
University of Alberta

T o w a r d s C o l l a b o r a t i o n i n E v i d e n c e - S u p p o r t e d , Q u e s t i o n - D i r e c t e d

P r o g r a m C o m p r e h e n s i o n

by

Benjamin Chu

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of
the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Fall 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-33220-7
Our file Notre reference
ISBN: 978-0-494-33220-7

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I think there is a world market for maybe five computers.

-T h o m as J. Watson, IBM Chairman, 1943.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my friends and family,
This would not have been possible without your support.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Preserving explicit forms of software system documentation that are accessible by large de­

velopment teams with regular developer turnover is a difficult problem. This problem can

result in temporal and spatial miscommunication, an easily lost cognitive work context, and

largely unmaintainable software. The research described in this thesis hypothesizes that the

problem may be addressed by using a flexible question-evidence knowledge representation

methodology for documenting program comprehension focusing on three areas of need: a

parallel redocumentation system, immediate dissemination of knowledge amongst a team

and peripheral awareness of work context. An observational study provides insight into

tool requirements and a documentation methodology for a collaborative program compre­

hension documentation tool. A prototype named Pollinator is implemented and is initially

evaluated against its requirements and other tools. We find that Pollinator shows promise

in providing support to documenting program comprehension. A small-scale user study of

Pollinator demonstrates its potential utility to software engineers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I would like to thank the anonymous subjects of the observational and Pollinator user stud­

ies for their participation, Dr. Eleni Stroulia for assistance in conducting the study, my

supervisor Dr. Kenny Wong for his conscientious advice and insight, the members of my

examination committee, my friends for providing much needed distraction, and finally my

parents and family for their support and motivating words, and without whom this thesis

would never have been completed.

I would also like to thank my fellow grad students, in particular Dean Cheng, Johnny

Huynh, Xin Li, Hossein Mohtasham, Dabo Sun and Daniel Moise for their advice and

friendship. I also thank Anjan Sen for the use of his online voting system as the subject of

the Pollinator user study tasks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1 Introduction 1
1.1 P ro b le m .. 2
1.2 Hypothesis ... 4
1.3 C o n tr ib u tio n s .. 4

2 Background 6
2.1 Task Strategies: Systematic and O p p o rtu n is tic ... 7
2.2 Top-Down and Bottom-Up A ctiv itie s .. 7
2.3 Integrated M e ta -m o d e l ... 8
2.4 Representing Program C om prehension ... 8
2.5 Collaboration in Software E n g in eerin g ... 10

3 Related Work 13
3.1 Cognitive S u p p o rt... 14
3.2 C o lla b o ra tio n .. 15

4 Observational Case Study 18
4.1 Experimental D e s i g n ... 19
4.2 Coding S c h e m e ... 20
4.3 Observations .. 22
4.4 A n a ly s is .. 22
4.5 Study S hortcom ings.. 31

5 Prototype: Pollinator 33
5.1 Approach to P ro b le m .. 34
5.2 A Knowledge Representation M o d e l .. 34
5.3 Motivation for T o o l ... 35
5.4 R e q u ire m e n ts .. 39
5.5 Design and Im plem entation.. 41

6 Preliminary Evaluation 50
6.1 Methodology .. 51
6.2 Feature Set .. 51
6.3 Tool C o m p a r is o n ... 57
6.4 Heuristic Evaluation of U sa b ility ... 58
6.5 Cognitive Walkthrough of U s a b i l i ty .. 61
6.6 C o n c lu s io n s .. 72

7 Secondary Evaluation: Pollinator User Study 73
7.1 O b je c t iv e ... 74
7.2 D e s ig n .. 74
7.3 Observations .. 76

7.3.1 Participant P ro f i le s .. 76
7.3.2 General O bservations.. 77
7.3.3 Study-specific O b se rv a tio n s ... 78

7.4 A n a ly s is .. 81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.4.1 Task A n a ly s is .. 81
7.4.2 Participant F e e d b a c k ... 83

7.5 Threats to V alid ity .. 85
7.6 Study Conclusions ... 86

8 Conclusions and Future Work 88

Bibliography 91

A Implementation Details 94
A .l Pollinator: E xtensions... 95

B User Study Materials 97
B .l Solicitation L e t te r .. 98
B.2 Consent F o r m ...100
B.3 User Study H andbook ...103

B.3.1 Content/Overview ..103
B.3.2 Study P r o to c o l .. 103
B.3.3 R estric tio n s ... 106
B.3.4 H i s t o r y .. 107

B.4 Pilot T a sk s ... 108
B.5 Control T a s k s .. 114
B.6 Experimental T a s k s .. 120
B.7 Pre-Study Q u e s tio n n a ire ..126
B.8 Post-Study Questionnaire (EXPERIMENTAL) ..127
B.9 Post-Study Questionnaire (C O N T R O L)..129
B.10 Honorarium A cknow ledgem ent... 132
B .l l Ethics Approval C e rtif ic a te .. 133

C User Study Task Analysis 134

D User Study Participant Feedback 155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

4.1 The seven most frequent events of session 1 ... 22
4.2 The seven most frequent events of session 2 ... 22
4.3 The seven most frequent events of session 3 ... 23
4.4 Most frequent event sequences (o v e ra l l) .. 23
4.5 Event occurrences by subject (session 1) .. 25
4.6 Event occurrences by subject (session 2) .. 25
4.7 Event occurrences by subject (session 3) .. 26
4.8 A model of observed comprehension scenarios .. 29
4.9 Classification of episodes into comprehension scen ario s.................................... 29
4.10 Interepisode event c o u n ts .. 30

6.1 Comparative summary of Pollinator and related t o o l s 56
6.2 Open-source project Azureus at a g la n c e .. 63

7.1 Participant profiles .. 77
7.2 Task scores by g r o u p ... 81
7.3 Time spent for each task .. 82
7.4 Participant feed b ack .. 83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 Collaboration need h ie ra rc h y ... 11

4.1 Observed phases of com prehension... 28

5.1 Screenshot of the Pollinator tool en v iro n m e n t.. 41
5.2 Pollinator communications a rc h ite c tu re ... 42
5.3 Pollinator project e x p lo r e r ... 43
5.4 Awareness view o f Pollinator env ironm ent... 43
5.5 Team member detail in awareness view ... 43
5.6 Pollinator knowledge base v i e w .. 44
5.7 Pollinator goal explorer v ie w ... 44
5.8 Pollinator user chat v i e w .. 45
5.9 Pollinator related files v ie w ... 45
5.10 Pollinator editor an n o ta tio n ... 46
5.11 Pollinator decorations in E c l ip s e .. 47

6.1 A portion of the many Java packages in the Azureus p ro jec t............................ 64
6.2 Goal Explorer and source editor after adding m y t o r r e n t s evidence . . . 68
6.3 The final state o f the comprehension t r e e ... 70

C .l Pilot study task 1 r e s u l t ... 135
C.2 Control study answer to Task 1 ...137
C.3 Experimental study task 1 r e s u l t ... 138
C.4 Reference answer for task 1 .. 139
C.5 Pilot study task 2 r e s u l t ... 139
C.6 Control study answer to Task 2 ...141
C .l Experimental study task 2 r e s u l t ... 143
C.8 Reference answer for task 2 .. 143
C.9 Pilot study task 3 r e s u l t ... 145
C.10 Control study answer to Task 3 ... 146
C .l 1 Experimental study task 3 r e s u l t ..147
C .l2 Reference answer for task 3 .. 148
C .l3 Pilot study task 4 r e s u l t ... 149
C.14 Control study answer to Task 4 ... 150
C .l5 Experimental study task 4 r e s u l t ..151
C.16 Reference answer for task 4 .. 151
C .l7 Pilot study task 5 r e s u l t ... 153
C .l8 Control study answer to Task 5 ... 153
C.19 Experimental study task 5 r e s u l t ..155
C.20 Reference answer for task 5 .. 155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.1 Problem

Many of the software systems being used in industry today are legacy systems. By the virtue

of their age, these systems also tend to be large, complex, and perhaps poorly documented.

This poses problems when considering that software systems typically need constant main­

tenance and updating. Consider that more than 50% of all professional programmer time

is spent on the task of software maintenance [27]. Here we define software maintenance

as activities that involve modification or updates to previously written systems. Software

maintenance is also the longest phase in the life-cycle of a software system, spanning years

and sometimes lasting over two decades [17],

Furthermore, it has been stated that 40-60% of the time spent on software maintenance

is dedicated to program comprehension activities [42]. Program comprehension can be de­

scribed as the task of building mental models of a software system at various abstraction

levels, from low-level models of the code to those of the problem domain, for the purposes

of software maintenance, evolution, and re-engineering. Therefore, program comprehen­

sion forms an integral part of the software engineering process and is a worthwhile area of

research.

The size of software maintenance teams is also an important issue, as many teams are

made up of a large group of developers whose membership may span back in time for years

or even decades. Turnover in personnel is a major problem for large and complex software

projects [7],

Difficulties also arise in software maintenance and enhancement tasks on these large,

complex software systems where explicit documentation is missing or experience is lack­

ing on the part of the software engineer [22]. The importance of documenting knowledge

cannot be understated in these situations as it is acknowledged that the code is only one

contributor to the understanding of a program [41],

If there is no documentation process, there may be an over-reliance on the implicit

knowledge that exists in the experienced minds of seasoned developers. This can be prob­

lematic as a project ages and developers move on or are separated by large distances, lim­

iting the use of rich communications media such as face-to-face contact. In fact, previ­

ous studies have reported that the frequency of communication between engineers whose

offices were separated by distances of 30 meters or more dropped to levels nearly equiv­

alent to those of engineers separated by distances measured in miles [1], suggesting that

communication is very sensitive to the degree of co-location. Large turnover in personal

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

communications networks was also seen, even over periods as short as seven months [101.

Even if experienced developers are accessible, past design decisions and understanding may

have been forgotten over time. Existing documentation also very frequently becomes stale

as a system evolves, leading to bad assumptions and confusion over what is still true and

relevant.

The lack of documentation and inability to communicate knowledge effectively may

make a software system difficult to understand or modify by engineers who are unfamiliar

with all aspects of the system. Additionally, program comprehension tools and methods

that are not tightly integrated into the development process can contribute to the problems

of an environment in which frequent losses of work context already occur [8], The software

ultimately becomes difficult, if not impossible to practically maintain.

The objectives of this research attempt to address three areas of need that comprise a

large part of the problem by:

• providing a semi-structured program comprehension documentation methodology

using a hierarchical question-evidence knowledge representation,

• allowing and promoting redocumentation of a system in parallel with a developer’s

normal software development workflow by implementing it in a widely-used inte­

grated development environment [19], and

• sharing knowledge throughout a team of developers by dispersing it to other team

members as soon as new understanding is developed.

This thesis begins with a brief background on program comprehension theories and

ideas that have been previously studied. Next, there is discussion on related work completed

in the area of cognitive support in program comprehension and research into collaboration

needs in software development. Then, an observational case study is presented to illustrate

an instance of how program comprehension is done by a collaborative pair of programmers

with typical off-the-shelf development tools. Based on an analysis of our observations, we

hypothesize an approach to documenting knowledge for collaborative program comprehen­

sion and identify a set of requirements for a cognitive support tool. A prototype tool we call

Pollinator is presented and evaluated by comparing it against other tools and also evaluating

its fulfillment of the requirements derived earlier by examining its features and character­

istics. A small reflective case study is completed to demonstrate the use of Pollinator and

provide initial impressions of the tool’s capabilities, followed by a user study providing fur-

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ther evaluation of Pollinator’s usability and utility. The thesis concludes with a summary

of the contributions and future work.

1.2 Hypothesis

We hypothesize that the problems associated with traditional program comprehension on

a large system with several developers (spatial and temporal miscommunication, easily

lost work context, and unmaintainable software) can be addressed or managed through

preserving knowledge and work context during development tasks via explicit knowledge

representation structures and automatic distributed persistence of knowledge, alongside the

provision of both active and passive peripheral team awareness.

We propose that the approach to documenting program comprehension in collaborative

environments we have outlined and implemented in the tool can cognitively aid developers

in preserving knowledge and work context during development tasks while promoting the

dissemination of knowledge through the dimensions of time and space.

1.3 Contributions

Overview of contributions:

• We present an observational case study of a pair-program comprehension task and at­

tempt to model the methodology used by the developers in their work. This involved

creating a coding scheme from the transcribed events and further generalizing the

events into one of four program comprehension “phases”.

• We derive a set of requirements for a tool that may be used in documenting program

comprehension activities involving one or more developers based on our model of

program comprehension phases and our direct observations from the case study.

• Pollinator is presented as an implementation of the requirements driven by the ob­

servational case study. The prototype tool integrates as a plug-in to the Eclipse1

development environment, providing facilities for documenting program comprehen­

sion with a focus on supporting collaboration among multiple developers and long

term preservation of knowledge.

• The prototype tool Pollinator is evaluated by a small tool usage experiment to judge

its utility and usefulness towards fulfilling the hypothesis. The evaluation includes

'Eclipse - an open development platform: http://www.eclipse.org/

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.eclipse.org/

a comparison of the tool to similar projects and how they differ in their higher-level

objectives and/or approaches to the problem. Pollinator is also judged against the

derived requirements for such a tool. Heuristic and cognitive walkthrough evaluations

are also performed on the design of the tool’s user interface and usability.

• Pollinator is evaluated through the execution of a small-scale user study in order to

assess its usability and utility. In order to make comparisons to the original obser­

vational case study, the user study looks at pairs of participants working together on

program comprehension documentation tasks both with Pollinator and in a control

group without it. Observations of the participants and feedback provided by the par­

ticipants allows a fair assessment of Pollinator as it could be used in research and

industrial software engineering settings.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Background

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This chapter describes several previous theories and approaches to the study of program

comprehension and the role of collaboration in software engineering. There are many cog­

nitive theories on program comprehension [3J [14J [16] [38], and those discussed here are

the most relevant to the work of this thesis.

2.1 Task Strategies: Systematic and Opportunistic

In the systematic approach to program comprehension, as observed by Littman et al., pro­

grammers look at each line of code in detail, performing an extensive analysis of a pro­

gram ’s control and data flows [16J. In this manner, the programmers were able to gain

a global view of the program ’s behavior before initiating any modifications. The draw­

back to this meticulous approach is that it can be infeasible to use on large-scale systems

[44], In contrast, the opportunistic approach has programmers looking at different pieces

of code on an as-needed basis according to the particular task at hand. This approach min­

imizes the amount of time spent studying the system, however the out-of-order, localized

focus results in the acquisition of only static knowledge (structural information about the

program) without the causal knowledge (interactions between components of the program

during execution) needed to correctly perform most code modification tasks. Thus, code

modifications were observed by Littman et al. to be more successful when a systematic

approach was taken [40],

2.2 Top-Down and Bottom-Up Activities

Brooks observed that top-down comprehension is used when the system ’s domain is fa­

m iliar [3]. Soloway and Erlich say this process is used when the code or type of code is

familiar [38], Koenemann and Robertson assert that program comprehension is a top-down,

goal-oriented, and hypothesis-driven problem solving process [14],

In this theory, comprehension occurs as the reconstruction of mappings from the prob­

lem domain into the programming or code domain that was initially formed during the orig­

inal programming process. The top-down process begins with the formation of a primary

hypothesis about the global structure of the program, often created as soon as an expert

programmer discovers the name or nature of the system under study. As it is usually im­

possible to verify this hypothesis directly against the program code, the process continues

with the generation of subsidiary hypotheses forming a hierarchical structure. Lower-level

hypotheses consider increasingly more concrete implementation details, thus the hierarchy

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bridges the gap between the application domain and programming domain knowledge. At

the lowest levels in the hierarchy, hypotheses are verifiable against program code or docu­

mentation [3J. The hierarchy is usually created in a top-down, depth-first manner, so that

hypotheses on the same level are resolved one at a time, reducing the overall memory load.

In bottom-up comprehension, programmers begin by examining individual lines of

code, assigning meanings to each line encountered. These meanings are built up by ag­

gregation into larger and larger groups, through a process known as chunking. This process

is repeated on the code base until the entire program is understood. Brooks asserts that

bottom-up comprehension is really a degenerate case of the top-down process [3j.

2.3 Integrated Meta-model

Usually a mixed approach to comprehension is taken, as observed by von Mayrhauser et al.

[44], Top-down and bottom-up activities are complementary and have been used together in

unified models, such as the integrated code comprehension meta-model [30]. In this model,

there are three different comprehension processes (program, situation, and top-down model)

along with a knowledge base. The systematic and opportunistic task strategies can be used

to refine the tasks performed in each of the three processes.

2.4 Representing Program Comprehension

In addition to modeling the general approaches to program comprehension, there has been

much research into structural models of program comprehension activity and knowledge.

Letovsky’s model of program comprehension divided a programmer’s understanding

into three macro activities: inquiries, reading or scanning, and conversational exchanges

with the interviewer [15]. The latter component could largely be disregarded as it was

only applicable to the particular study methodology and there was no evidence of cogni­

tive events in those exchanges being important to the understanding process. Reading and

scanning was the assimilation of materials without any apparent difficulties, as might be

expected in the execution of inquiries. Inquiries envelope a set of actions related to a par­

ticular comprehension topic: questions, conjectures, and searches. In an ideal inquiry, the

developer will be browsing through code or reading some text that prompts him to ask a

question. The developer then explicitly conjectures an answer to the question (a guess or

hypothesis). An answer is searched for by looking through code, documentation, and other

artifacts. This search may be augmented or even supplanted merely through detailed rea-

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

soning about the system under study. However, Letovsky found that this inquiry model

was an idealization because frequently one or more of the inquiry components would be

missing. For example, an explicit question was not always asked, as the subject may have

implicitly formed the problem in their mind. Also, sometimes no conjecture was made ex­

plicitly because either the subject did not possess enough knowledge to make a conjecture

or one was not uttered aloud. Sometimes guesses were accepted as conclusions, precluding

the need for searches or detailed reasoning. There was also evidence for aborted inquiries,

where the search or conclusion were missing or abandoned for whatever reason. Letovsky

also developed a taxonomy to describe the types of questions programmers would ask dur­

ing the comprehension process. The taxonomy was made up of why, how, what, whether,

and discrepancy (over perceived inconsistency) questions.

Pennington researched the comparative efficacies and dominances of mental program­

ming knowledge representations [27], The two representations under comparison were

procedural (control-flow) and functional (goal hierarchy). Her research was based on ap­

proaching computer programs as text and applying already established text comprehension

theories to the analysis. She suggests two kinds of programming knowledge: text struc­

ture and plan knowledge. In general, Pennington found that the complete comprehension

of software systems required the understanding of multiple relations between parts of the

“text” that are difficult to view simultaneously. The results of the research suggested that

the procedural knowledge representation rather than functional formed the initial basis of

expert programmers’ mental representations. However, additional results suggested that the

programmer’s task goals were found to influence the relations dominating mental represen­

tations later in the comprehension process.

In Pennington’s research, computer program stimulus structures represent abstractions

of the text (program) and are intended to illustrate features of the text, but are not mental

entities. These structures may or may not be detected during comprehension. Control

flow stimulus structures are sequences of statements and certain keywords that provide

information about a sequence of statement execution. Data flow stimulus are changes or

constancies in meaning or value associated with names of program objects throughout the

course of the program code.

Two abstractions of the program text of particular interest are the goal hierarchy and

data flow representations. The goal hierarchy represents the goals of the program, abstract­

ing functions but providing little explicit information on how the goals will actually be

accomplished (i.e. no implementation details). Data flow knowledge representations are

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

shown in terms of the program processes acting as transformative agents on the initial data

objects and turning them into the outputs of the program. It is possible for the goal hierar­

chy to be recovered from the data flow structure with knowledge to infer the subgoals. The

data flow structure shows more than the goal hierarchy on the interactions between data

objects and ordering of operations.

2.5 Collaboration in Software Engineering

The collaborative nature of software engineering means that program comprehension is

necessarily a collaborative activity as well. Here we describe some background of the role

of collaboration in software maintenance and some of the research that has been done in

regards to program comprehension as a collaborative activity.

Software engineering has been cited as a profession where typical system developers

spend 70% of their time working with others, and team activities comprise 85% of the

cost of development in large software systems [43]. Holt takes the position that software

architecture itself is a mental model shared among people responsible for the system. In

other words, the key purpose of software architecture is to facilitate team communication

and understanding [11]. Collaboration bleeds into other, specialized areas of software engi­

neering, such as software maintenance, which has been described as a highly collaborative

activity requiring coordination of the work of current and previous maintainers through di­

rect communication, documentation, and the source code itself [17]. Software maintenance

programming also tends to be a high-tumover position, whether it is developers seeing it

as a stepping stone to better things or management using it as a training ground for new

hires [20], so in practice preservation of knowledge needs to survive through several gen­

erations of team members. Lougher concludes that support must be provided for software

maintenance as a group activity.

The theory of distributed cognition (DC) [45] applied to software engineering tools

implies that program comprehension, among other software engineering activities, is a pro­

cess that involves spreading cognition among multiple humans and artifacts, analogous to

the way computations are divided among separate discrete processing units in distributed

computational systems. Cognition-related data, such as goals, plans, and ideas, may be

offloaded into an external memory, out of the developer’s mind. This external memory

may be distributed among a system’s artifacts and requires a method or representation to

reconstruct the original cognitive processes.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<-o*aboraov* c e ^ lopmtn tgnvronmBnu,
M M U M M iI U I m m cofleOCKWvtjrOWKtures

Figure 2.1: Collaboration need hierarchy

Pair programming can be described as a form o f distributed cognition. System knowl­

edge is shared between the members of a team as partners are frequently changed, making

it rare that both partners are new to the code being studied and/or modified [46]. Pair pro­

grammers can monitor and learn from each other’s comprehension strategies, as the practice

o f thinking aloud in these types of collaborative situations makes the strategy explicit to the

listening partner. Therefore, pair programming not only shares understanding, but shares

plans of attack on the problem [42],

van Deursen posits several directions for research on program comprehension in pair

programming. Two of particular interest are the question of how working in pairs affects

program understanding and how the discussions between pair partners can be utilized to

improve our models of how program comprehension works in the developer’s mind.

In laying out a need-based collaboration tool classification framework, Sarma adapts

M aslow’s hierarchy o f needs [21] to delineate collaboration needs that are broadly classi­

fied into those o f basic, enhanced, and comfort [37] (see Figure 2.1). Within the three broad

categories, there are currently five layers describing attributes o f tools that provide for those

needs. The area of comfort needs is where there is still much work to be done, according

to Sarma, and it is comprised of the two highest-level layers. Layer four includes tools

that provide passive awareness of parallel activities, maintenance of dependencies between

artifacts and people, and contextual awareness. At the fifth layer, tools provide continu-

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that provide passive awareness of parallel activities, maintenance of dependencies between

artifacts and people, and contextual awareness. At the fifth layer, tools provide continu­

ous coordination, proactive conflict resolution, and “frictionless” application development.

Sarma argues that many tools become “stuck” in the bottom layers of the hierarchy because

they tend to rely on a lot of functionality that is created from scratch rather than building on

existing infrastructure.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Related Work

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1 Cognitive Support

There are several program comprehension tools that provide cognitive support to users

within an integrated development environment such as Eclipse.

FEAT [32] and ConcernM apper [33] allow a user to manage mappings of scattered

concerns to source code elements. The concern graph, a structure representing groups of

software concerns, is argued as being a more effective software representation than lines of

code because it abstracts away implementation details. However, there is no provision for

the nesting of concerns hierarchically as suggested for goals and questions in this thesis.

JASPER (Java Aid with Sets of Pertinent Elements for Recognition) takes a similar ap­

proach to managing functional groupings in source code, but also considers other artifacts

[5], Again, the basic idea is that individual lines of code by themselves mean little since

functionality is typically implemented and documented throughout many different source

modules and pieces of documentation. In JASPER, artifacts representing task-relevant data

can be grouped together into working sets that represent a particular task, such as “Add

thickness slider” , for easy reference. JASPER is implemented as an Eclipse plug-in. A rti­

facts are visible in a single view within its particular context. The goals are to reduce time

spent on redundant navigations, while facilitating multitasking, interruption management,

and sharing task information with other developers.

Hipikat [41] supports the formation of implicit group memory from the information

in a project’s archives (CVS, email, bugzilla, etc.) and recommends artifacts from those

archives based on a program mer’s work context or explicit search terms. While the idea of

a group memory is emphasized in Hipikat, as a tool it does not address the issue of real-time

collaborative awareness and knowledge dissemination as elaborated in the requirements for

the Pollinator comprehension support tool.

NavTracks [12] aids code browsing by keeping track of a programmer’s navigation his­

tory and forms associations between files so that files related to the current context may be

recommended as relevant to the user. This type of cognitive support is focused on building

a comprehension model at the level of the filesystem, whereas our tool is more fine-grained

and allows a programmer to build a model using individual source code-level elements.

TagSEA [39] is an Eclipse plug-in that allows a programmer to create waypoints (anal­

ogous to waypoints in geographical navigation), that mark locations of software model

elements through the tagging of elements inline with the source code. These waypoints can

then be navigated by using the previously generated tags in an integrated waypoint viewer.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This approach focuses on the idea of “social tagging” that is used in many online web appli­

cations for the purposes of assigning objects to multiple user-defined categories. Thus each

individual object may be viewed from several different perspectives instead of being re­

stricted to occupying a single space in a particular taxonomy. This allows for a large degree

of flexibility in choosing how to identify the points of interest in a software system. Polli­

nator uses a slightly more structured hierarchical approach in the construction of a mental

model, but aims to make the discovery of knowledge as accessible and non-duplicative as

possible.

Mylar is a tool that reduces the cognitive load of the current work context by putting

a task filter on the types of information presented to the user in the Eclipse workspace

environment [131. It analyzes the most frequently used artifacts of the workspace and other

work activity to evaluate the relevancy of the information contained therein. The effort

required to complete software maintenance tasks or projects is reduced and reused in this

manner by making the task context explicit.

Pamin et al. describe research done in assessing the value of using data obtained from

recorded interaction histories (contexts) as a way of improving the ability of a programmer

to recover the mental state associated with tasks [261. A recommendation system using

some chosen prefetch algorithm could allow the programmer to recover previous work con­

texts. The evaluation of data from case studies showed that discarding the least recently

used method from a context was the best in terms of recovery performance, most likely due

to the dominance of temporal locality in deciding method relevance.

The evaluation of these cognitive support tools is important, and Walenstein describes

a theory-directed approach to measuring the cognitive support provided by program com ­

prehension tools [45).

3.2 Collaboration

While the work described in the previous section is targeted towards cognitive support of

software engineering in the context of program comprehension, the work described here is

specifically focused on the aspect of collaboration in software engineering.

Booch and Brown provide a rationale for collaborative development environments (CDE),

which they describe as virtual spaces where all project stakeholders may participate to carry

out some task such as creating an executable deliverable and its supporting artifacts [2). The

team-centric nature of CDEs set them apart from traditional developer-centric IDEs which

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

were only designed with supplemental support for collaborative features.

Sarma describes several collaboration tool projects that address the fourth layer of col­

laboration needs that were discussed in Chapter 2. Sangam is an Eclipse plug-in described

as a collaborative tool for facilitating distributed pair programming over the Internet using

features like screen and application sharing [35], The Eclipse Communication Framework

(ECF) is an architecture for supporting the development of distributed Eclipse-based tools

and applications [29], JAZZ is a collaborative application development environment that

is meant to extend the Eclipse Java environment by providing for contextual collaboration

[4]. The JAZZ environment provides elements of collaboration such as user awareness,

discussion boards, instant messaging, linkage of chat and messages to code, logs of team

events, and more. Palantir is an Eclipse plug-in tool for supporting workspace awareness by

allowing developers to monitor parallel workspace activity without having to switch mental

context [31]. It supports a collaborative workstyle by showing those artifacts which have

been changed, alongside who changed them and the degree to which they were changed.

The focus of Palantir is the avoidance or early detection of conflicts during parallel activi­

ties, reducing the effort needed to address problems later.

