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Abstract

[ . oo /

The adaptiye controliapproach\has been'expiored for“ -

many years. In the late 1970's, several algorlthms of theé

. model’ reference adaptive controllclass wvere proved to be

" globally- asymptotlcally stable under certa1n assumptaons.
However they h e not seen extended application as a result
of these' resegﬁ%h. A m@zn reason for this has been the
performande of these adaptlve control algorithms 1f the -
assumptions do not hold, eSpec1ally when the upper bound of

" the plant order is n%t known.,

For thetheoret;calgproofhot stability of these.‘
algorithmsl the structure of'the plant has to_be‘knoyn..When
designing a control“system, the plant structure is usually-
estimated. The actual plant dynamics vhich are outside the ~

estimated plant structure arg called unmodeled dynamics. It

“has been shown that;thecmodel reference ada tive control
approach works poorly if there are unmodeled dy .mlcs in the
system. System stability is. ;dversely affected by the
vpresence of unmodeled dynamxcs. Hence the successful
'appllcat1ons oé-adaptlve control algorlthms have so far.
‘1nvolved ad- hoc methods to cope with th1s problem in most

d

i cases.,

“iv



*
- M
y -

LN

The ef fgct of unmodeled dynamics on the performance of

-

adaptive control 6ystems has been investigated in a number
of theoretxcal and numerical studles. This the51s conta:ns
numer1ca1 studies of one jparticular model reference adapt1ve

control algorithm, These simulation studies are concentrated

on the effects on system performance of a wide range of

factors. These include the locat\ﬁhs of the unmodeled

, : A
dynamics poles, the cghtrol and adjustment 1nterval the

order of the control law ang the type of the input signal,

etc.. The investjgations try to clarify the areas which are
- . ' § ‘

‘not satisfactqrily.covered by the research results published
in the literature, and to examine'the "design gquidelines”
obtained with insufficient data in some publications.

A way of numerically:measuring the ~system performance

‘is 1ntroduc 2a in this the51s to make the investigation work

- ”

possibYe. Simulation 1nstead of theoret1cal approach is

ERY

employed because no satlsfactory theoretlcal tool is

available for the speclflc research-area.
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‘1.1 Adaptive Control

_ 1. INTRODUCTION .

besigning a control algorithm to perform\weII'USUally

requires a knowledge“of the plant, commonly described in o

terms of a mathematical model . Since plant behavior changes .

with environment, it is not surpr151ng that controllers

which automatlcally adapt to the'chang1ng plant parameters

were thought des1rable ‘even in the early days~of cqgl ol, -

However, the idea was not serlously considered ow‘ g ‘f

almost 1mpossrw_g'task ‘of real121ng sucw a controller in the

absence of a d1gltal computer..With the.avaxlab111ty of fast

dlg1tal computers at reasonable cost, the dEVelopment of a
class of controllers which hopefully would compensate for
plant parameter changes mushroomed and a large number of

algorrthms are available today in the literature. In short,

an adaptlve controller is a controller whose parameters . -- -

adapt" to changes in the parameters of the plant be1ng

controlled.

. However, in spite of the great amount of work devoted
to tnis problem and\the relatively long period afterithe
first ser1ous attempts were made to design such a control
system (late 1955;3 accord1ng to [5]), the appllcab1l1ty'of

an adaptive controller to a pract1cal system is still an



| open‘question generally. This is partly due to the fact that.
the adaptive control algorithmslinttbduced up till now have
‘.‘one.common chatacténistic: they.aré basically.ncnflinear-
time-vérying controller-plus—estimators. fhe analysis and e
‘prediction of system perfornance‘(e.gﬁ'theorétical nrodfs of

stability) are not easy. because of the mathematical

complexities due to nonlinearity and time-variance.

LLa -

‘ | Another reasoﬁlit tendency of the algorithm to be
unstable in the Eresence nf blant unmodeled dynamics. If a
plant or process being controlled is described by a finite
order lineér mathematical modél, and the actual plant
behaves differently from the model (including éxhibiting <
higher ordér moé;;) the pa;tﬂof the plant that is not -
covered by the model is usually referred to as unmodeled
Adynam1cs (espec1ally in adaptive control). For 1nstance,‘ifi
a plant has three degrees of freedom and includes some
nOnlinearvfactors, and a second qigpr linear model which
;-qpproximates thé plant islused in desiéning the;adaptive
&pntrol algorithm, tnevleast significant bole_as well as the
nonlinear part of the plant constitute the unmodeled
dynaTiSEL In t g‘case of llnear plants, "unmodeled dynamacs
refer to the ext poles, zeros and time delays of a plant

that'are]not covered by the lower order model chosen to

represent. the plant.



The general configuration of an aaeptive oontroller is
shown in F1gure 1.1 Such a eontroll T is employed to e1;her
cope w1th changing plant parameters or to obtain super1or
performance with a plant whose paramefers cannot be'
predetermined. The adaptor part conragns an estimator for
the plant per%meters,pandcadjusts the controller parameters.
continﬂously"according'to the most current estimates. The
"estimator" is based onvthe knowledge of the plant
configuration, includimg its order. With thisvknowledée the
unknown‘or changing parameters can then be ea!imated using
plant input/output history. Figure 1.1 represents therefore
‘a configuretion'deéigned with a "known structure but missing
parameters" situation in'mind} not as one Eo oope'with
plants of unknoyn‘order.v |

/

Why, then focus on unhodeled dynam1cs which 1mp1y order
uncertainty? It is known that few real life systems can be
represented by a fixed order linear model . Many systems are
nonlinear, and many nonlinear systems could not,be exactly
described by a linear model of finite order. For adaptive
control algorithms to’see exﬁensive use in,commercial,
industrial and other pract1ca1 appllcat1ons, thelr

———

performance in the presence of unmodeled dynamlcs would have

to be satisfactory.
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1.2 A Survey of Recent Results

In épite of the many years of work in the area of
adaptive control, the greatest obstacle to extensive G
applicability of“this type of control concept still is the
question of‘stability of the éystem wvhen adaptive control is
employeda Since adaptive controllers have a more cdmplex
mathematical description than conventional controllers,

stabxlxty analysis of. adaptlve control systems is much more

’

di fxcult (By a conventlonal contrbllgr is meant a llnear
¢};edback controller for a constant pa?ameter plant.). And
‘because bf the "changing controller parameter in accordance
with plant parameter estimate" scheme, the controller
coeff1C{gpts run the risk of being adjusted to the unstable’
'regions owing to poor estimates [4].
. ;

Adaptive control algorithms reported recent{y in the
literature generally perforﬁ better under certaig conditiens .
than a conventional conf:oller. Sémeiof the algorithms have
been known to be globaly stable{under certain assumptions
[1-4]. The a;;umptions aré: | |
1. an upper bound of the plant order is known;

2. the plant is minimum pﬁase single ﬁnput single output,

(ie., all zeros of the open loop transfer function are

.in the left half s-plane in the continuous case and

inside the unit circle in the z-plane in the Qiscrete

3%
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time case); ) ‘f' -

3. the relative degree of the plant, ie., diffe;enéév p
between the degree oﬁ the denominator'polyhoufaliand‘tﬁe
degree of the numerator polynomial, is know:z%and .

4. the pure time delay in the plant is anQn.lufé;

: ‘ that
and

the relative degree of the plant shogléﬁggykndwn;; ':¥"has‘
the effect of saying that a correct estimate as well as
overestimgge of the plant ord;} while designing the control
algorithm will produce stable results as long as the other
assumptions are satisfied. What would be interesting éo
check is whether stability isretained if uﬁdé%estimapion of
the plant order occuré since this is almost always the case
with real plants. ~
| {

With prern stability when the assumptions.hold true,

work done so far in [1-4] shows that the adaptive control

algorithms do their main job well, ie., to follow plant

parameter changes, and generally give better performance

than the conventional controllers if the algorithm design is

— -

executed carefully. However, ~the assumptions generally don't
hold in real world piants (since real plant could be
exactly described by a finite-order model). Hence the system
performance, especially stability, with one or more of the
assumptions violated, naturally becomes an interesting topic

of research after the theoretical proofs were introduced.
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It should also be noted ;h:} the analytical methcds

used in [1-4) to prove. the stabllxty of the adaptzve conRrol
algorxthTs are very qunial in the sense that they depart\
far from the Lyapunov methods commonly used*to study
stability in the case ofvlinear systems., The approidhes
'employed in these papers also differ from one Another so
puéh that‘each algorithm has its own ‘unique stabiiity proof
method. This is mainly due to the hohlinear and.;ime-varying
natﬁre of adaptive control. Ideally, it would be highly
desirablé if a unified approach could be developed for the

performance and stability analyéis,of all adaptive control

algorithms.

