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Abstract

A lookahead branch-and-bound algorithm is proposed for solving the Maximum Quartet Consistency
Problem where the input is a complete set of quartets on the taxa and the goal is to construct a phylogeny
which satisfies the maximum number of given quartets. Such a phylogeny constructed from quartets
has many advantages over phylogenies constructed through other ways, one of which is that it is able
to overcome the data disparity problem. Nonetheless, the MQC problem has been proven to be NP-
hard. The branch-and-bound algorithm integrates a number of previous efforts on exact algorithms,
heuristics, and approximation algorithms for the MQC problem, and a few improved search techniques,
especially a lookahead scheme, to solve the problem optimally. The theoretical running time analysis
of the algorithm is provided, and an extensive simulation study has been well designed to compare the
algorithm to previous existing exact algorithms and a best heuristics Hypercleaning. The experimental
results on both synthetic and real datasets show that the proposed algorithm outperformed other exact
algorithms, and it was competitive to Hypercleaning on many datasets.

1 Introduction

With the availability of more and more genomic data, there are more needs in fast phylogenetic analysis
to facilitate biological applications. As a concrete example, the Influenza Sequence Database (http:
//www.flu.lanl.gov/) has a deposit of about 5318 whole genomes for Avian Influenza viruses as of
January 16, 2005. The phylogenetic analysis on these viruses at both the chronological level and the
territorial level to carry out the evolutionary relationships is crucial to fast understanding of the emergence
of new variants and fast vaccination strategy design. There are a number of models as well as algorithms
that have been proposed for the phylogenetic analysis, each usually assumes the same amount of biological
data associated with every taxon under investigation. In practice, however, the data disparity problem
exists which means the availability of biological data for analysis is different for every taxon. This data
disparity problem either makes the phylogenetic analysis to use a much less amount of (but common) data
for all taxa or limits the phylogenetic analysis to consider a less amount of taxa. Subsequently, it raises
the question of how confident we should trust the analytical results that might be obtained using different
data for different subsets of taxa. One way of resolving this issue is to use different phylogenetic analysis
methods to handle different subsets of taxa where the methods find most applicable, and then to assemble a
global phylogenetic pattern out of the achieved sub-patterns for the subsets. The promise of this approach
is that, since every piece of phylogenetic analysis on subsets is of high confidence, the global analytical
results must also be of high confidence, though there might be needs to resolve potential conflicts among
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the sub-patterns for subsets. The quartet-based phylogeny construction methods can be classified into
such efforts to construct a (global) phylogeny for a set of taxa associated with different biological data.

1.1 Quartet-Based Phylogeny Construction

In our discussion of phylogeny construction for a set of taxa, the phylogeny is an unrooted binary tree whose
leaves bijectively map to the set of taxa and every internal node in the tree has degree 3. In quartet-based
phylogeny construction methods, researchers try to build a phylogeny for every (or most) subset of 4 taxa
— called a quartet topology or simply a quartet, and then assemble a global phylogeny for the whole set of
taxa to satisfy all the quartets that have been built, or if not at all possible, to satisfy as many of them
as possible. In the weighted version, which is not discussed in this paper, every quartet would be assigned
a weight and the global phylogeny is expected to satisfy a maximum weight set of quartets. For a set of
4 taxa, there are 3 possible phylogenies or quartets associated with it. For example, Figure 1 shows the 3
quartets for a 4-taxa set {s1, s2, s3, s4}. For simplicity, we use [s1, s2|s3, s4] to denote the quartet in which
the path connecting s1 and s2 doesn’t intersect the path connecting s3 and s4, as shown in Figure 1(a).
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Figure 1: Three possible quartets for 4-taxa set {s1, s2, s3, s4}: (a) [s1, s2|s3, s4], (b) [s1, s3|s2, s4], and (c)
[s1, s4|s2, s3].

Given a phylogeny T for a set of taxa S, for every subset X of 4 taxa, we can derive a quartet for
X by computing the induced subtree of T on X. Such a set of

(n
4

)
induced quartets is denoted as QT .

Conversely, given a set Q of quartets (which can be built by various quartet inference approaches), for
every subset of 4 taxa, Q contains at most one quartet for it (i.e. no ambiguity). If there exists one global
phylogeny T for S such that a quartet q ∈ Q for a subset of 4 taxa is the same as the one derived from T ,
then T satisfies q or q is consistent with T . If there exists one global phylogeny T satisfying all quartets
in Q, i.e. Q = QT , then Q is compatible and T is the phylogeny associated with Q.

The recognition problem, called the Quartet Compatibility Problem (QCP), is to determine whether a
given set Q of quartets on a set of taxa S is compatible or not, or equivalently if there is a phylogeny T
on S satisfying all the quartets in Q. If Q contains exactly one quartet for every subset of 4 taxa, then Q
is complete; Otherwise, Q is incomplete. It has been known that when Q is complete, the QCP problem
can be answered in O(n4) time, where n is the size of taxa set S; furthermore, if Q is compatible, then the
associated phylogeny T is unique and can be constructed within the same time [7]. The situation changes
when Q is incomplete, where the recognition problem becomes NP-complete [13].

