

EXPLORING THE SECURITY OF SOFTWARE

DEFINED NETWORK (SDN)

Authored by

Prabhjot Kaur (144113)

Shiv Patel (143792)

Sanjana Mittal (144509)

Surbhi Sharma (144469)

Research Project

Submitted to Faculty of Graduate Studies,

Concordia University of Edmonton

In Partial Fulfillment of the Requirements for the Final

Research Project ISSM681(R)

Concordia University of Edmonton

FACULTY OF GRADUATE STUDIES

Edmonton, Alberta

Advisor: Dr. Sergey Butakov (sergey.butakov@concordia.ab.ca)

June 2021

mailto:sergey.butakov@concordia.ab.ca

Page | 1

EXPLORING THE SECURITY OF SOFTWARE

DEFINED NETWORK (SDN)

Prabhjot Kaur

Shiv Patel

Sanjana Mittal

Surbhi Sharma

Approved:

Sergey Butakov

Sergey Butakov Date: June 23, 2021

Primary Supervisor

Patrick Kamau

Patrick Kamau, PhD, MCIC, PChem. Date: June 23, 2021

Dean, Faculty of Graduate Studies

Page | 2

Table of Contents

I. Introduction ... 4

A. SDN Architecture .. 4

II. Literature Review ... 5

A. Security Issues related to SDN.. 5

B. DoS/DDoS attacks on the controllers and their protection ... 6

III. Experimental Setup ... 7

A. Methodology ... 7

B. Experiment .. 8

IV. Conclusion .. 11

V. References ... 11

Page | 3

List of Figures

Figure 1: SDN Architecture and potential location of the attackers on the interfaces…………………….4

Figure 2: Ping response from the host in different VLAN………………………………………………....7

Figure 3: Network Topology for SYN flood attack using hping3……………………………………….....7

Figure 4: Network Topology for LOIC attack……………………………………………………………...8

Figure 5: workload of 16 switches without DDoS attack…………………………………………….…….8

Figure 6: workload of 16 switches with DDoS attack………………………………………………….…..8

Figure 7: workload of 20 switches without DDoS attack……………………………………………….….9

Figure 8: workload of 20 switches with DDoS attack………………………………………………….….9

Figure 9: VLAN attack topology………………………………………………………………………..…9

Figure 10: Low latency and no packet loss between H1 and H3(Before attack))…………………….…...10

Figure 11: Low latency and no packet loss between H1 and H5 (Before attack)……………….……...….10

Figure 12: High latency and packet loss between H1 and H5 (After attack)….……..……………….…...11

Figure 13: High latency and packet loss between H1 and H3 (After attack)….……………………...….11

Figure 14(a): Before the attack (same VLAN hosts successfully ping each other)……………………….11

Figure 14(b): After the attack (Packet loss between all VLAN hosts)……………………..…………….....11

Page | 4

Exploring the security of Software Defined Network

(SDN)

Prabhjot Kaur

Student ID #:144113

pkaur16@student.concordia.ab.ca

Shiv Patel

Student ID #: 143792

spatel3@student.Concordia.ab.ca

Surbhi Sharma

Student ID #: 144469

ssharm18@student.concordia.ab.ca

Advisor: Dr. Sergey Butakov

sergey.butakov@concordia.ab.ca

Department of Information Systems

Security Management

Concordia University of Edmonton,

Edmonton T5B 4E4, Alberta, Canada

Sanjana Mittal

Student ID #: 144509

smittal@student.concordia.ab.ca

Abstract— Software Defined Networks have a centralized

nature due to which the attackers may try to compromise them

to jeopardize the whole network security. The SDN controller

is the center point for connections between the applications

and the network, becomes the potential candidate for network

attacks such as man-in-the-middle, distributed denial of

service (DDoS) attacks. In this paper, the SDN infrastructure

is exposed to various DDoS attacks and then the results are

noted based on the severity of the attacks. In a nutshell, this

paper studies the potential security vulnerabilities of

unencrypted communication in the northbound and

southbound channels. The experiment's conclusion

established that a DDoS attack on one VLAN affected the

services of another VLAN. The VLANs were built to

segregate traffic without inter-VLAN contact, but the massive

amount of traffic produced by a DDoS attack on one VLAN

strained the controller's resources, delaying the response of

legal traffic from other VLANs and resulting in a Denial of

Service attack against that VLAN.

Keywords—Software Defined Network (SDN), Controller,

Northbound Interface (NBI), Southbound Interface (SBI),

Application Programming Interface (API), OpenFlow, Security

I. INTRODUCTION

Software-Defined Network (SDN) has started emerging
in the IT Industry. In traditional Networking, the hardware
and software are used to transfer the data across the switches
and routers, while Software Defined Networking segregates
the control plane-where the network is managed and the data
plane-where the traffic is directed through routers and
switches [1]. The controller has software installed to handle
and manage the network traffic that will route through a series
of switches and routers of the data center. Virtualizing the
SDN network helps to dynamically divide the traditional
overall network, dedicate a segment of the overall network to
a specific application, and apply specific security policies to
each network. SDN is more agile and manageable due to the
software-based controller and can adapt to multiple use cases.
The significant features of SDN are:

a) Microsegmentation to enhance Security:

Microsegmentation allows dividing the network and isolating

each of them securely such that if one of the networks is under

attack, others are safe. It provides security at a granular level

and more control over the network.

b) Centralized Control: SDN offers centralized control

to the data plane and application plane. It makes easy network

management of the physical and virtual resources from one

centrally controlled location. Network Administrators can

centrally manage the resources as per the security policies

and information[10].

c) Virtualization offering Agility: Virtualization

allows the developers to control the allocation of resources at

different locations, centrally from the SDN Controller.

d) Easy Programming of Networking Devices: In

SDN, the northbound interface allows the connections

between the controller and the various applications. The

programmable interface helps the developers directly

program the network devices, unlike the traditional network

where the devices are programmed with vendor-specific

configurations and protocols [2].

e) Less Deployment and Operational cost: In SDN,

switches, routers, and other networking devices are centrally

controlled and managed, reducing the overall setup,

maintenance, and operational cost.

f) SDN Cloud Abstraction: SDN can manage

networking components such as large data center platforms

[2]. SDN allows a greater level of automation in the cloud,

improving configuration, provisioning, and management.

A. SDN Architecture

Software-defined Networking segregates the data plane
and the centralized control plane for running multiple types of
applications. In a standard architecture, SDN is divided among
three different planes: Application Plane, Control Plane, and
Data Plane, as shown in figure 1 below. All the layers are
separated and isolated in this figure, but they interact using the
northbound and southbound interface. In the following

Page | 5

paragraphs of this section, SDN components have been briefly
discussed:

Figure 1: SDN Architecture and potential location of the attackers on the
interfaces

a) Data Plane: The data plane of the Software-Defined

Network is also referred to as the Forwarding Plane. It

includes network devices such as routers, bridges, switches,

etc., which are programmable and managed by the SDN

Controllers [3]. Instead of working as a vendor-specific

routing device, the software-based devices process and

forward the data traffic as per the OpenFlow controller’s

instructions.

b) Control Plane: The control plane is the intellect or

the processor of the Software-Defined Networking. Control

Plane controls both the data plane and application plane. It

manages the flow control in the networking devices through

Southbound Interface while managing its interaction with the

Controller through the Northbound Interface [3]. All the

functionality of the control plane is software-based, which

allows dynamic configuration and easy management. For

example, a network administrator can update flow table

entries of data packets through the centralized control without

making any changes at the individual switches. The

administrator can also prioritize or block certain data packets.

Almost all the SDN Control Plane offers various
networking services such as statistics management, routing
module, device management [3], firewall management, etc.

c) Application Plane: Application Plane is the external

interface that allows the communication between the

Application Layer and the other SDN Plane. The application

interacts with the networking devices bypassing their

requirements through the Northbound Interface [4].

Applications are also used to control, manage, manipulate,

and set the policies’ underlying physical and virtual network

devices. Additionally, it consists of applications utilizing the

network services such as Network Security, Access Control

Management, Load Balancing, Quality of Service, Traffic

Engineering, intrusion detection systems, virtualization

services [4], etc.

d) Northbound Interface: Northbound APIs are the

upper part of the SDN and communicate between the

controller and the application layer components [5]. It allows

the network provider to utilize the interface to build the SDN

or regain information using GUI or API. The northbound

API may be employed in multiple ways, like adding a brand

new VLAN on your switches, checking the topology,

automatically configuring the IP address, providing routing,

adding or deleting a virtual machine, etc. [6]. Northbound

API also allows an easy interaction of the SDN Controller

with the firewalls, load balancers, software-defined security

services, and cloud devices.

e) Southbound Interface: Southbound APIs are an

OpenFlow (or others such as Cisco OpFlex, CLI) protocol

specification used to communicate between the controllers

and data plane devices [5]. Open-Flow is the standard

Southbound interface that creates a secure channel between

the Open Flow Controller and Open Flow Switch [7]. It is a

Southbound API that can be more responsive to real-time

traffic demands and allows network administrators to remove

or add the network devices’ routing table entry [5].

The Southbound interface’s main challenge arises from
vendor-specific network devices [3], but it is managed
because of the open and standardized southbound API
interface.

f) East/Westbound Interface: East/West-bound

Interface is used to communicate among the distributed SDN

Controllers. It also monitors to ensure that the controllers are

up and working.

 The layout of a software-defined network is
conducive to innovation. Apart from SDN Controllers’
various benefits such as centralized control, easy network
device management, traffic engineering, and configuration, it
is vulnerable to security attacks. This paper has explored
various ways in which an SDN controller can be exploited
using DDoS(Distributed Denial of Service) attacks.

II. LITERATURE REVIEW

A. Security Issues related to SDN

Being the network’s processing unit, the SDN controller

enables the connection between the applications and network

devices and decides the flow and control of packets across the

data plane. Therefore, it becomes a potential candidate for a

security attack and can badly affect the network. There are

many vulnerabilities in the SDN controllers, such as weak

encryption, information disclosure, weak authentication, etc.

[12] , which leads to various attacks, including DoS, Spoofing,

Tampering, Elevation of Privileges, DDoS, etc.

