrity throughout the entire lifetime.
Also, within this traditional context, structural integrity are the boundaries between
safety and failure of engineering components and structures. Smart structural health
monitoring procedure, as shown in figure 2.4, usually consists of the following levels
(Chang, 2013; Stepinski, Uhl, and Staszewski, 2013; Su and Ye, 2009):

1. Damage detection

2. Damage approximation

3. Damage localization

4. Damage assessment

An intelligent decision must be made based on the information, and the decision might
be made before the prognosis (the prediction). The first and second level are qualita-
tive in nature (Cakoni and Colton, 2005) and provide an approximate estimate. The
third and fourth level provide damage characterization and quantitative identification
measures (Achenbach, 2000; Huang, Song, and Wang, 2010). All of the four levels
form the structure’s diagnostic and they are the basic levels for any SHM system.
Some researchers add structure’s prognosis, which predicts the future performance of a
structure given its present status, as a fifth level; however, this is in structural health
management (Ihn and Chang, 2008).
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Damage detection, damage monitoring, non-destructive evaluation and structural
health monitoring are often misunderstood and mixed as synonyms of each other. Dam-
age detection is the process of detecting the existence of damage(s) and it is part
of structural health monitoring. Non-Destructive-Testing/evaluation techniques are
usually carried out off-line using single point measurements, periodically, or after the
damage has been located, to improve the structural performance (Achenbach, 2000;
Drinkwater and Wilcox, 2006). Structural health monitoring is usually carried out on-
line using multiple point measurements in the form of a network of sensors. Therefore,
it is considered by many researchers (Chang, 2013; Stepinski, Uhl, and Staszewski,
2013) to be an evolutionary step from its predecessor non-destructive evaluation by
using NDE tools and systems. Smart SHM consists of the four main levels shown in
figure 2.4 with the additional use of intelligent computer algorithms to integrate the
different levels.

A comparison of the various sensing inspection methods (in-service inspection speci-
fications approved by the Federal Aviation Administration-FAA for composite airframes
(Baker, Rose, and Jones, 2003)) can be seen in table (2.3)2. Damage parameters can
be associated with changes in either global or local properties of the structure under
inspection (Benavides, Segura, and Ruiz-Cortés, 2010; Das, Saha, and Patro, 2016; De
Rosa, Santulli, and Sarasini, 2009; Doebling, Farrar, Prime, et al., 1998; Drinkwater
and Wilcox, 2006; Fan and Qiao, 2011; Su, Ye, and Lu, 2006). Inspection methods
based on changes in the global dynamic properties including eigen-frequency, mode
shape and curvature, strain energy, and damping properties are less sensitive to dam-
age. Damages are local events which would not significantly change the structure global
dynamic properties before they reach a noticeable extent to affect the global dynamic
properties (e.g., 10% of the characteristic dimension/area of the structure).

Inspection
method

Principles Limitations Advantages

Acoustic
emission

Sensing the signal
generated by the
rapid release of
strain energy due
to damage growth

Complex signal; specially
for locating damage;
Prone to contamination by
environmental noise,
Very high data rates,
Specialized software,
Suitable for small
structures,
Captures after effects

Lightweight,
Conformable,
No power required,
Triangulation capability,
and good coverage

2Table (2.3) is based on multiple sources (Kessler, 2002; Schmerr, 2013; Schmerr, 2016; Schmerr
and Song, 2007; Su and Ye, 2009).
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Inspection
method

Principles Limitations Advantages

Eddy current Uses the
electromagnetism
as the basis for
sensing damage

Conductive material only
Expensive equipment
Very complex results
Specialized software
Safety hazard

Inexpensive to
implement
Portable
Surface mountable
Sensitive to small
damage

Elastic waves Sensing the unique
scattered waves
also mode
conversions caused
by the presence of
damages

Complex signal due to
complex wave forms,
simultaneously multiple
wave modes, multiple wave
interaction; difficult to
simulate wave propagation
in complex structures;
strong dependence on prior
models or benchmark
signals,
Specialized software

Lightweight
Conformable
Medium power
consumption,
Linear scan results
Triangulation capability
Cost-effective, fast and
repeatable; can inspect a
large structure in a short
time; sensitive to small
damage; able to detect
both surface and internal
damage.

Modal
Analysis

Sensing shift in
eigen frequencies
also changes in
frequency response
function, and
mode shapes due
to reduction in
structural stiffness
caused by damage.

Insensitive to small damage
or damage growth; difficult
to excite high frequencies;
need many measurement
points; hypersensitive to
boundary and
environmental changes.

Simple and low cost,
effective for detecting
large damage in large
infrastructure or rotating
machinery,
Lightweight,
Conformable,
Multi-purpose sensors,
Low power required

Optical fibers Sensing
electromagnetic
light waves

Expensive to implement
Data analysis required
High data rates
Accuracy in question

Inexpensive equipment
Embeddable
Quick scan of large area

Strain gauge Sensing strains
caused by damage
in comparison with
benchmark

Relatively insensitive to
small damage or the
evolution of deterioration
Data analysis required

Sensitive to local
damages; simple
Lightweight
Conformable
Very low power draw

Ultrasonic
acoustics

Sensing high
frequency waves
propagating in
fluids (acoustic) or
air (sound) which
excite the
damaged structure

Very expensive equipment
Complex results
Specialized software
High data rates
Couplant required
Require access to both sides

Inexpensive to
implement
Portable
Sensitive to small
damage
Quick scan of large area
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Inspection
method

Principles Limitations Advantages

Visual
inspection

Visually observing
using human eyes
and maybe a
magnifier

Only surface damage
Only large damage
Human interpretation
Can be time consuming

Cheapest,
No data analysis,
No procedure

X-radiography Imaging damages
through X-rays
penetration

Expensive equipment
Expensive to implement
Human interpretation
Can be time consuming
Require access to both sides
Safety hazard

No data analysis
Permanent record of
results
Simple procedure

Table 2.3: Comparison of principles, limitations and potential SHM
implementation for various sensing systems.

SHM is a multidisciplinary area of research which integrates many disciplines and

fields of sciences such as solid mechanics, fracture mechanics, materials science, signal

processing, electronics and computer science. Damage identification approaches can

be roughly classified into model based (Fan and Qiao, 2011; Farrar, Doebling, and

Nix, 2001) and signal based methods (Hoseini, Zuo, and Wang, 2013). Model based

approaches are usually formulated using physical, constitutive and geometric model

parameters to obtain the damage identification model. Signal based approaches are

usually formulated using signal processing techniques and they rely on analyzing various

types of direct measurements such as noise, vibration, ultrasound or temperature.

All damages begin at very small sizes smaller than the nano scale in which continuum

physics fail to model it and a need for other modeling techniques arises (Wang, Wang,

and Kitamura, 2016), however, at that scale, damages are usually difficult to detect

and usually do not affect performance. As the damages grow, they start to affect the

performance and the structural operation resulting in system failure. Damages can

accumulate incrementally over long periods of time such as that associated with fatigue

or corrosion damage accumulation (Ihn and Chang, 2004; Shen and Cesnik, 2017).

On relatively short periods of time, damages can also result from repetitive scheduled
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Intelligent algorithms

A typical classical structural health monitoring

Smart piezoelectric

Figure 2.4: Smart structural health monitoring system.
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events such as aerospace vehicle landings or from unscheduled events such as an impact

(enemy fire) on a military vehicle or natural phenomena hazards such as earthquakes

(Ihn and Chang, 2008; Mitra and Gopalakrishnan, 2016).

The mathematical models representing the array/network of piezoelectrics are usu-

ally based on either modal analysis (Fan and Qiao, 2011; Hagood and Flotow, 1991) or

elastic waves (Willberg et al., 2015). In other words, mechanical model based damage

identification can be further classified into modal analysis based (Das, Saha, and Patro,

2016) and elastic wave based methods (Su, Ye, and Lu, 2006). Different mathematical

modeling bases have their own advantages and disadvantages. Models based on elastic

waves are more sensitive to small damages and changes of material parameters since

elastic waves can be excited at a relatively high frequency. Elastic waves are sensitive

to various types of damages including voids, porosity, debonding, corrosion, cracking,

hole, delamination, resin variation, broken fiber, fiber misalignment, resin crack, cure

variation, inclusions, and moisture (Fu et al., 2017; Rose, 2002).

Several solution sets were proposed to solve the inverse problem of damage iden-

tification thus diagnosing the structure’s health. The majority of available solutions

extract the health information of the damaged structure through some known output

signals. One solution set is based solely on feature extraction indices or measures to

interpret the structure’s health either in time or frequency domain. The extracted fea-

tures can be as simple as the wave velocity, the signal amplitude, the time of flights, the

mechanical impedance or as complicated as the combinations of multiple output signals

forming indices or complicated measures (Zhou, Su, and Cheng, 2011). Most of these

solutions rely on comparing the extracted features of the damaged structure with those

of the corresponding undamaged ones (Grisso, 2004; Hoseini, Zuo, and Wang, 2013;

Norris and Shuvalov, 2010). The limitation of these solutions is that it requires prior

knowledge of the undamaged structure features and mostly require extensive signal

processing (Anton, Inman, and Park, 2009).
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Solution sets based on phased arrays require the use of a sensor array to scan the

target structures. The working mechanism concept creates a beam of waves which can

be electronically steered to scan different directions and can image embedded damages

(Satyanarayan et al., 2007; Zou and Nehorai, 2009). However, these solutions require

scanning every point in the area of interest, so it is not efficient for large structures and

does not work for real-time structural health monitoring (Schmerr Jr, 2014; Schmerr,

2016).

Another solution set is the time-reversal method. It is based on the linearity of elas-

tic waves. Through inversion calculation of the measured signals, the back-propagating

elastic waves could be determined and then damages can be identified (Sohn et al.,

2007; Wang, Rose, and Chang, 2004). This method has been widely used in geological

exploration. However, the time-reversal technique requires a dense network of sensors

to obtain a comprehensive profile of the major signals and an understandable image.

Its images are not usually clear as they suffer from mode conversion of the longitudinal

wave and the transverse wave. Other related solution sets are based on the intersection

of two or more such as time reversal imaging with multiple signal classification (MUSIC)

(Gruber, Marengo, and Devaney, 2004; Marengo, Gruber, and Simonetti, 2007).

A set of solutions are based on formulating the inverse problem into an optimization

of an error functional j (p) by finding damage parameters p = {p1, p2, ..., pi, ...pn}

such that the simulated measurements φs(p) agree with the actual observed measure-

ments φo. In practice, the inverse problem can be formulated mathematically as the

minimization of an error functional
(2.5)p = arg min j (p)

where the error functional j (p) contains dependence on the parameters p. The nor-

malized least squares error function is

(2.6)j (p) =
(φs(p)− φo) (φs(p)− φo)T

φs(p) (φo)T

where T is the transpose.
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Optimization algorithms make use of intelligent programming algorithms such as ar-

tificial neural network (ANN), genetic algorithm, simulated annealing, particle swarms,

topology optimization e.g. level-set method, etc. Optimization methods can use tradi-

tional algorithms such as gradient based optimization e.g. Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm however a good initial guess is needed otherwise the algo-

rithm gets trapped in a local minimum.
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Figure 2.5: Comparison of various sensing methods and damage coverage: minimum
size of detectable damage versus size of sensor.

Various sensing methods have been developed, each method has its advantages and

disadvantages for damage identification. Figure 2.5 shows a chart3 of various sensing
3Chart in figure (2.5) is based on multiple sources (Chocat et al., 2011; Fu et al., 2017; Kessler,

2002; Su and Ye, 2009).
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methods and their damage coverage area with a plot of different sensors’ sizes against

the size of their detectable damage inside a composite plate panel. Smaller instances of

damage down to a few millimeters can be accurately detected using elastic waves in the

frequency range from 1 to 10 GHz, as shown in figure 2.5, over other well established

NDE techniques (Fu et al., 2017). In wave-based sensing methods, the ratio between

the smallest detectable damage size ldamage and the size of the largest wavelength λ

contents is greater than one half for a successful identification

(2.7)
ldamage

λ
>

1

2
.

However, damage identification using wave-based sensing methods involves more factors

than just the relation between wavelength and damage size since the sensitivity is not

a simple linear function in wavelength (Lee and Staszewski, 2003a; Lee and Staszewski,

2003b).

2.4 Conclusions

The newly developed multilayered piezoelectric fiber has attracted the research com-

munity; however, most of the research has been devoted to their fabrication, material

properties, biomedical development, acoustic, and optical implementations of these de-

vices. Very few published research studies were conducted to investigate using the

newly manufactured multilayered piezoelectric fibers in smart structural applications.

Accurate modeling of the anisotropic piezoelectric layer as well as characterization of

the coupled piezo-elastodynamic behavior between the fiber and the host structure are

key issues for their implementation. There is no simple analytical model that takes

into account the transversely anisotropic under dynamic loading. Existing methods of

modeling multilayered piezoelectric fiber like the transfer matrix are not numerically

stable and cannot be used directly to model imperfect interfaces such as partially an-

gular debonding. There is also a need for a method that handles multiple multilayered
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piezoelectric fibers wave interactions with damages under plane waves.

In structural health monitoring applications using piezoelectric fibers, a network of

piezoelectric fibers is employed for sensing and collecting performance data often gener-

ated by using the same fibers as actuators to actuate a high-frequency diagnostic elas-

tic wave. The usage of embedded multilayered piezoelectric fiber as actuators/sensors

makes it possible to generate and direct the desired high frequency elastic wave from the

appropriate location thus providing more reliable detection of damages. There is a need

to study and investigate recently multilayered piezoelectric fibers for damage detection

and quantification because in addition to possessing the advantages of piezoelectrics,

their electrodes are directly connected to individual fibers allowing for individualized

transduction (actuation and/or sensing), therefore, are useful for non-destructive test-

ing and structural health monitoring applications. To effectively use the network of

piezoelectric actuators/sensors, the quantitative evaluation of the induced elastic wave

and its interaction with damages is strongly needed. This article reviews the state of

the art and recent advance in the different modeling techniques for multilayered piezo-

electric fibers, including analytical, variational, numerical, and hybrid approaches to

model the coupled piezo-elastodynamic behavior.
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Chapter 3

A new dynamic model of cylindrical lay-

ered anisotropic fibers

3.1 Introduction

In addition to the well known advantages of traditional composites, such as higher

strength-to-weight ratio and tailored design, smart composites also offer multifunction-

ality(Gibson, 2010) and, therefore, are receiving significant attention from the research

community (Kreja, 2011; Lin and Sodano, 2008). Recent progress in manufacturing

multilayered piezoelectric fibers with a transverse poling direction in the cross section

makes it possible to develop new smart composites, which can be used in different high

frequency applications (Egusa et al., 2010). The fibers have been used to design single-

fiber resonators and piezoelectric transducers. It is a natural step to use these fibers to

develop smart multifunctional composite materials.

An important issue in the study of this type of smart composites is how to evaluate

the piezoelectric layer in the fiber. Since the piezoelectric layer is poled transversely

in the cross section and is in general anisotropic, existing solutions for isotropic or

transversely-isotropic layers are not sufficient for describing the behavior of the layer.

Considering the fact that the piezoelectric layer is relatively thin compared with the ra-

dius of the fibers, simplified layer models could be used to overcome this difficulty. Mod-

eling of thin layers in composite materials has been extensively investigated (Kushch

et al., 2011; Rajabi and Hasheminejad, 2009; Zhong and Meguid, 1997) because of its
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importance. In these cases, an interphase, which may represent a bonding layer or an

imperfect interface caused by deterioration, is usually modelled by distributed interface

springs.

When high frequency dynamic loading is applied, the inertial effect of the anisotropic

layer needs to be considered. Solutions for the response of anisotropic materials to gen-

eral dynamic loads or elastic waves are usually complicated and difficult to obtain,

although the corresponding problems for isotropic elastic media can be easily dealt

with by determining the displacement potentials based on Helmholtz decomposition

(Achenbach, 1972). In general cases, the dynamic displacement field in an anisotropic

elastic medium can no longer be decomposed into independent displacement potentials.

Therefore, well known solution techniques applicable to isotropic media, based on dis-

placement potentials, cannot be applied directly to anisotropic media. The interaction

between elastic waves and anisotropic layers in planar layered media has been studied

analytically and numerically (Rokhlin and Huang, 1992; Rokhlin and Huang, 1993).

The analytical solution is quite complicated, involving the solution of eigenvalue prob-

lems. The corresponding problems for cylindrical layers have also been studied under

simplified geometric or loading conditions, such as assuming isotropy in the cylinder

cross section (Honarvar and Sinclair, 1996; Nayfeh, 1995; Nayfeh, Abdelrahman, and

Nagy, 2000; Nayfeh and Nagy, 1996; Sodagar and Honarvar, 2010). Numerical solu-

tions for more general anisotropic cylindrically layered media under elastic waves have

also been reported in recent literatures (Gsell and Dual, 2004; Norris and Shuvalov,

2010; Norris and Shuvalov, 2012). But simplified analytical models for transversely

anisotropic cylindrical layers under general dynamic loading are limited to interface-

spring models.

For the case of radially poled piezoelectric fibers, the piezoelectric layer poses prob-

lems in modeling the mechanical behavior because of both its anisotropy and curva-

ture. A possible method in modeling the layer is to simplify it as distributed interface
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springs to simulate the traction-displacement relation across the layer. The spring

model (Aboudi, 1987; Bian, Chen, and Lu, 2008; Librescu and Schmidt, 2001; Zhong

and Meguid, 1997) ignores, however, the hoop stress and the inertial effect, and as-

sumes that the stresses are uniform across the thickness of the layer. As a result, the

equations of motion of the layer are not satisfied. It should be mentioned that in a

typical radially poled piezoelectric fiber (Egusa et al., 2010), the layer thickness could

be as large as 20% of the radius of the fiber and the hoop stress in the curved layer

may play a significant role in the deformation. It is therefore desirable to develop an

interphase model which can represent the effect of the stress variation cross the layer

thickness, the hoop stress in the layer and the anisotropy of the layer.

The objective of this study is to develop a new interphase model for anisotropic layers

in multilayered cylindrical fibers. The attention will be limited to the elastodynamic

behavior of the interphase layer. Comparison with traditional interface-spring model

and finite element analysis indicates that the current model is more accurate than the

spring model. Typical simulation results based on the developed model are provided to

illustrate the mechanical property of the anisotropic cylindrical layers under dynamic

loads.

3.2 Problem formulation

Consider the cross section of a cylindrical multilayered piezoelectric medium consisting

of an inner core 0 < r < r0, a piezoelectric layer r0 < r < r1 and an outer layer r1 <

r < r2, as shown in figure 3.1(a). The inner core and the outer layer are linearly elastic,

homogeneous and isotropic insulators. These three layers are assumed to be bonded

perfectly at the interfaces. Plane strain deformation is considered, which corresponds

to the case where the out-of-plane dimension of the medium is significantly greater

than its typical radius. The piezoelectric layer is poled along the radial direction and
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is, therefore, anisotropic in the cross section. The medium is subjected to general

mechanical loading along the outer surface. In the limiting case that r2 approaches

infinity, as shown in figure 3.1(b), the load could be an incident wave.

The dynamic load is assumed to be time harmonic and only the steady state response

of the medium is considered. The time dependence of the response can be expressed

by an exponential function e−iωt where t and ω are time and frequency, respectively.

For convenience, the term e−iωt will be omitted in the following discussion and only the

amplitude of the field variables will be considered.
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Figure 3.1: The layered composite medium with (a) bounded outer layer and (b) un-
bounded outer medium.

3.2.1 Governing equations

The dynamic electromechanical property of piezoelectric materials, such as the media

shown in figure 3.1, is governed by the equations of motion (Achenbach, 1972; Kessler

and Kosloff, 1991). In the polar coordinate system (r, θ) the governing equations are

Equations of Motion

(3.1)σr,r +
1

r
σθr,θ +

1

r
(σr − σθ) = −ρω2ur

(3.2)σrθ,r +
1

r
σθ,θ +

2

r
(σrθ) = −ρω2uθ
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where σ is the stress, u is the displacement, and ρ is the density. The subscripts indicate

the corresponding components in the polar coordinate system while the comma indicates

differentiation, as commonly used. The constitutive relations of the piezoelectric layer,

with the poling direction being alone r, are given by,


σr

σθ

σθr

 =


c33 c23 0

c23 c22 0

0 0 c44



εr

εθ

εrθ

 (3.3)

where c’s are the elastic coefficients, and ε represents the strain which can be expressed

in terms of the displacements ur and uθ as

(3.4)εr = ur,r

(3.5)εθ =
1

r
(uθ,θ + ur)

(3.6)εrθ =
1

2

(
1

r
ur,θ + uθ,r −

uθ
r

)
.

3.2.2 Elastic fields in the inner core and the outer medium

The inner core and the outer medium are linearly elastic, homogeneous and isotropic.

In this case, the displacement field can be decomposed into (Achenbach, 1972)

ur = ϕ,r +
1

r
ψ,θ (3.7)

uθ =
1

r
ϕ,θ − ψ,r (3.8)

where ϕ and ψ are two displacement potentials satisfying Helmholtz equation, i.e.

(3.9)
1

r
(rϕ,r),r +

1

r2
ϕ,θθ + k2

Lϕ = 0

(3.10)
1

r
(rψ,r),r +

1

r2
ψ,θθ + k2

Tψ = 0.
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kL and kT are two wave numbers given by

(3.11)kL =
ω

cL
, kT =

ω

cT

where cL and cT are the longitudinal and transverse wave speeds of the elastic medium,

and
(3.12)cL =

√
λ+ 2µ

ρ
, cT =

√
µ

ρ

with λ and µ being the Lame constants of the elastic medium.

The general solutions of the displacement potentials in these layers can be deter-

mined by solving equations (3.9) and (3.10) using Fourier expansion with respect to θ.