The more interesting computational problem is the optimization problem where Q (either complete
or incomplete, but in this paper we consider the complete case) is not compatible and the goal is to
construct a phylogeny to satisfy as many quartets as possible. This is the so-called Maximum Quartet
Consistency Problem (MQC). A dual minimization problem to the MQC problem, the Minimum Quartet
Inconsistency Problem (MQI), where the input is the same, is to construct a phylogeny to minimize the
number of inconsistent quartets. Despite the fact that the MQC and the MQI problems have the same
optimal solution(s), their approximabilities differ a lot. The MQC problem is NP-hard [3] and it admits a
Polynomial Time Approximation Scheme (PTAS) [11]; The MQI problem is NP-hard [3] too but the best
approximation ratio so far is O(n2) where n is the size of taxa set [10].
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A few attempts have been made to solve the MQC/MQI problem optimally. Ben-Dor et al. [2]
presents a dynamic programming algorithm that evaluates the number of quartets that are consistent
with a bipartition of the taxa set and thereby determines a phylogeny to satisfy the maximum number of
quartets. The running time of the algorithm is O(3nn4). The inconsistent quartets with a bipartition are
referred to as quartet errors (across the bipartition), which are subject to be determined and changed in
order to be compatible to other quartets. If the number of quartet errors is known ahead of time, then
the fixed-parameter algorithm proposed by Gramm and Niedermeier [8], which for simplicity is referred to
as the GN algorithm subsequently, would be able to detect and correct them, and to return an associated
phylogeny. The GN algorithm has a running time O(4kn + n4), where k is the number of quartet errors.
We note that the algorithm could be modified to solve the general MQC/MQI problem where the number
of quartet errors is unknown. In fact, the branch-and-bound algorithm we developed in this paper takes
advantage of many technical steps in the GN algorithm, and many technical steps in another exact algorithm
for solving the MQC/MQI problem through Constraint Programming, which we developed in a previous
work [14].

To get good bounds for speedup in our branch-and-bound algorithm, we review in the following a few
heuristics and approximation algorithms that have been designed for the MQC problem and/or the MQI
problem. We choose to review only those that are directly useful in our algorithm, while the interested
readers may refer to [8] and its reference list for more information. One approach to make Q compatible
by changing some quartet topologies is quartet cleaning which tries to detect and correct obvious quartet
errors according to some rules [4, 3, 6, 9, 11]. There are edge and vertex quartet cleaning, as well as global
and local cleaning algorithms. An edge in a phylogeny one-to-one corresponds to a bipartition of the taxa
set. Given a bipartition (X, Y ) of the taxa set with |X| ≥ 2 and |Y | ≥ 2, define Q(X,Y ) to be the set of
quartets in the form of [x, x′|y, y′] where x, x′ ∈ X and y, y′ ∈ Y . If the quartet q ∈ Q for the 4 taxa
subset {x, x′, y, y′} is not [x, x′|y, y′], then q is a quartet error across the bipartition (X,Y ) (or across the
edge) [3]. Global quartet cleaning algorithms correct quartet errors only if the number of quartet errors
is bounded for every edge (or vertex). Local cleaning algorithms correct quartet errors when the number
of quartet errors is bounded (even only) for one edge (or vertex). Della Vedova and Wareham [6] provide
an overview of quartet cleaning results. The global edge quartet cleaning algorithm given by Berry et al.
[3] computes the optimal phylogeny if, for every edge e inducing a bipartition (Ae, Be), there are fewer
than (|Ae| − 1)(|Be| − 1)/2 quartet errors across edge e. Note that this value is minimal for |Ae| = 2
and |Be| = n − 2 and, therefore, the cleaning algorithm computes a guaranteed optimal solution if the
total number of quartet errors is smaller than (n− 3)/2 [3, 8]. The heuristics hypercleaning developed by
Bryant et al. [4] is an extension of the quartet cleaning methods. Given a bipartition (X, Y ) of the taxa
set S, the normalized distance from Q to (X, Y ) is defined as δ(Q, (X, Y )) = 4|Q(X,Y )−Q|

|X|(|X|−1)|Y |(|Y |−1) , which
basically measures the extent of disagreement of Q if edge (X, Y ) is included in the output phylogeny. The
hypercleaning algorithm computes the following sets of bipartitions in order

Best(Q,m) =
{

(X, Y ) | δ(Q, (X, Y )) ≤ 2m

|X||Y |
}

, m = 0, 1, 2, . . .

It has been shown that bipartitions, corresponding to edges, in Best(Q, 0) and Best(Q, 1) are always
compatible to each other, while bipartitions from Best(Q,m) with greater values of m might not be
compatible with bipartitions in Best(Q, 0) and Best(Q, 1). The hypercleaning algorithm uses bipartitions
in Best(Q, 0) and Best(Q, 1) to form a base set of edges in the final phylogeny and tries to add bipartitions
in Best(Q, 2) to it greedily to grow the phylogeny, and if not done then tries to add bipartitions in Best(Q, 3)
to it greedily to grow the phylogeny, and so on, till a phylogeny is formed. The overall running time of
the hypercleaning algorithm is O(n5f(2m) + n7f(m)) where f(m) = 4m2(1 + 2m)4m and m denotes the
greatest value that the set Best(Q,m) has to be computed in the execution.
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1.2 The Organization

In the next section, we present a number of facts associated with the quartets to provide the theoretical
foundations for the design of our branch-and-bound algorithm. Some of these facts might be attached to
existing algorithms such as the GN algorithm and the hypercleaning algorithm, others might be independent
on any algorithm. We present the lookahead branch-and-bound algorithm in Section 3 where the meaning
of “lookahead” would become clear. We have implemented our algorithm, as well as some other algorithms
mentioned above, and tested them on various synthetic and real datasets. Section 4 summarizes the
experimental results and the comparisons we have made. We conclude the paper in Section 5 with some
remarks.

