National Libirary
of Canada

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch  des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

ICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for  microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

[t

Canada

395, rue Wellington
Ottawa (Ontario)

Your fie e relorence

Our fle Notre -elvrence

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec ['université
qui a conféré le grade.

La qualité d’impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d’un
ruban usé ou si I'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.



University of Alberta

Aspects of Radiative Corrections for Heavy Quark
Decays

PN
[N by
v v o Andrzej Prus Czarnecki

A thesis
presented to the Faculty of Graduate Studies and Research

in partial fulfilment of the requirements for the degree
of

Doctor of Philosophy
in
Theoretical Physics

Department of Physics

Edmonton, Alberta
Fall 1993



1

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch  des services biblicgraphiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, Iloan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

ISBN 0-315-88336-7

B+t

Canada

395, rue Wellington
Ottawa (Ontario)

Your Me Votre réference

Our hile Notre retérence

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protege sa
thése. Nila thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.



UNIVERSITY OF ALBERTA
RELEASE FORM

NAME OF AUTHOR: Andrzej Prus Czarnecki

TITLE OF THESIS: Aspects of Radiative Corrections for
Heavy Quark Decays

DEGREE: Doctor of Philosophy
YEAR THIS DEGREE GRANTED: 1993

Permission is hereby granted to the University of Alberta library to reproduce
single copies of this thesis and to lend such copies for private, scholarly or scientific
research purposes only.

The author reserves other publication rights. and neither the thesis or extensive
extracts from it may be printed or otherwise reproduced without the author’s written

permission.

A T I N
1

Andrzej Prus Czarnecki
10960 - 35A Ave.
Edmonton, Alberta, T6J 0A3

.
Date: IZ\MQL.J:\T N N



UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty
of Graduate Studies and Rescarch for acceptance, a thesis entitled “Aspects
of Radiative Corrections for Heavy Quark Decays™ submitted bv Andrzej
Prus Czarnecki in partial fulfilinent of the requirements for t. - degree of
Doctor of Philosophy in Theoretical Physics

T R Y

Professor A. N. Kamal. Supervisor

SR

Professor S. Dawson

/;
J Al 11
Professor J. Pinfold /

/ﬂ/”
(/[ V L/z/f/L/k//(/fﬁc/

Professor H. P. Kunzle )/

SR
to. o - Y
Professor M. Razavy . &
.y N . = ;

Professor Y. Takahashi

I<h K

i ) §_ " .
Date: VAl Avy x0T N

3



Abstract

Various aspects of heavy quark decays are analyzed in the framework of
the Standard Model, and its extension suggested by supersymmetry in which
two Higgs doublets are present. Quantum chromodynamic corrections are
calculated for the energy spectrum of hadronic products and for the angular
distributions of charged leptons in semileptonic decays, as well as to the total
rate of the decay of top quark into bottom quark and 11" boson. Both QCD
and electroweak corrections are given for a decay in which the 1§ boson is
replaced by a charged Higgs boson. Similarities between QCD corrections in
both channels are analyzed with help of the Equivalence Theorem. Finally,
a recently proposed method for doing two loop calculations is illustrated
with the example of the anomalous magnetic moment of an electron and a
possibility of its application to a future calculation of two loop corrections
to the top quark width is discussed.
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Chapter 1

Introduction

1.1 About this thesis

This thesis is devoted to the study of quantum corrections, especially in the
context of top quark decay. Top quark decays have been studied theoretically
for several years to find convenient . detectable signatures: a lot of work has
been devoted to semileptonic decays [1. 2]. As the top has not yet been
found, it is probably too heavy to be seen at present accelerators: there is
now strong evidence that the top is actually substantially heavier than the
weak gauge bosons. If this is the case. the dominant decay channel should
be t — 1 *b. Since this is a two body decay, various corrections to its rate
can be calculated with relatively little effort. M oreover, such calculations
are of large practical importance, e.g., for a correct description of threshold
phenomena in top preduction.

Once the QCD and electroweak corrections became known, non-standard
possibilities for top decay were considered. The first effect coming to mind is
an enlarged Higgs sector, which frequently includes a second doublet. This
implies a charged Higgs, which, if it were heavier than the top quark, would
contribute additional virtual corrections to the decay t — ¥ *b. This effect
has been studied in ref. [3, 4] and can be as large as 10% of the total decay
rate. On the other hand, if the top quark is heavier than the charged Higgs,
the decay t — H*b becomes possible [5]. Various corrections to this reaction
have been studied as well.

Original results concerning QCD corrections to top quark decays pre-



sented in this thesis are the following: energy spectrum of hadronic products
of a semileptonic decay of the ¢ quark, angular riistribution and energy spec-
trum of a lepton produced in a decay of a polarized t quark and the total
decay rate of the t quark into a b quark and a charged Higgs boson (in models
with an extended Higgs sector). In the context of this last decay channel the
electroweak corrections are also given. In addition, a few known results are
rederived using improved methods: QCD corrections to the total decay rate
of the t quark into a b quark and a ¥ boson are calculated using dimensional
regularization and the two-loop anomalous magnetic moment of the electron
is computed using an algebraic method proposed recently by Broadhurst et
al. This last result is included for the reason that a similar method might
also be successful in estimating two-loop QCD corrections to the top decay
in the limit of a large mass of the top.

Results presented in Chapter 2 were derived in collaboration with N, Je-
zabek and J.H. Kiihn, and were published in ref. [6. 7). Part of Chapter 3
appeared in ref. [8]. QCD corrections to the decay t — H*b were calculated
with Sacha Davidson and were partially published in ref. [9. 10, 11]. The
two loop cal.nlation of the anomalous magnetic moment of the electron was
done with A.N. Kamal and appeared in ref. {12]. The material of Chapter 5
has been submitted for publication [13].

This thesis 1s organized as follows. In the reminder of the Introduction
some elements of perturbative quantum chromodynamics are summarized in
order to justify its application to the top decays. In Chapter 2 QCD correc-
tions to semileptonic decays of the top are considered. The next Chapter is
devoted to the application of the dimensional regularization to the correc-
tions to the total decay rate of t — 11"Tb and in Chapter 4 total decay rate
of t - H*b is examined. Chapter 5 is devoted to the study of electroweak
corrections to the decay ¢t — H™Db in an extension of the Standard Model
motivated by supersymmetry. In the last Chapter the algebraic method of
Broadhurst et al. is applied to the calculation of the two-loop anomalous
magnetic moment of the electron. The j sssible application of this method
to the problem of the top quark width is aiscussed. The results obtained in
this thesis are summarized in Conclusions and Outlook.



1.2 Elements of perturbative QCD

Effects of Quantum Chromodynamics in processes involving large momen-
tum transfers, like decays of heavy quarks or deep inelastic scattering, can
be calculated using perturbation theory. The following chapters will bring
examples of calcula’ ~us of various quantities in this framework, and here
a justification of *\..s pro -~ inre is given. The basic observation which will
be made is that the effective coupling constant of QCD decreases with the
momentum transfer. This is expressed in the following formula:

1
° (@) = byIn -2

QChD

(1.1)

where Q? is the square of momentum transfer characteristic for a given pro-
cess and Agcp is energy scale of QCD, of the order of few hundred MeV.
The dimensionless coefficient by can be calculated perturbatively and the
one loop calculation will be given below. Much of this exposition is based on
ref. [14, 15]. However, the calculation of b; can be done in many ways (four
different ways follow already from Slavnov-Taylor identities). The approach
followed here is not the simplest one; it is based on the renormalization of
the three gluon vertex, which was first calculated by Celmaster and Gon-
salves [16] and cannot be found in standard textbooks due to the length of
calculation. It will be presented to show various calculational techniques and
usefulness of algebraic manipulation programs.

This section is organized as follows. First the Lagrangian of QCD is in-
troduced. Second, BRS symmetry of the quantum version of the Lagrangian
is examined and Slavnov-Taylor identities are derived. The set of renormal-
ization constants of QCD is defined and two of them are calculated. Finally,
the results are used to find the evolution equation of the effective coupling
constant.

1.2.1 QCD Lagrangian and quantization

On the classical level the Lagrangian density of quantum chromodynamics,
describing interaction of quark fields ¥ with gluon field A%, is written in
the following form (only one flavour of quarks is taken into consideration:
space-time dependence is not shown explicitely, wherever this does not lead



to confusion):

L= —%F;‘,,F“"” +¢ (i P -m), (1.2)
where the field strength tensor is:
Fo = 0,45 - 9,A, + gf*™ ALAC, (1.3)
and the covariant derivative is:
D, =8, —gT"A}. (1.4)

T are matrices of the SU(3) algebra. which satisfy [T”, T"] = if®Te, where
feb are the structure constants of SU(3). The quark ficlds belong to the fun-
damental, and the gluon fields to the adjoint representation. This Lagrangian
is then invariant under the non-Abelian SU(3) group of local transformations:

'U' — l'," — L.’ l.'

T°A? — T°AY =0 | T°A" —iU“IO,U v, (1.3)
H H M g }

where U = exp(—170%), with ©* being space-time dependent parameters
of the transformation. It is because of this symmetry of the theory that one
- encounters difficulties with the quantization. The reason for these difficul-
ties is the invariance of the Lagrangian under transformations containing an
arbitrary space-time function [17]. The second Noether theorem [18] states
that as a consequence of this invariance the equations of motion are not in-
dependent. Intuitively it is clear that we cannot describe in a canonical wayv
the time evolution of a dynamical variable, which can be changed by an arbi-
trary time-dependent function without affecting the action. For this reason
the classical Lagrangian (1.2) cannot serve as a basis for quantization. This
is also seen if one tries to compute the canonical momenta, for it turns out
that the one conjugate to A vanishes:

oc

5= pr = —Fip =0, (1.6)

thus contradicting the canonical commutation relations.



The way to deal with this difficulty is to specify the gauge by imposing
a subsidiary condition C, = 0, where C, is some function of fields. This
allows us to specify which variables in the Lagrangian are dynamical and
proceed with quantization using this subset. In practice one can retain all
the original variables but introduce additional anticommutiong scalar fields
obeying Fermi statistics (Faddeev-Popov ghosts) which cancel contributions
from the non-physical degrees of freedom (called also zero modes; a good
guide to the original literature in this problem is gived in [19]; see also [20]).
‘The same method of quantization can be used in theories with spontaneously
broken symmetry. A procedure of obtaining the Lagrangian of the theory
quantized in this way has been given by 't Hooft and Veltman [21, 22].

In practical calculations in QCD it is useful to take a subsidiary condition
of the form é“A7 = 0 which corresponds to the Lorentz gauge. With this
choice the gauge fixing term which we add to the Lagrangian is —( (')/‘.4;‘,)2 /2a;,
with (1/2a) playing the role of a Lagrange multiplier.

1.2.2 BRST Symmetry and Slavnov-Taylor identities

After the addition of the gauge fixing term and compensating for its side
effects by introducing Faddeev-Popov ghosts the QCD Lagrangian becomes:

L = Le+Ler+Lrp+Lr

1
Lo = _ZF:VFGIW (gauge term),
1 L a2 ' .
Lo = ~%a (3’ A#) (gauge fixing),
Lrp = i(d"x}) DZ",\:'} (Faddeev — Popov term),
Lr = ¥ (1 pv - 777(5”) 0y (fermion term). (1.7)

As opposed to its classical version (1.2), the quantum Lagrangian of QCD
is no longer invariant under gauge transformation. However, it possesses
another symmetry, which has been discovered by Becchi, Rouet and Stora
[23, 24] and, independently, by Tyutin [25], and is called BRST symme-
try. It consists in the invariance under the local gauge transformation with
0%z) = —gwxs(z) with w being a constant anticommuting quantity (Grass-
man number), so that {w,w} = {¢,w} = {x;,w} = 0 [26]. The transfor-
mation rule of the ghost fields is adjusted so that the Lagrangian remains

9]



invagiant, up to = total derivative:

{
Mo e — o N V8
[ A 2.(/“//\{_,'\21/;,‘

- -
iy e — fy. V. Y a
I e 'Q‘QL'J'“J)‘J’;\%

AL = A= AL+ g fU AN +wng,

W
\‘lz — }\"la = XT + 150“.‘17‘,
a a a w C c
=g =g - 5o/ (1.8)

Since this is a particular case of a gauge trasformation, the classical part of
Lagrangian remains invariant. whereas the variations of the gauge fixing and
ghost terms combine to give a total derivative:

§(Lop+ Lypp) = — ‘(-faﬂ [(0°40) DY) (1.9)

BRST symmetry of the quantum Lagrangian plays a very important role
in the canonical quantization of QCD. In fact an approach different to the
Faddeev-Popov method is possible: one begins with the requirement of BRST
symmetry and then constructs the general Lagrangian dependent on classical
ficlds as well as ghosts [27].

As a particular application of BRST one can derive Slavnov-Taylor iden-
tities - relations between Green's functions which are a generalization of
Ward-Takahashi identities of QED [28. 29] to the non-Abelian case [30. 31].
These identities ensure “charge universality” in QCD. We observe that in the
quantum Lagrangian of QCD there are four types of terms containing the
strong coupling constant g; they are responsible for triple and quartic gluon
interactions and for ghost-gluon and fermion-gluon vertices. However, quan-
tum effects result in the necessity of renormalization. The question arises
whether or not the corrections to the above four vertices lead to the same
renormalization of the coupling constant. In perturbation theory the infini-
ties arising in the process of renormalization can be factored out explicitely
in renormalization constants. One writes the bare quantities in the form
¢ = Z;/2¢r and n = Z,n,, where ¢ denotes gluon, ghost and quark fields
and n - parameters like masses, coupling constant or the gauge parameter a.

Consistent renormalization of all four types of interactions is necessary to
preserve the BRST invariance of the Lagrangian. This imposes restrictions

6



on the number of independent counterterms. A set consistent with BRST
turns out to be sufficient to render all diagrams finite to an arbitrary order
in perturbation theory (for an elegant proof see [19]). It follows that we can
calculate the charge renormalization constant Z, in four different ways:

Z, = Zi _ 2 g Zir

. == = S (1.10)
z3? Zy Zy3y? 2,77

Z1, 2y, Z4 and Zy r are counterterms for the four types of vertices mentioned
above, in the respective order. Zs, Z3 and Zg are wave function renormal-
ization constants fermions, gluons and ghosts respectively. Our aim now will
be to calculate Z,, which will be used later to derive an evolution equation
for the coupling constant. We will employ the first relation in (1.10).

1.2.3 Evaluation of Z; and Z3

We first calculate the one-loop renormalization constant Z;. We have to
evaluate the divergent parts of diagrams shown in Figure 1.1. Since the
result has dimension 1, the divergent terms have to be constructed using one
four-vector. The most general form of the contribution of the nth diagram
can be parametrized by three unknowns:

|
n)abc 19, abe
Aﬁw),\ (]Ja q, 7') = _—(47I')2f b [A(]) - (I)z\g/w -+ B(fl - T)/lgl//\ + C(7 - p)ug;u\] .

(1.11)

A simple method of doing this calculation consists in multiplying each am-
plitude by the three tensors on the RHS of the above equation and solving
the system of three linear equations obtained in this way for the coefficients
A, B, C. This procedure will be illustrated with an example of the gluon
triangle loop (see Figure 1.1(c)).

Using the notation of [14] Feynman rule for the three gluon vertex is:

—igf*Vur(p.q.7), (1.12)
where
V;,w/\(paqv 7') = (p - q)/\g[ll/ + (q - T)/l.’/u) + {1‘ - p)ug;u\- (113)

7



(a) (b) (c)

{d) (e} U]

(q) (h)

Figure 1.1: Processes contributing to three gluon vertex to one loop
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For simplicity the Feynman gauge is used in this calculation. Although renor-

malization constants are gauge dependent, this dependence cancels out in 3

function, which we want to find. Using this notation the amplitude corre-

sponding to the diagram 1.1(c) is:

oy o dPk 1
A(n)abc ,q,7) = (— : . 3 paij pibl ICJ/
v (p q 7) ( g ) f f f (27‘_)0 kg(]\‘+p)2(/»+p+7)2

‘/;10/3(17’ k* -k~ p)‘/ol"r(_ka -r—=n k+r+ p)“)wﬁ("k ~T=pT, k+ p)*

(1.14)

where the integration is performed in D = 4 — 2¢ dimensional space. It is
at this stage that the algebraic manipulation program FORM [32] greatly
simplifies the task at hand. By contracting this expression with the three
tensorial structures and extracting the ultraviolet pole of the integral we
obtain contribution of the gluon triangle:

ig3 39
1672 8
Contributions of the remaining diagrams are evaluated in the same way and
the results are listed in Table 1.1 (N denotes the number of quark flavors).
What remains to be calculated is the gluon wave-function renormalization
constant Z3. Contributions arise from diagrams shown in Figure 1.2. As
result we obtain to one loop:

/\(c)abc

prd (ps q, 7') = fabC"’;W/\(]L q, 7'). (115)

2
gz (2 )1
= 1--F_(Zn,. 02
2 ! (47)2 (3 P=2) 2
2 0 N1 \
Z, = 1—(497;)2 (§J\f,.~—o) . (1.16)

1.2.4 [ function to one loop

Infinities which arise in calculation of quantum corrections are the reason for
~ introducing counterterms. In a renormalizable theory the structure of coun-
terterms is determined by the types of vertices present in the unrenormalized
Lagrangian; a so-called renormalization scheme is a prescription: calculate
loop corrections to the given vertex and subtract from the result the value of
this vertex when external momenta assume certain values. The order of mag-
nitude of these prescribed momenta is called the renormalization scale and



Table 1.1: Contributions of diagrams in Figure 1.1

Diagram Coefficient of —%g%f“bc\/p,,,\ (p,q,7)
(a)+(b) INp
© ?
(d)+(e) -5
(£)+(g)+(h) -3
Total ENF -2
q 9 oy
o e
9 9 9
9 9 .'T:'g‘

(a)

(b) {c)
9
w@r;x-nr
9
(d)