 According to the literature review of various articles, the

security issues from which the SDN must be secured are as

follows:

a) Being a network service backbone, the control plane acts

as a vulnerable point in the SDN [13]. An attacker can

forge the victim’s IP address through network

monitoring to get trusted by a switch and embed

Page | 6

malicious code through loopholes to exploit the system

[14] to launch the DoS attack.

b) XML External Entity issue(XXE): Open Daylight stores

some configuration files in the controller related to the

southbound interface’s network devices. It is vulnerable

to an XML External Entity attack when the NETCONF

protocol is used [15]. This vulnerability can produce

information disclosure of those configuration files of the

controller [15].

c) SQL Injection Attack: In this attack, an attacker can SQL

inject the Open Daylight component database(SQL

Lite) without authenticating itself to the ODL controller

or interface application [16]. This attack can result in

information disclosure of sensitive data such as

passwords, SIN, statements, etc.

d) Forwarding Device Attack: In this attack, the malicious

entity generates excess traffic from the data plane

devices such as switches to overwhelm the controller

[17]. This can affect the communication between the

southbound, northbound interface, and the processes.

Also, this attack can overload the network resources with

the spoofed data packets and launch the DoS attack.

e) Information Disclosure and Tampering: SDN

Controllers have the possibility of information

disclosure due to the unencrypted channel between the

controller and applications in the northbound interface

[15]. It only uses HTTP instead of HTTPS for the

interactions. Moreover, the southbound interface

communication is also not encrypted using TLS [15].

This makes it vulnerable to information disclosure and

tampering.

f) Man in the middle attack (MitM): Most controllers are

vulnerable to the tampering of the data due to the

unsecured flow of data packets between the controller

and the northbound applications [18]. The attacker can

perform a simple ARP Spoofing, perform a MITM

attack, and alter the packets’ content to destroy the

unencrypted communication channel [15].

g) Spoofing: In SDN Controllers, spoofing is likely to

happen because of the absence of an authentication

mechanism in both the northbound and southbound

interface [15]. An attacker with a spoofed MAC address

similar to the real machine can alter the configuration

and attack the network [15]. Additionally, a controller

can accept a packet from a switch without performing

authentication on it.

h) Open Programmable API: On the controller’s NBI and

SBI, logging is default disabled while communication

between the APIs, controller, and switches. This weak

programmability feature of the SDN Controller has

possible repudiation chances to occur [19].

B. DoS/DDoS attacks on the controllers and their

protection

DOS/DDOS attacks are the most challenging threats to any

organization’s network. Attackers attempt this type of attack

in multiple ways to make the network services unavailable by

choking links, overwhelming servers, and flooding the buffer

of network devices with illegitimate traffic.

 In this section, DoS/DDoS attacks on the SDN

controllers and their protection measures have been discussed.

According to the literature review of various research papers,

the following are the types of DDOS attacks on the controller:

a) Flooding Packet-in message: Packet-in messages are

used by the virtual switch to get the new packet controller’s

flow rule. The attacker floods the multiple packets to switch

with a spoofed IP address, which forces the switch to send the

flow rule request in bulk and makes the controller busy to

entertain the fake flow requests[11]. This denial of service

attack is carried on the virtual switch, but it affects the

controller due to centralized control.

b) Saturating Controller: The Controller creates a queue

to cater to the multiple flow request, but an attacker generates

numerous fake packets, which results in degrading the

controller performance by utilizing the controller resources

[12].

c) Southbound API’s Congestion: Virtual switch always

sends some part of the packet along with packet-in messages

to a controller for the new rule. Once the switch buffer gets

full, it sends the entire packet with a packet-in message to the

controller via southbound API. An attacker could generate the

fake flows to switch, and due to the full buffer switch forwards

the huge packets over single links, this could create congestion

by utilizing the bandwidth and makes it unavailable [13]. This

attack makes the southbound interface unavailable, which

breaks the connection between the controller and data plane

devices.

In this section, the protection mechanism on the

northbound and southbound interface has been discussed,

capable of mitigating the potential causes that can create the

DoS/DDoS attack scenario. SDN Controllers can be protected

from the DoS/DDoS attacks in the following ways:

a) Protection mechanism on the northbound Interface:

The SDN controller combines with the application plane to

form a Northbound Interface to enable interaction of

applications with the controller and data plane devices.

However, Northbound APIs are vulnerable to malicious

intrusion due to the connectivity to the application plane. The

architecture of Northbound APIs could be created using a

variety of different technologies and programming

languages. The vulnerability of such programming languages

will be carried forward and acts as a potential for malicious

activity on the controller. In other cases, an attacker might

create their policies by exploiting a vulnerability of

northbound API and gain control of the SDN environment.

Some of the protection mechanisms against DoS/DDoS

attacks that can be implemented on the Northbound interface

of the SDN are as follows:

• Entropy: An SDN controller can control the entropy and

bandwidth of each packet passing through it [20]. The

author suggests using entropy to evaluate traffic and

enforce mitigation strategies. It will help the controller to

filter out the malicious user and restrict them.