M a’s research into Adoption Centric Reverse Engineering (ACRE) places particular

emphasis on collaboration in reverse engineering within existing, well-used software envi­

ronments, such as Lotus Notes [18]. M a’s thesis lists several requirements for a tool to sup­

port team collaboration during software maintenance tasks that were originally developed

as evaluable aspects of cooperative functionality in CASE (Computer Assisted Software

Engineering) tools by Henderson [9],

1. Maintain a dialog with team members

2. Allow the team to simultaneously work on a single task

3. Send messages/e-mail to team members

4. Concurrent use of dictionary and diagrams

5. Group interaction support (e.g. brainstorming)

6. Attach electronic notes to objects

7. Anonymous feedback or input

8. Notify engineers if a design change affects their work

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9. Build a catalog of macros accessible by the team

Lougher’s position that software maintenance must be supported as a collaborative ac­

tivity was motivated by the idea that the extended time period over which maintenance

occurs makes direct communication between team members difficult or impossible [17],

This led his research into a system that supports long-term collaboration in maintenance by

allowing the maintenance rationale to be captured and shared by engineers through a large

range of unconstrained documentation facilities and techniques such as hypertext to attach

comments to relevant source components. Lougher dubs this system a type of “annotative

collaboration” .

There has also been research into classification frameworks for collaborative tools, used

to place the tools in context as well as serving as a guide to developers on making the best

choice for a tool for their purposes [36]. Each framework may have a different classification

focus, such as providing a taxonomy to compare tools, or comparisons along functionality,

collaboration approach, or user effort.

Cook’s survey of collaborative software engineering notes that the area is comprised of

many areas of research, including: distributed systems, configuration management, human

computer interaction, groupware systems, and software visualization [6J.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Observational Case Study

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In order to gain insight into the needs of the documenting process in collaborative pro­

gram comprehension, an observational case study was undertaken.

4.1 Experimental Design

During the study, two graduate-level computing science subjects were observed as they

worked together as a pair on understanding the Perl interpreter. Specifically, their goal,

which was independent of our study, was to find where the Perl interpreter could be instru­

mented to gain access to the abstract syntax tree of a parsed Perl program. The observational

nature of the study is based on the principle that pair programming makes it possible to over­

hear other programmers’ code comprehension discussions and join them when needed [42],

or in the case of one pair of programmers, the discussions and activities occurring between

the two subjects may explicitly represent their comprehension activities, negating the need

for a think-aloud protocol or prompting / interviewing by the experimenter.

The tools used for comprehension were those chosen by the subjects, and included

the use of Microsoft Visual Studio 6.0 for code browsing and compilation, the Windows

notepad program for writing small test cases in Perl, and paper notebooks to write down

thoughts and knowledge gained from each comprehension session.

The sessions were recorded using a digital video camera mounted on a wheeled tripod

situated behind and just to the side of the subjects’ usual workstation. The view of the

camera alternated between the subjects and detailed shots of the screen contents. Most

non-computer related actions performed by the subjects were captured by the camera and

all sound was also recorded. The observer maintained total silence throughout the sessions

and did not interfere with the participants’ actions.

In total, we observed four sessions and decided that only the first three sessions were

focused on program comprehension, so the fourth was excluded in the final analysis. The

sessions were 1:18, 1:53, and 2:43 (hours:minutes) in length, respectively. The total video

used for the analysis was five hours and 54 minutes in length.

The sessions were transcribed into discrete narrative segments of events corresponding

to noteworthy activity such as an explicit question asked or a period of code browsing. The

temporal resolution of the events recorded were at the meso-scale, a measure of magnitude

that groups the detail of the sessions into forms that are useful for comprehensive analysis

without focusing on irrelevant observations [15].

Events irrelevant to the program comprehension task, such as pleasantries exchanged at

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the beginning of each session, were eliminated from the final compilation of event occur­

rences. This ensured that only events pertaining to the activities of program comprehension

were under analysis.

As a major focus of the study was on analyzing the collaborative aspects of comprehen­

sion, each event was tagged with the identification of the subject initiating the event. Since

the subjects shared a single computer, the possession of computer control was also recorded

as it switched back and forth between subjects.

Events occurring simultaneously (such as speaking and reading) were recorded as sep­

arate discrete events, but grouped together into “episodes” or phases of activity. These

episodes were classified into one of four high-level comprehension scenarios (orientation,

goal creation, question asking and answering, and goal resolution) as described by our ab­

stracted model in Table 4.8, which was derived from our observations in the study.

4.2 Coding Scheme

The development of a coding scheme was necessary in order to classify the discrete events

of each session. By analyzing the taped footage, we compiled a list of the most common

events observed in the sessions and developed a classification schema, described here. The

events are partitioned into three main top-level macro activities of: reading, writing, and

speaking.

Reading Codes

• CMP indicates when the reader is looking at something on the computer that is not

covered by the other reading codes, e.g. Subject is using Windows Explorer to find

files related to the task.

• CMP/CB indicates when a reader is browsing through code on the computer, e.g.

Subject is looking for the macro definition o f SV.

• CMP/Doc indicates when a reader is looking at documentation on the computer, e.g.

Subject is reading the online documentation fo r the Perl interpreter.

• Doc indicates when a reader is looking at hardcopy documentation or notes, e.g.

Subject is looking at his notes from the previous session.

Writing Codes

• CM P/Code indicates when the writer is programming code using the computer, e.g.

Subject is writing a Perl script to observe the interpreter state.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• N o t e s indicates when the writer is writing notes in their notebook, e.g. Subject is

drawing a diagram showing the relationship between the SV data structure nodes.

• N o te s /D e m o indicates when the writer is writing notes in their notebook to illus­

trate something to another person, e.g. Subject is writing an example o f the Perl hash

variable type.

Speaking Codes

• DIR indicates when the speaker is issuing a directive or imperative in order to get

a listener to take some course of action, e.g. Subject tells other subject to do a file

search for parse() function.

• EXP indicates when the speaker is explaining something to a listener, illustrating a

piece of evidence or imparting previously learned knowledge, but is not responding

to an explicitly asked question, e.g. The structure o f the Perl interpreter depends on

the dynaloader and miniperl modules.

• FF indicates when the speaker is participating in discussion that is largely unstruc­

tured or is saying something in a way that is not covered by the other speaking codes,

e.g. Subjects are reorienting themselves to get at a common point from which to start.

• HYP indicates when the speaker is proposing or generating a hypothesis, either im­

plicitly or explicitly, e.g. The subject says: “I think the function clears the stack

before calling parse-func().”

• QA-Q indicates when the speaker is asking a question of a listener, e.g. “How are

Perl variables represented in memory?”

• QA-A indicates when the speaker is answering an explicit question asked by a lis­

tener. e.g. “Perl variables are held in a stash data type.”

• ST indicates when the speaker seems to be talking to themselves or thinking aloud

without directing their words to another person. This may occur when the speaker is

paraphrasing a concept to reinforce its understanding, e.g. “So the stash data type

holds variables, but the SV field o f the data structure is not used.”

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Event Description Event code Frequency
Code Browsing
Free Form Discussion
Explanation
Online Documentation
Question Asked
Paper Documentation
Question Answered

Reading: CMP/CB
Speaking: FF
Speaking: EXP
Reading: CMP/Doc
Speaking: QA-Q
Reading: Doc
Speaking: QA-A

74 (30%)
59 (24%)
24(10%)
17 (7%)
17 (7%)
14 (6%)
13 (5%)

Table 4.1: The seven most frequent events of session 1

Event Description Event code Frequency
Code Browsing
Free Form Discussion
Explanation
Online Documentation
Question Asked
Question Answered
Notes

Reading: CMP/CB
Speaking: FF
Speaking: EXP
Reading: CM P/Doc
Speaking: QA-Q
Speaking: QA-A
Reading: N o t e s

79 (29%)
54 (20%)
34(12%)
25 (9%)
23 (8%)
21 (8%)
11 (4%)

Table 4.2: The seven most frequent events of session 2

4.3 Observations

During the course of the sessions it became evident that one of the subjects had previously

partly studied the code of the Perl interpreter and was therefore regarded as a technical

expert. The other subject frequently consulted the technical expert on the details of Perl

interpretation while also serving as the director of the higher-level comprehension activities

[46]. The activities of this technical director included maintaining and directing the work

context.

The collaborative nature of the observed program comprehension session meant that it

was relatively easy to observe the cognitive activities of the participants without the need for

the observer to explicitly prompt or question the participants, as communication between

them was frequent and mostly explicit.

4.4 Analysis

Session Synopses.

Here we present a brief summary of each program comprehension session used for

analysis.

Session 1.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Event Description Event code Frequency
Free Form Discussion
Computer
Code Writing
Paper Documentation
Code Browsing
Question Asked
Question Answered
Explanation

Speaking: FF
Reading: CMP
Writing: CM P/Code
Reading: Doc
Reading: CMP/CB
Speaking: QA-Q
Speaking: QA-A
Speaking: EXP

115 (31%)
79 (22%)
26 (7%)
26 (7%)
25 (7%)
22 (6%)
20 (5%)
18(5%)

Table 4.3: The seven most frequent events of session 3

Event Code Following Event Code Frequency (%)
Reading: CMP/CB Speaking: FF i n
Speaking: FF Reading: CMP/CB 7.6
Reading: CMP Speaking: FF 5.0
Speaking: FF Reading: CMP 4.7
Speaking: QA-Q Reading: CMP/CB 2.1
Reading: CMP/CB Speaking: EXP 2.0

Table 4.4: Most frequent event sequences (overall)

The first observed session can be described as a “fact-finding” project, to explicitly

discuss the high-level goals and orient each other on the knowledge brought to the session

by each subject. Also observed, was the establishment of the subjects’ representative roles

as technical expert and director. As part of the initial comprehension activities, the overall

architecture of the software system was discussed, and only later were more focused code

browsing activities performed in detail on certain components of the code base. This was

also the session where the subjects familiarized themselves with the conventions of the code

and filesystem structure.

Session 2.

At this point the subjects have already become comfortable enough with the control -

flow of the system in the first session to focus on detailed examinations of the data structures

of interest. In particular, they are interested in where Perl variables are represented and how

this relates to the overall architecture of the interpreter. So largely, the session consists

of searches and examinations of data structures, finding their references, declarations, and

definitions as well as the relations between them. Also looked at were the macros and

functions used to access and manipulate the data structures in anticipation of extracting

information from them for the task. Online documentation is referred to, as necessary, to

gain insight into the architecture of the system with regards to data structure meanings and

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

variable representation.

Session 3.

Between the second and third sessions, a prototype Perl extractor was implemented in­

side of the existing Perl interpreter. This session starts off with some discussion on the

state of the prototype and its capabilities. Since the focus of the session is on the prototype

extractor, much of the activity is spent on modifying, debugging, and understanding the ex­

tractor code. In turn, the comprehension of the Perl interpreter continues since the extractor

is deeply tied to its innards. There is a back-and-forth of modifications to the code and

analyzing the debug state of the extractor. The modifications and analysis of the extractor

are highly dependent on the subjects’ understanding of the Perl interpreter, in particular the

representation of data types and macro definitions.

Events. Here we analyze the events observed in the sessions based on their frequency

of occurrence. The focus of recorded events was on communication, discourse, and col­

laboration, not on what menus or windows were used in the tools. Tables 4.1-4.3 show the

ranking of the top seven observed events in each of the three sessions used from the study.

Table 4.4 shows the most frequent event types that occurred together within episodes, one

after the other. These numbers were compiled by counting the frequency with which an

event occurred before another event within an episode. The frequencies of event occur­

rences shown in Tables 4.1-4.3 and Table 4.4 are values aggregated over the two observed

programmers.

In a program comprehension task, it is not surprising that the most frequent activity

performed is that of looking through the code of the system being examined. Since the

task was performed as a pair of programmers, it is also evident that the magnitude of free

form discussion observed will be large. This is a confirmation that communication during

a collaborative comprehension task is a priority of the programmers.

More interesting are the structured forms of speech observed. The explanation, ques­

tions asked, and questions answered events are all in the top seven observed events. It is

these types of discourse which contribute most to learning and the acquisition of knowl­

edge, as noted by Letovsky in his concept of the inquiry model [15]. The magnitude of

the question and answer frequencies is significant enough for those activities to be included

among the top seven events (out of the 14 event types that were observed in session 1,

for example). The similar values in frequency for questions asked and questions answered

suggests that there are not very many questions left unanswered.

Roles. We wanted to see if there was any difference in the types of activity performed

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Macro Activity Code SI S2

Speaking

FF 27 (46%) 32 (54%)
EXP 4(83%) 4(17%)
HYP 1 (17%) 5 (83%)
ST 1 (25%) 3 (75%)
DIR 4 (44%) 5 (56%)
QA-Q 1 (6%) 16 (94%)
QA-A 13 (100%) 0 (0%)

Reading

CMP 4(57%) 3 (43%)
CMP/CB 35 (47%) 39 (53%)
CMP/Doc 12(71%) 5 (29%)
Doc 6 (43%) 8 (57%)

Writing
N o te s 1 (50%) 1 (50%)
Demo 0 (0%) 2 (100%)
CM P/Code 0 (0%) 0 (0%)

Table 4.5: Event occurrences by subject (session 1)

Macro Activity Code SI S2

Speaking

FF 23 (43%) 31 (57%)
EXP 26 (76%) 8 (24%)
HYP 3 (38%) 8 (63%)
ST 0 (0%) 0 (0%)
DIR 4(100%) 0 (0%)
QA-Q 1 (4%) 22 (96%)
QA-A 20 (95%) 1 (5%)

Reading

CMP 0 (0%) 0 (0%)
CMP/CB 37 (47%) 42 (53%)
CMP/Doc 13 (52%) 12 (48%)
Doc 0 (0%) 0 (0%)

Writing
N o te s 1 (17%) 5 (83%)
Demo 1 (20%) 4(80%)
CM P/Code 0 (0%) 0 (0%)

Table 4.6: Event occurrences by subject (session 2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M acro Activity Code S I S2

Speaking

FF 59 (51%) 56 (49%)
EXP 17 (94%) 1 (6%)
HYP 2 (100%) 0 (63%)
ST 2 (67%) 1 (33%)
DIR 0 (0%) 11 (100%)
QA-Q 0 (0%) 22 (100%)
QA-A 20 (100%) 0 (0%)

R eading

CMP 39 (49%) 4 0 (5 1 %)
CMP/CB 13 (52%) 12 (48%)
CM P/Doc 0 (0%) 0 (0%)
Doc 12 (46%) 14(54%)

W riting
N o t e s 3 (60%) 2 (40%)
Demo 3 (100%) 0 (0%)
CM P/Code 25 (96%) 1 (4%)

Table 4.7: Event occurrences by subject (session 3)

by each subject. Therefore, the event occurrence data divided by subject is shown in Tables

4.5 - 4.7. The role of each subject did seem to determine the activity performed, to a certain

degree. For example in session 1, the technical expert was responsible for 83% of the

explanation events and 100% of the question answering events. This is in contrast to the

technical director who performed 83% of hypothesizing, 56% of directing, and 94% of the

question asking events.

Notes. We were also interested in how knowledge becomes persistent during a program

comprehension session, as a cognitive support tool could greatly assist in this aspect of com­

prehension. The written notes of the study participants were analyzed to see if there were

any major differences between the structure and style of how each participant represented

their gleaned knowledge. In general, the participant serving as the technical expert wrote

notes that were much more explicitly structured than those of the director. The structured

note-taker made frequent use of section headings, lists, diagrams, term definitions, source

code references, and procedural recipes. This contrasts with the notes of the other partici­

pant, who mostly wrote short text fragments and questions with the occasional diagram or

code snippet. As a third-party observer, the structured notes seemed much easier to under­

stand, but this does not necessarily indicate that those notes made for better persistence of

comprehension. The unstructured notes may be in a form more efficiently understood by

the director.

Q uestions. Also analyzed were the most frequently stated goals or questions asked

during the sessions. Most questions asked revolved around the desire to understand the

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

overall system architecture, the meaning of a particular function, or the location of some

particular functionality or data structure.

For example, there were numerous questions phrased generally as “What does the

MACRO NAME macro do?” and “How is STRUCTURE NAME represented?” and “Where

is VARIABLE NAME modified/accessed?”.

The file search facility in Visual Studio was observed to be frequently used during code

browsing events. The searches were mostly for variable references and macro definitions.

According to the subjects, the heavy use of macros in the Perl interpreter source code ne­

cessitated much of the frequent searching. No meaningful search terms were used to guess

at where something might be located; instead, the names of files were used as indicators

of where functionality was located, usually by the technical expert of the two subjects.

The use of domain-specific search terms would likely have been fruitless, as the “words”

used in variable and function names were usually not obviously associated with a particular

meaning nor were they fully spelled out.

Phases of Comprehension. After analyzing the taped sessions, we abstracted four fun­

damental program comprehension scenarios that are described in Table 4.8. We classified

each episode of the observed sessions into one of these scenarios or phases of activity.

The classification of episodes allowed a broader picture of the observed comprehension

to emerge in a model we believe to capture the major component and action sequences of

the observed program comprehension. A common sequence of scenario activity was seen

after the classification was applied to the analysis of the sessions (see Figure 4.1). Each ses­

sion began with a period of orientation in which the programmers tried to reconstruct their

comprehension work context, including a restatement of current goals, knowledge, and rel­

evant pieces of evidence. Once the comprehension context had been reestablished, a cycle

of scenarios ensued, beginning with the generation o f a goal and zero or more sub-goals.

This was followed by question asking, evident by an explicitly interrogative statement or

an action taken suggesting an implicit question. Questions were answered by the process

of knowledge acquisition which involved searching through code and documentation arti­

facts, discussions and explanations between the subjects, as well as some derivation of the

answer based on logical reasoning by one or both of the subjects. Goal resolution then took

place, as information from the previous stage was analyzed in order to test a hypothesis

and judge whether or not a goal had been achieved, failed, or whether further investigation

(in the form of sub-goal generation) was needed. At any point during this process, it was

observed that the work context of the programmers could be interrupted by an externality

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Orientation

Context Lost Context Reconstruction

Goal Succeeded
OR 2. Goal/Subgoal4 (lOal/Subgoal

Resolution Goal Abandoned

Top-Down
Bottom-Up

Top-Down

3 a. Ask JmolicitAND / OR

Evidence gathenng
e.g. code browsing,
read documentationQuestion/Evidence/Answer

Established Comprehension Context

Figure 4.1: Observed phases of comprehension

(such as a phone ringing or instant message appearing) or a sudden general confusion as to

the current state o f the cognitive comprehension model. The latter seemed to happen in cir­

cumstances where the programmers were deeply investigating a goal, had created a number

of sub-goals, and then forgotten what their primary goal was to begin with. In this case,

re-orientation took place in order to restate the current goals and rebuild the comprehension

context.

Table 4.9 shows the frequency o f the scenario events across the three analyzed sessions.

Session 3 involved much more programming than did the other two sessions, and in particu­

lar relatively more goals are resolved in this session than the others. This may be indicative

of programming goals being more easily resolved or that coding in tandem with program

comprehension leads to greater comprehension success.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Scenario D escription
Orientation Activities related to the synchronization of mindset

within the group of reverse engineers. Occurs most
often at the beginning of sessions, but is also observed
when a loss of context happens at any other point. Usu­
ally involves a restatement of current goals and previ­
ously gleaned knowledge.

Goal Generation Activities related to the formation o f goals for a par­
ticular session or goals needed to complete an overar­
ching goal that is already formed. These are often not
explicitly stated but can be gleaned from a sequence of
related events and are frequently associated with ques­
tions being asked or a decision to do something.

Questioning: Ask and Answer Activities related to the asking o f questions, either ex­
plicitly (as in the case o f top-down program compre­
hension) or implicitly (bottom-up program compre­
hension). The type of program comprehension may
alternate during the course of a session. Implicit ques­
tions occur during the course of gathering evidence
to address a goal or explicit question. The gather­
ing o f evidence usually occurs through the reading
macro-activity, and is often associated with searching
through documentation, code, or other textual informa­
tion. However, it may also occur by conversing with
another individual or by synthesizing evidence from
the questioner himself. The implicit question itself is
as to the relevance of the evidence gathered and can
also be thought of as a hypothesis. An answer to a
question comes from evidence gathered and leads to
the resolution o f the question state.

Goal Resolution Activities related to the resolution o f a created goal by
determining if that goal has been achieved through the
resolution of questions asked or actions taken towards
the completion of the goal.

Table 4.8: A model o f observed comprehension scenarios

Scenario Type Session 1 Session 2 Session 3 Total
Orientation
Goal Creation
Question Ask & Answer
Goal Resolution

1 (1%)
5 (6%)

75 (87%)
5 (6%)

1 (1%)
29 (28%)
59 (57%)
15 (14%)

6 (5%)
25 (19%)
75 (58%)
24(18%)

8 (3%)
59 (18%)

209 (65%)
44 (14%)

Total 86 104 130 320

Table 4.9: Classification of episodes into comprehension scenarios

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Macro Activity Speaking Reading Writing
Code FF EXP HYP ST DIR QA-Q QA-A CMP CMP/Code CMP/Doc Doc Notes Demo CMP/Code

Speaking

FF 45 5 5 0 4 13 7 43 70 14 14 5 2 9
EXP 10 8 1 0 4 2 8 7 14 7 5 1 1 3
HYP 1 2 1 0 0 1 0 0 10 2 0 0 0 0
ST 1 1 0 0 0 0 0 0 3 1 1 0 0 0
DIR 3 0 0 0 1 0 1 6 11 1 0 0 0 0
QA-Q 6 1 0 0 0 7 0 10 19 5 3 0 3 0
QA-A 2 13 0 0 0 1 7 7 15 3 3 1 3 2

Reading

CMP 46 11 1 1 3 8 8 9 0 0 1 0 0 11
CMP/Code 71 18 6 4 7 16 8 1 52 3 4 4 0 2
CMP/Doc 15 12 2 0 1 1 3 0 1 3 0 1 0 0
Doc 18 3 0 0 4 3 3 2 1 0 1 1 0 3

Writing
Notes 4 1 0 1 0 2 1 0 3 0 2 0 0 0
Demo 2 1 1 0 0 3 3 0 0 0 0 0 0 0
CMP/Code 10 3 0 1 0 0 3 8 2 0 2 0 0 0

Table 4.10: Interepisode event counts. Each tally in a cell indicates occurrences of the event type in the left “Code” column happening immediately
in a sequence before the event type in the top “Code” row within an episode of activity.

Table 4.10 shows the counts of event sequences, events that occurred one after another

over the three analyzed sessions. The number located in each cell represents the occurrences

of the corresponding event type on the left column happening before the corresponding

event type on the top row within an episode of activity. It is apparent from the data that

free-form discussion (FF) and code browsing (C M P/C ode) were deeply intertwined in this

particular study. This may be expected in an environment were the two subjects are sitting

next to each other and sharing a single computer. Also of interest is the observation that

the majority of note-taking occurs just after free-form discussion and code browsing. This

may be explained by the notion that knowledge persistence occurs only after the piece of

knowledge in question has been discussed or directly observed by the subjects.

4.5 Study Shortcomings

There are two significant threats to the validity of the observational study. The small size

of the participant pool is an internal threat, while an external threat is that the participants

themselves may not be representative of software developers in an industrial setting.

Unlike studies where there was verbatim transcription [15] or structured interviews as

conducted in [16], the analysis presented here was not based on using precise keywords like

w hy or b e c a u s e to identify events like questions and answers, nor were explicit interview

responses available to clearly reconcile events with their cognitive meanings.

While we believe the coding scheme and transcription of events into narrated episodes

to be sufficient for illustrating several significant qualities of pair program comprehension,

the analysis would certainly be enriched by the conduct of exit interviews with the study

participants to clarify the meanings of some of the more ambiguous cognitive events. Also,

a different coding scheme that accounts for combined events in higher detail or one that

is more fine-grained and detailed may result in further insight. There is also a question of

whether or not the coding scheme could be used by other analysts to reproduce the same

sequence of events from the raw session data. Additionally, given the same observational

data and scheme, it is uncertain whether or not a similar coding would be constructed by

others. This is the general difficulty of interpreting observed events and assigning them

to a specific code or category. We believe our coding scheme has been constructed so as

to accommodate most event types with minimal overlap, but there are bound to be some

undesirable or controversial categorizations.

Walenstein notes that tool developers will not be well-served by the theory-building ac-

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tivity embarked upon in this study such as deciding on the significance of various events,

devising a coding scheme, and constructing models to explain the results [45]. Instead the

researcher should import and use theories to alleviate the burden of using existing empir­

ical techniques. A lot of time can be saved from coding observations in-situ by having a

predetermined coding scheme.

An alternative method for conducting such a study is presented by Robillard in research

on measuring cognitive activities in software engineering. The general process is to form

a formal hierarchical coding scheme, and merge psychological and statistical analysis to

produce an explicit cognitive model [34].

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Prototype: Pollinator

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 Approach to Problem

Our analysis of the results from the observational case study highlights some areas of defi­

ciency in the program comprehension process used by the subjects that may be addressed

through the presence of a tool that cognitively supports the documentation of comprehen­

sion. By integrating the knowledge preservation mechanisms into the development envi­

ronment and sharing comprehension among members of a project we may be able to reduce

the problems of temporal and spatial miscommunication. In this manner, the work context

can be made more explicit and easily maintainable throughout a particular task.

Therefore, in this chapter of the thesis we use the observations gleaned from the study

to motivate a set of requirements for a cognitive support tool in collaborative environments.

The requirements are then used to develop such a tool, whose design and implementation

is described. The chapter concludes with an evaluation of the tool.

5.2 A Knowledge Representation Model

As described earlier in the background chapter, there are several different ways to model

or represent program comprehension knowledge. Based on our observations in the study

we present a knowledge representation model that is hypothesized could cognitively aid the

preservation of program comprehension knowledge in collaborative development environ­

ments. We believe the model to closely follow the structures and program comprehension

activities as observed in the initial case study.

Cognitive models of program comprehension may define a stmcture to aid in the con­

struction of a mental model, comprised of elements and strategies. We define the terminol­

ogy of the elements and describe the overall comprehension structure derived partly from

the literature and our own observations, which are described in the next section.

There are four general elements. A task is the overall purpose of a program comprehen­

sion or development project. For example, “ Instrument the Perl parser to access the abstract

syntax tree” is a task. Goals often in the form of interrogative questions are used to gather

relevant information about a program by framing comprehension as pieces of knowledge to

discover. Answers to questions are found through the collection of artifact-based evidence

or the direct derivation of answers by careful deliberation. Evidence gathered by the pro­

grammer includes information found in the program’s code, documentation, or otherwise.

Evidence occurs at various levels of abstraction, including the application, algorithmic, and

code domains. Questions may take one of two forms: explicit and implicit. More common

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in the top-down process of program comprehension, explicit questions are premeditated

and assume some sort of previous domain or program knowledge allowing the developer

to form a reasonably specific question about a system. Implicit questions are formed as a

result of gathering evidence, before asking any explicit questions, as in a bottom-up com ­

prehension process. The implicit question usually is about the relevance of the particular

piece of evidence collected, with a yes or no answer and a possible explanation. There may

also be times when questions contain implicit hypotheses as to the question’s answer or the

hypotheses may be even hidden in the overall structure of the comprehension process.

The elements described above may be formed into a hierarchy of comprehension, simi­

lar to that described by Brooks in the top-down comprehension model [3|. Hierarchies can

be considered a common-ground form of knowledge representation that is understandable

by many, and not only the original author. In forming this hierarchy, tasks suggest the un­

derlying purpose and are the reason for the existence of the knowledge construct. One or

more primary comprehension goals are generated, sometimes framed by an implicit theory,

to address the task. The primary goals may also be thought of as parts of or equivalent to

the task. Generally, these primary goals cannot be directly tied to evidence, necessitating

the creation of lower-level sub-goals, i.e., more concrete questions and testable hypothe­

ses. The types of primary goals created depends on the nature of comprehension and the

knowledge the developer already possesses. If the developer is familiar with the domain or

program then more explicit questions may be asked before gathering evidence. However,

if the developer is largely unfamiliar with the system, then evidence gathering and the cre­

ation of implicit questions takes place first. Through the gathering of evidence, questions

are answered and hypotheses tested (supported or refuted). Higher-level goals are deemed

successes or failures by aggregating the validity of lower-level sub-goals and hypotheses.