-

It would seem this haé been~achieved partially when in
1982, Rohrs in [4] §eveloped a "unified approach" to analyze
the performance, especially the stability, of several.
algorithms publiéhed in [1-3] and a few others. The reseérch
by Rohrs isolated and highlighted the effect of unmodeled

dynamics on the performance of these algorithms:

Rohrs, in his thesis, proceeded to evaluate the
. behavior of these algorithms when the "known relative
degree” assumption does not hold. Here is where the

’

"unmodeled dynamics" come in, -

By extensxve computer %1mulat§on studies, Rohrs was

able to show that the algorithms in [1-3] do‘not'necessarily*



retain their staSility vhen un@odeled dynamics are present
in the plant. The primary reason of this is that the typé of
adaptive‘algorithms (model reference, déhd beat, etc. found
in [1-3)) will eventually "tune" the system gains to
infinity (especially the high frequency gains). And the
infinite gains in turn will make the system signals "blow
up". While the analytical work of this thes%s tan;ot‘be. &
)accepted as a maéhematical proof that instgﬁility would
. occNr should there be unmodeled dynamics involved in the
em (more on this later), the very well designed combuter
"simulations do give strong support to’the following
conclusion which could bevfgqnd in Section3.3.8.0f the
thesis (in fact, 6ne counter example invapplication is good
enough tg indicate that there may be‘ﬁrbblems in the usage
of the algorithms): "when unmodeled dynaﬁics are present in
the plant, large constant reference inputs may prevent the
algorithm from matching the model response to a change in’
the reference input r(t),.which is its.main task..
Instability may result if the reference input further

increases.”

.Everhsiﬁce the broblem of the stability of adaptive
controllers in the presence of unmodeied dynamicé was
analysed by Rohrs [{, 4a], efforts have beén made to obtain
algorithms whicﬁ will be "immune" to this pfoblem or at
least will lessen the inpact of unmodeled dynamics on-system

performance. Meanwhile, almost every successful application



of some adaptive controlldlgorithm in real systems so far
employs. some kind of ﬁﬁditicationa upon the basic algorithm
and seems to be only good for one particular plant. Thig
means, in effect, that only local §€:LiliQy can be achieved
Cif unmodeled dynamics are present evén if great care 18
taken in the algorithmldesign stage.!These indfrectly
support Rohrs' statement that in;tability is the'result of a
mechanism inhement in the algorxthms whxch tunes the
controller ‘gains to infinity if unmodeled dynam1cs are

present. , .

1.3 Thesis Objective

Although a certéin amount of work has been done
concerning the probleﬁ of unmodeled dynamics in adaptive
control systems, it has been confined oply to stability
issues and qualita;ive studies. The conclusions an:lzzgﬁlts
have pointed out that unmodeied'd}namics in adaptive control
systems may cause instabiM™¢{y. The field is still open for |
quahtitatiVe studies that observe\thé gradual change of
system performance with the changeSJof factors such as
unmodeled pole positions and samp11ng frequenc1es. The
"design guidelines” offered by Rohrs could also be improved
if system behavior is examined in moré detail. Fér instance,
it was-indicated as a\guideline in [4b] that the slower g%g

sampling rate is, the more stable the system will be. This

*



conclusion was arrived at with comparisons of only two

different iampling rates. Quantxtatxve studies can help
clarify these results.

This thesis will ﬁry to make a contribution to design
guxdelxnes by studying the performance of a partxcular

adaptive control algorzthm in the presence of unmodeled

-
dynamics. This will include quantitative studies and
comparisons with conventional control approaches so that an

¢ appropriate range‘of.its application can be established.

1.3.1 Outline of the Thesis

In this thesis, the behéviér of one particular adaptive
_control algorithm in the presence of different unmodeled }
dynamics i?hiﬂvestigated through computer simulations as
well as analysis using cﬁrrently available methods. The
results of these investigations will help to gain an insight
into the role which unmodeled dynamics play in adaptxve
control systems, espec1ally their effects on systém ‘\
stability.
' In Chapter Z‘WQ;Will proceed to describe a limitation
of Rohrs' "unified an;&Ytical approaéh" and E?e its
inadequacy as a.theoretical analysis.procedure;‘as_well as ..

other mifnor shortcomings in his thesis. However, we will

i
i
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-Rohrs. . . ' B

'relatlonshxp of system performance and unmodeled dynam1cs

11

also show that beside being, part of the set of sufficient

cond1t‘ons for global stablllty of the algor1thm of Q .
' \

(f.3¢‘ _? below, the relatlve degree as well as order upper

limit assumptlons-are also necessary ones as indicated by

Coy

omputer

'Also in Chapter 2, the results of a se:T
N

eimulations will be described’which will:establish the

'u51ng the algorlthm proposed in (1.3.4- 8) The effect of

¢changes in thevlocatlons of the unmodeled dynamics poles and

control samplino periods will be observed.

s et

In all of Chapter 2, the control algorithm will be used

in its first order form, with a ‘third order plant. In D

. Chapter)B hiéher ordervsimulations will be conducted. Also,

)

the consequences of overestlmatlng the plant order will be ;}5

analyzed through 51mulat10ns of a lower order plant model

‘,controlled by a hlgher order algorithm.

i : ’ “ i \‘:' -
In_chapter 4, we will try to esgablish the applicable

‘range of the particular algorithm. In doing so, we hope to

identify theftype of situations where the algorithm in’

(1. 3. 4-8) performs better an conventional control

algorlthms. If such situa 1ons could not be found ins the

. case of a partlcular algor1thm or approach, its existence

& _ Al
cannot be ]ustlfaed The algorlthm s(advantages andg'fTJ.‘

0
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‘

'dlsadvantages will be carefully obeerved and analyzed agaln
through a number of simulat1on;?and compared with

_; conventlonal algorlthms. The results will be helpful in
determlnlng whether an algorlthm ;ike tﬁgtﬁln (1.3.4-8)

i

should be con51dered in a partlcular situation. ° L

|~

1.3.2 Controller Algorithm ianstigated in This 'Thesis

r 4

kNdmeeous\adaptive control algorithms have beeh'f-ge;'ed
in_the iiterature; These are often divided into groups L
the nature of their design. Mqéel reference adaptive cueerol
algorithms-constitute one of the classes. Several adaptive
cqntrolﬂalgorithms‘that'ﬁave had theirkétabilﬁpy proven
.belong‘to,this‘groub; The study covered by this thesis 1is
conducted within thie group. Figure 1.2 shows the general

configurétion of model reference adaptive control

algorithms.

Sinee the time availab}e‘is limited, and fairly
~extensive‘simglatiene are required, only one of the many
available algorithms is singled out in this research. This
algorithm was developed by Goodwin, Ramadge aﬁd Caines [19,
20). It is one of the simplest and_its'stabiTity proof is
quite sﬁfaightforwerd; Avdetafled study of theeeffect of
‘different unmodeled dynamics on 6ne algorithm should provide

a-reasonable guidance as to what one can expect with the
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‘others, if it could be shown that the problem with unmode led
dynamics is caused by some common characteristic of the’
adaptive control approach. /

Since adaptive control algorithms are usually
implemented with digital computers, the work im this thesis
will be conducted in the discrete-time domain. To cohpare'

- effects of unmoégﬁed'dynamicé on ;he performance of
different control configugations, adaptive and non-adaptive,
a model reference control alg%githm'withoué adjustment
mechanism will be introduced as well.

4 In this Ehesis, the single-input single—ouﬁput plant to

be controlled is repreéig;ed by the discrete-time model:

‘alz” Dy () =298z " Hult) - o (1.3.1)

‘ f‘where u(t) is the input and .y(t) is the output of the plant, -

and A and B are polynomials defined by .

'.A(z—1)=1+a1z_ +......%a 2

B(z—i)=b0+b12_1+;;...,+bmz-m, bO¢Q,;(n2m+d),

4

where z is the Z-transform operator, d‘is the pure time
delay (presumed to be an integral multiple of the sampling

period), and t is the discrete time 0,1,2,3.... etc..



- driven by the same reference input. When the parameters of

15 -
g,
The main idea behind the model reference approach is to

have the plant output follow that of a specific model which

is considered desirable. This model is called the reference ;,

model. When m, n and d are known, a reference model is.

hd -

chosen to be as follows:

Wy

AM(z'l)y*(t):z‘ngM(z“)r(t)_ o (1L3.2) -

where Ay and By are polynomials satisfying

-

i

-1y , ;1 -n w
AM(Z )-1+3M1Z +o-coou+aan

3

=1y_qs -1 o -m
BM(Z )—1+bM1Z +.......+meZ o,

where g is a constant gain, and r(t) is the reference input.