2 Theoretical Foundations for the Branch-and-Bound Algorithm

Our branch-and-bound algorithm takes advantage of many technical steps of the GN algorithm [8], which
is designed for the MQI problem where the number of quartet errors is known to be exactly k. In the
following we include some propositions from [8] that are found useful in the design of our algorithm. The
interested readers should refer to [8] for more details. The most important idea in the GN algorithm
is to resolve global quartet conflicts through resolving local quartet conflicts [5, 1], referred to as local
conflicts. A local conflict is a set of 3 incompatible quartets on a subset of exactly 5 taxa. For example,
{[a, b|c, d], [a, c|b, e], [a, c|d, e]} is a local conflict.

Theorem 2.1 [8] Given a complete set of quartets Q over a set of taxa S and some taxon e ∈ S, Q is
compatible iff there exists no local conflict whose taxa set includes e.

Notice that when a taxon e is fixed, there are
(n−1

4

)
subsets of 5 taxa containing e and for each such

subset there are
(5
3

)
= 10 potential local conflicts. Therefore, Theorem 2.1 tells us that testing if Q is

compatible can be reduced to testing if none of the O(n4) subsets of 3 quartets is a local conflict. Since
testing each set of 3 quartets takes constant time, this implies an O(n4) algorithm for the QCP problem.
When a quartet q is fixed, a similar argument gives that there are at most 6(n−4) local conflicts containing
q. Subsequently, if we decide to change the quartet topology for a subset of 4 taxa, then at most 6(n− 4)
new local conflicts would be generated and at most 6(n − 4) previous local conflicts would be resolved.
The GN algorithm begins with building a conflict list that contains all the local conflicts (involving a fixed
taxon). At every step, it randomly chooses one local conflict and tries to resolve it through changing some
quartet in the local conflict. It is proven in [8] that it is sufficient to consider at most four ways of resolving
a local conflict and the GN algorithm picks one in some order. The new quartet topology becomes fixed
for that specific subset of 4 taxa in the rest of the algorithm execution unless there is no solution along the
way and the changing would be undone. The GN algorithm subsequently updates the conflict list (again,
containing all the local conflicts involving the fixed taxon). When there is no further local conflict left, the
GN algorithm terminates and assembles a phylogeny in another O(n4) time. While if there have been k
quartet changes and there still exist local conflicts, the GN algorithm marks this route of quartet changing
unpromising and undoes the last quartet changing in the sequence and tries another way of resolving the
local conflict.

It is proven that the main effort at every node in the search tree associated with the GN algorithm
is the conflict list updating, which takes O(n) time. Therefore, the overall running time of the algorithm
is O(4kn + n4). In [8], some efforts have been made to improve the running time in practice through
determining the quartets that must be changed, as stated in the following Theorem 2.2; some other efforts
have been made to improve the running time in practice but potentially dropping the optimality, through
fixing some quartets (and bipartitions) along the computation.
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Theorem 2.2 [8] For a quartet q ∈ Q, if there are more than 3k distinct local conflicts that contain q,
then q must be changed in the optimal solution.

We remark that the GN algorithm is designed for a special case of the MQI problem where the number
of quartet errors is known to be exactly k. It therefore terminates when it finds the first solution. The
algorithm can be modified to return all solutions in O(4kn + n4) time. Such a modification would also be
able to solve the MQC/MQI problem when the number of quartet errors is only known to be not exceeding
some constant. Our branch-and-bound algorithm is designed to solve the general MQC/MQI problem.
In order to get a first bound on the number of quartet errors, we use some other phylogeny construction
methods to produce a phylogeny. The rest of this section is devoted to some propositions which can fast
determine (more) quartets that need to be fixed and (more) quartets that need to be changed. Some of
these speedups are novel and make the branch-and-bound algorithm significantly outperform the existing
exact algorithms.

Let (X, Y ) be a bipartition of the taxa set S and |X| = ` and |Y | = n − `. It follows that |Q(X,Y )| =(`
2

)(n−`
2

)
. Let p1 = |Q(X,Y )−Q|. Fixing three taxa from Y , a subset of ` quartets from Q where each quartet

contains these three taxa and one taxon from X is called an `-subset with respect to (X,Y ). There are in
total

(n−`
3

)
such `-subsets. For an `-subset, if ignoring the difference of the taxa from X gives rise to one

unique quartet topology, then the `-subset is exchangeable on X; Otherwise, it is nonexchangeable on X.
Let p2 and p3 denote the number of nonexchangeable `-subsets on X and the number of nonexchangeable
(n− `)-subsets on Y , respectively.