5.3 Motivation for Tool

The author’s own experience in maintaining a software system that, at the time, was more

than 12 years old, provided motivation to solve the problem of knowledge preservation in

program design and comprehension. In this case, the project’s age was the major deterrent

to program comprehension as there was little to no formal documentation from the be­

ginning of the project that would still be relevant to the current code base. Even comments

inline with the code could be left out of date if a programmer forgot to update it after making

a change. This information staleness would compound and propagate with each successive

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

change to the code. Additionally, there was no central repository of knowledge or docu­

mentation for the system. The developer would have to piece together bits of information

from change logs, bug reports, and word of mouth to get a good idea of some of the sim­

plest concepts of the system. This was time consuming and often many gaps were left in the

perceived comprehension. The cognitive load was not distributed evenly enough amongst

humans and artifacts such that it was instead primarily placed on the human component.

Motivation for research into cognitive support in collaborative software engineering

environments has already been described or hinted at in the previous chapters. Walenstein

refers to cognitive support as the aid provided to humans in their thinking and problem

solving by tools [45J. The highly collaborative nature of software development and current

state of legacy software systems suggests that there is a need for a tool-driven methodology

to properly document understanding as it occurs during the maintenance process or even as

its own specialized documentation task.

Different Scenarios

There can be several different scenarios envisioned where a tool could be used to aug­

ment or replace disparate methods of documenting program comprehension.

Collaboration Aspect

In cases where the development team is made up of members that need to collaborate

in order to accomplish software modification or program comprehension tasks, a tool that

allows developers to work together and pool their work and resources would be of help.

Even when direct collaboration does not seem necessary or is impeded by current meth­

ods, the distributed persistence of knowledge could open opportunities for the sharing of

comprehension by reducing duplicative effort and fostering team cohesiveness.

Knowledge Preservation Aspect

In cases where the software system has a large lifetime over which team members may

have come and gone, taking knowledge with them, it would be helpful to have a tool au­

tomatically persist documented knowledge so that it is accessible in the future. Also, team

members may be dispersed over large distances or merely work in an environment where

it is inconvenient to have rich face-to-face communications. Therefore, a tool that persists

documented knowledge over a dispersed team would help to alleviate the disconnect be­

tween members who might otherwise use unreliable means of communication or find it a

nuisance to communicate documented knowledge at all.

Integration of such a system into the development team ’s current environment is im­

portant, as adoption often relies on the convenience and unobtrusiveness of a tool that fits

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nicely into an existing workflow.

In our observational case study, we saw two programmers in a pair perform program

comprehension tasks as part of their overall goal to instrument the code so that information

about the program’s internal state could be extracted for other purposes. Given an envi­

ronment where the tools are an IDE and other typical items, a developer may use a paper

notebook to document comprehension to themselves, leaving a missing link between their

developed understanding and the artifacts of the software system. This was seen in the study

as the subjects each took their own set of notes on their comprehension, parts of which were

duplicative and others complementary.

A mechanism for collective knowledge preservation alone is not enough to ensure that

comprehension and understanding is actually passed from one developer to the next. The

representation of the knowledge should be something that most programmers would un­

derstand, but not so basic as to be entirely unstructured like a set of inconsistent notes.

The construction and manipulation of the representation structure should also be flexible

enough to accommodate different styles of documenting comprehension (e.g. bottom-up

versus top-down). The style of documenting may depend on the specific situation of the

individual developer and their relationship to the software system. Some possible permuta­

tions of such scenarios are shown below.

Imagine a set of scenarios where a task is given to a developer who:

a) has both domain and code knowledge

b) has some domain and some code knowledge

c) has domain, but no code knowledge

d) has code, but no domain knowledge

e) has neither code or domain knowledge (pure PC)

A developer in situation a can be considered an experienced expert who may not even

need the assistance of documentation in order to complete a task. Instead they would rely

on their own knowledge of both code and domain, but if necessary use a top-down com ­

prehension approach. A developer in situation b would be less experienced and therefore

rely on the use of documentation and a top-down approach to comprehension. Situation c

would also likely result in a top-down process, as the developer would know enough about

the domain to direct their questions and goals to specific areas of interest. Situation e, where

the developer has very little to no knowledge of either code or domain, suggests the devel­

oper would use a bottom-up approach to comprehension because their initial work would

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be exploratory, both of the system and its domain. Situation d would seem to be a situa­

tion where the developer has only specific knowledge of the code, perhaps from working

on utility or backend functionality, but no broad understanding of the domain to which the

system is applied or how systems in the domain might typically be structured. In this case,

either a top-down or bottom-up approach may be used depending on the particular task or

piece(s) of the system under study, as if the developer is familiar with the some aspect of

the task or code, they may use a top-down instead of bottom-up process. Situation e, with

a developer lacking knowledge and documentation, is a typical case of where bottom-up

comprehension would be used.

Maintenance of Context

Often, the interpretation or model of a developer’s knowledge about a system or task

is kept explicitly separate from the artifacts of the system itself, such as using notebooks

to keep track of progress. This lends to excessive context switching as the developer reads

and/or writes back and forth between the knowledge context and the system or code con­

text. The orientation phase of program comprehension was observed in the study to have

occurred multiple times during the course of each session. This indicated a loss of context,

and was mostly seen to have occurred when the subjects were digging very deep within

the code base, to very low levels of abstraction. A t some point, the code is so low-level

that it is difficult to see the overarching goal or question. In addition to the disadvantage of

separating the knowledge store context from that of the system, when multiple developers

are involved, there also exist multiple and disparate knowledge storage units which more

often than not are only useful or interpretable to one person which relates back to the need

for a commonly understood knowledge representation structure.

Having the mental context of comprehension maintained within software would reduce

efforts in context switching, and hopefully also therefore reduce losses of context. The load

of context switching may be further reduced by tightly integrating the documentation of

comprehension within the developer’s usual development environment as opposed to the

use of an external tool.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4 Requirements

Based on our observations during the pair comprehension case study and the different sce­

narios of program comprehension discussed above, we describe a set of requirements for a

cognitive support tool to aid the developer during the program comprehension process.

The observational case study conducted for this research also provides another source

of data to motivate better tools and methods to support program comprehension.

One of the observed problems that occurred during the comprehension sessions was

the frequent search through the various open windows on the computer screen to find the

artifact relevant to the current goal in progress.

R l: A comprehension support tool should keep a connection between the goals

and hypotheses o f the developing cognitive model and the artifacts o f the men­

tal model [40] as this may improve the persistence o f the programmer’s work­

flow context.

The usage of several different tools during the comprehension process also seemed to

hinder the programmers as they seemed to need to reset their attention each time a switch

occurred between tools.

R2: A comprehension support tool should be easily-adopted and unobtrusive,

so that it is not jarring for a programmer when switching between different

activities in the program comprehension process.

The differences in note-taking structures between the observed programmers suggests

that different pieces of knowledge are persisted for each participant and that this knowledge

may or may not be retrievable in the future depending on the reader’s interpretation of the

notes and even whether or not the notes may be available.

R3: A comprehension support tool should provide a structure for the knowl­

edge gleaned from a comprehension process, so that it is accessible by a larger

audience, but also be flexible enough so that the programmer does not feel

restricted in the kinds o f knowledge he is able to represent.

The persistence of knowledge throughout a team of developers is also important and

such a tool should not confine the generated comprehension to the original programmer.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R4: A collaborative comprehension support tool should disperse knowledge

among the members o f the team in real-time to maximize sharing o f knowledge

and minimize duplication of effort.

Additionally, as communication during the observed comprehension sessions figured

very prominently, we can see that pair comprehension does not occur within a vacuum.

R5: A collaborative comprehension support tool should provide facilities for

awareness o f others working on the same or similar program comprehension

tasks and also allow those users to easily communicate with each other through

real-time synchronous methods if they are not co-located.

The requirements described are similar to some of those proposed for collaborative

reverse engineering tools by Ma [18].

We argue that these requirements may address or augment what Letovsky observed as

the components of a knowledge-based program understander, which are [15]:

• a knowledge base encoding expertise and background knowledge

• a mental model encoding a programmer’s current understanding

• an assimilation process interacting with the stimulus materials (target code and doc­

umentation) and knowledge base.

Our proposed tool keeps a database of previously built question-evidence hierarchies,

a knowledge base of understanding. The process of building a comprehension hierarchy

in the tool encodes a programmer’s in-progress or current understanding of a system into

a mental model. The assimilation process, as addressed here, involves the activities of

gathering evidence in the tool and using the tool to answer questions and test hypotheses in

conjunction with the use of knowledge already stored in the database.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5 Design and Implementation

m m eessr
B e B St Scute Rehctor tavsct* SeartJj Project Rtn Ed* \Mntan Heto

v - o - <* - a * i s -
- JpT Poinatof.Stiaa; Or**

: : CN.il* ; g ^ : * bedxi. (|)

: Goat tfaamMfc Saw i

r ? ' Q Polina to •

Uter Chat; fttaw f fifes; PraWnm: 3ZL f * X Re!V«* & fend«l C atvsert
ŷrwtfPnBectLhdy»an<i»ePt>i Wenypter
God* Type Project Stabs Author Parbaparsts ftalrg Arifac: ^ rv stn !

(‘ >V>-*re* the AST3oces!*ile' InPro^ess tiechuJ {n/ai
■« f-' What date Wees leweseM 4 * AS"5 If’.Proyess bechu2 (pia>

O 1ST Data Mode SotrteType PePlnieroreter Unverified 6echu2 fn/e) PertASTD*taMo<fe.}a\a:5 (i. irt- •
CD

L2 -,i [jJ baageF.Klonr.jvya ’ jj) PerlASTPataNode.java

! .exasr-1-* - p e r i ;

t tf$ Mapper frwarhfc.es. uaberta.ca; a
s Perflntopreter [swartfca.uafeerta.ca' w ifct 5-C

rs 3) ca.usberto.c5.eiwrole.peH V,
- l|j Per-ASTDataNecteoava i . j (ASC3 jj

- § PWiASTOoWtode 11 (ASCII-bp
c*s y£ PeriASTOpNode.)BV* 1.2 {ASCII -tti
* • (JB PertASTType.Jeva 1.1 (ASCD -tocyj

J j PartMfc'.jawa 1.1 {ASCII -tevl I:
S 1% Pttf'arx.jena 1.2 (ASCII -kior) jj
I* $ PeHParaeTfec.java 1.1 (ASCII

i A RE Svnere Lbrary Qrel. S.0_06)
E !e? TestGraohFlK ir
i (a? TestlsvaProjeet

p u b l i c c l a s s P e r lA S ID ata S o d e e x te n d s F e r lA S T lv p c <

Stain '.O ta w t a Caeii ©iXflbBia - ^ tar; j •.

Sedrttme Project S tats Author OateCreeted
Wtatrtsta types reprwenltw AST? Understand the Pert Interpreter InProgress b«hj2 Oct 14, 2006 4:24:29fw
¥#>ereslh«A5Tacce«tfc? UndersUnd die “e+lntapreter in Progress bechu2 Oct i 4. 20Q6 4:24:1’.

DMH«tHs*#ed parWparrts Ratrig
(rt/a) ria
trf*) r>/a

©

e l_ s. ... - 1 _ £ ? . _ _________;_____________________ _̂_ |i________ _J
:«! ftf*

Figure 5.1: Screenshot of the Pollinator tool environment

A prototype Eclipse plug-in written in Java named Pollinator was created that integrates

into the existing Java and plug-in development perspectives of the Eclipse IDE. The Eclipse

open development platform is made up of several components targeted towards build, de­

ployment, and management of software throughout its life cycle '. We are interested in

using Eclipse as an integrated development environment (IDE) for the Java programming

language. The Eclipse Java IDE, like most of the Eclipse project, is highly-extensible and

composed of many plug-ins that can be extended or replaced by user-defined plug-ins.

The plug-in written as part of this thesis extends the base Eclipse Java IDE by imple­

menting extensions to 14 extension points (see Appendix A .l for details). Extension points

are interfaces defined by plug-ins that allow extension or customization of the defining plug­

in ’s functionality through the implementation of the interface or contract as an extension in

another plug-in.

Pollinator contributes a perspective, views, actions, preferences, menus, annotations,

1 http://www.eclipse.org/

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.eclipse.org/

Pollinator Communications Architecture

Pollinator Client Pollinator Client
1
j Pollinator Client

, >k

l
Eclipse C om m unications Framework

using TCP/IP Connections

Pollindtor Server

Knowledge Database I
. Prefect*

ôals
Evidence

, Uŝ rsV- , y

Figure 5.2: Pollinator communications architecture

decorations, and other extensions to the Eclipse Java IDE.

Collaboration features are implemented at a lower level through a simple protocol built

on top of the Eclipse Communications Framework 2 (ECF) using a client-server architecture

(see Figure 5.2). The use of the ECF as the base for the communications infrastructure

allowed easier implementation of features like the sharing of knowledge and awareness

amongst a group of users connected to a central server by abstracting away many of the

low-level aspects of the communications infrastructure.

A screenshot of the Pollinator perspective in the Eclipse environment is shown in Figure

5.1.

The Eclipse IDE is organized into several components. Within each main workbench

window is a workbench page that contains the visual presentation of the window’s contents.

The contents may generally be classified as one of two types of “parts”, editors and views. A

pre-defined arrangement and layout of editors and views is called a perspective. The Eclipse

IDE defines several perspectives such as Java, Plug-in Development, and CVS Repository

Exploring.

We defined a new perspective for our plug-in called Pollinator which has a layout sim­

ilar to that of the existing Java perspective. The Package Explorer and Navigator views are

placed to the left of the main source editor with the Members view on the right side. The

Pollinator perspective also includes another view we implemented that stretches horizon­

2http://vvww.eclipse.org/ecf

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://vvww.eclipse.org/ecf

tally along the top of the window like a banner, providing passive peripheral user awareness.

Just below the banner is a view folder (an Eclipse widget capable of holding many views

in a tabbed layout) containing views for seeing and manipulating the documented program

comprehension structure (comprehension modeling views).

TO- - - - -------------- -- ---------- -w- — |

S elect a p ro je c t from th e itst be lo w

Filter: Search...

C re a te new p ro je c t—

CE
Name(v)

Awareness
bean
bean test
blah
bling
brine
brineshrimp
brine y

crawdad

crawdaddy8
erawlingdat a

C r e a te N ew P r o g r a m U n d e r s t a n d i n g P r o j e

P ro jec t nam e.

Understand the Peri interpreter

W hat is th e p rim ary g o a l o f th is p ro je c t?

Understand the Peri interpreter so it can be
instrumented and the abstract tree information
extracted)

Decorator Display

Editor Listening

hmm!

Sep t v . 21)00 3 u / 4 1 nui

(n/a)

(n/a)

Figure 5.3: Pollinator project explorer

I; PQflbuto-Status: CnfeM I

[OWLME $ £ [_J* ' a

Figure 5.4: Awareness view of Pollinator environment

IjoN LNE § f s j ft
! fa* Goal Knowledge Base Project Azure us Pofeoator study rrn t tn m fffn ia i l t l i j fn ir r ti ‘ i a f t i * ^ “ Q

Show <..• My *<t<w C- Last active- Nov 2 7. 200 6 2 44 29 PM

Figure 5.5: Team member detail in awareness view

The main awareness view (marked as 1 in Figure 5.1 and full-view shown in Figure 5.4)

contains areas for program comprehension project manipulation and team awareness. The

project explorer action displays a dialog (see Figure 5.3) that allows the opening, creation,

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and deletion of program comprehension projects on the Pollinator server. The projects

referred to here are the equivalent of the tasks described in section 5.2. The team awareness

area shows all users connected to the Pollinator server and displays a short status of the

user’s work context in a tooltip (see Figures 5.4 and 5.5). Clicking on a user brings up a

context menu that allows actions to be performed, such as opening a user-to-user chat or

viewing more detailed information about that team member. This awareness “banner” is

somewhat similar to the concept of the Jazz Band in the Jazz collaboration project [4],

The auxiliary view folder, marked as 2 in Figure 5.1, contains several views meant to

help with the cognitive support for the comprehension model of the system under study.

1I
S\A

R atted ftfeaProBom*: QMMOfa \ Saenft | Refresh ^ ■?*. .D

[go* Nan* (frojKt js tr tu s [Author D * tQ «X C d k̂~~
-.jflliE'-fSeardi...

(Oaf* la s t Modfted [iM a p M i Jtattag:.
; = : □

Cl hnagefwce In Regress b*chu2 (n/a)
How n the AST of an interpreted script represented? Understand the Peri interpreter In Progress duptest Oct 13, 2006 3:42 52 IW (n/a) n /a I
How W the goal expfoer view context menu Med? PoMnxor in R oom s bedtu - Oi/a) n /a i j
tc imagenote in Progress duptest o a 2. 2006 11 57:48 AM (n/a) n /a §

Figure 5.6: Pollinator knowledge base view

The knowledge base awareness view (detached view marked as 4 in Figure 5.1 and full-

view shown in Figure 5.6) shows all of the currently constructed program understanding

goals / questions (goals and questions are used interchangeably in this section) stored in all

projects on the server. A text search allows the user to filter out questions of interest.

Co4 Kiwwtedge la w O m Heated H w Prototwre Comote ft- X tefrtsh Expwd M C o lJp * Al f t v : ■, ‘ ' O
y iw H i ^ iijw i A /mwh n f c a o

| r » « R«y«t 5 t* » Aixbor | P a r tO p ts | Ratfrg j Artifact (Kh Mohi

fe Network Module fn/a) (n/a) Unverified PStudyl (n/a)

Figure 5.7: Pollinator goal explorer view

The comprehension manipulation view named “Goal Explorer” (marked as 3 in Figure

5.1 and full-view shown in Figure 5.7) allows the user to view and generate hierarchical

models of understanding using goals and evidence. Currently users begin by creating one

or more primary goals and then continue by generating sub-goals and questions through

the process of top-down or bottom-up model building. As discussed earlier, the top-down

model building process involves the asking of explicit questions and then gathering evi­

dence or synthesizing answers in order to resolve the question. The bottom-up process

starts with generalized goals and questions, which are not directly answered by the gather­

ing of evidence, but these pieces of evidence are implicit questions in their own right. The

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

implicit question here is: is this evidence relevant to this question? Users gather evidence

through several methods. One method is the dragging of elements from Java source code

views in the Eclipse environment (such as the Package Explorer and Members views seen

in Figure 5.11) onto goal / question nodes of the Goal Explorer tree. This method acts as a

kind of bookmarking or annotation mechanism for the pieces of evidence gathered so that

they may be referred to later in the process of question resolution. Each piece of evidence

dragged using this method is tied to a specific version of the source code in a version con­

trol system (currently CVS) so that the state and context of the artifact is preserved for later

interpretation. A second method is the explicit attaching of external evidence to a question

in the form of a URL, a saved chat, a file, or simply free-form text. The different types of

evidence are distinguished by different icon types and are represented differently according

to their underlying nature. Goals and evidence have states associated with them to track

progress. For example, goals have the states of in progress, answered, and failed. Evi­

dence may be marked as relevant, irrelevant, or unknown. Within the “Goal Explorer” , the

question-evidence hierarchy is reasonably flexible, allow the user to add and delete goals

and evidence at any point in the hierarchy. The user may also drag and drop parts of the

hierarchy to any other place in the hierarchy if such a rearrangement is needed.

r<id KpiHMedor daw (.oat**;
Dpan d u c t t o fttuey'.

Chat tab 0 (Genet af) S3
{Event}: Vou have joined the dtat.
{Event}' becbu has joined the chat.

< IbechuJ: What is CBent Message Service,Java used for?
{PStudy 1) From what I understand, it is used by the dient to access server services.

Enter menage here. I Hope |

PStudyl
bedw

Figure 5.8: Pollinator user chat view

The “User Chat” view (see Figure 5.8) allows direct communication between members

of a development team through textual chat, either one-on-one or as a group with members

added by invitation. The text of the chats, as mentioned above, may be saved as evidence if

desired.

boal Knowiado* I i m cMi tx p to cr Utcr O ld |

le toed a rtl'aas fot Aureus PotoBc* Study
UftJV tionO npijm (I 2) NatFMPDcvue Mv* I ! ?) IPRUDPPadcet.java (11) S3 i

p ro tected
FRUOfTadcwt

im ty p e)1

Opm flfci rebtod to current project.

Figure 5.9: Pollinator related files view

The “Related Files” view (see Figure 5.9) collects all of the file-based evidence gathered

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for a particular project in one tab view. This makes it easy to see at a glance, which parts of

the source code base are involved in a particular program comprehension project.

i 0 NatPMTOevice.java I |7] PRUDPPacket.java £3 \ 0 UPnPActiontmpl.java

type = _ ty pe ;
t r a n s a c t io n _ id = _ t r a n s a c t io n _ id ;

}

pro tec ted
PRUDPPacketC

 in t - t y p e)______________________
Qick here to open this evidence in the goal explorer for project: Azureus Pollinator Study 0 ecftcp ://
locaihost: 3 2 8 2 /server___

try<
c l a s 5_m o n . e n t e r Q ;

t r a n s a c t ! on_id = n e x t _ 7 -d++;

}finaH y{

class_m on . exitO t
}

>

public void
se tS e ria lised S ize<

in t Ten)
{

se r ia l is e d _ s iz e = te n ;
>

public in t
ge tS eri a l i sedSi ze{)
{

return< s e r ia l is e d _ s iz e) ;
}

Figure 5.10: Pollinator editor annotation

There are also many different types of awareness that Pollinator incorporates into the

Eclipse environment. If the currently active editor has knowledge associated with it in

the database, an annotation marker is placed in the left vertical ruler that links back to

the project and details of the comprehension documented about the file (see Figure 5.10).

To facilitate peripheral awareness of team member activity, Pollinator also decorates rel­

evant views of the Eclipse environment to denote the artifacts other team members may

be working on. For example, if a user called “P Studyl” has an editor open on the file

U P n p A c t i o n l m p l . j a v a , the Navigator view in Eclipse will decorate that item and its

parent artifacts in the tree view, as seen in Figure 5.11a. If the user is looking at a Pack­

age Explorer view, then they may also see the particular method or other data structure

the user “P Studyl” is examining (see Figure 5.1 lb). The Members view is also decorated

with this peripheral awareness information (see Figure 5.11c). This provision of periph-

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iFw&aotEKpfciMf •. < % r'a V
t> fe3>Azureus lazweus.cvs.sotirxeforgejMt]
■=■ i£ a z i r e u i - 5 .i.l f U;«rs PS’udyl] MLEAS£-3 J. 3.0 [AZi

t> SSjbuftd

Users i*Slj<tvl]
^ 4s*f.litts (U’.ers FStudy!)

t> fc“jaztit*us

^ £yne t [useis. PStudvl 5
t- cjmaon«tun
> iefcnatpmp
t> t^udp
^feupnpllism.PSUrfivl ;

^ ^ v n p f t UH’ S PStudyl !
> (Jjdevics
^ S jw v K e s [ihrfrs PSluityt J

ysUPnPAaHjnArywnemimol.jav* 1.2 (ASO -kkv)

fjjUPnPActifjffimpi.jsva {u s^ n PStudyl 3 1,2 (AS!* -kkv)

|£uft#A C8onlnv0catlon*npf.java 1-3 (ASCJf -kkv>
% UPnPSttvKettnpl Java 1.4 (ASCB -kkv)
ygUfttresWANCoinmonlncerfxeConfiginipijava 1.2 (ASCI
i^UPnPSSWANConteato(*twljavA 1.9 (ASC8 -kkv)
Qi UPnPSS WAMPCowwcrtonimp! .Java 1.2 (ASCI -kkv)
Si UW5SWANWConnectloofcnpl Java 1.2 (ASCB -kkv)
i$ UPnP&ateVariabtefmpl.java 1.2 CASC3 -kkv)

t> e.v$sdp1 ■-/■WS: -- : :-:i
(a) Pollinator decorations in the N avigator
view of Eclipse.

e si-'
gcorma

I> j$$ com.aeStis .net .udp .uc
t> ^com.aekts.net.udp.ucaropl
fr fgcom.aelltis.nec.u'pnp [Users: PStudyl J
> com.aelrtts.net,upnp.jmpl [Users: PStudyl]
t> J§ com .aeStts .net .upnpjmpi.de vice
7 §|com .aebtis.net.upnp.irnpl.services [Users: PStudyl J

7 l&UPnPActionimpl.javalUsers PStudyl 1 1.2 (ASO-kkv)
^ ^UPnPActiontmp) I Users: PStudyl J 1,2 (ASO -kkv)

v name
■*> service [users. PStudyl]

UPnPAdtontmpJft^nPServicelfnpl, Simple XN&ParserOocumentNode) j
EkgetinvQcarionO
fegetNameO
*.getServtce()

[)!l I MtPArtwnlnvnratiAnlinnl lava 1 t (A tn -Irlrvl

(b) Pollinator decorations in the Package Explorer view
o f Eclipse.

Members £3

> l import declarations
% service : UPnPServicelmpI { User
o name : String
v c UPnPActionJmpi{UPnPServiceinip
o^getName()
©^getServiceO
A zx. netlnvn rarirw ifi

(c) Pollinator decorations in the Members view of Eclipse.

Figure 5.11: Pollinator decorations in Eclipse

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

eral awareness through decorators is similar to that provided by the Jazz project’s “Concert

Awareness” feature [4J.

The tool persists several pieces of knowledge about each goal and question, such as the

user who created them and the understanding project they are associated with. Additionally,

versioning information on the evidence associated with hypotheses is stored if possible.

This allows a programmer to go back to the specific artifact used in a comprehension model

and also maintains a connection between the cognitive and program models.

We believe Pollinator is flexible enough to be used in both bottom-up and top-down

comprehension processes, as observed in the case study and based on the following methods

of use.

In hypothesis-driven top-down comprehension, several goals and questions are stated

first and code is looked at last. Pollinator might be used in such a situation as follows:

1. Create new task with explicit goal

e -g-

Task: Understand the Perl Interpreter

Description: Understand the Perl interpreter so it can be instrumented and the ab­

stract syntax tree information extracted.

2. Create new explicit question or goal

eg-

Question: Where is the AST accessible?

3. Create a sub-goal that is a concrete, explicit question

e.g.

Question: Which data types represent the AST?

4. Drag and drop evidence to support an answer to question

eg-

Drag the files A S T N o d e . j a v a and A STO p. j a v a to the just-created question.

In code-driven bottom-up comprehension, there is no initial specific goal and the behav­

ior seems mainly exploratory. Therefore, the initial activity is almost one of “bookmarking”

the code. Later on, these bookmarks can be organized in a manner that creates or answers

more specific questions, which in turn requires the gathering of more evidence. Pollinator

might be used in such a situation as follows, as relating to the previous top-down example:

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Create new task with non-specific, exploratory goal

e-g-

Task: Understand the Perl interpreter

Description: Find out how the interpreter works.

2. Create an exploratory goal from which to begin

e.g.

Goal: What makes up the Perl interpreter?

3. Add all exploratory evidence (i.e. bookmark points o f interest)

e-g-

Drag the files P e r l lM a in . j a v a , P e r l P a r s e . j a v a , U t i l . j a v a , A ST N ode. j a v a ,

A ST . j a v a , IO C a c h e . j a v a , etc. to the just-created goal.

4. Later, organize “buckets ” o f evidence by creating new questions / goals that group

together the gathered evidence.

e-g-

New Question: What modules make up the support functionality that is not directly

related to parsing?

Then group U t i l . j a v a and IO C a c h e . j a v a under this question.

We believe Pollinator shows promise in initial uses of the tool to build and maintain

the tool itself. The primary author found himself preferring the tool to a vanilla Eclipse

software development environment as it allowed the higher-level structure of the program

to emerge without interfering with the usual workflow. A more thorough evaluation of the

tool follows in the next two chapters.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Preliminary Evaluation

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“Reverse engineering techniques should not be simply inserted into the soft­

ware process, but that they should be tightly integrated with the entire process...

reverse engineering tools should be supported by well-established means of

team communication” - van Deursen

6.1 Methodology

We present a preliminary evaluation of Pollinator by its feature set in fulfillment of the de­

rived tool requirements, support for cognitive aspects of program comprehension and col­

laboration in comparison to related tools, and its usability and viability in a small heuristic

evaluation and cognitive walkthrough of an experimental usage scenario.

6.2 Feature Set

Pollinator fully addresses a number of the requirements specified in Section 5.4 and all of

them to at least some degree. The requirements are listed again here for reference.