The resulting displacement potentials are

(3.13)ϕ(r, θ) =
∞∑
n=0

Jn (kLr)

 A
(1)
n

A
(2)
n


T

+H(1)
n (kLr)

 A
(3)
n

A
(4)
n


T

 cos (nθ)

sin (nθ)



(3.14)ψ(r, θ) =
∞∑
n=0

Jn (kT r)

 A
(5)
n

A
(6)
n


T

+H(1)
n (kT r)

 A
(7)
n

A
(8)
n


T

 cos (nθ)

sin (nθ)


where Jn (.) and H

(1)
n (.) are Bessel functions and Hankel functions of the first kind,

respectively, and An are unknown constants to be determined from the boundary and

interface conditions. For the inner core A(2)
n , A(4)

n , A(7)
n , A(8)

n are zero to ensure that the

field has a limited amplitude at r = 0. If the outer layer is infinite, then A(1)
n , A(2)

n , A(5)
n ,

A
(6)
n will be zero to satisfy the radiation condition at infinity for the scattered wave.

3.3 The interphase model for the anisotropic layer

The piezoelectric layer is transversely anisotropic in the cross section since it is poled

in the radial direction. For such an anisotropic medium under dynamic loading, the

general analytical solution could not be easily found. In the current subsection, a
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new interphase model will be presented, which could be used to simulate the dynamic

mechanical property of the layer.

The governing equations for the piezoelectric layer, (3.1) and (3.2), can be re-written

as

(3.15)
1

r

(
(rσr),r + σθr,θ − σθ

)
= −ρω2ur

(3.16)
1

r2

((
r2σrθ

)
,r

+ rσθ,θ

)
= −ρω2uθ.

To overcome the difficulties associated with the anisotropy of the layer, for a relatively

thin layer, the derivative with respect to r in these equations is simplified such that

(rσr),r ≈
∆ (rσr)

h
and (r2σrθ),r ≈

∆ (r2σrθ)

h
with h = r1 − r0 being the thickness of

the layer and ∆ representing the change from r0 to r1. Equations (3.15) and (3.16) can

then be approximately expressed as

(3.17)
1

r

(
∆ (rσr)

h
+ σθr,θ − σθ

)
= −ρω2ur

(3.18)
1

r2

(
∆ (r2σrθ)

h
+ rσθ,θ

)
= −ρω2uθ.

The layer can now be modeled as a one dimensional element governed by equations

(3.17) and (3.18). A stress component is decomposed into two parts, (i) a uniform

stress across the thickness of the layer element, representing the average stress and (ii)

a linear stress across the thickness with a zero average, resulting in the ’∆’ terms in

equations (3.17) and (3.18), which represent the general ’body forces’ acting on the

interphase. The other terms in equations (3.17) and (3.18), except for the terms with

r derivative, are the average values over the thickness of the layer.

The constitutive equation (3.3) can be rewritten in terms of the displacements in

the layer as
(3.19)σr = c33ur,r +

c23

r
(uθ,θ + ur)

(3.20)σθ = c23ur,r +
c22

r
(uθ,θ + ur)
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(3.21)σrθ = c44

(
1

r
ur,θ + uθ,r −

uθ
r

)
.

For the layer element the derivatives with respect to r in these equations can be ap-

proximated, such that

ur,r =
4ur
4r

, uθ,r =
4uθ
4r

(3.22)

and the stress should be considered to be the average value across the thickness.

Substituting equation (3.22) into equations (3.19)-(3.21) the constitutive equations

for the interphase can be written as

(3.23)σr = c33

(
u+
r − u−r
h

)
+
c23

r

(
u+
θ,θ + u−θ,θ

2
+
u+
r + u−r

2

)

(3.24)σθ = c23

(
u+
r − u−r
h

)
+
c22

r

(
u+
θ,θ + u−θ,θ

2
+
u+
r + u−r

2

)

(3.25)σrθ = c44

(
1

r

u+
r,θ + u−r,θ

2
+
u+
θ − u

−
θ

h
− 1

r

u+
θ + u−θ

2

)

where the superscripts (+) and (−) refer to the outer and inner surfaces of the layer,

and the averaged values in these equations are given by

(3.26)σr =
σ+
r + σ−r

2

(3.27)σrθ =
σ+
rθ + σ−rθ

2

(3.28)r =
r1 + r0

2
.

Finally, substituting equations (3.23)-(3.25) into the equations of motion (3.17) and

(3.18) results in the following equations for the layer,
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1

r2

{
r2

1σ
+
rθ − r2

0σ
−
rθ

h
+ r

[
c23

u+
r,θ − u

−
r,θ

h
+
c22

r

(
u+
θ,θθ + u−θ,θθ

2
+
u+
r,θ + u−r,θ

2

)]}

= −ρω2

(
u+
θ + u−θ

2

)
(3.29)

1

r

{
r1σ

+
r − r0σ

−
r

h
+
σ+
rθ,θ + σ−rθ,θ

2
−

[
c23
u+
r − u−r
h

+
c22

r

(
u+
θ,θ + u−θ,θ

2
+
u+
r + u−r

2

)]}

= −ρω2

(
u+
r + u−r

2

)
(3.30)

and the constitutive relations of the layer become

(3.31)
σ+
r + σ−r

2
= c33

u+
r − u−r
h

+
c23

r

(
u+
θ,θ + u−θ,θ

2
+
u+
r + u−r

2

)

(3.32)
σ+
rθ + σ−rθ

2
= c44

(
1

r

u+
r,θ + u−r,θ

2
+
u+
θ − u

−
θ

h
− 1

r

u+
θ + u−θ

2

)
.

Equations (3.29)-(3.32) established a new interphase model, which relates the outer

(+) and inner (-) surfaces of the layer based on the property of the layer itself. The

model satisfies the equations of motion and the constitutive relations of the layer.

The commonly used interface-spring model can be represented as (Bian, Chen, and

Lu, 2008; Rajabi and Hasheminejad, 2009),

(3.33)σ+
r = σ−r =

c33

h

(
u+
r − u−r

)
(3.34)σ+

rθ = σ−rθ =
c44

h

(
u+
θ − u

−
θ

)
which assumes a simple linear relation between displacements and stresses across the

thickness of the layer. In comparison, in the traditional interface-spring model σr and

σrθ are assumed to be constants across the thickness of the layer. σθ and the inertial

force of the layer are ignored. Only when the thickness of the interphase approaches
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zero, h→ 0, the two models become identical. The spring model is therefore a special

case of the currently proposed model.

To determine the solution for a specific boundary condition, the governing equations

(3.29)-(3.32) for the layer should be combined with the general solutions for the inner

core and the outer medium, as given by equations (3.13) and (3.14). The continuity

condition for stresses and displacements between different layers should be satisfied.

Therefore, the components with superscript (+) equal to the values of the corresponding

components for the outer medium at r = r1, and the components with superscript (−)

equal to that for the inner core at r = r0. The general expressions of the stress and

displacement fields can be obtained directly from the displacement potentials given by

equations (3.13) and (3.14). The results are provided in the appendix.

By substituting these stress and displacement components into equations (3.29)-

(3.32), a set of linear equations can be obtained, from which the unknown coefficients

A
(1)
n to A

(8)
n in equations (3.13) and (3.14) can be determined for specific boundary

conditions.

It should be noted that the developed interphase model given by equations (3.29)-

(3.32) are general in nature, and will replace the four governing equations for the

traditional spring model given by (3.33) and (3.34). The new layer model can be used

to deal with general boundary and loading conditions when the layer is bonded to

different inner and outer media.

3.4 Results and discussion

In this section, the mechanical behavior of cylindrically layered media, shown in fig-

ure 3.1, is considered. The attention will be focused on (i) the validation of the devel-

oped interphase model and (ii) the usage of this interphase model for evaluating the

stress distribution in the layered media under different loading and geometric condi-
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tions.

3.4.1 Static axisymmetric problems

To evaluate the accuracy of the developed interphase model, consider first the stress

field of an unbounded three-layer medium subjected to static axisymmetric loading

σr = p, σrθ = 0 at infinity. The middle layer is assumed to be isotropic so the closed

form solution can be obtained. In this case, the general solution of the displacement

field is,

Inner core

(3.35)ur = a0r

Middle layer

(3.36)ur = a1r +
b1

r

Outer medium

(3.37)ur = a2r +
b2

r
.

By applying the boundary conditions, σr = p, σrθ = 0 at infinity, and the continuity

conditions at the interfaces, the unknown constants in the general solution, a0, a1, a2

and b0, b1, b2, can be determined and the closed form solution of the problem can be

obtained.

For this simple problem the solution based on the current interphase model can

be obtained analytically. For the special case where the inner core is rigid and the

Poisson’s ratio is zero, the interphase model can be rewritten as,

(3.38)
(
r1σ

+
r − r0σ

−
r

r1 − r0

)
− E1

(
u+
r

r1 + r0

)
= 0

(3.39)
1

2

(
σ+
r + σ−r

)
− E1

(
u+
r

r1 − r0

)
= 0
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where ’+’ and ’−’ represent the corresponding values of the outer medium and the inner

core at the two interfaces of the layer, with u−r = 0. E1 = c<1>
33 is the Young’s modulus

of the layer. Using the solution given by (3.35) and (3.37) and the boundary conditions

at infinity, the stress field based on the current interphase model can be determined.

The solution based on the interface-spring model, (3.33) and (3.34), can be similarly

obtained.

The radial stress σr at the interface between the inner core and the layer (r = r0) is

The exact solution:

(3.40)
σ−r
p

=
4

2 + (λ21 − 1) (1− α2)

The current model:

(3.41)
σ−r
p

=
4−

(
2 (1− α)2 /(α + 1)

)
2 + 2 (α− 1) + (1− α2)λ21 +

(
(1− α)2 /(α + 1)

)
The spring model:

(3.42)
σ−r
p

=
4

2 + 2λ21 (1− α)

where α = r0/r1, λ21 =
c<2>

33

c<1>
33

=
E2

E1

with E1 and E2 being the Young’s moduli of the

layer and the outer medium, respectively.

Figure 3.2 shows the comparison between the results of σ−r , given by (3.40)-(3.42),

from the closed form solution, the current model, and the interface spring model for

different E2/E1 ratios and layer thicknesses. For all three E2/E1 values considered,

0.5, 1.0 and 2.0, the current model shows an excellent agreement with the closed form

solution even when the thickness of the layer is quite significant (r1/r0 = 1.5). The

results are, however, very different from that by the interface spring model.

The extreme case where the core is a void is also considered for the validation of

the model. In this case, σr = 0 at r = r0 and the governing equations of the interphase

model for the layer, (3.29)-(3.32), are reduced to

(3.43)
1

2

(
σ+
r

)
− E1

(
u+
r − u−r
r1 − r0

)
= 0
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Figure 3.2: Axisymmetric radial stress with a rigid core

(3.44)
(

r1σ
+
r

r1 − r0

)
− E1

(
u+
r + u−r
r1 + r0

)
= 0

with the hoop stress in the layer being given by

(3.45)
σθ = E1

(ur
r

)
= E1

(
u+
r + u−r
r0 + r1

)
.

By solving this problem, the hoop stress at r = r+
0 in the layer is determined to be

The exact solution:

(3.46)
σ−θ
p

=
4

λ21(1 + α2) + (1− α2)

The current model:

(3.47)
σ−θ
p

=
4

λ21 (3 + α2) /2 + 2 (1− α)

The spring model:
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(3.48)
σ−θ
p

= 0.

The hoop stress at r = r+
1 in the outer medium is

The exact solution:

(3.49)
σ+
θ

p
=

2

1 + (1− α2)/λ21/(1 + α2)

The current model:

(3.50)
σ+
θ

p
=

2

1 + 4(1− α)/λ21/(3 + α2)

The spring model:

(3.51)
σ+
θ

p
= 2.

Figures 3.3 and 3.4 show the results of σ−θ and σ+
θ , respectively, obtained from the

closed form solution, the current model and the spring model, for different material

combinations and geometries. For σ−θ shown in figure 3.3, the difference between the

exact solution and the current model is within 10% even when the thickness of the layer

reaches 30% of the radius of the inner core. The interface spring model, which predicts

zero stress, is incapable of reasonably predicting the stress distribution. As shown in

figure 3.4, σ+
θ from the current model coincides with that from the closed form solution,

while the spring model predicts a constant stress σ+
θ = 2p, which is quite different from

the result of the closed form solution.

3.4.2 Bounded layered media subjected to surface loads

The current interphase model is used to simulate the dynamic behavior of a three-layer

medium, shown in figure 3.1, under different loading conditions. Both the case shown

in figure 3.1(a), which has an outer layer with a limited radius, and the case shown in

figure 3.1(b), in which the radius of the outer layer is infinite, are considered to validate

the interphase model and to study the dynamic response of the layered medium.
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Figure 3.3: Axisymmetric hoop stress with a void core: inner interface

Figure 3.4: Axisymmetric hoop stress with a void core: outer interface
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The difficulties in the analysis of such transversely anisotropic multilayered media

are two folds. Firstly, the piezoelectric layer needs to be properly modeled to provide

simple yet accurate description of the stress distribution in the layer. This is considered

through the proposed interphase model. Secondly, in the numerical simulation the

Bessel functions used need to be properly normalized (Ricks and Schmidt, 1994) to avoid

overflow, which results in ill-conditioned (Zhang et al., 2010) equations. In the current

simulation a numerical normalization algorithm is used to overcome this problem.

Material properties used in the study are shown in table 6.1 (Nakatani et al., 2007;

Qian et al., 2008). Different selections of material properties are considered in the

simulation to study the effect of material combinations.

Material Elastic Constants Density
×1010(N/m2) ×103(kg/m2)
c22 c33 c12 c23 c44 ρ

isotropic c22=c33=λ+ 2µ λ λ µ
Aluminum 11.27 11.27 6.07 6.07 2.6 2.7
Polythene .554 .554 .298 .298 .128 1.2
PZT-4 13.9 12.4 6.78 7.43 2.5 7.5
Steel 26.3 26.3 10.2 10.2 8.05 7.8

Table 3.1: Material constants used

To evaluate the developed interphase model, consider the response of a finite three-

layer medium shown in figure 3.5, subjected to a distributed surface load along the

outer boundary r = r2,

(3.52)σr =


p |π − β| ≤ θ ≤ |β|

0 elsewhere

(3.53)σrθ = 0 .

The applied surface stress can be expressed in terms of Fourier expansion as

(3.54)σr = p

(
d0 +

∞∑
n=1

dncosnθ

)
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where

d0 =
2β

π
, dn =

2sin (nβ)

πn
[1 + (−1)n] (3.55)

with p being the amplitude of the applied load and β being the range of the load.

�

r

y

x
2ß

Figure 3.5: Bounded layered medium subjected to surface loads

Figure 3.6 shows the normalized radial stress distribution along the radial direction

at θ = 0 for the case where β = π/6 at a very low loading frequency kR = 0.025 with k

being the shear wave number of the outer medium kT = ω/cT , R being the outer radius

of the interphase, R = r1, and r2 = 1.5r1. To evaluate the accuracy of the current

interphase model, the core, the interphase and the outer layer are assumed to be of

the same material and different interphase thicknesses are considered. The results from

the interface-spring model, the current model and the finite element analysis (ANSYS)

are compared. For layer thicknesses h/R = 0.1, 0.2, 0.3 the current model shows a

very good agreement with the finite element results, while the interface-spring model

shows much more significant errors for all thicknesses considered. The corresponding

distribution of σθ along θ = 0 is given in figure 3.7. Again the current model provides

excellent prediction of the stress distribution but the result from the interface-spring
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model is quite different from the finite element prediction around the middle layer.

The corresponding dynamic stress σr is shown in figures 3.8 and 3.9 for kR = 0.5 and

kR = 1.1 for different layer thicknesses. The simulation results indicate that for very

small thickness h/R = 0.01 the interface-spring model, the current model and the finite

element analysis provide almost identical results. But for larger thicknesses of the layer

(h/R = 0.1, 0.2, 0.3), the current model shows much better results in comparison with

the interface-spring model.

Figure 3.10 and figure 3.11 show the corresponding radial stress distribution for

dissimilar media at kR = 0.4 and 0.8, respectively, with the outer layer being aluminum,

the core being steel and the middle layer being PZT-4. For very thin layer, h/R = 0.01,

the results from the FEM, the current model and the interface spring model are almost

identical. But for h/R = 0.1, 0.2, 0.3, the spring model shows significant different results

from the current model and the FEM.

3.4.3 Infinite layered media subjected to incident waves

Consider now the dynamic response of a layered medium with an infinite outer medium

(r2 = ∞) subjected to an incident P-wave, as shown in figure 3.1(b). The incident

P-wave with a general incident angle θ0 can be expressed in terms of the displacement

potential as
(3.56)ϕin = ϕ0e

−ikLrcos(θ−θ0)

where ϕ0 is the magnitude of the incident wave, and kL is the longitudinal wave number

of the outer medium. In the following discussion, θ0 = 0 is considered. The incident

displacement and stress fields can be determined from ϕin directly.

The total field in the outer medium consists of an incident field and a scattered

field. By separating the incident field from the total field, the governing equations of

the current interphase model become
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1

r2

{
r2

1σ
sc
rθ − r2

0σ
−
rθ

h
+ r

[
c23

uscr,θ − u−r,θ
h

+
c22

r

(
−n2u

sc
θ + u−θ

2
+
uscr,θ + u−r,θ

2

)]}

= σ∗rθ − ρω2uθ (3.57)

1

r

{
r1σ

sc
r − r0σ

−
r

h
+
σscrθ,θ + σ−rθ,θ

2
−

[
c23
uscr − u−r

h
+
c22

r

(
uscθ,θ + u−θ,θ

2
+
uscr + u−r

2

)]}

= σ∗r − ρω2ur (3.58)

(3.59)
σscr + σ−r

2
−

{
c33
uscr − u−r

h
+
c23

r

(
uscθ,θ + u−θ,θ

2
+
uscr + u−r

2

)}
= u∗r

(3.60)
σscrθ + σ−rθ

2
− c44

(
1

r

uscr,θ + u−r,θ
2

+
uscθ − u−θ

h
− 1

r

uscθ + u−θ
2

)
= u∗θ

where the superscript ’sc’ represents the scattered field in the outer medium to be

determined from the solution, and the terms with superscript ’*’ represent the incident

wave, which are given by

(3.61)u∗r = −σ
in
r

2
+ c33

uinr
h

+
c23

r

[
∂

∂θ

(
uinθ
2

)
+
uinr
2

]

(3.62)σ∗r = −1

r

{
r1σ

in
r

h
+
σinrθ,θ

2
−

[
c23
uinr
h

+
c22

r

(
uinθ,θ
2

+
uinr
2

)]}

(3.63)u∗θ = −σ
in
rθ

2
+ c44

[
uinr,θ
2r

+
uinθ
h
− uinθ

2r

]

(3.64)σ∗rθ = − 1

r2

{
r2

1σ
in
rθ

h
+ r

[
c23

uinr,θ
h

+
c22

r

(
−n2u

in
θ

2
+
uinr,θ
2

)]}
.

Figure 3.12 shows the normalized radial stress distribution along θ = 0 caused by an

incident wave with a very low loading frequency kR = 0.01 with p being the magnitude
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of the maximum stress of the incident wave. In this case the inner core is void, the

middle layer is PZT-4 and the outer medium is aluminum. For different PZT layer

thicknesses, the radial stress shows a monotonic increase from the inner surface of the

PZT layer. The result from the spring model, however, could not capture the variation

of the stress in the layer. Similar results are observed for the corresponding problem

with a higher loading frequency, kR = 0.6, as shown in figure 3.13.

Figure 3.14 shows the corresponding radial stress distribution for the case where

the inner core is steel, the middle layer is PZT-4 and the outer medium is polythene,

subjected to an incident wave of low frequency kR = 0.01. Both the current model and

the spring model could predict the well-known result that the stress in the core is a

constant for such a static load. But the spring model is not sensitive to the change of

the thickness of the middle layer, which has been reasonably predicted by the current

interphase model. Figures 3.15 and 3.16 show the corresponding normalized radial

stress distribution along θ = 0 with kR = 0.02 and kR = 0.9, for the case where the

inner core is steel, the middle layer is PZT-4 and the outer medium is aluminum. For

different PZT layer thicknesses considered, which are rather large, the result from the

spring model shows significant difference from that by the current model.
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Figure 3.6: Radial stress distribution for a homogenous medium at kR=0.025

3.5 Conclusions

The proposed interphase model for cylindrical anisotropic layers, which contains the

effect of the hoop stress and satisfies the equations of motion, shows an excellent ac-

curacy in simulating the stress distribution, and agrees well with the FEM prediction.

The proposed model is significantly superior to the traditional interface spring model

and, as a result, provides an efficient way to model complicated dynamic deformation

caused by anisotropic layers. The current model has been verified at frequencies lower

or higher than typical resonance frequencies. It has also been used in situations where

the thickness of the layer is significant large, 30% of the typical radius for example. The

model can be used to accurately simulate dynamic behavior of cylindrical anisotropic

layers, which are otherwise difficult to dealt with.
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Figure 3.7: Hoop stress distribution for a homogenous medium at kR=0.025

Figure 3.8: Radial stress distribution for a homogenous medium at kR=0.5
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Figure 3.9: Radial stress distribution for a homogenous medium at kR=1.1

Figure 3.10: Radial stress distribution for a dissimilar medium at kR=0.4
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Figure 3.11: Radial stress distribution for a dissimilar medium at kR=0.8

Figure 3.12: Radial stress distribution for a dissimilar medium with a void core at
kR=0.01
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Figure 3.13: Radial stress distribution for a dissimilar medium with a void core at
kR=0.6

Figure 3.14: Radial stress distribution for a dissimilar medium with a stiff core at
kR=0.01
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Figure 3.15: Radial stress distribution for a dissimilar medium at kR=0.02

Figure 3.16: Radial stress distribution for a dissimilar medium at kR=0.9
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Chapter 4

The dynamic electromechanical behav-

ior of a multilayered piezoelectric fiber

4.1 Introduction

An important issue in the study of multilayered piezoelectric fibers in smart structures

is how to accurately predict the elastic field around the piezoelectric fiber through

the collected electric signal in the piezoelectric layer. Existing solutions for axially

polarized piezoelectric layer or rings (Ramesh and Ebenezer, 2005) are not sufficient for

describing the dynamic behavior of the piezoelectric fiber. Considering the fact that

the piezoelectric layer is relatively thin compared with the radius of the fiber, simplified

layer models can overcome this difficulty. In the study of composite structures, modeling

of thin layers, interphases, has been extensively investigated and is still attracting

significant attention (Kushch et al., 2011; Rajabi and Hasheminejad, 2009; Wang and

Zhong, 2003; Wang, Pan, and Roy, 2007; Zhong and Meguid, 1997) because of its

importance in evaluating the multi-layered composite materials.