Lemma 2.3 Given n(> 1) positive integers a1, a2, . . . , an whose sum is m, then
∑

1≤i<j≤n aiaj ≥ (n−1)(2m−n)
2

and the equality holds when a1 = a2 = . . . = an−1 = 1 and an = m− (n− 1).

Proof.
We use induction.
Initial Step:
When n = 2, we have a1 + a2 = m.
a1a2 = a1(m− a1) = −a2

1 + ma1, 1 ≤ a1 ≤ m− 1
⇒ a1a2 ≥ m− 1, when a1 = 1 or a1 = m− 1.
Inductive Step:
Our inductive assumption is:
Assume when n = k,

∑
1≤i<j≤k aiaj ≥ (k−1)(2m−k)

2 , and and the equality holds when a1 = a2 = . . . =
ak−1 = 1 and ak = m− (k − 1).

We must prove the formula is true for n = k + 1.∑
1≤i<j≤k+1 aiaj = a1a2 +a1a3 + . . .+a1ak +a1ak+1 +a2a3 + . . .+a2ak +a2ak+1 + . . .+ak−1ak +akak+1

= (a1a2 + a1a3 + . . . + a1ak + a2a3 + . . . + a2ak + . . . + ak−1ak) + (a1 + a2 + . . . + ak)ak+1

≥ (k−1)[2(m−ak+1)−k]
2 + (m− ak+1)ak+1 ,

(when a1 = a2 = . . . = ak−1 = 1 and ak = m− ak+1 − (k − 1))
= −a2

k+1 + (m− k + 1)ak+1 + m(k − 1)− k(k−1)
2 , (1 ≤ ak+1 ≤ (m− k))

≥ (m− 1)k − k(k−1)
2 , (when ak+1 = 1 or ak+1 = m− k)

= k[2m−(k+1)]
2

2

Theorem 2.4 Let Q be a complete set of quartets on an n-taxa set S. For a bipartition (X, Y ) of S where
|X| = `, let p1 be the number of quartet errors in Q across (X, Y ), p2 be the number of nonexchangeable `-
subsets on X, and p3 be the number of nonexchangeable (n−`)-subsets on Y . If 2p1+(`−1)p2+(n−`−1)p3 ≤
(`− 1)(n− `− 1), then bipartition (X, Y ) must be in the optimal phylogeny.
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Proof.

We consider the unrooted phylogeny.
We divide the quartet topologies set Q into five parts (see Table 1). We group the quartet topologies

in the second part into a list of `-subsets and fourth part into a list of (n − `)-subsets. Each k-subset is
either exchangeable or unexchangeable.

Part Quartet Topologies
1 quartet topologies involve none of species in X = {si1 , si2 , . . . , sik}

{sa, sb, sc, sd}
2 quartet topologies involve exactly one species in X, and three species in Y

{si1 , sa, sb, sc}, {si2 , sa, sb, sc}, . . .

3 quartet topologies involve exactly two species in X, and two species in Y
{si1 , si2 , sa, sb}, {si1 , si3 , sa, sb}, . . .

4 quartet topologies involve three species in X, and one species in Y
{si1 , si2 , si3 , sa}, . . ., {si1 , si2 , si3 , sd}, . . .

5 quartet topologies involve four species in X
{si1 , si2 , si3 , si4}, . . ., {si1 , si2 , si3 , si5}, . . .

Table 1: Divide the quartet topologies set Q into five parts

Now we will prove that for any phylogeny T1 in which we cannot find an edge (X, Y ), we can construct
a new phylogeny T2 in which there exists an edge (X,Y ) and T2 will satisfy more quartet topologies than
T1.

In T1, if we trim all the leaf nodes in Y , we can get a sub-phylogeny T1X on X (Figure 2 b). Similarly,
we can get a sub-phylogeny T1Y on Y (Figure 2 c). We can then combine this two sub-phylogenies into
a new phylogeny T2 by a connecting edge(Figure 2 d). In other words, we move all the labels in X to a
leaf edge of T1 whose label is in X and keep the phylogeny structure of those leaf edges, and do the same
process for the labels in Y .

Figure 2 shows an example of construction of T2, where X = {s1, s2, s3} and Y = {s4, s5, s6, s7, s8}.
When constructing T2, we put T1X at the end of leaf edge s1, and put T1Y at the end of leaf edge s6.

For each exchangeable `-subset in the second part, if T1 satisfies all the quartet topologies, then T2

also satisfies all of them, no matter where we put T1Y . If T1 satisfies none of them, T2 also satisfies none
of them. If T1 satisfies `′ (0 < `′ < k) number quartet topologies, then T2 satisfies all of them(`) or none
of them (0), based on where we put the T1Y . From this observation, we can find a position to put T1Y

so that T2 can satisfy more or equal number of quartet topologies in exchangeable `-subsets in the second
part. Similarly, we can find a position to put T1X so that T2 can satisfy more or equal number of quartet
topologies in exchangeable (n− `)-subsets in the fourth part.

From the above construction of T2, we can see that T1 and T2 satisfy same number of quartet topologies
in the first and fifth parts, and T2 satisfies more or equal number of quartet topologies in the exchangeable
`-subsets and (n− `)-subsets in the second and fourth parts, respectively.