R l: A comprehension support tool should keep a connection between the goals

and hypotheses o f the developing cognitive model and the artifacts o f the men­

tal model [40] as this may improve the persistence o f the programmer’s work­

flow context.

Pollinator addresses this through the explicit hierarchical representation of goals, ques­

tions, answers, and evidence in the “Goal Explorer” view. The connection is maintained

through manipulation and exploration of this comprehension structure, and there is always

an explicit piece of data that represents some understanding or comprehension about the

software system. The persistence of knowledge is accomplished by storing documented

comprehension in a database. In Walenstein’s theory-directed cognitive support analysis,

the question-evidence hierarchy may be considered an external memory for storing a “plan”

[45], The model is connected to the source code through editor annotations, view decora­

tions, and the related files feature. The knowledge base provides an overview of all the doc­

umented comprehension for a software system, providing answers to questions that were

previously asked and perhaps reducing duplicative work effort.

R2: A comprehension support tool should be easily-adopted and unobtrusive,

so that it is not jarring for a programmer when switching between different

activities in the program comprehension process.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Requirement R2 is partially addressed by the integration of Pollinator into an exist­

ing development environment, Eclipse, and also through the reuse of views used in Java

software development. The tool adapts the existing Java development perspective, so the

amount of context switching should be decreased as compared to using an external tool or

a tool that requires the use of its own Eclipse perspective. The initial configuration of the

tool was more obtrusive than the current layout as there was a larger portion of the screen

devoted to the user awareness and project information. “Goal Explorer” is still an awkward

occupant of screen real-estate, however efforts to reduce its obtrusiveness have been partly

hampered by the restrictions on perspective layout in the Eclipse development environment
1

As Pollinator is implemented as an Eclipse plug-in, we may take advantage of the pre­

existing deployment functionalities available through Eclipse’s export features to reduce the

burden in adopting Pollinator as a tool. The server component may be easily deployed on a

single computer while the client plug-in is simply copied to the existing location of Eclipse

on the developer computers. Future work in this area may include making use of so-called

zero-configuration network protocols, such as A pple’s Bonjour2, so clients may automati­

cally discover a Pollinator server without having to manually enter this information.

R3: A comprehension support tool should provide a structure fo r the knowl­

edge gleaned from a comprehension process, so that it is accessible by a larger

audience, but also be flexible enough so that the programmer does not feel

restricted in the kinds o f knowledge he is able to represent.

The comprehension trees provide for a minimal amount of defined structure (hierarchi­

cal form, questions supported by answers and evidence) and are flexible enough to accom­

modate different styles of comprehension. These hierarchies are also accessible to a larger

audience through the idea of framing the data as a knowledge base of frequently asked

questions and answers, linked to the code base and other artifacts.

R4: A collaborative comprehension support tool should disperse knowledge

among the members o f the team in real-time to maximize sharing o f knowledge

and minimize duplication o f effort.

'Bug 151715 (Allow More Programmer Control over Perspective Layout):
https://bugs.eclipse.org/bugs/show_bug?id=151715

2http://developer.apple.com/networking/bonjour/

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

https://bugs.eclipse.org/bugs/show_bug?id=151715
http://developer.apple.com/networking/bonjour/

Pollinator disperses changes in program understanding to the entire team in real-time.

Duplication of effort is minimized through the sharing or publishing of comprehension

projects in the “Project Explorer” , the changes made to the comprehension model in indi­

vidual projects in “Goal Explorer”, and the “global” sharing of comprehension goals and

questions through the “Knowledge Base” view.

The understandings collected are persisted in a database to be accessed at any future

point in time, in addition to being immediately persisted to every client of the Pollinator

system. The understandings are also connected to the artifacts according to available ver­

sioning information, so that the relevance of the documentation is preserved. In this way

knowledge is persisted over time and space.

R5: A collaborative comprehension support tool should provide facilities for

awareness o f others working on the same or similar program comprehension

tasks and also allow those users to easily communicate with each other through

real-time asynchronous methods if they are not co-located.

Pollinator implements passive awareness of other users by showing their connected

state, the files and source-level structures being viewed, and last observed activity. The

banner view provides at-a-glance information on who else is connected to the Pollinator

system. Through tooltips, the developer may also see what project the team member is

working on, their activity status, and which file they may have open. File use information is

also shown by the decorating of various information views in Eclipse, such as the package

explorer and members views with text denoting what other members are viewing. Develop­

ers are also aware of the work of others through the shared listing of goal/question authors

and participants in the knowledge base and goal explorer views.

Passive awareness is also provided through the real-time population of the various com ­

prehension views initiated by events received from other users and the Pollinator server, as

described for requirement R4.

Active awareness and communication is facilitated in Pollinator by real-time asyn­

chronous single and group user chats (i.e. instant messaging) which may be initiated either

through explicit member-to-member contact or through a team m ember’s association to a

particular system artifact, such as a viewed source code file. The chats may be supple­

mented by regular face-to-face meetings and email if necessary.

The list of requirements for collaboration in software maintenance tasks described in

Chapter 3 can also be used as a metric against which to compare Pollinator:

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Maintain a dialog with team members

This is accomplished through the mechanisms of passive and active awareness of Pol­

linator. Team member dialog may be explicit, through group user instant messaging,

or implicit through the passive awareness of activities of team members.

2. Allow the team to simultaneously work on a single task

Parallel work is possible, and in fact encouraged by the tool by emphasizing the

sharing of knowledge and allowing users to work on program comprehension projects

simultaneously.

3. Send messages/e-mail to team members

Again, active communication in the tool is facilitated through instant messaging. In­

tegrating e-mail into the tool may be considered future work, perhaps through making

use of the m a i l t o : protocol so that a developer’s preferred email client is actually

used.

4. Concurrent use o f dictionary and diagrams

In order to apply this requirement to Pollinator, we may consider a dictionary to be

the “Knowledge Base” of our tool. The concurrent manipulation of this dictionary is

indeed possible through the creation, deletion, and modification of goals and ques­

tions.

5. Group interaction support (e.g. brainstorming)

Collective communication is possible through the group chat mechanism, facilitating

textual brainstorming.

6. Attach electronic notes to objects

In the case of Pollinator, electronic notes may be attached to objects in the form of

annotating source code and other file artifacts. This links the artifacts as pieces of

evidence to program comprehension models.

7. Anonymous feedback or input

This requirement is not considered for Pollinator, as it may not be applicable.

8. Notify engineers if a design change affects their work

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As Pollinator is meant primarily as a tool for documenting program comprehension,

design change notification would probably take the form of redocumenting the com­

prehension and dispersing that changed information to the rest of the team.

9. Build a catalog o f macros accessible by the team

This requirement is not considered for Pollinator, as it may not be applicable.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Pollinator FEAT/ConcernMapper JASPER Mylar JAZZ

Focus/Target

Documenting program
comprehension in
collaborative environ­
ments

Abstract low-level
source code elements
into functional units

Abstract artifacts of
software system into
task contexts, reduce
redundant navigation

Focus the current task
context through filter­
ing, reduce cognitive
work load

Collaborative software
development environ­
ment

Cognitive
Support

Question-evidence
hierarchy knowl­
edge representation,
maintain connection
between mental model
and source code.

Use of concerns as
abstractions of software,
grouping functionality
spread over the system

Similar to idea of
concerns, except use
idea o f working sets
of artifacts and show
relevant views to cre­
ate task context

Filtered task context by
automatically analyz­
ing artifact degrees of
interest and only show­
ing relevant objects to
the user

Collaboration aware­
ness, supplement the
agile development
process

Collaboration
Support

Passive and active
team awareness

Save and loading of con­
cern files

Working sets may be
archived in version
control

Sharing and syn­
chronization of tasks
through Bugzilla
integration

Passive peripheral and
active team awareness,
multiple teams, screen
sharing

Obtrusiveness
Relative To
Pollinator

Medium High High Low (automation) M edium

Table 6.1: Comparative summary of Pollinator and related tools

6.3 Tool Comparison

While the related work chapter of this thesis contains brief summaries of the related tools

and a few minor critiques, this section takes a more detailed view of Pollinator compared

to the related work, in light of the in-depth discussion of its implementation in the previous

chapter.

Table 6.1 shows a comparative summary of four related tools and Pollinator. After look­

ing at the features and focus of related work, we found that Pollinator is the only tool to em ­

phasize both cognitive and collaborative support in its capabilities. FEAT/ConcernMapper,

JASPER, and M ylar are primarily concerned with the cognitive support of tasks related

to program comprehension. JAZZ is a more general framework that focuses on provid­

ing general collaborative abilities, but does not design for anything specifically related to

cognitively supporting the documentation of program comprehension.

When looking at the capabilities of the primarily program comprehension-related cog­

nitive support tools (FEAT, ConcemMapper, JASPER, and Mylar) we found both areas of

strength and weakness in relation to our tool. In FEAT/ConcernMapper, its strength is on

emphasizing the abstraction of scattered source elements into more meaningful represen­

tations as software concerns. The obtrusiveness of tool, however, seems high compared

to Pollinator as it tends to require several views to be opened at once, obscuring much of

the normal developer workflow, whereas Pollinator tries to preserve as much of the typical

development perspective as possible. JASPER has both similar strengths and weaknesses.

Rather than representing the software concerns in a graph format, JASPER groups together

“working sets” of source code, essentially snippets of code that taken together represent

some abstract functionality. It also, however, relies on the use of an obtrusive interface that

obscures the normal development views and perhaps requires a fundamental change in the

way the development process works. O f these tools, Mylar seems the most unobtrusive tool

perhaps because its focus is on reducing the cognitive workload by filtering the software

system and not abstracting it as is the case for Pollinator and the other related work. M y­

lar also excels in its integration of a learning system that constructs its filtering schema by

observing the concrete actions and behaviors of the user, thereby reducing the amount of

proactive effort the user must put in to take advantage of the tool.

The collaboration aspects of Pollinator may only fairly be compared against those of

a tool designed with this in mind. It does not appear that any of the cognitive support

tools discussed above focus on collaboration and team awareness. For example, one of

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the primary concerns of Pollinator is the sharing of knowledge amongst the members of a

team easily and immediately. Of the tools that do permit the persistence of knowledge, the

mechanism relies on the manual saving and restoration of files containing the data, with no

evident means to communicate the data to others from within the tool itself. JAZZ, how­

ever, is a development environment that is especially concerned with supporting collabora­

tion awareness to support the agile software development process. Therefore, its cognitive

support focus is not on reducing efforts related to program comprehension, but rather on

strengthening the collaborative ties between members of a team and other stakeholders in

the entire engineering process. In this way, it features a rich set of collaborative features

including not only passive and active peripheral team awareness, but also support for m ulti­

ple teams, screen sharing, discussion boards, team event logs and other management-related

tools. In comparison, Pollinator’s collaborative features assume there is already an adequate

management structure in place, and focuses on providing team support for the process of

developing and sharing program comprehension knowledge and documentation.

Pollinator’s general weakness amongst the tools, is currently its obtrusiveness and de­

gree of integration with Eclipse. The obtrusiveness stems from the necessity of the user

to manually create the knowledge representation structure, whereas Mylar and to some de­

gree JASPER, take into consideration how tool usage might be made less intrusive through

automation or novel interaction techniques, such as mouse gestures. While we believe Pol­

linator provides a moderate degree of seamless integration with Eclipse, its client-server

nature means that there is a disconnect between starting up Eclipse and connecting to the

program comprehension server. This is alleviated somewhat through the provision of auto­

login functionality that remembers your state and project from the last session. A tool like

Mylar, which is focused on providing a context for task development, actually modifies

more of Eclipse to suit its purpose, such as altering view contents and relating them to the

tasks more seamlessly.

6.4 Heuristic Evaluation of Usability

Nielsen suggests a heuristic evaluation of user interfaces to judge usability [23], A user

interface is evaluated by a set of guidelines or “rules of thumb” that are non-specific, and

therefore heuristic in nature. Nielsen recommends three to five evaluators at the most, how­

ever we conduct the evaluation using only one evaluator due to time constraints. Each

evaluator goes through the interface at least twice, inspecting various “dialogue elements”

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and compares them with a list of recognized usability principles (the heuristics). The heuris­

tics are general rules that should describe common properties of usable interfaces. In the

general case, an evaluator may also consider any other additional principle of usability that

they see fit to apply to the interface or any specific dialogue element.

The main difference between heuristic evaluation and traditional user testing is that in

heuristic evaluation, the onus for analyzing the user interface is on the evaluator, whereas

in traditional user testing the evaluator’s actions are interpreted by an observer or experi­

menter, so that they may be related to possible usability issues in the user interface.

Nielsen has developed a list of ten usability heuristics that can be used to evaluate user

interface design [24J. The list was originally created in 1990 and has been refined in the

years since. We use Nielsen’s heuristics (shown below in italics) to conduct a small-scale

heuristic evaluation of Pollinator’s user interface.

• Visibility o f system status

The system should always keep users informed about what is going on, through ap­

propriate feedback within reasonable time.

Through the use of the Pollinator status bar at the top of the perspective

as well as the decorators and annotations present throughout the interface,

the plug-in keeps the user informed about the current state of the team and

documented comprehension. Feedback is given within reasonable time

due to the instantaneous nature of the peripheral awareness and knowledge

propagation mechanisms.

• Match between system and the real world

The system should speak the users’ language, with words, phrases and concepts fa ­

miliar to the user, rather than system-oriented terms. Follow real-world conventions,

making information appear in a natural and logical order.

The nomenclature of the documented knowledge should be familiar to al­

most anybody, due to the w ords’ usage being commonplace in everyday

English. For example, the words “question” and “evidence” have general

meanings that can be applied in many situations, and in the case of pro­

gram comprehension their meaning should be easily grasped. However,

some may be confused with the idea of “evidence” , because there is no

explicit separation between evidence and a question’s answer.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• User control and freedom

Users often choose system functions by mistake and will need a clearly marked

“emergency exit” to leave the unwanted state without having to go through an ex­

tended dialog. Support undo and redo.

The system does not explicitly support the undo/redo functionality since

the manipulation of the data structures automatically persists the changes

immediately. However, the operations are simple enough and there are

confirmation dialogs for destructive actions that there is sufficient user

freedom and control.

• Consistency and standards

Users should not have to wonder whether different words, situations, or actions mean

the same thing. Follow platform conventions.

The plug-in, by necessity, adheres to many Eclipse conventions of use and

therefore should not be confusing to the user.

• Error prevention

Even better than good error messages is a careful design which prevents a problem

from occurring in the first place. Either eliminate error-prone conditions or check for

them and present users with a confirmation option before they commit to the action.

There are several situations in which Pollinator prevents the user from

committing an invalid action (i.e. adding an annotation to a file that has

not been updated from CVS) or at least warns that the action may have

certain negative consequences so that the user may decide the ultimate

course of action.

• Recognition rather than recall

Minimize the user’s memory load by making objects, actions, and options visible. The

user should not have to remember information from one part o f the dialog to another.

Instructions for use o f the system should be visible or easily retrievable whenever

appropriate.

The layout of the perspective is static, unless manually altered by the user,

and the tabbed nature of the auxiliary view folder allows for fast switching

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

between the different views without losing overall context. The peripheral

awareness view is always visible to the user.

• Flexibility and efficiency o f use

Accelerators — unseen by the novice user — may often speed up the interaction for

the expert user such that the system can cater to both inexperienced and experienced

users. Allow users to tailor frequent actions.

The use of accelerators is very sparse, so this may be a deficiency of the

system. However, there are accelerators for perceived common actions

such as creating a goal and adding a file as evidence.

• Aesthetic and minimalist design

Dialogs should not contain information which is irrelevant or rarely needed. Every

extra unit o f information in a dialog competes with the relevant units o f information

and diminishes their relative visibility.

The dialogs only contain enough material to complete the task for which

they were designed.

• Help users recognize, diagnose, and recover from errors

Error messages should be expressed in plain language (no codes), precisely indicate

the problem, and constructively suggest a solution.

If errors do arise, they are presented in plain English and where possible,

a workaround or reason for the error is also displayed.

• Help and documentation

Even though it is better if the system can be used without documentation, it may be

necessary to provide help and documentation. Any such information should be easy

to search, focused on the user’s task, list concrete steps to be carried out, and not be

too large.

There is no online help system or documentation available for the Pollina­

tor system.

6.5 Cognitive Walkthrough of Usability

Walkthroughs are an alternative to heuristic evaluations for predicting users’ problems with­

out doing user testing [281. The basic idea is to walk through performing a task with the

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tested system, noting problematic usability features at each step.

In particular, a cognitive walkthrough is meant to simulate a user’s problem solving

process at each step in the dialog of human-computer interaction [25 J. The test is whether

or not a user’s goals and memory for actions can be assumed to lead to a next correct action.

The steps of cognitive walkthrough as illustrated by Preece, are as follows:

1. Identify and document characteristics of typical users, and develop sample tasks fo­

cusing on aspects of design to be evaluated.

2. The designer and one or more expert evaluators come together to do analysis.

3. Evaluators walk through action sequences for each task, placing them within context

of a typical scenario, while trying to answer the following questions:

• Will the correct action be sufficiently evident to user?

• Will the user notice that the correct action is available?

• Will the user associate and interpret the response from an action correctly?

Basically, will users know what to do, see how to do it, and understand from feedback

whether the action taken was correct or not.

4. A record is compiled as the walkthrough is being done, including critical information

in which:

• assumptions about what would cause problems and why are recorded, including

explaining why users would face difficulties.

• notes about side issues and design changes are made.

• a summary of results is compiled.

5. The design is then revised to fix problems presented.

Some important points to keep in mind before, during, and after a cognitive walkthrough

include keeping account of what does and does not work, using a standardized feedback

form that directs the evaluators to answer the above three questions at each step and record

details outlined in the first four points in addition to the date of the evaluation, documenting

details of the software version and the evaluators’ names, and documenting the severity of

the problems.

The strengths of a cognitive walkthrough are that it focuses on users’ problems in detail,

but does not require the presence of real users nor a working prototype. However, these

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ttribu te Value
Language
Version
Lines of Code
Number of Classes
Number of Interfaces
Number of Packages
Number of Developers
Age of Project

Java
2.5.0-CVSBeta

258,998 a
1843
664
373

31(13 active)^
3+ years (June 2003)“

“A s measured by Metrics: http://metrics.sourceforge.net/
* Azureus Ohloh Metrics Report: http://www.ohloh.net/projects/84
“Azureus Wikipedia entry: http://en.wikipedia.org/wiki/Azureus

Table 6.2: Open-source project Azureus at a glance

walkthroughs may be very time-consuming and laborious while their narrow focus may be

useful for certain types of systems but not others.

A small experimental test to demonstrate the use of Pollinator and provide an initial

evaluation of its abilities was undertaken. The purpose of the study was to take an existing

project fitting the profile of a large and complex software system that has had developer

turnover over a period measurable in years. Azureus3, an open source BitTorrent4 peer-to-

peer file distribution client/server written in Java, was chosen as the subject system.

Azureus is well-suited to be the subject of a case study for Pollinator. Its characteristics

fit the profile of the type of a large software system that may require cognitive support in

documenting program comprehension. As can be seen from Table 6.2 the codebase is large

enough to qualify as an example of PitL (programming in the large) according to Holt, as

the number of lines of code exceeds 250,000 [11]. Furthermore, according to ohloh.net, the

Azureus source code has a low number of comments relative to other Java projects 5. This

indicates that there may be ample opportunity for documentation to support comprehension

of the source code due to the current lack of inline commenting on such a complicated

project, assuming there is also little external documentation on Azureus. In terms of team

members, ohloh.net also states that while there have been 31 developers over the project’s

lifetime only 13 are currently active, suggesting developer turnover that may have led to a

loss of team knowledge.

For the study, we undertook a task that might be done as part of software maintenance,

a small extension to the existing application functionality. The knowledge we had prior

3http://azureus. sourceforge .net/
4http://en. wiki pedia.org/wiki/BitTorrent
5Ohloh Azureus Metrics: http://www.ohloh.net/projects/84

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://metrics.sourceforge.net/
http://www.ohloh.net/projects/84
http://en.wikipedia.org/wiki/Azureus
http://azureus
http://en
http://www.ohloh.net/projects/84

to beginning the task was strictly the experience we obtained from regular use of Azureus

as an application; the code base and general software architecture was unfamiliar to us.

Therefore, this could be classified as a scenario where there was domain knowledge, but

very little to no code knowledge.

The task was to extend Azureus with a function to restart torrent downloads by an

action through the context menu of a selected torrent. Currently, there are separate stop

and queue/force start functions, but no single restart function. During the task, we used

Pollinator to document the comprehension gained along the way.

Since the situation was one of no code knowledge and some domain knowledge, the

comprehension process followed could best be described as mainly bottom-up in nature.

However, since there is some domain knowledge of the application and the general archi­

tecture of Java applications, the initial goal was not purely exploratory.

P a c k ag e Explore r x Navigator!

> 03 org

>

>
>
>
t>
>
t>

t>
t>
>
>

>
>

t>
t> 03 ° rg

!> 03°rg
> 01 org

> {R org

> 03 org

> J f to rg
N til nrn

Jorg

Jo rg

| org

| org

I org

| org

3 org

| org

| org

| o rg

I o rg

Jorg

Jorg

Jorg

,gudy.azureus2 .ui. swing

.gudy.azureus2 .ui.swt [Users: PStudyl

.gudy .azureus2 ,ui .swt .animations

.gudy.azureus2.ui.svvt.animations.shell

.gudy.azureus2.ui.sw t,associations

.gudy .azureus 2 .ui.swt.auth

.gudy .azureus 2 .ui.swt. com ponents

.gudy .azureus 2 .ui.swt .com ponent s .graphics

.gudy.azureus2 .ui.swt.com ponents .images

.gudy.azureus 2 .ui.sw t.com ponents .sheIt

,gudy.azureus2 .ui.swt .config

.gudy .azureus 2 .ui .swt .con fig .generic

,gudy.azureus2 .ui.swt .con fig.plugins

gudy ,azureus2 .ui.swt.config.w izard

.gudy .azureus2 .ui.sw t.debug

.gudy.azureus2.ui.5w t.donations

.gudy .azureus2 .u i.sw t.exportto rren t.w izard

,gudy,azureus2 .ui.swt .help

,gudy .azureus2,ui.sw t .im porttorrent.w izard

gudy ,azureus2 .ui.swt .ipchecker

gudy ,azureus2 .ui.swt .mainwindow
n n H i r t » » i r / s i t r ' I lat*1 m n l / o f n r r n n t

Figure 6.1: A portion of the many Java packages in the Azureus project

Here is an outline of the session, with cognitive walkthrough questions interspersed as

questions labeled Q and answers in decreasing order of likelihood labeled Ax where x - 1,

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2, 3, ...:

1. With the Azureus source code checked out of the project’s CVS repository into an

Eclipse workspace, open the Pollinator perspective and connect to the server.

Q: Will users know what to do?

A l : Yes - they know in Eclipse that there is a way of opening different perspectives

to activate relevant views. They also know that the functionality of Pollinator is not

activated if not connected to a server since the views and buttons are disabled and

messages of “Not connected” and “OFFLINE” are displayed in the banner view.

A2: Yes - the user may already have the Pollinator perspective open and be config­

ured to automatically connect to the server.

A3: No - the user may not be aware that connecting to the server is necessary for

using Pollinator.

Q: Will users see how to do it?

A 1: Yes - the only active button will be the one to connect to the server and there is

also a tooltip to explain each button’s functionality.

Q: Will users understand from feedback whether the action was correct or not?

A l: Yes - once the connect button is pressed, the user will be either prompted to

enter connection information or will automatically be connected to the server using

previously-saved or pre-set settings thereby causing the Pollinator views to become

active and populated. The banner view will change to show a status of “ONLINE”

and also display any other users on the system.

2. Create a new program understanding project: “Azureus torrent menu action addi­

tion”

Q: Will users know what to do?

A l: Yes - the user will be unable to use the Goal Explorer view until creating a

project as the message “No project open.” is displayed, which should prompt them

to create or open a project.

Q: Will users see how to do it?

A l: Yes - the banner view contains “global” Pollinator actions that are always in

view of the user, including the Project Explorer button that allows users to create or

open projects.

A2: No - since the Goal Explorer shows the message “No project open.” the user

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

may expect the ability to create or open a project from within that particular view and

not through the route of Project Explorer. The message could be augmented with an

instruction like “Open the Project Explorer to create or open a project.” .

Q: Will users understand from feedback whether the action was correct or not?

A l : Yes - once inside the Project Explorer, the creation or opening of a project results

in that project becoming shown and focused in the Goal Explorer view.

3. Create primary question: “Where are the torrent menu actions declared and de­

fined? ”

Q: Will users know what to do?

A l: Yes - the Goal Explorer remains empty if there is a project with no goals and a

project with goals will not progress if no new goals are added.

Q: Will users see how to do it?

A l: Yes - the action to create a new goal is made obvious through the use of an

“in-place” cue for a user to click in the area where a goal should appear with the text

“Click to create new goal”. There is also a toolbar button that can be used to create a

new goal, with a fairly intuitive icon and tooltip text.

Q: Will users understand from feedback whether the action was correct or not?

A l : Yes - upon clicking the cue or the button, the user will be presented with a dialog

to create a new goal. This dialog is presented in a format that should be familiar to

most users who have experience filling out computerized forms.

4. Gather evidence:

• In Eclipse’s Package Explorer browse through the packages looking for one

that might be a good candidate for containing user interface functionality (see

Figure 6.1).

• Look through the o r g . g u d y . a z u r e u s 2 . u i . s w t . m a in w in d o w p ack ag e

for candidate classes where the context menu actions might be declared.

• Decided that Ma in W in d o w . j a v a was probably a good place to start and

dragged the file into the primary question.

Q: Will users know what to do?

A l: No - it is not obvious that a user may drag and drop artifacts in the Eclipse

environment onto the comprehension trees of the Goal Explorer unless they

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

were trained in its use.

A2: Yes - the user may notice the tooltip while in the Goal Explorer that states

drag java artifacts here

Q: Will users see how to do it?

A l: Yes - if a user is familiar with drag and drop operations in software, they

will know how to do so in the Pollinator environment.

Q: Will users understand from feedback whether the action was correct or not?

A l: Yes - users will be presented with a dialog to aid in the addition of the

artifact as evidence to the comprehension tree and once completed, the evidence

will appear under the goal that the user dropped the artifact onto.

A2: No - when users drop unsupported or invalid types of artifacts or elements

on the comprehension tree, there is no visible feedback explicitly stating why

the element was not added and the user may be misled into thinking something

was changed.

• Upon looking inside the class we saw several instance variables of type T ab

declared that seemed to correspond to the different tab views of Azureus, in­

cluding the one containing our sought-after context menu, the torrent download

screen which was named m y t o r r e n t s . We attached the line of code where

this variable was declared to the primary question and went looking for where

this instance variable was initialized or created using Eclipse’s variable high­

lighting functionality. Figure 6.2 shows the states of the Goal Explorer and

source editor up to this point.

Q: Will users know what to do?

A l : Yes - since the user knows that they want to associate this line of code with

their mental model, they must “bookmark” it somehow.

Q: Will users see how to do it?

A l: Yes - in Eclipse, bookmarks and other visual markers are managed on the

left vertical ruler column, so the user may intuitively decide to try opening the

context menu on the ruler beside the relevant line of code. They will then see

a menu item named “Add Evidence Marker...” . Alternatively, the user could

open the context menu directly on the line of code and see a menu item named

“Attach as Evidence to Goal...” . Both actions are functionally identical, but are

named according to the context in which they are run.