In the case of the multilayered piezoelectric fiber with poling in the transverse

direction, the piezoelectric layer poses problems in modeling because of the combined

effect between its anisotropy and the elastic wave. For mechanical response, a commonly

used method is to simplify the anisotropic interphase with distributed interface springs

to avoid dealing with the solution of mechanical field in the anisotropic layer. The

spring is used to simulate the traction–displacement relation across the interphase.
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The spring model (Bian, Chen, and Lu, 2008; Chen et al., 2004; Librescu and Schmidt,

2001; Wang and Zhong, 2003; Zhong and Meguid, 1997) does not account for, curved

interphases, the hoop stress in the equilibrium equations and assumes that the stresses

are uniform across the thickness of the interphase. It should be mentioned that for a

piezoelectric layer in a typical cylindrical piezoelectric fiber with a transverse poling

direction (Chocat et al., 2011), the layer thickness could be significant compared with

the radius of the fiber. Also, because of the curved geometry of the layer, even under the

simplest loading conditions, the stress will not be constant across the layer thickness.

In addition, the hoop stress in the curved layer will also play a significant role in the

deformation. The interphase model presented in chapter 3 (Abdel-Gawad and Wang,

2013) which can represent the effect of the stress variation across the layer thickness,

the hoop stress in the layer and the anisotropy of the layer will be adopted here but

extended to include the piezoelectric effect of a multilayered piezoelectric fiber.

For the analysis of the layered fiber, as the number of layers increases, the transfer

matrix technique becomes viable to avoid the cumbersome direct approach. The transfer

matrix technique has been introduced originally for flat interfaces by Thomson (1950)

and later used by many other researchers (Hasheminejad and Alaei-Varnosfaderani,

2012; Huang, Wang, and Rokhlin, 1996; Lan and Wei, 2013; Lowe, 1995; Nayfeh and

Nagy, 1996; Rajabi and Hasheminejad, 2009). According to this technique, a local

layer’s transfer matrix is constructed to transfer the field variables (i.e. stresses and

displacements) between the layers outer and inner interface. Then by extending the

solution from one layer to the next while satisfying the continuity condition, a global

matrix can be attained which in turn transfers the boundary conditions to the different

interface composite layers. The weakness of the transfer matrix method is its insta-

bilities when the relative frequency is large (Lowe, 1995). An alternative technique is

the direct global matrix method, provided by (Ricks and Schmidt, 1994). This nu-

merical algorithm is applied to the transfer matrix eliminating its instabilities. In the
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direct global matrix method, the wave fields at all the interfaces and boundaries are

assembled together in a single matrix. This method is numerically stable but relatively

computationally slow because of the large matrix.

The objective of this study is to investigate the electrostatic elastodynamic behav-

ior of a piezoelectric layer in a multilayered fiber embedded in a piezoelectric medium

for the potential use as a sensor/actuator in damage detection. A generalized sen-

sor/actuator model coupling the mechanical deformations and electric signals around

a radially polarized piezoelectric layer is developed. The developed model is used as

an actuator to generate a mechanical signal and as a sensor to retrieve the mechanical

deformations from the electric signal. Typical simulation results based on the developed

model are provided to illustrate the electromechanical property of embedded radially

polarized piezoelectric layer under alternating electric or dynamic loads. Attention will

be focused on the response of the piezoelectric layer in accurately sensing the elastic

field around the piezoelectric sensor under different loading conditions and material

combination.

4.2 Problem formulation

The problem envisaged is the electromechanical behavior of a cylindrical piezoelectric

fiber embedded in a dielectric media. The cross section of a long cylindrical multilayered

piezoelectric fiber consisting of q layers bonded at their interfaces and lined up with

their axes of symmetry coincide with each other. The layers are sequentially numbered

1, 2, ...q from the center of the fiber, and a polar coordinate system (r, θ) is used to

describe the geometry of the problem as shown in figure 4.1. The outer radius of layer

j is located at r = rj measured from the center of the fiber, and the total radius of the

cylinder will be rq. The piezoelectric layer could be any layer or more than one layer

in the multilayered fiber except for layer 1 without losing generality the inner radius
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Figure 4.1: The layered composite medium with an unbounded boundary.

will be rp and the outer radius rp+1 and only one layer will be discussed. Other layers

are linear elastic, homogeneous and isotropic. Interfacial debonding of the piezoelectric

layer is considered and assumed to be between θ = θ1 and θ = θ2 (θ2 > θ1). Since

the main interest of the current study is the local coupled electromechanical behavior

between the piezoelectric layer and its surrounding layers, the host structure is assumed

to be infinite. This represents the case where the host structure is much thicker than

the piezoelectric layer. Plane strain deformation is considered, which corresponds to

the assumption that the fiber is very long relative to its radius.

An alternating electric field as well as mechanical dynamic loads are applied to the

piezoelectric layer and through the hosting medium respectively. The loads are assumed

to be time-harmonic and only the steady state response of the system is considered.

For convenience, the term e−iωt, with i =
√
−1, t and ω are being imaginary number,

time and circular frequency, respectively, will be omitted in the following discussion

and only the amplitude of the field variables will be considered.
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4.2.1 Governing equations

The electromechanical behavior of the different layers shown in figure 4.1 is governed

by Gauss’s law of electrostatic and the equations of motion (Chadwick, 1999; Chan-

drasekharaiah and Debnath, 1994; Kessler and Kosloff, 1991; Nayfeh, 1995). In the

polar coordinate (r, θ) these equations are

Electrostatic Equation

(4.1)(rDr),r +Dθ,θ = 0

Equations of Motion

(4.2)
1

r

(
(rσr),r + σθr,θ − σθ

)
= −ρω2ur

(4.3)
1

r2

((
r2σrθ

)
,r

+ rσθ,θ

)
= −ρω2uθ

where D is the electric displacement, σ is the stress, ρ is the mass density, and u is

the displacement. The subscripts indicate the corresponding components in the polar

coordinate while the comma separates the components from the partial differentiation

with respect to that coordinate. The constitutive relations for piezoelectric materials,

with the poling direction along r, are given by (Larbi and Deü, 2011; Standard, 1987),

 Dr

Dθ

 =

 e33 e32 0

0 0 e24



εr

εθ

εrθ

+

 ε33 0

0 ε22


 Er

Eθ

 (4.4)


σr

σθ

σθr

 =


c33 c23 0

c23 c22 0

0 0 c44



εr

εθ

εrθ

−

e33 0

e32 0

0 e24


 Er

Eθ

 (4.5)

where e’s are the piezoelectric coupling constants, ε’s are the strain components, ε’s are

the permittivity constants, and E’s are the electric field intensity components which

can be expressed in terms of the electric potential φ as
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(4.6)Er = −φ,r

(4.7)Eθ = −1

r
φ,θ.

The strain ε can be expressed in terms of the displacements ur and uθ as

(4.8)εr = ur,r

(4.9)εθ =
1

r
(uθ,θ + ur)

(4.10)εrθ =
1

2

(
1

r
ur,θ + uθ,r −

uθ
r

)
.

4.3 Radially polarized piezoelectric layer

Since the main concern of the current study is how to model the electrical property

of a radially polarized piezoelectric layer as a sensor or actuator, the focus will be to

develop the electric model then couple it with the mechanical. Substituting equations

(4.6), (4.7), (4.8), (4.9), and (4.10) into equations (4.4) and (4.5) then into equations

(4.1), (4.2) and (4.3) yields,

(4.11)

e33ur,rr +
(e32

r
+
e33

r

)
ur,r +

e24

2r2
ur,θ+

e32

r
uθ,θr +

e24

2r
uθ,r −

e24

2r2
uθ

−ε33φ,rr − ε33φ,r −
ε22

r2
φ,θθ = 0

(4.12)

c33ur,rr +
c33

r
ur,r −

c22

r2
ur +

c44

r2
ur,θθ+(

−c44

r2
− c22

r2

)
uθ,θ +

(c23

r
+
c44

r

)
uθ,rθ+

e33φ,rr +
(e33

r
− e32

r

)
φ,r +

e24

r2
φ,θθ = −ρω2ur

(4.13)
c44

(
1
r
ur,θr + uθ,rr − 1

r
uθ,r
)

+ 1
r

(
c23ur,rθ + c22

r
(uθ,θθ + ur,θ)

)
+2
r
c44

(
1
r
ur,θ + uθ,r − 1

r
uθ
)

+ 1
r2

(
(r2e24φ,θ),r + re32φ,rθ

)
= −ρω2uθ

.

The differential equations (4.11), (4.12), and (4.13) are coupled without general analytic

solutions. Next sections propose a solution.
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4.3.1 The electric field in the piezoelectric layer element

Since the piezoelectric layer is relatively thin with respect to the fiber radius, equa-

tions (4.1) and (4.11) is simplified such that (rDr),r ≈ ∆(rDr)
h

with h = rp+1 − rp

being the thickness of the layer and ∆ representing the change from rp to rp+1 . The

electrostatic equation (4.1) can then be approximately expressed as

(4.14)
∆ (rDr)

h
+Dθ,θ = 0.

The piezoelectric layer can now be modeled as a layer element governed by equa-

tion (4.14). The electric displacement component is decomposed into two parts a uni-

form part and a linear part across the layer thickness with a zero average, resulting in

the ’∆’ term in the equation. The other term, Dθ,θ in equation (4.14) is the average

value over the thickness of the layer. The over bar (.) = (.)p++(.)p−

2
represents the av-

erage value and the superscripts (p+) and (p−) refer to the variables evaluated at the

outer and inner surfaces of the piezoelectric layer, for convenience p will be omitted,

for example

(4.15)Dr =
D+
r +D−r

2
.

For the layer element, the derivatives with respect to r in these equations can be

approximated, such that

φ =
∆φ

4r
, u,r =

4ur
4r

, uθ,r =
4uθ
4r

. (4.16)

Substituting equations (4.16) into constitutive equation (4.4) results in the layer element

constitutive equation as

(4.17)Dr = e33

(
u+
r − u−r
h

)
+
e32

r
(uθ,θ + ur)− ε33

φ+ − φ−

h

(4.18)Dθ =
e24

2

(
1

r
ur,θ +

u+
θ − u

−
θ

h
− uθ

r

)
+
ε22

r
φ,θ
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Substituting equation (4.18) into equation (4.14), the electrostatic equation becomes,

(4.19)
1

r

(
r+D+

r − r−D−r
h

+ e24

(
ur,θ
r

+
u+
θ − u

−
θ

h
− uθ

r

)
,θ

− ε22

φ,θθ
r

)
= 0.

4.3.2 The mechanical field in the piezoelectric layer element

The anisotropic layer developed in chapter 3 (Abdel-Gawad and Wang, 2013) can now

be coupled into the newly developed electric property of the piezoelectric layer element.

The anisotropic layer model overcomes the difficulties associated with the anisotropy of

the layer through simplifications such as (rσr),r ≈
∆ (rσr)

h
and (r2σrθ),r ≈

∆ (r2σrθ)

h
.

The equations of motion (4.2) and (4.3) can be re-written in a manner similar to

equation (4.14) which can then be approximately expressed as

(4.20)
1

r

(
∆ (rσr)

h
+ σθr,θ − σθ

)
= −ρω2ur

(4.21)
1

r2

(
∆ (r2σrθ)

h
+ rσθ,θ

)
= −ρω2uθ.

Substituting equation (4.16) into equations (4.4)-(4.5) the constitutive equations for

the piezoelectric layer can be written as

(4.22)σr = c33

(
u+
r − u−r
h

)
+
c23

r
(uθ,θ + ur) + e33

φ+ − φ−

h

(4.23)σθ = c23

(
u+
r − u−r
h

)
+
c22

r
(uθ,θ + ur) + e32

∆φ

h

(4.24)σrθ = c44

(
ur,θ
r

+
u+
θ − u

−
θ

h
− uθ

r

)
+
e24

r
φ

+

,θ.

Finally, substituting equations (4.17)-(4.24) into equations (4.1), (4.20) and (4.21),

the equations of motion for the layer become

1

r

{
r+σ+

r − r−σ−r
h

+ σrθ −
{
c23

(u+
r − u−r )

h
+
c22

r
(uθ,θ + ur)

}}
+ ρω2ur =

e32

r

(φ+ − φ−)

h

(4.25)
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1

r2

{
(r+)

2
σ+
rθ − (r−)

2
σ−rθ

h
+ r

{
c23

(
u+
r,θ + u−r,θ
h

)
+
c22

r
(uθ,θθ + ur,θ)

}}
+ ρω2uθ

= −e32

r

(
φ+
,θ − φ

−
,θ

)
h

. (4.26)

4.3.3 The piezoelectric layer element transfer matrix

For any layer, the inner and outer interface field variables (displacements, stresses,

electric potential and electric displacement) are all periodic and can be expanded using

Fourier expansion with respect to θ. The obtained general solutions can be represented

in matrix form for the nth expansion order as

(4.27)W+
n = M(p)

n W−
n ,

(4.28)Wn =

[
ur uθ σr σrθ φ Dr

]T
n

with superscript T indicating the transpose. The local transfer matrix for the pth layer

M
(p)
n , relates the field variables Wn at its outer interface W+

n to those at its inner

interface W−
n . Equations (4.22), (4.24), (4.25), (4.26), (4.14) and (4.17) establish the

relation between W+
n and inner W−

n of the piezoelectric layer based on the properties

of the layer itself. The local transfer matrix for the piezoelectric layer is defined as

(4.29)M(p)
n =K+

n

[
K−n
]−1

where the elements of K+ and K− matrices for the proposed piezoelectric layer model

are
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(4.30)K+
n =



−c33

h
− c23

2r̄
−c23in

2r̄

1

2
0 −e33

h
0

−c44in

2r̄
c44

(
1

2r̄
− 1

h

)
0

1

2
−e24

h
0

ρhω2

2
− hc22

2r̄2
− c23

r̄
−c22hin

2r̄2

r1

r̄

hni

2r̄
0 0

ni (c22h+ 2c13r̄)

2r̄2

ρhω2

2
− c22n

2

2r̄2
0

r2
1

r̄2
0 0

−e33 −
e32h

2r̄

e32hin

2r̄
0 0 ε33

h

2

−e24n
2

2r̄
e24in

(
1

h
− 1

2r̄

)
0 0 −n

2ε22

2r̄

r1

h



−1

K−n = −



c33

h
− c23

2r̄
−c23in

2r̄

1

2
0

e33

h
0

−c44in

2r̄
c44

(
1

2r̄
+

1

h

)
0

1

2

e24

h
0

ρhω2

2
− hc22

2r̄2
+
c23

r̄
−c22hin

2r̄2

−r0

r̄

hni

2r̄
0 0

ni (c22h− 2c23r̄)

2r̄2

ρhω2

2
− c22n

2

2r̄2
0

−r2
0

r̄2
0 0

e33 −
e32h

2r̄
−e32hin

2r̄
0 0 −ε33

h

2

−e24n
2

2r̄
−e24in

(
1

h
− 1

2r̄

)
0 0 −n

2ε22

2r̄

r0

h



−1

.

(4.31)

Under the open-loop mode, no external charge is supplied and the piezoelectric charge

collected on the two electrodes will generate an electric field.

4.4 The imperfect layer

The imperfect layer is angularly imperfect with varying properties along the θ direc-

tion. The imperfect layer model is developed by simplifying equations (4.25) and (4.26)

without ignoring the layer’s curvature and inertia as

(4.32)
1

hr̄

(
r(l+)σ(l+)

r − r(l−)σ(l−)
r

)
+ ρω2u(l−)

r = 0

(4.33)
1

hr̄2

((
r(l+)

)2
σ

(l+)
rθ −

(
r(l−)

)2
σ

(l−)
rθ

)
+ ρω2u

(l−)
θ = 0
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(4.34)
1

h

(
r(l+)D(l+)

r − r(l−)D(l−)
r

)
= 0.

The discontinuities in displacements at the interfaces are assumed to be propor-

tional, in terms of a compliance interface parameter χ, to their average interface traction

components

(4.35)
σ

(l+)
r + σ

(l−)
r

2
=

1

χ

(
u(l+)
r − u(l−)

r

)
(4.36)

σ
(l+)
rθ + σ

(l−)
rθ

2
=

1

χ

(
u

(l+)
θ − u(l−)

θ

)

(4.37)
D

(l+)
r +D

(l−)
r

2
=

1

χ

(
φ(l+) − φ(l−)

)
.

For achieving different bonding interfaces, pχ is changed from perfectly bonded

pχ→ 0 to a completely debonded pχ→∞. The compliance is expressed in terms of θ

and arbitrarily constants s1 and s2 representing two values of the imperfect compliance,

(4.38)χ =
h

c


s2

∣∣∣∣θ − θ0

θw

∣∣∣∣ ≤ 1

s1 θ elsewhere
,

where h, c, θ0 =
θ1 + θ2

2
, θw =

θ2 − θ1

2
are for the imperfect interphase layer thickness,

constitutive property, average angles and half width angle respectively.

Equations (4.33) and (4.36) can be represented in matrix form

(4.39)W(l+) = M(θ)(l)W(l−)

where M(θ)(l) is formed using equations (4.32) to (4.37)

(4.40)M(θ)(l) =



1− ρω2h
χr

rl+1

0
χr

rl+1

0 0 0

0 1− ρω2h
χ0r̄

2

r2
l+1

0
χ
(
r2
l+1 + r2

l

)
r2
l+1

0 0

−ρω2h
r̄

rl+1

0
rl
rl+1

0 0 0

0 −ρω2h
r̄2

r2
l+1

0
r2
l

r2
l+1

0 0

0 0 0 0 1
χr

rl+1

0 0 0 0 0
rl
rl+1


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with its expansion in θ as

(4.41)
+∞∑

k =−∞

Wk
(l+)eikθ = M(θ)(l)

+∞∑
m=−∞

Wm
(l−)eimθ,

multiplying both sides by e−inθ and integrating from −π to π

(4.42)Wn
(l+) =

πˆ

−π

M(θ)(l)

+∞∑
m=−∞

Wm
(l−)eimθe−inθdθ

(4.43)Wn
(l+) =

+∞∑
m=−∞

M(l)
m,nWm

(l−)

The elements of M
(l)
m,n matrices for the imperfect interphase at m = n are

M(l)
m,m =



1− ρω2h
χ0r

rl+1

0
χ0r

rl+1

0 0 0

0 1− ρω2h
χ0r̄

2

r2
l+1

0
χ0

(
r2
l+1 + r2

l

)
r2
l+1

0 0

−ρω2h
r̄

rl+1

0
rl
rl+1

0 0 0

0 −ρω2h
r̄2

r2
l+1

0
r2
l

r2
l+1

0 0

0 0 0 0 1
χ0r

rl+1

0 0 0 0 0
rl
rl+1



,

where χ0 =
s2

c


2πs1

s2

+ θw

(
1− s1

s2

)
2π

 at m 6= n,

M(l)
m,n =



−ρω2h
χm,nr

rl+1

0
χm,nr

rl+1

0 0 0

0 −ρω2h
χm,nr̄

2

r2
l+1

0
χm,n

(
r2
l+1 + r2

l

)
r2
l+1

0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0
χm,nr

rl+1

0 0 0 0 0 0


,
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where χm,n =
s2

c


(

1− s1

s2

)(
ei(m−n)θw − e−i(m−n)θw

)
2πi(m− n)

 ei(m−n)θ0 .

4.5 Wave field in dielectric isotropic layers

Since the thickness of the host medium is much larger than the fiber radius, the host

medium is modeled as infinite, the dielectric property of the host and other dielectric

isotropic layers are governed by the electric displacement

(4.44)
Dr = −εφ,r, Dθ

= − ε
r
φ,θ,

(4.45)φ,rr +
1

r
φ,r −

1

r2
φ,θθ = 0,

where ε is the layer dielectric constant.

For linearly elastic, homogeneous and isotropic dielectric layers the displacement

field (ur, uθ) can be decomposed into (Achenbach, 1972; Pao, 1983)

ur = ϕ,r +
1

r
ψ,θ, uθ =

1

r
ϕ,θ − ψ,r (4.46)

where ϕ and ψ are two displacement potentials satisfying Helmholtz equation

(4.47)
1

r
(rϕ,r),r +

1

r2
ϕ,θθ + k2

Lϕ = 0

(4.48)
1

r
(rψ,r),r +

1

r2
ψ,θθ + k2

sψ = 0 .

kL and ks are wave-numbers given by

(4.49)kL =
ω

cL
, ks =

ω

cs

where cL and cS are the longitudinal and transverse wave speeds of the elastic medium,
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(4.50)cL =

√
λ+ 2µ

ρ
, cs =

√
µ

ρ

with λ and µ being the Lame constants of the elastic medium.

The general solutions of the electric and displacement potentials can be determined

by applying Fourier expansion with respect to θ, as (Mow and Pao, 1971; Oden and

Reddy, 2012)

(4.51)φ =
∞∑

n=−∞

{
A(1)
n J̃n (r) + A(2)

n H̃n (r)
}
einθ

where J̃n (.), H̃n (.) are the small argument asymptotic forms of Bessel function and

Hankel function of the first kind respectively (Abramowitz and Stegun, 1965; Watson,

1995).

(4.52)ϕ =
∞∑

n=−∞

{
Jn (kLr) A

(3)
n +Hn (kLr) A

(4)
n

}
einθ

(4.53)ψ =
∞∑

n=−∞

{
Jn (ksr) A

(5)
n +Hn (ksr) A

(6)
n

}
einθ

where Jn (.) is Bessel function of the first kind, Hn (.) is Hankel function of the first

kind and the subscript n is the circumferential order of expansion. An are the unknown

parameters with the superscripts identifying the different amplitudes. The stress fields

in terms of displacement potentials are provided in appendix (A).