AM(z") has no zeros outside the unit circle in the Zz plane.

) °
3 . S

1f the’exact'dedrees of,tﬁé A and B polynomials are not

‘known, n would be cHosen as the'ﬁpper limit of the degree of

« A (whichiis desired to be known for stability). m is then

»

obtained'as n minus the relative degreé (which is the

difference of degrees of_A and B).

The objective is to'apply‘feedbackvto the system so

that the output of the plant matches that of the model

o

the plant are known, the following non-adaptive model . 'Jqﬁfﬁ

i
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¢

reference control algorithm found in [20]:
B(z” Day(z” Dut)=gB,(z"Naz Dr(t) (1.3.3)

will attain the objective. In effect, this u(t) will drive

. \J
the plant in such a way that

y(t+d)=y* (t+d)

will be achieved.

This control law is very simﬁlar'to a deS%beat control

law and the knowledge of plant paraheters is, of COUrse,

mandatory.

When the plant parameters are not known,.thg following
model reference adaptive_cdnfrol‘%lgorithm found in [20] and
[21] and referred to as DA2 in [4] adjusts controller gains

to cause y(t) to fqllow #he model output.

Piant iﬁppt:
u(t)=gT(t)g(t) | (s

where ﬁ»is tﬁg—cohtroller gaiﬁ vecﬁor and ¢ is calied ghe_

auxiliary variable 'vector. They are of the same'order,

namely n+m+d-1. Vector ¢ is defined as: ‘ 5
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gT(£)ly(t), ... ,y(t-n*+1),ult=1), ...

coult-mde),e ()] T 0 (1.3
where -
™ v ' :
\Jgﬁz—1)¢r(t)=gBH(z'4)Y(t) - (1.3.6)
or , ‘ . ' ’
o (t)=y*(t+d) . | | (1.3.7)
o

with gain adjustment mechanism:

-

8(t)=(t-a)-£p(t-d) [1+9(t-a)Tp(t-d) 1 Te(t) (1.3.8)

where f is a user chosen parameter to control adjustment. It

is chosen so that gxf=<2..

~This algorithm will ultimately achieve the goal:

-\

lim'y(t)=y*(t)

t_‘-»on

The performance of this algorithm will be compared with
the non-adaptive modei reference control algorithm of
1.3.3.. For ease of reference, algorithm (1.3.4-8) will be

referred as Al and (1.3.3) as A2 from this point on.

~.
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1.3.3 Plant Models used in This Thesis

¥

v

Two kinds of plants will appea;‘in this thesis. Both
are 1ine$r, and the unmodeled dynamics are represented in
terms of_extra‘poles. For fhe sake of conQenience and ease
of understanding, the plant models will be representéﬁ in
tﬁe continuoﬁs comain, by poles énd zeros in“the s-plane.
. - |

: , v

in Chapter 2., a plant model developed from the Rohrs -
version (introduced in [4]) will be used. The Rohrs plant
model 1is as folldws:

!

(s+1){s2+305+229)¥(s)=458U(s) (1.3.9) .,
—~—
which contains a dominant pole at. s=-1 and a pair of -complex_

poles at's=—15tj2 (serving as unmodeled dynamics), \\\

The plant model in Chapter 2. will be based on this

hpdel. However in order to investigate the effect of
changing unmodeled dynamics, which is one of the objectives
of this thesis, the location oiafhe poles will have to be

flexible. The model is shown here:

*

"(s+a) (s+a+jB) (s+a-jB)¥(s)=2a(a*+B*)U(s) (1.3.10)

v - ‘n\.
where a>0, a>0, B>0, and s is the Laplace transform '’
T '
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operator. In this model, the complex pole pair willl

- represent the unmodeled dynamics and a>a'is reqguired.

In Chapter 3., in order to examine the effect of
unmodeled dynamics in a higher order sys;em'an¢ the effect
of changing the controller order, a 4th order plant
containing a pait}of complex poles is used. Its model is as

follows:

2 .
- (s*+2as+a?+8*) N (s+a;)¥(s)=

i=1
2a1a2(a’+B’)U(S) (1.3.11)

where a,>a;>0, and «>0, B>0. Depending on the controller

order, some of these poles will serve as unmodeled dynamics.

In analysis and simulations, which will be carried out
in the discrete-time domain, discrete versions of these
: m&Q$}s will be used. For ease of reference, the algoriéhms
A1vahd-A2 as well as plant hodels (1.3.10) and (1.3.11) are

collectively listed in Tables 1.1 and 1.2 below.



Algorithm At:

u(t)=6T(t)e(t) (1.

oT(t)=[y(t),...,y(t-n+1),ult-1),...

» -vo ult-m-d+1),¢ . (t)] | (1.
Ay(z" e (t)=gBy(z” Nr(t) | . (1.

Q(t)=g(t‘d)~fg(t—d)[1+Q(t-d)TQ(t-d)]_1e(t) (1.

Algorithm A2:

Bz~ Nay(z” Hult)=gBy,(z"Hatz" e (t) (1.

4

Table 1.1 Algorithms used in The Thesis

20

.4)

.8)

.3)
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é‘r -
(s+a)(s+a+jB) (s+a-jB)Y(s)=2a(d?+8*)P(s) (1.3.10)
/ T
5 -
(s’+2as+a’+ﬂ’)_ﬂl(s+ai)Y(S)=
i= ‘ .
2a1'a2(a’+B’)U.(s) (1.3.11)

‘e

Table 1.2 Plant Models used in The Thesis

L3
)

.J{)
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In Chapter 2, plant model (1.3.10) will be used with

- P 22

a=1."In Chapter 3, plant model (1.3.11) will be used with
ay=1 and a2-1.SQ In Chapter 4 plant model (1,3.10 11 b

used with-chang{ng parameters.
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- 2. Eftect of Unmodeled Dynaftics on a First Order Algorithm

.

2.1 lngroduction" 1

In this chapter, the plant is presumed to follow »
(1.3.10). It is assumed to be of first order when the
control algorithm is designed, altgough the actual plant is
of third order. Hence the complex. pole pair‘wi;l act as
unmbdeled dynamics, because of the relative dominance of the

real pole at s=-a,.

The studies in this chapter is concentrafed on the
performance of algorithm A1 in its first order form, ie.,
n=1, m=0 and d=1 in (1.3.4-8). The effect of unmédgled
dynamics on the perférmance of this algorithm is observed
through a‘series‘of simulations. The effectiveness of using
longer control intervals to improve system‘stagility will
also be studijed. '.

2.1.1 The Linearization Approach .

<

In his thesis [4], Rohrs concluded that when plant
'(1.3.9) is controlled by algorfthm A1 designed to follow. a

first order médel

23 .
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(8+3)¥Y*(s)=3R(s) . o (24)
\ -
the unmodeled dynamics of the complex pole pair s=-15¢j2 in

(1. 3 9) . introduce 1nstab111t1es into the system,

The analytical approach employed by Rohrs 1nvolves the

. lxnear1zat1on of the adaptxve control system about an

opérating p04nt. After the system'isyliﬁearized,»the réot

~ locus method is used to analyze its stability. The

applicability of this approach to adaptive control systems
“w

: ‘ v
is questionable for the reason stated below.