A2: No - a user may not think of opening a context menu to attach a particular

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Goal Knowledge Base j Goa) Explorer £3 - User Chat j Related Files: Problems; Console Search j Metncs-MaviWmdow & X | Refresh

Current Project. Azuneus PoSnator Study

•j Coals | T ype;1 Project 1 Status j Author | Participants 1 Rating I Artifact (Revision}

I f where are the torrent context menu actions declared and defined? m Progress PStudyl

k s s s b b k ^ ^ H
2] Main Window .java File azureus Unverified PStudyl (rt/a) MainWindow .java (1.168)

i* :
(a) Goal Explorer

dl N atfWPDevke Java i MyTorrerttsViewjava

p riv a te AEHonitor downloadViews_mon

p riv a te Tab m y to rren ts ;
p riv a te Tab m y_tracker_ tab ;
p riv a te Tab my_shares_tab;
p riv a te Tab s ta ts _ ta b ;
p riv a te Tab conso le ;

= new AEMonitorC "I

p riv a te Tab
p riv a te ConfigView

co n fig ;
config_view ;

p ro tec ted AEHonitor this_mon = new AEHonitor{ "Hainl|

p riv a te UISWTInstancelmpl uiSWTInstancelrapl = n u ll;

p r iv a te A rray L is t e v en ts ;

p riv a te UEFunctionsSWT u iF u n c tio n s ;

p riv a te boolean blconBarEnabled = fa ls e ;

p r iv a te boolean bShowHainWindow;

public
HainWindow(

AzureusCore
I n i t ia l i z er

_azureus_core,
. in i t i a l i z e r ,

(b) Source editor with line annotation and overview ruler marker.

Figure 6.2: Goal Explorer and source editor after adding m y t o r r e n t s evidence

line of code to the comprehension tree.

Q: Will users understand from feedback whether the action was correct or not?

A l: Yes - once the correct action is chosen, the user is presented with a dialog

to choose the particular goal they wish to attach the evidence onto and, once

completed, the evidence appears in the comprehension tree. If the action was

not correct, the evidence would not appear in the desired location.

• About halfway through the M a in W in d o w .ja v a file we came to where the

m y t o r r e n t s variable was initialized, in a method called s h o w M y T o r r e n ts ().

We discovered that the torrent tab was populated with another view type named

M y T o r r e n ts S u p e r V ie w . So, before delving into that class definition, we

attached M y T o r r e n t s S u p e r V ie w to the primary question, as a way of leav-

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ing a trail or bookmark of where we had consciously chosen to explore as in the

other evidence attaching events.

The same usability issues o f attaching evidence arise here as they did in the

previous actions o f attaching evidence, either through drag-and-drop o f a Java

element or contextual menu action.

• Once inside M y T o r r e n ts S u p e r V ie w we found it was again a composite

class made up of two different views of type M y T o rr en tsV iew .

• After going to the definition of MyTorrentsView we attached it as evidence

to the primary question. MyTorrentsView is a large class of 2992 lines of

code, so we used the Eclipse M embers view to browse the instance variables

and methods searching for something of relevance. After a minute of browsing,

we came upon a method named f illTorrentMenuf) and attached it as

evidence.

The same usability issues o f attaching evidence arise here as they did in the

previous actions o f attaching evidence, either through drag-and-drop o f a Java

element or contextual menu action.

• Within f i l l T o r r e n t M e n u () we found the definition of the context menu

actions we were interested in extending. At this point we can say the question

has been resolved and change the status of the project’s goals and evidence to

completed and verified to indicate that they may be useful for others to look at.

Figure 6.3 shows the final state of the Goal Explorer.

Q: Will users know what to do?

A l: Yes - on completing a program comprehension task the user may notice

that the status of the goals and evidence in the project need to be updated to a

more relevant value to indicate the progress made.

A2: No - the user may not notice or care to update the progress of the project

they are working on since this may not be a usual part of their work routine or

is viewed as an annoyance or waste of time.

Q: Will users see how to do it?

A l: No - there is no visible means of changing the status without opening

the context menu, such as a toolbar button or direct-click action on the status

column itself. This may be confusing to users who do not work with contextual

menus as the primary method of interaction with data objects.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Goal Knowledge Base'$& CoaJ Explorer 23 User Chat I Related ResJ Problems; Console| Search ; Metrics - MawWndowj /•S’’]

[Current Project: Azure us ppftnator Study_■ __________________________________ • - • • ___________
J Goals 1Type j ftaject j Status I Author j Participants | Rating I Artifact (Revision)

/S'1 K j Refresh Expand

f r W here are th e to r r e n t co n te x t m enu ac tio n s d e d a re d and d e fined?

a M Torren tM enuO

O M yT orren tsSuperV iew

a D efinition o f s t a r t / s t o p function in fiHTorrentMenuO

0 M yT orrentsV iew

0 SourceT ype:M yT orren tsV iew

[?} d tp b o a rd C o p y .ja v a

Fife azureus Unverified PStudyl (n/a)
File azureus Unverified PStudyl (n/a)
File azureus Unverified PStudyl (n/a)
FHe azureus Unverified PStudyl (n/a)
File azureus Unverified P5tudyl(n/a)
File azureus Unverified PStudyl (n/a)

hi Progress PStudyl
MyTorrentsView.java:630 (1.285)
MyTorrents5upefView,java:48 (1.43)
MyTorrentsView.java: 1757 (1.285)
MyTorrentsVtew.java:87 (1.285)
MyTorrentsView.java:630 (1.285)
QipboardCopy.java (1.2)

® MamWindow.java File azureus Unverified PStudyl (n/a)
1

Figure 6.3: The final state of the comprehension tree

A2: Yes - if the user is familiar with using context menus to manipulate data

objects such as table items, then it is fairly obvious how to change the status via

a context menu named “Mark status”.

Q: Will users understand from feedback whether the action was correct or not?

A l: Yes - the completion of the action gives feedback in two forms. The first

is the visible changing of the target object’s status in the Goal Explorer view.

In the case of changing a status from/to I n v a l i d / F a i l e d to/from any other

status type, the entire foreground colour of the row changes to further empha­

size whether or not the target object is relevant. The second form of feedback

is shown within the context menu for changing the object status, through an

indication of the current status using a checkmark.

5. With the question answered we could begin the effort to insert code and implement a

new action for restarting a torrent download.

The main point to take away from this small walkthrough is that the use of Pollina­

tor during a typical software maintenance task did not seem to disrupt or intrude upon the

program comprehension process in an overly obtrusive manner, while augmenting the doc­

umentation of the comprehension process by preserving it for others and maintaining the

connection between a mental model and the software system. By performing a cognitive

walkthrough, however, several minor to moderate issues of usability were brought to light

that could be addressed to improve the tool.

The cognitive walkthrough covered many scenarios of the tool’s usage except the col­

laboration features such as user chat, use of the banner view, the knowledge base and the

decoration of views with passive awareness information.

More generally, during the course of the task execution we formed impressions of using

Pollinator, both positive and negative.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Positives:

1. Integrates nicely with Eclipse’s built-in navigation capabilities

Code browsing is augmented through the use of Eclipse’s ability to find class def­

initions of the types referenced in the formed question hierarchies. This is not yet

integrated with Pollinator, so the user currently has to manually type the name of the

class or interface.

2. Subtle usage cues

To make the learning curve for using Pollinator as small as possible, the Pollinator

perspective provides a suggested layout for Java development that we found to be

most useful. Additionally, there are subtle cues to guide the user such as the extra tree

item in the “Goal Explorer” that has a faded colour with the text “Click to create new

goal” to make the action of creating goals embedded with the interface of viewing

and using them. Also, there are tooltips directly describing usage, such as for the

drag-and-drop method to gather evidence in the “Goal Explorer”.

Negatives:

1. Awkward transition from goal hierarchy to local artifacts

There should be a simpler way of navigating from the goal hierarchy to local copies

of artifacts / evidence. Currently, only remote versions of the files are considered.

2. Lack o f explicit online help or walkthrough o f using tool

An Eclipse cheatsheet or tutorial could be utilized to walk the user through first-time

use of the tool. Contextual help could also be provided.

3. Consistency in methods for using Pollinator

Drag and drop behavior is not an obvious mechanism, even with a tool tip, however

there are multiple ways of doing the same thing (i.e. creating a goal).

Some of the problems with the tool cannot currently be addressed due to limitations

in the Eclipse framework. As mentioned earlier, the obtrusiveness of the Goal Explorer

could perhaps be alleviated by a different perspective layout allowing for more flexibility

in sizing views and specifying hiding capabilities. The use of fixed views would solve a

problem with the resizing of other views interfering with the size of the banner view, either

making it too large or too small.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.6 Conclusions

Our hypothesis suggests that the comprehension/documenting work context of a developer

may be preserved through an explicit knowledge representation that maintains a connection

between the mental model of comprehension and the artifacts of the software system. We

believe that Pollinator preserves work context by making interruptions in thought and of

each working session largely irrelevant by integrating a documenting system inline with the

developer’s normal development environment. Its main advantage over traditional methods

seems to be the promotion of even the most basic documenting of program comprehension

activities. The knowledge representation format seems feasible in terms of flexibility and

understandability. Subsequent evaluation needs to be performed in order to assess other

aspects of the tool, such as collaboration, utility, and scalability (performance) as compared

empirically to situations with the usage of other similar tools and without the use of any

specialized tool at all.

In particular, a thorough test of the collaboration features of the tool could be most fairly

accomplished through an experimental scenario that closely approximates the conditions of

the observational case study of pair program comprehension. This would also consequently

serve as a validation measure of the model of program comprehension gleaned from the

analysis of the session data. Such an experiment might be designed such that two subjects

would be tasked to work together to understand a software system (e.g. a Perl interpreter).

Each subject would be assigned a workstation with the Pollinator tool and the Eclipse en­

vironment and be situated such that direct face-to-face or voice-to-voice communication

between the two is possible. The latter condition better replicates the original case study

parameters, but does not fully evaluate whether Pollinator is useful when the users are not

able to directly communicate with each other except through the tool. Therefore, a separate

experiment would need to be conducted with this condition altered accordingly. Ideally, the

subjects would also have the same level of computing science background and experience as

the participants in the original study. The roles of the subjects could also be pre-designated,

so that one subject is assigned to be a director or manager of activities, and the other a

technical or domain expert. The director may also serve as the documenter, largely making

use of the Goal Explorer view while the expert would be more involved in code browsing

activities and gathering evidence to be organized by the director.

Without the further evaluation of the collaborative aspects of the tool, our hypothesis

cannot be fully verified, but we believe it is possible with additional study and work.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Secondary Evaluation: Pollinator
User Study

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.1 Objective

In order to gain an understanding of how Pollinator might be used and evaluated by software

engineers, a small user study of the tool was conducted by observing pairs of participants

as they completed program comprehension tasks on a subject software system. We hypoth­

esize that the study will show Pollinator to be well-received by the participants as an aid to

document their comprehension tasks, but may be viewed as obtrusive for easily-completed

tasks. The preliminary evaluation in the previous chapter revealed some potential usability

problems that the users of this study may also encounter. The study should also provide

some comparative insight into how documentation of program comprehension is done with

and without a specialized tool for documenting program comprehension.

7.2 Design

A large amount of study material was produced for the conduct of the experiment. See

Appendix B for a complete reference on the materials used for the study (i.e. invitation

letter, consent form, handbook, task sheets, honorarium form, etc).

Potential study participants were invited to take part in the experiment by invitation

(see “Solicitation Letter” in Appendix B .l). The participants of the user study were made

up of graduate-level computing science students with experience using Java and the Eclipse

development environment.

A questionnaire was conducted before the study to document each participant’s general

profile of experience with Java and Eclipse. This information might then be used to recon­

cile any major discrepancies in the observed results of the study. See Appendix B.7 for the

questions asked in this questionnaire.

Consent for participation was obtained from participants before beginning their partic­

ipation in the study. The consent form is attached in Appendix B.2.

The software system used as the subject for the program comprehension tasks is an

online voting system written by a fellow graduate student as part of his M aster’s thesis

research into security for electronic voting systems. The system is designed as a web-based

application written in Java and JavaServer Pages (JSP) served by a database in the back-end.

The JSP files themselves are not shown to the participants to reduce the burden of learning

an additional technology. Instead, the Java-translated versions of the JSP files are used.

Three study instances were conducted: a pilot study, a control study, and an experimen­

tal study. The pilot and experimental study participants used Pollinator while the control

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

study was conducted without a specialized tool for documenting program comprehension.

The pilot study was undertaken to judge the soundness of the experimental design and

also improve upon the execution of the study in subsequent instances. The pilot study was

an instance of an experimental group that was observed documenting program comprehen­

sion using Pollinator.

The control study provides a baseline of data for comparison against the experimental

study. The participants were given the same program comprehension documentation tasks

as in the experimental study, however the participants were not trained or given access to the

Pollinator tool. The participants were instead asked to complete the tasks using a standard

Eclipse Java development environment and to document the task comprehension through

written form on the given task sheets.

The objective of the experimental study was to observe how participants use the tool

and to gauge the utility and usability of the tool based on feedback obtained at the end of

the session.

At the beginning of each instance of the study, participants were oriented on the nature

of the study such as its purpose, length, and assurances of rights and anonymity.

In the control study, the participants were given a brief overview of the Eclipse envi­

ronment, to ensure they were familiar with its basic operations such as file navigation and

code browsing. Next, the participants were shown how they might complete a program

comprehension task given to them, using a sample system. Once this was complete, the

participants were shown an overview of the online voting system. This overview consisted

of a listing of the main entities and their interactions, as well as several screenshots of the

web interface demonstrating how an administrator or voter would interact with the system.

We also briefed the participants on the general nature of the JSP-to-Java translation that the

JSP files in the system underwent, so that they would know they would not be looking at

any JSP files directly.

The experimental study structure followed the same general sequence as the control

study with the addition of a step to introduce the features and use of Pollinator as well as

changing the demonstration of completing a program comprehension documentation task

to use Pollinator instead of pen and paper.

Five program comprehension documentation tasks were given for each pair of partic­

ipants to complete. The program comprehension documentation tasks given for the pilot,

control, and experimental sessions are listed in Appendices B.4, B.5, and B.6 respectively.

After conducting the pilot session, several revisions were made to the tasks to make the

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

experimental results more useful and reduce redundancy of some of the workload when

conducting the control and experimental sessions. Also, some of the task wording was

changed to improve the meaning and clarity of the tasks. The only difference in the tasks

between the control and experimental groups was the tool for documentation of program

comprehension used by the participants.

After the conclusion of the study, the participants’ task documentation was compared to

reference task documentation produced through careful analysis of the online voting system

prior to the start of the study. Our reference analysis was completed with access to addi­

tional design documentation provided by the system’s author in order to verify correctness.

As mentioned above, several tasks were altered following the pilot session in order to

optimize the conduct of subsequent study sessions. In particular, the phrasing of task 1 was

altered to include a definition for business object. Task 2 was altered to clarify the intent

of its objective by specifying the level at which method invocations should be recorded.

Task 3 was altered to reduce the number of business objects for which the database access

implementation should be documented. It was found that this was a largely repetitive and

tedious process through which no additional value was gained in subjecting all of the busi­

ness objects to this treatment. Task 5 was altered to include more specific direction of the

task towards documenting all of the effects of the method l o a d A l l P o s t s () including

the internal call to f i n d P o s t ().

Upon completion of the tasks, participants of each study instance were asked to fill out

a post-study questionnaire to give their views on the comprehension tasks and the tool or

the method of documentation, depending on whether or not the participant was part of the

control or an experimental group. See Appendix B.8 for the pilot and experimental group

questionnaire and Appendix B.9 for the control group questionnaire.

A handbook for describing the proper conduct of instances of the user study was cre­

ated to ensure consistency between each instance of the study as well as to improve the

preparedness of the experimenters. Appendix B.3 shows the handbook used to conduct the

experiments.

7.3 Observations

7.3.1 Participant Profiles

The study participants are anonymously referred to in this thesis by a two character, al­

phanumeric string. The first character, a letter, designates the study instance the participant

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

took part in, one of “P” for pilot, “C” for control, and “E” for experimental. Within each

study instance each participant was given either the number “ 1” or “2” to differentiate be­

tween the participants making up each pair. The second character of the identifier string is

this number. The number was assigned randomly, and does not correspond to any identify­

ing or meaningful information concerning the participant.

Here is the information provided by the study participants in the pre-study questionnaire

that shows a simple profile of their experience with Java and Eclipse:

Participant Code Java Experience Java Knowledge Eclipse Experience
PI 1 to 2 years average occasional use
P2 3 to 4 years average occasional use

C l 3 to 4 years average occasional use
C2 5+ years average everyday use

E l 3 to 4 years average occasional use
E2 5+ years expert occasional use

Table 7.1: Participant profiles

In summary, all participants in the study had average to expert knowledge of Java and

all used Eclipse at least occasionally. This meant that the learning curve for the participants

was eliminated in terms of becoming familiar with the basics of either technology. There­

fore, the only variable difference between the experimental and control studies in terms of

learning experience was the training and use of Pollinator.

7.3.2 General Observations

Generally speaking, the participants of the experimental and pilot groups were quick to

learn the basics of using Pollinator and did not have trouble in understanding and applying

the concepts of goals and evidence.

In the pilot study, control of the computer mouse and keyboard alternated naturally be­

tween the two participants as they saw fit. Sometimes one person operated the mouse while

the other operated the computer. This seemed to coincide with their level of competence

and confidence with Java and Eclipse.

This contrasted with the control study where one of the participants was the sole pos­

sessor of computer control while the other participant was essentially the documenter. Both

participants were still involved in the comprehension process in between documentation ac­

tions, however the person without control of the computer was generally restricted to verbal

input only.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The experimental study again showed more of the balanced control sharing of the com ­

puter that was evidenced in the pilot study. However, when there was sole control by one

participant, there seemed to be more direct communication and discussion between the

participants on what actions to take next, guided by the structure of documenting compre­

hension using Pollinator.

In the case of the study instances where Pollinator was used, the participants took vir­

tually no written notes, even though paper and pen were available for this purpose. Instead,

the participants were able to use Pollinator for both drafting up their answers, by fram ­

ing their comprehension in terms of goals and evidence, and firming up their answers after

further investigation. In the control study, the participant who was not in control of the com ­

puter took notes in parallel with the actions done on the computer, however often the person

on the computer waited for the note taker to finish writing before being able to proceed. The

written notes were in addition to the final answers written down on the task sheets.

7.3.3 Study-specific Observations

In this section, an anecdotal summary of interesting events and patterns that occurred in the

sessions through the course of completing the comprehension tasks is documented . The

same participant code identifiers shown in Table 7.1 are used here.

Pilot

After observing the interaction and actions of the participants, it became apparent that

PI was more of an expert on the use of Eclipse, while P2 was more of an expert in the

domain of databases. As a result, P I was more involved in control of the computer due to

his familiarity with Eclipse, while P2 took a more directorial role in terms of framing the

higher-level context and concepts.

Some other general observations of the participants was their double-checking of each

other’s work to ensure that they both had the same understanding of a concept or fact. Once

given a task, the participants talked with each other about the meaning of the tasks given

and discussed which steps to take next in the documentation process.

No hand-written or electronic notes of any kind were made by the participants, even

though paper and pen was available for use. Documentation was completed exclusively

through Pollinator.

In conducting the pilot study, we were able to observe behavior and receive feedback

that allowed us to alter the program comprehension tasks and the environment of the study

to ensure a better experience for the participants and a more focused design to avoid redun-

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dant observations.

In particular, we learned that the third task, which was about documenting where the

database access was implemented for the business objects of the system, was very repetitive

and tedious for the participants because the procedure of looking up and documenting the

implementation was the same for each business object. From an experimental point of view,

this repetitiousness did not provide any further insight into the evaluation of the tool and

thus this task was changed to limit the number of business objects documented to three from

a maximum of six.

We also saw that one of the tasks was too vague in its wording and we did not get the

desired answer from the participants. The sixth task asked for the effects and post conditions

of the method l o a d A H P o s t s () , however it was assumed that the participants would

also document the behavior of methods called from l o a d A l l P o s t s (), in particular the

method f i n d P o s t (). This additional documenting need makes the task far less trivial

and gives us more information to work with, therefore the task was changed to specifically

state that f i n d P o s t () should also be documented.

As for the tool itself, we learned that a large usability problem with Pollinator was the

inability to edit previously created text evidence. This was deemed such an obvious and

severe bug as to impede the participant’s useful interaction with the tool, that it was fixed

for the version of Pollinatorused in the subsequent experimental study.

Upon completion of the pilot study, it became apparent that an easy way to look at the

comprehension documentation produced by different groups was needed. It looked to be

cumbersome to switch between different databases when wanting to compare the different

studies. Therefore, we decided to make an export function for the Goal Explorer so that its

contents (the documented comprehension tree) could be viewed outside of the tool and in a

plain text file.

Control

The control group, and especially the participant C2 took a far more top-down or

high-level approach to program comprehension than the other groups. For example, at

the beginning of the first task, C2 states that business objects can generally be found in

the middle layer of a three-tier system. The participants then proceeded to undertake

a general overview of the system’s architecture before looking more closely at the files

and implementations. This group’s top-down approach was also evident in the way in

which they completed the third task. Instead of going through the business class ob­

jects linearly looking through the code for database implementation, this group decided

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to instead go directly to the resource bundle file where the SQL queries were defined

(S Q L Q u e r ie s . p r o p e r t i e s) and use Eclipse’s search feature to lookup the implemen­

tation of each query. Therefore, the control group ended up making much more extensive

use of Eclipse’s search functionality, but took much longer to complete the third task than

the other two groups. This same technique was used in the fourth task, to look up the

location for the code implementing authorization for administrator access.

C2 was also interested in the higher-level aspects of the system, which was seen in his

asking for the business rule for the procedure of registering a new voter.

Some issues arose in this study instance whereby the participants were confused by a

task’s wording or concept used in the task. For example, in the first task, C2 asked what

the imperative “document” meant in the context of the task. He felt it was somewhat vague

and did not specifically say what needed to be written down. Also in the first task, the

participants did not understand the intent of the term business object, taking it to mean that

the objects should only be domain-specific in nature. This led them to exclude the P e r s o n

class from their answer, which was incorrect compared to the reference answer.

Experimental

Before starting the tasks, E2 gave a suggestion that there should be a note-taking area

or component of Pollinator. This suggestion was made while the experimenter was giving

an overview of the e-voting system. E2 took some notes on the paper provided during this

process, suggesting he would have used a computer-based tool to do so if it were available.

In the experimental group, we observed E l to control the computer most, if not all, of

the time.

Compared to the pilot study, the participants were much more critical of the code and

design of the subject system. While browsing through the code, the participants sometimes

made comments on the quality of the system ’s architecture and design. These comments

were not included in the documentation produced by the participants.

On observation of the participants’ use of the tool, we noted that a better visual cue

is needed when there is no project open, to suggest to the user that they need to open

the project explorer. The participants needed assistance in this step, as they assumed that a

Pollinator project would be created from the Eclipse workspace itself, like any other Eclipse

project. This potential problem was also mentioned in the cognitive walkthrough done in

Section 6.5

Several suggestions to improve Pollinator arose out of this study instance. E l suggested

that Pollinator should provide the full Java package “path” to named evidence entities when

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Task 1 Task 2 Task 3 Task 4 Task 5 Total
16 16 /3 12 12 /19

Pilot 6 6 3 2 2a 19
Control 5 6 2 2 2 17
Experimental 6 5 3 2 2 18

"This task was more vague in the pilot study and did not specify to document the effects o f f i n d P o s t ()

Table 7.2: Task scores by group

adding them in order to easily distinguish these entities from others with the same common

name. For example, there are multiple _ j s p S e r v i c e methods through all the . j s p files,

so Pollinator should provide the full path to these instances when adding them as evidence.

After the study, E2 suggested that a pre-defined question set would be beneficial, to

reduce the burden of creating goals. For example, a common question for any program

understanding project or task might be “What are the business objects?”. E l also suggested

the addition of domain-specific questions, if possible.

7.4 Analysis

In this section, we analyze the data obtained from the studies to gain an understanding of

how effective Pollinator is in aiding program comprehension documenting by comparing

the observations and results of the control to the experimental study. This comparison will

look at the correctness of documentation produced, the effort expended on each task and

overall, and the thoughts of the participants themselves as conveyed through the completion

of the post-study questionnaire.

7.4.1 Task Analysis

Appendix C contains the details of a descriptive comparison of the tactics and methods

employed by the pairs in the course of completing the given program comprehension tasks.

Each task is looked at individually, with the documented comprehension produced by each

pair shown along with the correct answer.

S u m m a r y o f ta sk an a lysis

The documentation produced by the three groups for each task was scored and the total

tabulated in table 7.2. There is very little variation on the scores obtained by each of the

groups. In fact all groups are within two points of each other within a total of 19. It should

be noted, though, that the control group fared the poorest by failing to document one of

the business objects for task 1 and one of the database implementation locations for task

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Group Task 1 Task 2 Task 3 Task 4 Task 5 Total
Pilot 6:05 10:45 22:21 3:57 8:02 51:10
Control 13:45 15:35 20:00 3:50 5:30 59:40
Experimental 13:05 13:10 15:10 7:45 23:40 1:13:00"

“The experimental group exceeded the allotted time of one hour for task completion. See threats to validity
below.

Table 7.3: Time spent for each task

3. These errors may be attributed to the misinterpretation of what was intended by the

term “business object” and the methodology the control group used to look up the database

implementations.

Table 7.3 shows the amount of time spent per task by each study group. The data

suggests that groups working with Pollinator fared better than the control group on tasks 1,

2, and 3. The control group, on the other hand, completed tasks 4 and 5 in less time than

both the pilot and experimental groups.

An analysis of the nature of the different tasks may give insight into the discrepancies

in time allocation. Firstly, tasks 1 and 3 require the participants to browse through almost

all of the code base in order to complete the documentation. This contrasts with tasks 4 and

5 which involve very localized pieces of code that are contained in one file. Task 2 falls

somewhere in between, as it specifies a particular file to look at but the method calls being

documented are implemented elsewhere in the system. This may indicate that Pollinator is

helpful in tasks where the mental context is large and broadly-based throughout a software

system. The on-screen presence of the task in a structured, hierarchical form may reduce

the occurrences of context losses and the need to reorient. However, it appears that when the

subject matter of a task is very focused on a particular aspect or file of a software system,

Pollinator may actually become a hindrance to the user. For example, the time it takes to

form a task into a goal or explicit question may instead be used to actually search out the

answer the question. This related “overhead” then becomes much more noticeable in tasks

that take relatively little time to complete.

There are some data points in table 7.3 that bear some explanation as they appear to

be outliers. For instance, the pilot group seems to take an extraordinary amount of time to

complete task 3, even compared to the control group. However, as mentioned earlier, task

3 in its original pilot form asked for all six business objects to be documented for database

access instead of the three requested in the control and experimental groups. Also of note is

the experimental group’s large time to complete task 5. This may be due to the fact that the

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PI P2 C l C2 E l E2
Task Difficulty average easy average average easy easy
Pollinator Usability very good good n/a n/a good good

Table 7.4: Participant feedback

experimental pair seemed to read too much into the question and spent a significant amount

of time examining and discussing the code when it appeared to the experimenter that they

already had enough information early on in the task to complete it.

7.4.2 Participant Feedback

Based on questionnaires given to the study participants at the conclusion of each session,

we received valuable feedback regarding Pollinator, the conduct of the experiment, and

suggestions for how documenting program comprehension could be improved through the

use of a tool. The participants’ detailed responses to the questionnaire are contained in

Appendix D.

Questionnaire Summary

Pollinator seemed to be useful as an aid by alleviating the overall perceived difficulty of

the program comprehension tasks. Based on the feedback received in the post-study ques­

tionnaire, both participants in the control group rated the task difficulty as “average”, while

three of the four participants in the pilot and experimental groups working with Pollinator

regarded the tasks as “easy” and the remaining experimental participant rated the tasks as

“average”. This suggests that Pollinator is at least better than having no tool in making the

tasks seem easier to complete.

Several reasons were given as to why Pollinator was helpful in documenting program

comprehension, mostly centered around its structured goal and evidence framework. The

participants thought that creating goals and adding evidence made the process more or­

ganized, with one participant describing being able to attack the task in a “divide-and-

conquer” fashion with the tool. Another participant saw the potential for Pollinator to be

used on a large project where many programmers or maintainers are employed, if used in a

consistent manner.

The participants also found Pollinator to be fairly usable with three of the four partici­

pants rating the tool’s usability as “good” and one giving the tool a rating of “very good”.

Criticisms about its usability included its lack of ability to directly open the workspace

source code from Goal Explorer, the difficulty of switching between the perspectives and

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

views, and the lack of multiple-select actions such as marking more than one piece of evi­

dence as verified at once.