The dielectric elastic layer solutions can be represented in matrix form by substi-

tuting equations (4.52) and (4.53) into equations (4.46), (4.A.1) and (4.A.3) resulting

in the following equation for the jth layer,

Wn = Qn(r)An
(j), (4.54)

where Qn(r) is the coefficient matrix evaluated at r given in appendix A. The total

field variables can then be determined from
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(4.55)W =
+∞∑

n=−∞

Qn(r)An
(j)einθ

At the jth layer’s inner r = rj and outer radii r = rj+1,

(4.56)Wn
(j−) = Qn(rj)An

(j),

(4.57)Wn
(j+) = Qn(rj+1)An

(j)

For two perfectly bonded layers eliminating the common amplitude An the field vector

W
(j−)
n and W

(j+)
n can be related by

(4.58)W(j+)
n = M(j)

n W(j−)
n

where M
(j)
n =Qn(rj+1) [Qn(rj)]

−1 is the local transfer matrix for the layer under con-

sideration, which relates the field variables at its outer interface to those at its inner

interface.

4.6 Adapted global matrix

The wave field variables are related between the outer radius rl+1 of the lth layer to the

inner radius rk of the kth layer via the adapted global transfer matrix, [Tn]lk, for all

perfectly bonded interfaces except on l+

(4.59)W(l+)
n = [Tm,n]lk W(k−)

m

The elements of the adapted global transfer matrix [Tm,n]lk are calculated by using

equation (4.43) for the imperfect layer and the multiple application of the continuity

conditions between different perfectly bonded layers’ interfaces using equation (4.58)

which couples all circumferential orders around the imperfect layer

(4.60)[Tm,n]lk =
+∞∑

m =−∞

M(l)
m,nM

(l−1)
m M(l−2)

m .....M(k+1)
m M(k)

m

For simplicity in notation Tl
k will be used to refer to it.
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To avoid singularities at the origin r = 0, A(2)
n , A(4)

n , A(6)
n for the inner central layer

(layer 1) are set to zero to ensure that the field has a limited amplitude. Therefore,

equation (4.54) is rewritten in its expanded amplitude form for the core layer as

(4.61)W(1+)
n = Qn

(1+)

[
A

(1)
n 0 A

(3)
n 0 A

(5)
n 0

]T
.

To model a void core with internal pressure or free surface W
(1+)
n is used directly.

The medium can be either unbounded or bounded, for unbounded outer layer, A(1)
n ,

A
(3)
n and A(5)

n will be zero to satisfy the radiation condition at infinity for the scattered

wave. Equation (4.54) is rewritten for the medium interface with other layers as

(4.62)
(
W(q−)

n

)sc
= Qn

(q−)

[
0 A

(2)
n 0 A

(4)
n 0 A

(6)
n

]T
the superscript sc indicating scatter. The total wave field in the medium Wn = Win

n +

(Wn)sc where Win
n is the incident wave field. If the multilayered fiber is bounded,

the outer medium layer is replaced with air properties and a direct application of the

desired boundary conditions on the inner interface of the air layer. The following

relation between the unknowns of the inner central layer and the unbounded media can

be written

(4.63)Gm,n





A
(1)
m

A
(3)
m

A
(5)
m

A
(2)
n

A
(4)
n

A
(6)
n





=
{
Win

n

}
,
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Gm,n

=



(
T q−s+

)
1,1

(T q−s )1,3 (T q−s )1,5

(T q−s )2,1 (T q−s )2,3 (T q−s )2,5

(T q−s )3,1 (T q−s )3,3 (T q−s )3,5

(T q−s )4,1 (T q−s )4,3 (T q−s )4,5

(T q−s )5,1 (T q−s )5,3 (T q−s )5,5

(T q−s )6,1 (T q−s )6,3 (T q−s )6,5︸ ︷︷ ︸
transmission coefficients T q−s

−
(
Q

(q−)
n

)
1,2
−
(
Q

(q−)
n

)
1,4
−
(
Q

(q−)
n

)
1,6

−
(
Q

(q−)
n

)
2,2
−
(
Q

(q−)
n

)
1,4
−
(
Q

(q−)
n

)
1,6

−
(
Q

(q−)
n

)
3,2
−
(
Q

(q−)
n

)
1,4
−
(
Q

(q−)
n

)
1,6

−
(
Q

(q−)
n

)
4,2
−
(
Q

(q−)
n

)
1,4
−
(
Q

(q−)
n

)
1,6

−
(
Q

(q−)
n

)
5,2
−
(
Q

(q−)
n

)
5,4
−
(
Q

(q−)
n

)
5,6

−
(
Q

(q−)
n

)
6,2
−
(
Q

(q−)
n

)
6,4
−
(
Q

(q−)
n

)
6,6︸ ︷︷ ︸

scattering coefficients -Q(q−)
n


(4.64)

where Tq−
s = Tq

2Q
(1+)
m , Tq

2 is the transfer matrix from the inner interface of layer q

to the outer of layer 1 given by equation (4.60), Q
(1+)
m , and Q

(q−)
n are the coefficient

matrices of layer 1 evaluated at its outer, and layer q evaluated at its inner interface, the

parentheses represent the matrix element denoted by the subscript. In addition to using

a problem-oriented approach to scale rows and columns (Ricks and Schmidt, 1994), a

high multi-precision algorithm (Fousse et al., 2007) was used (Advanpix, 2018). The

boundary conditions around a piezoelectric layer interface is achieved by controlling its

surrounding material permittivity for example for φ− = 0 the inner material interfacing

the piezoelectric should have a large permittivity.

4.7 Results and discussion

In this section, the electromechanical behavior of a multilayered radially polarized piezo-

electric fiber, shown in figure 4.1, is considered. Few limiting cases, shown in figure 4.1,

are discussed then compared with finite element as well as with the proposed model

without the limitations.
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Figure 4.2: Perfectly bonded multilayered piezoelectric fiber

4.7.1 Exact solution for limiting cases

Exact solutions can be obtained when the problem is axisymmetric. Few limiting

cases are discussed of a radially polarized piezoelectric sensor. A fluid-filled radially

polarized multilayered piezoelectric (hydrophone) is considered to validate and evaluate

the accuracy of the developed piezoelectric layer model by comparing with existing

results (Ebenezer and Joseph, 2001). Then a multilayered piezoelectric fiber embedded

in an elastic insulator is also considered. The piezoelectric interfaces are completely

electroded under equi-electric potential and the generated voltage is assumed to be

independent of the antisymmetric components. As a consequence, the rates of changes

along the circumferential direction, derivatives with respect to θ, are ignored. Equation

(4.1) for the piezoelectric sensor under consideration can be written as

(4.65)(rDr),r = 0

and equation (4.11) and (4.12) reduce to

(4.66)r2e33ur,rr + r (e32 + e33)ur,r + re32ur − εs33

(
r2φ,rr + rφ,r

)
= 0
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(4.67)r2c33ur,rr + rc33ur,r +
(
ρω2r2 − c22

)
ur + r2e33φ,rr + r (e33 − e32)φ,r = 0.

The piezoelectric layer is used as a sensor embedded in insulator materials with an

open circuit boundary condition, D+
r = D−r = 0 and it must satisfy equation (4.1), the

constitutive equation (4.4) reduces to

(4.68)φ,r =
1

ε33

(
e33ur,r + e32

ur
r

)
.

Equation (4.68) can be used to decouple the differential equations (4.66), (4.67) and

equation (4.67) can be reduced to the following solvable form

(4.69)r2c̄
(p)
33 ur,rr + rc̄

(p)
33 ur,r +

(
ρω2r2 − c(p)

22

)
ur = 0

where c̄(p)
33 = c

(p)
33 +

e2
33

ε33

, c(p)
22 = c

(p)
22 +

e2
32

ε33

.

The following is the exact analytic solutions for a four-layered radially polarized

piezoelectric fiber embedded in an infinite host medium for the cases of fluid as well as

elastic layers,

Inner central layer 1

The inner central layer has two cases, either a fluid or an elastic solid layer.

Fluid layer case

(4.70)
σr = −p = −A(1)J0

(
k

(1)
L r
)
,

ur =
A(1)

ωρ(1)c
(1)
L

J1

(
k

(1)
L r
)

Elastic layer case

(4.71)ur = A(1)Jγ
(
κ(1)r

)
, σr = A(1)

(
c

(1)
33 Jγ,r

(
κ(1)r

)
+
c

(1)
23

r
Jγ
(
κ(1)r

))
Piezoelectric layer 2

(4.72)ur = A
(p)
1 Jγ

(
κ(p)r

)
+ A

(p)
2 Hγ

(
κ(p)r

)

σr = A
(p)
1

(
c

(p)
33 Jγ,r

(
κ(p)r

)
+
c

(p)
23

r
Jγ
(
κ(p)r

))
+ A

(p)
2

(
c

(p)
33 Hγ,r

(
κ(p)r

)
+
c

(p)
23

r
Hγ

(
κ(p)r

))
(4.73)
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φ,r = A
(p)
1

(
h33Jγ,r

(
κ(p)r

)
+
h32

r
Jγ
(
κ(p)r

))
+ A

(p)
2

(
h33Hγ,r

(
κ(p)r

)
+
h32

r
Hγ

(
κ(p)r

))
(4.74)

Elastic coating layer 3

(4.75)ur = A
(3)
1 Jγ

(
κ(3)r

)
+ A

(3)
2 Hγ

(
κ(3)r

)

σr = A
(3)
1

(
c

(3)
33 Jγ,r

(
κ(3)r

)
+
c

(3)
23

r
Jγ
(
κ(3)r

))
+ A

(3)
2

(
c

(3)
33 Hγ,r

(
κ(3)r

)
+
c

(3)
23

r
Hγ

(
κ(3)r

))
(4.76)

Infinite host medium 4

The infinite host medium has two cases, either a fluid or an elastic solid layer.

Fluid layer case

(4.77)
σinr = J0

(
k

(4)
L r
)
, ur

=
A(4)

ωρ(4)c
(4)
L

J1

(
k

(4)
L r
)

Elastic layer case

(4.78)uscr = A(4)Hγ

(
κ(4)r

)
, σscr = A(4)

(
c

(4)
33 Hγ,r

(
κ(4)r

)
+
c

(4)
23

r
Hγ

(
κ(4)r

))

(4.79)uinr =
1

σ0

Jγ
(
κ(4)r

)
, σinr =

1

σ0

(
c

(4)
33 Jγ,r

(
κ(4)r

)
+
c

(4)
23

r
Jγ
(
κ(4)r

))

where k(j)
L = ω/c

(j)
L , c(j)

L =

√
c
(j)
33

ρ(j)
, γ =

√
c
(j)
22

c̄
(j)
33

, κ(j) = ω/

√
c̄
(j)
33

ρ(j)
, h33 =

e33

ε33

, h32 =
e32

ε33

, σ0 =

ρ(4)ω2 and the superscript(j) denote the jth layer property. A general elastic, general

fluid, the limiting cases analytic piezoelectric layer and the proposed piezoelectric layer

model coefficient matrices are constructed appendix B. The unknown constants in the

general solution using equation (4.63), A(1), A
(p)
1 , A

(p)
2 , A

(p)
3 , A

(p)
4 , A

(3)
1 , A

(3)
2 , and A(4)

can be determined. The open circuit voltage for the exact analytic limiting cases after

grounding the inner interface voltage to zero φ− = 0 is
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φ+ =A
(p)
1 h33Jγ

(
κ(p)r+

)
+ A

(p)
2 h33Hγ

(
κ(p)r+

)
+

r3ˆ

r2

(
A

(p)
1

h32

r
Jγ
(
κ(p)r+

)
+ A

(p)
2

h32

r
Hγ

(
κ(p)r+

))
dr (4.80)

and the voltage on the outer interface in the proposed layer model is

(4.81)φ+ =
1

ε33

(
e33

(
u+
r − u−r

)
+
e32

hr
ur

)
.

The receiving sensitivity of a piezoelectric layer as a sensor, S, is defined as the induced

voltage φ+ on the piezoelectric layer’s outer interface in response to 1µPa=10−6 N/m2 of

a plane incident wave and calculated as (Ebenezer and Joseph, 2001; George, Ebenezer,

and Bhattacharyya, 2010)
(4.82)S = 20log10

(
abs

(
φ+
))
.

The material properties for the used piezoelectric layer and elastic coating in the

fluid filled limiting case study were synthesized, table 6.1, to provide the same exact

coefficients as used by Ebenezer and Joseph (2001) and George, Ebenezer, and Bhat-

tacharyya (2010). The used fluids are water and air with a density of 1000 kg/m3,

1.2 kg/m3and a speed of 1500 m/s, 340 m/s respectively. The dimension r− = 8 mm,

r+ = 10 mm and r4 = 15 mm. Although the derivation holds for anisotropic layers, all

layers are assumed isotropic except for the piezoelectric layer. Figure 4.3 shows a good

agreement for the two cases of piezoelectric coating materials (elastic layer 3).

Figures 4.4 and 4.5 show the sensitivity of a radially polarized P(VDF-TrFE) and

PZT sensor fiber embedded in different material combinations q =
c

(1)
33

c
(p)
33

,
c

(3)
33

c
(p)
33

with

h/rp+1 = .2, the proposed model provides excellent agreement with the exact model

even at very high relative frequencies (up to kR=8) with the exception around res-

onance frequencies. Material combinations used in the study are P(VDF-TrFE), ρc

rubber and titanium providing q=1.2 and 42.9 respectively also PZT, rubber, synthetic

and steel providing q=.05, 1 and 2.2. Figure 4.4 shows that the sensitivity increases
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when the fiber inner central layer is stiffer than the piezoelectric and host medium

material specially at low frequencies. Figure 4.5 shows that the sensitivity increases

when the piezoelectric fiber is embedded in a host medium and/or inner central layer

that has more compliant material compared to the piezoelectric layer. From figures 4.4,

4.5, and 4.6 the overall sensitivity of P(VDF-TrFE) is higher than that of PZT also

the worst sensitivity is attained when the piezoelectric fiber is embedded in a stiff host

material. It can be seen that the proposed model can be used with high accuracy at

significantly high frequency, even at kR=8 yet it attains excellent agreements with the

exact limiting case model.

4.7.2 Piezoelectric fibers embedded in elastic solid medium

The limiting case assumptions are not always true and do not hold for elastic solids

under general loading, Win, the need for the proposed model becomes essential. For

further comparisons under general loading a finite element model (ANSYS) is developed,

the model represents an embedded piezoelectric fiber in an unbounded media as shown

in figure 4.7. The finite element model uses gradually damped layers to simulate the

unbounded media. Both the sensor and actuator cases of a multilayered piezoelectric

fiber have been studied using different selection of material properties for the different

layers as shown in table 6.1.

In the following discussion, the piezoelectric layer is subject to an incident p-wave

with a general incident angle θ0,

(4.83)ϕin = ϕ0e
ikLrcos(θ−θ0)

where ϕ0 is the magnitude of the incident wave, and kL is the longitudinal wave number

of the host outer medium. The corresponding expanded wave field in the host medium

can be determined directly from ϕin as

(4.84)Win
n = Q(q−)

n

[
ϕ0i

nenθ0 0 0 0 0 0

]T
.
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Materials Elastic Constants Density Piezoelectric Permittivity
×1010(N/m2) ×103 ×100(C/m2) ×10−9(C/Vm)

c22 c33 c12 c23 c44
ρ e31 e32 e33 e24 ε33 ε11

λ+ 2µ λ λ µ

Aluminum 11.27 11.27 6.07 6.07 2.6 2.7 - - - - - -
ρc rubber .225 .225 .1 .1 .063 1 - - - - - -
Polycarbonate .554 .554 .298 .298 .128 1.18 - - - - .03 .03
P(VDF-TrFE) .47 .45 .257 .213 .12 1.3 .045 .045 -.18 -.1 .1 .12
PZT-4 14.2 11.8 7.43 6.78 2.5 7.5 -5.2 -5.2 15.1 12.7 5.63 6.45
Steel 26.3 26.3 10.2 10.2 8.05 7.8 - - - - - -
Synthetic-P 11.8 11.8 4.72 4.72 3.54 7.5 - - - - - -
Titanium 19.3 19.3 10.3 10.3 4.5 5.4 - - - - - -

Table 4.1: Material constants used.

First the case of a sensor with the same material for the outer unbounded layer

and the central inner layer as polycarbonate with elastic dielectric properties while the

piezoelectric layer is P(VDF-TrFE) with h/rp+1 = .2. Figure 4.8 shows the normalized

radial stress around the interface between the piezoelectric layer and outer layer at

different relative frequencies kR=.02, 1, 1.5, π and 2π with k being the shear wave

number of the outer medium; R=rp+1 being the outer radius of the piezoelectric layer.

Figure 4.9 and Figure 4.10 show the normalized circumferential stress and normalized

voltage around the same interface with σ0 is a unit incident p-wave pressure or applied

load and φ0 =
h33

c33

hσ0 is a normalization voltage around the interface. The inner

interface of the piezoelectric layer is grounded and set to zero. Comparisons with

finite element (FE) at kR=1 and 1.5 show an excellent agreement. It can be noted

that the voltage error difference between the proposed model and the finite element

is very small. The case of a sensor with an interface arc crack starting with angles

of θ1 = 170, 160, 150 and ending with θ1 = 190, 200, 210 respectively at kR=1 also at

kR=1.5 shows an excellent agreement with finite element as shown in figure 4.16 and

4.17. The jump discontinuity is manifested by errors in both the proposed and the

finite element model as shown in a zoomed window in figure 4.16 and 4.17. Gibbs

phenomenon can be reduced by increasing the number of Fourier terms while errors in
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finite element can be reduced by using a very refined mesh. The Gibbs phenomenon as

well as errors in finite element can be noticed more for small crack angles. The problem

of simulating a small crack is not inclusive to the current model but it can be found

in almost all available models including models based on singular integral equations as

reported in the literature (Erdogan and Gupta, 1972; Estrada and Kanwal, 2012).

Second the case of an actuator with the outer layer material is aluminum, the inner

central material is steel and the middle layer being PZT-4. Aluminum and steel are

considered as insulators with the permittivity of air 8.85×10−12C/Vm. In addition to

the incident load, the actuator is subject to a unit voltage applied at the outer piezoelec-

tric interface. Figure 4.11 and 4.12 show the normalized radial stress, the normalized

circumferential stress respectively around the interface between the piezoelectric layer

and outer layer at kR=1 and 1.5 with different piezoelectric layer thickness. For the

case of h/R=.2, Figure 4.13, Figure 4.14 and Figure 4.15 show the normalized radial

stress, the normalized circumferential stress and normalized voltage respectively around

the interface between the piezoelectric layer and the outer layer at different relative fre-

quencies kR=.02, 1, 1.5, π and 2π. Again, comparisons with finite element (FE) at

kR=1 and 1.5 show an excellent agreement.

4.8 Conclusions

In cases where an analytical model is not available, the proposed piezoelectric layer

model can be used to simulate and calculate the dynamic electromechanical behavior

of multilayered piezoelectric fiber with good accuracy. The proposed model agrees with

analytically derived limiting cases and shows an excellent agreement with the FEM

prediction. The proposed model has been verified at different frequencies lower and

higher than typical resonance frequencies yet it still provides accurate results. It has also

been verified for a variety of different material combinations. The proposed imperfectly
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bonded layer model can describe the overall wave field and the overall scattering around

the crack tip. The singular behavior of the crack opening displacement is crucial only

to the computation of the near field local stresses.

The sensitivity of multilayered piezoelectric fiber as a sensor increases when the

fiber inner central layer is stiffer than the piezoelectric and host medium material. A

relatively more compliant elastic host material than the piezoelectric layer increases

the sensitivity of the piezoelectric fiber as a sensor. The proposed model as well as the

exact analytic showed that the overall sensitivity of P(VDF-TrFE) is higher than that

of PZT.

Figure 4.3: Acoustic sensitivity of fluid-filled coated radially polarized piezoelectric.
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Figure 4.4: P(VDF-TrFE) sensor sensitivity with different material combinations.

Figure 4.5: PZT sensor sensitivity with different material combinations.
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Figure 4.6: PZT sensor sensitivity different material combinations.

Figure 4.7: Finite Element Model used.
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Figure 4.8: Normalized radial stress around the piezoelectric sensor outer interface.

Figure 4.9: Normalized circumferential stress around the piezoelectric sensor outer
interface.
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Figure 4.10: Normalized voltage around the piezoelectric sensor outer interface.

Figure 4.11: Normalized radial stress around the piezoelectric actuator inner interface.
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(a)

(b)

Figure 4.12: Normalized circumferential stress around the piezoelectric actuator inner
interface with (a) kR=1 (b) kR=1.5.
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Figure 4.13: Normalized radial stress around the piezoelectric actuator outer interface.

Figure 4.14: Normalized circumferential stress around the piezoelectric actuator outer
interface.
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Figure 4.15: Normalized voltage around the piezoelectric actuator outer interface.

Figure 4.16: Normalized voltage around the piezoelectric sensor outer interface at kR=1.
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Figure 4.17: Normalized voltage around the piezoelectric sensor outer interface at
kR=1.5.
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Chapter 5

Multiple wave interactions in multiple

multilayered piezoelectric fibers and dam-

ages

5.1 Introduction

Multilayered Piezoelectric fibers are considered for use in multifunctional smart struc-

tures (Ferreira, Nóvoa, and Marques, 2016; Li et al., 2011; Lin et al., 2013; Saini,

Bajpai, and Bajpai, 2013). Unlike the traditional surface bonded piezoelectric fiber

composites, where the wave can be applied only from the accessible surface of the

structure, the usage of embedded piezoelectric fibers makes it possible to generate and

sense elastic waves from other desired positions of the structure providing more reliable

detection of the embedded damage. However, the elastic wave field may become very

complicated, because of the fact that the wave fields around the multilayered piezo-

electric fiber recursively interact redistributing both the mechanical and electric field.

The mechanical wave is also generated and sensed by a radially polarized piezoelectric

layer and is, therefore, anisotropic in the cross section (Abdel-Gawad and Wang, 2013;

Abdel-Gawad and Wang, 2018). It is, therefore, one of the most fundamental issues

regarding the use of piezoelectric fibers for the health monitoring of structures is to

accurately evaluate the resulting elastic waves.

