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Abstract

Assmann et al. [STAM J. Alg. Disc. Meth., 2 (1981), 387-393] have
shown that the bandwidth of caterpillars on n vertices with hairs of
length at most two can be found in O(n logn) time and Monien [SIAM
J. Alg. Disc. Meth., 7 (1986), 505-512] has shown that Bandwidth
Minimization remains NP-complete when restricted to caterpillars with
hair length at most three. In this work it is shown that Bandwidth
Minimization remains NP-complete when restricted to lobsters, despite
the existing polynomial algorithms for this problem on their modules
and prime decompositions. Additionally, we show the problem to be
NP-complete on k-polygon graphs, for all £ > 3.

1 Introduction

In 1981, Assmann et al. [1] showed that the bandwidth of caterpillars on n
vertices with hairs of length at most two can be determined in O(nlogn)
time. Five years later, Monien [8] showed that determining the bandwidth
of caterpillars of hair length at most three is NP-complete. Monien’s work il-
lustrated that the Bandwidth Minimization problem for trees becomes more
difficult as one increases the distance of vertices from the longest path, also
known as the backbone. In this work we will show that Bandwidth Mini-
mization remains NP-complete for lobsters, which are trees whose vertices
are at most distance two from their backbones. In terms of distance from the
backbone, this result tightens the threshold established by Monien. More-
over, it provides an example of a problem which is polynomially solvable on
a class of graphs, namely those found in [1], yet NP-complete when vertices
are replaced by independent sets, which are the maximal modules of lobsters.
Additionally, we show that Bandwidth Minimization remains NP-complete
on k-polygon graphs, for all £ > 3.

Let us begin by establishing the definition of the bandwidth of a graph.

Definition 1 A labelling of a graph (simple, undirected) is an injective map-
ping from its vertex set to Z.



Definition 2 Let o be a labelling of a graph G with edge set Eq. The width
of o is defined as maz  |o(u) — o(v)| and denoted by w(o).
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Definition 3 Let F be the family of all labellings of a graph G. The band-
width of G is defined as mi}__z w(o) and denoted by b(G). A labelling o of G
(S

for which w(o) = b(G) is called an optimal labelling or a bandwidth labelling.

The reader should observe that for any labelling o of a graph G on n
vertices, there exists a labelling o’ of G using the labels 0,...,n — 1, such
that w(o') < w(o). Henceforth, we will consider all labellings to be reduced
in this manner. Having defined the bandwidth of a graph we present the
Bandwidth Minimization problem defined by Garey and Johnson [6].

Bandwidth Minimization

Instance: Graph G and natural number £.

Question: Does G have a labelling whose width is at most k7

It should be noted that because the bandwidth of a graph is bounded by the
number of vertices, the Bandwidth Minimization problem can be phrased
as “Given a graph, determine its bandwidth”.

As previously mentioned, the works of Assmann et al. [1] and Monien [8]
deal with caterpillars having various hair lengths. By hairs, these authors
are referring to paths attached to the backbone of the caterpillar. The reader
should be cautious as many references, such as [11], define a caterpillar to
be a tree whose vertices are a distance at most one from the backbone; that
is, the hairs are at most length one. Based upon this definition, Bermond
[2] defines a lobster to be a tree whose vertices are a distance at most two
from its backbone. Lobsters have also been referred to as 2-distant trees in
[9]. Examples of these graph classes are given in Figure 1.

In [8], Monien’s proof of the NP-completeness of caterpillars with hairs of
length at most three involves a reduction from the strong NP-complete Mul-
tiprocessor Scheduling problem. Garey and Johnson [6] state this problem
as follows.

Multiprocessor Scheduling

Instance: Set T' of tasks, number m € N of processors, length
I(t) € N for each t € T, and a deadline D € N.
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(a) A caterpillar (b) A caterpil- (c) A lobster.
(Assmann et al., lar (West).
Monien).

Figure 1: Examples of caterpillars and lobsters.

Question: Is there an m-processor schedule for 7" that meets
the overall deadline D, i.e. a function f : T — N U {0}
such that, for all u > 0, the number of tasks ¢ € T for which
f(t) <u< f(t)+1(t) is no more than m and such that, for
allt € T, f(t)+1(t) < D?

The particular version of Multiprocessor Scheduling used by Monien re-
quires a “perfect fit”, that is, >, .p () = Dm. We too shall use this
version of Multiprocessor Scheduling in our proof of the NP-completeness of
Bandwidth Minimization for lobsters, which mirrors that of Monien. As this
version remains strong NP-complete, we may assume that the values [(t) are
polynomial in n. This ensures that our transformation from Multiprocessor
Scheduling to Bandwidth Minimization is polynomial.