Figure 1.2: Processes contributing to gluon self interaction
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we shall denote it by p. In this way the renormalized parameters of the the-
ory depend explicitly on renormalization scale. The magnitude of i should
be chosen to represent the typical size of momenta present in the process
under consideration; otherwise there may arise terms dependent on the large
ratio of the two scales which could destroy the validity of the perturbaiion
theory. By examining the functional dependence of the coupling constant on
the renormalization scale we can predict its behaviour at large momentum
transfers, e.g. in decays of heavy quarks. This behaviour is governed by the
3 function which we will define and examine below. It has to be noted that
the counterterms (1.16) calculated in the previous section are also dependent
on the renormalization scale, although it was not shown explicitly. This de-
pendence is contained in the coupling constant: in dimensional regularization
the coupling constant acquires an infinitesimal dimension of mass. We now
write down the bare and the renormalized coupling constant ¢ and g, with
the mass dimension factored out explicitly. For the bare coupling constant
we introduce an arbitrary scale pg, and for the renormalized one it is the
renormalization scale:

9 = Joig, gr = gRr1C. (1.17)

The dimensionless constant gp depends on p both through the term ;=< and
through the renormalization constant Z,(x). We now introduce the function
3 (in the minimal subtraction (MS) scheme): '

I } = _dg_n_ —_ - — _l.d_Z__
Blgr) = u m 298 = 7 IR (1.18)
Recalling that Z;, = Z, Z§3/2 we obtain:
2
9 ( 4 Uyl
Z — 1 — S 7 1= .
7= Gy t3)7 (1.19)
so that the following equation can he written for the function 3:
11 2
Blon) = ~ega + -7 (——Np + 11) 2B(gr), (1.20)
which can be solved iteratively to give:
1 2
Blom) = =7 (11 - 5% ok + olef) = g} + (121)
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We now want to find the value of the coupling constant for a process with a
characteristic momentum scale Q2. From the definition of the 3 function we
have

dp  dgp
H B(gr)’

(1.22)

or, after integrating botl sides from yu to v/Q? and taking only the contribu-
tions of lowest order in gp:

1 /g"(Q’ s 1 ( 1 1 ) (1.23)
n— = TE - - . .

g orten ey 23 \gR(p) 9R(Q)
with Q = Q2. Now we obtain the desired formula (1.1):

1 1
9 (1) + 230 1(Q/ 1) — 3o In(Q/\?)

where in the last step we have introduced a new dimensional parameter
A = peap[—1/(280g%(11))]. The value of this parameter has to be extracted
from experiments. Currently known results (see [33] for a review) indicate
that the strong coupling constant a, = ¢2/4r is of the order of 0.1 for the
expected mass of the top quark between 90 and 200 GeV. This justifies ap-
plying perturbative QCD to calculations of radiative corrections to decays of
the top. Several such calculations will be presented in the following chapters.

g3 (Q) = (1.24)



Chapter 2

Aspects of Semileptonic
Decays of Heavy Quarks

In this chapter two aspects of QCD corrections in semileptonic decays of
heavy quarks will be studied with the example of the decay t — bly. The
first one will be the energy spectrum of all hadronic products of such de-
cay. Here QCD corrections are important as they open a new kinematically
allowed region in which hadrons can be produced. This is because the tree
level process shown in the Figure 2.1 is a three body reaction and hadrons
produced from the quark b can carry energy not larger than half the mass of
the decaying t quark (neglecting masses of the b quark and of the leptons;
effects of the b quark mass (m;) will be treated in detail later). If the first
order QCD corrections are included we have to take into account real gluon
radiation, shown in Figure 2.2, and the effects of vertex loops in Figure 2.3,

Figure 2.1: Tree level process t — by,
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Figure 2.2: Real gluon radiation

together with counterterms. Now that the four body chanuel is open it is
possible for the hadrons to carry away all the energy of the decaying quark.
The second effect to be examined is the angular distribution of leptons pro-
duced in a decay of a polarized top quark. It is important to know the impact
of QCD corrections in this case. because the angular distribution of leptons
provides important means of Hbserving CP violation in t production [34]. In
this chapter all calculations will be done using Pauli-Villars regularization.
Infrared divergences will be dealt with by introducing a small mass A of the
gluon. Of course final results are independent of A.

2.1 QCD Corrections to Hadron Spectrum

2.1.1 Introduction

Semileptonic decays of the top quark where studied in detail by Jezabek and
Kiihn in papers [1, 2, 35]. These authors have studied total rates and energy
distributions of leptons. Those calculations where performed in the frame-
work of the QCD improved parton model up to the first order in a,. As is
well known, the lepton spectra in semileptonic decays are free from QCD in-
frared divergences. In the present section the distribution of the total energy
of hadrons E), is calculated, another quantity free from infrared divergences.
Infrared fimteness of this distribution follows from energy conservation and

14



Figure 2.3: Vertex correction

infrared finiteness of the energy distribution for the virtual W.

In contrast to the case of lepton spectra the kinematic boundaries are
different for the final states with and without hard gluons. Thus. studying
energy distribution of hadrons or, equivalently, of the virtual W, one can
obtain non-trivial information on the masses of the quarks involved as well
as on Q.

The top quark has not been discovered vet. However there are some
indirect indications that its mass m, should be between 90 and 200 Ge\" {for
a recent review see e.g. [36]. Thus. the effects of the W propagator are of
crucial importance in the case of the top quark decay. In particular, if m, is
large enough. production of real W dominates and in Born approximation the
decay becomes quasi two-body. In this case the shape of the E) distribution
reflects the shape of the W and QCD corrections modify the corresponding
Breit-Wigner distribution.

The formulas to be presented describe decays of free quarks. In order to
compare them with the experiment one has to include bound state cffects,
for example the Feriii motion, see e.g. [37, 38, 1].



2.1.2 Born approximation

In the Born approximation the energy distribution of hadrons is given by:
dro 11 Ere 2

= M| dE 2.1

dE, — (27)38m, / |MI"dE, (2.1)

Elnn'n
with Ej, E; denoting energies of the b quark and the charged lepton respec-
tively. The limits of the integration over lepton energy are:

2

1 /9 3
Ere = 5 (m, - Ey, 4+ E; - mg) (2.2)

It is practical to introduce dimensionless variables by taking mass of the top
! A g !
quark as the unit of energy [1]:
_ Eh my

2E,
_ Ty = , €= —. (2.3)
my my m,

: 1
EMt o= = (m, - E,—+E}~ mg)

I =

Here E), denotes the total energy of hadronic products of the decay. On
the level of the Born approximation. i.e., in the absence of gluons, this is
just the energy the b quark. In the following the values of all kinematical
variables for the vanishing four-momentum of the gluon in the final state
(or, in the absence of the gluon) will be denoted by a bar: for example
Iy = Ey/my in the case at hand. Four-momenta of the top quark, bottom
gqnark, W boson, gluon, charged lepton and of its neutrino will be denoted
by 2, ¢. W. G, l and v respectively. It is also useful to define a four-vector
P = g+ G representing the hadronic part of the final state. Following [1]
further kinematical variables are defined:

o 9 9
w2 P _om Ty 5
Y= —5, <=3, = —=, ) = . (..4)
my mi mi- my

In the rest frame of the decaying quark the energy, three-momentuin and
rapidity of the hadrons are:

Po = Tp,

2
py = yaj -~z

P+ = PozEps.
. 1. py -
)I’ = -2-111;)—:., (20)
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Figure 2.4: Normalized distribution of the total energy of hadrons shown for

m, = 40, 60 and 80 GeV in the Born approximation.



and for the leptons:

wy = 1-—uxp,
w3 = P3
wy = wox w;,
1 wy
Y, = -ln—. 2.6
* 27 w. (2.6)
Values of these variables for G = 0 are obtained by putting z = €* in the

above formulas. For example p3 = (/77 — €2.

Since masses of leptons can safely be neglected in this calculation. the
square of the invariant matrix element can be written as:

64G% -
T2 @ v (2.7)

where the finite width of the 17 boson has been taken into account. Upon
integration over lepton energy this leads to the hadron energy distribution:

(M =

aro _ _G‘fpm‘? 133179 N 2.8)
dry, 1273 (1 — £€f)2 + 12
where
y(-l‘},,:) =1+: _23‘/1- (29)
w(ay, z) = —rp(3 —4ay) — (3, — 2). (2.10)

and § = y(ap, €). & = u(xy, €?). This result is shown in Figure 2.4.

2.1.3 Virtual QCD corrections

" The contribution of virtual gluons arises from the interference of the process
depicted in Figure 2.3 with the Born amplitude (Figure 2.1). The vertex cor-
rection is ultraviolet as well as infrared divergent. The ultraviolet divergence
is cancelled by wave function renormalization of the external quark legs.
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In Pauli-Villars regularization this amplitude can be calculated in the
same manner as the QED virtual correction to the muon decay [39, 40, 41].
The resulting contribution to the decay rate is:

ariy) 1 2a, 64G%
dvy, ~ (27)5 37 (1 —£§)2 + 12
where dR, (P;p;,p2) is a two body phase space element:

d3P1 d3P2
dRy (P;py,p) = (P —py - —_— 2.11
2 (P; p1,p2) ( Pi — P2) 20 5p0 (2.11)

/ H,3L*PdRy (Q:q. W) dRy (Wil v),

L°? stands for the leptonic tensor for which we have:
/ Lo%dRy (Wil.v) = / VP ARy (Wil 10)
- ﬁ (yg"g + 211"0111"5) , (2.12)

and H°? is the renormalized hadronic tensor given in [1].
The final formula for the virtual correction is:

dri?’ _ _2a, GEm} 1 vt (1— pot-
dxy, 3n 1273 (1 = £§)2 + 42 o : Pitly
7 1 5,
—Li, <1 - Z—+>} + 3 [17 Ine (2.2‘,2,(6Z —1)—i(l—¢€ — 2g)) - 417}

+T, [(=1204 + 46 +6) + (e + 1) + 247

! (%€ = 1) + 2a(a® ~ €)) — 20 (Y, + 2V, + 2lne) |
y -
—4ralneY, + (.1:-};—” - 1) InA } , (2.13)
Yz

where Liy denotes the dilogarithm [42].

2.1.4 Real gluon radiaticn

The contribution of the real gluon radiation in the first order in a, is described
by two Feynman diagrams, see Figure 2.2, which yield:

dr} = 2

5 on ] | M |? dR4(Q; 4,G, 1L, v). (2.14)
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The four-body phase-space is factorized in the following way:
dR4(Q;q,G.l,v) = 2dxy dz dRs(t; P,W)dRy(W;l,v)dRy(P; b, G). (2.13)

The integration over the phase space of leptons dRo(W;l,v) is carried out
in analogy to eq. (2.12). The integration over dRy(t;q,G) gives the volume
of the two body phase space equal 7wp3(z). The only non-trivial integration
is the one over the phase-space of hadrons, and is performed using algebraic
manipulation program REDUCE. The final result will be given in form of an
integral over d=z, which in principle could also be done in terms of polyloga-
rithms, but because of the full ¥-boson propagator the result would be very
lengthy. For the purpose of obtaining numerical values for the spectrum it
is easier to perform one-dimensional integration, rather than to compute a
number of higher polylogarithmic functions.
The square of the matrix element in eq. 2.14 is given by:

95 2]3 G2~O(‘/T (B] B, BJ)
M= —-—_f_)_) - SR Rt
| M 3 (1 =&Yy +~°

o + D0, T D3 (2.16)
and the amplitudes B; and propagators D; can be found from the expressions
derived in section 2.2.2 for the case of a polarized top quark. Terms in
the formulas for B; which do not contain the ghion four-mormentum lead to
infrared divergences. For tliese terms the integration over z is performed
analytically and the divergence is regularized by introducing a small mass A
of the gluon. It has to be stressed that this procedure requires doing some
very complicated integrals and is greatly simplified if one uses dimensional
regularization instead. This appruach will be taken in the following chapter
in which it is applied to the calculation of the total decay rate t — DIV,

2.1.5 Total first order QCD effects

Adding the contributions of the real and virtual gluons we find the formula
for the first order QCD correction:

drt’ — G%mj 2a,
dzy, 1273 3«

gl(-ﬁ:)s (211-)
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where G, (x) has to be given separately for the two kinematical regions, as
explained in section 2.1.6. For e < 2 < (1 + €2)/2

G(x) = {)—';, [Fl 4xuln ——6_—)] + p3 [Fg Ine+ F3 + 4uln4(2? — ¢ )]
+xa[2Li2(1—I_”f)-2Ll ( 2= \—-3L1( 2P3 )
P+w, w } p3—<z

. 2]73 - 1
3L + 4Y,1 —_—
ol (ﬁsﬂ‘) “]}(1—fy)2+72

? dz
+ . rl—sr"{”"

(£y

where

Fy = 2[za(2¥, +1,) + 62%(2 — 3v) + €2(8x — 3 — 3¢?))]
Fy, = 3[x(5-8v)+e(Tr— 1))
F3 = 2/3[x(122 - 202 4+ 9) + 11e*(32 — 2)]

1
h(z,z) = 5)'},(:)[232 +(3-12v— &)z +42{22 + 1) — (3 + €*)]

1
+§,_2‘P3(~”){833 +2(1 — 92 + €)z% 4 [32(4x - 3)
+€(2 — 2+ 26*)]z + 1€ (47 = 3 — €2)}
(2.19)

whereas for (1+€)/2<a <1

(2.20)
We checked the absence of mass singularities (¢ — 0) for G,(x;,). As another
cross check we compared the results for total semileptonic decay rates fol-
lowing from Egs. (2.17), (2.18) and (2.20) with those given in [2]. We found
that they are in perfect numerical agreement.
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In the four fermion limit my — oo, i.e. €7 — 0, the integralsin (2.18)
and (2.20) can be calculated analytically. For ¢ < 2 < (1 + €?)/2 we obtain:

= | & - _ 2 _
G(x) = Y [F 1+ 20 (2)-';,+1*;,~21n___4(" f))]

62

+p3 [I:’g Ine+ Fy +4alnd(a? — e )]

/ DT 7] p
+rd [2Li2 1- ’f"f‘) — 2L, (1 - ’-fl) — 3L, (_21’3 )
Py Wy p3—1T
2]33

/
+3Li, ( ) +4¥,. In e] (2.21)
TA\p3+a

where

B o= 11—2[36.1-2(5 — 82) — 6e(1042 — 282 + )
+3€* (20 — 19) + 5¢°]
F, = 3[z(5—8x)+€(Tx— 1))

< 1 .
Fy = -1-536[32.1-5 ~ 16827 + 117023 - 372022 + 2430
—e*(142% — 362% — 49052 + 2120) — 3¢*(31x + 256)]
(2.22)
and fur (1+e)/2<a <1
1 . ,
G (x) = sl T )[322° — 136" + 1034a® — 204622 + 18992 + 312
—15€*(22% — 62% — 2672 + 208) — 90¢* (x + 4))
1
+§€2.l?(1' - 13 -4dx+¢€)/(2r 1)
1 ‘
+57 (20 - 1)[3200° = 2402% + 24 + 5 — 3€2(8x + 1) — 36¢* 7]

ooy (P3tl-a _ . __°
+21 {21)3 In (ﬁs—_—m) +a [111(2.1 - 1)In (21‘ 1= e?)

P — 2r —
L (21_ 1) _Liz( 3 1> +Li (__1_)+Li2 (_L)]}z.%)
p- P+ p- P+
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In the massless limit (¢ — 0) we obtained for 0 <z < 1/2:
1
90

+(8xr —9)In 22 + 2(4x — 3) [

G.(r) = :172{ (162" — 8423 + 58522 — 1860z + 1215)

7.{.2

=+ Li, (1 - 21‘)]} (2.24)

and for 1/2< 2 < 1:

G,(r) = I%(l — r)(322°% — 1362 + 103423 — 294622 + 1899z + 312)
—21—4 In(27 — 1)(6423 — 4822 — 247 — 5)
+2%(3 — 42)[—77 + 4Li, (22) + In*(2x — 1)]. (2.25)

2.1.6 Discussion of the results

In Figure 2.4 the normalized distribution of the total energy of hadrons is
shown for my, = 5 GeV and m; = 40, 60 and 80 GeV in the Born ap-
proximation. These distributions vanish outside the kinematical boundaries
€ < x < (1+¢€%)/2. The first order QCD correction

drtt)  2q,

—_— = " {2.92
(1.‘1'[, 37 F(,R(J h)s (2-6)

where I', denotes the total semileptonic width in Born approximation, is
shown in Figure 2.5 for the same three values of m,. In the region € < 2, <
(1+¢€2)/2 both real and virtual gluons contribute and the combined correction
to the differential rate is negative. In the region (1 + €?)/2 < 2, < 1 only
configurations with at least one real gluon are allowed and thus the correction
to the width is positive there. The gluon cannot be soft unless x), is very close
to (1 + €2)/2, where the correction has a logarithmic singularity. If the top
quark is so heavy that real W production is possible the shape of the hadron
~ energy distribution reflects the shape of the W hoson. A few GeV above the
threshold real W production becomes the dominant decay mode. In Figure
2.6 the distribution of the energy of hadrons is shown for m, =120 GeV (solid
line). The Born approximation (dashed line) and O(a,) correction (dotted
line) are also plotted. In the region below the peak the correction is negative,
and above it is positive.
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Figure 2.5: First order QCD correction R(a}) to the distribution of the total
energy of hadrons.
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Figure 2.6: Normalized distribution of the total energy of hadrons for m, =
120 GeV in the region of the peak.