All of the participants found Pollinator to be helpful in coordinating communication

between themselves and their partner in the study. Three of the comments noted that the

goals and evidence provided a common platform on which to base discussions upon for

the task at hand. This reduces incidences in which the participant’s cognitive models for

comprehension conflicts with each other, allowing for more time spent on discussing the

real issue at hand rather than forming mental context.

Participants liked Pollinator's tight integration with Eclipse, particularly the ability to

drag-and-drop entities between Eclipse and the Pollinator views. Allowing users to drag

code elements contributed greatly to the perceived ease of use. The participants again

emphasized their appreciation for Pollinator’s structured knowledge representation as a

strength in allowing mental context and knowledge to be quickly assimilated in the future

as necessary.

When asked if they would use Pollinator in their own work and/or research, participants

were very receptive. One suggested he would use it on a big multi-developer project, while

another said that Pollinator would be useful in his research that uses a public parser, helping

to reduce the effort needed in program comprehension when modifications to the parser are

made. One of the participants would use Pollinator if it was released as open source.

Three of the participants submitted additional feedback and suggestions beyond the

specified questions of the questionnaire. Two higher-level suggestions were made concern­

ing Pollinator’s applicability to more general projects and research. One was that Pollina­

tor should be language-independent or support different languages. The other was that it

should be more formalized, allowing for formal reasoning into features through more con­

strained pieces of evidence. The other suggestions were in regards to Pollinator’s interface

and feature set. One of the participants thought that the goal creation dialog should be made

consistent with the Goal Explorer view in terms of the hierarchical display of the goals. An­

other desired the ability to attach more complex evidence explanations that contain pictures

or UML diagrams.

The control group feedback allows us to compare their impressions of the program

comprehension tasks with those of the experimental groups and make some judgments on

the influence of Pollinator on those impressions. It was already mentioned that the control

group generally found the tasks to be slightly more difficult than the experimental group.

The control group was split in their opinion on whether or not this “manual” approach was

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

useful and reliable. The dissenter noted that the method may be unreliable because the

underlying business logic of the system is not well understood, but this is a common issue

for both groups.

As for the communication between the partners, again the control group was split as to

how their method of program comprehension affected the coordination of discussion. The

partner writing down the documentation thought the communication was quite good, while

the other complained of having to wait for the other partner to finish writing.

Both control group participants thought that a specialized tool could help in completing

the tasks. The partner writing down the documentation thought that a tool containing the

logic behind the system design would help, while the non-writer believed that better tool

support for documentation would be nice. Taken together with the previous feedback on

partner communication, it would seem that the person who is not writing down the infor­

mation sees more benefit in a tool that supports alternative documentation methods than the

writing partner.

Both also thought that a specialized tool could help coordinate communication between

the partners, with one of the participants qualifying his statement by saying that it would

only be useful if the people were not on the same computer. The other thought that a tool

could help in aligning the team m ate’s ideas of the comprehension with each other, rectifying

disagreements in opinions.

7.5 Threats to Validity

Several threats to the validity of this study exist. Perhaps most prominently noticeable

is that the study is based on a relatively small sample size. With one control group and

one experimental group there are essentially only two data points for comparison. The

pilot group study does add some data available for analysis, however because of some of

the differences in how it was conducted, it cannot be directly used to compare against the

control group.

Another problem arises, in that although the participants come from very similar back­

grounds, they may have different experience and knowledge that is not quantifiable. For

instance, in the control group, it appeared that one of the participants may have had more

experience with the architecture of web-based applications written using JSP and Java.

“Unfresh” study participants that have seen previous presentations or other material on

the research in this thesis may be biased in their level of knowledge of the tool and program

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

comprehension research. However, all participants are given the same training on the tool,

and the practical use of the tool was not illustrated in the group presentations.

Another source of uncertainty is the possibility of inadvertent bias and hinting exhibited

by the experimenter during the study sessions. For example, in the training portion of each

session there may be slight variations from instance to instance that either gives a bit more

or a bit less information to the participants on either how to use the tool, how to answer the

questions, or other knowledge. This problem was mitigated by the use of the handbook to

try to ensure consistency between the different groups through guidelines and procedures.

However, as an explicit script was not used this means that the wording of the training

differs between groups, possibly leading to inconsistency.

As mentioned in the footnote to table 7.3, the experimental group technically exceeded

the one hour allotment that was given in the handbook. However, as explained, we believe

that the pair had over complicated the task and was likely prepared to complete it well before

the time expired. Additionally, tasks 1 to 4 were completed well under an hour with just over

10 minutes remaining to complete task 5. We do not believe this data point to compromise

the comparison between control and experimental groups, however it is a possible threat to

validity in that had the time been more strictly adhered to, the experimental group may not

have completed task 5 correctly. In this case, the experimental group would have scored the

same or one point lower than the control group in terms of correctness.

7.6 Study Conclusions

This study was conducted with the objective of evaluating the utility and usability of Polli­

nator as a helpful tool in documenting program comprehension.

From our observations of the use of Pollinator, we have seen that it seems a tool best

suited for large tasks, that encompass a lot of code in a software system. In small, short

tasks that involve only one or two files, the overhead of using Pollinator may outweigh its

benefits in terms of task completion time and efficiency. However, based on our analysis

o f the quality and correctness of the documentation produced for the tasks we believe that

Pollinator holds a slight edge over the control group method using no specialized tool. This

edge is very slight indeed and should not be viewed as an authoritative differentiator.

Participants of the study found Pollinator to be usable and useful, with some minor

criticisms of the interface and features. Comparing the ratings of task difficulty between

the control and experimental groups we saw that the users of Pollinator thought the tasks

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

were easier than those of the control group.

In general terms, the participants using Pollinator thought that it was very usable, rank­

ing it good to very good. They also liked its utility, especially with regards to the goal and

evidence structure that they felt helped organize their thoughts and documented knowledge.

Several lessons were learned conducting this user study, that could be applied to future

instances.

Through the pilot study, we learned that the interpretation of a written question or task

may be completely different from the original author’s intent. Subtle variations in the words

used and ideas emphasized can have a large impact on the meaning conveyed.

We also learned through the pilot study that tedious and repetitive tasks can lead to the

study participants becoming unfocused and bored which may affect their ability to complete

the current and future tasks. It seems best to keep the participant’s attention through variety

and reasonably sized tasks.

Based on our user study, we believe that Pollinator is already quite a useful tool, but can

be improved and expanded in order to become more generalized and useful to researchers

and engineers alike. Some of the future work comes directly from the user feedback, such

as covering all or additional programming languages, formalizing the evidence structure,

allowing more types of evidence content, and improving the interface to a more polished

level.

In terms of validating our abstract model of the phases of comprehension from Chapter

4, we believe that our observations of the participants follow the model entities quite closely.

In particular, we noticed that the cycle of goal generation including implicit and explicit

questions was represented in the data of the Pollinator study. The participants generally

took the task as their primary goal and then proceeded from there to either look directly at

the code (implicit question) or generate new questions and goals (explicit question) to guide

further investigation.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

Conclusions and Future Work

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In this thesis we presented work on research into supporting the documentation of pro­

gram comprehension in collaborative settings, with the goal of addressing communications

and knowledge persistence problems in software maintenance.

We presented the observations and analysis of an observational case study on pair pro­

gram comprehension. The resulting observed scenarios, event magnitudes, and event rela­

tionships were used to motivate the development of a comprehension structure and also the

requirements for a cognitive support tool.

A prototype collaborative cognitive support tool, Pollinator, has been implemented as

an Eclipse plug-in for Java development and partially evaluated. The preliminary evalu­

ation of the tool showed that it met many requirements for a collaborative program com ­

prehension documentation tool. Compared to other similar tools, only Pollinator seems to

currently have the capabilities that merge the needs of both cognitive support and collab­

oration. Heuristic and cognitive walkthrough evaluations assessed the usability of the tool

and noted some deficiencies, while the walkthrough also demonstrated the application of

Pollinator to a real-world system. The usability evaluations seem to show that the use of

Pollinator does not grossly intrude upon the normal process of software maintenance and

was somewhat useful as a mechanism in documenting the comprehension task progress.

The Pollinator user study allowed us to incorporate another degree of evaluation into the

analysis of its feasibility as a collaborative support tool for documenting program compre­

hension. Observation and direct user feedback show that Pollinator is a useful and usable

tool, especially in regards to assisting collaboration between partners, reducing barriers to

building and maintaining mental contexts, and working on large, complex tasks.

One of Pollinator’s major shortcomings may be its seeming hindrance as an aid in

regards to small, focused program comprehension tasks. However, we believe that the long

term benefits of having persistent documentation may outweigh this initial investment in

the overhead of using a specialized tool.

Future work includes considering how social tagging [39] and keyword databases may

be used to assist in structuring the knowledge base. Incorporating community or team-

defined tags would augment the collaborative support provided, by allowing multi-dimensional

categorization of knowledge that is closely associated with the team ’s own understanding of

the domain and code. The current search capabilities of the tool are limited, and it may be

useful to have a recommendation system be a part of the tool to discover existing relevant

goals. Part of the recommendation system could be the automatic gathering of evidence or

knowledge such as in other tools described in this thesis. More advanced search function-

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ality could include automatically linking questions or goals that are related, so that effort is

reduced when a question or goal has already been resolved.

Implementing generalized programming language support into Pollinator is an idea

that is considered for future work and was also mentioned in the feedback of the user study.

An alternative to this would be the selective extension of Pollinator to support specific

languages such as C++ and C#.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] Tom Allen. Managing the Flow o f Technology. MIT Press, 1977.

[21 Grady Booch and Alan W. Brown. Collaborative Development Environments. Ratio­
nal Software Corporation, October 2002.

[3] R. Brooks. Towards a theory of the comprehension of computer programs. Interna­
tional Journal o f Man-Machine Studies, 18(6):542—554, 1983.

[4J Li-Te Cheng, Susanne Hupfer, Steven Ross, and John Patterson. Jazzing up eclipse
with collaborative tools. In OOPSLA Workshop on Eclipse Technology eXchange,
pages 45^49, 2003.

[51 Michael J. Coblenz, Andrew J. Ko, and Brad A. Myers. Jasper: An eclipse plug-in to
facilitate software maintenance tasks. In Proceedings o f the 2006 OOPSLA Workshop
on Eclipse Technology eXchange (eTX 2006), 2006.

[6] Carl Cook. Collaborative software engineering: An annotated bibliography. Technical
report, University of Canterbury, June 2004.

[7] Jr. Frederick P. Brooks. No silver bullet: essence and accidents of software engineer­
ing. Computer, 20(4): 10-19, 1987.

[8] Victor M. Gonzalez and Gloria Mark. Constant, constant, multi-tasking craziness:
managing multiple working spheres. In CHI ’04: Proceedings o f the SIGCHI Confer­
ence on Human factors in Computing Systems, pages 113-120. ACM Press, 2004.

[9] John C. Henderson and Jay G. Cooprider. Dimensions of I/S Planning and Design
Aids: A Functional Model of CASE Technology. Information Systems Research,
l(3):227-254, 1990.

[10] James D. Herbsleb, Audris Mockus, Thomas A. Finholt, and Rebecca E. Grinter. An
empirical study of global software development: Distance and speed. In 23rd Inter­
national Conference on Software Engineering, page 0081, Los Alamitos, CA, USA,
2001. IEEE Computer Society.

[11] Ric Holt. Software architecture as a shared mental model. In Proceedings o f the
ASERC Workhop on Software Architecture, University of Alberta, August 2002.

[12] Singer J., Elves R., and Storey M.-A. NavTracks: Supporting Navigation in Software
Maintenance. In ICSM ’05: Proceedings o f the 21st IEEE International Conference
on Software Maintenance, pages 325-334. IEEE CS Press, September 2005.

[13] Mik Kersten and Gail C. Murphy. Using task context to improve programmer pro­
ductivity. In SIGSOFT ’06/FSE-14: Proceedings o f the 14th ACM SIGSOFT inter­
national symposium on Foundations o f software engineering, pages 1-11, New York,
NY, USA, 2006. ACM Press.

[14] Jurgen Koenemann and Scott P. Robertson. Expert problem solving strategies for
program comprehension. In CHI ’91: Proceedings o f the SIGCHI Conference on
Human Factors in Computing Systems, pages 125-130. ACM Press, 1991.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[151 S. Letov sky. Cognitive Processes in Program Comprehension. Empirical Studies o f
Programmers, pages 58-79, 1986.

[16) David C. Littman, Jeannine Pinto, Stanley Letovsky, and Elliot Soloway. Mental mod­
els and software maintenance. In Papers presented at the first workshop on Empirical
Studies o f Programmers, pages 80-98. Ablex Publishing Corp., 1986.

[17] Robert Lougher and Tom Rodden. Supporting long-term collaboration in software
maintenance. In COCS ’93: Proceedings o f the conference on Organizational com­
puting systems, pages 228-238, New York, NY, USA, 1993. ACM Press.

[18] Jun Ma. Building reverse engineering tools using Lotus Notes. M aster’s thesis, Uni­
versity of Victoria, 2004.

[19] Jun Ma, Holger M. Kienle, Piotr Kaminski, Anke Weber, and Marin Litoiu. Customiz­
ing lotus notes to build software engineering tools. In CASCON ’03: Proceedings o f
the 2003 Conference o f the Centre for Advanced Studies, pages 211-222. IBM Press,
2003.

[20] Michael Marcotty. Software implementation. Prentice Hall International (UK) Ltd.,
Hertfordshire, UK, UK, 1991.

[21] A. H. Maslow. A theory of human motivation. Psychological Review, 50:370-396,
1943.

[22] Chapin N. Software maintenance: a different view. In AFIPS Conf Proc. 54 National
Computer Conference, pages 509-513, 1985.

[23] Jakob Nielsen. How to conduct a heuristic evaluation, h t t p : / /www. u s e i t . c o m /
p a p e r s / h e u r i s t i c / h e u r i s t i c _ e v a l u a t i o n .h tm l .

[24] Jakob Nielsen. Ten usability heuristics, h t t p : / / w w w . u s e i t . c o m / p a p e r s /
h e u r i s t i c / h e u r i s t i c _ l i s t . h tm l , 2005.

[25] Jakob Nielsen and Robert L. Mack. Usability Inspection Methods. John Wiley &
Sons, Inc., New York, NY, USA, 1994.

[26] C. Pamin and C. Gorg. Building Contexts From Interaction History for Recovery
and Exploration during Program Comprehension. In Proc. o f 14th IEEE International
Conference on Program Comprehension (ICPC), Athens, Greece, 2006.

[27] N. Pennington. Stimulus structures and mental representations in expert comprehen­
sion of computer programs. Cog. Psychol., 19:295-341, 1987.

[28] Jennifer Preece, Yvonne Rogers, and Helen Sharp. Interaction Design: beyond
human-computer interaction. John Wiley & Sons, Inc., New York, NY, USA, 2002.

[29] Eclipse Communication Framework Project, h t t p : / /www. e c l i p s e . o r g / e c f .

[30] V. Rajlich and N. Wilde. The role of concepts in program comprehension. In 10th
International Workshop on Program Comprehension (IWPC 2002), pages 271-278.
IEEE CS Press, 2002.

[31] Roger M. Ripley, Ryan Y. Yasui, Anita Sarma, and André van der Hoek.
Workspace awareness in application development. In eclipse ’04: Proceedings o f the
2004 OOPSLA workshop on eclipse technology eXchange, pages 17-21, New York,
NY, USA, 2004. ACM Press.

[32] Martin P. Robillard and Gail C. Murphy. Concern graphs: finding and describing
concerns using structural program dependencies. In ICSE ’02: Proceedings o f the
24th International Conference on Software Engineering, pages 406-416. ACM Press,
2002.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.useit.com/papers/

[33J Martin P. Robillard and Frederic Weigand-Warr. ConcernMapper: simple view-based
separation of scattered concerns. In Proceedings o f the Eclipse Technology Exchange
at OOPSLA, October 2005.

[34] Pierre N. Robillard, Patrick d ’Astous, Franfoise Detienne, and Willemien Visser.
Measuring Cognitive Activities in Software Engineering. In 1998 (20th) International
Conference on Software Engineering, April 1998.

[35] Sangam. h t t p : / / s o u r c e f o r g e . n e t / p r o j e c t s / s a n g a m .

[36] Anita Sarma. A survey of collaborative tools in software development. Technical
report, University of California, Irvine, March 2005.

[37] Anita Sarma, Andre van der Hoek, and Li-Te Cheng. A need-based collaboration
classification framework. In 1st Workshop on Eclipse as a Vehicle fo r CSCW Research,
2004.

[38] E. Soloway and K. Ehrlich. Empirical studies of programming knowledge. IEEE
Transactions on Software Engineering, pages 595-609, September 1984.

[39] Margaret-Anne Storey, Li-Te Cheng, Ian Bull, and Peter Rigby. Waypointing and
social tagging to support program navigation. In CHI ’06: Extended Abstracts on
Human Factors In Computing Systems, pages 1367-1372. ACM Press, 2006.

[40] Margaret-Anne D. Storey. Theories, methods and tools in program comprehension:
past, present and future. In 13th International Workshop on Program Comprehension
(IWPC 2005), pages 181-191. IEEE CS Press, 2005.

[41] Davor Cubranic and Gail C. Murphy. Hipikat: recommending pertinent software de­
velopment artifacts. In ICSE ’03: Proceedings o f the 25th International Conference
on Software Engineering, pages 408^-18. IEEE CS Press, 2003.

[42] Arie van Deursen. Program comprehension risks and opportunities in extreme pro­
gramming. In Eighth Working Conference on Reverse Engineering, pages 176-185,
2001.

[43] Iris Vessey and Ajay Paul Sravanapudi. Case tools as collaborative support technolo­
gies. Commun. ACM, 38(1):83-95, 1995.

[44] A. von Mayrhauser and A. M. Vans. Industrial experience with an integrated code
comprehension model. Software Engineering Journal, 10:171-182, 1995.

[45] Andrew Walenstein. Observing and measuring cognitive support: Steps toward sys­
tematic tool evaluation and engineering. 11th International Workshop on Program
Comprehension (IWPC 2003), page 185, 2003.

[46] Laurie Williams and Robert Kessler. Pair Programming Illuminated. Addison Wesley,
2002.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://sourceforge.net/projects/sangam

Appendix A

Implementation Details

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.l Pollinator: Extensions

This section lists the extension points used by the Pollinator plug-in to implement the tool’s

functionality.

• o r g . e c l i p s e . u i . v i e w s

Extended to implement six views (Goal Explorer, Goal Knowledge Base, Pollinator

Awareness, Pollinator Session History, User Chat, Related Files) and one category

(Pollinator).

• o r g . e c l i p s e . u i . p e r s p e c t i v e E x t e n s i o n

Extended to declare and define the Pollinator perspective layout.

• o r g . e c l i p s e . c o r e . r u n t i m e . p r e f e r e n c e s

• o r g . e c l i p s e . u i . p r e f e r e n c e P a g e s

Extended to provide some basic mechanism for persisting and changing login infor­

mation and preferences.

• o r g . e c l i p s e . u i . a c t i o n S e t s

• o r g . e c l i p s e . u i . b i n d i n g s

• o r g . e c l i p s e . u i . c o m m a n d s

• o r g . e c l i p s e . u i . h a n d l e r s

Extended to declare global actions, such as a keystroke-shortcut for creating a new

question in Goal Explorer.

• o r g . e c l i p s e . u i . p o p u p M e n u s

Extended to declare context menus and connect them to actions in various contexts,

such as the editor’s ruler and text area and whenever a popup menu is displayed on a

resource.

• o r g . e c l i p s e . u i . e d i t o r s . a n n o t a t i o n T y p e s

• o r g . e c l i p s e . u i . e d i t o r s . m a r k e r A n n o t a t i o n S p e c i f i c a t i o n

Extended to declare a new annotation type used to denote evidence in the source code

and other artifacts.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• o r g . e c l i p s e . u i . e d i t o r A c t i o n s

Extended to connect the selection event on an annotation that is clicked to the appro­

priate action that loads the context of the evidence in the Goal Explorer.

• o r g . e c l i p s e . u i . d e c o r a t o r s

Extended to define decorators to be placed on resources that are open by users of the

Pollinator system in the appropriate views (i.e. Package Explorer, Navigator, and

Members).

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B

User Study Materials

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.l Solicitation Letter

Dear xxxx (fill in name of potential participant),

You are being invited to participate in a study entitled “User Study of a Collaborative

Program Comprehension Tool” . The purpose of this study is to evaluate the usability and ef­

fectiveness of a program comprehension tool that we developed to aid in the documentation

of program comprehension in collaborative development environments.

We are interested in your participation because you have experience working with Java.

The study will consist of several steps. At the beginning of this study, we will intro­

duce background knowledge related to our tool, such as the design and manipulation of the

program comprehension documentation structure and the use of embedded hooks into our

tool from various parts of the Eclipse environment. We will provide examples of how the

tool could be used in some sample scenarios. Once you have been given an opportunity to

try the tool yourself, we will present a set of questions about the software system that we

will use for the study and ask you and your partner to answer them using the provided tool

and desktop environment. Answer the questions as best you can. Afterwards, you will be

presented with a brief questionnaire so that we may obtain your impressions of the tool.

Once this is complete, there will be a short debriefing where you may bring up any ques­

tions or concerns you have directly to us. We anticipate that this whole process will take

about 90 minutes to 2 hours (at most) to complete. The proceedings will be videotaped in

order to observe the type of activities you engage in during the course of using the tool. The

resulting video footage will only be used for this research project and only accessible by the

researcher (Benjamin Chu) and his supervisor (Kenny Wong). The video will be destroyed

after review by these individuals and will not be presented or viewed by anyone else. Your

participation in the study is completely voluntary. You can withdraw from the study at any

time, without explanation. You can take breaks and ask questions at any time during this

study. Any data collected in the study will remain confidential and be kept on secure m a­

chines. Any analysis results that would be published will remain anonymous (that is, not

identifiable to you).

If you are interested in participating in this study or have further questions, please con­

tact me by email: bechu@ cs.ualberta.ca or by phone (780) 893-6586.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mailto:bechu@cs.ualberta.ca

Thank you and I look forward to hearing from you.

Regards,

Ben Chu

M.Sc. Student

Department of Computing Science

University of Alberta

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.2 Consent Form

C o n s e n t F o r m f o r P a r t i c i p a t i o n i n S t u d y o f P r o g r a m C o m p r e h e n s i o n

T o o l

We invite you to participate in a small research study on collaborative program com ­

prehension. The purpose of this study is to contribute to the evaluation of a software tool

(’’POLLINATOR”) created by the researcher. POLLINATOR is meant to help in the docu­

mentation and dissemination of acquired program comprehension knowledge in a software

engineering environment.

This study is being undertaken as part of Benjamin Chu’s research towards completion

of a Master of Science degree. Dr. Kenny Wong is the supervising researcher on this

project.

M e t h o d o l o g y

The method of the study will consist of observing a pair of research participants as they

complete given program comprehension task(s) of a subject software system. The tasks will

consist of questions posed to the participants concerning various aspects of the design and

implementation of the software system.

Prior to the initiation of program comprehension task activities, you will be given a

brief overview of the use of POLLINATOR so that you may become familiar enough with

the tool to use it to complete the tasks.

As a pair, you will be given access to a single computer with 2 LCD monitors. The

setup you will be presented with will consist of a typical Windows or Linux OS desktop en­

vironment and the integrated development environment, Eclipse, in which POLLINATOR

is implemented. You will then be asked to complete the task(s) using POLLINATOR within

this environment on the target software system.

The session will be video-taped with a camcorder mounted on a tripod that is situated

behind you so that we may record your activities and also zoom in on the computer screen

as necessary to observe your interactions with POLLINATOR and the computer.

Once you have answered the questions as best you can, you will be debriefed and asked

to fill out a brief (10 question) post-session questionnaire about your experiences during the

session.

We anticipate the entire process to take about 90 minutes to two hours (at most).

R i g h t s

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

You have the option to decline participation in the study for any reason and to withdraw

at any time without prejudice to pre-existing entitlements, if any, and to continuing and

meaningful opportunities for deciding whether or not to continue to participate.

This study is independent of any course or seminar you may be enrolled in and your

acceptance or withdrawal of participation will not be disclosed to anyone other than the

primary researcher.

If the option to decline is exercised, any collected data will be withdrawn from analysis

and not included in the study. The data will then be subsequently destroyed.

You have the right to anonymity and confidentiality throughout the course of the re­

search study. Proper safeguards for securing data will be taken and any identifying data

will be destroyed once it has been properly anonymized. Prior to completion of the study,

only one (1) copy of the video will be stored on DVD format kept inaccessible to anyone but

the researcher. One (1) copy of the answer data you provide through the completion of the

comprehension tasks will be kept securely with the researcher until the data is anonymized,

at which point it will be irreversibly destroyed. After the completion of the study, the anony­

mously coded data will be retained for a period of one (I) year or until the research analysis

is complete, whichever comes first.

Any recorded dialogue used in the content analysis from the session will be of a general

nature that would preclude participant identification. In order to ensure your anonymity and

privacy, we ask that you do not discuss the activities and interactions between you and your

participant partner with any other individuals.

The video obtained through this study will only be used for the purposes of this re­

search project and only accessible by the researcher (Benjamin Chu) and his supervisor

(Kenny Wong). The video will be destroyed after review by these individuals and will not

be presented or seen by anyone else.

You also have the right to the results of the study at any point after its completion.

U s a g e

The data obtained in this study is intended to be used for the purposes of software

engineering research at the University of Alberta.

C o n t a c t s

If you need to contact someone with regards to concerns, complaints or other conse­

quences of the study you may contact any and all of the following individuals:

Benjamin Chu

Primary Researcher

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MSc. Student

(780) 492-6909

b e c h u @ c s . u a l b e r t a . c a

Dr. Kenny Wong

Supervisor

Associate Professor

(780) 492-5202

k en w @ cs. u a l b e r t a . c a

Dr. Jose Nelson Amaral

Professor - Associate Chair (Graduate Studies)

(780)492-5411

a m a r a l @ c s . u a l b e r t a . c a

S ig n a t u r e

By signing this form, you are agreeing to participate in this research study within the

rights and restrictions outlined above.

Name:

S ignature:________________________________Date:

Thank you for your participation.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mailto:bechu@cs.ualberta.ca
mailto:kenw@cs.ualberta.ca
mailto:amaral@cs.ualberta.ca

B.3 User Study Handbook

B.3.1 C ontent/O verview

This handbook describes the content and guidelines for conduct of the Pollinator User Study

being conducted as part of the research for Benjamin C hu’s Master of Science thesis.

The purpose of the study is to evaluate the collaborative program comprehension re­

search tool Pollinator on aspects of usability, utility, and collaboration.

The evaluation will be determined through an analysis of the execution of tasks by user

participants on a given software system.

The baseline or control group will serve as a reference point, as this pair of participants

will be directed to complete the tasks without the use of Pollinator, using a plain Eclipse

development environment. This group consists of one pair of participants.

Each experimental group will consist of a pair of participants directed to complete the

program comprehension tasks by using Pollinator within the Eclipse development environ­

ment.

An experimental session is defined to be a single instance of the execution of this study

with either a control group or an experimental group.

Each session is designated to last about 2 hours in length. The first hour of the ses­

sion is assigned to introduction and orientation of the study content and expectations pre­

sented to the participant pair. In the case of the control group, this segment may be sig­

nificantly shorter than that needed for experimental groups due to the exclusion of training

time needed for the use of Pollinator.

The second portion of the session, designated to one hour, will be devoted to the partic­

ipants’ execution of the given program comprehension tasks.

Finally, when the tasks have been completed or when one hour is spent, the participants

will be asked to complete a short post-study questionnaire regarding their experiences and

opinions on using Pollinator. The participants will then be given a 5 minute debriefing

and thanks for participating in the study and given a small honorarium, signing a sheet for

acknowledgement of receipt of the honorarium.

Total time allocation is expected to be no more than 2 hours.

B .3.2 Study Protocol

Each session will be fully video-taped using a digital camcorder mounted on a tripod behind

the participants and their workstation. The position will be such that both participants and

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

their actions are in frame. Additionally, the contents of the computer monitors will be

filmed at opportune moments using the zoom feature, such that major UI elements (text,

buttons, cursor) are discernible.