L} 3

To linearize an adaJtivé éontrol éystem like Rohrs did’
in [4], it has to be prJ;umed that the adjugtable controller
parameters remain constant or do ﬂot change too far firom an
operating point. If the system is stable, these parameters
reach certain steady state values provided- there is no -
dxsturbance. I1f there are no unmodeled dynamics in the
system,othe ?lgor1thm Al asymptotlcally adjusts its control
parameters to those of A2. ?he§e could be usednas the »
,opefaging point for lineariiétion; In fact, the flnal
11nearlzed model will be the same as the plant controlded by
A2, no matter what values other factors like the reference

input and the adjustment factor f are set at. Linear system

.analysis techniques could then be applied to this system.

v L4
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~of the presumed one.

parameters for a certain set of unmodeled dynamics and at a

;o . . 25

W
©OIf there are unmodeled dynamlcs in the system, wpwever,

the steady state values of the control parameters depend on

¥

the pos1t10n-qf~the unmodeled dynamlcs poles as wellgas

’ ~other operating factors like f and the reference input, even

if the sy mis stable. If the system isAnet stable, the
controlféfz:alns or parameters w1ll approach 1nf1n1ty. In
this case, it is obvious that no steady-state will be
reached and. the linearization process is completely
useleSS. If the system 15 stable in splte of the unmodeled
dynamlcs belng present,,the l;nearlzatlon approach could be
‘applied in a way like Rohrs d1d Flrst“a ‘computer simulation

is donk to determlne the steady—state values of the control

. A

certain operating condition (ie., r(t) and f values). Then

the syStem is linearized around this operafing point; The

stablllty analy51s of thls resultant llnear system means
llttle, however, s1nce the 51mulat1on results has shown that

the system i's’ stable. In the Rohrs the51s [4Pnbthls approach
1s used to plot root loci- for the system when r and £ are
changed. These rdpt loci are»atvhest apprcklmatibns since
the operating'point;‘ie., the'steady-state valueg of the'
o Lo e

6ntrol‘parameters,'changes with’r and f with unmodeled

dynamlcs present 1n the system. For thlS approach to be even

marglnally mean1ngful changes of r and f haye to be‘small.d-

L

for the actual operating point to be in a limited vicinity

4

-

4
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',g Rohrs' approdch is therefore not mathematically

R

rlgcrous and of very 11m1ted use at best. Since the studxes

in. th1s chapter and the rest of the thesis involve changes

of the operat1ng cond1t1ons, unmodeled dynamlcs, and other

- 1y

factors of systems, the llnear1zat10n approach cannot be
successfully employed here. Slmulat1ons, not theoretlcal
analysis w1ll,Pe the main tool used here because the
objective is to quantitatively observe the effects of
several factors (including unmodeled dynam1cs) on the

performance of algorithm A1,

2.1.2 The Simulation Approach, Time Periods

The simulation methods employed'in [4] also leave‘some
things -to be desired. First of all, for simulations of a
control system, ideally the plant should be modeled on a
precise analog computer, Latkrng such a device, a discrete

time model of the plant should be constructed and used

.unlformly throughout the whole -ocess of analy51s. .

“

'Tﬁé sampling period used here should be small.enough’to
represent all the modes in the plant, and should not be o
changed even if the control and adjustment 1ntervals ai%
wchanged. In [4], however, the sampling period for obta1n1ng
the discRete model of the plant is set to be equal to the

control interVal. While this simplifies'the programming, a



price has ko be paid in terms of the accuracy of the
representation of the plaﬁt. This ie especially true when
-the'samplihg_period was set at 0.4 seconds, since this
violated the Shannon sampling &aw for the unmodeled dynamics
‘modes at -{Sijz. These unmodeied dynamics modee are of high
frequency compared to the dominant pole at”;=?1. Without

. knowihg the plaht output in between the sampling .points, the
conoluéions concerning the effect of changes in the samoling

period on system performance reached in [4]) need

clarification. C

In the simﬁlation‘studies in this, thesis, there are. two
different time periods 1nvolved The ° f1rst is the interval
.%of the control parameter adjustment. The representatlon of
algorithm Al and A2 in Table *1,1 is based on this 1nterval
This timé perlod will be denoted as T throughout the thesis
“and different values w1ll be used Yn the slmulatlons. The
plant 1nput)q(t) will also be adjusted in this 1ntervel The
discrete time t=1,2,3,... of (1.3.3-8) is actually in .
intervals of T, ie., T,2T,3T,;.. etct. “
.
";‘,'3' .

”i

R The second time perlod 1s€!ke'sampling period used for
N w\,A A .

the discrete model of the plant. For~ease of analysis, the
plants ‘used in this the51s will be discretizations of models
in the contlnuous t1me déhaln. The dlscretlzatlon, hovwever,

has to be done with a fast enoUghvsampling period for the

discrete time model to repé@sent all the modes in the

~
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original plant. This sampling period of the plant mcdel

discretization does‘not have to be the same as T. In the
simulations of this thesis, thisgsampling;period will be
denoted as T.. For uniformity, T

P 1%
all the thesis, which is fast enough for all the plants used

=0.01sec. is kept through
in the simulations. ‘ ;

In all the simulation studies of this thesis, T>Ty.
This means in each control interval, the plant output is
calculated for more than once while its input remains the

same. This improves the accuracy of the simulations,

o
b

especially when the effect of unmodeled dynamics is studied, =

and T is too long to be used for thé discrete model of the -

plant. ¢

2.2 Qualitative Studies

O

£he simulationsvin [4] gre.also flawed in'another‘
sense, becausp the results donhbt include comparisons of
systeﬁs with ;nd without unmodeied dynamics. Consequently
they do not offer proper‘isoiatioh of the effect of
unmodeled dfnami;s on system performance. However a
qualitdtive*examination of Rohrs' results wili be hglpful in

_ i /
preparing for/@urther studies of the problem. ‘
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~

It is now known that unmodeled anachs may’introdUCe
instabilities into an_adaptive.controlq;;stem [4, 4a, 4b].
It is worth examining wheéher the same is true when the
‘algorithm is not adaptiQe. Rohrs claims that he has
gﬁﬁent1f1ed the reason for the. 1nstab111ty as Being due to
Q*the adjustment mechan1sm in all the model reference adaptive
- control algorithms tuning the controller gains (6(t)) to
infinity in the presence of unmoaeled dynamics. A digect
cémparison of simulation results of systeis with the same
plant controlled by algorithms A2 and A1 seems to offer a
good starting po1nt for helplng to clar1fy whether Rohrs

conclusions are fully justified.

From the discussions in the previous chapter, it should
be clear thaﬁhalgorithm A2 is the same as algorithm A1
without its gaih adjustmeht mechanism. In other words if
there are Aé—uhmodeled dynamics and if the iﬁibial’values of
gains Are sglected properly, the adaptive algorfthm will
perform exactly as the non-adaptive algorithm would. In this
section, éimulaiions will be conducted of both algorithms
with and without uhmodeled dynamics, and comparisons hade to
identify the roles of both pnmodéled dynamics and
adaptation. |
2.2.1 Perf;rmance of Algorithm A1 in the Presence of

Unmodeled Dynamics ' /
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The firsf.two simulations of this section are excecuted
‘under the samé conditions as those represented by Figures
5-7; and 5-9,. iﬁ“[4]. Tﬁese are chosen :since they‘:epresent
the kind of situation where the syétem is still stable but
the instability effects of unmodeled dynamics are felt. The
third and last simulation uses the cbndition of Figuré 5-10.
of [4], since it is supposed to be the particular point when
the system st:rts td go unstable. These figures are |

reproduced here directly from (4] for reference purposes.

s
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Figures 2.1, 2.2 and 2.3 show the results of the

simulations. The simulations are coﬁduCted using almost
exactly'the‘same method as Rohrs used, excép% that the plant
is represented by a more accurate discrete model of the

analog transfer function (1.3.9) compared to [4] because of 7 |

the higher sampling period T used here, Also different is

p
the examination of system'berformance when unmodeled

dynamics are not present.
] ' .

In these plots (Figures 2.1 to 2.3), y(t) is the system

output with unmodeled dynamics, when the algorithm A1l is

applied to plant (1.3;9); y*(t) is the output of the

refe;énce model the system is suppoéed to follow; while

. . [
yp(t) is the system output if there is no unmodeled

3

dynamics, or when Al 'is applied.to the alternative plant

(s+1)Y¥(s)=20(s) - (2.1.2)

’ich is (1.3.9) minus. ;hé unmodeled poles. The adjustable

gains or dogtrol/parameters are marked as k, and ky. They
. constitute the vectbr 6(t) of (1.3.4). That is,
O o
QTﬁt)=[ky(t{,kr(c)]. 5 | S (2.1.3)

% -

From the results, it is very clear that unmodeled

dynamics do cause instability in adaptive control systems.



tors

Contrd Par

EGEND
YT

BN

18
1

4

-10
L

\

e

T T T \
80 120 6.0

o Tire i~ Seconds

...............................................................................................................................