2.2 Lepton Spectra from Decays of Polar-
ized Top Quarks

2.2.1 Introduction

Similarly to the case of electromagnetic corrections for muon decay y —
e + U, + v, [41], also the angular distribution of leptons from the decay t —
I+ y+b of polarized top quarks will be affected by QCD corrections. However,
an important difference is observed already in the Born term: the lepton
spectrum in the top decay can be factorized [2, 43] into an energy-dependent
function and a factor (1 + cosf)/2, where 8 denotes the angle between the
lepton direction and the top spin. The angular distribution of leptons thus
serves to analyze the spin of t-quarks produced in ete™ annihilation and the
factorization has evident implications also for the search of the top at hadron
colliders [43]. With this motivation in mind QCD corrections are evaluated
to the double differential distribution

Ty _ _dTy, dri,) (2.27)
dridcos® dxidcos@® = dvidcosf’ )
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The notation has already been explained in the previous sections. 4 is the
angle between the direction of the charged lepton and the vector 5 describing
the polarization of the top quark in its rest frame. As in the analysis of the
hadron spectra we neglect the masses of the leptons in the final state. In the
Born approximation

T dT'® (14 | 5] cosb)

dzidcosf  day 2 ’
where dI'® /dr;, the energy distribution for the decays of unpolarized t
quarks has been given in eq. (2.20) of the ref. [1]. In section 2.2.2 the first
order QCD correc: . is derived in the form of a one-dimensional integral:

(2.28)

pol

i _20Ghnd P __doF
dvidcos® 3% 1673 Jo (1— €y +~2

Contributions to F° arise from both virtual and real gluon emission. It is
shown that virtual gluons and a donunant part of real emission lead to a
separable form analogous to eq. (2.28) for the Born term. Thus the double
differential distribution dl',/dridcosé can be written to a good approxi-
mation as a product of energy and angular distributions also after corrections
of order a, are included. This claim will be substantiated by studyving the
function AF; defined by the -quation:

(2.29)

1
Fpol____ 1 g
1 2( +| 8

where F describes decays of unpolarized quarks. see eq. (3.2) of ref. [1].
| AFy/Fy | will be shown to he of the order of few percent. For m;, above 70
GeV AF; can be reasonably well approximated hy AF), i.e. its limit for the
vanishing mass of the down type quark. The general formula, which is much
lengthier, is provided for the sake of completeness in section 2.2.4. Some
details of the calculation are explained in sections 2.2.5 and 2.2.6.

cosfl) F +% | §| cosf AF, (2.30)

2.2.2 Corrections to Decays of Polarized t Quarks

In the Born approximation the differential rate for the decay t — b+ et 4 v
reads, (cf. (2.14) of [1]):

dR;
2y

1 64G> .
L | AP (2.31)

Pl = gy (1= EyP +7°
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where
| A2 2= (qv)(RI), R=Q —ms. (2.32)

and s is the polarization four vector of the t quark. For s = 0 | M} |2
coincides with | My |2, the matrix element squared for unpolarized t quarks,

(cf. equation (2.16) of : " remarkable that one can obtain | M |2
from | My |? by replaci:., “ (Rl). Equation 2.28 is an immediate
consequence of rhis observau. .

Virtual gluon exchange gi+ e following contribution to the differential
rate:

dr(l) _ 1 20'3 64G% A[pal ng

= 2.
3pol ™ omy, 3w (1 —Ey)2 +12 3 (27)5 (2.33)

where
M =~ {Hy(qu)(Rl) + € H,(Qu)(R)
+H_(qv) ((al) + [(RD)(Qq) = (Q1)(Rq)] /Q?)
+%e‘2(1{+ + H_) (Q*(v1) + (Qu)(RI) - (Ru)(QI))} (2.34)

and the functions Hy, Hy have been defined in eqs. (2.29-30) in ref. {1]. By
putting s = 0 we can rederive eq. (2.28) of that paper for the ‘unpolarized’
case. The three-body phase space is parametrized as follows:

dR3 = 312—(22 dxdyd(cos8)dad3 (2.35)

After integration over two Euler angles, cf. section 2.2.5. we obtained a
formula for the contribution of virtual gluons:
dr')) Gim? 2a, (14 | §| cosf) [um .
v.pol - Fiity 8 ( l I ) / dy ,—~—;F,,(.1'1,y,62).
dxidcosf 1673 3w 2 0 (1= &y)? + 2

(2.36)

The function F, has been introduced ! in ref. [1] and reads:

Fuz,y,€%) = (Hol'l(l‘.u ~ )+ E€Hyx(xyy — 21— y)

Y,
+H_ (21— y)aa ~ ) + ezyp—’> : (2.37)
3

TAn extra factor of 2 in the last term in eq. (2.33) of ref. [1] when compared o this
formula is due to a typographic error in ref. [1].
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The contribution from real gluon emission is given by

1 2a,7 64G2 dR
i) = : F Arpet 2 ——L 2.38
a 4.pol 277“ 3 (1 _ £y)2 + ,,‘_) l 4 l (2/ ) ( )
pol 12 B{ml Bpol BI;OI
AP 5= 32 1, 2.39

where

B = (@)[(R)(QG - Q%)+ (G)(RQ) — (QI)(RG) + (GI)(RG)).

B = (q)(G)(Rq) — (ql)(RC (RO[(4G) = (QG) = 2(¢Q)}}
+HRO[(Q){qG) — (G)(qQ)].

Bl = (RD{(GV)(qG) - viq + G)f?).

Dy = =-2(QG),
D, = 2(4G), (2.40)
This equation coincides for s = 0 with the corresponding formulae from

ref. {11, egs. (2.33-36). The term ~ B}° ol has a structure which leads to a form
analogous to (2.28). The terms ~ B , do not have this feature. However.

ol !
those parts of B and B}” which do not lead to separable expressions of the
form (2.28) contain at least one four momentum G,,. Since the denominators
Dy and D, are small for G, = 0 (in Q rest frame) we expect that

([r-(il.l))ol ~ (Ir(]) 1+ | ’:I (()‘50)
didcosf dx 2

(2.41)

In particular the infrared divergent piece of | M |2 is exactly factorizable.

so we calculate it by multiplying the result for the unpolarized t quark by
the angular factor (1+ | §| cosf)/2. The evaluation of the infrared finite
piece proceeds as follows. The four-body phase space is parametrized by

dRy(Q:1,v,q,G) = Q*dz dR3(Q:1.v, P)dRy(P: q.G) (2.42)

The integrations over the two body phase space of the quark-gluon system are
performed first. A method for algebraic evaluation of corresponding integrals
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is sketched in the section 2.2.6. Using the parametrization (2.35) for the three
body phas. space one integrates over the Euler angles a and f3, see section
2.2.5. The rema‘aing integral over z, the mass squared of the quark-gluon
system, can be solved by using recursion relations listed in the Appendix B
of ref. [1].

2.2.3 Discussion of the results

Combined contributions from real and virtual gluons and the O(a,) correc-
tions to the charged lepton spectrum are written in the form (2.29 and 2.30).
where

AF (1. y.€%) = AHs(2r.y.€*) = AHo(x1.y. 2) (2.43)

and the function AHs(x,y,z) is given in the section 2.2.4. The ratio

ym  dy _\Fl Ym dy F
R = —_— 2.44
/ (7~ &y)? //0 (1-&y)?++2 (24

is plotted in Figure 2.7 for my, = 3 GeV, my- = 82 GeV, I'yy = 2.2 GeV, and
my = 80. 120 and 160 GeV (solid lines). Since R is small we conclude that to a
good approximation the double differential decay rate for the charged lepton
can be written as a product of the energy distribution times the angular
factor %(1+ | 5] cos@). In the limit ¢ = 0 our formula for AF; simplifies
considerably:

AF} = AFI(LI‘,y, 62 = 0)
= 2u{Lis(x) + Lis(y/x) - Lia(y) — Lia(1)]
(1= 32)(1~ 2)1a(1 - 2) + (4 —y = 1)(1 = y) In(L — y)
Hy = 32)(1 = y/) (! = y/a)+ (1= 2)(1 = yj)(1 + 7~ )
(2.45)

Also shown in Figure 2.7 is the ratio R for ¢ = 0. Those curves correspond
to transitions t — s (or d). They show also that for the transition ¢t — b,
AF) is well approximated by AF; .

29



160 GeV

=
2y
Figure 2.7: The ratio R, see eq. (2.44). for my, = 5 GeV and m, = 80, 120

and 160 GeV (solid lines), and for € = 0. m, = 80 and 160 Ge\" (dashed
lines)
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2.2.4 A formula for AHy(z,y, z)

AHQ(.T_, Y. 2) = [y + zho]/[2pa(2))* + [ha + zha)/[2p3(2))?
+%§2{[h5 + Zhg]/[2p3(2)]4 + [h-,' + Zhs]/[2p3(:)]2 + hg -+ zhm}

+hyyInz + hyo[Lig(wy ) + Lia(w-)]/2 + hia/[2ps(2)]} )z + €2 h1a/ 2
(2.46)

where

hy = {=6y(1 — y)*[2%(3 + 22) + y(1 + 61 + 322) + 37
+126%y(1 — y)* (372 + y) + e“[a'z(l - )+ yr(=3 - 130+ 102?)
+y2(—4 + 307 — 1327 = %) + (4 = 32 + )}/

ho = {12y[2%(3 + 42) + y(1 + 122 + 1827 + 42%) + 3y%(2 + 42 + %) + 7
~24€%y[2%(3 + 27) + y(1 + 6x + 32%) + v?
+e'[—22(1 — 2) + ya(3 + 322 + 27) + y?(10 + 32 ~ )]}/ (2x)

hy = {(1 - y)[=22 2 + 3) + y(—1 - 6 + 2422 + 1427)
+y%(9 + 48z + 1527 — %) + 33(1 — 22) + yY]
+262(1 = y)[2%(3 — a) + y(1 — 4x = 1922) + y* (=6 + 2 + 2?))
~e'[22%(1 = 2) 4 y(1 - 112 + 32 + y?2(9 — 2) — ¥/l = y)

ha = {(1 ~ )[62%(1 + x) + 2y(1 + 182 + 242 + 22%) + 24%(5 + 92) — 247
—4(1 = y)[2®(3 +2) + y(1 + 8z + 2?)]
+€'[2*(5 — ) + y(2 — x — 32%) = 27} /[2+(1 - v)]

hs = 6(1 — y)y{(1 — ¥)(1 + 2)[y(1 + 2)* + 3(x + y)?

he = 6y{y3(=3z — 5) + y*(—2% — 1522 — 302 - 10)
+y(—102°% = 302% - 1520 — 1) + 2%(~52 — 3)
+€22(1 + 7)[y(1 + 2)* + 3(x + y)?] + €' [y( =32 — 1) + 2%(~x - 3)]} /
he = {y* + y3(92° — 62 — 19) + y*(—42® — 6922 — T8z~ T)
+y(—222% — 1522 + 122 + 1) + 22(22 + 3)
+€2[2y%(—22 — 1) + 2y%(—=322 + 220 + 8) + 2y(6a® + 2422 — 22 — 1)
—62%] + €'[y?(4x - 3) + y(~72% — 82 + 1) + 2X(~22 + 3)]} /a
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hs = {—y® + 3y (=527 — 14z — 1) + y(—102° — 482% — 242 — 1)

42 (—4x = 3) + €£[2y%(2x + 3) + 2y(112% + 14z + 1) + 20%(22 + 3)]
+e[y(—da — 1) — 322} /2

hg = {~y® +y2(4x — 1) — y(320 + 1822 + 1) — 42° — 622 + 47 — ]

+26%[y(—a? +6x + 1) + 722 - 2v + 1 - ey +1)}/(27)

hio = [y? — 42y — 102% — 42 + 1 + 26%(a? + 22 ~ 1) + €*]/(22)

h”
]212
]?]3
hH

[P = day + 42 = 1 4 2¢¥(x - 1)% — €]/ (27)
-2

e = 1)(y - 1)*(y — 7)(2y — yx — 2)/(27)
= (1 —x)(y—2)/[2(1 - y))

(2.47)

The following relations. derived from the coudition that MH,(x.y.2) has
no singularity at pg{z) = 0, have heen used as uon-trivial cross checks of

calculations:
hs [(y—= 1)y +(y— 1)%hs + (y + 3hs/(y —1)]/2
hg [=hy = (y + 3o + hyz/(1 = y)}/2
hz {{y+ 3 /[4(1 = )] = (y+ 1D)ha /4 + 3(y — 1)hg
+3(y = 1)%ha = Iua(y® — 1y — 19)/[4(y — 1)*]}/6
hy {/(y=1)=[=ha+ 12h3 + 12(y + 3)hy + (9 = y)/(y = 1)>h13]} /24

(2.48)

2.2.5 Integratiocn over Euler angles

Units are chosen so that Q% = 1. In the Q rest frame the following four-
mcmenta are considered: [, P = ¢+ G. v and s, together with the corre-
sponding three-vectors

[+P+0=0, (2.49)

and the unit three-vectors [, § and




The three Euler angles a, 8 and 6, describe the orientation of  and P with
respect to an orthogonal system of coordinates with the z-axis directed 1 along
3. Let 6 denote the angle between § and I, a the angle between w and Pr (the
projection of P onto the plane perpendicular to [ ) and g the angle between w
and the y axis. It is clear that all the scalar products which appear in A} ol
and | M4 |2 do not depend on 3. Thus, the integration over J is trivial and
gives an overall factor of 27. Integration over « is non-trivial because (sP)
and (sv) depend on a. Using the decomposition

P=rpi+ | Pr | cosa w— | Pr [ sina @ x ] (2.51)
one derives:
/da(sP) =27r|§]cos€[%(1+y—:)—%]. (2.52)
Then, from energy-momentum conservation,
Q=P+1+v (2.53)
it follows that
/da(su):?rrl §| cosf %—%(l-f-y-—:—.r,) , (2.54)
because (Qs) = 0 and
(Is) = —%a'l | 5] cosé. (2.53)

2.2.6 Algebraic evaluation of the integrals

In this section formulae are listed which allow algebraic evaluation of the
integrals

I, = [dR(Piq,G)QGY

5 = [dRry(Piq,GXQG)G

Ke? = / dRy(P;q,G)(QG)"G°G®

o5 = deg(P;q,G)(QG)"G"G”G’ (2.56)
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for n > —2. It is easy to show that only integrals of this form appear when
one integrates | M} |2. Since we are interested in infrared finite pieces we
put G? = 0. For I, we take, (cf. eq. (A.8) of ref. [1]):

s
= = o
[
1_1 = ﬁ)p
PG+ (P@)"
I, = 77( ()p'z)n+1Q) (n >0)
(2.57)
where
1 .,
(PG) = 5(P*= ).
v = L ep)+va
b 2(QP) - VA
A = Q*PP—-(QP) (2.58)
Using Lorentz invariance one derives:
Jo =dVQ" + 1V P, (2.59)
where
1 5
) = < (Pl ~ (PGYQPL),
1/ 0 _
W = Z(Q-(PG-.;I,,—(QP)I,,H). (2.60)

It is evident that K87 is symmetric:
K2 = aPg*? +07Q°Q° + PP PP+ dP [Q°P? + PQ°]  (2.61)

It must be also traceless. By contracting K'2? with P® and Q® we obtain a
system of linear equations. The solution is

2
1'” P

Q*(PG)

2(QP)

2) (1) 1
a£1 ) - bn+l + QSJ )
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1

2 - -
b = 3RGP)
PG [2 QP +P2Q2]a(‘)
e = 2A(1QP\ {4Q2(QP Jawa1 + [3Q°P* = 2(QP)?]

—3(PG)(Q"Fal}
@ = o {~UQP) - P + 3PN} (2.62)

In a similar way we obtain the following formula for L2%:

L7 = d®(™Q7 +™Q7 + g7 Q") + U (g P + ¢ P + g P)
+dP° PP + é(Q Q7P + Q P°Q + P°Q°Q")
+P0P;3Q‘1) (2.63)
where

d® = — (P, - (QP)(PG)a?)

1
b = < QPG - (QP)ay)
. ) 22,,(3)
& = 1 (P2 - (QPypon) - L0
” (3)
4P = %(Qz(PC) 2 _(QP)d2,) - QQ"
(3)
&9 = < (QUPGID - QPR + —-———2““; ‘
1 (Qp)bm
3y _ =~ (p2.2) _ (2) oa
fol = A(P cior = (QPY(PG)Y) + — (2.64)
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Chapter 3

Total rate of the decay ¢t - Wb

3.1 Introduction

Although one-loop radiative corrections to most reactions within the Stan-
dard Model have been computed, it remains an important task to develop
better and more efficient techniques for doing loop calculations. Recent ap-
plications include for example decays of heavy quarks and non-standard pro-
cesses like charged Higgs decay. There has recently been much progress in
developing algorithms for doing multiloop calculations using dimensional reg-
ularization (see chapter 6 and references therein). The basic idea of dimen-
sional regularization is to calculate integrals, which diverge in 4 dimensions,
in an arbitrary number of dimensions D and obtain the result in terms of a
Laurent expansion around D = 4. The use of dimensional regularization for
labelling ultraviolet divergences has become a standard technique. On the
other hand, to regularize infrared divergences many researchers still assign a
small mass to the gluon, even though it was shown long ago [44, 45, 46] that
dimensional regularization can also be applied to this problem resulting in
a simplification of calculations. The purpose of this Chapter is to calculate
QCD corrections to the total decay rate of the decay of a top quark into a
bottom quark and a W boson. Advantages of using dimensionally regularized
phase space integrals will be demonstrated explicitly.

Recent CDF results suggest that the top quark is heavier than 89 GeV
[47]. Even higher limit can be obtained from analysis of shape of the Z
peak [48, 49]. This high top mass opens the possibility of its decay into a b
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t w
Figure 3.1: Tree level process t — Wb

quark and a real W, depicted in Figure 3.1. As this will be the dominant
decay channel, it is crucial to know its exact width together with QCD correc-
tions [50]. The relevant formula was first derived by Jezabek and Kiihn [2].
However all the existing results were obtained by assigning a mass to the
gluon in order to regularize the infrared divergences. In this Chapter di-
mensional regularization is adopted for both ultraviolet [51] and infrared [43]
divergences. It turns out that this method leads to much simpler calculations
than the method requiring the introduction of a gluon mass. A technique
for doing phase space integrals is presented in detail. Effects of the b quark
mass are accounted for. The final formula confirms the results of ref. [2].

Other properties of real 11" production, such as hadron energy spectrum,
can be obtained from the results for semileptonic decays [6], described in the
previous chapter. To this end an integration in a narrow-width approxima-
tion has to be carried out.