• OAuth: It is used as an authentication framework in the

SDN controller northbound interface utilizing the tokens

Page | 7

and the authorization [21]. An authentication server is a

mechanism where the API key and secret are exchanged

for an access token, and the user is not involved in the

authentication process. The access token is an identifier

dependent on the network policy.

• The third-party installation: Tools such as iftop are used

to evaluate the incoming data packets’ bandwidth with

the conditions of a DDoS attack [22]. The device shows

how long an attacker can launch a DDoS attack [22].

Hence, using these kinds of third-party tools restricts

network access to the network, preventing an intruder

from gaining access to the server.

• Self-Signed Certificates: In this case, the controller

requires a legitimate server certificate called the database

certificate [23]. The controller is signing a certificate, and

the certificate authority is signing it (CA), which

ultimately enhance the integrity and prevent the DDoS

attack.

• The northbound interface can prevent the DoS attack

using Rate Limiting, Event Filtering, Packet Dropping,

Rule Timeout adjustment, etc. [19]. It can also be

managed by implementing an authentication mechanism

at the application interface.

• Defense4All: In ODL, the Defense4All mechanism can

remove the threat of denial of service in the controller

[15]. It secures the northbound, southbound processes

and data from the network attacks.

b) Protection mechanism on the Southbound Interface:

Southbound interfaces ensure how the data plane should

exchange information with the SDN controller to adjust the

network. The OpenFlow needs the channel between

controllers and switches to be secured using TLS. This invites

vulnerabilities as it opens the security holes. In SDN, the

Southbound Application interface is necessary to get the

control plane’s instruction to forward the data plane devices’

packets. However, the attacker could exploit Southbound

APIs’ vulnerabilities or data plane devices to attack and make

it unavailable. Also, the switch buffer could be flooded by

fake traffic generated by an attacker to saturate the buffer

memory and flood the entire packet to the controller from the

southbound interface [13]. This attack raises a communication

issue in the southbound interface.

The security keys against DoS attacks in the SDN architecture

from the southbound interface is as follows:

• AVANT-GUARD: It is an SDN key solution against DoS

attacks in the framework where the attacker uses a

spoofed IP address[18]. It defends against the saturation

of controller and communication overhead in the

Southbound interface. It solves the issues by limiting the

interaction between the data plane and control plane with

the connection migration module’s help. Another

module, Actuating trigger, is implemented on data plane

devices to collect packet and network information.

• Another author in the article [19] also addresses the

communication overhead in a southbound interface by

implementing a 3-phase solution called state sec. This

solution is implemented on the switch is used to detect

and mitigate the DOS/DDOS attacks. Those three steps

are as follows:

a) Monitoring: In this step, the switch uses stateful

programming to monitor the traffic based on the port

number and IP address of both source and destination.

b) Detection: In this step, traffic is being analyzed to

differentiate between fake and legitimate traffic by

detecting anomalies with an entropy-based algorithm.

c) Mitigation: Rate-limiting is being used to mitigate the

attack after detecting the anomaly in the traffic.

The SDN is always the key target for the attackers

because it is the primary point for decisions in a network and

a primary point of failure. Hence, security is the main aspect

to be considered. The above sections clearly state the

vulnerabilities that are bringing down the unlimited benefits

of SDN. SDN is beneficial in removing multiple layers of a

firewall with just one layer but, on the other hand, also exposes

layers of susceptible network skin ripe to attack. To protect

the attacks, reducing the exposures by hardening the

controllers and protocols will be a short-lived solution, but

understanding the vulnerabilities and applying a security layer

will reduce most of the attacks.

Additionally, it is essential for the SDN controller’s

security to fend off malicious attacks and unintentional

changes. Therefore, this practical research will contribute to

the existing knowledge base around the technology and

improve SDN controller security aspects. This improvement

would encourage more extensive use of the technology in

cloud computing, wide area networks, mobile and wireless

technologies. Specifically, the research’s security

recommendations will help the organizations securely manage

the controllers and quickly respond to evolving business

requirements. Thus, this research will provide a clear view of

helping Canadian IT, mobile Networking, and small

businesses achieve efficiency, scalability, agility, less

operating and implementation cost, and enhanced

configurations for network management.

III. EXPERIMENTAL SETUP

A. Methodology

This research emphasizes the experimental and studies
analysis of the vulnerabilities of SDN controllers. While
conducting the analysis, the existing SDN Controllers’
backdoors have been discovered and exploited to implement
the Denial-of-Service attack successfully. The exploitation of
these backdoors helped to measure the impact of the attack on
an SDN controller with the VPN, VLAN and an encrypted
communication channel. Moreover, the performance of the
SDN Controller under the DoS attack has been calculated and
analyzed. The following methodology has been followed:

Step 1: After analyzing various available resources related to
SDN vulnerabilities, a testbed is created for performing the
experimental research. It consists of multiple virtual machines
based on the Ubuntu OS platform having an ODL controller
(https://docs.opendaylight.org/en/latest/downloads.html),

Page | 8

mininet (http://mininet.org/download/), and two attackers in
action. Rapid Access cloud (https://rac-
portal.cybera.ca/users/sign_in) is used to host all the machines
in an isolated manner.