-24

Time i~ Seconds

Fig. 2.1 Response for Al =100, =02~

200 .



j
a
{ C 8
¢
f‘
A
{ <
fv @ : : ! :
m _ q m “ yr* ﬂ
» Q. i 4 . :
&3-S { SRl "
| _ [« - puv] R _ i
I D L ;
- =< o 5 .
T Rt i
T 3 |
,ﬂ\v < _
Y ) *
<E t - |
s = o _
BCSs I [eo] _
\I“..,\l
.““J _
4 —
—k- _
iy B _
- <
_
_
b
. : \
0¢ ¥¢ Bl Zl 90 00 90— va4 O 9o 7« 3¢ ¥e 04— v9-

. NAINO WssAg SJOJOLLDID 0O

Fig. 2.2 Response for Al =15, =10



(W

ontrd Parameter

“ - o
- LEGEND
S — ]
- 3] N ’ — L — n-.-
A /' Yo . I
2 / I
2% |
7 W
('ﬁ? Jl”’
Q
5 )
D -+
sIQ{ 1 T M t N v T -
1000 376 752 128 504 B8O
Tire ~ Seconds .
o o -
Ch LEGEND
ol KY....
R - LK
| kpy
n 3. _kor__
N
o
Q -
O_ '.". KN
o 1 : e
o
& :
& 3
R :
] T T T T T -
000 176 752 128 B 1880

Fig 2.3 Response for Al =182, =10



w " . ’ ’ &,

(‘\ . e 8 .
.However, how does other oontrol schemes perférm in the name
kind of situatlon? Is the problem with unmodeled dynamic§

unique for adaptxve control only? We try to answer this

question in the next subsection’

2.2.2 Performance of Algorithm A2 in the Presence of

Unmodeled Dynamics

The algorithm A2, des 0 match the output of the

system with the model in a fi e. number (d) of control

~intervals, is a kind ot 'deadbeat’' controller.

s . The design of such a controller“demaods precise
knowledge of the mathematical model of the plant, since the’
determination of u(t) using A2 requires knowledge of plano
polynomials A and B. Any uncertainty in these parameters
would make it impogsible to implement such a controller.
Also, if’a controllei is designed .with false or inadequate
knowledge of the plant, the desired result, ie.,
y(t+d)=y*(t+d) will not be ach1eved It is interesting to
see the performance of thlS algorlthm because it could be
compared with that of Al to identify the function of the
adjustment mechan1sm._1f its performance with unmodeled
dynamics is significantly better than that of A1, we would
] r

be able to come to the conclusion that the part of Al that

reacted unfavorably to unmodeled dynamics is definitely its



- o
adaptive mechaniam.:Also‘igkshould'be‘obvious that'most
= othereonventional.controllers;would<perform better with
unmodeled dynamics present than adaptive onespsince they do
"Qot impOSe as stringent conditions on plants as7even.A2-
does,,\_ |
I ,
' . . . .
The plots in Flgures 2.4, 2.5 and é 6 shOw the results
.of 51mulat1ons with algor1thm A2 and the same pIants used
w1th A1 in F1gures 2,1, 2,2 and 2. 3 The same notatlon is |

fused- In all the 51mulat10ns the system output y(t) closely

| ~followed the model output Y (t) as it 1s\supposed to,

" turned up.

although y(t) d1d not ebual 'y (t) after d 1 step as designed

:1(yp(t) did, _of course) No’ stablllty problems whatsoever

&

-

2.2.3 Discussion

/

. »

From 51mulatlon results above, we see cléarly‘that when

7 o

unmodeled dynamlcs are present the adaptlve algor1thm A1

w1ll adjust 1ts control gains to steady statéavalues'

: dlfferent from those obta1ned w1th no unmodeled dynamlcs,iz

’even if the system does not eventually get to be unstable.;

L% . .

vThe thlro order plant of (1. 3. 10) does not have the same

N

’ 1nput/output relatlonshlp of the supposed flrstw:de/rx plant
structure for WhlGh the algorlthm 1s de51gned Any :

d1fferences of the 1nput¢output relatlonshlp of  the plant

!“

—— E - . N
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~infinity" action can def1n1tely be attrlbufed to the galn

L B
" ‘3",‘ L. 43

“

caused by the presence of unmodeled -dynamics poselproblems
to the estimator part of the algorithm. The parameter

estimates are naturally dlfferent if the plant contalns

™ #

'unmodeled dynamics, hence the dlfference in the control

)y '
~ gains. s

®

‘ When no unmodeled dynamics, are present, "the controller.
gains have the same steady state values no matter what the
initial cond1t10ns, the reference input as well as factor f ™

are. These steady state gains correspond with the equ1valent'
constant gains in-algori&hm A2, o >
When unmodeled dynamrcsvare present, the gains are

(

adjusted d1fferently, endﬁng with larger absolute values and

sometlmes ad]usted towards infinity. This “tunlng to \

x ' N
| i *
—

adjustment mechanism of A1, since nothing of the sort \

occured with A2. Hence the result of the study of this

section supports Rohrs' conclusions that the presence of
, , o \

‘unmodeled dynamics in an adaptive control system pose

- stability problems because the adaptive mechanism tends to

-

adjust controller gains to infinity.

2 3 Effects of Different Unmodeled Dynachs on System

Performance
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Having established tﬁe’fact that the presence of .
unmodeled dynamics in an adaptive conp:ol system causes
instability, the QUestian of the degree of insfability in
relation to the position of the unmodeled poles becomes
intéresting.‘ln thfs section simulations are done with
imposed op the unmodeled poles as Qas done in the previous

section.

By changing the position of the comﬁlex‘pole péir of
(1.5.10) and observing the resulting‘change of system
pérfé:mance under algoritﬁm A1, agproader picture of how
diffe:ent unmodeiéd dynamics affect system performance
including stabilitx couid be obtainéd} For this'burpose,
some yardstick or index to measure and compare effects, on
system‘behavior of individual unmodeled pole pos&tions‘is

desired.

An accepted measure of system stability is the value of
" the linear quadratic cost functional of the Lyapunov type:

e

Jr=/ xT(t)Px(t)dt . “ » C(2.2.1)
t . .
to

where x(t) is the state variable vector and P a positive

definite matrix.
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A finite value of J'Iensutes stability. Vith sQ;ble
systems, the degree of statility is measured quantitatively
by J'. fﬁe relatjve stabilitf of ¢ system decreaeee with
4incfeasing values of J'. |

In the,simulations of this sectien, the plant model
(1.3.10) is used and t; is set equal to zero without loss of
genera11ty. The plant is supposed to be dominated by its
‘real pole, and’ d1splays near first-order characteristics
(otherwise: the complex poles would ‘have S1gn1f1cant effects -
on plant behav1or). Hence in analyzlng system stabi ty, one£

state variable, ie., the output y(t), could be .used in place

of x(t) as in.(2.2.1).

In this eection, we net only want to measure and
éqmpare the stability of systems, but to isolate the effect
‘of unmodeled dynamics as well. Hence a quantity which
measures the instability caused bx.theQaddifioh of unmodeled
dynamics into the system is needed. We-are also interested
'to'the'system behaviors as shown bg its oetput (eg. how far
away it is from the desired outpu: as exhibited by the
.output of a plant containing no unmodeled dynamlcs under tne
same eondltlons) The idea of comparing the performance of
- Systems both with and without unmod&;ed dynamics has been
_intreduced in the preyious‘section.afhe same approach.is

used in this section.
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Define the quantity

J-cf)[y(t’”)-yp(ﬂt)]’dt X , : - (2.2.2)

as‘thé'functional for the aone mentioned purpose.

CIearly, this guantity measurés the éeviation of output
caused by the addition of the unmbdeled poles. ft is also in
the Lyapunov quadratic form (P is the identity matrix). |
Since the system 'without unmodeled dynamics is always stable
" (proved in [1-3]) and both y(t) and yp(§) asymptotically go
to y*(t) if y(t) is also stable, this guantity could be
régardéd as a measure of_stgp};{ty similar to J' jh (2.2;1)

as well, Ceent

]

.

As stated above, iﬁ plant form (1.3.10), thé real pole
at s=-a is ‘dominant. This, however, does not prevent the
non~d6minant unmodeled poles from beiqgﬂmgved around. In
feal world §ituations these poles could be anywhere so long
as they do ﬁot compete with the real pole for‘dominance (if
they do, 1t is unlikely that. the designer of the control
systemﬁﬁbuld mistakenly decide that the plant is of lower
ofdéqf.'Hence an attempt is made in this secti&‘azo move
them in simulations and measﬁre the corresponding changes in
J to get more insight into the éffect of pole‘pOSitions on

the performance of algorithm A1,

)
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As long és they are not too close_tovtﬁe s-plane origin
to challénge the dominance of the real‘pole, the*gnmodeled
poles could be positioned relatively far or near, ‘and
differént magnitudes of effect on system behavior ﬁould
result, It is surmised that the nearer these poles are to
the s-plane origin the more effect they will have; Wﬁethe:
it is true will be checked in the following simulations.