101



The interactions of elastic waves in fiber-reinforced composite materials has received

considerable attention (Biwa et al., 2004; Bose and Mal, 1973; Bose and Mal, 1974;

Sumiya, Biwa, and Haïat, 2013; Varadan, 1978; Varadan and Varadan, 1979; Varadan,

Varadan, and Pao, 1978). Two basic approaches were proposed for the multiple scat-

tering of elastic waves using the eigen function expansion method both were proved to

be mathematically exact (Liu and Kriz, 1998). One is based on calculating scattering

orders in terms of previous scattering orders successively starting with a single scatterer

problem (Cai and Williams Jr, 1999; Twersky, 1952). The second approach calculates

the scattering wave function for all scatterers boundaries and the boundary conditions

are satisfied simultaneously (Bose and Mal, 1973; Bose and Mal, 1974). Various ap-

proximation models have been developed to approximate the behavior of elastic wave

fields in composites with large number of fibers. The micro-structure in the fiber com-

posite is assumed to be smeared out, resulting in an equivalent homogeneous material

with effective elastic properties that are functions of the constitutive properties of the

fiber composite. Statistical averaging and different composite constitutive models have

been developed to evaluate the effective dynamic properties of fiber reinforced compos-

ites (Huang, Rokhlin, and Wang, 1995; Norris and Conoir, 2011; Yang and Mal, 1994).

Models based on extending existing fiber composite micro-mechanical static models such

as the self-consistent and the generalized self-consistent were also developed to evaluate

the equivalent dynamic properties of composites (Nemat-Nasser and Srivastava, 2011;

Yang and Mal, 1996). Different models and numerical procedures were proposed for

the study of periodic composite structures such as the classical representative volume

element (Sun and Vaidya, 1996) or the scatterer polymerization procedure by reducing

an assemblage of actual scatterers to a lesser number of scatterers using the T-matrix

which can be analyzed using multiple scattering. In the latter procedure, a single ac-

tual scatterer is called an element and the scatterer assemblage is called a molecule (Cai

and Williams Jr, 1999; Cai and Williams, 1999). The multiple scattering of antiplane
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elastic waves (Biwa et al., 2004) and plane waves (Sumiya, Biwa, and Haïat, 2013)

in periodic fiber-reinforced composite were analyzed by using Graf’s addition theorem

with collocation points at the fibers.

The diffraction of acoustic waves by underground circular and cylindrical cavities

(Lee and Cao, 1989; Lee and Karl, 1992) and the interaction of waves with arrays

of circular cylinders were studied (Linton and Evans, 1990). The diffraction of elas-

tic waves due to multiple scattering around multiple scatterers such rigid inclusions

(Cheng, 1969), cavities (Sancar and Pao, 1981; Sancar and Sachse, 1981) and cracks

(Meguid and Wang, 2013) was conducted. Existing solutions which account for the

dynamic interaction and scattering deal mainly with defects using boundary element

method (Manolis and Beskos, 1988; Mykhaskiv, 2005; Rizzo, Shippy, and Rezayat,

1985), Bessel’s addition theorem (Lee and Cao, 1989; Lee and Karl, 1992; Martin, 2006),

surface integral methods (Varadan, 1978; Varadan and Varadan, 1979; Varatharajulu

and Pao, 1976), statistical approximations of effective field methods (Varadan, Varadan,

and Pao, 1978), semi-analytical integral equation method (Lee and Chen, 2010), the su-

perposition technique (Meguid and Wang, 1995), and the pseudo incident wave method

which used collocation points to obtain the solution of a system of linear equations

(Meguid and Wang, 2000; Meguid and Wang, 2013; Wang and Meguid, 1997; Wang

and Meguid, 1999; Wang et al., 2015).

In spite of the fact that the multiple interaction of fiber reinforced composite has

received considerable attention, only very few published studies treat the electrome-

chanical interaction of wave fields around multilayered piezoelectric fiber subject to

plane elastic waves i.e. longitudinal (P-waves) and in-plane shear (Shear Vertical SV-

waves). This is due to the difficulties associated with the mode conversions that occur

at the boundaries resulting from the coupling of P/SV wave modes in the dynamic

equations and to the lack of explicit expression for anisotropic layers. In addition,

many available techniques, result in a system of equations which are highly singular
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and cannot be solved directly by numerical methods.

It is therefore, the objective of this study is to provide a computationally efficient

approach to the time harmonic wave field interaction around multiple multilayered

fibers mainly between piezoelectrics and damages or another with interface imperfec-

tions under different loading frequency. The analysis is based upon decomposing the

wave function using Bessel’s addition theorem and an appropriate application of the

superposition procedure. By using this procedure, the multiple interaction problem is

reduced to single multilayered fiber problems subject to the original wave field. As a

result of such reduction, the unknown coefficients of the first order interaction are ob-

tained. The procedure is repeated to obtain the unknown coefficients of higher orders

due to the scatter of wave fields producing higher orders of Pseudo incident waves. The

present approach not only bridges between different approaches but also increases the

numeric stability and provides tools to adjust the desired interaction or circumferential

accuracy. Numerical examples are presented to show the effectiveness of the proposed

approach in simulating dynamic interaction problems of electromechanical structures

under complicated geometries.

5.2 Problem formulation

Consider the interaction between multiple multilayered fibers embedded in a common

infinitely large linearly elastic isotropic medium. Each fiber may consist of an arbitrary

number of layers perfectly bonded or with an imperfection at their interfaces and lined

up with their axes of symmetry coincide with each other such that r is normal to their

interfaces. The layers of the fiber are consequently numbered 1, 2, ...N from the central

elastic core as illustrated in figure 5.1. The inner radius of a typical layer l is located

at r = rl measured from the center of the fiber. It follows that the thickness of layer l

will be rl+1 − rl . Each fiber has a local coordinate system with the origin oj attached
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Figure 5.1: Interaction between a multilayered piezoelectric fiber and damages.

to its center. All the layers are linear elastic, homogeneous and isotropic except for the

piezoelectric layer is anisotropic. The fibers are long with their axes parallel to each

other and cylindrical in cross section. A time harmonic incident wave propagates in

a plane that is perpendicular to the axes of the multilayered fibers. The steady-state

responses at any location within the host medium are sought.

Since the thickness of the host medium is much larger than the radius fiber, the host

medium is modeled as infinite, the host medium is both isotropic elastic and isotropic

dielectric in the transverse plane. The elastodynamic and electrostatic fields are not

coupled in the transverse plane. The governing equations of the linear elastodynamics

behavior of the host medium can be written as

(5.1)(λ+ 2µ)∇ (∇ · u)− µ∇× (∇× u) = −ρω2u ,

where ∇ is the gradient operator, λ , µ are the elastic medium Lamé constants, u is

the displacement vector, ρ is the mass density and ω is the angular frequency. The

electrostatic equation in terms of electric potential, φ,

(5.2)∇2φ = 0.
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The displacement field u can be decomposed into (Achenbach, 1972; Pao, 1983)

(5.3)u =∇ϕ+∇×ψ

where ϕ and ψ are two displacement potentials satisfying Helmholtz equation

(5.4)
(
∇2+k2

L

)
ϕ =0,

(
∇2+k2

T

)
ψ = 0

kL and kT are wave numbers given by

(5.5)kL =
ω

cL
, kT =

ω

cT

where cL and cT are the longitudinal and transverse wave speeds of the elastic medium,

(5.6)cL =

√
λ+ 2µ

ρ
, cT =

√
µ

ρ
.

The general solutions of the differential equations (5.2) and (5.4) in an isotropic

elastic medium with respect to the jth scatterer polar coordinate system (r, θ) using

wave-function expansion can be composed of Bessel-Fourier basis,

(5.7)ϕ =
∞∑
k=1

∞∑
n=−∞

(
H(1)
n (kLr) o

jA
L,k
n

+ Jn(kLr) i
jA

L,k
n

)
einθe−iωt,

(5.8)ψ =
∞∑
k=1

∞∑
n=−∞

(
H(1)
n (kT r) o

jA
s,k
n

+ Jn(kT r) i
jA

s,k
n

)
einθe−iωt,

(5.9)φ =
∞∑
k=1

∞∑
n=−∞

(
H(1)
n (ker) o

jA
e,k
n

+ Jn(ker) i
jA

e,k
n

)
einθe−iωt,

where Jn (.) is Bessel function of the first kind, H(1)
n (.) is Bessel function the third kind

also known as Hankel function of the first kind, i =
√
−1 is the unit complex number,

An are unknown coefficients, the left hand subscript represent the jth scatterer, the

subscript n is the circumferential order and k is the interaction order. When wave

functions (Bessel-Fourier) are combined with the time factor, e−iωt, the direction of

the wave functions is established using large argument asymptotic, the outgoing sub-

wave amplitudes are o
jAn and the incident/transmitted sub-wave amplitudes are i

jAn
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with the left hand superscript representing direction (Bogan and Hinders, 1994). Sub-

waves refer to the potential mechanical displacements and the electric potentials in

equations (5.7)-(5.9). The temporal factor e−iωt has established the direction and will

be suppressed from here-after. The following subsections explain, the wave interaction

effects inside the host medium exterior to a scatterer and the interaction inside the

scatterer interior.

5.3 Multiple wave interactions

The multilayered piezoelectric fibers and/or multilayered fiber with or without imper-

fection will be collectively referred to as scatterers. The use of fully coupled system

would produce a very large system and is numerically ill-conditioned due to coupling

with circumferential orders. A single scatterer or piezoelectric fiber contains 6 field

variables and if Bessel-Fourier series are truncated after 80 terms then the produced

coupled system would be of 80× 6×N and N represents number of scatterers.

In multiple scatterers embedded in a host medium subject to a time harmonic

wave field, the multiple scatterer problem can be decomposed into simpler subproblems

involving one of the scatterers as shown in figure 6.3. These subproblems will be

further decomposed to study further interactions then all will be summed up to provide

the superimposed solution of the original problem. Considering one of the scatterers,

scatterer j as the nominal scatterer, this scatterer is subject to a Pseudo incident wave

field which consists of the original incident wave field inside the host medium and all

the unknown scattering from all of the other scatterers,

(5.10){jW} = {injW}+
N∑
s=1
s 6=j

{scsW} at Sj

where the effects of this Pseudo incident inside the jth scatterer

(5.11){jW} = {trjW} − {scjW} at Sj,
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(5.12){W} =

[
ur uθ σr σrθ φ Dr

]T
,

{injW} represents the original incident wave field originating from infinity, {trjW} rep-

resents the scatter wave field radiating from the scatterer,{trjW} represents the trans-

mitted wave field inside the scatterer, Sj represents the interface of scatterer j with

the host and the left hand subscript representing scatterer number starting with 1. For

each scatterer the exterior host medium incident wave as well as all the scatter from

all the other scatterers form the Pseudo incident waves with respect to the scatterer’s

coordinate system origin point oj.

The interaction can be further decomposed into interaction orders, k, with each

interaction order representing the response of a scatterer to the previous excitations.

The first interaction order is due to the original incident wave field and it represents the

response of each scatterer, {jW1}, isolated as a single scatterer as shown in figure 6.3

subproblem (b). The scattered wave field, {scsW1}, of each scatterer is calculated to be

used as a Pseudo incident wave field. The second interaction order response, {jW2},

is due to the calculated scattering as a Pseudo incident wave field, {scsW1}, of all the

other scatterers on the considered scatterer as shown in figure 6.3 subproblem (c). The

procedure is repeated, with the kth interaction order response,{jWk}, is calculated

from the previously calculated scatter,{scsWk−1}, of all the other scatterers as shown in

figure 6.3 subproblem (d). The interaction order can be represented mathematically as

(5.13){jW1} = {injW}, k=1

(5.14){jWk} =
N∑
s=1
s 6=j

{scsWk−1}, k≥2

and the total incident wave field on the jth scatterer inside the host medium and on its

interface

(5.15)
∞∑
k=1

{jWk} = {injW}+
∞∑
k=2

N∑
s=1
s 6=j

{scsWk−1}.
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Figure 5.2: Higher interaction orders of Pseudo Incident Wave.
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5.3.1 Multiple wave interactions inside the host medium

The Pseudo incident wave field inside the host medium, equation (5.15) with respect

to the local coordinates of the jth scatterer can be written in terms of the admissible

field given by equations (5.7)-(5.9) inside the host medium as

(5.16)
∞∑
k=2

{Psj Wk−1} =
∞∑
k=2

N∑
s=1
s 6=j

ξj

(
∞∑

m=−∞

[Ĥq
m]eimθ̂

)
{scsAk−1

m }

where ξj is a transformation operator which transforms the scattering coefficients matrix

[Ĥq
m] from its local coordinate to the jth coordinates and {scsAk−1

m } = { o
sA

c,k
n

o
sA

s,k
n

o
sA

e,k
n
}T

satisfying the radiation condition for each scatterer in its local coordinate system. The

matrix is given in the appendix. The transformation operator decomposes the wave

function in one polar (r̂, θ̂) coordinate to another (r, θ) (shown in figure 5.1)(Lee and

Karl, 1992; Martin, 2006) based on Graf’s addition theorem (Abramowitz and Stegun,

1965; Watson, 1995)

(5.17)H(1)
m (kwr̂)e

imθ̂ =
∞∑

n=−∞


Jn (kwr)H

(1)
m−n (kwd) ei(m−n)Φeinθ, r < d

H
(1)
n (kwr) Jm−n (kwd) ei(m−n)Φeinθ, r > d

H(1) (.), J (.) are Hankel first kind and Bessel first kind functions respectively, kw is a

generic scaling wave-number. On applying Graf’s addition theorem, equation (5.17),

equation (5.16) can be written as

(5.18)[s,jĤ
q
m]eimθ̂ =

∞∑
n=−∞

[Jqn][s,jSm−n]ei(m−n)Φj
seinθ

where

(5.19)[Jqn] =



kLJ
′
n (kLr)

in
r
Jn (ksr) 0

in
r
Jn (kLr) −ksJ

′
n (ksr) 0

[Jn]3,1 [Jn]3,2 0

[Jn]4,1 [Jn]4,2 0

0 0 J̃n (r)

0 0 J̃ ′n (r)


,
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[Jn]3,1 = J
′
n (kLr) kL

λ

r
+J

′′
n (kLr) k

2
L (λ+ 2µ)−Jn (kLr)n

2 λ

r2
, [Jn]3,2 =

(
Jn (ksr)

r
− J ′n (ksr) ks

)
2µin

r
,

[Jn]4,1 =
2µin

r

(
J
′
n (kLr) kL −

Jn (kLr)

r

)
, [Jn]4,2 = µ

(
−J ′′n (ksr) k

2
s − J (ksr)

n2

r2
+ J

′
n (ksr)

ks
r

)
,

(5.20)[s,jSm−n] =


Hm−n(kLd) 0 0

0 Hm−n(ksd) 0

0 0 Hm−n(ked)

 ,
[s,jSm−n] is the separation matrix representing the separation distance between the two

coordinates. The nth Pseudo incident wave is

(5.21){Psj Wk−1} =
N∑
s=1
s 6=j

∞∑
m=−∞

∞∑
n=−∞

[Jqn][s,jSm−n]scsA
k−1
m ei(m−n)Φj

seinθ.

Although this analysis uses Graf’s theorem for r < d the method is not limited and

other forms of (equations (5.17)) Graf theorem’s can be directly applied. Since this is

a steady state all scattering orders have already excited all scatterers.

5.3.2 Multiple wave interactions inside the anisotropic and im-

perfect layers of the fiber

The piezoelectric layer is transversely anisotropic in the cross section since it is poled

in the radial direction and the piezoelectric is coupled. To overcome these difficulties

a piezoelectric layer model is adopted (Abdel-Gawad and Wang, 2013; Abdel-Gawad

and Wang, 2018). The model couples all circumferential orders around imperfect layers

using an adapted global transfer matrix for each scatterer.

The jth scatterer’s inner central layer satisfies equations (5.7)-(5.9) since it is an

isotropic elastic layer and the wave field on the jth scatterer interface with the host

medium can be written as

(5.22){jWk} =
∞∑

n=−∞

[jGn,m]
{
T
jA

k
n

}
einθ
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Figure 5.3: Interaction between two piezoelectric multilayered fibers.

where [jGn,m] is the jth scatterer consolidated transfer matrix (Abdel-Gawad andWang,

2018) representing its scattering and the consolidated transmission properties given by

[jGn] =



−[H
(q−)
n ]1,1 −[H

(q−)
n ]1,3 −[H

(q−)
n ]1,5

−[H
(q−)
n ]2,1 −[H

(q−)
n ]1,3 −[H

(q−)
n ]1,5

−[H
(q−)
n ]3,1 −[H

(q−)
n ]1,3 −[H

(q−)
n ]1,5

−[H
(q−)
n ]4,1 −[H

(q−)
n ]1,3 −[H

(q−)
n ]1,5

−[H
(q−)
n ]5,1 −[H

(q−)
n ]5,3 −[H

(q−)
n ]5,5

−[H
(q−)
n ]6,1 −[H

(q−)
n ]6,3 −[H

(q−)
n ]6,5︸ ︷︷ ︸

[T
(q−)

s+ ]1,2 [T
(q−)

s+ ]1,4 [T
(q−)

s+ ]1,6

[T
(q−)

s+ ]2,2 [T
(q−)

s+ ]2,4 [T
(q−)

s+ ]2,6

[T
(q−)

s+ ]2,2 [T
(q−)

s+ ]3,4 [T
(q−)

s+ ]3,6

[T
(q−)

s+ ]2,2 [T
(q−)

s+ ]4,4 [T
(q−)

s+ ]4,6

[T
(q−)

s+ ]2,2 [T
(q−)

s+ ]5,4 [T
(q−)

s+ ]5,6

[T
(q−)

s+ ]2,2 [T
(q−)

s+ ]6,4 [T
(q−)

s+ ]6,6︸ ︷︷ ︸
Host medium scattering Consolidated transmission



,

(5.23)

where
{
T
jA

k
n

}
is a vector combining the scattered unknowns as well as the transmitted
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unknown coefficients given by

(5.24)
{
T
jA

k
n

}
=

{
{scjAk

n} {trjAk
n}
}
T

and {trjAk
n} = { i

jA
c,k
n

i
jA

s,k
n

i
jA

e,k
n
}T of the jth scatterer and the superscript (q−)

indicates evaluation at that interface. The consolidated transmission coefficients contain

properties of the scatterer interior.

The solution is determined by the recursive application of boundary conditions on

each scatterer by substituting equations (5.22) and (5.21) into equations (5.13), (5.14)

and (5.15),

∞∑
n=−∞

[jGn]
{
T
jA

k
n

}
einθ = {injW}+ {Psj Wk−1}, (5.25)

for each scatterer for each interaction and the total solution will be the sum

∞∑
k=1

∞∑
n=−∞

[jGn]
{
T
jA

k
n

}
einθ = {injW}+

∞∑
k=2

{Psj Wk−1}. (5.26)

The use of complex exponential orthogonality einθ or collocation is possible. The

proposed approach allows the scatterers to have any interior structure such as multi-

layered fibers since it provides higher orders of wave fields exterior to the scatterer.

5.4 Results and discussion

In this section, the results of multiple multilayered piezoelectric fibers interactions em-

bedded in a media with or without imperfections, represented in figure 5.1, is consid-

ered. The attention will be focused on (i) the validation of the developed interaction

approach and (ii) the usage of this interaction model for evaluating the stress distri-

bution in multi-layered media under different loading and geometric conditions. A few

numerical examples to show the accuracy of the model rather than a full comprehensive
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parametric study since the considered problem has many parameters. To implement

the boundary conditions, the incident wave must be expressed with the respect to each

scatterer’s coordinate system while maintaining its relative phase, the incident wave on

scatterer s with its coordinates attached to its center located at (xs, ys) with respect

to the jth scatterer coordinate system

(5.27)ϕ0 = IeikLrcos(θ−θ0),

where the phase factor I is being

I = eikL(xscosθ0+yssinθ0).

5.4.1 Limiting cases

In the limiting cases of the multilayered fibers are voids or rigidities, the problem were

solved in the generalized plane stress. The problem is same as plane strain except

for replacing λ by λ
′

= 2λµ/(µ+ 2λ) in plane stress. The normalized stress σ/σ0

is dependent upon the dimensionless wave number kLR and Poisson’s ratio. For the

case of voids, Poisson’s ratio is chosen to be 0.35 and the dimensionless wave number

is chosen at 0.2. For the rigidities case, Poisson’s ratio is chosen to be 0.25 and the

dimensionless wave number is chosen at 0.1. The results for the voids and rigidities

at the third order interaction order under kLR = .2 show an excellent agreement with

the corresponding results obtained by Cheng (1969) and Cheng (1972) respectively as

shown in figure 5.4 and 5.5. The number of interaction orders considered in the limiting

cases were three orders and it was sufficient as shown with the excellent agreement in

the examples.

5.4.2 Multilayered fibers

In the following discussion, the piezoelectric layer material is P(VDF-TrFE) and the

host medium material is Polycarbonate as shown in table 6.1 with two embedded types
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of damages a void and a crack. Figures 5.6 shows the normalized voltage on the piezo-

electric layer interface (φ0 =
h33

c33

hσ0 is the normalization voltage around the interface)

at a relative frequency of kR = 1 for a circular void with radius R placed at an angle

Φ = 10◦ various distances d12 from the center (0,0) of the piezoelectric layer, results

show excellent agreement with the finite element as a further verification. The radius

of the piezoelectric layer is the same as the radius of the void R and k is the host

medium wave number. The same excellent agreement is shown in figures 5.7 and 5.8

for normalized radial and circumferential stresses at the piezoelectric interface with the

host medium.

Another type of damage was also verified against finite element, a curved crack,

results show an excellent agreement at d12 = 5.5R however this is not the case for

a very closely placed crack as shown in figures 5.9 to 5.11. Figures 5.9 to 5.11 show

normalized voltage, radial stress and circumferential stress on the interface between

a piezoelectric layer and the host medium with an embedded crack at kR = 1. The

curved crack parameters are R which is the radius of the crack with its center varies at

distances d12 from the center of the piezoelectric layer, angled at Φ = 10◦ and starts at

an angle of 170◦ and ends with 190◦.