Step 2: In this research, a self-signed certificate is
implemented on the ODL server to ensure that the northbound
communication channel is encrypted. Additionally, the
VLAN and VPN are also implemented to add an advanced
security layer to the infrastructure.

Step 3: ODL controller is bombarded with an excess of
requests from the attacker's virtual machines. Cbench and
Apache benchmarking tools have been used to measure the
effectiveness and throughput of the DoS attack.

B. Experiment

In this research, DDoS attacks have been performed on

the OpenDayLight(ODL) controller using standard testing

tools such as hping3, LOIC & Scapy Script Attack. Moreover,

the Cbench has been used to generate traffic across the victims

and the attackers. Usually, numerous hosts and massive

topology is required to launch the DoS attack on the victim.

However, in contrast to the real-world attacks, this research

project deliberately involved a less complicated topology in

studying and analyzing the DoS attack’s impact on SDN. As

a controller, OpenFlow-based ODL has been used due to its

programmability and adaptive features.

Step 1: Implementing security at ODL

In SDN architecture, the controller is the central unit that

manages the entire operations in a software-defined network.

The controller consists of several northbound and Southbound

API to manage the network, so implementing security to the

controller is at most priority.

• The one way to secure the controller is by securing access

to it. In our test environment, HTTPS has been

implemented in the ODL controller using Java Keystore

to ensure secure access to the API’s and controller. Java

Keystore is a container of Security certificates, mainly

consist of authorization or public-key certificates. The

Java-based application uses Java Keystore for encryption

and authentication over HTTPS. Due to Java-based

environment, Keystroke has been used as the solution to

protect the controller access along with the self-signed

certificate and HTTPS 8443. Once the certificate is

created, HTTPS is enabled and a path to Keystore is

provided. After that, the ODL controller is run in the web

browser with (https://(controller

IP):8443/index.html#/login). After running the above

command, click on accept and add the certificate

After accepting the risk, a login window will prompt

and log in to the device securely with the given password

and username.

• Network segmentation in the ODL network also enhances

security by limiting the attacks like DDOS to one network

without affecting the other. One of the ways to achieve

network segmentation is through VLAN (virtual local

area network). VLAN allows a network admin to put a

host in multiple broadcast domains which restricts the

host from different broadcast domains to communicate

with each other. In this ODL controller, python code is

created using Southbound API like Netconf, mininet to

create VLAN on switches and control them by the ODL

controller. After the installation, 6 hosts were configured

in the two different VLANs, and connectivity was tested.

The test results showed that the host h1, h3 and h5 of

VLAN 200 are not able to reach the host h2, h4 and h6 of

VLAN 300. Hosts of VLAN 200 and 300 were not able

to pass traffic between each other (ping) as Figure 2

shows.

Figure 2: Ping response from the host in different VLAN.

Later, an attack was initiated in the first VLAN network

to test whether it has any effect on another VLAN

network.

Step 2: Attacking procedures

a) Hping3: Hping3 is a packet generator and TCP/IP

analyzer used to simulate the DoS attack on the SDN

controller [8]. This penetration tool has been used to create

TCP SYN flood on the ODL web server. In this DDoS attack,

the following hping3 attributes are used: -c (packet count), -

S(SYN packets), -p(Port Number),-w(winsize(default 64)), -

i(wait interval).

Figure 3: Network Topology for SYN flood attack using hping3

Attack Description: In this attack, CBench has created some

fake switches that can send fake IP packets to the target

controller IP address. It is a benchmarking tool designed to

estimate the performance of OpenFlow SDN controllers.

Simultaneously, the hping3 command has been used from the

attacker machine to bombard the TCP packet’s target

Page | 9

controller. This tool helps to simulate a DDoS attack on the

ODL Controller by affecting the bandwidth and increasing the

response time.

b) LOIC Attack: Another penetration tool used for

network stress testing and denial of service and distributed

denial of service (DDoS) attacks. DDoS attacks use this tool

to overwhelm an attacker’s target’s network with junk TCP,

UDP, and HTTP request GETs. [9]

Figure 4: Network Topology for LOIC attack

Attack Description: Attack simulation can be launched by first

entering the IP or URL into LOIC, indicating a TCP, UDP, or

HTTP flood. The TCP and UDP flood modes may send

packets to various ports, while the HTTP flood mode sends a

continuous stream of GET requests. LOIC builds connections

to the targeted server and then bombards the server with

requests until the server becomes overwhelmed and cannot

respond to legitimate requests. It must be remembered that

LOIC users cannot route traffic through proxies. Due to their

IP addresses being readily available, they are easily traceable

[9].

c) Scapy script Attack: Scapy is software used for

sniffing, sending, forging, and spoofing. Scapy is a powerful

tool used to decipher several protocols, manipulate packets on

the network, and send them to the network and receive

responses. Scapy has many advantages over other network

analysis methods. Using Scapy to construct a raw packet will

take less time than writing equivalent code in C. The Scapy

tool acts on matching packets and unmatched packets. It can

also be used to execute ARP poisoning and many other attacks

[10].