The notation to be used is adopted from the analysis of semileptonic de-
cays [2] and has been explained in the previous Chapter. We define following
symbols for scaled masses:

e=-711—b, 1U=T—H:-. (3.1)
my m,

All four-momenta are scaled by taking m, as a unit of energy and are
denoted by @, ¢, G, W for the top quark, bottom quark, gluon and ¥ -boson
respectively. For the value of kinematic variables for : = €2 we use the
abbreviations

Po=po(€®) Pa=ps(ef) ete (3.2)
The width of the decay ¢ — Wb in the Born approximation reads:
Grm3
rOt — W) = Lfp 3.3
( ) 4\/§7I' fp3 ( )



where
f=00-e)?+w*1+ ) - 2u'. (3.4)
To evaluate the corrections from virtual gluons we work in D dimensional
space, where D = 4 — 2¢, ¢ being an arbitrary complex numbe: . v .ich we
will take to be 0 at the end of the calculation.

3.2 Limiting case of my=my =0

In order to illustrate the technique of dimensional regularization with a simple
example, the decay rate is first calculated in the simple limiting case where
top is treated as much heavier than 11"-hoson. in which case we can neglect
masses my- and my,.

First the tree level decay rate has to be calculated in D dmensions. This
1s important, because terms proportional to ¢ can combine with poles from
loop corrections to the vertex and external legs giving finite contribution. If
we take m, as the unit of mass we obtain:

ZCF 2-D .y > -
Ip= 7120 [ dno(t: W.q). 3.5
B \/5 ( ) taf 1) ( )
with the n-body phase space in D dimensions defined - foNowe:
D d°p n
AR (P:p1pa....pu) = 6P (P - Zp °[ SE (3.6)
=1 1

We introduce spherical coordinates in a (D — 1)-dimensional space, so that
the volume element is:
dP-1k _ EP%4E
2E 2F

D-2
(sin;)”3(sin 6,)"~2..(sin6p_3) ] dé; (3.7)
i=]

where E = k9. The angular variables can be integrated out with help of the
formula:

/”(' oy = /7T ) (3.8)
sin)"df = /« 2 :
0 I'(%3*)
and this gives:
b=k 5
o T _po-34p (3.9)
2F r(&t)



The volume of the two-body phase space can now be easily calculated:

. . D=1 ¢P-1p o
/4;-;:,_.:?2((t;nf,b) = /(QF’u oF, —— 6271 + b)8(1 — Ey — Ep)

dP-1w
= iE, 6(1 — 2Ew)
L(%*)
(D -2)

In the last step we have used I'(D — 2) = 20"37'%F(%;2)F(%:1).

Calculation of the QCD corrections to the decay rate proceeds in analogy
to the case of the decay t — H™*b which will be treated in greater detail in
the following chapter. Only the final result is quoted here:

Gr as (. 472
gﬁ-—m, |\,b| [ 37" (o— 3 )] (3.11)

3.3 Virtual corrections

9=l 052 (3.10)

r (f - n'+b)

We return now to the calculation including effects of b quark and W hoson
masses. First the one loop virtual corrections are evaliated. From the on-
shell renormalization condition
9Z(p)
9 p
we determine the wave function renormalization constant for a quark of mass
mg:

=0 (3.12)

=,

s 47
Zy = 1+a_ <—§+3“ —3In ulls 4) (3.13)
3r 7"71

We take the renormalization mass scale ¢ = m, and thus absorb y into the
scaled masses. In calculating the vertex correction we take 5 anticommuting
with all v,. The total O(a,) virtual correction is given by:

Grm3 2a, _ 2P0 w_ ) Pt -
F(l) = —_—| - — )
42r 37 7 {f [ (L (1 u+) Li, (1 p+u+

~2(lne+¥,)(V, + 7)) — 4 +4 (’f“),, - 1) (-1— B ]

D3 2e 2
+12w%Y, 73 — In €[l + 4¢ — 5¢* — w?(5 — €2) + 411'4]}
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3.4 Real gluon effects

To first order in a, the remaining QCD effects to be calculated are emission
of a gluon from the top or from the bottom quarks. The contribution to the
total rate is:

. 1
D(t = IWG) = gos

/|.«\1|?dz?3(Q;w, 4,G). (3.15)

We can factorize the three-body phlase space into a product of two-body
phase spaces:

dR3(Q:W,q.G) = dPRy(Q:W. P)dRa(P: q.G) (3.16)

where P = ¢ 4 G is the four-momentum of outgoing hadrons. Let us denote
the square of the invariant mass of hadrons by z:

s=Pleldn, =(1- w)?] (3.17)

We will later have to integrate over z. but for now we can assume that
the ten quask decays into 1" (which is a real particle of specified mass) and a
particle oi mass \/z. This is a two body decay, so the phase space integration
is easy:

dP-11 gb-1p
] 2 . ', = D R o 2 .
/(1?-((2 . P) o, a0 Q- P =)
dP-'p .
- 4‘:{,'01-)06((20 - PU -1 0)' (316)

We use the factorization
dP'P = PP24PiaQp._, (3.19)

where dQ2p_, is a solid angle element in the D — 1 = 3 — 2z dimensional
space. The integration over the angles gives:

273-e
/dQD_1 =~ (=47 for £ =0). (3.20)
r ('_.Z - 5)



The delta function is used up by the momentum integration and we obtain

3¢

[ dRe(Q: W, P) = ﬁqpﬁ 2)' (3:21)

where p3(z) is the three-momentum of outgoing hadrons in the rest frame of
the decaying quark.

We now turn our attention to the decay of our “particle of mass /z”
into a light quark and a gluon. We must stress here that it is an artificial
object and in fact the gluon can be radiated either by the initial or by the
final quark. To calculate corrections from the real gluon radiation we have
to evaluate phase space integrals containing infrared divergences. There are
two kinds of quark propagators in our process:

1 _ 1
(Q-GP -1 2QG)
(3.22)
1 1
(¢+GP - = 2(¢G)
This leads to three types of divergent integrals:
s 1
— o \—04+4s
o= (27 [aRs(Qs1,4.6) Ter (3.23)
4. 1
G o= ~(2m)7 [dRy(QiW.q.G) e 3.24
Cy = (27r)“5+‘1°'/d]? (Q:W.q.G) L (3.25)
HQG)?
Since the product (¢G) depends only on :z:
2 —¢
(46) = 5=, (3.20)
we pull it out of the integral over dRy(P; ¢, G) and write
2 —8+4¢ —-—+3' . -9 3—n
C, = Cap' T (=5) ha, G2
- - E I I —€

41



with
I, =/d]?2(P;q,G)(QG)", n=-2-1,0. (3.28)

First we calculate the threc mtegrals I,. We work in the rest frame of
P = g+ G. Evaluation of I is again trivial, leading to the volume of the
quark-gluon phase space:

3 s
WE—EEI- 2s
]0 = 1(1 . (3.29)
where Eg denotes energy of the gluon:
2 —¢
E; = N (3.30)

To proceed further we define a new integration variable s = cos £(Q. G):

(QG) = = = pas). (3.31)
We will now calculate an integral over the hadronic phase space of the
square of the first of the above propagators. This will illustrate the technique
of doing phase space integrals in D dimensions.
Let us first have a closer look at spherical coordinates in a D-dimensional
space. We choose one radius » and D — 1 angles 6,...8p_, in analogy to the
3-dimensional space. The volume clement in this system of coordinates is

dPr = (rP71dr)(df; )(sin 82d8,)...(sin”~2 01 d6,,_ ). (3.32)
Standard spherical coordinates are recovered for D = 3 with 6, corresponding

to o and 8p_; to 6.
We now want to do the integral

I,= /ng(P:q,G)((—?lc-;F. (3.33)

It is convenient to work in the rest frame of P. Energy and momentum of
the heavy quark will be denoted by Eg and Pg. and energy of the gluon by
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E¢. We take the :-axis to be along the three momentum of the heavy quark
PQ Then we have

dP-1gdP-'G  6P(P —q-G)
2E, 2E; EL(Eq — Ppcosfp_i)?

PG &(/F - E, — Eq)

4E.EY (Eg — Pgcosfp_y)?

I,

(3.34)

The integration over Eg uses up the delta function. Since the integrand
depends only on the angle 6p_;, other angular variables can be integrated
out and we get:

o= wl-e Eal"zf T sin' " 0p_1edp-; ‘ (3.35)
(1 -:2) = Jo (Eg— Pgcosfp_;)?
This integral can be done by a change of variable s = cosfp_; and wn

expansion around £ = 0. We obtain:
rl"" EZ'7% 1 (11— s?)~ds
(1 ) \/.—3- -1 (EQ—-PQS)2
B 7'1 E;I=% [ p ds b In(1 = s?)ds
T OW(1-9) JF [/—x (EQ—PQs)'z“/-lm]
(3.36)

I, =

Both these integrals are elementary. As a result we obtain:

s

B I-= EEI—QE o _
o= g [1—2; (112—}— (2 ))] (3.37)

In the same manner we can also get:

l-s =2 1 — o2y«
I, = T T Eg / (1-s7) ds
2I'(1 — ) J-1 po — p3s

,n.l—f E525 P
= 2Y, —e Ly, | ~—
' (1-¢) ps [ ) (Ll‘ (p+)
. [ P+ - 2K
- Li, | — | —4Y,(z)In —>} 3.38
2 (p_) I ) \/E ( )
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We are now left with one dimensional integrals C, which to the order
O(1) can be done in terms of elementary functions and dilogarithms:

C, = 5;;15:2- -2]33 (——QL-{-V 2+1In 2D ;) + 2(w? - 1)}
~(1 - w? - &)T,]
Cp= - -2)"’ (—l+7'—1+111M)
2 TP 2 e

+Li, (1 — p-) = Li, (1 — py) — 3L, (1 - f}-‘) - 3Y}
+
H2lnp.In(l —w —=po) = 2Inpy In(py — 1 + w)

J S 1 23
ngﬁ[Zp;;(—;:%- -2+ In—= )

28 TEW
—(l— w4+, - (1+w? - 62)3*;.] (3.39)

These formulas are similar to those that can be obtained by the intro-
duction of a finite gluon mass A, but instead of In XA we have a combination

1
2 ;+l—ln 77’ (3.40)

Integrais C,, are the only ones encountered in this calculation which con-
tain poles 1/c. All others are finite and can be easily done in 4-dimensional
space. Evaluation of the real gluon radiation rate is now straightforward and
after adding virtual corrections we obtain the total first order QCD correction
to the total decay width:

Grm? 2a, . . . , P
=2t {4 —w? + € [Lln (p+) = Li, (p-) — 2Li, (1 - —_—)
s )| () = L (p2) = 2L, (1 - &=

41)310

+Y,In - Y, 11113_] +4(1=€)[(1 - )+ uw’(1 + %) — 4T,

I+
+[3—¢€ + 1164 - @+ w?(6 - 122 + 2¢%) - 104(21 +5€¢%) + 1209,

+8fp3in -4—]— +6[1 — 4€* + 3¢ + w?(3 + %) — du']psIne

+[5 — 226 + 5¢! + 9uw?(1 + %) — 6104]133} (3.41)
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We see that terms containing Inp3/27 have disappeared together with
poles in ¢. This was assured by taking D-dimensional phase space for con-
tributions of both rez! and virtual gluons. Our final result is in perfect
agreement with the formula derived by Jezabek and Kiihn [2] and can be
used as its independent check.
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Chapter 4

Decay t — Htb

4.1 Introduction

Many extensions of the Standard Mode! contain more tlian oue Higgs doublet.
The electroweak gauge bosons only absorb oune of the charged Higgs fields.
leaving the others as physical charged scalars, so that in a two-doublet model
the top could decay to H*b (if 12, > mpy+ 4+ mp). For certain choices of
parameters, this process dominates over the expected t — W*b decay [3]. so
it is of interest to correctly calculate its QCD corrections.

It is well known that the QCD corrections to the decay rate of a heavy
quark into a 1" are of order 10% in tlie Standard Model [1, 2]. Several groups
have undertaken to calculate these corrections for the decay into a charged
Higgs. The effect of the soft gluons has been calculated in ref. [52]. and the
decay t — H*bg, with real gluons only. has been studied in ref. [33]. The
full one-loop QCD corrections have been computed, at first by neglecting the
mass of the b-quark in ref. [54], and then with a nonzero my in ref. [33] (in the
framework of what is called the Model I - see discussion below). The claim of
the latter paper is that the QCD correction for m; = 150 GeV, m, = 4.5 GeV
and a; = 0.1 is as large as —15% in the (unphysical} limit of the massless
Higgs. However, as will be argued in the following sections, according to the
Equivalence Theorem (see [56, 57, 58] as well as [59] -ind references therein)
the correction in this limit should be the same as the correction to the decay
t — W*b, which for the »hove valucs of parameters is —8.6% [1, 8]. The
purpose of this Chapte is to reevaluate the first order QCD corrections
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with non-zero b-quark mass. We use dimensional regularization for both the
ultraviolet and the infrared divergences, which leads to simpler algebra than
if one assigns a finite mass to the gluon, as was done in [54, 55, 59]. Our
result is consistent with the Equivalence Theorem.

In a mode! with two Higgs doublets and generic couplings to all the
quarks, it is difficult to avoid flavour-changing nentral currents. We therefore
limit ourselves to models that naturally side-step these problems by restrict-
ing the Higgs couplings [3]. The first possibility is to have the doublet Hj
coupling to all the quarks, and the H; doublet interacting with none of them.
The vacuum expectation value of H, = v; will nonetheless contribute to the
W mass, leading to an H~th vertex of the form

v, -
I g-p {mycot 3R — mpcot 3L} ¢ (inodel I) (4.1)
V2myy

where H~ is the physical charged Higgs, 1 is the ‘33’ element of the CIKXM
matrix, L and R are the chiral projection operators, and tan 3 = vy/v; is the
ratio of the vacuum expectation values of the two Higgs. The second possibil-
ity is to have H, couple to the right-handed up-type quarks (up,cg,tg), and
the H) couple to the right-handed down-type quarks. This is what happens
in the Minimal Supersymmetric Standard Model. It is easy to show that the
interaction Lagrangian

Hyt g + Hydph) gl + h.c. (4.2)
leads to the vertex
Vo o3 ,
H7b{mcot 3R — mytan L}t (model II) (4.3)

\/2_77“.'.'

where we have numbered the models in accordance with [3].

4.2 Limiting case of a very heavy top quark

The first order QCD corrections to this process have been calculated by
two groups [54, 55, 59] who disagreed with each other. The work presentec
in this section was motivated by this disagreement. The question of the
limiting case of a massless b quark was clarified when an erratum to the paper
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[54] appeared. In this section we present a calculation of these corrections
in the limit of a very heavy top quark, i.e., neglecting the masses of the
bottom quark and the Higgs boson. The effect of finite my and m; will be
addressed in a following section. We use dimensional regularization to cope
with both the ultraviolet and infrared divergences, which greatly simplifies
the calculation, especially the real radiation part.

We take H, and H, to be the doublets whose vacuum expectation values
respectively give masses to the down and up type quarks. The physical
charged Higgs H is a linear combination of the charged components of H,
and Hj, so if we neglect all the Yukawa couplings except that of H, to the
third generation = hﬁ;o'), the top only couples to the Hy component of H+.
The interaction Lagrangian relevant to the decay t — H*b is then:

L = WP cos BV, HTT (-1-:2—72) b+ h.c.

Q—J%EI";,bcot BmHYE(1 ~y3)b+ h.c. (4.4)
where H* = cos SHy — sin 3H}" and cot 3 = (H,)/(H,) is the ratio of
vacuum expectation values of the two Higgs doublets.

In the following calculations we take the space-time dimension to be D =
4 — 2z. The mass of the decaying quark is taken to be the renormalization
mass scale, and we also use it as a unit of energy: 1, = 1. In the limit of a
very heavy top quark the above interaction leads to the tree-level decay rate:

Gp r (1 - 5)

V2 2-2g1-:T (2 — 2¢)
Gr 2

cot“ 3
8V 2r
The first order QCD corrections to this formula arise due to virtual gluon
exchange and radiation of a real gluon. We first deal with the virtual gluon
correction to the vertex tH*b. In the limit m, = my = 0 the spinor structure

of this vertex remains unchanged and the unrenormalized correction amounts
to the multiplication of the tree level rate by a factor:

A= prle)%;—) (-l + -2-> : (4.6)

(47 e ¢

ro ({ — H+b) = cot? 3 |th|2

Vol (4.5)
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where the colour factor Cr is 4/3 for SU(3). The countertern: for this vertex
involves the wave functicn and mass renormalization constants [GO, 54]:

1/, 1/, s édm, -

Ac"'—5(22—1)+§(Z2_1)——7n—,. (41)

If we use the same € to regularize both UV and IR divergencies we obtain
for the renormalization constants:

S gRUtd (3

Zi-1 = 2 -4

my F (47")42)~ 3
Zb-1 = 0. (4.8)

The contribution of the virtual correction to the decay rate is:

1-‘5.],':, (f — H+b) = 2(A+ Acy) r® (T — H+b)

GF 0 9 2"3+457.’_2+25 2 5 71.2
= — t< 3 V] | ¢ ——————— —-_-———12-— .
/2 oAl A E s oy \ T2 T 3
(1.9)

We now turn our attention to the effect of real gluon radiation from the
initial or final quark. If we denote the amplitudes for these processes by A,
and Aj; respectively, the contribution of the real radiation to the decay width
1s:

W o) = LCF o2
i (t — H¥G) 55 3

5 f .
Vl? dica J dRs(1:b, H. G} A + Aof?

(4.10)

where the coupling constants have been factored out and t,b, H and G denote
the four-momenta of the initial and final quarks, charged Higgs boson and
the gluon.