Another way of measuring the effects of unmodeled
ldyﬁamics on the systém would be to observe how much  the
system gains change to accomodate them. As Rohrs has noted
in his simulations, the gain adjustment mechanism of
'algorithm Al tends to tune the gains to large values when
unmodeled dyhamics is preseﬁt. He also noted the fact that
this trend-will develop as the effect of unmodeled dyﬁamics
gets biggef and eventually system will become unstable as
the gains are tuned to infinity. The simulations in the
ﬁrevious section gdpported his views. They also offer
comparisons with systems withou; unmodéled dynamics. From
v.the results of these simulations it could bé seen that for
.the system to be stable the gains have to reach a steady
state, and the sté;dy state values of‘system gains with and
wvithout unmodeled dynamics present are quite different. This
~difference is obviousiy caused by the addition of'unﬁodeled

dynamics into the system. And it offers another good measure

of its effects.

LN

O
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We set up another quadratic quantity

D=0.5-1im [(k (t)=kp (£))*+(ky (t)=ky (£))?] (2.2.3)

£t

which is the average quadratic deviation of gains caused by

adding unmodéied dynamics into .the system.

‘
i
.

D, liké’J, éépresehts the effecE#on system behavior of
a particulaf'paifﬂof unmodeleé poles. Especially, its value
indicates the e&tent to which?the presence of unhodeled,
dynamics in the plant affectthhe parameter adjustment
mechanism of the adapfive control algorithm Al. By carrYingv
out simulations with ﬁpanging unmodeled pole positians

covering an area of the s-plane and observing the change of

- these quantities, a broad picture of unmodeled dynamics .

effects on syétem performance could be formed.

2.3.1 Simulation Results with J and D vs. Separation Ratio

)

Simulations of this section will be concentrated in-
those unmodeled dynamics pole‘bositions that keep the system
stable, for otherwise both J and D will be rendered
meaningless. Preliminary tests show that the pole range in
Figure 2.7 is appropriateo(the system remains stable under

ourlsimulation conditions when the unmodeled dynamics poles
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are in thi; range). The unmodeled pole pair will be moved
‘around within this range for the simulations that follows.
(It should be noted that there are unmodeled pole pééitions
outside this region which do not cause the system to be
unstabie, However everyvhere inside this'region the system
is stable according to results of ﬁfeliminary tests and this
will be confirmed by the finite pgrformance measure values

shown in later simulation results.)

In these simulations‘ the values of system parameters
that are not changed are the same as those used by Rohrs for.
his simulation in Figure 5-7. of his thesis [4]. Following

" is a list of these parameters and their values:

ky(0)=kpy(0;=-0.8

kr(0)=kpr(0)=1.32 A Lo
Sampiing period for adjustment and control T=0.04(sec)
Reference input r=10.0

Adjustment factor f=0.2

‘Plant dominant pole a=1

The relative significance%of one group of system poies
as opposed to another gréup is usually loosély measured by
the "separation ratio" (SR), which is defined as the norm of
" the most significant pole in the unmodeled group divided by
that of the least signifiqpnt péle in the modeled group. In

the (1.3.10) plant used here, this is as followss
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SReya?+8*/a oY a2
1t is generally accepted fhat normally, the larger the
SR value (hence the greater physital separéfiop of the two
group of beles on the s-plane), tﬁe more dominant the
dominant group of poles become, while the other group
gecomes less significant. In our case it is reasonable to .
expect that with larger SR valpes,the unmodeled dynamics

will affect the system performaﬁce less. Whether this is

true will be answered by the results of simulations that

3

follow.
{
In these simulations, the p&rformance quthe ﬂv': -
- N . . ,,.“ o or
non-adaptive algorithm of A2 are presented as referenQFm 4 o a

which indicates that there is no one to one

o il

between.the SR value and J or D. Also, the
and D plots whlle SR becomes larger suggests:

unmodeled, poles is relatlvely free without g
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' happened to have the same

" measure of the relatlw
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)
9 \lt

change in the system performance prov1ded the separation,

ratio is. kepf at larger than some cr1t1calk

@ik»e. Once this

value has been reached, however,~the'sysw

+

R r formance

deteriorates rapidly. Under the conditions of this
! ¥, ) N
simulation, the critical value of SR seemegd to be between 10

5231/15. Both values J and D behaved in a véty similar ™

fasion, supporting the view that it is the deviation on
system gains caused by the unmodeled dynamics that causes

the instability.
e i

3

« For the partlcular posltlons of unmodeled poles whlch

SR value, it is a rule that those

s

farther avay from the rea; axis of the s-plane have .less

[}

effects on the system beﬁévior._For instance) poles -5+39
and -9¢j5 both have snfv;}lue of 10.29, but result in very / -
different J values of 7 B and 23.4 respectively; poles -

-6+j8, -8+36 and —10+]1/a11 have SR value of 10 or so, but
§ '

with J vadues bf 12. 6,;21 5 and 32 The D valués behave in a

similar pattern” Th1s éoes show that SR is not an 1deal

% Jmpertance of the unmodeled poles in

!

the adaptive}cohgﬁol system.

2.3.2 Simulation Results with J and D vs. Plant Deviations

&7
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Adaptive control elgorithms are'usedfrn situations
. vhere the plent models are not known. Althgﬁgh the
. separation ratio has been used rather widely to indicate the
relative dominance of the dynamics %n\a system, it is often

' not possible to estimate its value without the knowledge of

k

the plant dynamics. Hence asia guide to estimate the

I 0

‘potential adverse effect of the presence of uﬁmodeled
dynamics in an adaptive control system the SR value is of

Limited‘usefulness,'
? o

\

The procedure of desxgnlng an ~adaptive control

algorlthm for a system always 1nvolves the determ1nat1on of
the‘probable plant ‘order. This is done e1ther from

_experience or by simple response tests. A plant whose
. i , L

open—loop response,is not far frbmwthat of a known model (in

)

our case the presumed plant model w1th -a as 1ts s1ngle

t

pole)“ is est1mated as of that ordEr. And the de51gn of the

algorithm is based onﬂthis-estlmate of ﬁ@gkt order.
. i . {ﬁ o \' v,
: . .

> . In the case of (1.3.10), its open-loop performahce

Ny

-approximates.that of ' S -

. [. : v - .

(s+a)¥(s)=2U(g) o - (2.2.5)
" ' j ' , B

“ 1f the real pole at -a is- domlnant. B ‘ .

L]

[ B8

If the;ﬁnmodeled poles change p051t10n, the (1 3.10)

’ open-loop r;sponsé‘to_austep 1nput signal will also change.i

] ¢



i

‘and D are compared with the value J

56

|
[
|

By observing this response and measuring its deviation from

the response of'(2.2.5) to the same'Signai, we could get a

- good idea as to how much the addition of a particular '

unmodeled pole pair affedts,the‘plant'behavior. This gives,

. . . . ‘ ”
us an alternative to the separation ratia as a measure of -
. : " :

the effects of certain unhodeled;pole positions.

Define the open-loop deviation as-

Jo=é[yo(t)-yopf(t’)]'.’dt | o (2.2.6)

4R
t : , v

where yo(t) is the -open- loop response of (1. IO) to a . step

: 1nput and y (t) is the same response of (2.2. 5)

In the following simulations, the performance values J
o using it as a
substitute for. the separation ratio used before. An

advantage of this value is that it could be obtained before9;

the controller is designed biﬁsubjectlng the plant to - &

open- loop step 1nput and comparlng it wlth the nearest Tkrst

b

order response. The d1sadvantage however is 1t changes wlrh
ut"?

the magnltude of the 51gnal use 3 pé?lke the SR value wh1ch

is leEd for a particular pole@pos;tlon.gHere a step input

of 5 is used to bring the final value gf yo(t) to 10 same _

‘ P AR

as y(t) s final value in the mmulatagﬂ@(normahzatmn

procedure). Other factors used are the same as in Subsectlon.
o ' T ’ . . e
: ¢
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2.2.2..ane results of these simulations are shown in
Figéfes 5.10 and 2.11
't is clear that the SyStem'performance,‘mea5ured_by J

and D, deteriorated with increase of Jor the deviationlshown
“by the plant with the addition of the unmodeled poles.
Generally speaklng, especzally when the J value is low, the
further the (1. 3 10) response is from that of (2.2.5) the
more effect the unmodeled%dynamrcs has on system‘.
performance. However,ﬂhlth hlgher Jo values,‘the final
systemaperforég%%e are qu1te dlfferent from one another
- dependlng where the poles.are,even if they have the same J,

value.
‘For instance, pole positions -5:j6 ahd -10+j4 both have

Jo va}ges of nearly 1.50, but'turn out very different J.