Scapy has been used to construct a TCP packet with the

destination port equal to 6653, and all the other parameters

were left unchanged. The / operator is used to connect

different protocol sublayers. On top of IP, TCP is also stacked

on top of an Ethernet. Subsequently, the generated packet is

printed in the shell. Other important functions are:

d) Fragmentation script Attack using scapy: Many

computers fall for this attack because they are configured to

accept packets of 65,535 bytes, which exceeds the maximum

IPv4 limit, though the attacker-defined packet size.

Next, Start the packet sniff for the victim virtual machine and

maintain a continuous transmission of 65,565-byte fragments.

Now, conduct an overview of the packet summaries present

on the victim virtual machine. If the packet is sent in its

entirety, then no overflow would occur, but the device could

crash if the target machine reassembled it.

Step 3: Results

As a result of the scapy attack, the packets captured at the

victim's computer are not able to reassemble. Consequently, it

results in data packets colliding rapidly and overloading the

victim’s servers, causing them to fail.

Similarly, in the LOIC/scapy attack, the victim

server is overwhelmed and made unavailable. There are two

types of LOIC attacks: the TCP and UDP designs spread

messages and packets along specified channels, while the

HTTP flood type floods multiple HTTP requests into the

target’s system. With a scapy attack, the victim’s computer is

bombarded with an infinity of GET requests.

After generating the floods, Apache benchmarking

tool was used to measure the performance of ODL with a

workload of 16-20 switches. To calculate the performance,

measurements were taken before and after every LOIC attack

(TCP, UDP, HTTP) as shown in the graphs.

Figure 5: workload of 16 switches without DDoS attack

Figure 6: workload of 16 switches with DDoS attack

As security is critical to the operation of any

electronic system or network. ODL is no exception; similarly,

there will be a security breach if there is no security in our

experimental setup. Therefore, firstly an SSL certificate was

implemented on the ODL and the benchmark was measured

as soon as possible without the DDoS attack, as shown in

Figures 5 & 7, where TCP and UDP exhibit greater more

milliseconds to complete the request than HTTP, as fig 5

indicates that it took approximately 18ms to complete 50% of

0

10

20

30

40

50

60

70

50% 66% 75% 80% 90% 95% 98% 99% 100%

16 Switch

tcp udp http

0

200

400

600

800

1000

1200

1400

1600

50% 66% 75% 80% 90% 95% 98% 99% 100%

16 switch

tcp udp http

m
ill

is
ec

o
n

d
s

m
ill

is
ec

o
n

d
s

Percentage of Request Completed

Percentage of Request Completed

Page | 10

requests. It increased by approximately 60ms to complete 100

percent of the request. The next step was to attack the ODL

with TCP, UDP, and HTTP requests using the LOIC attack

tool, as illustrated in fig 6. Following the attack, UDP and

HTTP required more milliseconds to complete 100% of the

request than TCP.

Figure 7: workload of 20 switches without DDoS attack

Figure 8: workload of 20 switches with DDoS attack

 As an outcome of the results, it was determined that

DDoS attacks are still thriving after implementing SSL, but at

least there is a confidentiality provision.

Numerous DDoS defense mechanisms based on

SDN include mitigation strategies. Dumping packets,

restricting ports, and rerouting traffic are all frequently used

control measures in SDN. There are more controls like

changing the IP and MAC Address implementing VPN and

VLAN for secure communication. While for Faster mitigation

dumping packets or restricting the port is best because it

simple and can completely stop the attack source. To get a

sense of the DDoS defense mechanisms previously

mentioned, all of them are dedicated to computing a base level

threshold that acts as a baseline for attack detection.

In modern-day data centers, they are various

applications with different requirements for networks and

services. Specific critical applications, for example, have

stringent uptime and availability requirements. As in the case

of these applications, rapid detection of an attack is critical.

Some applications have uptime requirements that are pretty

low in comparison. The applications in this class can tolerate

some network latency and tolerate a high rate of false

positives, resulting in service denial to legitimate users. The

existence of diverse applications requiring customizable

solutions that respond to attack threats all come together to

make it a requirement for a large-scale data center to include

many applications and an array of varying levels of security

sensitivity.

e) DDoS attack in Segmented network: Vlans are implemented
to limit the access to a certain group which improves the
security, performance and flexibility. The same concept is
implemented in an SDN network to test the performance and
security of the controller by attacking the host on one VLAN
and monitor the impact on another.

The test environment is created in mininet and the topology
used is shown in figure 10.

 Figure 9: VLAN attack topology

As shown in figure 9., multiple hosts are placed in VLAN 200
and 300. The ping response and packet drops between the
hosts of VLAN 200 have also been tested before initiating the
attack in VLAN 300. In the results, good ping response and
no packet drops between the hosts of VLAN 200 can be seen.
The same can be seen in figure 10 and figure 11.

Figure 10: Low latency and no packet loss between H1 and H3 (Before

attack)

Figure 11: Low latency and no packet loss between H1 and H5 (Before

attack)

After successful ping results and latency tests between the
hosts in VLAN 200, DDos attack was initiated in VLAN 300
by making H2 as a victim and H4 and H6 as the attackers.
Hping3 was used in hosts H4 and H6 to generate the traffic
with random source IP address, which started sending large
packets towards the H2. Due to no existing flows in the switch,
the packets were forwarded to the controller by the switch to
get the flows for forwarding the packets destined towards H2.