Let the quartet topologies set inferred by T1 be QT1 , and the quartet topologies set inferred by T2 be
QT2 .

First, we consider T1. Based on the sub-phylogeny T1X , which has ` labels and 2`−3 edges, we recover
T1. Let the numbers of leaf nodes in the branches bifurcated from these edges be m1,m2, . . . , m`′ (see
Figure 3 a). These values have the following properties:

1). mi > 0 for 1 ≤ i ≤ `′.
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Figure 2: Construction of a new phylogeny T2 from T1

2). `′ > 1. If there is only one such branch, then we can find an edge (X, Y ), which contradicts our
assumption.

3). m1 + m2 + . . . + m`′ = n− `.
For any two mi and mj , let n1, n2, n3 be the number of leaf nodes in X bifurcated from the internal

edges connecting mi and mj (see Figure 3 b). In this case, the number of quartet topologies in QT1 that
conflict on edge (X, Y ) is

mimj(n1n2 + n1n3 + n2n3) ≥ mimj(` − 1), since n1 + n2 + n3 = ` and at most one of n1, n2, n3 can
be 0.

Therefore, the total number of quartet topologies in QT1 that conflict on edge (X, Y ) is greater or equal
to

(`− 1)(m1m2 + m1m3 + . . . + m1m`′ + . . . + m`′−1m`′)
≥ (`− 1) · (`′−1)[2(n−`)−`′]

2

≥ (`− 1)(n− `− 1).
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Figure 3:

To achieve T1, we need change at least (`− 1)(n− `− 1)− p1 number of quartet topologies in the third
part, while we need only change p1 number of quartet topologies in the third part to achieve T2.

We know that T2 satisfies more or equal number of quartet topologies in the exchangeable `-subsets
in second part. Since we put T1Y at one end of the T1, in each `-subset, there exist at least one quartet
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topology that has same consistency on both T1 and T2.
Suppose in the worst case, T2 doesn’t satisfy all the other `−1 quartet topologies in an unexchangeable

`-subset, and T1 satisfies all of them. That will cause T1 to satisfy (`− 1)p2 more quartet topologies than
T2 in the unexchangeable `-subsets in second part.

Similarly, T1 satisfies at most (n − ` − 1)p3 more quartet topologies than T2 in the unexchangeable
(n− `)-subsets in fourth part.

We give a summary of the results here:
1). T1 and T2 satisfy same number of quartet topologies in the first and fifth parts;
2). In the second part, T2 satisfies greater or equal number of quartet topologies in the exchangeable

`-subset and T1 satisfies at most (`−1)p2 more quartet topologies than T2 in the unexchangeable `-subsets,
which means we need change at most (`− 1)p2 more quartet topologies to achieve T2.

3). In the fourth part, T2 satisfies greater or equal number of quartet topologies in the exchangeable
(n−`)-subsets and T1 satisfies at most (n−`−1)p3 more quartet topologies than T2 in the unexchangeable
(n− `)-subsets, which means we need change at most (n− `− 1)p3 more quartet topologies to achieve T2.

4). In the third part, We need change at least (`− 1)(n− `− 1)− p1 number of quartet topologies to
achieve T1, while only p1 number of quartet topologies should be changed to achieve T2;

Since 2p1 + (` − 1)p2 + (n − ` − 1)p3 ≤ (` − 1)(n − ` − 1), in this case T2 still satisfies more or equal
number of quartet topologies than T1.

2

Note that if |X| = 2, we call the two taxa in X siblings. In this case, p3 = 0 and we have the following
corollary.

Corollary 2.5 Let Q be a complete set of quartets on an n-taxa set S. For a pair of taxa a and b,
let p1 be the number of quartet errors in Q across bipartition ({a, b}, S − {a, b}) and p2 be the number of
nonexchangeable pairs on {a, b}. If 2p1+p2 ≤ n−3, then a and b must be siblings in the optimal phylogeny.

In [14], we have developed a scheme that transforms the computing of a phylogeny to satisfy the
maximum number of quartets to the computing of an ultrametric matrix which essentially is about the
computing of the least common ancestor for every pair of taxa such that a maximum number of quartets are
satisfied. The computing of a desired ultrametric matrix is then formulated into a constraint programming
that can be readily solved by calling to Smodels (http://www.tcs.hut.fi/Software/smodels/). Though
the work is mainly regarded as a reformulation of an old problem, we have imposed in the Smodels a number
of deduction rules which speed up the computation. These deduction rules also find useful in determining
the quartets that must be fixed according to a set of already fixed quartets. Subsequently, at every node in
the branch-and-bound search tree we might be able to shorten the conflict list and identify the illegal ways
of resolving a local conflict. The following Theorem 2.6 lists some of the rules that have been implemented
into our algorithm.

Theorem 2.6 [14] For a set of 5 taxa {a, b, c, d, e},
• if [a, b|c, d] and [a, b|c, e] are fixed, then [a, b|d, e] must be fixed too;

• if [a, b|c, d] and [a, c|d, e] are fixed, then [a, b|c, e], [a, b|d, e], and [b, c|d, e] must be fixed too.