A perfectly bonded one piezoelectric layered fiber sensor with radius rs was placed

at a distance ds = 30rd from two horizontally spaced damages with radii rd such that

rs = .1rd and the separation distance between the centers of the two damages dd changes

as shown in figure 5.12. The piezoelectric fiber is placed far from the damages to ensure

the sensed volts are not interacting with the damaged scatterers and the generated signal

by the piezoelectric fiber actuators is an incident P-wave. The results in figures 5.13-

5.16 show that the amplitudes of the normalized volts sensed are very sensitive to the

angular position of the piezoelectric fiber represented by the incident wave angles θ0,

loading frequency, and to the distance between the scatterers. The simulations were

conducted with nine interactions orders ensuring convergence and that the interaction
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Material
Elastic Constants Density Piezoelectric Permittivity
×1010(N/m2) 103 (kg/m3) ×100(C/m2) ×10−9(C/Vm)

c11 c33 c12 c13 c55
ρ e31 e32 e33 e24 ε33 ε11isotropic λ+ 2µ λ λ µ

Polycarbonate .554 .554 .298 .298 .128 1.18 - - - - .03 .03
P(VDF-TrFE) .47 .45 .257 .213 .12 1.3 .045 .037 -.18 -.1 .1 .01

Table 5.1: Materials used in this study.

scattered signal has died with the interaction order at which the signal died. The angles

of the piezoelectric fiber are taken to simulate a signal actuated and sensed by an array

of piezoelectric fibers surrounding two damages. Results also show that in most cases a

third order interaction is sufficient even when the scatterers shade each other with the

exception of very close proximity damages since interaction increases when scatterers

are in a close proximity to each other. The recommended relative frequency for a strong

detectable signal usually starts at krd > 1 and for piezoelectric fiber angled at θ0 = −90

or θ0 = 0 is about krd ' 1.5.

5.5 Conclusions

A new general approach is provided to the dynamic interaction of multilayered piezo-

electric fiber and an imperfect bonded multilayered fiber under a plane wave. The

analysis is based upon the use of eigen function expansion. The approach works when

the damages are in a close proximity to each other and/or to sensors as well as for the

case of far distanced damages. The validity and versatility of the present solution have

been demonstrated in a unified manner by application to some specific examples. The

examples discussed two types of damages however the proposed approach is general

and can be easily extended to other types of damages. Numerical results of the voltage

output for different configurations and frequencies are determined and analyzed. The

configuration, the location of piezoelectric fibers, the location of damages, size of the

damages and the loading frequencies show complicated effects on the sensed output
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voltage. The sensed output voltage, yet complicated but, is very sensitive to damage

characteristics. The sensed voltage on the piezoelectric layer due to a void is not as

high as that of a crack which makes the identification of a void more difficult. It is also

sufficient to consider the second order interaction specially if the damage is not very

close to all the sensors.
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Figure 5.4: Normalized circumferential stress at different points under kR=.2 for current
study versus Cheng (1972) work for interacting voids.

Figure 5.5: Normalized radial stress at different points under kR=.2 for current study
versus Cheng (1969) work for rigidities.
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Figure 5.6: Piezoelectric voltage at the interface of a piezoelectric fiber with a host
medium with an embedded void at different distances.

Figure 5.7: Normalized radial stress at the interface of a piezoelectric fiber with a host
medium with an embedded void at different distances.
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Figure 5.8: Normalized circumferential stress at the interface of a piezoelectric fiber
with a host medium containing an embedded void at different distances.

Figure 5.9: Normalized voltage at the interface of a piezoelectric fiber with a host
medium containing a crack at different distances.
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Figure 5.10: Normalized radial stress at the interface of a piezoelectric fiber with a host
medium containing an embedded crack at different distances.

Figure 5.11: Normalized circumferential stress at the interface of a piezoelectric fiber
with a host medium containing an embedded crack at different distances.
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Figure 5.12: An array of piezoelectric fibers and two damages.
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Figure 5.13: Normalized voltage of a piezoelectric fiber sensor angled at θ0 = 30 from
differently spaced damages.
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Figure 5.14: Normalized voltage of a piezoelectric fiber sensor angled at θ0 = 60 from
differently spaced damages.
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Figure 5.15: Normalized voltage of a piezoelectric fiber sensor angled at θ0 = 90 from
differently spaced damages.
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Figure 5.16: Normalized voltage of a piezoelectric fiber sensor angled at θ0 = 0 from
differently spaced damages.
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Chapter 6

Simulation for damages identification us-

ing an array of multilayered piezoelec-

tric fibers

6.1 Introduction

Structural health monitoring and structural damage identification has attracted signif-

icant attention due to its importance in predicting and preventing catastrophic failures

specially in critical structures (Das, Saha, and Patro, 2016; Doebling, Farrar, Prime,

et al., 1998; Fan and Qiao, 2011; Lee and Dhital, 2013; Sohn et al., 2004; Su, Ye,

and Lu, 2006). Elastic waves have been successfully used in damage identification

and nondestructive evaluation of structures (Achenbach, 2000; Drinkwater and Wilcox,

2006; Giurgiutiu and Cuc, 2005; Schmerr, 2013). Various damage identification tech-

niques were developed, with two main mechanical approaches that have relatively large

damage coverage: one is based on vibration (Das, Saha, and Patro, 2016; Doebling,

Farrar, Prime, et al., 1998; Fan and Qiao, 2011) and the other is based on elastic wave

(Fritzen, Schulte, and Jung, 2011; Kessler, Spearing, and Soutis, 2002; Ostachowicz and

Kudela, 2011; Raghavan and Cesnik, 2007). Vibration based approaches are relatively

insensitive to local small damage and its vibration signals are hypersensitive to the

surrounding environment and therefore, it lacks reliability and accuracy in estimating
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small damages (Su, Ye, and Lu, 2006; Zhu, Huang, and Yuan, 2013). In a typical

elastic based damage identification process (Huang, Song, and Wang, 2010; Wang and

Huang, 2004b), actuators generate a diagnostic elastic wave in the structure. When

damages are encountered, the wave is reflected and the corresponding response of the

structure is measured using a system of sensors. The analysis is conducted on the mea-

surements or recorded signals to identify the damage and the problem is formulated

as an inverse problem or a system identification (Sirca Jr and Adeli, 2012). Different

analysis methods have been developed to identify damage in structures from discrete

measurement locations. A typical method of analysis is to directly compare the char-

acteristic parameters of the measured signals with those of a damage free structure as

a reference baseline to identify changes and therefore, potential damages (Achenbach,

2000; Giurgiutiu, 2000). Other methods of analysis which are not based on pre-known

reference measurements of damage free structure have been reported (Anton, Inman,

and Park, 2009; Sohn et al., 2007; Sohn et al., 2004).

Structural damage identification problem is an inverse problems, in which the mea-

surements of the structure such as sensor readings are available, whereas the damage

size, location and/or the structure physical properties are unknown. Inverse problems

are difficult to solve, mainly because they behave nonlinearly and are often character-

ized by ill-posedness (Colton and Kress, 2012; Liu and Han, 2003). The solution of

the inverse problem, based on optimization schemes, consists of an iterative process

of solving the direct problem with the objective of minimizing the error between the

recorded measurements on sensors and the predicted quantities of the direct problem.

The iteration process is used to identify the damage parameters and/or updating the

candidate model physical properties of the direct problem according to the optimization

algorithm. The iterative process continues on minimizing the objective error such that

the algorithm converges to the true or the best damage parameters.

The objective of this study is to identify multiple damages in a structure from
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their developed voltage on an array of multilayered piezoelectric fiber sensors due to

the electro-mechanical interaction between the array and the unknown damage. The

recorded voltage measurements on the array of the multilayered piezoelectric fiber sensor

in response to the unknown damage parameters will be simulated using a finite element

model while the iterative calculations are conducted using a multiple interaction model

as the direct problem (previous chapters). Two types of damages, voids and cracks,

are discussed and presented in the numerical solution to illustrate the effectiveness of

the proposed scheme in identifying multiple damages under sensors reading noise and

with damages having irregular shapes. The embedded damage parameters including

shape and location will then be estimated through minimizing the difference of the

known voltage output and that determined in the developed interacting sensor/damage

solution.

6.2 Problem Formulation

The problem investigated is to identify the unknown damage characteristics through

the known voltage signals from an array of embedded multilayered piezoelectric fiber

sensors when the structure is subjected to a time-harmonic incident wave. The array

of multilayered piezoelectric fibers is long and embedded in an infinite elastic isotropic

host medium in which the damages are to be identified, as shown in figure 6.1. There

are two types of damage idealization models 1) circular voids and 2) curved cracks as

shown in figure 6.2 to allow for the best fitting to an actual irregularly shaped void and

crack. The parameters of a typical circular void are its radius rv and the location of its

center (xv, yv) while the parameters of a typical curved crack are its radius rc, location of

its center (xc, yc), starting θ1 and ending θ2 angles. The piezoelectric layer in any of the

multilayered piezoelectric fiber array is radially polarized and therefore it is anisotropic

in the transverse direction. The damaged host structure contains irregularly shaped
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voids and/or cracks embedded in an isotropic infinite medium which corresponds to the

case that damages are far from the boundaries. These damages are to be identified to

the best fit circular void and/or cracks.

The damage identification problem is formulated as an inverse problem in which the sen-

sor voltage readings are known while the damages locations and sizes are unknown. The

solution of the inverse problem consists of the repeated solutions of the direct problem

while changing damage parameters according to both an intelligent predesigned genetic

and a non-linear gradient optimizer algorithm. A two-stage optimization framework

is developed by combining the strengths of a newly developed predesigned intelligent

genetic and a nonlinear gradient optimization strategies. The newly developed genetic

algorithm as well as the Broyden–Fletcher–Goldfarb– Shanno (BFGS) algorithm are

used to minimize the error between the experimental voltage readings on sensors and

the calculated voltage from the direct problem solution.

Inverse problems can be solved by first guessing the missing information, solving the

forward problem, and then repeatedly updating the guess in the forward model until

the simulated system response best fits the measurements recorded by the sensors. In

the following sub-sections, the formulation of the direct and of the inverse problems are

discussed.

6.2.1 The direct problem

The direct problem is to simulate the voltage output along the piezoelectric layer in

response to damages embedded under time-harmonic loading. The solution of a field

variable Ŵ (displacement, and stress) can be expressed in terms of the loading fre-

quency ω as

(6.1)Ŵ = We−iωt

where i =
√
−1, t and ω are being the imaginary number, time and circular frequency,

respectively. For convenience, the time factor e−iωt will be suppressed and only the
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Figure 6.1: An array of multilayered piezoelectric fiber sensors and irregular shaped
void and crack.

magnitudes W will be considered in the following discussion.

6.2.1.1 Interaction between damages and sensors

The multilayered piezoelectric fibers and/or multilayered fiber with or without imper-

fection will be collectively referred to as scatterers. In multiple scatterers embedded in

a host medium subject to a time-harmonic wave field, the multiple scatterer problem

can be decomposed into simpler subproblems involving one of the scatterers as shown

in figure 6.3. These subproblems will be further decomposed to study further interac-

tions then all will be summed up to provide the superimposed solution of the original

problem. Considering one of the scatterers, scatterer j as the nominal scatterer, this

scatterer is subject to a Pseudo incident wave field which consists of the original inci-

dent wave field inside the host medium and all the unknown scattering from all of the

other scatterers,
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Figure 6.2: An array of multilayered piezoelectric fiber sensors and best identified
circular void and crack.

(6.2){jW} = {injW}+
N∑
s=1
s 6=j

{scsW} at Sj

where the effects of this Pseudo incident inside the jth scatterer

(6.3){jW} = {trjW} − {scjW} at Sj,

(6.4){W} =

[
ur uθ σr σrθ φ Dr

]T
,

{injW} represents the original incident wave field originating from infinity, {scjW} rep-

resents the scatter wave field radiating from scatterer s towards scatterer j,{trjW}

represents the transmitted wave field inside the scatterer and the left hand subscript

representing scatterer number starting with 1. For each scatterer the exterior host

medium incident wave as well as all the scatter from all the other scatterers form the

Pseudo incident waves with respect to the scatterer’s coordinate system origin point

oj . The interaction can be further decomposed into interaction orders, k, with each
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interaction order representing the response of a scatterer to the previous excitations.

The first interaction order is due to the original incident wave field and it represents the

response of each scatterer, {jW1}, isolated as a single scatterer as shown in figure 6.3

subproblem (b). The scattered wave field, {scsW1}, of each scatterer is calculated to be

used as a Pseudo incident wave field. The second interaction order response, {jW2}, is

due to the calculated scatter as a Pseudo incident wave field, {scsW1}, of all the other

scatterers on the considered scatterer as shown in figure 6.3 subproblem (c). The proce-

dure is repeated, with the kth interaction order response,{jWk}, is calculated from the

previously calculated scatter,{scsWk−1} ,of all the other scatterers as shown in figure 6.3

subproblem (d). The interaction order can be represented mathematically as

(6.5){jW1} = {injW}, k=1

(6.6){jWk} =
N∑
s=1
s 6=j

{scsWk−1}, k≥2

and the total incident wave field on the jth scatterer interface with the host medium

(6.7)
∞∑
k=1

{jWk} = {injW}+
∞∑
k=2

N∑
s=1
s 6=j

{scsWk−1}.

The calculated φ for the assumed damage is then used as the calculated theoretical

voltage of the piezoelectric fiber sensor.

6.2.2 The inverse problem

The relation between damage characteristics and the voltage output has been obtained

by solving the direct problem. This relation between voltage readings on sensors and

damage parameters can be integrated into an optimization algorithm to predict the

damage parameters from known experimental voltage readings on sensors. There are

two types of damages discussed circular voids and curved cracks to allow for the best

fitting to irregularly shaped voids and cracks. The parameters of a typical circular
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void are its radius rv and the location of its center (xv, yv) while the parameters of

a typical curved crack are its radius rc, location of its center (xc, yc), starting θ1 and

ending θ2 angles. An error function j (p) in damage parameters p is defined as the

Euclidean distance or the least squares difference between experimental voltage reading

φe (kfR) and calculated φc (p, kfR) at different relative frequencies and R is initial

guess radius. The inverse problem is then stated as determining the damage parameters

p = {p1, p2, ..., pi, ...pn} which minimize the objective error function,

(6.8)j (p) =

√√√√ Nk∑
f=1

(φc (p, kfR)− φe (kfR)) (φc (p, kfR)− φe (kfR))T

φe (kfR) (φe (kfR))T

where T is the transpose and Nk is the total number of relative frequencies used to

record voltages on sensors.

The objective function is general and can be reduced to the simple limiting case of

a single frequency which corresponds to acquiring sensor readings due to only one inci-

dent wave. The general objective function permits the identification of damages when

the number of damage parameters exceeds the number of sensor readings at a single

frequency. The experiment can be run at multiple incident wave frequencies to generate

more sensor voltage readings and it can be also used to enhance the identification.

6.2.2.1 Intelligently predesigned genetic algorithm

In global optimization, the search for a candidate solution parameters p (search space)

to minimize the error fitness function is not limited as in local space. The genetic

alogrithm is proposed to ensure the solution is not trapped in a local minimum which

would prevent converging to the right solution. The genetic algorithm also does not re-

quire a proper guess of the initial parameters or the exact number of damages. Another

advantage is that, it permits constraining the optimization search space for examples

within limited search space or preventing damages from overlapping. Although the

genetic algorithm can be used exclusively to find the solution however it is very slow
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compared to local gradient-based optimization algorithms.

Instead of working with a single set of candidate solution parameters p in each itera-

tion, the genetic algorithm creates a number of candidate solution parameters p1, p2,...,

pM (collectively known as a population) in each iteration thus parallel computing can

be used. The first generation, initial population, consists of chromosomes which are a

number of sets of all parameters. A vector of chromosomes p = {p1, p2, ..., pi, ...pn} with

pi as the genes which correspond to the damage parameter. The complete collection

of genetic material (all chromosomes taken together) is called the genome. An evalua-

tion of the error function for each chromosome, if a chromosome provides a value that

satisfies the convergence criteria of the error function then the algorithm is terminated

otherwise different operators (selection, reproduction, mutation, and crossover) are ap-

plied to update the population. The selection operator chooses those chromosomes

in the population that will be allowed to reproduce as parents holding those selected

chromosomes. The parents holding the fittest parent’s chromosomes are selected to pro-

duce children by ranking the chromosomes based on their corresponding error function

evaluations. The production operator reproduces new generations of populations by

mutation and crossover of the selected parents from the previous generation. The best

parents’ chromosomes for example parent 1 holding p1 = {p1
1, p

1
2, ...p

1
i , ...p

1
n} with the

best among current population and parent 2 holding p2 = {p2
1, p

2
2, ...p

2
i , ...p

2
n} with the

second best will be allowed to produce children. The mutation operator adds changes

to the parents to create mutated children. Mutation is predesigned intelligently in new

generations based on nonlinear gradient operators for example, the kth parent will be

used to create a child using an iteration of Broyden-Fletcher-Goldfarb-Shanno

(6.9)p
′k = pk − αk

(
H(k)

)−1
g(k)

where the superscript ’ is for a child, αk is the step size, H(k) is the Hessian matrix and

g(k) is the gradient (discussed in subsec. (6.2.2.2)). Unlike classical genetic algorithms

which rely on evolutionary operators based on randomness, the newly developed algo-
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rithm relies on intelligently predesigned operators. The intelligent predesigned nature

of this algorithm mutates intelligently from parents based on a calculation of the gra-

dient. The crossover operator exchanges subparts of two or more chromosomes of the

selected parents to create crossover children for example, p
′1 = {p1

1, p
1
2, ...p

1
i , ...p

2
n} is a

possible crossover child with all genes from parent 1 and only the last gene from parent

2. The new generation of the current population is formed from all the children of the

previous generation.

The intelligently predesigned genetic algorithm is dependent upon several control

parameters, the initial population size, the selection criteria of the parents holding the

fittest chromosome, the mutation, and crossover techniques. These control parameters

should be tuned in order to achieve good performance. Each specific application may

require different control parameters values for best performance (Grefenstette, 1986;

Rabinovich, Givoli, and Vigdergauz, 2007; Schaefer, 2007). In the present study the

following parameters combined with some general guidelines:

• A large initial population increases the probability of finding the global minimum,

and the faster the convergence, however, more evaluations of the error function are

required. Calculations of the direct model are the most computationally intensive

operation in the optimization process. The initial population size in this study is

set to 80. The diversity in location genes is ensured by setting the initial range

of the population which ensures that the algorithm will not get stuck in local

minimum (Anderson-Cook, 2005; Winston, 1984).

• Simple selection criteria by ranking the best parents’ chromosomes according to

their corresponding evaluations of the error function.

• A high crossover is recommended. A simple crossover by swapping the 5 best

parents genes to produce children.

• A small mutation is recommended not only because it is computationally inten-
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sive but also so the global optimization process does not get trapped in a local

minimum. In each generation, only 10 children are mutated from the 10 best

selected parents.

The constraints imposed on this problem are the upper, lower bounds and simple re-

lations to prevent overlapping of damages. The algorithm will start with a number of

damages (holes or cracks) more than the expected number of damages once convergence

is attained, the right number will be determined.

6.2.2.2 Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

In the local optimization, the gradient-based Newton method through the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm will be used because of its great perfor-

mance in solving unconstrained nonlinear local optimization problems. The results of

global optimization will be used as an initial guess in the local optimization. The objec-

tive function is approximated with a quadratic function. The quadratic approximation

to j (p) can be obtained by the second order Taylor expansion around the kth iterative

parameter vector, p(k), as

(6.10)j (p) = j
(
p(k) + ∆p

)
≈ j

(
p(k)

)
+
(
g(k)
)T

∆p +
1

2
(∆p)T (H)−1 ∆p

where ∆p = p−p(k) and g(k) = ∇j
(
p(k)

)
is the gradient of the objective function with

respect to its parameters p

g(k) = ∇j
(
p(k)

)
=

[
∂j
(
p(k)

)
∂p1

∂j
(
p(k)

)
∂p2

· · ·
∂j
(
p(k)

)
∂pi

· · ·
∂j
(
p(k)

)
∂pM

]T
.

(6.11)

The gradient of this approximation with respect to ∆p is

(6.12)∇j
(
p(k) + ∆p

)
≈ ∇j

(
p(k)

)
+ H∆p

and setting this gradient to zero (which is the objective of optimization) provides the

Newton step
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(6.13)∆p ≈ −
(
H(k)

)−1
g(k).

Newton’s method requires computing the inverse of the Hessian matrix (H)−1 in

every iteration, therefore, it is not efficient. Consequently, quasi-Newton’s methods are

adopted, and the inverse Hessian matrix is approximated. The approximate Hessian H

is chosen to satisfy
(6.14)∇j

(
p(k) + ∆p

)
= ∇j

(
p(k)

)
+ H∆p,

which is called the secant equation (Taylor series of the gradient). The various quasi-

Newton methods differ in their solution to the secant equation. Most methods (with

some exceptions, such as Broyden’s method) seek a symmetric solution (H = HT ). The

iterative procedure of calculating the parameters is repeatedly calculated as

(6.15)p(k+1) = p(k) −
(
H(k)

)−1
g(k)

which will head in the descent direction of the objective function when the Hessian

matrix is positive definite. Since the positive definite of the Hessian matrix cannot be

guaranteed for the current problem and in order to ensure the descent property of the

Newton’s method, Equation (6.15) is modified to

(6.16)p(k+1) = p(k) − αk
(
H(k)

)−1
g(k)

where αk is the step size in the search direction −
(
H(k)

)−1
g(k). In the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm, the Hessian matrix is updated using the

following formula,

(6.17)
H(k+1) = H(k) +

[
1 +

(
∆gk

)T
H(k)∆g(k)

(∆gk)T ∆g(k)

]
∆p(k)

(
∆pk

)T
(∆pk)T ∆p(k)

−
∆p(k)

(
∆gk

)T
H(k) + H(k)∆g(k)

(
∆pk

)T
(∆gk)T ∆p(k)

where ∆p(k) = −αk
(
H(k)

)−1 ·g(k), ∆g(k) = g(k+1)−g(k) and g(k) is approximated using

the central finite difference
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(6.18)g(k) ≈ j (p1, p2, ..., pi + δpi, ...pn)− j (p1, p2, ..., pi − δpi, ...pn)

δpi

where δpi is an infinitesimal perturbation taken as δpi = .001pi. The initial Hessian

matrix H(0) can be set to any symmetric positive definite matrix, in this study, it is set

to be the identity matrix H(0) = I.