0

5

10

15

20

25

30

35

50% 66% 75% 80% 90% 95% 98% 99% 100%

20 switch before attack

tcp udp http

0

500

1000

1500

2000

2500

3000

3500

4000

4500

50% 66% 75% 80% 90% 95% 98% 99% 100%

20 switch after attack

tcp udp http

m
ill

is
ec

o
n

d
s

m
ill

is
ec

o
n

d
s

Percentage of Request Completed

Percentage of Request Completed

Page | 11

Attack was underway and the reachability of hosts in VLAN
200 was checked and packet loss with high latency was found.
The same can be seen in figure 12 and figure 13.

Figure 12: High latency and packet loss between H1 and H5 (After attack)

Figure 13: High latency and packet loss between H1 and H3 (After attack)

Before and after attack results are shown above in Figures 10,
11,12 and 13 proved that the attack on VLAN 300 impacted
the reachability of hosts in VLAN 200. The final test of pingall
showed the significant packet loss in the SDN environment
with the host deployed in multiple VLANs. The same VLAN
hosts can ping each other. The same can be seen in figure
14(a).

Figure 14 (a): Before the attack (same VLAN hosts successfully ping each

other)

Figure 14 (b): After the attack (Packet loss between all VLAN hosts)

 The final results of this experiment proved that the DDoS
attack in one VLAN impacted the services of other VLAN.
VLAN was created to segment the traffic with no intervlan
communication but huge traffic generated through DDoS
attack in one VLAN exhausted the resources of the controller,
which delayed the response of legitimate traffic from other
VLANs and results in Denial of Service for that VLAN.

IV. CONCLUSION

In this paper, experimental evaluation has been performed to

measure the throughput and latency of the Software-defined

Network Controller when it is under DDoS attacks.

 This experiment was conducted in two modules,

without any security implementation on the communication

channel and with security implementation at the

communication channel. In both cases, multiple switches

were used to overwhelm the controller with multiple requests.

 The results of the experiment showed that

implementing a security layer at the communication layer and

adding a VLAN between the controller and the data plane was

able to detect and reduce the possibility of DDoS attacks. It

was demonstrated by conducting various DDoS attacks such

as TCP flood, UDP, and HTTP floods using the LOIC attack

tool in a controlled environment. These floods at different

paces overwhelmed the controller and impacted the

processing of the requests at a greater rate. However, the

controller with the secure communication layer performed

better with higher throughput and lower latency as compared

to the controller without it.

 Overall, OpenDayLight Controller showed a lower

throughput and higher latency when a DDoS attack was

performed. However, it also showed that the SDN

architecture can perform better in terms of confidentiality

when it has a proper security method implementation such as

SSL layer, VLAN, and VPN. In the future, the research may

be extended to focus on more advanced security mechanisms

for the SDN controller which can prevent DDoS attacks to a

greater extent.

V. REFERENCES

[1] I. TechTalk, What is Software Defined Networking,

2017.

[2] I. Services, "SDN versus Traditional Networking,"

2019.

[3] Z. Latif, K. Sharif, F. Li, M. M. Karim and Y. Wang,

"A Comprehensive Survey of Interface Protocols for

Software Defined Networks," Journal of Network and

Computer Applications, vol. 156, 2020.

[4] D. B. Hoang and M. Pham, "On Software defined

Networking and the design of SDN Controllers".

[5] Admin, "Southbound vs Northbound SDN: What are

the differences?," 17 02 2020. [Online]. Available:

https://www.webwerks.in/blogs/southbound-vs-

northbound-sdn-what-are-differences.

[6] "SDN Northbound interfaces (NBI) and Southbound

interfaces (SBI)," February 2017. [Online]. Available:

https://netfv.wordpress.com/2017/02/13/sdn-

northbound-interfaces-nbi-and-southbound-interfaces-

sbi/.

[7] O. Blial, M. B. Mamoun and R. Benaini, "An

Overview of SDN Architectures with mulitple SDN

Controller," Journal of Computer Networks and

Communications, vol. 2016, no. 9396525, p. 8.

[8] N. A. Aziz, T. Mantoro, M. A. Khairudin and A. F. b.

A. Murshid, "Software Defined Networking (SDN)

and its Security Issues," 4th International Conference

on Computing, Engineering, and Design (ICCED),

2018.

[9] B. Lin, X. Z. Ding and Zhiguo, "Research on the

Vulnerability of Software Defined Network,"

Page | 12

Advances in Engineering Research (AER), vol. 148, p.

8, 2017.

[10] N. Hoque, M. Bhuyan, H., R. Baishya, D.

Bhattacharyya and J. Kalita, "Network attacks:

taxonomy，tools and systems.," Journal of Network

and Computer Applications, Vols. 307-324, p. 18,

2014.

[11] R. K. Arbettu, R. Khondoker, K. Bayarou and F.

Weber, "Security Analysis of OpenDaylight, ONOS,

Rosemary and Ryu SDN Controllers," IEEE, pp. 39-

42, 2016.