values of 33.4 and 23.3 respectively. Pole positions -5%3j5 L

and -9+j3 all ¥ave J, values near 2.00, but give J values of i
A ) . : : .
57.5 and-34.3 respectively. It isiakrg;g;ghat,for the same
& - 1 ., . e .
Jo value,'the poles that'have'smaller separation ratios have
‘more effect on the system performance. The ‘D measure behaves
S1m11arly as that of J ’
4 2.3.3&Discussion
LY
From the simulation results accumulated in this R

section, we have obtained a geheral picture of the effects

[ v
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on system performance by different unmodeled pole positions,

. By keeping everything else identical, these results show

.what the changing of the position of the unmodeled poles do:

to system performance as measured by quantities D and J.
\\‘ (S hd

-

"
-

" These quantitative meeautes J and D enable us to study
the trend and direction Q£~change. Without this type of
study, one could only speculate on the effects of Qﬁﬁedeled
dynamics on system perfq:@ance in a general qualitative way.

fkd . \ - .
Now we are in a positioh.to say with some confidence that in

.a system with a'paif of high f;equency complex poles as

unmodeled dyhamicsvand a real pole as the dominant dynamics,
the ;ess dominant.the‘real pole is, the mere effect the
unmodeled dynamics would have on systeﬁ/performance. This
effect always deteriorates system,performance and
potentially could make sysiem unstable for all the cases:
investigated so faf. The relative dominance of the real pole

. 4 R . .
could be related to the separation ratio and/or the

deviation of the plant response to a step input. Depending

jon the availability of a particular set of data, one could

set up a series of simulations before hand to decide whether

the unmodeled dyhamics will affect the system performance

eﬂQMgh’to warrant an increase of controller order. With the
same separat1on ratlo the effect on system performance
)

1ncreases w1th the unmodeled poles approach1ng the real

 axis.. Wh1le unmodeled poles far apart and with- much

’.7d1fferent separat1on ratio values could result in the same
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amount of deviation on the plant openwloop'response, they
will affect system performanbe quite differently if their
effects are serious enough to be felt. i1n this situation,

the smaller the separation ratio, the larger will be the

S k e

adverse effect of the unmodeled dynamics. When the deviation

of the plant open-loop response is not large, it is safe to

say the larger this deviation, greater will be the effett of

the unmodeled dynamics on the overall adaptive control

system.

Lastly, since two different quantities are used to
measure the effect of unmodeled dynamicé, and all the
simulation results- so far-gg}nt to the fact that_they
interrelate closely, it is useful'tdgdisplay their
relétiohship. The final deviation of the system gains mark
the effect of the unmodeled dynamics on the adjustment
mechanism. The suggestions are that this er;étical gain
tﬁning finally cédsés the instability. The éimulations 50
_fa; supported this speculatioq and in Figure 2.12 the
quantity J, which measures system stability, and D, which
measures how affected the gain adjustment mechanism is, are
plotted veréus each ;thgf. - %éi .

’ vﬁ%@
; ﬁg,

In Figure 2 12 the points are virtually llﬁ%d up in a

‘curve, which _means as a rule it is true thatﬁmhe greater D

is, the greater J would be. In o;her words, the two values

chosen to measure the effect of unmodeled dynamics in our

L4

@ <
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systeﬁ are identical in théir effectiYeness. Also, it proves
that it is true tﬁ;!‘th!“uurther away tﬁe system gains are
tuned as a resultwof the presence of unmodeled dynamics, the
more unstable the system becomes. Hence it is the same as
saying that the presence of unmodeled dynamics céusgs the
controller gains to be adjusted to larger absolufe”vélues

v

than they should be as to say it causes instability.

2.4 Effects of the Adjustment and Control Interval

2.4.1 Introduction

a

Rohrs did some exploration work on the effect of
_vérying tﬁe adjustment and control intervél on system
‘performance in.an adaptive control system with unmodeled
' éynamics present. The general conclusion obtained by him

suggests that for a given system, with evgfy other factor
kept constant, the longer this interval T is, the more
stable the system. This is, in effect, to say that with
unmodeled dynamics present, mofe freQuent adjuStment§ of

control parameters result.in more instabilities.

This point of view is easily understood because
‘unmodeled dynamics are composed of much faster dynamics than
the domihant'poles. In Rohrs' case, the unmodeled pole pair

is at -15tj2 as opposed to -1 of the dominant pole. In this
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situation, a T large enough (hence infrequent sampling)
could in effect block out information froﬁ‘@he response of
unmodeled dynamics while still being fast eﬁough for the
estiﬁator to do a good job on the slerr dbm}qant dynamicé.
This scheme will to some extent prevent erratical
'_adjustments of controller parameters as a result of the
estimator's takihg unmode led dynamics as part?of'the lower
order system. |

Rohrs tried T values of'0.04see..and 0.4sec. in his ~
analysis and simulations. He found that system perférmance
was vastly 4mproved when,t e latter value is used. Recalling
« plant dynamics in mcdel g:?3.9) we note that the .fast
~unmodeled poles are at -15tj2, which are definitely not
'reconstructible when a sampling period of 0O.4sec. is uéed

f

(in 0O0.4sec. only 0.25% of its original response is left).
l . ,
Unfortunately, Rohrs used the same numerical values for

T and the plant sampling period T in his simulations and

p
.analysis. By choosing a large vélueAQf T, he has made the-
sampling period too long to represent faithfully the |
_unm9de;ed dynamics poles of the plant. The resultant models
could not be régarded as- good enough fof“simulatioﬁh
purpose;. ‘ @%3
As stated above in the introduction of this chapter, in

simulations the sampling period should be small enough to
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bring the zntormatxon on all the plant dynamics out. 5
Otherwxse, the unmodeled dynamics will be blocked out £rom
the model of'the plant being simulated and the whole process

will become|point1ess.

&>

4
The sampling period "used in the discretization of the
‘plant model, Tps

is chosen to be 0.01sec. in this thesis.
This period is small enough for the result:Ct,

models to
.satisfactorily represent all the plant dynamics encountered
here. The uniformity of the plant model is also kept when

the‘control interval T is changed.

The analysis and simulations in [4] on the effects of
different adjustment and control intervais, while
comprehensive, did not provide a complete picture on how
different unmodeled pole positions react to changes of T. It
also contained only two different T values and &id not
-;rovide any information of how the performence change as T
changes continuously. Moreover, the accuracy of the
simulations of T=0.4 is not satisfactory The conclusion

- about larger T's br1ng better stab111ty was obtained without

concrete evidence (eg. what if at T=0.2 the performance

should be better than at T=0. 47)

2,4;2 The Simulation Results for J and D values

/s
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In the’ follq‘ﬁng sﬁmulatxons, plants of the (1.3, 10)
type with dxff%rent unmodeled pole positions are sub)ected
‘to control algorxthm A1 with gradually changing T, and\the

resultant performance values J and D observed.
& -
. ‘ B . | ’ )
In these simulations, the adjustment and control period

T is changed frdh 0.04 to 0.4 in small increments (0. 01),

while the re ultant performance values J and D obsetved The

m Sy

plant unmbdeled dynam1cs are also changed to observe whether
L

et

4

‘thexmethod of u51ng as 1arge aTas poss1ble has the same
*I
effectlveness fof different unmodeled pole positions.

s ¥ &y R ! -
¥ . a
C A, . grﬁ ‘- &‘ R ‘ . .

o
Sy

; .
A !

‘fﬂ ‘» F1rst Qf all, three different unmodeled pole positions

are dhqsen for thlS 51mulat13n- -5%37, *10*35 and -12t3j1,
PR » %

because aty gro Q4 they‘all resuit values of J and D around

f 3

20 0 and 0 36 reSpect1very. If the sxmulat1ons also show

that qhe effects of changing T on D and J are similar for
N thesa dxfferent plants, it could be said that regar8less. of

o

‘Hipole p051tions, ths change 'in the value of T has the same

-~

=~

- %

. effect -on syStem petformance as long as the d1fferfnt
unmddeled dynamzcs have the same effect undér one T. Flgures
2. 13 and 2 14 show the J and D plots respectlvely

/From these results, we could sa} that indeed, the

' systems respond similarly to changes in T. The splots of D

are on top of one another, while there are minor differences 3 -

among the J plots. Here the conclusion is‘that different

e
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4

unmodeJed pole posxtlons w111 ‘have simjlar change patterns /

of their performance measures with’ changes in T, prov1ded

L]

ﬁﬁ@hat for one value of T, their D and J values coincide.

v

’ . | l LY
An‘inté%&sting aspect of these simulation results is

- the sharpafafl of D and'J values wlth*initial increase of'T.