6.2.2.3 Multiple damages identification

A two-stage optimization is necessary for multiple damages quantitative identification

specially for arbitrarily and irregular shaped multiple damages. A local optimization

usually fails to solve complex multiple damages even with a very efficient search operator

such as BFGS unless a good initial guess is provided to the solver. In practice, it is

difficult to set a good initial guess for the multiple damages’ parameters. Therefore,

the global optimization using a powerful algorithm is more practical and a realistic

requirement to provide a good admissible initial guess for BFGS.

A flow chart for the damage identification process is shown in figure 6.4 with the

dotted rectangles representing the two optimization stages. The inputs are the experi-

mentally recorded voltage data, structural constants, multilayered piezoelectric sensor

array, and loading data are stored to be shared for the whole program. The objective

function is calculated using equation (6.8) which calculates the least squares difference

between experimental recorded data and the calculated data by iteratively solving the

direct problem. After updating the damage parameters through the process, the es-

timated damage parameters approach the actual damage parameters with tolerance if

convergence is achieved.

Criteria to switch the global optimization using the intelligently predesigned genetic

algorithm to the local optimization using BFGS algorithm are:

• The objective function converges to less than or equal to εglobal which is taken

in this study as a relation with respect to the relative frequency or the ratio of
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εglobal =
R

zλf
=
kfR

2πz
where z is a suitable number larger than 10.

• The objective function does not improve any further in two consecutive genera-

tions.

For the case of unknown type or number of damages a judgment has to be done on

the type and size of the damages to determine whether or not to be considered or

eliminated. It can be expected that if the damage is a crack while simulations are

conducted using a circular void, the objective function will not improve in two consec-

utive generations and the reached optimal damage parameters would produce values

far from the recorded volts on the sensor array. The mathematical model to be used as

a measurement tool has to be calibrated by comparing the actual recorded voltage of

a known damage parameters specially of known crack tips locations. The calibration

reduces any mismatch in readings and calculations.

6.3 Results and discussion

In this section, the numerical results of, multiple damages identification using the pro-

posed optimization algorithm are presented. The examples are structured in an in-

creasing order of difficulty considering number of damages, type of damages, number of

parameters, and shape irregularity. The purpose of the following examples is to evalu-

ate the performance of the proposed optimization algorithm in comparison to standard

genetic algorithm and apply the proposed direct model in structural health monitoring.

Materials used in this study are shown in table (6.1) with their material constants. The

experiments were conducted at a dimensionless loading frequency of kR = 1.5 with k

being the shear wave number of the outer medium kT = ω/cT and R being the outer

radius enclosing the damage.

Although the intelligently predesigned genetic algorithm uses an intelligently pre-

designed mutation, it is still a stochastic algorithm which uses randomness from its ini-
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Figure 6.4: A flow chart for damage identification using intelligent predesigned genetic
and gradient optimization algorithm
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Material
Elastic Constants Density Piezoelectric Permittivity
×1010(N/m2) 103 (kg/m3) ×100(C/m2) ×10−9(C/Vm)

c11 c33 c12 c13 c55
ρ e31 e32 e33 e24 ε33 ε11isotropic λ+ 2µ λ λ µ

PolyCarbonate .554 .554 .298 .298 .128 1.18 - - - - .03 .03
P(VDF-TrFE) .47 .45 .257 .213 .12 1.3 .045 .037 -.18 -.1 .1 .01

Table 6.1: Materials used in this study

tial solution to its different operators (selection, reproduction, mutation, and crossover).

Stochastic algorithms might produce a slightly different solution on each independent

run. Several independent runs were conducted to avoid solution uncertainty and to

represent good results with the best minimum objective function value is reported.

Numerical experiments are conducted using finite element (see appendix A) to ob-

tain observed voltage readings on an array of sensors as shown in shown in figure 6.1

to represent a real in site situation with noises. The noise levels are the highest for

the irregular shapes and noise levels are calculated by comparison to simulation results

using the proposed model as described in the direct problem with higher interactions

orders of pseudo incident wave (Hi-PsIW). The root mean square error (RMSE) is used

to quantify the noise levels. The root mean square is calculated for each sensor, s, by

calculating the residual errors between measured voltage using finite element FE and

the corresponding calculated voltage for the same point on the piezoelectric interface

with the host medium

(6.19)RMSEs =

√√√√√√
N∑
θ=1

(φFEθ − φHiθ)2

N

where N is the total number of points along the interface. The noise level is increased by

controlling the irregularity in the shapes to produce errors added to measured voltages.

The errors can be randomly added to the sensors as

(6.20)φHis = φFEs + p (RMSEs) g

where φHis is the equipotential voltage from higher order interaction model for sensor
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s, φFEs is the equipotential voltage from finite element calculation for sensor s, and g

is the Gaussian white noise variable p% the noise level. However, it is more realistic

to obtain noise from the controlled numerical experiment by adding irregularity in the

damage shape.

The standard genetic algorithm, a classic rank based genetic algorithm adopted by

MATLAB toolbox, is used for comparison purposes with the developed intelligent pre-

designed genetic algorithm as the global optimizer. The same optimization parameters,

operators and settings are used, which are the defaults, for both the standard genetic

algorithm by MATLAB toolbox as those for the intelligent predesigned genetic algo-

rithm with the exceptions of randomness in operators. In the intelligent predesigned

genetic, randomness is minimized and intelligent crossover, selection, and mutation op-

erators are used as described earlier. Global optimizer algorithms use default settings

and create a partial initial population to ensure the same initial guess for comparisons

(Anderson-Cook, 2005; Schaefer, 2007).

6.3.1 Single damage

Two examples for the two types of damages are considered as a single damage. These

are a circular void and an arc crack.

6.3.1.1 Damage as a circular void

The optimization constraints for circular void example limit the void parameters such

that −12 < xv < 12, −12 < yv < 12 and 0 < rv < 6. Table (6.2) provides a

comparison of three optimization algorithms after 1200 iterations for a circular void

of radius 3mm. It can be seen that intelligently predesigned algorithm combined with

BFGS provides best results and converges faster. Figure 6.5 shows the convergence

of the error function versus the iteration number for different optimization algorithms

using slightly different circular void of radius 2.7mm and located at xv = 1, yv = 1. It
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Damage Actual Initial Standard Standard Intel. Pre.
parameters values guess GA GA+BFGS GA+BFGS

rν 3 6 3.1696 3.0275 3.0009
xν 0 -10 -0.0339 -0.0087 -0.0012
yν 0 -10 0.0768 0.0109 0.0014

Error
function

3.280E-04 1.350E-08 1.075E-09

Table 6.2: A comparison of different optimization algorithms for a circular void identi-
fication.

Figure 6.5: Error function versus iteration number of direct solver for the identification
of a circular void.

can be seen if the initial guess was far from the actual parameters BFGS fails and gets

trapped in a local minimum. The use of the standard genetic algorithm is very slow and

might not converge after many iterations. The combination of genetic algorithm with

BFGS provides a better solution however the combination with intelligently predesigned

genetic with BFGS provides best results faster.
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Figure 6.6: Error function versus iteration number of direct solver for the identification
of a crack.

6.3.1.2 Damage as an arc crack

In this example, the damage is chosen as an arc crack with the parameters of the

arc crack are xc = 1, yc = 1, θ1 = 70◦, θ2 = 110◦ and rc = 3. The optimization

constraints for a circular arc crack are to limit the crack parameters such that −12 <

xc < 12, −12 < yc < 12 and 0 < rc < 6 without constraints on θ1 or θ2. Figure 6.6

shows the convergence comparison of different optimization algorithms for evaluations

of the error function versus iteration number of the iterated direct problem with results

showing the superiority of using a combination of intelligent predesigned and BFGS.

The identified crack parameters predicted by using the intelligently predesigned genetic

and BFGS algorithms are given in table 6.3. Results show that identifying a crack

with 5 parameters requires more iterations than identifying a circular void; however,

the identification at the same objective function value is more accurate.
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Damage Actual Initial Intelligently
Predesigned

parameters values guess GA+BFGS
rc 3 6 2.9998
xc 1 -10 -0.0001
yc 1 -10 0.0002
θ1 70 0 69.9897
θ2 110 30 110.0012

Error
function

1.136E-09

Table 6.3: Identified crack parameters.

6.3.2 Multiple damages

Multiple damages are considered as both a crack and a circular void with damage

parameters set as xc = −4.5, yc = 0.7, θ1 = 70◦, θ2 = 110◦, rc = 3 for the crack while

xv = 6.5, yv = 1 and rv = 3. The optimization constraints for multiple damage would

limit the damage parameters such that −12 < xc < 12, −12 < yc < 12, −12 < xv < 12,

−12 < yv < 12, 0 < rv < 5 and 0 < rc < 5 without constraints on θ1 or θ2. In addition

to those optimization constraints, the separation distance d between the two damages

had to be constraint as well d > 10 so damages will not intersect during iterations of the

direct problem. Figure 6.7 shows the convergence comparison of different optimization

algorithms for evaluations of the error function versus iteration number of the iterated

direct problem.

The noise generated by using the finite element to conduct the numerical experi-

ments and collect observations was less than 1%. An irregularity in the crack as well

as the circular void shape is introduced to increase the noise levels by drawing a ran-

dom irregular shape for both the crack and the void (as shown in figure 6.1) then the

corresponding voltages polluted with noise are collected which is equivalent to adding

noise to the individual sensors using Gaussian white noise. Different levels of noise were

introduced and the proposed algorithm successfully identified the embedded damages

to their best crack and circular void even for high noise levels as illustrated in table .
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Figure 6.7: Error function versus iteration number of direct solver for the identification
of multiple damage.

Damage Actual Initial Intelligently
Predesigned

parameters values guess GA+BFGS
rc 3 5 3.0137
xc -4.5 5 -4.4941
yc 0.7 -10 0.6982
θ1 70 0 70.0108
θ2 110 30 110.0136
rν 3 5 3.0936
xν 6.5 -10 6.4132
yν 1 -5 0.9768

Error
function

1.1890E-07

Table 6.4: Identification of a crack and a circular void parameters.

Noise Void Crack
level rc xc yc θ1 θ2 rν xν yν
∼ 10% 3.098 -4.482 .738 70.022 110.032 3.156 6.398 1.117
∼ 15% 2.892 -4.563 .652 70.045 110.090 3.281 6.315 1.212
Best fit
values

3 -4.5 0.7 70 110 3 6.5 1

Table 6.5: Identification of noise polluted irregular shaped crack and void parameter.
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6.4 Conclusions

This study presents a novel two-stage optimization method based on previously devel-

oped models of multilayered piezoelectric fibers and wave interactions with multiple

embedded damages in the structures. The proposed method can be applied to quantify

any number and any type of damages of arbitrarily shaped voids and/or cracks from

the voltage signals recorded on the piezoelectric fiber sensors. The multiple damages

identification method is provided to quantitatively identify irregular voids and cracks

using two-stage optimization algorithms. Although two types of damages were dis-

cussed, the method can be easily extended to other types of damages by replacing the

embedded damage scattering model. The identification for damages produced the size

and location of the damage where cracks to be identified, it produced crack location,

size and radius of curvature while for voids produced the size or radius of the circular

void and location. A new intelligently predesigned genetic algorithm using predesigned

mutation based on gradient calculation instead of the random mutation used in classical

algorithms. The identification process is based on recorded voltages by an array of mul-

tilayered piezoelectric sensors. The voltage outputs on the sensor array due to damages

are solved using the higher interaction pseudo incident wave as the direct problem while

the inverse problem identified damages by using the two-stages optimization process.

Numerical examples are presented, which show rapid convergence and effectiveness of

the newly developed multiple damage identification method.
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Chapter 7

Contributions and future work

An extensive study of multilayered piezoelectric fiber was presented. Multilayered piezo-

electric fibers serve as active elements embedded in smart structures and can serve in

structural health monitoring. Multilayered piezoelectric fibers can be used at high

frequencies for better identification precision while other sensors. A comprehensive

theoretical investigation have been conducted to study the dynamic behavior of radi-

ally polarized multilayered piezoelectric fibers, multiple fiber-damage wave interactions

and the application of an array of multilayered piezoelectric fibers to identify multiple

damages. A summary of the main contributions, conclusions and future work of this

research is given in this chapter.

7.1 Main contributions

Four major issues essential to the application of multilayered piezoelectric fibers in

the general design of smart structures and the applications of smart structural health

monitoring. These issues are:

(1) how to model the dynamic electromechanical behavior of piezoelectric fibers,

(2) how to analyze the performance of multilayered piezoelectric fibers embedded

as sensors and/or actuators,

(3) what is the wave field after multiple wave interactions between multiple multi-

layered piezoelectric fibers and damages,

(4) where are damages and what is their size and how to numerically conduct sim-
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ulations to identify them using an array of multilayered piezoelectric fibers.

These four major issues required the development of new models, techniques, and

algorithms. Therefore, the main contributions of the thesis can be summarized in the

following subsections.

7.1.1 A new dynamic electromechanical model for piezoelectric

fibers

A new dynamic electromechanical model for piezoelectric fibers was developed (Abdel-

Gawad and Wang, 2013). The developed model contains the effect of the circumferential

stresses and unlike traditional linear spring, it satisfies the equations of motion. The

model has been verified at low and high relative frequencies. It could be used at

significantly large piezoelectric layer thickness of up to 30% of the typical radius. The

model includes the electric and piezoelectric coupling effects.

7.1.2 A new analysis for the performance of multilayered piezo-

electric fibers as sensors and/or actuators

The performance of multilayered piezoelectric fibers as sensors and/or actuators was

analyzed using a newly adapted matrix representation which can be thought of as a

hybrid synthesize of the transfer and direct global matrices combined together. The

significance of this representation is manifested by its ability to represent multiple

layers including imperfectly bonded layers and thus can solve problems of multilayered

piezoelectric fibers as sensors and/or actuators. A new imperfect interphase layer was

developed and was used to study the extreme case of an arc crack interfacing the

piezoelectric layer and the embedding medium. The effects of the geometry of the

interface crack, elastic material properties and the frequency of the applied loads upon

the resulting dynamic stresses are examined.
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7.1.3 A new numerically efficient wave interactions method for

multilayered piezoelectric fibers and damages

A new computationally efficient method, the Higher Interaction orders Pseudo Incident

Wave (Hi-PsIW) method, is developed to determine the electro mechanical field in mul-

tiple piezoelectric layers in the presence of multiple multilayered fibers and damages.

Numerical results of the dynamic stress field and the voltage output for different con-

figurations and frequencies are determined and analyzed. The method relies on well

established analytic methods as well as the high efficiency of numerically stable meth-

ods. The method is general and can be readily used by designers to evaluate stresses in

smart structures or applied in damage identification algorithms to evaluate efficiently

the voltages on many sensors in structural health monitoring.

7.1.4 A new simulation algorithm for multiple damage identifi-

cation

A new algorithm for multiple damage identification is developed to quantitatively iden-

tify the position and the size parameter of embedded damages in structures using the

recorded voltage on an array of multilayered piezoelectric fiber sensor. The calculated

voltage recorded on different piezoelectric sensors in response to the existence of mul-

tiple damages with prior knowledge of the structure constants and loading data are

integrated into a two stage optimization process to estimate multiple damage parame-

ters. The first stage is based on a newly developed algorithm based on genetic algorithm

eliminating the need for a good initial guess. The newly developed genetic algorithm

is based on an intelligently predesigned unlike classical genetics which is based on ran-

domness. Numerical examples show that this technique can potentially quantitatively

identify damages effectively.
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7.2 Recommendation for future studies

During the course of these studies, the following has been identified as potential subjects

worthy of further studies:

Other types of damages The current thesis discussed empty space damages mainly

voids and cracks, it can be extended with great ease and without any additional mod-

eling to include fluid filled and/or inclusions. Chapters 4 have briefly discussed fluids

and acoustics as limiting cases. Further analysis and studies on acoustic waves could

be extended based on the current models.

The current research studied the two most frequently encountered geometries of

damages mainly circular voids and curved cracks. Almost all irregular shapes and

cracks can be fitted to these two types of damages however other shapes can be added

like elliptic voids. The current study permits additional damages to be added with just

knowledge of their scattering behavior and models to be able to identify them. In that

regard, the spectral extended finite element can be used and combined with the current

analytic models since finite element can model complicated geometries with ease. Some

preliminary studies have been conducted into extending the current analytic model

and combining them with finite element; however, existing conventional finite element

methods are not sufficient and can not model the wide different scales of the problem.

Instead new hybrid finite element would need to be developed which combines some

features of Trefftz element, singular enriched finite element (extended finite element),

and spectral finite element with the developed analytic models in this research.

Pattern recognition Damage type recognition is an active research area in itself,

damages are recognized from their pattern and response. The current research did not

cover that field of research area however possible research extension can be conducted

based on current models using learning neural networks and artificial intelligence.
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On site experimental and field work The current thesis is mainly focused on the-

oretical and numerical aspects, which help in understanding the dynamic behavior of

multilayered piezoelectric fibers and their application in smart structural health mon-

itoring. Numerical experiments were conducted and all studies have been validated as

well as verified versus both others limiting cases and finite element, also the current

thesis has proposed methods to reduce measurement errors due to theoretical assump-

tions in spite all of that a need to apply these studies on real actual site structures.

The experimental work should include actual multilayered piezoelectric embedded in a

damaged structure, a waveform generator to generate high frequency excitation signals,

a power amplifier to amplify the excitation signal, and possibly drive the piezoelectric

fibers as actuators. The array of piezoelectric sensors will collect the waves and con-

vert them into electrical signals as recorded input signals to quantitatively identify the

embedded damages by using the proposed technique.

Parametric damage studies Effect of sensor location, number of sensors, number

of damages, number of damage parameters, and location of damages are all important

in the identification process. Preliminary results show that accuracy of identification is

affected by all those parameter specially if damages are in near proximity to each other

and number of sensors are small. A parametric study is needed to cover these aspects.

Singular imperfect layer boundary condition The current imperfect layer does

not consider the local singular behavior. It is possible to enrich the current layer model

with the singular behavior of crack tips.
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Appendices

Appendices for chapter 2

Appendix A

The coupled mathematical theory of elastodynamics and electrostatic of a piezoelectric

solid continuum is formulated in terms of body force b, surface force (traction) t, stress

tensor σ, electric displacement vector D, strain tensor ε, electric field E, displacement

vector u and electric potential of a piezoelectric body φ. The theory uses piezoelectric

materials as the solid continuum constitutive coupling the elastic behavior of a mate-

rial to its behavior as a dielectric through the piezoelectric effects (Eringen, 1980; Pao,

1978). The theory assumes that the piezoelectric solid continuum is subject to small

deviations i.e. the material remains elastic and dielectric during deviations with linear

deformations within the elastic material zone. Piezoelectric materials are anisotropic

elastic coupled with dielectric properties which are generally characterized by 21 inde-

pendent stiffness coefficients C and piezoelectric coupling coefficients e. In addition to

the displacement, u (x, t), the velocity and acceleration of a particle in the body are of

interest. The mass density ρ becomes an important parameter in measuring the iner-

tia. The general governing equations are a set of equations describing the physics, the

geometry, the constitutive, the boundary conditions and the initial conditions defined

for a body of volume V and enclosed by a surface S (Gurtin, 1973; Kuang, 2014).

Physical Equations:

The linear momentum equations per unit volume describing the motion of and the

electric charge equation of a continuum solid:

(2.A.1)∇ · σ = −b+ρü x in V
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where∇is the delta operator, σ is the second order stress tensor, b is the body force

vector, ρ is the mass density and ü is the acceleration vector.

(2.A.2)∇ ·D = ρf x in V

where D is electrical displacement vector which is equivalent to electric flux density

measured in Coulombs as a charge unit per square meter and ρf free charge density

ρf = 0. Equations (2.A.1) and (2.A.2) are alternatively called after their developers

as Cauchy’s linear momentum also according to Malvern (1969) Cauchy’s first law of

motion 1 and Gauss’s law (the first equation of Maxwell’s four equations of classical

electrodynamics).

Geometric Equations:

(2.A.3)ε =
1

2

[
∇u + (∇u)T

]
x in V

where ε is the second order strain tensor and u is the displacement vector.

(2.A.4)E =−∇φ

where E is the electric field vector measured in volts per meter, φ is the electric potential

typically measured in volts (a scalar quantity).

Constitutive Equations:

(2.A.5)

 σ

D

 =

 C −eT

e εs


 ε

E

 x in V

where C is a fourth order tensor of the elastic constitutive coefficients, εs is a second

order tensor of the dielectric or permittivity coefficients, e is a third order tensor of

the piezoelectric stress effect or piezoelectric coupling, and the superscript s means

measured at constant strain (which will be suppressed from here-after). Using equation

(2.A.5), the stress can be written as

(2.A.6)σ =
1

2
C :

[
∇u + (∇u)T

]
− eTE

1Cauchy’s first law of motion uses the principle of conservation of linear momentum while Cauchy’s
second law of motion uses the principle of conservation of angular momentum.
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with the colon in equation (2.A.6) representing the double dot product (Kuang, 2014;

Sinclair, 2009) between the forth order tensor and second order tensor which produce

a second order stress tensor,

(2.A.7)σ = C : ε= Cijklεkleiej

where ei and ej are unit vectors in the i and j direction respectively. Equation (2.A.6)

is the direct piezoelectric effect where an applied mechanical stress, σ, produces an

electric field polarization, E, which is directly proportional in amplitude to the stress.

Boundary Conditions:

(2.A.8)
u (x, t) = ū x on S1

n · σ (x, t) = t̄ x on S2

(2.A.9)
φ (x, t) = φ̄ x on S3

n ·D (x, t) = d̄ x on S4

Initial Conditions:

(2.A.10)
u (x, t = 0) = u0

u̇ (x, t = 0) = v0

x in V

where ū, t̄, φ̄, d̄, u0, and v0 are prescribed quantities.

Isotropic elastic materials can be specialized from anisotropic material by characterizing

them with any two elastic moduli (two material constants) such as Young’s modulus,

shear modulus, Poisson’s ratio, and Lame’s constants. Any homogeneous isotropic

linear elastic materials can be uniquely determined by Lame constants λ, µ as

(2.A.11)C = λI4 + 2µII

where
I4 = δijδkleiejekel

is the fourth-order identity tensor and

II =
1

2
(δikδjleiekejel + δilδjkeielejek)
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is the symmetric part of the fourth-rank identity tensor.