The advantage of using dimensional regularization for the infrared and
colinear divergences is that we need not introduce a mass for the gluon and
the integration over three body massless phase space is very simple [61]. We

choose to parametrise it by the variables x = 2¢t-G and : = 1 — 2¢- b in terms
of which the three body phase space integration hecomes:
24e-Tp2%-3 1 gy T dz
dR (t;6, H,G) = J / L@
,/ 3 ) F2-2:Jo (1~2x)Jo z¢(z—2) (4.11)
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After summing over the polarizations of the b quark and the gluon, and
averaging over the polarizations of the t quark, the squares of the amplitudes
become:

AP = —%[2(1—1‘)+$(1-—5)(z—.1')]
A = 14_‘1‘:(1-5)
8
AL A; + A2 A = mll—.r+r(1—a)(;—a;)] (4.12)

The integration over the phase space can be done exactly in any dimension.
In the limit £ — 0 the contribution of the real radiation becomes:

G ) , '7—3+'1£7T—2+25 2 5 .
(1) +py __ TF .2 -2 & i - .2
I-‘real (f - H b) - \/z cot 3 l‘ tbl Qg aT (2 _"‘2—‘5) <52 + - + 17 T ) .

(4.13)

Although the respective phase space integrations of |4, |, | 4] and A A3
+A2A] give different results from the analogous amplitudes with a 17"+ re-
placing the charged scalar, their sum nevertheless gives the same total con-
tribution in both processes. This is in agreement with the general argument
based on the equivalence theorem in ref. [59].

Finally we add the effects of the virtual and real gluons to obtain the first
order QCD correction, so the decay rate (with m, reinstated) becomes:

Gp : 2 Q / 772
) = TF 3012 3112 e
r (t - H b) = 8\/57"7”' cot” 3|Vl [1 + o ko . (4.14)
This is identical to the result obtained in ref. [39] and also to the analogous
correction to the decay t — W% [1, 8, 62, 63]. If we take a, = 0.1 the first
order correction in the limit m, = my = 0 is approximately equal to —8.7%.
This is in disagreement with the value reported in ref. [54, 55).

4.3 Effects of b and H'™ masses

In this and the following sections we discuss the effects of b quark and H*
scalar masses in the QCD corrections to the decay ¢t — H*b. In order to
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simplify the following formulas we introduce dimensionless parameters for
the scaled masses:

my myg myy .
e=—, y=—. w=-— (4.15)
m, m, my
and write the vertex t — H*b as

i—d Vb (a+ bys)t. (4.16)

22w

where from (4.1) and (4.3)

a=cotF+etanf
b=cot3 —etan 3

a=cot3(1 —¢)

Model 1: { b = cot 3(1 + ¢)

Mode] 1II: {

The next section contains our result. which is examined in section 4.3.2.
Section 4.3.4 contains some details of the calculation.

4.3.1 QCD Corrections

The notation we use is similar to that used in the analysis of semileptonic
decays [1, 2]. In terms of the dimensionless parameters (4.15), we define the
following kinematic variables:

_ 1 . .
= Z(1-\+é)

2
P = —12-\/1+x“+e4 —2(\2 + € +\%€?)
- _ 1. P,
Y, = 5 In B
1 s
Wy = ’2'(1’*'\”’"5)
IV:}: = W‘ro + }33
- 1 Vi".+
7 = —ln— A7
Y, 5 n T (4.17)
The tree level decay rate is
3 . ., . _
It — H*b) = %‘ ’2"’ [Vis|2[Po(a2 + b?) + (=% — 1b2)) Py (4.18)
/27

-
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and the O(a;) correction is

ay Grmd |Vy]?

= T [(a2+ 1) Gy + (22 = b?) eG_ + abGo|  (+.19)
with
_ _ 4P}
G+ = P()H + POP3 [?_ —41n (——3\)}
2 €x )
4--%537; (2 — 2=\ 300 — 26 — 26 + 260 — 4% — 5X2€4> ,
/ 1 P2
G_. = H+ B [6-—4111 (-46—[?-)} +%)-p (1 - \?_252-{—5’1 3\“52)
Gy = —6PyP3lne, (4.20)
and

5 lre (5 : o P
H = 4P, [L—p_, (P+) —Lia(P-) - 2Li (1 - 73:>
" 4 32\ ~ R 2 2 = 9 o
+¥pln | —=5= ] —Y.lne +2)w(1-—€)+FI31n€(1+\ _f).

In the limit of the zero mass of the b quark the QCD correction becomes

a. Gpm? |V

lim ) = s cot? 3 (2G4 + Gy) | (4.21)

where

- ) . 2

G, = (l—- \2) [ng(l—\Q)_ 1—\- \2111\

0 1 5 , N 79 3
+ln/\'ln(1—,,\)+5§,-_,-< —-5\)111(1—,\)——3—+§+Ilne},

% 3 2\2 .
Go = ~5(1-2) e, (4.22)

and we see that the mass singularities ~ In € cancel in the expression for the
total rate (4.21). Our result in this limit is identical to the one obtained by
Liu and Yao [59] and is in agreement with the corrected version of ref. [54].

52



If we further take the limit my; — 0 the rate becomes:

) a, Grm3 |Vl 5 72
i, = 25 S ot (z “3) (4:23)

which is in agreement with the conclusion of the ref. [59] as well as with our
previous result [9].

Now we would like to compare the corrections to the decay width
I'(t — H*b) with those to I’ (t — W*b). For simplicity we now take m, = 0
and cot 8 = 1, and examine the ratio of the first order correction to the Born
rate:

re (t — H*b)
fu(x) = O (7 = B0

'Yt — W) Y
fir(w) = T0) (£ = W+b)" (4.24)

It has been noted in [59] that in the limit of the infinite top mass these ratios
are equal: fy(0) = firr(0). On the other hand, when my approaches m,. we
have:
- 8 .
fu(y) 53 §: ~6ln(l —\*) = 272 +13|. (4.25)

n

By comparison with [1] we see that:

lim-fl—l('—v2 =1. (4.26)

=1 fir(z)

Finally, we examine the corrections in the limiting case where the mass
of the charged Higgs is zero but the b quark mass is finite. This is of course
unphysical, but serves as a useful check on our equations. If we choose
the parameters a and b from (4.16) to correspond to the couplings of the
single Standard Model Higgs, then the Equivalence Theorem implies that the
corrections are the same as in the process t — W in the limit of massless
W boson and nonzero m,. The latter can be obtained by taking the limit of
the relevant formula [1, 8J:

a, Grpm? |Vu,|2

2472 V2

53

IimoI‘“) (t — bW)

mwy —



6
- 4e? (T - 56 + 4f4) In(e) — 8 (1 - 62)3111 (1 - 62)

*{8(1 ~ €21+ €2) [Li2 () - ™ +1In(e)In (1 - 52)}

—(1 - 6’2)(--5-'{-2262—564)} (4.27)

The couplings of the Goldstone boson cliarged Higgs of the Standard Model
(longitudinal W) to ¢ and b can easily be calculated to be those of Model 1.
with cot 3 = 1. In this case. the corrections to the decay t — bH™ are, in
the limit my — 0:

a, Gpm3 [V
w2 V2
2(1 + €)GY ~ 462G + (1 = €)G] (4.28)

im T (r — bH+) =

fmgy—

(o2}

ey

where G? are limits of corresponding functions G; for my = 0:

GL = (1+€) [Li-z (62) - -%2 + In(e)In (1 - e"’)]
#H(Fre =) mo- (=) m-)+

G = 201+ ¢) [Lig (e“’) - % + In(e)In (l - 62)]

(1-¢')

oo O

3 - 52) In(e)—2 (1 - 62) In (1 — 62) +2(1 — €%)

-—(1 — €*) lu(e) (4.29)
Inserting these expressions into equation (4.28) we obtain the same formula
as (- 7).

4.3.2 Iiscussion

In Figure (4.1) the ratio of the first order QCD correction to the Born rate
for the decay # — H*b is plotted as the function of the ratio of masses
x = my /m,. We have chosen the set of parameters cot 3 = 1, m, = 150 GeV
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Figure 4.1: Ratio of the first order correction to the Born rate for tan 3 = 1
and m, = 150 GeV: mny, = 4.5 GeV (Model I - solid, Model II - dotted),
my = 0 (dash-dotted line).

for an easy comparison with the analogous diagram in ref. [35]. It can be
seen that the effect of the mass of the b-quark is negligible, except in the case
of my — mpy ~ my,.

There are also logarithmic corrections (~ €?Ine) to the decay rate in
model II, as can be seen from Figure (4.2). Here we compare the branching
ratios of the decays t — H¥b and 1 — W'*b, taking m, = 100 GeV so that
this plot can be easily compared with a similar one published in ref. [5]. Our
graph is different from theirs in that we now include QCD corrections to
both decay rates. These corrections modify the diagram significantly only
in the case of large values of tan 3 in Model II. It must be noted however,
that although the corrections are relatively large, the top decays principally
to Wb in this region of tan 3. In model I, both a and b are proportional to
cot 3, so the log of the branching ratio as a function of tan 3 decreases with
- a slope of -2. As can be seen from figure (4.2), the Ine corrections cancel to
order €2 among G,,G_ and Gy. However in model I, the decay rate is a
polynomial in tan 3 with exponents -2, 0 and 2, and the In ¢ does not cancel
in the “0” and “2” terms.

The logarithmic corrections in Model II can be interpreted in terms of
running mass of the b quark [60]. To this end we rewrite the formulas for the
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10.
BRU—bH)
BR(1—bIV+)

[y

0.01

0.1 0.2 0.5 1 2 5 10. tanJ
Figure 4.2: Ratio of the branching ratios of ¢+ — bH* and ¢ — bW for
my = 4.5 GeV: in the Model T with and without QCD corrections (solid and
dashed lines, indistinguishable) and in the Model 11 (dotted and dash-dotted
lines. respectively).

O
(@]



tree level decay rate and for the first order corrections in the limit of very
large tan ;3 and mass of the top quark:

Grm
rO¢ - H*Y) = 8\F/_/' V21 = \?) [4 +(1 - x%) tan /)’] €
Tt — H+p) = = as Grmj [Vul* [(2G. - Go)tan? B +4G_| ¢
67 2w

(4.30)
If we retain only terms ~ Ine. the coefficient functions G; become:
G, — g(l —12)21ne,
G- — 3(1-1\Yne,
Gy — —2(1 -1??Ine. (4.31)

Using these expressions we can calculate the asymptotic value of first order
corrections for large values of tan 3 and my:

r o 2y (mb) o, (4.32)

s my

We see that for a, ~ 0.1, 17, = 4.5 Ge\V and m, = 100 GeV this correction is
of the order of —40%, in agreement with Figure (4.2). The size of corrections
becomes even larger as the mass of the top quark increases, and eventually
the one loop corrected rate of decay becomes negative; such large corrections
are a sign of a breakdown of the perturbation theory. However. it is possible
to avoid the large corrections by renormalizing mass of the b quark not on
mass shell but at the energy scale characteristic to the process, which is mass
of the top quark. The running mass of the bottom quark at this energy is:

— 2 ]
my(my) = m, (l + 2 In Zﬂ’_) , (4.33)
T m,

and we see from the formula (4.32) that for large tan 3 and m, the one loop
corrected decay rate approaches the Born rate expressed in terms of the
running b quark mass.
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4.3.3 Summary

We have calculated an analytic expression for the O(a,) corrections to the
decay t — H™b for non-zero my and my. The my, = 0 limit of our result
is the same as in [59] and the corrected version of {54]; however, our full
expression disagrees with the m; # 0 result presented in [55]. To check the
my dependence of our results we have compared it with the corresponding
formula for the decay t — Wb,

4.3.4 Details of the calculation

Throughout this calculation we have used dimensional regularization, work-
ing in d = 4 — 2z dimensions. The counterterm for the vertex function has
heen calculated according to ref. [54, 60]:

1 ~hé
oA = a{%(&—lH%(Z;.-d)}—“)6’"' _a-bom,

2 2 m 2 my
1 1 a+bom, a-bhém,
btz -1 —Z,~1}-
+[){‘2( ' )+2( ‘ ) 2 my + 2 my

and the renormalization constants are (we take the renormalization scale
equal to the mass of the decaying quark):

) ) 3
Z,——lz—-—lﬂ = O—‘(——+37-—31n47r—-1).
my 37 s
é . 3 47
Zl,—1=——ﬁ—'1=9;(~—+3~,'—31n—7—4>. (4.34)
my 37 < €

The contribution of the virtual corrections to the total decay rate is:

Qg GF"?;J lVer 2 AR 2 2 - =
irt = 7 ,2———\/5—— [(a +b ) i+ (a -b )e\_ +abG0] . (4.39)

, >, }-P 2\2 2 4 2 a2
V, P0V+£3[(1—e (1 +€2) = \ (3 + 362 — 2\ )].

- (1 - 2v2 .4
Vo= vaTt 6\)2 -
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with
P 1 :
+27‘+2111§7% —3+F(1 “52+X2)1’15}

5 .
’

V = 2P3 l:-"

| =

+ 2P [Li2 (P+) = Liz (P.) = Liy (1 ~ %) - ¥~ 2IneY,

+
- 1 P,
—2Y, ‘(—27 +7+n %)] :

The real gluon radiation calculation requires an integration over three
body phase space ®(t; H,b,g). This leads to divergences due to the emission
of soft and collinear gluons, for which we use dimensional regularization (see
ref. [44] and references quoted therein). The phase space integration we are
considering now is analogous to the decay t — Wbg, for which the relevant
integrals have been listed in [8]. Adding the result to the virtual glion
contribution (4.35) yields the final formula (4.19).

It should be added that this calculation was greatly facilitated by the use
of algebraic manipulation programs FORM [32] and Mathematica [64).

4.4 QCD corrections to two body decays of
the top

The purpose of this section is to discuss QCD corrections to the decay t —
H7*b with all mass effects taken into account and to compare them with the
analogous corrections to t — W *). The main difference lies of course in the
structur~ of the vertices responsible for these decays, and in the resulting
renormalization procedure. This will be discussed first. Second, we obsecrve
that despite this difference the resulting formulae are equal (up to corrections
of order my-/E) in the limit where my and my are small. and when the
Higgs coupling is taken to correspond to that of the Goldstone boson eaten
by tkie W. This striking feature is due to the Equivalence Theorem !. It is
useful as a check on the full calculations, but one must note that for physical
values of the W and top masses, the order myy/Ey corrections are quite
large.

IWe are indebted to Professor M.K. Gaillard for a comment which led us to this
observation.
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4.4.1 Structure of counterterms

For simplicity we take the CIXM matrix element 1}, as well as the ratio of the
Higgs vacuum expectation values, to be one (the physical charged Higgs in
the two doublet model then has the same coupling as the Goldstone boson of

the Standard Model). The term in the lagrangian responsible for the decay

t — Htbis then:
g

V2my
where we denoted the chiral projection operators (1 £+5)/2 by R and L. On
the other hand the standard decay t — 1 *b is due to the term:

9

V2
In order to incorporate QCD corrections to these decays we introduce renor-
malized quark fields and masses (the Higgs and W fields are not renormalized
at first order in a,):

H b{mR~my L}t (4.37)

Wby L. (4.38)

m, = m,R—ém,,

il

1y, mf — b&my,
¢ o= \/_Z_-ﬁfn.
b o= JZR (4.39)

Because of the presence of quark masses in the Higgs coupling in (4.37) the
counterterm for that vertex is:

- (- b1 6
9 H'b{(zz 1+Z') - m')m,R

Vomy 2 2 m,
Zy—1 Z)-1 émy\ ,
- ( 5 + 5~ m m,L >t (4.40)
whereas the counterterm for the decay t — 1+ is simply:
9 v [Z8~1 Zb-1
=W == ~#Lt. .
ol { 5— + 'Lt (4.41)

The form of these counterterms suggests that the virtual corrections to these
decays should be quite different. In the following we shall see hat if the
emitted W boson is longitudinal, then in the limit of a very heavy top quark
the corrections to both processes become equal.
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4.4.2 Equivalence Theorem

The three polarization vectors of a massive gauge boson with momentum W
along the 2 axis are:

e =;%m¢am
1

& = 7§QL4Q) (4.42)
1, =

€L = —(IH’ I, 0,0, Ew)
myy

where the longitudinal polarizarization vector is the four-momentum W#, up
to corrections of order my-/Ey:. If we examine the situation where the top
quark is very massive, then the lougitudinal polarization vector dominates
over the transverse, and to order my-/E)y, the sum over W polarizations
can be taken to be W#W¥/m%.. The equivalence theorem then states that
amplitudes involving external longitudinal W's are equal, up to corrections of
order myy /Eyy, to the same amplitudes with the s replaced by (unphysi-
cal) Goldstone hosons.
Let us now compare the tree level amplitudes. For  — HW'tb we have

g _ g _ .
e —uyy, Ly, = iiy( f— D)Luy + O(my [ Eyy
L5t T ol #= P)Lu, (my [ Ew)
g

= \/5"7“’ l_lb {NHR - 777[,L} Uy + 0(77]”,-/E“‘.) (443)

where we maue use of the Dirac equation (/ and 0 are t and b quark
four-momenta contracted with Dirac matrices). To leading order, this is the
amplitude fort — H*b. Let us now consider the decay process with radiation
of a gluon (see Figure 4.3). There are two amplitudes contributing to this
process and we examine their sum (we now neglect all corrections of order
m/E):

iy~ b= E)LP fur + 4y fPoc(f— b— &)L,
= a {(mR - myL)Pic ¢+ ¢Poc (mR — myL)} uy, (4.44)

where £ is the gluon polarization, and we have introduced the following
notation for the propagators:
1

- G —my
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Figure 1.3: Real giuon radiation amplitudes
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Figure 4.4: Virtual one loop amplitudes

f,
Y

<SRN
\\

1 .
P = ———_——,b—{— i (4.43)

and we used:

(f~ &P = 14+ mPg.
(b+ E)Py; = 14+ mPy. (4.406)

As the last example we take the virtual gluon correction to the vertex
(see Figure 4.4). As the result does not depend on QCD gauge, we take a
generic gluon propagator, denoted by D,,.. We then have for t — 11"+b:

ﬁb’}ypba( f—' p)LPlG')yuulD;xu
= l—lb’fﬂpb'(? [777{R - 771(,L] P{G’)UU(D/“, + ﬁlfl” [-Pb‘(TR - LP!G] ’7ruu!D;w-
(4.47)

where Pz is now

(4.48)



The second term of the RHS can be written as:
ay (6mpL — émR) uy, (4.49)

and thus the difference between vertex loop amplitudes of ¢t — W*b and
t — H%b is exactly cancelled by the counterterms calculated in formulas
(4.40) and (4.41).