The NP-completeness of Bandwidth Minimization on lobsters is particu-
larly interesting when one considers their prime decomposition by maximal
proper modules. A module of a graph G is defined as a set M of vertices
such that for v1,v9 € M and w € Vg \ M, {wwn} € Eq & {wve} € Eg. By
a prime decomposition of a graph by modules we mean a contraction of the
proper modules until no further contractions can be made. For further read-
ing on modules and prime decompositions see [3]. Prime decompositions are
commonly used in algorithms to solve problems on graphs by first solving
the problem on both the prime decomposition and the modules, then using a
technique to combine these solutions. As an example, prime decompositions
have been used to solve Bandwidth Minimization on cographs in [7].

In contrast, Bandwidth Minimization on lobsters is an example of a prob-
lem which has a solution on both the prime decomposition and the modules,
but is NP-complete on the class itself. The maximal modules are indepen-
dent sets of pendant vertices, which have trivial bandwidth labellings. The



prime decomposition of a lobster is exactly a caterpillar with hairs of length
at most two, as per the definition of Assmann et al. [1], who have shown
that Bandwidth Minimization can be solved in O(n logn) time on that class.
An example of a prime decomposition of a lobster is given in Figure 2.

In addition to proving the NP-completeness of Bandwidth Minimization
for lobsters we also prove the NP-completeness of this problem on 3-polygon
graphs as the lobster generated in the reduction proof is also a 3-polygon
graph. Elmallah and Stewart [5] define a graph to be a k-polygon graph
if it is the intersection graph of chords in a k-gon, where each chord must
have its endpoints on different sides of the k-gon. From this definition we
see that the result holds for £ > 3. It should be noted that the proof of
Monien [8] does not give the NP-completeness of Bandwidth Minimization
on 3-polygon graphs as the caterpillar used in the reduction proof is not a
3-polygon graph.
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(a) A lobster.
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(b) Its prime decomposition.

Figure 2: The prime decomposition of a lobster results in a caterpillar with
hairs of length at most two.

2 NP-completeness

Our proof of the NP-completeness of Bandwidth Minimization on lobsters
relies upon two particular graph structures. Monien [8] defines the turning
point of height p, denoted by T}, to be the graph shown in Figure 3. As well,
he defines the barrier of height p, denoted by B,, to be the graph shown in
Figure 4.
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Figure 3: The turning point of height p, denoted by 7).
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Figure 4: The barrier of height p, denoted by B,.

In establishing necessary results on turning points and barriers, the fol-
lowing lemma from Chvatal [4] proves quite useful.

Lemma 4 (Chvdtal) For any graph G on n vertices having diameter d,
n—1
b(G) > .

Now consider the following results based upon Lemma 4.

Lemma 5 b(T),) = p.

Proof. From Lemma 4 we obtain b(T},) > p. If P, P;, and Pj are the sets
of pendant vertices, excluding e, adjacent to ¢, d, and f respectively, then
the labelling o defined by o(a) = 1, o(b) = p + 1, o(c) = 2p, o(d) = p,
ole)=0,0(f)=3p,o[P]={p+2....2p— 1}, 0[Py ={2...,p — 1}, and
olPfl={2p+1....3p—1,3p+1,...,4p}, gives that b(T},) = p. O

Lemma 6 In any optimal labelling of T, c is labelled 2p.

Proof. Let o be an optimal labelling of 7}, and let v; be the vertex for
which o(v;) = ip, 0 < i < 4. Since w(o) = p and o(v4) — o(vy) = 4p, the
vertices vg and v4 must be a distance at least four from each other. Yet T), is
a tree of diameter four, so vy and v4 are distance four apart, and the unique
shortest path between them is vy, vy, v2,v3,v4. Since c is the central vertex
of all paths of length four in T}, o(c) = 2p. O



Observation 7 Consider a tree T containing a subtree T of diameter d
on d - b(T) + 1 vertices. In any optimal labelling of T, T' must receive
d-b(T) + 1 consecutive labels. In particular, in any optimal labelling of T),
the induced subgraph on N|f], the closed neighbourhood of f, must receive
2p + 1 consecutive labels.

Lemma 8 If o is an optimal labelling of T, then either o(c) > o(v), or
o(c) < o(v), for all v € N[f].