Combining equations (2.A.1) and (2.A.6) with the symmetry in Cijkl = Cijlk for an

elastic non piezoelectric (ignoring piezoelectric coupling) results in

(2.A.12)∇ ·C : [∇u] + b=ρü

by using tensor properties, and the fact that C is a constant tensor,

(2.A.13)C :∇2u + b=ρü

Equation (2.A.6) can be specialized for an isotropic elastic material (for non piezoelectric-

ignoring piezoelectric coefficients) as

(2.A.14)σ = λ (∇ · u) I + 2µ
[
∇u + (∇u)T

]
where I = δijeiej is the second-order identity tensor, λ and µ are Lame elastic moduli

constants. Equations (2.A.1), and (2.A.14) can be combined into one vector equation

for u (x, t) resulting in Navier-Cauchy equation of motion,

(2.A.15)(λ+ 2µ)∇∇ · u + µ∇2u+b = ρü

for an isotropic homogeneous material. The same equation can be derived from equa-

tion (2.A.13) by specializing the anisotropic material to an isotropic material. Equa-

tions (2.A.12-2.A.15) form a set of coupled differential equations to be solved analyti-

cally or numerically.

Appendix B

Consider first the simple case of steady state waves in which the time dependence is

harmonic; that is,
(2.B.1)u (x, t) = Ue−iωt,

and the media is an isotropic homogeneous free of sources b in V and t̄ and ū on S

vanish. The initial conditions are omitted and ü = −ω2u. Free steady-state waves in

an infinite medium, a half space medium, a plate, a circular cylinder, and a sphere have
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all been investigated (Pao, 1983) by decomposing the displacement u into (Achenbach,

1972; Pao, 1983)

(2.B.2)u =∇ϕ+∇×ψ

where ϕ is a scalar potential displacement associated with P-waves and ψ is a potential

displacement vector associated with S-waves. The two displacement potentials satisfy

Helmholtz equation

(2.B.3)
(
∇2+k2

L

)
ϕ =0,

(
∇2+k2

T

)
ψ = 0

kL and kT are wave numbers given by

(2.B.4)kL =
ω

cL
, kT =

ω

cT

where cL and cT are the longitudinal and transverse wave speeds of the elastic medium,

(2.B.5)cL =

√
λ+ 2µ

ρ
, cT =

√
µ

ρ
.

Using separation of variables, ϕ and ψ can be written as the multiplication of functions

in a coordinate system. For a cylindrical coordinate system (r, θ, z), the multiplied

functions take the form of

(2.B.6)f(r, θ, z) = R(r)Θ(θ)Z(z)e−iωt

with Bessel as the solution to the differential of the radial function and complex expo-

nential as the solution of the other functions.

Consider second the complicated case of an anisotropic media under a simple steady

state waves are represented by
(2.B.7)u = uAek·r−ωt

whereuA is the displacement amplitude vector, wave-number vector k = kn, n is the

wave propagation direction, and r is the chosen coordinate. The displacement amplitude

vector can be written as uA = Aû (Rokhlin and Huang, 1992).

A harmonic response is assumed, that is u = uAei(kn·r−ωt), with the kinematics for

harmonic displacement u = uAei(kn·r−ωt) = uAeik(n·r−ct)
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u̇ = −iωu,

ü = −ω2u.

This leads to an eigen value problem with its characteristic equation is called Christoffel

equation (Nayfeh, 1995) as

(2.B.8)
(
Λ− c2I

)
û = 0

where Λ = Cijklnjnlejel is a second order tensor (3×3 real symmetric matrix, the eigen

values are real and the associated eigen vectors are orthogonal with the dependency on

propagation direction nj, nl which is problematic in anisotropic materials) and ej is

the unit vector in j direction (Nayfeh, 1995, p34). The eigen values c =
ω

k
are the

phase velocities v =cn and its eigen vectors directions û called polarizations directions

(polarization here is the direction of displacement vector).

At the interface of two perfectly bonded layers in contact, the boundary conditions

(2.A.8) and (2.A.9) are replaced by the continuity condition,

(2.B.9)ui = ui+1 and n · σi = n · σi+1 in Si

(2.B.10)φ0i = φ0i+1 and n ·Di = n ·Di+1 in Si

Appendix C

In FE rather than using the equations of motion (equations (2.A.1) and (2.A.2)) and

the associated boundary conditions (equations (2.A.8) and (2.A.9)) directly which are

called the strong form, an integrated form is used by dotting the physical governing

equations (2.A.1) and (2.A.2) with an arbitrary test vector then integrating by parts

over the model volume, and imposing the free boundary conditions (equations (2.A.8)

and (2.A.9)). The resulting form is called the weak form and its matrix form is

(2.C.1)Müi + Cu̇ + Kuuu + Kuφ {φi} = f
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(2.C.2)KT
uφu + Kφφ {φi} = q

where M, C, Kuu, Kuφ, Kφφ, f , and q are the mass, damping, stiffness, piezoelectric

coupling stiffness, dielectric and charge vector stiffness respectively, the superscript T

represents transpose (Allik and Hughes, 1970; Lonkar and Chang, 2014).

Appendices for chapter 3

The general elastic solution of an isotropic layer can be obtained using displacement po-

tentials. The results are presented in this section. The displacements can be expressed

in terms of the displacement potentials as:

ur = ϕ,r + 1
r
ψ,θ, uθ = 1

r
ϕ,θ − ψ,r.

The stress components are

σr = λ∇2ϕ+ 2µ

[
ϕ,r2 +

(
1

r
ψ,θ

)
,r

]

σθ = λ∇2ϕ+ 2µ

[
1

r

(
ϕ,r +

1

r
ϕ,θ2

)
+

1

r

(
1

r
ψ,θ − ψ,rθ

)]

σrθ = µ

[
2

(
1

r
ϕ,rθ −

1

r2
ϕ,θ

)
+

(
1

r2
ψ,θ2 − r

(
1

r
ψ,r

)
r

)]
.

Using the general solution of the displacement potentials given by equations (3.13) and

(3.14). The displacement and stress fields can be obtained as

ur =
∞∑
n=0

kL

J ′n (kLr)

 A
(1)
n

A
(2)
n


T

+H
′
n (kLr)

 A
(3)
n

A
(4)
n


T

 cos (nθ)

sin (nθ)


+
n

r

Jn (ksr)

 −A(5)
n

A
(6)
n


T

+Hn (ksr)

 −A(7)
n

A
(8)
n


T

 sin (nθ)

cos (nθ)


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uθ =
∞∑
n=0

n
r

Jn (kLr)

 −A(1)
n

A
(2)
n


T

+Hn (kLr)

 −A(3)
n

A
(4)
n


T

 sin (nθ)

cos (nθ)


−k

J ′n (ksr)

 A
(5)
n

A
(6)
n


T

+H
′
n (ksr)

 A
(7)
n

A
(8)
n


T

 cos (nθ)

sin (nθ)



σr =
∞∑
n=0

(
J
′
n (kLr) kL

λ
r

+ J
′′
n (kLr) k

2
L (λ+ 2µ)− Jn (kLr)n

2 λ
r2

) A
(1)
n

A
(2)
n


T  cos (nθ)

sin (nθ)


+
∞∑
n=0

(
H
′
n (kLr) kL

λ
r

+H
′′
n (kLr) k

2
L (λ+ 2µ)−Hn (kLr)n

2 λ
r2

) A
(3)
n

A
(4)
n


T  cos (nθ)

sin (nθ)


+
∞∑
n=0

(
Jn (ksr)

r
− J ′n (ksr) ks

)
2µn
r

 A
(5)
n

−A(6)
n


T  sin (nθ)

cos (nθ)


+
∞∑
n=0

(
Hn (ksr)

r
−H ′n (ksr) ks

)
2µn
r

 A
(7)
n

−A(8)
n


T  sin (nθ)

cos (nθ)



σrθ = µ


∞∑
n=0

(
Jn (kLr)

r
− J ′n (kLr) kL

)
2n
r

 A
(1)
n

−A(2)
n


T  sin (nθ)

cos (nθ)


+
∞∑
n=0

(
Hn (kLr)

r
−H ′n (kLr) kL

)
2n
r

 A
(3)
n

−A(4)
n


T  sin (nθ)

cos (nθ)


+
∞∑
n=0

(
−J ′′n (ksr) k

2
s − J (ksr)

n2

r2
+ J

′
n (ksr)

ks
r

) A
(5)
n

A
(6)
n


T  cos (nθ)

sin (nθ)


+
∞∑
n=0

(
−H ′′n (ksr) k

2
s −Hn (ksr)

n2

r2
+H

′
n (ksr)

ks
r

) A
(7)
n

A
(8)
n


T  cos (nθ)

sin (nθ)



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σθ =
∞∑
n=0

(
J
′′
n (kLr) k

2
Lλ− Jn (kLr) (λ+ 2µ) n2

r2
+ (λ+2µ)

r
J
′
n (kLr) kL

) A
(1)
n

A
(2)
n


T  cos (nθ)

sin (nθ)


+
∞∑
n=0

(
λH

′′
n (kLr) k

2
L −Hn (kLr) (λ+ 2µ) n2

r2
+H

′
n (kLr) kL

(λ+2µ)
r

) A
(3)
n

A
(4)
n


T  cos (nθ)

sin (nθ)


+
∞∑
n=0

(
Jn (ksr)

r
− J ′n (ksr) ks

)
2µn
r

 −A(5)
n

A
(6)
n


T  sin (nθ)

cos (nθ)


+
∞∑
n=0

(
Hn (ksr)

r
−H ′n (ksr) ks

)
2µn
r

 A
(7)
n

−A(8)
n


T  sin (nθ)

cos (nθ)



.
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Appendices for chapter 4

Appendix A

The stress fields in terms of displacement potentials are (Mow and Pao, 1971)

(4.A.1)σr = λ∇2ϕ+ 2µ

[
ϕ,rr +

(
1

r
ψ,θ

)
,r

]
,

(4.A.2)σθ = λ∇2ϕ+ 2µ

[
1

r

(
ϕ,r +

1

r
ϕ,θ2

)
+

1

r

(
1

r
ψ,θ − ψ,rθ

)]
,

(4.A.3)σrθ = µ

[
2

(
1

r
ϕ,rθ −

1

r2
ϕ,θ

)
+

(
1

r2
ψ,θθ − r

(
1

r
ψ,r

)
r

)]
.

Using the general solution of the displacement potentials given by equations (4.52) and

(4.53). The displacement and stress fields can be obtained as

(4.A.4)ϕ =
∞∑

n=−∞

(
Jn (kLr) , H

(1)
n (kLr)

) A
(1)
n

A
(2)
n

 einθ

(4.A.5)ψ =
∞∑

n=−∞

(
Jn (ksr) , H

(1)
n (ksr)

) A
(3)
n

A
(4)
n

 einθ

ur =
∞∑
n=0

kL

 J
′
n (kLr)

H
′
n (kLr)


T  A

(1)
n

A
(2)
n

 einθ +
in

r

 Jn (ksr)

Hn (ksr)


T  A

(3)
n

A
(4)
n

 einθ

uθ =
∞∑
n=0

in

r

 Jn (kLr)

Hn (kLr)


T  A

(1)
n

A
(2)
n

 einθ − ks

 J
′
n (ksr)

H
′
n (ksr)


T  A

(3)
n

A
(4)
n

 einθ
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σr =
∞∑
n=0

 (2µ) k2
LJ
′′
n (kLr)− λk2

LJn (kLr)

(2µ) k2
LH

′′
n (kLr)− λk2

LHn (kLr)


T  A

(1)
n

A
(2)
n

 einθ

+
∞∑
n=0

2µin

r

 J
′
n (ksr) ks −

1

r
Jn (ksr)

H
′
n (ksr) ks −

1

r
Hn (ksr)


T  A

(3)
n

A
(4)
n

 einθ

σθ =
∞∑
n=0


(
−λk2

L − 2µ
(n
r

)2
)
Jn (kLr) +

2µ

r
J
′
n (kLr) kL(

−λk2
L − 2µ

(n
r

)2
)
Hn (kLr) +

2µ

r
H
′
n (kLr) kL


 A

(1)
n

A
(2)
n

 einθ

+
∞∑
n=0

2µin

r

 Jn(ksr)
r
− J ′n (ksr) ks

Hn(ksr)
r
−H ′n (ksr) ks


T  A

(3)
n

A
(4)
n

 einθ

σrθ = µ


∞∑
n=0

2in

r

 (
kLJ

′
n (kLr)− 1

r
Jn (kLr)

)
(
kLH

′
n (kLr)− 1

r
Hn (kLr)

)

T  A

(1)
n

A
(2)
n


+
∞∑
n=0

 −J (ksr)
n2

r2
− J ′′n (ksr) k

2
s + J

′
n (ksr)

ks
r

−Hn (ksr)
n2

r2
−H ′′n (ksr) k

2
s +H

′
n (ksr)

ks
r


T  A

(3)
n

A
(4)
n


 einθ

Appendix B

The elements of the coefficient matrix , Qn, for a linear elastic isotropic layer with

dielectric properties are presented here.

Qn =



kLJ
′
n (kLr) kLH

′
n (kLr)

in
r
Jn (ksr)

in
r
Hn (ksr) 0 0

in
r
Jn (kLr)

in
r
Hn (kLr) −ksJ

′
n (ksr) −ksH

′
n (ksr) 0 0

Q31 Q32 Q33 Q34 0 0

Q41 Q42 Q43 Q44 0 0

0 0 0 0 Q55 Q56

0 0 0 0 Q65 Q66


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Using the general solution of the displacement potentials given by equations (4.52) and

(4.53). Standard displacement and stress field can be obtained as

Q31 = J
′
n (kLr) kL

λ
r

+ J
′′
n (kLr) k

2
L (λ+ 2µ)− Jn (kLr)n

2 λ
r2

Q32 = H
′
n (kLr) kL

λ
r

+H
′′
n (kLr) k

2
L (λ+ 2µ)−Hn (kLr)n

2 λ
r2

Q33 =
(
Jn(ksr)

r
− J ′n (ksr) ks

)
2µin
r

Q34 =
(
Hn(ksr)

r
−H ′n (ksr) ks

)
2µin
r

Q41 = 2µ in
r

(
J
′
n (kLr) kL − Jn(kLr)

r

)
Q42 = 2µ in

r

(
H
′
n (kLr) kL − Hn(kLr)

r

)
Q43 = µ

(
−J ′′n (ksr) k

2
s − J (ksr)

n2

r2
+ J

′
n (ksr)

ks
r

)
Q43 = µ

(
−H ′′n (ksr) k

2
s −Hn (ksr)

n2

r2
+H

′
n (ksr)

ks
r

)
Q55 = Jn (r) , Q56

= Hn (r)

Q65 = −εJ ′n (r) , Q65

= −εH ′n (r)

General fluid coefficient matrix

QF
n =


1

ωρ(F )c
(F )
L

J1

(
k

(F )
L r

) 1

ωρ(F )c
(F )
L

H1

(
k

(F )
L r

)
−J0

(
k

(F )
L r

)
−H0

(
k

(F )
L r

)


Piezoelectric coefficient matrix

Q(p)
n =

 Jγ
(
κ(p)r

)
Hγ

(
κ(p)r

)
c

(p)
33 Jγ,r

(
κ(p)r

)
+
c

(p)
23

r
Jγ
(
κ(p)r

)
c

(p)
33 Hγ,r

(
κ(p)r

)
+
c

(p)
23

r
Hγ

(
κ(p)r

)


General elastic layer coefficient matrix

Q(e) (r) =

 Jγ
(
κ(e)r

)
Hγ

(
κ(e)r

)
c

(e)
33 Jγ,r

(
κ(e)r

)
+
c

(e)
23

r
Jγ
(
κ(e)r

)
c

(e)
33 Hγ,r

(
κ(e)r

)
+
c

(e)
23

r
Hγ

(
κ(e)r

)

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Proposed layer model matrices

(4.B.1)K+ =

 − c33
h
− c23

2r̄
1
2

ρhω2

2
− hc22

2r̄2
− c23

r̄
r+

r̄


−1

(4.B.2)K− = −

 c33
h
− c23

2r̄
1
2

ρhω2

2
− hc22

2r̄2
+ c23

r̄
−r−
r̄


−1

Exact solution derivation

-Using equation (4.63) reduce problem to

(4.B.3)

 A(1)

A(q)

 =

 (Tq−
s+

)
1,1
−
(
Q(q−)

)
1,2

(Tq−
s )2,1 −

(
Q(q−)

)
2,2


−1

Win

(4.B.4)

 A(1)

A(q)

 =
1

|G|

 − (Q(q−)
)

2,2
uinr +

(
Q(q−)

)
1,2
σinr

− (Tq−
s )2,1 u

in
r +

(
Tq−
s+

)
1,1
σinr


where

(4.B.5)G =

 (Tq−
s+

)
1,1
−
(
Q(q−)

)
1,2

(Tq−
s )2,1 −

(
Q(q−)

)
2,2


since p = 2

(4.B.6)Wp− =
1

|G|

 (Q(1+)
)

1,1

{
−
(
Q(q−)

)
2,2
uinr +

(
Q(q−)

)
1,2
σinr

}
(
Q(1+)

)
1,2

{
−
(
Q(q−)

)
2,2
uinr +

(
Q(q−)

)
1,2
σinr

}


- using exact analytic

(4.B.7)

 A
(p)
1

A
(p)
2

 =
(
Q(p−)
n

)−1
Wp−

-
(4.B.8)Tq−

s = MpQ1+

-where Mp can be for exact analytic

(4.B.9)Mp = Q(p+)
(
Q(p−)

)−1
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and

φ+ =A
(p)
1 h33Jγ

(
κ(p)r+

)
+ A

(p)
2 h33Hγ

(
κ(p)r+

)
+

r3ˆ

r2

(
A

(p)
1

h32

r
Jγ
(
κ(p)r+

)
+ A

(p)
2

h32

r
Hγ

(
κ(p)r+

))
dr (4.B.10)

-or Mp can be for proposed model

(4.B.11)Mp = K+
(
K−
)−1

(4.B.12)Mp =

 − c33
h
− c23

2r̄
1
2

ρω2

2
− c22

2r̄2
− c23

hr̄
r+

hr̄


−1−

 c33
h
− c23

2r̄
1
2

ρω2

2
− c22

2r̄2
+ c23

hr̄
−r−
hr̄




and
(4.B.13)Wp+ = (Mp)−1 Wp−

or since p = q − 1

(4.B.14)Wp+ =
(
Mq−1

)−1
Wq

(4.B.15)Wp+ =
(
Mq−1

)−1
Wq

(4.B.16)φ+ =
1

ε33

(
e33

(
u+
r − u−r

)
+
e32h

r
ur

)
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Appendices for chapter 5

Appendix A

The following linear solver (based on Matlab, Multiprecision toolbox, and modified

column scaling) has been used throughout the study as shown in flowchart A.5.

Appendix B

Bessel functions are the solutions of Bessel’s differential equation which arise when solv-

ing Helmholtz equation by separation of variables in cylindrical coordinates (Watson,

1995)

(5.B.1)
(
R(r),rr
R(r)

+
1

r

R(r),r
R(r)

+
1

r2

Θ(θ),θθ
Θ(θ)

+
Z,zz
Z

+k2

)
= 0

(5.B.2)R (r),rr +
1

r
R (r),r +

(
−ν2

r2
+ k2

)
R = 0

The radial functions, in theory, could be any two of the Bessel functions Jν(kr),

Yν(kr), H
(1)
ν (kr), and H(2)

ν (kr), however, in practice, it is essential for the stability of

the numerical solution to represent the potential as

(5.B.3)R(r) =

〈
Jν (kr)H(1)

ν (krj+1) ,
H

(1)
ν (kr)

H
(1)
ν (krj)

〉

where Jn (.) is Bessel function of the first kind, Hn (.) is Hankel function or Bessel

function of the third kind and the use of the 〈〉 indicates that the full solution is a

linear combination of these expressions.
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Flowchart A.5: Linear solver used
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Appendices for chapter 6

Appendix A

Several techniques have been developed to treat wave propagation in an infinite me-

dia or unbounded domains since finite element methods require boundary conditions:

these are non-reflecting boundary conditions (NRBC) (Givoli, 1991; Givoli, 2004; Givoli

and Keller, 1990), absorbing layer methods (Berenger, 1994; Hastings, Schneider, and

Broschat, 1996), and infinite element methods. Infinite elements are special elements of

finite area (2D) or volume (3D) formulated to satisfy the Sommerfeld radiation condi-

tion, ensuring total radiation of waves from a source, but their performance is poor in

elastodynamic problems (Liu and Jerry, 2003; Rajagopal et al., 2012). Non-Reflecting

Boundary Conditions (NRBC) are similar in concept but have no area (2D) or volume

(3D) and require modification of the standard solving procedure, therefore, the codes

have to be specifically developed.

Absorbing layer methods consider a finite region which is typically made of the same

FE elements as the rest of the model and attached to the boundaries of the domain

of interest. These methods can be incorporated into commercial FE packages thereby,

making use of existing elements that are already offered within the package. Two

absorbing layer techniques for elastodynamic problems have been used in this study:

absorbing regions/layers with gradually increased damping and perfectly matched lay-

ers.

The structural infinite element, INFIN257, is not used to model an infinite domain

since the element adapts to the theory of mapped element for static analysis. The grad-

ually increased damping layer is used for dynamic analysis. In ANSYS 16 and higher,

the structural perfectly matched layer (PML) feature is used as an artificial material

to simulate the unbounded medium by truncating the structural unbounded domain.
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PML’s are defined by using the SOLID185, SOLID186, and SOLID187 elements with

KEYOPT(15) = 1. In a structural harmonic analysis, the outgoing elastic waves are

absorbed by the PML without any reflections. The frequency range for PML is wide

even static analysis, the domain boundary edge displacement is attenuated rapidly in

the PML without affecting the values of displacement within the under study (normal)

FEA domain. Modeling PML requires a closure for three-dimensional models (a cubic

or spherical enclosure) with more than three layers. The PML can accommodate the

symmetry of the model. The displacement values on the exterior surface of structural

PML must be set to zero. The current solid structural PML feature does not support

transient analysis. For dynamic analysis, the element adopts the theory of absorbing

boundary (ANSYS-manuals, 2012-2018).
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