We have shown that to first order in the QCD coupling, the amplitude
for t — W) differs from the amplitude for ¢ — H*b by terms of order
my-/Ew. In this context, H* was a physical particle whose interactions
with the Standard Model fermions were chosen to match the coupling of the
Goldstone boson eaten by the W*. We could therefore use the Equivalence
Theorem, which relates longitudinal 11" to Goldstone boson amplitudes, to
relatet — Wthtot — H*b.

We now wish to discuss the Equivalence Theorem [56, 57, 58] in more
detail. Since the T boson has been detected, its three polarization states
are physical degrees of freedom: on the other hand, the Goldstone boson is
gauge-dependent. The Equivalence Theorem therefore relates physical and
unphysical amplitudes, and is only true for an appropriate choice of gauge
(and renormalization scheme). We work in the Feynman 't Hooft gauge, and
neglect all higher order effects in the electroweak and scalar couplings. We
will therefore show (following [65]) the Equivalence Theorem as it applies to
our amplitudes to all orders in QCD, but at tree level in the other couplings.
This restriction is not necessary [58, 66}, but makes the discussion much
simpler; a renormalized version of the following can be found in ref. [67].

We take as a gauge fixing condition for the W+

G = owr-Lor (4.50)

where ¢ is the Goldstone boson, » the Higgs vacuum expectation value and ¢
the weak coupling constant. The equations of motion give G = 0. The phys-
ical states, and the gauge-fixed Lagrangian are invariant under BRS trans-
formations [68], which correspond in some sense to a residual global version
of the gauged symmetry. One can therefore show that Greens functions are
BRS invariant, so that

S<fle(a)li> = 0 (4.51)
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where [ & # Iz 3RS generator, 7 is the initial top quark, f is the final state
consisting 7 » 0 quark and some number of gluons, and & is an anti-ghost.
From the definition of the BRST transformation, we have

Sé¢ = -G (4.52)
so th¢
< fIWTli> = my < flotli> . (4.33)

We can obtain the Equivalence Theorem, which relates S-matrix elements,
from this statement about Greens functions via LSZ reduction. This is simple
at tree level in this gauge because the Goldstone and gauge bosons have
the same propagator; at higher order in the scalar and electroweak gauge
coupling, this step is no longer obvious. So to all orders in QCD, but at tree
level for everything else, we have

9 <O.GWHE> = e <b.G" oMt > (4.54)

where G" are n final-state gluons. If this expression is written in momentum
space, it is the Equivalence Theorem for the processes of interest to us, be-
cause the longitudinal polarization vector of the 1" is the momentum vector
up to corrections of order m/E.

4.4.3 Summary

The connection between the top quark decay rates t — 1" *b and t —» H*b
could be very useful in future calculations. First, if we want to estimate the
size of the two-loop QCD corrections, it is sufficient to calculate them in the
limit of a very heavy top quark; at least at the one-loop level, the corrections
in this limit have correct size for a large range m,/myy-. This limit can now
be calculated by considering the Higgs ghost instead of the 1}~ boson, which
is much simpler. A second useful application is as a non-trivial check on
electroweak corrections which have been calculated numerically. If the mass
of the 1 in the final state is set equal to zero, the results should be the same
as for a massless Higgs ghost, irrespective of the other quark masses in the
problem. This should provide a useful check for the numerical program.
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Chapter 5

Electroweak corrections to
decays involving a charged
Higgs boson

5.1 Introduction

Due to the expected large mass of the top quark and its possible large Yukawa
coupling to Higgs bosons, decays of this particle (once it is observed, pre-
sumably at the Tevatron) can give us an insight into the Higgs sector and
the mechanism of mass generation. A topic of particular importance is the
number of Higgs doublets. The supersymmetric extensions of the Standard
Model, for example, predicts existence of at least two Higgs doublets. In
such scenarios, in addition to the charged Goldstone boson of the standard
electroweak theory, there would be a physical charged scalar particle H*. Its
presence could influence the rate of top quark decay and even open up a new
decay channel.

If the charged Higgs boson is heavier than the top quark, its effect on the
decay rate of the top will only be in the virtual corrections to the standard
process t — W*b. This has been examined in ref. (3, 4], and in some models
the effect was found to be large, of the order of several percent. On the
other hand, if the decay of the top into the charged Higgs and a bottom
quark is kinematically allowed, it can become the dominant decay channel,
especially if the ratio of vacuum expectation values of the two doublets is such
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that the Yukawa coupling to the top is not suppressed. It is this scenario
that is the topic of the present chapter. We examine the effects of first
order electroweak corrections on the width of the decay t — H*b in the two
Higgs doublet extension of the Standard Model suggested by supersymmetry
[69, 5]. In this model one of the Higgs fields, Hj, is responsible for giving
masses to down-quarks, and the other one, Hj - to up-quarks. The ratio of
the expectation values of these two fields is denoted by tan8 = va/v;. In
the present work we consider the range of small values of tan /3, in which
the mass of the bottom quark can be safely neglected, which considerably
simplifies the calculations.

Radiative corrections to the decay t — H*b have been subject of several
recent publications. The QCD corrections were summarized in the previous
chapter. In the electroweak sector the corrections were studied only to the
order O(am?/m%.). They have been calculated in ref. [70] and further ana-
lyzed in [T1]. Such corrections would be dominant if the top quark was much
heavier than the 1" boson. However in view of the expected mass of the
top quark of the order of (1.5 — 2)my- it is important to compute also the
remaining corrections not involving the top quark mass, as well as the effect
of real photon radiation.

This chapter is organized as follows: the next section explains the renor-
malization scheme and various kinds of corrections. Section 5.3 discusses
cancellation of infrared and ultraviolet divergences, especially the quadratic
ones. Calculation of virtual corrections to vertices and evaluation of the
bremsstrahlung are explained in sections 5.4 and 5.5 . Section 5.6 presents
final results; previously unpublished formulas for renormalization constants
are collected in the last section.

5.2 Renormalization scheme

At the tree level the decay rate for t — H%b is obtained from the Feynman
rule for the t0H™ vertex:

en,

V2 sy

where we have taken the relevant element of the Kubayashi-Aaskawa matrix
to be equal 1 (and neglected the effect of the b quark mass). R denotes the

1 cot SbRt, (5.1)
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sight chiral projection opcrator (1 4+ 795)/2. We use myy and mz as input
parameters and define ¢f- = 1 ~ s%. = m3./m%. The resulting rate of the
decay is:

3 2 \2
am m? .
I (t — H*)) = —L—cot® g1 - 22 | 5.2
( - / 16miy sy cot” 5 m? (5:2)

Electroweak corrections me.dify the values of parameters in the vertex: the
coupling constant e, mas<>s myy, mz and m,, and the angle 3. It is also
necessary to calculate eft\cts of the real photon radiation, virtual corrections
to the vertex (triangle Jjiagrams) and the renormalization of wave functions
of the charged hig<.» and of the quarks ¢ and b. On the one loop level there
are alsc ~ontti iiions from the mixing of the charged Higgs with the 11
boson. Finally, since we are going to work in the 't Hooft-Feynman gauge,
we have to include the mixing between H* and the charged Goldstone boson
G*. The one loop correction to the decay rate can be written in the following
form:
be bsy  bmy bmy  bcot s

rtH (t - H'*'b) = 210 (t — H+b) (;' - o ~+ m, - - cot B

+%5;tm + 6+ %6Z,f + %62,” + %52,, + 5;,,‘\,) (5.3)
8hear. 64 and 8}, denote contributions of the real photon radiation, tri-
angle diagrams and mixing of H* with W* and with G* respectively. For
the renormalization of the angle 3 we employ the prescription introduced
by Méndez and Pomarol [72, 73], with a small modification. It is assumed
that the value of 3 will be extracted from the leptonic decay channel of the
charged Higgs boson. Since the coupling is proportional to the mass, the
dominant decay will be into a 7 lepton and its neutrino. The renormaliza-
tion of the angle g is fixed by the condition that radiative corrections to the
vertex 7v.H vanish. However, the renormalization constant for 3 defined in
this way is infrared divergent; this problem was not addressed in the original
papers [72, 73], because only the fermionic loop corrections were discussed
there. The infrared divergence could also be removed in the suitable process
of extracting the value of the 3 angle from the experimental measurement of
the decay width of the charged Higgs boson. For the purpose of the current
calculation it is convenient to include the effect of the real photon radiation
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in the definition of §3. The one loop correction to the decay rate of the
charged Higgs into tau and the neutrino can be written in analogy ‘o the top
decay:

be  bsy  om Sdmyy
I (H™ = r2,) = 2T (H~ = 7,) (-— —— — Y
e S my My

6cotﬂ

+ 5 + 6% +
COtﬁ REAL A

26ZL + 6ZR + 262” +6\f]Y) . (54)

The notation here i» analogous to the formula (5.3). Since the coupling of the
charged Higgs t-: ieptons is proportional to tan 3, the effect of renormalization
of 3 has an o::posite sign in the two decays under consideration. The reason
for this is that in both cases we have only one fermion with non-negligible
mass, but they have opposite values of the weak isospin.

The condition of vanishing of radiative corrections to the tau channel
of the decay of the charged Higgs allows us to express the renormalization
constant of the 7 angle in terms of corrections to thie H7v, vertex. This leads
to the following formula for the relative correction to the rate t — H*b:

1“(1)(1 — H+b)
T (t > H+D)
_ <26_e _ 265n om., + bm, mi,

Al =

e sy m, m, mi-
1 ! T t 1 1. 1, R
+5 5RE aL + 551?1:.“ + 84 + 84 + 554’ + 5527

1
+552b + 35Z,R + 62” + 6:’\.11.\' + 63[1_\)) . (55)

As will be seen later, : e mixing can be described by one constant 6y, y
defined so that
cot 3 — tan 3 .
Mix 8y = —5————=bux. (5.6)
my e — miy
The renormalization of the electroweak parameters is done in the on-shell
scheme of ref. [74, 4, 75]. In particular, for the weak coupling constant e/ sy
we have:
be 63;1*

ém%  dm% — ém3,

8Ze + —5 — . .
e S ¢ 2my 2(my - md)
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Figure 5.1: Types of tadpole diagrams in 2HDM

1 %44(s) sw E42(0)  6m%  sm% - ém,
2 9ds |,_, o my 2m%3  20my - mi)’

This leads to the final formula from which we are going to calculate the one
loop corrections:

AT = 2(267,4 S0y Sme Gk b bmd —

m, my mi; m?% (m% — miy)
1 1 1 1
+§51T21:.4L + ‘2‘5135,41, + 65 + 65+ §6ZuL + §5Zf
1 1 cot3 —tan g
SOZ)f 4+ S6ZF 4+ 62y + —— v . 5.8
+2 fx +2 ¢ toly+ . R—— MIX (5.8)

Many details and explicit formulas for some of the renormalization constants
can be found in ref. [76]. There are no external Higgs particles in processes de-
scribed in that reference, so the wave function renormalization of the charged
Higgs boson and mixing with W* and Goldstone boson was not included.
The relevant formulas can be found in section 5.7 of the present work.

5.3 Remarks on cancellation of divergences

In the calculation of electroweak corrections to decays t — H+b and H~ —
TV, one encounters three kinds of infinite quantities: infrared divergences,
and logarithmic and quadratic ultraviolet divergences.

The infrared divergent integrals result from the radiation of soft and
collinear photons from external charged particles. They are cancelled in
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Figure 5.3: Momentum independent contributions to mixing

Figure 5.4: Mixing between the charged Higgs and the 1§ boson



tlie calculation of the total decay rate by wave function renormalization con-
stants of the Higgs boson and of fermions, as well as by corrections to the
Higgs-fermion vertex. For the purpose of the present calculation the infrared
divergence was regularized by introducing a small mass A of the photon. All
phase space integrals relevant to this problem have been listed in ref. [75].

The ultraviolet divergent integrals are regularized dimensionally. In this
scheme, the quadratic divergences show up as poles at number of dimen-
sions n = 2. They originate from tadpole diagrams and from the fermionic
loop contribution to charged Higgs - Goldstone boson mixing. Some indi-
vidual non-tadpole diagrams in boson self energies also contain quadratic
divergences, but the relevant sums of diagrams are free from them (in the
't Hooft-Feynman gauge), as in the Standard Model [77]). Goldstone bosons
are absent in the unitary gauge and there all the tadpole contributions cancel
out. The problem is more delicate in the 't Hooft-Feynman gauge, in which
the present calculation is done’.

The different types of tadpole diagrams in the two Higgs doublet model
are shown in figure (5.1). The external particle can be one of the CP-even
neutral Higgs bosons, H? or h9. These diagrams contribute to mass renormal-
ization of external fermions, to émy and émz, and to the mixing between
the Higgs boson and Goldstone and W bosons. The quadratic divergence
from the fermionic loop in figure (5.1b) cancels the one from the fermionic
contribution to the Higgs-Goldstone mixing shown in figure (5.2a). The sum
of contributions of the remaining, bosonic tadpole diagrams. is free from
quadratic divergences. The logarithmic divergences of tadpole diagrams are
cancelled by loop diagrams of Higgs-Goldstone boson mixing depicted in fig-
ures (5.3a) and (5.2b,c). The sum of bosonic loops of Higgs-14 boson mixing,
shown in figures (5.3c) and (5.4) is finite.

5.4 Vertex corrections

Electroweak corrections to vertices are of two kinds: there are modifications
of the values of parameters determining the strength of the coupling and
relations among them, and triangle diagrams. It is this second type which
will be considered in this section. The basic types of triangle diagrams con-

A discussion of tadpole diagrams with a fermion loop cau be found in ref. [78] which
also contains further references.
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Figure 5.6: Vertex corrections to the charged Higgs boson decay
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tributing to decays of the t quark and the charged Higgs boson are depicted
in figures (5.5) and (5.6). Since the number of diagrams of is fairly large it
is most convenient to employ the method of standard matrix elements (see
ref. [75] for a review and further references). The principle of this method is
to calculate coefficients in a representation of an invariant matrix element in
the form of a sum over certain standard tensors, which depend only on the
Lorentz structure of the process. In particular, in the case of scalar-fermion
interaction, there are only two standard matrix elements:

MY = a(p)Lu(g),
MR = a(p)Ru(yg), (5.9)

where L = (1 — 75)/2. The Born amplitude of the decay of the Higgs boson
into leptons is proportional to M*, and since on the level of one-loop correc-
tions we need to compute only the interference of triangle and tree diagrams.
it is sufficient to evaluate only the M* component of the triangle diagrams.
Analogously, in the case of the top quark decay, we need the M”® part only.
The resulting formulas are quite large and will not be shown here. In con-
trast to the two point functions their applicability in other contexts is rather
limited. However, in Table 5.1 we list concrete particle assignments to the
general diagrams of figures (5.5) and (5.6) together with explicit expressions
of their ultraviolet divergent parts.

Complete analytic formulas are obtained using Feyn Arts [79] (also used
to illustrate this thesis) and Feyn Calc [80]. Fortran output of these programs
is evaluated using the library FF [81].

5.5 Real photon radiation

Triangle diagrams discussed in the previous section are infrared divergent
due to exchange of soft photons. These divergences are cancelled by brems-
strahlung processes depicted in figures (5.7) and (5.8). These diagrams can
be easily evaluated in terms of phase space integrals listed in ref. [75]. We
give here as an example an explicit formula for the width of the process
H™ - 70,7:

e?m? tan? 3

L (H™ — 1iy) = = ([ + B + AB+B"A), (5.10)

273 st my-m-
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Diagram Particle assignments
(Figure No.) X Y Z Residuum

» o

5.5(a) t Ht HY 0

5.5(a) t HY R g

5.9(a) t Gt A° 0

55(b) t HY - 23

55b)  t HY  Z  —1/3+%/(3%)

3.5(¢) t W HY —sinasin(.3 — a)/(4s§- cos 3)
3.5(c) I | R 1Y cosa cos(.3 — a)/(4sfy cos 3)
5.5(c) FOWT A /(482

55(¢) b 4 H*  1/3

5.5(c) b Z H (253 — 3)(s¥- = )/ (12s%-¢%-)
5.5(d) 5 b t -8/9

55d) Z b f (12~ 82)/(9¢2)

5.6(a) 0 T H~ 1

5.6(a) zZ T H~ (st — i)/ (2c)

5.6(1) w7 H cosasin(3 — a)/(4s}- sin 3)
5.6(b) W 7 hY sinacos(;3 — a)/(4s3- sin .3)
56(b) W7 AY1/(ds)

5.6(h) A v, H- (C%- - .S"{)"-)/(?Su'(‘n')‘z

5.6(c) Z v, T 2/ci

Table 5.1: Particle contents of triangle diagrams. The last column shiows the
. i a 2 4 6t T
coefficient of - == in 8} and é%.



Figure 5.7: Real ploton corrections to the decay of ¢ quark

Figure 5.8: Real photon correctiors to the charged Higgs boson decay
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where A and B denote the amplitudes corresponding to diagrams in figure
(5.8), for which we have:

AP = 4m?_(m? - m” Moo + 2(m?% — 3m3,_) Iy — 21,
B> = 4m3(m2 —m%_ ) + 4m? I, ~ 21219,
AB+B A = 4(m}—my Yoy +2(m2 + m%_)Iy — 4m?_I, + 21.
(5.11)

Integrals I are taken from ref. [75], where explicit expressions can be found.
Here we only quote the definition:

(£2qp;,)...(£2qp;,.)
(£2gpi, )...(£2qp;, )
(5.12)

prein = 1/(1 ppy P L6 (g — p1 = p2 = q)

Hveestn 2p10 2120 240

where we ¢, pg. p1 and p; denote momenta of the photon, Higgs boson, tau
and neutrino respectively, and the signs should be chosen in the following
way: minus sign if iy or ji is zero, plus in all other cases. Functions Igg. Ip;
and [;; contain infrared divergences. regularized by introducing a small mass
of the photon A. If the mass of neutral particle in the final state is small, the
representation of these functions given in [75] becomes numerically unstable
and it is more convenient to use the corresponding formulas from ref. [8].