3 A Lookahead Branch-and-Bound Algorithm

Our branch-and-bound algorithm is designed to solve the MQC/MQI problem optimally regardless whether
or not the number of quartet errors is known. Typically, in the unknown case, we can use some other

http://www.tcs.hut.fi/Software/smodels/�


Look-Ahead BnB for MQC 9

phylogeny construction method(s) to infer one phylogeny and determine subsequently its associated quartet
set. This provides us a first bound on the number of quartet errors. Note that we consider the general case
where the number of quartet errors is only upper bounded rather than known exactly. Therefore, after the
first feasible solution is arrived the algorithm does not stop but continues on search till the whole tree has
been exhausted, to output the optimal solution.

Our algorithm might be regarded as an improvement over the GN algorithm, with several newly de-
signed speedup techniques. In fact, most of the basic operations in the GN algorithm have been adopted
into our algorithm, though they might be put together in different places and in different orders. Some
significant differences between the two algorithms are detailed in the following: At the root node of the
search tree (produced by our algorithm), a global search is performed to identify quartets need to be fixed
using Theorem 2.4 (in O(n4) time). It then applies Theorem 2.6 to deduce more quartets need to be fixed
(in O(n4) time). Another global search is performed to identify need-to-be-changed quartets according to
Theorem 2.2 (in O(nk) time). Similarly as in the GN algorithm, a conflict list at the root node is built (in
O(n4) time). Besides this list, two other lists, one contains the fixed quartets and the other contains the
need-to-be-changed quartets, are also maintained. In fact, every node in the search tree is associated with
these three lists. At every node, the conflict list is further partitioned into two parts, one consists of local
conflicts each contains a need-to-be-changed quartet and the other consists of local conflicts each contains
no need-to-be-changed quartet. The algorithm puts priorities on need-to-be-changed quartets. For every
need-to-be-changed quartet, 1) change the quartet topology to resolve some (at least one) local conflict;
2) update the fixed quartet list; 3) update the the conflict list; 4) update the need-to-be-changed quartet
list. The difference between the size of the new conflict list and the size of the conflict list before quartet
changing is defined to be the contribution of this need-to-be-changed quartet. The algorithm picks the
need-to-be-changed quartet achieving the largest contribution to proceed the search. In the case that there
is no need-to-be-changed quartet, similar treatment is done for every way of resolving a local conflict, and
then the algorithm picks the way achieving the largest contribution to proceed. The algorithm updates
the bound k if a solution is found and in the solution a less number of quartet errors were found.

Notice that our algorithm has a mechanism to look one step forward to identify the best way to resolve
a local conflict. For this reason, we call it the lookahead branch-and-bound algorithm. It should be noted
that although it appears that at every node our algorithm spends more time than the GN algorithm (O(n2k)
vs. O(n)), with a modest value of k our algorithm runs much faster in practice. This is demonstrated true
by the experimental results in Section 4. One high-level description of this lookahead branch-and-bound
algorithm at every internal node is depicted in Figure 4.

Theorem 3.1 The lookahead branch-and-bound algorithm described in Figure 4 solves the MQC/MQI
problem and runs in O(4kn2k + n4) time, where n is the size of the taxa set and k is an upper bound on
the number of quartet errors.

4 Experimental Results

4.1 Overview and Synthetic Data Generation

We have designed four experiments to compare the performance of our algorithm to existing algorithms,
among which three are on synthetic datasets and the last one is on a real dataset of 30 taxa with about 8.3%
quartet errors (i.e. k = 2272). Note that the algorithms tested are all quartet-based phylogeny construction
algorithms. Therefore, the comparisons are for the purpose of showing the speed of our algorithm (except
the comparison made to the hypercleaning algorithm). In all experiments, we say an algorithm could not
solve an instance if the algorithm does not terminate in 100 hours. We chose to implement all the involved
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1. At every node in the search tree,
1.1. Use Theorem 2.4 to determine fixed quartets;
1.2. Use Theorem 2.6 to deduce as many fixed quartets as possible;
1.3. Use Theorem 2.2 to determine need-to-be-changed quartets;
1.4. Build a conflict list and partition it into two parts;
1.5. If there are need-to-be-changed quartets,
1.5.1. For need-to-be-changed quartet, calculate its contribution;
1.5.2. Pick the need-to-be-changed quartet achieving the largest contribution;
1.6. Else,
1.6.1. For every way of resolving a local conflict, calculate its contribution;
1.6.2. Pick the resolvement way achieving the largest contribution;
1.7. If k quartets have been changed but the conflict list is nonempty,
1.7.1. Kill the node and return to the parent node;
1.8. If the conflict list is empty,
1.8.1. Update bound k, update the best solution, and return to the parent node;
1.9. Continue on search at the picked node;

Figure 4: A high-level description of the lookahead branch-and-bound algorithm for the MQC/MQI prob-
lem.

algorithms in C/C++ (either by ourselves or courtesy to the original authors). All experiments were done
on an IBM P690 computer with a 1.7 GHz processor and 32 GB main memory (shared by 16 CPUs).