Proof. Since |N[f]| =2p+ 1, Lemma 6 and Observation 7 give that either
some vertex in N[f]\ {c} has label p, or some vertex in N|[f]\ {c} has label
3p. Recall from the proof of Lemma 6 that the vertices labelled ip, 0 < < 4,
form a path of length four. Since f is the only vertex in N[f] adjacent to
¢, f must be labelled either p or 3p. If o(f) = p, then o(c) > o(v) for all
v € N[f]. Otherwise, o(c) < o(v) for all v € N[f]. O

Corollary 9 Ifo is an optimal labelling of Ty, then either o(a),o(e) < o(c),
or o(a),o(e) > o(c).

Given an instance Y({I(¢1),...,l(tn)}, D, m) of Multiprocessor Schedul-
ing, for which Y7 | [(¢;) = Dm, we construct the lobster £ shown in Figure
5 in order to prove the NP-completeness of Bandwidth Minimization on
lobsters. We define the “ground line” of £ to be the part of the backbone
from the outermost point of the barrier of height 8 up to, and including,
the closest vertex of the turning point. Similarly, the “sweeping line” of £
is defined as the remainder of the backbone, less the vertices of the turning
point. The «jth block”, 1 <% < n is defined to be the induced subgraph on
the vertices in the chain of length ¢; in the sweeping line and the pendant
vertices attached to them. The reader should observe the correspondence
between blocks and tasks, and as such we will denote both by ¢;. The terms
ground line, sweeping line, and it block will be used in the proofs of Lem-
mas 10 and 11 which show that, for appropriate choice of p, T has a solution
if and only if £ has bandwidth 8 =p + 2n + 1.

Lemma 10 If T has a solution then L has bandwidth 8 = p + 2n + 1.

Proof. Let A = m(D + 2) + 1 and label the vertices of the ground line as
13,0 < i < A — 1 beginning at the barrier of height 5 and working towards
the turning point. Then label the remaining vertices of the barriers as shown
in Figures 6 and 7. By the argument found in the proof of Lemma 5 we
can label the turning point with the labels \g + 7,0 < j < 4/, where in
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Figure 5:  The lobster L constructed from the instance YT =
({t1,...,tn}, D,m) of Multiprocessor Scheduling, where A = 2(m(D+2)—2)
and p > 0.

particular e and @ are labelled A and AS + 1, respectively. All remaining
nodes (sweeping line and its hairs) will get labels smaller than AJ.

Since T has a solution there exists I;,0 < 5 < m—1 such that U;-n:_ol I; =
{1,...,n} and Eieljl(ti) = D for all j € {0,...,m — 1}. For each i €
{L,...,n}, if 7 € I; then the vertices of the ith block should be labelled so as
to lie between the 5™ and j + 15 barriers as shown in Figure 8. This leaves
2n labels between each pair of members, i and (i 4+ 1)4, of the ground line,
except those in the barrier of height 5. That is, there are nA labels left for
the nA vertices in the n chains of length A.

ground line ground line

Figure 6: Labelling of the barrier of height g



ground line ground line

Figure 7: Labelling of a barrier of height p + 1, where ¢ = (i(D + 2) + 1),
1<i<m—-1.

gr. line gr. line gr. line gr. line gr. line

Figure 8: Placement of the blocks belonging to processor j, where 6§ =
j(D+2)+2,0<j<m—1. Note that t;, refers to the arbitrary block
which receives the lowest labels and Z;, refers to the arbitrary block which
receives the highest labels.

We label the vertices of the chains of length A such that two vertices of
each chain lie between each pair of the vertices of the ground line. Consider
a chain C' connecting ¢; and ¢;11 where, without loss of generality, 7 € I,
and 4 + 1 € I;,, where j; < jo. We label this chain as shown in Figure
9. Having labelled each of the chains in this manner we have completed a
labelling of £ that is of width . By Lemma 4 we have that b(£) = 5. O

Lemma 11 Ifp > 2n(D +4) and if L has bandwidth 5 = p+ 2n + 1 then
YT({l(t1),...,l(tn)}, D,m) has a solution.