5.6 Results and discussion

Following ref. [4, 76], the electroweak correction can be expressed by com-
paring the one-loop decay width to the Born rate parameterized by Fermi
coupling constant G instead of the fine structure constant a:

T(O)(a)

F(O)
(Gr) = 1A

(5.13)
where Ar denotes radiative correciions to the muon decay, from which Fermi
constant is determined. Such representation has the advantage of includ-
ing large corrections due to fermion loops in the Born rate. In the present
renormalization scheme, based on the condition of vanishing of radiative cor-
rections to the H 77y, vertex, the effect of coupling constant renormalization
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is doubled (see equation 5.8), and one ought to subtract 2Ar in order to
cancel the fermion loop contribution from universal corrections. This is due
to the fact that in order to avoid the artificially large corrections one has to
parameterize both decay rates I'°(H* —s 7v,) and I'%(t — H*b) by Gr. At
this point our analysis differs from ref. [70]. For moderate values of tan 3 > 1
the corrections consist typically of -4% bosonic contributions and +7% from
fermion loops. This last part is cancelled by subtraction of Ar, so that the
fermionic contribution to the corrections becomes slightly negative. This can
be seen in figure (5.9).

Numerical evaluation of corrections to the decay width I'"O(GF) proceeds
in the following way. The set of input parameters consists of mz, Gr, o,
masses of fermions and CIKXM matrix elements; values of them are taken
from a recent review [75]. All the numerical results arc presented for mass
of the top quark equal 140 GeV. In addition we necd two parameters of the
Higgs sector: we choose angle 3 and mass of the charged Higgs boson. Masses
of the remaining Higgs particles and angle a are found using the formulas of
ref. [5]. Mass of the " boson is found by solving a nonlinear equation [4]:

2

2 miy TQ 1 -
wll-— = . A4
i ( m%) V2Gr 1l — Ar (3.14)

Finally, using this value of myy, we find Ar and AT. The resulting corrections
AT = AT --2Ar are plotted as a function of mass of the charged Higgs boson
in figure (5.10) and as function of tan 3 in (5.11).

Similarly to the case of the decay ¢ — Wb [4], the corrections become
large when mass of the lighter CP-even neutral Higgs boson h% is small.
In particular, they diverge at the point tan3 = 1 where myu = 0. This
divergence should be canceiled by adding width of the decay ¢ — H*bIO,
just like the infrared divergence due to virtual photon exchange is cancelled
by the real photon radiation. As tan/ becomes larger (or smaller) than
1, mass of h¥ increases, and at the point where it reaches my+ — myp+,
amplitudes of both decays H* — 7v, and t — H*b have singularities which
show up as discontinuities of the derivative of the one-loop decay rate and
can be noticed on the diagrams; the value of tan § where this happens is
close to 1 for light H™*, and gets further away as H* becomes heavier. The
corresponding cusps on the diagrams are easier to recognize for tan 3 > 1,
but they are present also in the region of tan ;3 < 1.
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5.7 Renormalization constants

In this section we list those of renormalization constants of the 2 Higgs dou-
blet model which have not been published so far. We first give expressions
for the wave function renormalization of the charged Higgs boson and then
analyze various contributions to tlie mixing of Higgs boson with W and
Goldstone boson éx7;x. The results are given in terms of standard Passarino-
Veltman integrals [82], using the conventions of ref. [75, 76], where many use-
ful properties of these functions have been collected. Below the definitions
of the one- and two-point functions are listed according to ref. [75]:

. (2zp)i-P 1
. 27 )P 1
Bo(p?.m?.m2%) = -—————( /ID - 5=
o(p7.my, ) R q[(@-l-p)'—’—m}’](ql—m.j)'
2rp)i-P q”
0’ Bi(p2,m2.m2) = —————-—( a /1[)( .
PR ) g = il - )

where v is an arbiirary mass scale; the final result is independent of it. It is
understood that the masses arc assigned small negative imaginary parts.
The wave function renormalization constant of the charged Higgs boson
gets contributions from diagrams with fermion. scalar and vector-scalar loops.
To make the formula more compact it is convenient to introduce the notation:

— 4 1 45,29 2.2 529 =1z
Almi,my,my) = iy +mG + g~ 2mim; — 2mimy — 2mimy. (5.19)

The bosonic contribition to the renormalization constant 6Zy is (a in the
argument of trigonometric functions denotes the mixing angle in the neutral
Higgs sector, as defined in [3]):

obos _ @ 1
=g e
T \n=nop0.40 Uy Sty
. . 2
(5111{0 sin?(3 — a) + dyp0 cos?(3 — a) + (5”._“,)
[2'""2""80 (”’%ﬁi my, 771\1") = Mmy+,my.my) By (mg;h my, mu-)] }

(S%V - C¥2t")2

+
dsfy cfy

o
{QBO (m},+ S M+, mz)
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+ (4mf,+ - 771.22) B, (mfﬁ, Mmy+, mz)]

+2By (m%h My+, A) + -lm'f,J, By (mgﬁ, Mmy+, /\)

2 Nk
M cos(f —a) — cos25 cos(f + a) By (m%+, my+, myo
o \(My

2 2
Sty QC“.'

0s 2,3 si NE o
+ [sin(ﬁ -a)+ cos 23sin(3 + O/J By (1n;,+,7ny+,mho)}}(5.16)

2
2C“/

The contribution of one generation of quarks is:

a J\"C : 2
8ZY = ——5—u {~ (7713ta112 34+ m; cot? ﬁ) By (nﬁﬁ, my, mu)
47 2s3-miy
2 2 2 2. 2 p 2 2 2
+ [(m;, tan~ 3 + m;, cot” 3) (m;, + mﬁ - 772,;”) + -’imgmg]
! 2 - 9~
By (mh.+ , My, mu)} . (5.17)

In the above formulas N¢ denotes the number of colours (=3), and By is the
derivative of By with respect to its first argument.

Finally, the contribution of a lepton-neutrino pair is obtained from the
formula (5.17) by taking N¢ = 1, m, = 0 and using:

2
5

ds m?—gs

d 1 m? .
—By(s,0,m) = — ——[Bo(s,0,m) ~ By (0,0,m)]+1p. (5.18)

The result is:

62, [Bo (m%,J,,O, m) - By (0,0,m )]

3
mys

a m?tan? 3 { m?2
T 92 72
dm 2sipymiy

+1 -5 (7713{+,0, m)} : (5.19)

The contribution of bosons to mixing can be represented by the following
- formula:

ghos O §1n(;3 —a)cos(F — a) P p
MIX = 75" 1 (bp. o — Oy po)
TSW f=po po
2 2 12
(my — myy)” 2
. {——,;,——— (Bo (777,14,,171.”,771”/) — By (0, my, myy ))
M+
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+ (27713” -+ 7713, - 3777%‘,) By (mfﬁ L,y mw) }

ik 528 c
+2’n?¥ {6”.”0 sin(ﬁ —_ Q) (COS(/3 _ O) _ COS 2/ (2:02(5 + 0))
mi . 2
s93sin(3 + a
- 6”.}10 COS(‘B — Q‘) (Sill(.ﬁ — Q) + cos /3;:;( + O)) }
W

2
o . ms s .
. (m;, - m‘}H) [(1 - ’2’ ) By (mf,h m”+,mH) — By (0, my+.mpy )]

m?,
cos23 . .
+ o (sin(3 — a)cos(3 4+ a)by yo + sin(8 + a) cos(3 — a)éy po)
W
. (m’;’,+ - m'f,) B, (7/7f,+, my. m”-)]
a

1
Py {sin23cos 23 [4A(my) — 1A(my+) + A(my) — A(m 40)]
W

+ (c}zy sin2a cos 23 + s'fv cos 2a sin 2.‘3) [A(mye) — A(mpe )]}
g

P9 2 9 .
[("7?\’ —my+ + m;,o) sin(.3 — a)t;
2my:

- (m"z‘, - 7713,4, + m',z,o) cos(i3 — o)tg] . (5.20)
The last two lines in the above formula represent contributions of tadpole

diagrams. Formulas for fermion loops are given helow for H — G and H — 11"
mixing separately:

(63 j\rC 9
6{",?\ = Py {(—m;, tan 7 + m:"" cot 3)
28{y Ny
9 2 92 2
. [(m;, + my, — my+)By (7"71+« my, md) + A(my) + .-1(771(,)]

+’2mﬁm§(tan 3 = cot 3)By (mf,+ My, md)} .

P Q J\YC .
SV, = ——— [(mﬁ tan 3 + m? cot ﬂ) By (7713”. My md)
4 sgp
+’”3 cot 3By (mfﬁ My, md)] . (5.21)
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Figure 5.9: Bosonic contributions to corrections AT (solid line) and the
fermionic contributions from which twice the value of universal corrections
Ar was subtracted (dashed). Plotted as a function of my+ for tan3 = 1.5
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Chapter 6

On the calculation of the
anomalous magnetic moment
of the electron

6.1 Introduction

Theory and experiment are in excellent agreement as to tlie value of the
electron magnetic moment [83]. This has been achieved on the theory side
by computing radiative corrections to the interaction of an electron with a
constant magnetic field up to the eighth order in the electromagnetic coupling
constant e. These corrections can be expressed as a power series in & = <

g—2 Q a)? a\? a\*
J y = () (—) + (—) + 'y ('—) + Yy (") + ... (6.1)
2 T T T e
The first correction, C; = 17 has been computed by Schwinger [84] and

the sccond. Ca, by Sommerfield (85, 86] and Petermann [87, 88]. Ref. [89)]
contains a detailed description of a calculation of s from which one can
get an idea of the enormous effort one has to make in calculating C, using
traditional methods. Matters get even worse when one proceeds to C3 [90].
A large part of the diagrams in this order has been calculated analytically
but there are still 8 which have to be integrated numerically. This is also
the only known method to obtain Cy [83]. Error in the numerical calculation
is one of the sources of uncertainty in the theoretical prediction for g — 2.
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It is therefore important to look for new algorithms which will enable us to
calculate multi-loop corrections analytically.

One such method has been proposed recently by Gray, Broadhurst, Grafe
and Schilcher (GBGS) [91]. It is based on the idea of the integration by parts
pioneered by Chetyrkin and Tkachov [92] in the context of massless Feynman
integrals. The GBGS method can be applied to massive propagator-type
integrals.

The purpose of this Chapter is threefold. First, a practical summary of
the GBGS method is given in order to facilitate its applications. Second.
it is discussed how this method can be extended to the calculation of the
anomalous magnetic moment where we have to deal with vertex diagrams
at zero momentum transfer. The example of two-loop calculation of the
anomalous magnetic moment is worked out in detail. with special attention
paid to the treatment of counterterms within the framework of the GBGS
method. Finally one diagram contributing to two-loop virtual correction to
the top quark decay is computed in order to show that an extention of the
method to vertex diagrams might be applied in this case.

We now concentrate on two-loop on-shell fermion propagator diagrams
of types encountered in QED and QCD. The essence of the GBGS method
is the observation that in the framework of dimensional regularization all
integrals needed to compute these propagator diagrams are of two types:
M{aj.a9.03.04,0a5) and N (ay. a2, a3, a4.a5). The external fermion momen-
tum p is taken on-shell (p? = m?) and the two relevant types of integrals are
defined as follows {space-time dimension will be denoted by D = 4 — 2z):

M(ay,ay.03.04,035) = W'D(1)2)‘D+Z"'-

// dPkydPly
KPP (Ry = ko) k3% (4 2p - k)™ (A3 + 2p - k)™

= 2
N(aj.qa.03.04,03) = 7'—1)(1)2)"0“"20-.

// ]D]\](IDAZ
REOREE (R 4+ 2p - k)™ (K3 4 2p - k)™ ((Ry + k)2 4+ 2p - (By + ko))
(6.2)

The GBGS method of doing such integrals consists in making use of recur-
rence relations derived from the identities:

//IDA,(IDAZ " f (ky koo p. {ai})] = 0 (6.3)
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for k € {k1.k2}, ¢ € {k1,ky.p} and f being an integrand in (6.2). Two more
relations can be obtained by expressing integrals:

[[dPridPhak £ (k1 ka.p fai}) i=12 (6-4)

in terms of M (a,, as, a3, a4.05) and N (ay, a2, a3, a4,a5) and then differen-
tiating such formulas with respect to p*. These 16 recurrence relations are
sufficient to express any two-loop fermion propagator diagram in terms of
one-loop integrals and three structures R;:

R, = T*@e),

Ry = D2 (—2)D(=42)T(2:2)T(¢)

2 T(—22)0(-32)

Ry = N(1.1.1.1.1) = I(s), (6.5)

where I(z) is known exactly in 4 dimensions: J(0) = 2 log2 — .%—C(3) [93].

In sections 6.2, 6.3 and 6.4 we discuss these two classes of integrals, show
how the recurrence relations are derived. and present formulas for the three
basic integral structures. In section 6.5 it is shown how this apparatus can
be applied to the calculation of two-loop corrections to the electron magnetic
moment.

6.2 Integrals M(aj, as, as, oy, as)

There are 6 recurrence re’  nns for the integrals A/ (defined in eq. (6.2))
which can be derived from the identity:

J[aki®hos Ko {0} = 0 (6.6)

where f is the integrand on the RHS of (6.2), k € {ky. A2} and ¢ € {ky. k9. p}.
These relations will be labeled according to Table 6.1. Two more relations
can be obtained by expressing integrals:

//(IDA']lec-zkj-‘f(kl,k.z,p, {ai}), j=1.2 (6.7)
in terms of M (aj,2.0a3,a4,05) and then differentiating such expressions

with respect to p*. We will label these relations Af; and Alg for j in equation
(6.7) equal to 1 and 2 respectively.
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Table 6.1: Notation used for labeling the recurrence relations.

k q

ky ko D
1\‘1 ./\1] J\fg _"113
]\‘2 ;\1.1 J\[r, ]\f(;

Before we derive the recurrence relations, we write down formulas for the
derivatives necded in the identity (6.6). We adopt the operator notation
[92.91): 1*f (aj.a2.- ) = f(a; £ 1.0y.--+). Using this notation the action
of the derivative operators can he expressed as follows:

Jg 1 1 1

—_——— = =D  —— = _9 . +
01‘:/; ]\’}2“] it h(lll\];zk.'_)(ux_’_]) = ._(111\1“1 —_.
1

R
0 1 1
= —Q(lg(lx‘l,, - A">I,)2+

O (ky = k)™ BT Y
0 1 1
B ) = '—2 B 'l‘ 1 t 4+ 5 g
MY (K +2p- ky)™ “(“+”)(m+apmw
d 1 1
. [4) = —21‘ 14+ ) a; "
opr (K7 +2p- k)™ R VTN
d 1 1

= —2a5ky,57F (6.8)

apr (k3 +2p )™ (K3 +2p- ko)™

The above formulas contain four-vectors which we will contract with &, e
ko, and p,. The resulting scalars in the numerator of the integrand can
be cancelled with similar scalars in the denominator. so their appearance is
equivalent to the action of following operators:

ISR
k::: ~ 37
2ky-p ~ 47 —-17
2ky-p ~ 57 -3~
2ky - kg ~ 17437 -27 (6.9)

In the following we derive relations Af; and Af;. The relations A, and M
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can be found in the same way, and the remaining ones - by a change of indices
1 - 3,4 « 5, which is a consequence of a symmetry of M (a;, as. as, a4, as).

6.2.1 Relation M,
For this relation equation (6.6) reads:
0= [ [APhadhoge 1F (Ko )
= DrP(p?)P- z"'7\1(01 Qa, (13,04, Q5)
+// APk dP ks Alal £k koo p. {ai]) (6.10)

The action of & 0,'\, is equivalent to

R [=2arky, 1% = 20 (ki — ko) 2% = 204 (kyye + p) 47
~~ —20,1117 = @927 (21- — 1" -3 + 2—) — a4t (21— +47 — 1“)
Thus we obtain:

[D —2a; —as —ay — 027 (1" - 3‘) - (\44+1_] :
M(ay.as,a3.a4.¢5) = 0. (6.11)

6.2.2 Relation M-

This time we begin with

//deldegk‘]‘f(k;.kg.p, {a;}) = p“ﬂ'n(pg)D‘z"'(’)I\I (ay.Qa.03.a4.05).
(6.12)

where O is an operator which we determine by contracting both sides of
(6.12) with 2p,,:

0= % (4- - 1—) . (6.13)
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~Now we differentiate (6.12) with respect to p# and get:
kY (—21\'1,,(144+ - 21\'._;!,055*‘) M(ay, ay,a3,a4,a3)

1 _ _ .

= 5 (D + 2D ~ QZ (.1,') (4 -1 ) M (O],OQ,O’3.0‘4,(I'5) (6.14)

or
_3P=2ra

9

[—2(\.14+1_ - a557" (1_ +37 - 2_)

. (4= -17)

-Ml(ay,ay,03.04,05) = 0. (6.15)

6.3 Integrals N(oai, 09,03, 04,05 and a sum-
mary of recurrence relations

In the same manner as described in the last section we can derive eight
recurrence relations Ny

It turns out that it is convenient to use certain linear combinations of
the recurrence relations. Tables 6.2 and 6.3 sumumarize these combinations
which turned out to be the most useful.

¢ for integrals N (aq. 00, 3. a4.a3).