Similar to [8], to provide a common test bench for all the algorithms we generated artificial datasets.
Again we want to emphasis that such datasets are for the purpose of testing the computing power of the
algorithms. Therefore, some of our datasets are very hard to all algorithms. For every pair of (n, k), where
n refers to the number of taxa and k refers to the upper bound of the quartet errors, we generated a
random phylogeny by recursively inserting one taxon onto an arbitrary edge in the existing sub-phylogeny.
After all taxa have been added to the phylogeny, which is an unrooted binary tree, we derived the set of
quartets induced by the phylogeny. We then arbitrarily picked k out of the

(n
4

)
quartets and altered the

topologies. We remark that this process only guarantees the number of quartet errors is upper bounded
by k, but not necessarily equal to k since some combinations of quartet altering might give rise to a new
compatible set of quartets. For every pair of (n, k) we generated 10 datasets, and the following reported
results are the average for test run on them. Different algorithms have their own computing limits and we
have different datasets for them, to be detailed in the following sections.

4.2 Experiment 1

This experiment is intended to make comparisons among the exact algorithms proposed for the general
MQC/MQI problem, including the dynamic programming algorithm by Ben-Dor et al. [2] (denoted as
DP), the constraint programming approach in our previous work [14] (denoted as CP), the modified GN
algorithm (denoted as GN-Opt), and our lookahead branch-and-bound algorithm (denoted as LBnB-Opt).
Since DP and CP do not take k as an input and in fact their running times are independent on k, we
generated datasets defined by a pair (n, p) where for each dataset p records the percentage of quartet errors
in the given complete quartet set. For GN-Opt and LBnB-Opt, we used k =

(n
4

)×p as the first upper bound
on the number of quartet errors. We used quartet error percentage p = 1%, 5%, 10%, 15%, 20%, 30%. The
largest value set for n was 25, since LBnB-Opt, which appeared to run the fastest, failed to terminate in
100 hours for pair (30, 30%). Some of the running time results for these four algorithms are summarized
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in Table 2, where a ‘−’ indicates that an algorithm didn’t terminate in 100 hours. It is surprising to see
that GN-Opt performed inferior to DP and CP on most of the datasets. It is very encouraging to see that
LBnB-Opt outperformed the other three algorithms on all datasets.

Problem Size DP CP GN-Opt LBnB-Opt
n = 10 p = 1% 2 secs 1 sec 1 secs 1 sec

p = 5% 2 secs 1 sec 1 secs 1 sec
p = 10% 2 secs 1 sec 5 secs 1 sec
p = 15% 2 secs 1 sec 16 secs 1 sec
p = 20% 2 secs 1 sec 35 secs 1 sec
p = 30% 2 secs 1 sec 2 mins 1 sec

n = 15 p = 1% 2 mins 1 sec 20 secs 1 sec
p = 5% 2 mins 1 sec 10 mins 1 sec
p = 10% 2 mins 1 sec 5 hours 10 secs
p = 15% 2 mins 1 sec − 30 secs
p = 20% 2 mins 1 sec − 1 min
p = 30% 2 mins 1 sec − 2 mins

n = 20 p = 1% 40 hrs 10 mins 20 mins 1 sec
p = 5% 40 hrs 40 mins − 2 mins
p = 10% 40 hrs 6 hrs − 10 mins
p = 15% 40 hrs 6 hrs − 40 mins
p = 20% 40 hrs 8 hrs − 3 hrs
p = 30% 40 hrs 10 hrs − 10 hrs

n = 25 p = 1% − 20 mins 9 hrs 5 secs
p = 5% − 10 hrs − 10 mins
p = 10% − − − 1 hr
p = 15% − − − 3 hrs
p = 20% − − − 18 hrs

Table 2: The running times for four exact algorithms for the MQC/MQI problem: Dynamic Programming
(DP), Constraint Programming (CP), Modified GN Algorithm (GN-Opt), and Lookahead Branch-and-
Bound Algorithm (LBnB-Opt). A ‘−’ indicates that an algorithm didn’t terminate in 48 hours.

4.3 Experiment 2

This experiment is designed to make sole comparison between the GN algorithm and our lookahead branch-
and-bound algorithm. As we have seen in Experiment 1 that in terms of finding the optimal solution,
LBnB-Opt outperformed GN-Opt significantly. Therefore, in this experiment we only compare them in
finding the first solution, in which the number of quartet errors is at most k. We denote these two
algorithms as GN-1st and LBnB-1st, respectively. We generated 10 datasets for each pair (n, k), where
n = 10, 20, 30, 40, 50 and k = 5, 10, 20, 30, 40, 50, 100, 200. For every value of n, we found both GN-1st
and LBnB-1st terminated within a second on the datasets corresponding to some small values of k; and
only when k ≥ 40 their running times start to depart. Another observation is that for each dataset in the
experiment, surprisingly, the number of quartet errors in the solution by GN-1st is equal to the number of
quartet errors in the solution by LBnB-1st, and is equal to k. For these reasons, we chose to report their
running times only, and only for datasets with k ≥ 40, in Table 3. We set the time limit to be 24 hours in
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this experiment because of time constraint. From the table, we see that LBnB-1st outperformed GN-1st
on all datasets, slightly for small values of k but significantly for large values of k.