[12] "Opendaylight : Security Vulnerabilities," CVE, 2018.

[Online]. Available:

https://www.cvedetails.com/vulnerability-

list/vendor_id-13628/Opendaylight.html.

[13] M. Iqbal, F. Iqbal, F. Mohsin, D. M. Rizwan and D. F.

Ahmad, "Security Issues in Software Defined

Networking(SDN): Risks, Challenges and Potential

Solutions," (IJACSA) International Journal of

Advanced Computer Science and Applications, vol.

10, 2019.

[14] A. Sebbar, M. Boulmalf, M. D. E.-C. E. Kettani and

Y. Baddi, "Detection MITM Attack in Multi-SDN

Controller," IEEE 5th International Congress on

Information Science and Technology (CiSt), 2018.

[15] Q. Ilyas, "Security Analysis of FloodLight, ZeroSDN,

Beacon and POX SDN Controllers," in SDN and NFV

Security, 2018, pp. 85-98.

[16] J. Galeano-Brajones, j. Carmona-Murillo, J. F.

Valenzuela-Valdés and F. Luna-Valero,

"ncbi.nlm.nih.gov," MDPI, Basel, Switzerland, 3 2

2020. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038

683/.

[17] Y. E. Oktian, S. Lee, H. Lee and J. Lam, "Secure your

Northbound SDN API," IEEE, vol.

10.1109/ICUFN.2015.7182679, p. 2, 10 August 2015.

[18] R. M. Thomas and D. James, "DDOS detection and

denial using third party application in SDN," IEEE,

vol. 10.1109/ICECDS.2017.8390193, p. 6, 2018.

[19] C. Banse and S. Rangarajan, "A Secure Northbound

Interface for SDN Applications," IEEE, vol.

10.1109/Trustcom.2015.454, pp. 834-839, 2015.

[20] O. Polat and H. Polat, "The effects of DoS attacks on

ODL and POX SDN controllers," 8th International

Conference on Information Technology (ICIT), 2017.

[21] N. S. Team, "What Is the Low Orbit Ion Cannon

(LOIC)?," netsparker, 24 July 2019. [Online].

Available: https://www.netsparker.com/blog/web-

security/low-orbit-ion-cannon/.

[22] A. Bidaj, "Security Testing SDN Controllers,"

Aaltodoc "http://urn.fi/URN:NBN:fi:aalto-

201608263040", p. 6+61, 2016-07-29.

[23] B. Golden, Virtualization for Dummies, Wiley

Publishing, Inc., 2007.

[24] K. Benzekki, A. E. Fergougui and A. E. Elalaoui,

"Software‐defined networking (SDN): a survey,"

Wiley Online Library, no.

https://doi.org/10.1002/sec.1737, 04 03 2017.

[25] A. Shaghaghi, M. A. Kaafa, R. Buyya and S. Jha,

"Software-Defined Network (SDN) Data Plane

Security: Issues,," Cluster Computing Journal, p. 24,

2018.

[26] S. Scott-Hayward, G. O'Callaghan and S. Sezer,

"SDN security: A survey," IEEE, 2013.

[27] "Open Networking Foundation Formed to Speed

Network Innovation," Open Networking Foundation,

30 12 2020. [Online]. Available:

https://web.archive.org/web/20110326024026/http://

www.opennetworkingfoundation.org/?p=7. [Accessed

01 03 2021].

[28] M. Gozani, Network Virtualization For Dummies®,

VMware Special Edition, John Wiley & Sons, Inc.,

2016.

[29] "Network Functions Virtualisation (NFV)," ETSI, 16

02 2021. [Online]. Available:

https://www.etsi.org/technologies/nfv. [Accessed 02

03 2021].

[30] P. Goransson, C. Black and T. Culver, "Genesis of

SDN," 2017.

[31] Pradeepa.R and Pushpalatha.M, "Exploring Attack

vectors and Security," International Journal of

Innovative Technology and Exploring Engineering

(IJITEE), vol. 8, no. 11, p. 5, 2019.

[32] S. M. Mousavi, "Early detection of DDoS attacks in

software defined networks controller.," IEEE, no.

Diss. Carleton University,, 2014..

[33] C. Kolias, G. Kambourakis, A. Stavrou and J. Voas,

"DDoS in the IoT: Mirai and other botnets.,"

Computer , vol. 50, pp. 80-84, 2017.

[34] "Brief History of Virtualization," Oracle.com,

[Online]. Available:

https://docs.oracle.com/cd/E26996_01/E18549/html/

VMUSG1010.html. [Accessed 20 03 2021].

[35] S. Singh and S. K. V. Jayakumar, "A Study on

Various Attacks and Detection Methodologies in

Software Defined Networks,"

https://doi.org/10.1007/s11277-020-07387-y, vol.

114, no. 1, pp. 675-697, 2020/09/01.

[36] C. Banse and S. Rangarajan, "A Secure Northbound

Interface for SDN Applications," IEEE, no. DOI

10.1109, pp. 834-839, 2015.

[37] J. Haasz, "802.1D-1990 - Standard for Local and

Metropolitan Area Networks: Media Access Control

(MAC) Bridges," IEEE, 31 05 1990.