Proof. Let o be an optimal labelling of £ such that w(o) = . First
we show that o uniquely labels the ground line, up to symmetry. Recall
that from Observation 7 the turning point must be labelled with 48 + 1
consecutive numbers. By Corollary 9 we know that the labels of the vertices
of the ground line and sweeping line are either all less than or all greater than
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Figure 9: The placement of the chain of length A which joins the it block
to the 7 + 15¢ block. Note that v;, and v;;1, refer to the vertices from the
it and ¢ + 15 blocks, respectively, which receive the smallest labels.

those of the turning point. Without loss of generality assume that they are
all less than those of the turning point and that the vertices of the turning
point receive the labels m(D+2)5+7, 0 < j < 4. Recall from Observation
7 that the barrier of height S must receive 23 + 1 consecutive labels. Since
no edge can cross this barrier it receives the labels 0,...,23. Between the
turning point and the barrier of height 3 there exist m(D +2) — 3 vertices in
the ground line which must be labelled. The turning point and the barrier
of height 8 are connected by a path of length m(D + 2) — 2 in the ground
line where the labels range from 23 to m(D + 2)3. Thereby, the members
of the ground line must receive the labels i3 for 0 <4 < m(D +2). That is,
every labelling of width 8 numbers the ground line and the turning point in



the same way, up to symmetry.

We now need to show that if £ has bandwidth £, an optimal labelling
of L describes a solution of T. Observe that in an optimal labelling o, the
centers of the barriers have the labels Z; = (j(D+2)+1)5 for 0 < j <m—1.
In Y, let task i belong to the j*® interval if and only if Zj—1 < o(u) < Zj
holds for some node w in the sweeping line of the it block.

First we show that a task cannot belong to two different intervals.
Assume task 7 belongs to two different intervals. Then there exist adja-
cent vertices u,v in the chain of length #; of the sweeping line such that
o(u) < Zj < o(v) for some j. Let w be the vertex for which o(w) = Z;.
Let 01 = o(u) — (Z; — B) and 62 = Z; + B — o(v). Since u is adjacent to
v, o(v) —o(u) < B, so §; + d > (. This scenario is depicted in Figure
10. There are p — 1 pendant vertices adjacent to each of v and v as well
as 2p pendant vertices adjacent to w. At most S — §; pendant vertices
adjacent to u can get labels less than Z; — 3, and at most 8 — d2 pen-
dant vertices adjacent to v can get labels greater than Z; + 8. Thereby,
54+2p4+2(p—1)—(B—01)—(B—02) >3+4p— 5 =2+ 3p — 2n nodes
have to use the 23 + 1 labels from Z; — 8 to Z; 4+ 8. But n > 1 and p > 8n,
024+3p—2n>24+2p+6n>4+2p+4n >3+ 2p+4n =25 + 1, that
is, there are too many vertices for the 26 + 1 labels. Thereby, every task
belongs to exactly one interval.

- -_—
Zjiﬁ m Z]+B
u v

Figure 10: Two vertices v and v in the sweeping line corresponding to a
task belonging to two intervals.

It remains to show that for all j, ), I t; < D. The labelling ¢ gives the
(D+4)B+1 labels from Z;_1 — 3 to Z;j+ [ to all the vertices associated with
task j (of which there are p), I t;) as well as to the 4p pendant vertices
of the two barriers and the D + 5 vertices of the ground line. Therefore,

10



pY titdp+D+5<(D+4)B+1

1€l
=D+4)(p+2n+1)+1
=pD+2nD + D +4p + 8n + 5,
giving
th_ < pD +2nD + 8n
iEIj p
— D4+ 2nD + 8n
p
<D+1.
Yet Zite t; is an integer so Zielj t; < D, and the result holds. O

Using Lemmas 10 and 11 we get our main result.

Theorem 12 BANDWIDTH MINIMIZATION remains NP-complete when
restricted to lobsters and k-polygon graphs, for oll k > 3.

Proof. Given a natural number £ and a lobster or 3-polygon graph G with
labelling o, it can be determined in O(|E¢g|) time if the width of o is at
most k, so Bandwidth Minimization is in NP for lobsters and 3-polygon
graphs. Given an instance Y({l(¢1),...,l{(tn)}, D, m) of the strong NP-
complete “perfect fit” Multiprocessor Scheduling we construct the lobster
L in polynomial time, and by Lemmas 10 and 11 we obtain that Band-
width Minimization is NP-complete on lobsters. As shown in Figure 11, £
is also a 3-polygon graph, so the problem is also NP-complete for 3-polygon
graphs. By the definition of k-polygon graphs, Bandwidth Minimization is
NP-complete on k-polygon graphs, for all £ > 3. O

11



pendant vertices

sweeping line
ground line

Figure 11: The lobster £ as a 3-polygon graph.
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