Problem Size GN-1st LBnB-1st
n = 10 k = 40 1 sec 1 sec

k = 50 15 secs 1 sec
n = 20 k = 40 3 secs 1 sec

k = 50 10 secs 1 sec
k = 100 35 mins 20 secs
k = 200 − 2 mins

n = 30 k = 40 1 sec 1 sec
k = 50 6 secs 2 secs
k = 100 21 mins 35 secs
k = 200 − 5 mins

n = 40 k = 40 1 sec 1 sec
k = 50 2 secs 2 secs
k = 100 15 mins 1 min
k = 200 − 10 mins

n = 50 k = 40 1 sec 1 sec
k = 50 3 secs 3 secs
k = 100 6 mins 2 mins
k = 200 − 20 mins

Table 3: The running time comparison between two algorithms for the MQC/MQI problem where the
number of quartet errors is bounded: the Fixed-Parameter Algorithm (GN-1st) and the Lookahead Branch-
and-Bound Algorithm (LBnB-1st). A ‘−’ indicates that an algorithm didn’t terminate in 24 hours.

4.4 Experiment 3

The hypercleaning algorithm is known as a best heuristics for the MQC/MQI problem (at the writing of
this paper). The largest instance reported in [15, 4] contains 18 taxa. This third experiment is designed to
compare the performances of our algorithm and the hypercleaning algorithm in terms of both running time
and the quality of the returned solution. For this purpose, we generated datasets for n = 30, 40, 50 with
various bounds on the number of quartet errors k = 100, 200, 300. Note that smaller values of n and larger
values of k do not make sense since they correspond to either too easy datasets or too difficult datasets.
Our algorithm was run to return both the first solution and the optimal solution (that is, by LBnB-1st
and LBnB-Opt, respectively). It is again interesting to note that all three solutions for a dataset contain a
same number of quartet errors.1 Subsequently, we chose to report the running time only in Table 4. From
the statistics, it is not surprising to see that LBnB-Opt requires much more time to search a whole tree
than LBnB-1st which terminates at the time one solution is found. Nonetheless, it is encouraging to see
that LBnB-1st beats Hypercleaning in some “easy” datasets.

1The value of m in Hypercleaning on these datasets ranges from 1 to 3. This might provide a reason that its solutions are
optimal.
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Problem Size Hypercleaning LBnB-1st LBnB-Opt
n = 30 k = 100 40 secs 35 secs 6 mins

k = 200 55 secs 5 mins 36 mins
k = 300 80 secs 45 mins 2 hrs

n = 40 k = 100 10 mins 1 min 20 mins
k = 200 12 mins 10 mins 3 hrs
k = 300 18 mins 135 mins 18 hrs

n = 50 k = 100 50 mins 2 mins 2 hrs
k = 200 55 mins 20 mins 12 hrs
k = 300 62 mins 3 hrs −

Table 4: The running time comparison between three algorithms for the MQC/MQI problem: the Hy-
percleaning Algorithm and two versions of the Lookahead Branch-and-Bound Algorithm (LBnB-1st and
LBnB-Opt). A ‘−’ indicates that an algorithm didn’t terminate in 24 hours.

4.5 A Real Dataset

We have obtained a real dataset which contains 30 Avian Influenza viruses with their pairwise evolutionary
distances measured by the Complete Composition Vector defined on the whole set of proteins for the viruses
[?]. We applied the Four-Point Method [7] on this 30×30 distance matrix to infer a quartet for every subset
of 4 taxa. We ran the Neighbor-Joining algorithm [12] on the distance matrix too to produce a phylogeny
on these 30 taxa and use the set of induced quartet to estimate an upper bound of 2272. Unfortunately
GN-1st did not terminate in 100 hours. Hypercleaning finished in 1 hour and 2 minutes and the returned
phylogeny resolves 1922 quartet errors. Our algorithms LBnB-1st and LBnB-Opt finished in 21 hours and
29 hours, respectively, and the returned phylogenies both resolve 1871 quartet errors.

5 Concluding Remarks

Among the exact algorithms for solving the MQC/MQI problem, we found the dynamic programming
(DP) the least powerful and our lookahead branch-and-bound algorithm (LBnB-Opt) seemingly the most
powerful. Nonetheless, the performance of DP (and CP) is not affected by the number of quartet errors
and thus DP might be superior for datasets containing a small number of taxa.

The fixed-parameter algorithm solves the MQC/MQI problem in the special case where the number of
quartet errors is known exactly. This special case is unlikely to happen, rather than that, the more often we
find it easy to obtain an upper bound on the number of quartet errors. The fixed-parameter algorithm can
be modified to solve the general problem, however, our experiments showed that the running time grows
too fast to be feasible. Our lookahead branch-and-bound algorithm might be regarded as an improvement
over the fixed-parameter algorithm. It outperforms in general significantly in both finding the first solution
and in finding the optimal solution. One of our future work is to design more techniques to speedup the
search, including faster determination of need-to-be-changed quartets and need-to-be-fixed quartets. Our
expectation is that the algorithm has a competitive running time to hypercleaning on datasets of modest
size, say 50 taxa.

Lastly, we remark that all experiments were done for the purpose of testing the speed of the lookahead
branch-and-bound algorithm. Though on all the synthetic datasets every algorithm found the optimal
solution, we didn’t compare the quality of the phylogenies for the real dataset.
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