6.4 Analytic formulas for some of the inte-
grals
It turns out that the recurrence relations described so far are sufficient to

reduce all the integrals of the type (6.2) to products of one-loop integrals and
three types of two-loop integrals for which we have closed formulas:

M(0,a.0,3,7) = (-——1):+“+‘3+7-
T(a+3+7=-D)T(§~a)T(a+3-2)T(a+7-2)
| (AT (B)T(2a+5+7- D)
8-0)r(2-)r(3+:-2)

, r
M(a,8,5,6,0) = (__1)1+0+/3+‘;+6 (

F(3HT ()T (8)
T(2D-20-23-2y-48)T (e +3+1+6~D)
FD-B3-NT(R-a-8-7-6
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Table 6.2: Useful relations for integrals N

1\"12
Np+ Ny 4+ Ny

N+ N3+ Ny

Ng+ N5+ Ng:

.’\,52

.'\-1 + a\’,ﬁ - .'N(;Z
N - 20

N = 2N

[D —2a; — a3z — ag — (133+1_ -+ 055+ (4= - 1_)1 N=0
[D —a; — a3 — 205+ 011+(4" —-57)

+a33% (27— 5" - 2) = 20557 | N =0

2D — a; —2a; ~ 203 —ag — 205 — 173~

—O'44+2— - 2033+ - 2055{1 N=9(
[D—-ay—a4—2a;+0a2% (37 —-57)

+a44t (1" —-5" - 2)— 2055+] N=20

[D - 205 —ay — a5 — O'44+2— -+ 055+ (3_ - 2_)] N=0
2D — 20y — a2 — a3 — 204 — 2053

—Cl-g2+4_ - Cl33+1_ — 20447 — :2055+] N=0

[ = 2D+ 40 +203+ ag+a; — 047 (57 = 37)
4055t (37 ~47) = (3D/2 =T a,) (3" = 17) ] N =0

[ ~ 2D+ das+ a3+ 205+ a5 —az3t (57 —47)
+as5* (4= — 37) = (3D/2 — T a;) (4= = 27) | N =0

Table 6.3: Useful relations for integrals A/

Mi: [D=2a)—as—a;+022v (37 —17) —a4717|M =0
.\[g-—."fl . [—D+Cl] +2C12+O4+011+(2~—3_)
40447 (=57 + 2_)] M=0
.’\[1 +."[3 : [D—Ol—02—204—011+4—+(,l-_)2+<5_ —4_)
—20‘44+] M=0
My+ AMs: [D—as—a3—2a;5+0a22%7(47 = 57) —az5~3*
~2Cl55+] M=0
My=- AL [—D+20‘2+0‘3+05+033+(—1_ +27)
+as5+(2 — 47)| M =0
M+ Ms: [2D — 207 — 2a9 — 2a3 — a4 — a3 — a44%1”
—61'53—5+] M=0
M. [-—2&'44+1_ - 0'55+ (1-+3"-27)
—(3D/2 T a;) (4= —1)]M =0
Mg: [—20’55+3— — a4t (37 +17 - 27)
—(3D/2—F ;) (5~ —=3-)M =0
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N(1,1,1.1,1) = I{s), (6.16)

where in the last formula only the value of I{0) at D = 4 dimeusions will be
needed, for which case this integral has been calculated by Broadhurst [93].
For completeness we also give a formula for a single-loop integral:

Dj.
/ . d“k i (6.17)
k20 (k2 4 2k - p)’
T(%-.-——FD—-Z(—\)"
— inL'JZ(—])n+ 3(1 )-)-—0—3 (l ‘ ) ( ! ' )
T(HT(D=3=a)

S(a, 3)

6.5 Calculation of the anomalous magnetic
moment

6.5.1 Vacuum polarization contribution

In this section the contribution of the vacuum polarization to the electron
anomaly is calculated. The method of projecting the part which contributes
to the interaction with the magnetic field is outlined.

Figure 6.1 depicts the diagram to be computed. The value of the correc-
tion to g — 2 due to this process has long been known. but its calculation
required a complicated analytical integration which is avoided in the GBGS
method.In the following a formula for the correction to the magnetic moment
convenient for use in agebraic manipulation programs will be derived. Then
the renormalization of the photon propagator is carried out in the way which
allows easy incorporation into the framework of the GBGS method.

Tlie question we want to address now is how to apply this method to the
calculation of the anmalous magnetic moment. The diagram in Figure 6.1
corresponds to the fohowing integral:

1 1 o 1 Rrkin ) )
dPry~* Vo | g — — Iy (A
/ = P+ 4+ ,Al—m ,{)+ ll—m ?(J' k3 ) ( )
(6.18)

where H(,?) (k?) is the renormalized contribution of the vacuum polarization to
the photon propagator. The trouble with the above integral is the presence of
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Figure 6.1: Vacuum polarization contribution to the anomalous magnetic
moment

the ¢ momentum in the denominator. However, for the anomalous magnetic
moment we only need to consider infinitesimally small ¢ for which the Taylor
expansion can be used:

1 bt At A m op . P+ i+ m

~ 2 - < . . 6.19
O+ 4+ Fy—m ki 2k p : q(}.‘f + 2k; - p)2 (6.19)

All the denominators in the integral (6.18) depend now on Ay, ky and p
only (k2 being hidden in I'I(,.f)(kf)). We have reduced the problem tc the
calcula: un of propagator-type integrals.

We now have to express I'I(,?) (k?) in such a form that all integrals to be
done are of the type shown in (6.2). The unrenormalized vacunm polarization
tensor is [94]:

2 ) Ut g m)
2 (k) = ——Tr [ X (A _ dP. 6.20
Hy ( 1) (27{')1) / (k% _ 77]2) [(Ilt‘] + l\‘g)z _ 7”2] 2 ( )

which can be expressed by:

/ Rigki \ ¢
HLQU) (kl) = Lg/n/ - "1_#1—) H(Z) (1\12) + g;wA (l‘l) (621)

I3
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In the dimensional regularization 4 (k) = 0 and

. 5 1 9
n® (i) = P lng,;} (k1)
D?I? + 2 —_ D)]\z . (I\] -+ 1\2)

= . dPk,.(6.22)
.2"' )P D -1 / (k3 — m? A; + k)" — m?]

2} is divergent and we replace it by:

s ‘ QI (k2)
M3 =12 (k) -1 (0) - #2 ! 6.23)
A 1) ( 1) (0) 1( ak? e ( /
where I (10) = 0. ani
T2 (-2 2 Dy,
(gﬂ_ _gAn) Ly B (6.24)
L)k]' =0 (27)1) 3 (].3 — m?2y

We shift the ntegration variable &y — Ky + p so that the denominators in
the above iutegrals become of the same form as in (6.2). The renormalized
vacuun polarization is now:

2 - 2 4 1\‘2
m2 (i) = /c_l”x.--, [————,———‘—.,
It ( ]) (27 )1) = 3(1\'2-{-'7]) ko)
4 4 217?" +(2—-D)( L2 +I\] ko + Ay ])+2]\_)]))
D -1 (l‘z+21’ ko) ((Ry + k)2 + 2p - (k) + ko))

(6.25)

We now proceed to the actual calculation of the correction to the anoma-
lous magnetic moment. The vertex function of an electron is parametrized
by two formfactors:

Cu(pp+9) = Fi () + B (4 ) Ly O (6.26)

2m
and the radiative correction to the magn tic moment is given by Ag = F»(0).
This means that we do not need the complete expression for the diagram in
Figure 6.1 but only this part of it whicl contributes to ¢“o,,.

In order to isolate this part we note that another vertex can be (artifi-
cially) constructed by taking a particular linear combination of 4, and ¢,
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so that the interference term between the two interactions contains only
F,(0), namely:

1
D) p T et 8
F>(0)e 16m3(D — 2)

Te[( ot A+ T, (pp+q) (p+m) (@mo —i(D = 1)7#¢?)]

(6.27)

This formula proves very useful for calculating contributions of various pro-
cesses to the magnetic moment. In the case at hand we substitute for
Uy(p.p + ¢) the expression (6.18). The trace of gamma matrices is most
casily calculated using the algebr2ic manipulation program FORM [32]. The
next step is to perform the double integration over k; and k5. But in the
framework of the GBGS method this only requires some algebra for which
we employ Mathematica [64]. All scalar products in the numerator of the
integrand can be expressed by combinations of scalar expressions in the de-
nominator so that we are left with 2 sum of integrals N (a,., as. a3, a4, a5) and
M(a;. 2. 03.04,0a35). Using the GBGS recurrence relations we reduce all in-
tegrals to the following combinations of R; and R,. defined in the formula
(6.5):

F3(0) = 91(;2_2 [(108 — 180z + 183:2) Ry + (144 — 240z — 708:2) Ry]
+0(2) (6.28)

We expand R) and R, in Laurent series around = = 0:

27
R, = —-=!

Ry = ———+22 -2 _ 2% L 0), (6.29)

The coefficients in the equation (6.28) are such that both poles and terms

containing the Euler constant vanish and in the limit ¢ — 0, F5(0) =
%1 (% - %) This is a well known result, derived first by Sommerfield [86],
but we believe that the present method greatly facilitates the task shifting
the labor (algebra!) to the computer. In the next section the remaining,

two-photon diagrams, are calculated.
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6.5.2 Two-photon contributions

To the fourth order in the coupling constant e the remaining contribution to
the anomalous magnetic moment of the electron comes from diagrams shown
in Figure 6.2. Diagrams 6.2(c¢-f) should be accompanied by their mirror
reflections, not shown in the figure.

Diagrams of the types 6.2(b-d) contain infinite one-loop corrections to
the propagator and vertex functions. In order to gel a sensible finite result
we carry out the renormalization procedure [94]. In the case of the vertex
this consists in subtracting from it its value with clectron legs taken on-shell
and momentum transfer equal to zero. For example, the unrenormalized
amplitude corresponding te the diagram 6.2(c) is. in the Feynman gauge (for
simplicity we drop the four-spinors representing the electron):

dPr 1 1 1
“"[C = "3/________‘_,\'(\ "vl‘ .\‘L()' . A':]\‘ .
‘ (27 R p+ I+ f=m p+ f=m \p-p+ )
(6.30)
where the unrenormalized vertex function is defined by
o (]Dl\'v 1 1 1
-‘\0 . kyiky) = .~/ ~ —."J Ta BER
R N A =y Sy Sy iy Speprit
(6.31)

and the renormalized one is obtained by making the following subtraction:
A p+ by =N (p.p+hk k)= A, (Po-pe:0). (6.32)

. 9 D)
with pg = m~.
Similarly. the renormalized propagator is defined by:

aZ(p
=) = () = Slpo) = (= m) G5 (6.3
r=po
Thanks to the Ward-Takahashi identity:
aT(p
.\n (I)va(): 0) = = 8 ((]‘ ) ’ (634)
17 dp=po
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Figure 6.2: Two photon contributions to the anomalous magnetic moment
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part of the infinities cancel after adding diagrams 6.2(c.d) and their mirror
counterparts to the diagrams 6.2(h). What remains are the mass countert-
erms T(py), represented by 6.2(e). and half of the divergencies of the vertex
functions 6.2(c). for which the subtraction is depicted by 6.2(f). We now
briefly explain how these two diagrams are conveniently evaluated,

The mass counterterm is:

. ) _-):3 - :)f 1“(5)
Slpoy = T ET
. =2z ¢ dPk ]
= o2y / W (6.35)
=2=0 Q=) (k2 42k )y

which corresponds to a tadpole diagram inserted in place of the cross in
the Figure 6.2(c), and ‘his is just a product of one-loop integrals (6.18).
The contribution symbolized by 6.2(f) is a product of the wave-function
renormalization constant:
02(7)) 51 (1 +z) /3
; - )h_—-—__’_ (t + 4)

{6.36)

3 p lp=p (47)

‘_;|\

and the one-leop correction to the magnetic moment. which in (4 — 2:)-
dimensions is:

a0 a 7 14 2: -
;Cl(;)z;‘-?]_?sr(l-i-:)l_‘)? (6.37)

After this discussion it is clear how the diagrams 6.2(a-c) arc expressed
in the form of integrals (6.2). To perform the this caleulation we have used
symbolic manipulation programs FORM [32] and Mathematica [G4].

In Table 6.4 the results of the calculation for each diagram in Figure 6.2
are sunnnarized (together with their mirror counterparts. where applicable).
in the limit ¢ — 0. We have used the value of the integral N(1.1.1.1.1) =
1{0) = #2In2 - %C(Z’)). computed in [93]. For the sake of completeness the
contribution from the vacuum polarization diagram is also listed in Table G.4.
The total correction is the same as the one computed by Sommerfield [85. 86
and Petermann [87, 88].

It can now be seen that the GBGS niethod greatly simplifies the caicu-
lation of the two-loop correction to the magnetic moment of the electron.
In principle it can also be extended to calculations of three-loop dizgrams
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Table 6.4: Contributions of diagrams in Figure 6.2 to the anomalous magnetic
moment of the electro..

Diagram Coefficient of (9;)')

la % —- %](0) + .1%72

1b %—%7+1—4‘§7—+T’§7r2

e =3 - 5+ 0+ 7
d F o E T

te —E+h -1

if —g— + %", -2

Vac. pol. 1_31§ - %-‘-‘2

Total 1 + L2+ 3¢(3) - In?In?
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and first steps in this direction have been made [93]. Calculation of two-loop
corrections to the decay of a heavy quark can become another important
application. This is worth studying both in the effective field theory ap-
proach {96] and in the exact QCD in the limit of the very large quark mass.
The following section shows a cuiculation of one of relevant diagrams using
traditional methods. The result suggests that GBGS method might also be
applied to this case.

6.6 On the two loop corrections to top decay

In order to suggest a possible new application of the GBGS method I would
like to discuss in this section one diagram contributing to two loop QCD
corrections to the decay + — Wb, A general calculation of these corrections
has yet to be done, but the vacuum polarization effect in the gluon propagator
is easy to evaluate. The topology of this diagram is the same as in the
figure 6.1. We make the following ai)proximation: the mass of the decaying
¢uark is taken to be very large, so that we can neglect masses of the quarks
in the vacuwn polarization loop, as well as mass of the quark in the final
state and of the 11" boson. The renormalization is not discussed: the sole
purpose of this calculation is to demonstrate that the result turns out to be
proportional to one of the three integrals on which the GBGS method is built
- although the diagram in question is not of the propagator type.

Four-momenta of the initial quark, final quark and 11" boson are denoted
by Q. ¢ and W respectively, and we take Q> =1, ¢> = W? = 0. To the
leading order i my-/nig we only have to retain the term 11,1, /mf. in the
sum over polarizations of the 117 boson. In this approximation the amplitude
of the process under consideration is proportional to:

_ _ dPk 1 _ .5/,
Aty(l = ys)up = uq/ (277)0‘1'1_:7“ 3 (kz)

{%ﬁ_l—k(ﬁ— ) (1 - 75)7___””] Q- (6.38)

where the quark contribution to the vacuum polarization is

1e? (k%) = Ck7 (K2g" - k'k") | (6.39)
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and C is a constant independent of the gluon momentum k. The calculationis
considerably simplified by the fact that A#k¥ part of the vacuum polarization
does not contribute to A. The integration over k& can be done exactly and
the result is !

4(~1)72% (1 = &) (=2 + 9z — 232 + 302% — 16¢%)

A== 3(4m)P (1 —2e)(1 — 32)(3 = 2¢)(1 — 2¢)(2 — 32)
el (—e)l(—4 I‘( £)l(e)
Rl (6.40)

We sce that the result is proportional to the integral structure R, introduced
in eq. 6.5. It is quite surprising that a diagram with non-zero momentum
transfer (117) gives a result very similar to niassive propagator type integrals.
The reason might be that the integral considered here depends on a single
mass scale, set by the decaying heavy quark [97]. An application of the GBGS
method to general 2-loop corrections to the top decay is under investigation.

'T am very grateful to Dr. Q.P. Xu for checking this formula.
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Chapter 7

Conclusions and Outlook

In this thesis we have presented and discussed various aspects of quantum
corrections to decays of heavy quarks. Here T would like to list the main
problems examined in this thesis and point ont some new directions of studies
suggested by the results obtained.

Typical size of QCD corrections to the width of the top quark was shown
to be of the order of 10% for both Standard Model decay channels and for the
decays involving a charged Higgs boson. Corrections to the energy spectrum
of hadronic products in semileptonic decays were also of this order, which
will make it hard to test them experimentally using hadronic calorimeters.

The analysis of the angular distribution ¢f charged leptons in semileptonic
decays is of greater practical importance. The fact that the QCD corrections
leave the shape of the distribution characteristic of a spin one-half parti-
cle essentially unmodified is important for future observation of possible CP
violating effects in t# production at hadron supercolliders. It would be in-
teresting to examine the corresponding effect of electroweak corrections in
decays of polarized top quarks.

Electroweak corrections were presented here for the partial width of top
quark decaying into bottom quark and a charged Higgs. A number of in-
teresting features wer2 observed in the dependence of the corrections on the
ratio of expectation values of the two Higgs doublets, as well as on the mass of
the charged Higgs boson. Although the size of corrections to this particular
decay mode was rather small (typically of the order of 5%), some important
problems in this area were noticed and should be solved in future. The cur-
rently popular renormalization scheme based on the condition of vanishing of
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radiative corrections to one particular vertex (e.g. the interaction of charged
Higgs with 7 lepton and its neutrino) is very cumbersome in a calculation
which takes into account full electroweak corrections. On the other hand,
recently proposed scheme of calculations of neutral Higgs bosons decays {98]
could probably be successfully applied to the charged Higgs boson decays as
well. If the two Higgs doublet model is confirmed experimentally and the
decays of charged Higgs bosons are to be studied in future precision exper-
iments, it will be important to have a simple and natural renormalization
scheme for calculations of radiative corrections to their decays. Work on this
is now in progress.

It would also be important to compare electroweak corrections to the
charged Higgs channel of the top quark decay with the Standard Model
process t — Wb, To this end the Equivalence Theorem should be applied:
in consequence one could obtain an excellent check of the results, as w..s done
in the case of QCD corrections.

Some technical aspects of calculations of radiative corrections to decays
of the top quark were also discussed in this thesis. It was shown to be advan-
tageous to employ dimensional regularization to the treatment of not only
ultravioiet divergences, but also to the infrared ones occuring in the calcula-
tion of soft and collinear gluon radiation. The results obtained in this way
for the total rate of the decay t — 1"+ confirmed previously published for-
mulas of Jeiabek and Kilhn. The same method was successfully applied to
the analysis t — H*b. Dimensional regularization is also essential in the
algebraic method of doing two loop calculations, proposed by Broadhurst et
al. This approach was discussed with an example of calculating the anoma-
lous magnetic moment of an electron. We hope to apply this method to the
problem of two loop QCD corrections to the decay of heavy quarks.
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