Orientation

As an introduction to the experiment, state the following about its objectives and structure:

• The purpose of the study is to gather data on pair program comprehension, specif­

ically as a measure of the usability, utility, and collaborative capabilities of the re­

search tool, Pollinator.

• The entire session will last about two hours, but may be less.

• Participants sign a consent form to acknowledge their rights, etc.

• CONTROL GROUP ONLY:

Aside from the general orientation, the first hour or less will be focused on outlining

expectations on how participants should document their comprehension gained from

the completion of the tasks.

The participants will also be briefed on what they or may not do (actions, tools used,

questions asked) during the course of task completion. Specifically, participants will

have full use of the computer and access to the internet, but their activities will be

focused on comprehension using the Eclipse development environment and code

browsing. Questions asked of the experimenter(s) will be restricted to those of a

procedural nature, as opposed to those regarding content or help with completion of

the tasks themselves.

Participants will be encouraged to work closely and communicate with their partners

on all aspects of the task completion in any way they see fit.

It is anticipated that the second hour will be used for the completion of the given

tasks, but participants may decide to or simply finish in a smaller amount of time.

• EXPERIMENTAL GROUP ONLY:

Aside from the general orientation, the first hour or less will be focused on outlining

expectations on how participants should document their comprehension gained from

the completion of the tasks using Pollinator.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The participants will also be briefed on what they or may not do (actions, tools used,

questions asked) during the course of task completion. Specifically, participants will

have full use of the computer and access to the internet, but their activities will be

focused on comprehension using Pollinator within the Eclipse development environ­

ment and code browsing. Questions asked of the experimenter(s) will be restricted

to those of a procedural nature, as opposed to those regarding content or help with

completion of the tasks themselves.

Participants will be encouraged to work closely and communicate with their partners

on all aspects of the task completion, hopefully taking advantage of the features of

Pollinator where they deem it advantageous.

It is anticipated that the second hour will be used for the completion of the given

tasks, but participants may decide to or simply finish in a smaller amount of time.

Training

CONTROL GROUP:

1. Familiarize (if necessary) with Eclipse concepts such as navigation (opening files),

code browsing, perspectives.

2. Show using sample system (mock Perl Interpreter) and two sample tasks.

3. Give a Brief overview of the subject e-voting system, its purpose and show some

examples of its interface using A njan’s thesis outline. Do NOT show any examples

of the code fragments responsible for designated functionality.

4. Ask some orientation questions, then explain a bit about the concepts if needed: ask

if worked with JDBC or database access in java before, explain the JSP to Java trans­

lation if necessary.

EXPERIMENTAL GROUP:

1. Familiarize (if necessary) with Eclipse concepts such as navigation (opening files,

seeing class methods, views), code browsing, perspectives.

2. Introduce the basic features of Pollinator, using the Pollinator tutorial document.

3. Show how to complete tasks with Pollinator given a sample system (mock Perl Inter­

preter) and two sample tasks.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Give a Brief overview of the subject e-voting system, its purpose and show some

examples of its interface using A njan’s thesis outline. Do NOT show any examples

of the code fragments responsible for designated functionality.

5. Ask some orientation questions, then explain a bit about the concepts if needed: ask

if worked with JDBC or database access in java before, explain the JSP to Java trans­

lation if necessary.

Task Completion

During this portion of the experiment session, the pair under observation will be given tasks,

one at a time, until the set of tasks has been completed or until an hour has elapsed.

Only one task is given as they are completed in order to reduce bias that may be intro­

duced by the participants looking in advance at later tasks and incorporating this knowledge

into their completion of the current tasks. This also ensures that the tasks are completed in

a controlled order, which brings more consistency to the comparisons to be drawn between

each study instance.

Post-Study Questionnaire

In this part of the experiment, the participants will be asked to complete a short post-study

questionnaire regarding their experiences and opinions on using Pollinator.

Debriefing and Thanks

Here we reiterate the goals and objectives of the study and give participants the opportunity

to have themselves excluded if they feel uncomfortable or for whatever reason decide to

decline participation.

The particpants are thanked for the involvement and encouraged to contact the study

author in the future with any questions or concerns.

A small token of appreciation (honorarium) is given to the participants along with a

sheet they sign acknowledging receipt of the honorarium.

B.3.3 R estrictions

• No hints to be given to participants at any point as to any answers or solutions to the

tasks given.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Only questions about use of tools and the conduct of the study itself should be an

swered prior to the debriefing - nothing about how to complete or answer the ques

tions in terms of content

B.3.4 History

• May 14, 2007 - Revision 0.1

• June 6, 2007 - Revision 0.2: added questionnaire and honorarium information

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.4 Pilot Tasks

Name 1 :_________________________________Name 2 : _________________________________

T a s k s f o r P r o g r a m C o m p r e h e n s i o n S t u d y

The software system you are studying today is an implementation of a web-based sys­

tem for administering and conducting elections. Administrators may use the system to reg­

ister users (voters), create elections and candidates, and perform other maintenance tasks.

Voters may access the system to register their vote with an election. The administrator and

voter accounts are based on a usemame-password mechanism.

The system is composed of several JSP and Java files. For the purposes of this study, the

translated-to-Java JSP files should be looked at, as opposed to the HTM L/JSP precursors.

Please answer, as best you can, the following questions regarding the online voting

system. You may frame the structure of the Pollinator comprehension tree and questions

however you see fit.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Using Pollinator, document those classes which represent the main business objects

of the system.

Please use Pollinator to document your final answer to the question

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Using Pollinator, document the sequence of method invocations in the registration of

a new voter, starting from the administration page (add.voter_jsp.java).

Please use Pollinator to document your final answer to the question

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Using Pollinator, document ’where’ (i.e. which classes, methods, code locations, etc)

the database access is implemented for the main business objects you documented

earlier. Database “access” is defined as locations where data is directly read from or

written to the database.

Please use Pollinator to document your final answer to the question

1 1 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Where does authorization for administrator login occur? (i.e. which .jsp file / class

and line(s) of code).

Please use Pollinator to document your final answer to the question

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. What does the function loadAHPostsQ do? (post-conditions / effects of its execution.)

Please use Pollinator to document your final answer to the question

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.5 Control Tasks

Name 1 :_________________________________Name 2 : _________________________________

T a s k s f o r P r o g r a m C o m p r e h e n s i o n S t u d y

The software system you are studying today is an implementation of a web-based sys­

tem for administering and conducting elections. Administrators may use the system to reg­

ister users (voters), create elections and candidates, and perform other maintenance tasks.

Voters may access the system to register their vote with an election. The administrator and

voter accounts are based on a usemame-password mechanism.

The system is composed of several JSP and Java files. For the purposes of this study, the

translated-to-Java JSP files should be looked at, as opposed to the HTM L/JSP precursors.

Please answer, as best you can, the following questions regarding the online voting

system.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Document those classes which represent the main business or domain objects of the

system. From Wikipedia: “Business objects are objects in an object-oriented com­

puter program that abstract the entities in the domain that the program is written to

represent.”

Please use the space below to document your final answer to the question.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Document the sequence of method invocations in the registration of a new voter, at

the level of the administration page (add.voter_jsp.java).

Please use the space below to document your final answer to the question.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Document ’where’ (i.e. which classes, methods, code locations, etc) the database

access is implemented for three (3) of the main business objects you documented

earlier. Database “access” is defined as locations where data is directly read from or

written to the database.

Please use the space below to document your final answer to the question.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Where does authorization for administrator login occur? (i.e. which .jsp file / class

and line(s) of code).

Please use the space below to document your final answer to the question.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. What does the function load All Posts() do? (post-conditions / effects of its execution.)

Please also examine the effects of the findPostQ method that is called.

Please use the space below to document your final answer to the question.

END OF TASKS

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.6 Experimental Tasks

Name 1 :_________________________________Name 2 : _________________________________

T a s k s f o r P r o g r a m C o m p r e h e n s i o n S t u d y

The software system you are studying today is an implementation of a web-based sys­

tem for administering and conducting elections. Administrators may use the system to reg­

ister users (voters), create elections and candidates, and perform other maintenance tasks.

Voters may access the system to register their vote with an election. The administrator and

voter accounts are based on a usemame-password mechanism.

The system is composed of several JSP and Java files. For the purposes of this study, the

translated-to-Java JSP files should be looked at, as opposed to the HTM L/JSP precursors.

Please answer, as best you can, the following questions regarding the online voting

system. You may frame the structure of the Pollinator comprehension tree and questions

however you see fit.

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Using Pollinator, document those classes which represent the main business or do­

main objects of the system. From Wikipedia: “Business objects are objects in an

object-oriented computer program that abstract the entities in the domain that the

program is written to represent.”

Please use Pollinator to document your final answer to the question

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Using Pollinator, document the sequence of method invocations in the registration of

a new voter, at the level of the administration page (add.voter_jsp.java).

Please use Pollinator to document your final answer to the question

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Using Pollinator, document ’where’ (i.e. which classes, methods, code locations,

etc) the database access is implemented for three (3) of the main business objects you

documented earlier. Database “access” is defined as locations where data is directly

read from or written to the database.

Please use Pollinator to document your final answer to the question

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Where does authorization for administrator login occur? (i.e. which .jsp file / class

and line(s) of code).

Please use Pollinator to document your final answer to the question

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. What does the function loadAllPosts() do? (post-conditions / effects of its execution.)

Please also examine the effects of the findPostQ method that is called.

Please use Pollinator to document your final answer to the question

END OF TASKS

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.7 Pre-Study Questionnaire

Pre-Study Questionnaire for Pollinator User Study

For each multiple choice question, please choose ONE answer.

N am e :_______________________________ E -m ail:____________________ _____________

1. How much experience do you have working with the Java programming language?

• None

• 1-2 years

• 3-4 years

• 5+ years

2. How would you rate your skill level in the Java programming language?

• Poor

• Novice

• Average

• Expert

3. How would you rate your familiarity with the usage of the Eclipse development

environment?

• I use it frequently or almost every day.

• I use it occasionally and am familiar with basic usage.

• I have only used Eclipse once or twice.

• I have never used Eclipse.

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.8 Post-Study Questionnaire (EXPERIMENTAL)

For each multiple choice question, please choose ONE answer.

If extra space is needed for the long answer questions, please write on the back of the

paper.

1 . How d i f f i c u l t d i d y o u f i n d t h e p r o g r a m c o m p r e h e n s i o n

t a s k (s)?

a) v e r y e a s y

b) e a s y

c) a v e r a g e

d) d i f f i c u l t

e) v e r y d i f f i c u l t

2 . D id y o u f i n d t h a t t h e P o l l i n a t o r t o o l h e l p e d i n t h e

completion of the programming task(s)? Why or why not?

3 . D id P o l l i n a t o r h e l p c o o r d i n a t e c o m m u n i c a t io n b e t w e e n y o u

a n d y o u r p a r t n e r ? Why o r why n o t ?

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 . How u s a b l e (e a s e o f u s e , c l a r i t y o f a c t i o n / c o n s e q u e n c e

p a i r i n g , U I) i s P o l l i n a t o r ?

a) v e r y b ad

b) b ad

c) a v e r a g e

d) g o o d

e) v e r y g o o d

5 . What d i d y o u l i k e m o s t a b o u t P o l l i n a t o r ? Why?

6 . What d i d y o u l e a s t l i k e a b o u t P o l l i n a t o r ? Why?

7 . W ould y o u u s e P o l l i n a t o r f o r y o u r own w o rk a n d / o r r e s e a r c h

8 . Do y o u h a v e a n y o t h e r f e e d b a c k o r s u g g e s t i o n s ?

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.9 Post-Study Questionnaire (CONTROL)

N am e:___

For each multiple choice question, please choose ONE answer.

If extra space is needed for the long answer questions, please write on the back of the

paper.

1 . How d i f f i c u l t d i d y o u f i n d t h e p r o g r a m c o m p r e h e n s i o n

t a s k (s)?

a) v e r y e a s y

b) e a s y

c) a v e r a g e

d) d i f f i c u l t

e) v e r y d i f f i c u l t

2 . Do y o u t h i n k t h e m e th o d o f d o c u m e n t i n g p r o g r a m c o m p r e h e n s i o n

y o u u s e d i n t h i s s t u d y i s r e l i a b l e a n d u s e f u l ? Why o r why

n o t ?

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 . How d i d t h i s m e th o d o f d o c u m e n t i n g p r o g r a m c o m p r e h e n s i o n

a f f e c t t h e c o o r d i n a t i o n o f c o m m u n i c a t io n b e t w e e n y o u and

y o u r p a r t n e r , i f a t a l l ?

4 . Do y o u t h i n k a s p e c i a l i z e d t o o l c o u l d h e l p i n t h e c o m p l e t i o n

o f t h e p r o g r a m c o m p r e h e n s i o n t a s k (s) ? Why o r why n o t ?

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 . C o u ld a t o o l h e l p c o o r d i n a t e c o m m u n i c a t io n b e t w e e n y o u and y o u r

p a r t n e r ? I f s o , how?

6 . Do y o u h a v e a n y a d d i t i o n a l f e e d b a c k o r g e n e r a l co m m en ts?

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.10 Honorarium Acknowledgement

Acknowledgement of receipt o f honorarium

Re: P ollinator U ser S tudy

I , ______________________________ , acknowledge that I have received an honorarium of

a Future Shop gift card (value of $20) as a token of appreciation for participation in the

Pollinator user study conducted by Benjamin Chu as part of his Master of Science research

under the supervision of Dr. Kenny Wong.

Signed,

S ignature:______________________________

D ate :______________________________

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B .ll Ethics Approval Certificate

A rts, Science <£ L aw R esearch E thics B oard (ASL REB)

Certificate of REB Approval for Fully-Detailed Research Project

Applicant: Beniamin Chu

Supervisor (if applicable): Kenny Wong

Department/Faculty: Department of Computing Science / Faculty of Science

Project Title: Use Study of a Collaborative Program Comprehension Tool

Grant/Contract Agency (and number):

Application number (ASL REB member): #1445 (DK-04-04-07-0361

Approval Expiry Date: April 4.2008

CERTIFICATION of ASL REB Renewal

I have reviewed your application for ethics review of your human subjects research project and conclude that your
project meets the University o f Alberta standards for research involving human participants (GFC Policy Section
66). On behalf of the Arts, Science & Law Research Ethics Board (ASL REB), I am providing expedited approval
for your project.

Expedited research ethics approval allows you to continue your research with human participants, but is
conditional on the full ASL REB approving my decision at its next meeting (April 16,2007). If the full ASL REB
reaches a different decision, requests additional information, or imposes additional research ethics requirements on
your study, I will contact you immediately.

If the full ASL REB reverses my decision, and if your research is grant or contract funded, the Research Services
Office (RSO) will also be informed immediately. The RSO will then withhold further funding for that portion of
your research involving human participants until it has been informed by the ASL REB that research ethics
approval for your project has been granted.

This research ethics approval is valid for one year. To request a renewal after April 4, 2008, please contact me and
explain the circumstances, making reference to the research ethics review number assigned to this project. Also, if
there are significant changes to the project that need to be reviewed, or if any adverse effects to human participants
are encountered in your research, please contact me immediately.

ASL REB member (name & signature): Don Kuiken. PhD

Date: April 4.2007

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C

User Study Task Analysis

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This appendix contains a detailed transcript of the actions of the participants of the

Pollinator user study as they completed the program comprehension tasks given to them.

The documented answers given by the participants is also included alongside the reference

answers.

The text of the tasks in this section is as they were presented to the participants in the

control and experimental studies. Any changes from the pilot study phrasing are detailed in

footnotes to the task descriptions.

Task 1

Document those classes which represent the main business or domain objects

o f the system. From Wikipedia: “Business objects are objects in an object-

oriented computer program that abstract the entities in the domain that the

program is written to represent.” 1

Pilot Study

1. The participants create a goal “W hat are the main business object classes” ?

2. They look through the . j a v a files of the project to get an impression of what m eth­

ods are in the various classes.

3. Now they take a closer look at file contents to judge their importance.

4. Files are dragged and dropped to the single main goal (that represent business ob­

jects). The participants also wanted to add the co m . p o l l i n g . a d m in p a c k a g e ,

but Pollinator does not allow this.

5. The goal is marked as completed.

C unent Project: U ndem anding EVotingServfet

Goals | Type [Project) Status j Author | Artifact (Revision) J
Si CompilationUnit:VoterJava
i j CompifationUnitiPerson Java
H CompilationUnitiPast.java
ill CompilationUnitiAdmin.java
11 CompilationUnit:£fection Java
ill Compilat»onUnit:Candidate.java

Fife EVoting Unverified test
Fife EVoting Unverified test
File EVoting Unverified test
File EVoting Unverified test
File EVoting Unverified test
Fife EVoting Unverified test

C o m p le te i - :

Voter Java (1.1)
Person Java (1.1)
Postjava <1.1)
Admin.java (1.1)
Election Java (1.1)
Candidate Java <1

Figure C. 1: Pilot study task 1 result

Control Study

'The Wikipedia definition was not present in the pilot study.

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. The participants read the task and go to Eclipse to look at the Java classes. They also

discuss what a business object is.

2. They look at the Candidate methods, C2 discusses his usual methodology for

understanding code and explains some Eclipse conventions to his partner, such as the

icons used for denoting method visibility and type.

3. C l writes some notes down on what they are looking at, they decide that C a n d i d a t e

should be included as a business object and C2 waits for C l to finish writing.

4. The second object written down is E l e c t i o n ; they look through the code and see

some database access code.

5. Now, looking at Post, it is written down. C2 asks about the role of Post in the

system. At this point, it appears that the two teammates may not be in sync with each

other’s mental context.

6. Now Voter is added.

7. (Note: C2 controls the computer, both mouse and keyboard).

8. They go back to Post and do a file search for “candidate”, hoping to find some

relationship to further their understanding.

9. (Note: C2, Eclipse expert, knows some tricks, such as ctrl-clicking on variable name

to go to its definition or declaration).

10. They discuss that probably they don’t need to go into the amount of detail they are

looking at for this particular task and then ask a question about what the word “Doc­

ument” means in the task wording. Experimenter replies it is related to making note

of something, essentially writing down what is asked of in the task.

11. When writing, C2 suggests to C l that the business objects be grouped into the pack­

ages in which they are found.

12. They now go to look at Person and decide not to include it based on C 2’s opinion

that a business object is something that is “domain-specific”, something that he feels

Person is not one of.

13. They check and decide that other classes in com package are irrelevant.

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14. Now some time is spent looking through A dm in , and they decide it is also a business

object because it has election-related code inside.

15. The . j s p files are quickly scanned (the names) and skipped as potential business

object candidates.

p o l l i n g
1) Candidate.java
2) Election.java
3) Post.java
4) Voter.java

com
1) Admin.java

Figure C.2: Control study answer to Task 1

Experimental Study

1. There is discussion first on where to begin, so the participants are not even looking at

the computer. The discussion is at the domain level of elections and its entities.

2. They then decide that further debate / discussion on this topic might be fruitless, so

they go to the computer and create a new goal. However, they have trouble finding

how to create a goal since a project is not opened, and need prompting from the

experimenter to help in this technical problem.

3. They now search through goal templates but find nothing applicable and just create

the goal as “What are the main business objects?”

4. They look through . j a v a files in the com package, to see if there’s anything rele­

vant. In particular, they open up A dm in for inspection.

5. E l speculates that if entity beans are used, they are usually the business objects.

6. A d m in . j a v a is added to the main goal.

7. They now go through the . j a v a classes adding those they suspect are business ob­

jects based on the domain and a brief peek at the file contents and exclude those

that are action/utility/exception classes (so they add C a n d i d a t e , P o s t , V o t e r ,

E l e c t i o n) and skip the . j s p files. E2 writes these down as they go along. E2

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

also has an interest in knowing the relationship between classes for a better basis of

understanding.

8. Now, after deliberation, they decide to add P e r s o n , and expect some sort of object

hierarchy.

9. The goal is marked completed, and all evidence marked as verified.

10. As an afterthought, an explanation is added to clearly and explicitly answer the ques­

tion through the use of attaching text evidence.

i l Compi!ationUnit:Election.java File

Lj Com pilationUniLPerson.java File

□ Com pilationUnit:Can did a te .java File

Dj Compilation Uni t:Admin.j ava File

LI Com pilationUnitrPost.java File

Ld CompilationUni t Voter.java File

Evidence Properties

EVotingServlet

EVotingServlet

EVotingServlet

EVotingServlet

EVotingServlet

EVotingServlet

Ver i f i ed Election .Java (1.1)

Ver i f i ed Person.java <1.1)

Ver i f i ed C andidate.java (1

Ver i f i ed Admin.java (1.1)

••Viiii'.i Post .java (1.1)

Voter.java (1.1)

Name:

Type:

Status'.

C reated:

|TFXT - e x p la n a tio n

Text "

Verified _ _

Jun i s, ?007 2:57:19PM ~ __ ~ ~
Last M odified:)un 15. 2007 3 :06.01 PM

Text Title: .explanation

Business o b je c ts are found to be Adm in, P ost, Person,
Text C o n ten ts ' Election, and C andidate b a sed on the a tta ch ed evidence.

Status:

Cancel

Figure C.3: Experimental study task 1 result

Task 2

Document the sequence o f method invocations in the registration o f a new voter,

at the level o f the administration page (a d d .v o t e r _ j s p . j a v a). 2

Pilot Study

1. A new goal is created as “W hat is the sequence of method invocations?”

2The word “starting” was used instead of “level” in the pilot.

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

^ f What are the main bu siness objects? in P rogress

SourceType :C a n d id a te

SourceType :Election

SourceType :Post

SourceType :V oter

SourceType :Person

File EVoting U nverified C a n d id a te .ja v a .2 2 (3

Fiie EVoting U nverified E lec tio n .jav a :1 4 (1 .1

File EVoting U nverified P o s t.jav a :2 4 (1 ,1)

Li SourceType A dm in

Fiie EVoting U nverified V o te r.jav a :2 3 (1 .1)

File EVoting U nverified P e rso n .jav a :1 2 (1 .1)

File EVoting U nverified A d m in .jav a :1 5 (1 ,1)

Figure C.4: Reference answer for task 1

2. The participants open the a d d _ v o t e r _ j s p . j a v a file and maximize the editor

view.

3. They scroll through the file, looking for the relevant methods.

4. They find the n e w v o te r variable and do a search in the file for previous instances,

to see where it is declared and where it is used.

5. Next, they discuss if instantiation and/or use of beans methods should be included.

6. They check the rest of the file, after the n e w P e r s o n . s e t X () method calls.

7. The editor view is restored, and they scan the file again searching for n e w v o te r .

8. The participants try to drag the selected method code, but this of course is unsuccess-

9. The “Add as evidence” context menu item is used instead.

10. The method evidence is labeled as “first” , “second” , “third” , etc. with the method

name included (they then rename some of them to numbers in trying to get them

sorted properly, but this does not work).

ful.

US Second m e th o d : se tP a ssw o rd

l_i Fourth m e th o d : s e tP e rso n N am e

i Third m e th o d : se tE lec tio n N am e

u 5 v a lid a te V o te r

i J 6 c re a te V o te r

1 se tU se rN am e

File EVoting U n v erified t e s t a d d _ v o te r .js p .ja v ,

File EVoting U n v erified t e s t a d d _ v o te r .js p .ja v ;

File EVoting U nverified t e s t a d d .v o te r j s p . j a v .

File EVoting U nverified t e s t a d d .v o t e r j s p . j a v .

File EVoting U nverified t e s t a d d _ v o te r_ jsp .ja v .

File EVoting U nverified t e s t a d d .v o te r j s p . j a v ,

Figure C.5: Pilot study task 2 result

Control Study

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. The participants navigate to the . j s p file, a d d _ v o t e r _ j s p . j a v a and take a look

through it.

2. They reason quickly that there is code in the file for initializing a new V o t e r .

3. C2 asks for a clarification on the meaning of the phrase in the task “at the level of”.

4. Further code browsing is done, and the participants are fairly silent.

5. They then find the section of code for registration on the screen and scroll a bit past

it to the page rendering code. They then scroll back up to the top.

6. They spend some time rereading the code for initializing n e w v o te r and notice that

a new P e r s o n is also created in the process.

7. (Note: a lot of context seems to be maintained in the minds of the individual par­

ticipants, which apparently necessitates reorientation and reinforcement of previous

understanding by going over previously seen code more than once).

8. Now, C l starts to write down the method invocations, starting with

p a g e C o n t e x t . g e t A t t r i b u t e s () .

9. C2 now asks if there is a business rule for registering a new voter, and the experi­

menter shows the screenshot that was used in the training phase o f the experiment

depicting the screen for new voter registration by an administrator.

10. C l then writes down the rest of the method invocations as C2 scrolls and reads

through them on-screen. This ends with V o t e r . a d d F i e l d E r r o r () in the c a t c h

clause.

11. They perform a quick scan of the rest of the . j s p file and decide they do not need

to bother with it.

Experimental Study

1. The task is read and templates looked at but no suitable template found, so they just

create a goal as “W hat is the method invocation sequence in the registration of a new

voter?” .

2. The participants add a d d _ v o te r _ j s p . j a v a right away to the goal.

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

New Voter
getAttribute
instantiate
setAttribute

Election
getAttribute
instantiate
setAttribute

new Person
getAttribute
instantiate
setAttribute

setUserName()
setPassword()
setElectionName()
setPersonName()
validateVoter()
createVoter()
addFieldError()

Figure C.6: Control study answer to Task 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Now they perform a file search in a d d _ v o t e r _ j s p . j a v a for “register” and find

nothing.

4. They scan through the file by eyeball quickly to see if there’s anything noticeable.

5. Then they go through again more slowly, to get a general idea of the code structure.

6. They find the n e w v o te r variable initialization and discuss this in detail.

7. E2 writes down a note, his idea o f the first step in the registration but this behavior is

later abandoned in favor of discussion and use of Pollinator.

8. They go back to the V o t e r class and see which fields need to be initialized when

registering a voter, and E2 writes these down.

9. The a d d _ v o t e r _ j s p . j a v a is searched to see if any V o t e r methods are called

from there and find one to V o t e r . c r e a t e V o t e r () and decide this is the place.

10. Now they decide what to attach, which is just the specific range o f code.

11. The c r e a t e V o t e r () method itself is attached as evidence, but E2 doubts that this

is necessary.

12. A text explanation is attached to explicitly spell out the method sequence.

13. Next, the goal and evidence are marked as completed / verified.

Task 3

Document ’where’ (i.e. which classes, methods, code locations, etc) the database

access is implemented fo r three (3) o f the main business objects you docu­

mented earlier. Database “access” is defined as locations where data is di­

rectly read from or written to the database. 3

Pilot Study

1. The participants create a new goal right away, an action that appears to be second

nature at this point.

2. They spend a bit of time discussing the task before filling out the goal dialog.

3. Now, they look at the business objects from the first task

3The number o f business objects was not limited in the pilot.

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

lh S o u rc eM e th o d c re a te V o te r

i C o m p iia tfD n U n it:ad d _ v o te rJsp .ja v a

n Y em SourceM«thod;Jsp5ervice

Voter.java:275 <1.1)
add_voter_jsp.java{l.l)

add_voterjsp.java:i07 (1.1)

Name*

TVP*’

S ta tu s :

|TFXT rriPthnd se q u en c e

Text ■■■ ■■
Verified ____

C re a te d Ju n 1 5 , 200 7 3 .0 5 '4 6 PM

l a ^ t M odified- lun 1 5 . 2007 VOC I O P M ______________

T e x t T itle- .m e th o d s e q u e n c e

Within th e a d d v o l e r j s p ja v a file , th e re is a m eth o d (a ile d
jsp S erv K e which <t g rab s all th e p a ra m e te rs lor a voter

T e x t C o n te n ts m n lf| | , / d tion an d calls the c re a teV o te r m e th o d ol Voter
'c lass (v o te r .jav a)

S ta tu s :

Cancel

Figure C.7: Experimental study task 2 result

•r © What is the sequence of method invocations to register a new voter?

© 1:
11 C o m p i l a t i o n U n i t : a d d _ v o t e r J s p . j a v a

© 2
i Voter.setUserNameO

r 3
i Voter.setPasswordQ

©4
i Voter.setBectionNameO

© S
1 Voter.setPersonNameO

© 6

i Voter.validateVoterO

© 7
i Voter.createYoterO

in Pro.

in Pro*

File Unver add_voterJsp.Java <1.1)
in Pro.

File Unver add_voter_jsp. Java: 108 I
in Pros

File Unver add_voter_jsp.Java:109

In Pro.

File Uiiver add_voter_jsp.java:l 10 i
In Pro.

File Unver add voter jsp.java l 11 <

In Pro.
File unver add_voter_j5p.java:113

In Pro.

File Unver add_voter_jsp.java:114

Figure C.8: Reference answer for task 2

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. They look through the . j a v a files for A dm in , to find that business object’s database

access code.

5. Next, they highlight and attach the discovered Admin code to a newly created sub­

goal of main goal (there is a bit of trouble figuring out how to do this based on the

goal selection dialog).

6. This is repeat (except for the creation of a new goal) for the rest of the A dm in

database code.

7. They create subgoal explicitly for the next business object, then repeat as in step 4.

8. Steps 5 to 6 are repeated for the rest of the business objects.

9. The goals are marked as completed.

Control Study

1. C2 directs the group to go to the S Q L Q u er ie s . p r o p e r t i e s file to check out the

types of queries inside that would be associated with business object database access.

The first object searched for is C a n d id a te - r e la te d queries.

2. They decide to do a reverse lookup of the code by searching for references to the

query strings stored in the S Q L Q u e r ie s . p r o p e r t i e s bundle that are used in the

code.

3. C l is acting as an extra set of eyes, pointing out relevant things for both partners to

notice.

4. They decide on answering the task for the following three business objects: C a n d id a t e ,

E l e c t i o n and V o t e r .

5. First, C l writes down “Candidate” and their plan is to proceed to look for occurrences

of C a n d id a te - r e la te d database query occurrences in S Q L Q u e r ie s . p r o p e r t i e s .

The file itself is modified so that visually, they can group together those queries that

are associated with a particular business object.

6. C2 uses the Eclipse global file search to look for query occurrences in the code by

searching for query string identifiers from the S Q L Q u e r ie s . p r o p e r t i e s file.

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F1F

v f Where are the database accesses in class Admin .java?
m SourceMethod:deleteAdmin
pi SourceMethod:findAdmin
pj SourceMethodiupdateAdmin
ii SourceMethodicreateAdmin

v C. Where are the database access In class Voter.java?
\J i 5ourceMethod:loadAJlVoters
Id SourceMethodrupdateVoter
Id SourceMethod:vatueUnbound
H SourceMethod:findVoter
H 5ourceMethod:createVoter
iil SourceMethod:deleteVoter
fi SourceMethodVoted
afl sourceMethodicheckVoted

C Where rare the database accesses In class Person.java?
ill sourceMethodifindPerson
H SourceMethod load AHPersons

9 C Where are the database accesses in class Section.Java?
H 5ourceMethod:firid0ection
9 SourceMethod loadAllElections

^ 0 Where are the database accesses in class Candidate .java?
ID SourceMethod :l oadPos tCandidates
j l SourceMethod:findCan didate
8 Sou rce M e t h od :c re ateC a n di d a t e
ii SourceMethod:UnioadPostCandidates
H SourceMethod rvalueUnbound
i SourceMethod loadAHCandidates
H Sou rce M e t hod: fin d P os tC an d i d a te

i0 wherer are the database accesses in class Post.java?
m 5ourceMethod:value Unbound
H SourceMethod loadAltPqsts
i SourceMethod ;updatePost
yiS SourceMethodrdeletePost
I i 5ourceMe$hod:findPost
H SourceMethodrcreatePost

Completer)

In Progress test
File V Unverified test
File £> Unverified test
File E> Unverified test
Fite E> Unverified test

In Progress test
Fite E\ Unverified test
File E> Unverified test
Fite £\ Unverified test
File £> Unverified test
Fite E> Unverified test
File E> Unverified test
Fite E\ Unverified test
Fife D Unverified test

In Progress test
File E> Unverified test
Fife E> Unverified test

In Progress test
Fite D Unverified test
File £\ Unverified test

in Progress test
File Unverified test
Fite £\ Unverified test
File Ê Unverified test
Fite E \ Unverified test
File & Unverified test
Fite V Unverified test
File Ev Unverified test

In Progress test
File £> Unverified test
File V Unverified test
File £\ Unverified test
File V Unverified test
File Ê Unverified test
File E\ Unverified test

Admin java:301 <1.1
Admin.java:119 {1.1
Admin.java:266 <1.1
Admin .java:220 <1.1

Voter.java
Voter.java
Voter.java
Voter.java
Voter.java
Voter.java
Voter.java
Voter.java

:4 5 9 (1 .1)

:331 (1. 1)
:406 (1 .1)

■ 327(1 .1)

:283 (1 .1)

3 6 7 (1 .1)

1 3 0 (1 .1)

:1 6 6 (1 .1)

Person.java:8? (1.1)
Person .ja v a l 40 (1.1

Section.java:114 (1
Electfon.java:283 (1.

Candidate

C an d id a te

Candidate
C an d id a te

Candidate
Candidate
Candidate

.java:39l
pjava:112
.java;229

.java:435

.java:4B0

.java:348

.java:173

Post.java:285 (1.1)
Post.java:338 (1,1)
Post.java:211 (1.1)
Post.java;246 (1,1)
Post.java:ll3 (1.1)

Post.java:l67 (1.1)

Figure C.9: Pilot study task 3 result

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7. C l then writes down the class, method, and code location (line range) for each

database access implementation. This is repeated for all the database access asso­

ciated with a business object (i.e. first search for the query, then find occurrences

in the code, C2 recites the name and location information, and C l writes it down).

W hen the next business object is up, the S Q L Q u e r ie s • p r o p e r t i e s is modified

to group potential candidates for query strings.

Voter
Class - Voter

1) findVoterO
line 219 —̂ line 274

2) checkVoted()
line 160 -> 216

3) createVoter()
line 276 —> line 326
4) updateVoter()
line 328 —> line 362

5) Voted()
line 127 —> 158

6) deleteVoter()
line 364 —> line 395

7) loadAllVotersO
line 452 —> line 491

(b)

Figure C.10: Control study answer to Task 3

Experimental Study

1. Participants can use a template now to create the goal. E2 seems to stop note-taking

at this point.

2. An interface issue arises, since the pair did not notice the “root goal” radio button to

switch from their accidentally created subgoal, instead they started again and created

146

CANDIDATE
1) Class - Candidate
Method - findCandidate
Code location - line 104 —■> line 156

2) Method - findPostCandidate
code loc —> line 165 —> line 219

3) createCandidate()
line 222 —> line 268

4) loadAllCandidates()
line 341 —̂ line 380

5) loadPostCandidates()
line 384 —> line 425

Election
Class - Election

1) Method - findElection()
line 105 —» line 159

2) loadAllElections()
line 276 —> line 316

(a)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a goal as “Where is the database access implemented?”.

3. They decide to look at V o t e r first and its method signatures and discuss what needs

to be looked at.

4. First, V o t e r . j a v a is added as evidence to main goal.

5. Now they search through the methods of V o t e r looking for database access, adding

the methods to the goal as found by dragging from the “M embers” view.

6. When done for V o te r , they decide to create a subgoal for each business object and

then attach evidence to the specific subgoals. For example the subgoal for V o te r

is “For voter class?” and this is repeated for the remaining two classes (E l e c t i o n

and C a n d id a te) .

7. As they are going through the code, they notice that quite a bit of it could probably

be refactored as there is a lot o f shared or common code.

8. Now, goals are marked completed, and evidence marked verified.

v ' Complet
•=■ <? 1 . ,1 V. '!(:I

Bl SourceM e th o d c r e a te V o te r Fite

C o m p l e l

EVotii V er i f i ed V o te r.jay a :2 7 5 (1 .1)

B S o u rce M e th o d V o te d Fite EVotii V e r i f i e d V o te r .jay a :1 2 6 (1 .1)

Si SourceM e th o d loadA llV oters File EVotii V e r i f i e d V o te r .ja v a :4 51 (1 .1)

G S o u rceM eth o d :fin d V o te r Fife EVoti’ V e r i f i e d V o te r .ja v a :2 l8 (1 .1)

B S o u rce M e th o d id e le te V o te r Fite EVotii V e r i f i e d V o te r .jav a :3 6 3 (1 ,1)

G SourceM ethod ch eck V o ted Fite EVotii V e r i f i e d V o te r .jav a :1 5 9 (1 .1)

18 S o u rc e M e th o d :u p d a te V o te r File EVotii V e r i f i e d V o te r.Jav a :3 2 ? (1 .1)

B C o m p iia tio n U n itV o te r .jav a

% f o r e j e c t i o n '

G SourceM e th o d lo ad A jIrlec tio n t

File EVotii V e r i f i e d V o te r .j a v a (1 .1)

Fite

C o m pig !

EVotii V e r i f i e d E lec tio n .jav a :2 7 5 (1 .1)

El C om plta tionU ni t f l e c tion .jav a Fite EVotit V e r i f i e d E lection . ja v a (1 .1)

G SourceM e th o d ifm dE lection Fite EVotii V e r i f i e d E lec tio n .Ja v a :1 0 4 (1 .1)

▼ ^ > .n :• ..■

B S o u rce M eth o d v a lu e U nbound Fite

C o m p i e t

EVotii V er i f ied C a n d id a te .ja v a :4 7 4 (1 .1)

B Source Me th o d f in d P o s t c an di d a te Fite EVotii V er i f ied C a n d id a te . ja v a : l6 4 (1 .1)

B S ourceM eth o d f tn d C a n d id a te File EV otl V e r i f i e d C a n d id a te . ja v a :1 0 3 (1 .1)

B S ourceM eth o d .lo ad A H C an d rd a tes File EVoti' V e r i f i e d C a n d id a te . ja v a :3 4 0 (1 ,1)

B C o m p ila tio n U n it C a n d id a te .ja v a File EVotii V e r i f i e d C a n d id a te . ja v a (1 .1)

B S o u rce M e th o d rc re a te C an d id a te Fite EVotii V e r i f i e d C a n d id a te ,ja v a :2 2 1 (1 .1)

19 S ourceM ethod lo a d P o s tC a n d id a te s File EVotii V e r i f i e d C a n d id a te ,ja v a :3 8 3 (1 .1)

B S ourceM eth o d U n lo a d P o s tC a n d id a te 5 File EVoth V er i f i ed C a n d id a te ,ja v a :4 2 7 (1 .1)

Figure C .l l : Experimental study task 3 result

T ask 4

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

v C. Where is database access implemented? in Pro?

^ f - Where is Voter database access? In Prot

c£i SourceMethod:createVoter File Unver

_j SourceMethodrupdateVoter File Unver
Sou rceMe thod delete Voter File Unver

L! SourceMe thod load All Voters File Unver
•_ SourceMethod:checkVoted File Unver
L-::i SourceMethodiVoted File Unver
G SourceMethodrfindVoter File Unver

^ F*~ Where is Person database access? In Prot

So rceMethod:findPerson File Unver
ut SourceMe thod loadAJlPers on s File Unver

v Where is Candidate database access? In Prot
SourceMethodifihdPostcandidate File Unver

!a. SourceMethod findCandidate File Unver

_ SourceMethodicreateCandidate File Unver
G SourceMethod loadAUCandidates File Unver
G SourceMe thodiloadPos (Candidates File Unver
G SourceMe thod :UnloadPostCandidates File Unver

^ C Where is Post database access? In Prot
ilj SourceMethod:createPost File UnveF
dfl SourceMethod:deletePost File Unver
US SourceMethodrfmdPost File Unver
G SourceMethodrupdatePost File Unver
111 SourceMethod loadAliPosts File Unver

^ C Where is Admin database access? In Prot
i l SourceMethodiupdateAdmin File Unver

G SourceMethod:deleteAdmin File Unver
_ SourceMethodrfindAdmin File Unver
l. SourceMethodicreateAdmiit File Unver

^ f 5. Where is Election database access? in Prot
Lii SourceMetbodfindElection File Unver
li) SourceMethodrloadAllElections File Unver

Voter.java

Voter.java

Voter.java
Voter.java

Voter.java
Voter.java

Voter.java

:280 (1.1)

328 <1.1)

:364 <1.1)
455 <1.1)

161 <1.1)

:127 (1.1)
:223 <1.1}

Person.java:84 (1.1)

Person.java:l36 (1.1)

C andidate ,java:l69 (1.1

Candidate.java:108 (1.1

Candidate Java:226 (1.1
Candidate.java:344 (1.1

Candidate.java:387 (1.1

Candidate.java:431 (1.1

Post.java:i64 (1.1)
Post.java:244 (1.1)

Post.java:110 (1.1)
P ost.iava:209(l.l)

Post.java:335 (1.1)

Admin.java:263 (1.1)

Admin.java:298 (1.1)

Admm.java:114 (1.1)
Admm.java:217 (1.1)

Ejection,java:l 10 (1.1)

Eiection.jaya:279 (1.1)

Figure C.12: Reference answer for task 3

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Where does authorization fo r administrator login occur? (i.e. which .jsp file /

class and line(s) o f code).

Pilot Study

1. Participants open the a d m i n l o g i n _ j s p . j a v a file.

2. Then the pair realize they should create a goal first before proceeding.

3. Now, they scroll through the file and find that it’s not what they’re expecting as it

merely serves as a page for rendering the HTM L form, but does no processing.

4. So now, attention is shifted to a d m i n v e r i f y_j s p . j a v a instead, and they browse

through this file, seeing a declaration for an A dm in object where the page form

processing takes place after a submit is performed.

5. They drag a d m i n v e r i f y _ j s p . j a v a to the goal.

6. Then they highlight the code where the authorization takes place and attach it to the

goal as “Authorization for Admin”.

7. They come back after finishing task five to mark this goal as completed.

^ C ' vV!'-"'.' n u i h c i Admin « x c o r ' C o m p l e t e d

H CompilationUnit:admmvenfyjsp.java File EV Unverified test admmvenfyJsp.java (1.1)
H Authorization for admin Fite EV Unverified tes t admtnverifyjsp.java:€5 (1.1)

Figure C.13: Pilot study task 4 result

Control Study

1. They open a d m i n . l o g i n _ j s p . j a v a .

2. C l writes down this filename immediately but C2 says this is not where the actual

authentication takes place, which is what the task is asking for.

3. So now they open up a d m i n v e r i f y _ j s p . j a v a instead and look for where the

database is checked for authorization of the administrator by looking through

S Q L Q u e r ie s . p r o p e r t i e s again, finding the f in d Q u e r y query string which

seems to retrieve the stored password from the database.

4. It is seen that f in d Q u e r y is referenced from A d m in . j a v a in the f in d A d m in ()

method which is in turn called from a d m i n v e r i f y _ j s p . j a v a .

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Finding the proper code location, they write down the information (. j s p file, class

and line range of code).

JSP File —> adminverify.jsp.java

Class —> Admin.java

line 66 —> line 69__

Figure C. 14: Control study answer to Task 4

Experimental Study

1. A new goal is created first as “Where does authorization for administrator login oc­

cur?” since no suitable template is found.

2. They jum p into the . j s p files and look first at a d m i n l o g in _ j s p . j a v a , immedi­

ately attaching it as evidence to the goal.

3. Looking through this file, they see no action or method calls taking place, so they

look elsewhere, in particular at a d m i n v e r i f y _ j s p . j a v a .

4. They then decide to remove a d m i n l o g i n . j s p . j a v a from evidence after deciding

it is irrelevant.

5. A range of code from a d m i n v e r i f y _ j s p . j a v a is attached and E2 suggests that

Pollinator gives the full package name path to evidence when it is being attached, to

avoid ambiguity.

6. They then decide to add a d m i n l o g i n . j s p . j a v a back into evidence, with a text

evidence explanation stating that the file is used, but only to print out the web page

once logged in.

7. Evidence is marked verified, and the goal is marked as completed.

Task 5

What does the function l o a d A H P o s t s () do? (post-conditions / effects o f

its execution.) Please also examine the effects o f the f i n d P o s t () method

that is called.4

4The pilot study wording did not specify the inclusion o f f i n d P o s t ().

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B SourceMethod:Jsp5e™ ce File EVc \ t mfi>-s; adm inverifyjsp.java:65 (1.1)

I CompilationUnit adminlogin Jsp .jav a File EVc -Verified, adminlogtn Jsp .jav a (1.1)
t> (, Evidence P roperti es

Name-

Type:

Status

Created:

[imiTXT loqin procedure

|Text

■Verified
:J«nj5._29Q73;i9:13PM

Last Modified. »]un 15. Z007 3:29 23 PM

Text Title 'logrn procedure

[Based on the attached evidence, the actual admin
[verification happend inside adrm nverifyjsp.java file and

* 'the adminlogin_jsp.java is only doing the printing job of
the result of the login.

Status- I • ••

Cancel

Figure C.15: Experimental study task 4 result

C Where does authorization for adm inistrator login occur?

v C which file?

U! Com piiationUnitadm inverify J s p .ja v a Fife

C Which fines o f code?

i i SourceMe th o d Jsp S erv ice File

v C Where is u se rn am e and password verification done?

£2 SourceM ethodrjspService File

in Proi

in Proi

Unver adm inverify jsp .java <1.

in Proc

Unver adm inverify jsp .java:63

in Proi

Unver adm inverify jsp .java:70

Figure C.16: Reference answer for task 4

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pilot Study

1. Participants create a root goal “What does loadAllPosts() do?” .

2. They then immediately create subgoal “W here is loadAllPosts()?”.

3. Now they navigate to P o s t . j a v a and look through the member methods.

4. l o a d A l l P o s t s () is found and dragged to the subgoal.

5. P o s t . j a v a is also then dragged to the subgoal for the location.

6. They then browse through l o a d A l l P o s t s () and examine it a bit, in particular

making note of the use o f a R e s u l t S e t called r s .

7. Text evidence is attached to the main goal as “the effects of [...] loadAllPosts()” .

8. Now they go back and look at the code again.

9. They decide to alter/add to the text evidence, but this is not yet implemented in Pol­

linator, so they instead workaround by copy and pasting the original text evidence

contents into a new text evidence and add the additional information.

10. Finally, they m ark the goal as completed.

Control Study

1. Participants perform a file search for the string l o a d A l l P o s t s , after an erro­

neously executed Java search using “Type” instead of “Method”. The method

l o a d A l l P o s t s () is located in P o s t . j a v a .

2. The pair read through the message, apparently forming a mental understanding.

3. They note a query named f i n d A l l P o s t s is referenced and go to

S Q L Q u e r ie s . p r o p e r t i e s to see the raw SQL query.

4. Upon navigating back to P o s t . j a v a , C2 has to reorient himself and is pointed by

C l to go back to l o a d A l l P o s t s () as he had accidentally gone to f i n d P o s t ().

5. C2 then reads out his understanding of the l o a d A l l P o s t s () method while C l

writes it down with some of his own understanding repeated out loud and also written

down.

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

■V Ct

In P rogress te s

File EVotingS U nverified te s

File EVotingS U nverified te s

^ C Where is the function loadAIIPostsO?

B C om piiationU nitiPost.java

B SourceMe thod loadA llPosts

Evidence Properties

Type
S ta tu s :

Name. |[TEXT - The e f fe c ts of the execu tion of loadAllPostst).

'Text

Created

■Unverified

Jun 7. 2007 12.09-59 PM

Last Modified n/a urn
Text Title: The effects of the execution of loadAIIPostsQ.

Text Contents:

'The m eth o d connects to the d a ta b a s e , re trieves all the
p o sts in th e d a ta b a s e , and s to re th o se in the re su lt s e t rs.
If it fails to co n n ec t to th e d a ta b a s e or execu te th e query .
.ou tpu t the error m e ssa g e .

Status'

Cancel

Figure C.17: Pilot study task 5 result

6. Now, the pair navigate to f i n d P o s t () for the second part of the task and there

is discussion here again as C2 reads out the understanding and C l writes it down,

regarding the query and hash map construction.

7. C2 checks to see if there might be anything else to the method, but find nothing.

loadAllPost —> gets all the post names from the DB and sets a
flag to true.

findPost —»
Queries the Post objects and constructs the p o s t s hashmap.

Figure C. 18: Control study answer to Task 5

Experimental Study

1. The pair create a goal, using a template, as “What does function loadAllPosts() do?”.

2. They create a second root goal, using a template, as “W hat does function findPost()

do?” . So the participants see this task as two separate goals, initially.

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. They open P o s t . j a v a right away, based on their prior knowledge of code naming

convention and where they think l o a d A l l P o s t s () might be located.

4. They find the l o a d A l l P o s t s () method and attach it as evidence, including a

static boolean field, to the first goal.

5. Now, they examine the guts o f the method and relevant fields of P o s t trying to figure

out the postconditions and effects of method execution. They do not appear to find

any tangible effects, so they look at f i n d P o s t () instead, which is called from

l o a d A l l P o s t s () .

6. W hile going through the code, they discover the need to find out what the difference is

between the SQL query executed in l o a d A l l P o s t s () and that in f i n d P o s t ()

as they initially thought the query was the same for both.

7. It is decided that the second root goal for f i n d P o s t () can instead better be placed

as a subgoal under the first root goal.

8. The f i n d P o s t () method is attached to the subgoal along with the SQL query

f i n d P Q u e r y found in S Q L Q u e r ie s . p r o p e r t i e s .

9. The SQL query f i n d A H P o s t s is attached to the first goal.

10. Text evidence is now attached to explain l o a d A l l P o s t s () on the root goal and

separate text evidence is created for the f i n d P o s t () subgoal to answer the specific

postconditions and effects found there.

11. Evidence is marked as verified and goals marked as complete.

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

^ *7
12, TEXT - preconditioni-effects
B ManuatEv: SQLQueries.properties
1 SourceM e thod :findPos t

Text fn / - r. i
Fite EVc Verifi SQLQueries.properties:19 (1
Fite EVc-venfi Post.Jaya:105 (1.1)

B ManuatEv: SQLQueries.properties

liij SourceFieldzallPostLoaded
Evidence Properties <2>

Name

Type:

11 FX I - r x p l a i n a t u m

Text
Verified

,|un 1 5 ,2 0 0 ? 3 48:49 PMCreated:
Last Modified. Jun 15, 7007 1 57 56 PM

Explajnation

File EVc Verifi SQtQueries.properties 23 (1

File EVc t i i ' 1 Post. java:329 (1.1)
~iW |

Text Title:

.Precondition: the posts are n o tio a d e d already! u
Text Contents: FffeMs: findPost is called for each post entry name in post i

table. j

Status:

Cancel

I*

Text Tide: pteconditions effects

(Preconditions: if a Post object already exists in 'posts* hash
.map then the function returns it otherwise the effect takes

Text Contents: place.
Effects: the code creates anew Post object for each entry
in the 'post* table, if the object is hot already cte a te d .___

Figure C.19: Experimental study task 5 result

© What does < the function loadAitPosts{)> In Progress bechu

JfTEXT - the purpose of loadAilPostsO

[Text____________

Name:

Type:

'UnverifiedS tatus:

C rea ted : lun 7. 2007 2 :49:31

L ast M odified: |n /a

T ext Title: [the purpose o f loadAljpostsQ

T ex t C on ten ts:

Evidence P roperties

loadAilPostsO retrieves all the election p o st positions from
the d a ta b a se and populates a collection inside the Post
class with the inform ation on each p o st, including its
a sso c ia ted election ID, nam e, choice, e tc .________________

Figure C.20: Reference answer for task 5

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix D

User Study Participant Feedback

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This appendix contains the detailed questionnaire responses given by participants of the

Pollinator user study described in Chapter 7.

Here we group together the responses for the experimental and pilot pairs because the

questionnaire for those groups was identical. The responses to the questions are reproduced

here verbatim, without any alteration to their content.

E xperim ental and Pilot

Question 1

How difficult did you find the program comprehension task(s)? Scale: very

easy, easy, average, difficult, very difficult.

PI: average

P2: easy

E l: easy

E2: easy

Question 2

D id you find that the Pollinator tool helped in the completion o f the program­

ming task(s)? Why or why not?

P I: Yes, creating goals and sub-goals make things more organized and easier

to proceed.

P2: Yes, by adding goals and evidence, the user is able to attack the under­

standing task in a divide-and-conquer fashion, which makes the task more or-

ganizable.

E l: Yes, I do. the reason should be more evident in very large projects with

multiple programmers/maintainers, where features are developed by several

people. In such cases, it happens more than often that a feature needs to be

changed, etc.; therefore, a tool like Pollinator, if used consistently during de­

velopment, would be an invaluable tool.

E2: Pollinator helps me with setting up the goal. I think it helps me within the

future if I am coming back to this project again.

Question 3

D id Pollinator help coordinate communication between you and your partner?

Why or why not?

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P I: Yes, because we are able to share a visual interface and knows what are the

projects/goals available.

P2: Yes. The design of goals and evidences provides the users a uniform plat­

form for discussion of the issues in the task.

E l: Yes, it did. Pollinator helped us come to one common stmcture for under­

standing features.

E2: Yes it helps, with these goals and sub-goals we clearly know what we are

talking about.

Question 4

How usable (ease o f use, clarity o f action/consequence pairing, HI) is Pollina­

tor? Scale: very bad, bad, average, good, very good

PI: very good

P2: good

E l: good

E2: good

Question 5

What did you like most about Pollinator? Why?

P I: It really helps program comprehension. The interface is organized and

easy to use. Click and drop and highlight evidence is very useful.

P2: The easy-to-use drag functionalities.

E l: I liked the way it allows project developers add pieces of code as evidence

for some feature (goal). That could be extremely useful in big projects.

E2: To divide the program comprehension into goals and record all answers so

that in the future these answers can be quickly reloaded into one’s mind.

Question 6

What did you least like about Pollinator? Why?

P I: C an’t open source code from the goal explorer view.

P2: The arrangement of all the perspectives and the difficulty in switching

between them.

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

E l: Well, the tool seemed to be very useful and easy to use, but sometimes did

some wrong doings which is normal at this stage of development. And also it

was minor and did not hurt the purpose of the research and tool.

E2: The editing. We have to set the goals as “verified” one by one.

Question 7

Would you use Pollinator fo r your own work and/or research?

PI: Yes.

P2: Yes, if it is open-source.

E l: I would use it for a big multi-developer project.

E2: Definitely. I was using a public parser for my research and every time

when I went back to do the modification I have to go through the program

comprehension process again. Pollinator can help a lot for that purpose.

Question 8

Do you have any other feedback or suggestions?

P2: W hen browsing the goals from the goal creating window, I hope all the

goals are displayed in a leveled form, not just in alphabetical order.

E l: I think it should be easy and worthwhile to make Pollinator language

independent; or just support other languages. I think if Pollinatoris made a

little bit formal, then formal reasoning of some feature would be possible. By

formal, I mean more constrained evidences.

E2: Feedback: 1. Is it possible for us to attach some more complex expla­

nations such as pictures or UM L diagrams? So far to me, Pollinatorczn only

attach text file as explanation. 2. Improve the editing (see Q6).

C ontrol

Question 1

How difficult did you find the program comprehension task(s)? Scale: very

easy, easy, average, difficult, very difficult

C l: c) average

C2: c) average

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Question 2

Do you think the method o f documenting program comprehension you used in

this study is reliable and useful? Why or why not?

C 1: The method used may not entirely be reliable as the underlying business

logic was not well understood.

C2: Yes. They are useful to understand how the system works, how data is

processed.

Question 3

How did this method o f documenting program comprehension affect the coor­

dination o f communication between you and your partner,; if at all?

C l: There was good cooperation and synergy between the teammates.

C2: I have to wait for my partners to write [down the answer].

Question 4

Do you think a specialized tool could help in the completion o f the program

comprehension task(s)? Why or why not?

C l: Yes. A specialized tool would contain the logic behind the design of the

system and [...] has a better chance of comprehending the program success­

fully.

C2: A better tool support for documentation would be nice.

Question 5

Could a tool help coordinate communication between you and your partner?

If so, how?

C l: Yes. It would help in orienting each of the teammates’ idea of comprehen­

sion and rectify any disagreement in opinions.

C2: If two people are on the same computer, it’s not a big deal. If they are in

different location, a communication tool such as a video conference type tool

is essential.

Question 6

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Do you have any additional feedback or general comments ?

C l: [No answer.]

C2: It would be nice if we have some document about the system printed out

at hand.

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