This shows that the effectiéeness of the‘method.of'seeking ,

stability by 1ncrea51ng T (recommEnded ‘as | ‘design . guideline
by Rohrs in [4- 4b]) is not un1form Forqa certa1n lant, a
certain controller factor set 1nput level etc., the
1ncrease of T W1!l greatly 1ncrease system stab111ty to some
degree. After T has been . 1ncreased tépa certaln level

however, any further 1ncrease would not be as effectlve.,

There seems to be'a saturatlon p01nt"£or the effectlvgness

v
actually deterlorates slowly, ow1ng to the

fact that T has become too: large for the estlmator to do a

;good job on the_domlnant dynamics -of the system,falthough

+

1 .
-

the D value continues to déérease. o -

Figures “15.énd'2‘16 show the reSUIts of simulations

'°carr1ed out w1th another group of pole p051t10ns, namely

”-5136 ?-9+37 and —12+31 T is aga1n changed . in 1ncremenbs of
ﬁ .
0. 01 and the same saturat1on 1n effectlveness of its.

LB

LSe o . S S .
~ , o 4 5
N ‘r ~ \ . . . o

of 1ncreasw‘. After thl»s point, the system performanceas;-;;;_}‘

Lr‘ ”_i‘ w.

v
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With the "fncrease of T fthe'D value decreases“rapidly for a,

while and then slow down when it approaches 0. At the same Q

’ time the J value falls,shar.plzyl with imitial increase of T'
| but start to increase slowly fter a certain point is

reached. This seems §o be true no matter where the unmod.eled"

_ : #
- poles are positioned. ’

2.4.3 The Effecf@veness of Increasmg T as a

' umprovu‘Stablllty . .

As noted above, when the* i stment and control
. i “» - Y -o
i"val Tyis 1ncreased the system performance 1mproves
'marksdly up to a pdint. After that, however, th1s trend

stops and any furtherancrease 1n T does&@: result‘;n

further 1mprovement of system performanc v o
S : -~ o PP .

This characteristic is more clearly demonstrated with:

the plots shbwn in Flgures 2. A and 2 18. Here the

" !

.\derﬁatwes‘of the varlables in F1gures 2.15 and 2.16 are
Shown versus T. These new; varlables measure the speed of
performance 1mprovement For 1nstance, when T is greater .

tHan 0 2 bhe value dD/d'I‘ 1s approachmg 0,.which nfeans after _

3

- o

T 'I‘ is 1ncreaSed tosz the sy"stem performance 1s about
\\»-mproved to 1ts l1m1t. Thls agrees with what is shown on the

%
dJ/dT graph. There all the curves pass Cross the zero value

AR at around T,-O.Z, wh1ch means J reaches 1ts lowest value at
- ; S

-,
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.14..

this point. ' " .
o N
g v . A . .
w“ﬂ i ’ .
On the other hands- when T is relatwely small bot:.h\fn-‘;\:‘
derxvatwes have very ‘small negatlve values, Uhlch ‘mea'n's w

]

that the value of the performance measure decreases very., o

rapuily w1th 1ncrea51ng T. 'I‘h1&‘

s the range in wh1ch the §
recomended des1gn guideline "of. using relatlvely larger T's ..

wto insur'e Stab111ty is the most ef£1c1ent. : L
LY o , ‘ ) . ' ‘- :

)‘E;‘mally, the changlng T does have %ferent ‘degre‘es of
effectweness w1th dlfferent unmodeled pd!e pos1tlons For .
1nstance,' when T is at a value‘@f 0. 65 the value of gp/dar

l

is at -6 for the unmodeled dynamics p051t:10n of -5-‘74.1

-

A L3
:

"
for —12131 and -3. 4 for -9+37, whlch‘means at Tr0.65

| ’ N
further 1ncrease of T is nearly t:w1ce. as effectlve in

3 ’

vlmproylng system performance for ‘the first pole posatlon

b

'comppared to- the last pole position, | R . ” :

L] - y . ’ V R
Next we seek to compX¥re two\par,tic_\la‘r,pnmodeled
.dyn'amics positi®ns as related't% changes in T. The poles

‘chosen are -15+32 which is our old standard, and -6%32 whxch

B

) .is the poslt1on when the . system is on. the br1nk of g;omg

unstable at T= 0 04 ‘Phe performance of these two unmodeled

L3

:pole pos1tlons are vastly d1fferent at T=0. 04 w1th D values

‘of 0 22" and 2. g5 and J values of 11 ‘and 127, ;&Epectwely. /\.
, i

r"rhese unmodeled poles also have very dltferent ’separatlon.

1

“ratio valu#@s of 15.1 and 6.32. By ;:hangmg ,_the control
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interval, the effect of these unmodeled\aynamics could be -

lessened. For the D value to be reduced to 0.1, the pole

P . o '{:u’ ¥ zw - ,';*” - . . * , .‘ :

pair ;*iijz r?ﬁuires:“be;lncreas%d to,0.054, while the
~812 require it to.be 0.11., The lbwest value of J

L}

. N ' F
for the former pole position is reached at T;0.205 and that

poles a

- the lowest Value of J for the latter pole position is
reached at Tib.zs. It should be notgd that the changeuin;the
values$ of T.is relatively small, although these two )
positions of unmodeled poles are far apart. With~a ‘ 3’“ '
seﬁaration ratio différegce of about 2.5 times, the vélues
of T needéd to achieve E%e best sYstém performance are only

0.055sec. apart, or a 25% difference.

The simulations involving changes in_the adju%&ment and{

control interval T have yielded some interesting results. '

.

The most important among them is the fact that the
effectiveness of "increasing T to imp}oveféystem .
performance” schemq is by no.meqns unijormh When the effect

- i

' A : .
- ®of unmodeled dynamics on.a adaptive control system is

.;relatively’larée or t;e'instability is high, a 1l4ttle
increase of T doég a lot o;'imprOQemént on the system
performance. When the unmodéléd dynamics do not'pave a
pronounced éffect on system performance,fhowgygr;‘increasing
T does not séem to be as effgctive. Also another re%ult‘is
that there aﬁpears'to be a point beyond which the'increase

of T actually makes the system performance  deteriorate.

Finally, it is a rule that if with one value of T a
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particular unmodeled dynamics position hffects the system

more than another, it will remain so when the T value is

changed. Hence the relative effectiveness on system

h]

performance of unmodeled pole ppsitions does not change with

T.

2.5 Discusions and Conclusions | S

8. "
. 'b'_@*

B

are:

.

¢ & o - X3

. » N . .
a L}

In this chapter, all the simulations have been

conducted with plant modél (1.3.10). From the' of
these sfmulations; several conclusions could be! . They

4.

R ‘

ral
v,
D a8

The presence of unmodeled dynamics in a_systém .
con rolled by adaptive control algorithm‘A1 degrades
systpm performance. '

The'instability is caused by theeparameter

. adjustmenty mechanism"s tuning system gains to large

. have compare

, .

absolute values in response to the unmodeled .

'dynamics* ‘ .

The 1§55\relative dominance the “modeled; dyn;piéé
dﬁh ur;'inodel'ed dy,n’amics,» the‘mqré’

m'elea‘ dynamics will have on the

rmance., o - b

LS . N
, ‘measure of unmodeled dynamics effect on.

effect the

‘system per

The D wal

_the parapeter adjustment mechanism, has almost

A
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identical relationship with the J value, measure of
unmodeled dynamxcs effect on system performance,
supportlng\conclusion No. 2 above.

5. The design guidelﬂne ot enhancing stability by~

choosing large control intervals ’s not uniformly

- -

effective.

. 6. Different unmodelef pole positions react sxmxlarly
!‘ﬂ

to changes in T

- o e

o | |

These conclu51ons are based on the simulation work ‘\"
.- 1

shown here. The simulétions of Section 2.1 malnly involved
studies of what causes the instability. Bylexcluding oné" \
factor then another, it was established that unmodeled

'~dynamics and adaptive control algorithm put together may

-~

-

result in instabilities. In Section 2. ZmZE cOmpq‘hensive

//study of a large number of different unmbdeled dynam1cs and

% -

Q} the careful choice of two performance measures enabled a

broad picture of how different unmodeled dynamics have

‘. different roles to pi%y in such a system. It also helped toN

verify the cause of the 1nstab 11ty factor always present

.
ki

& .whenever unmodeled dynam1cs and adapt:ve control is put . KJ'Q
r~ togetﬂb&xfrom another angle, as® the adgustment mechanxsm 3@*3@1

PR ¢

inclination to tune the gaj‘ns larger 1n th1s s1tuat1on. In f
by

('S .

Section 3. 3 the 51mulat1on results showed the pattern in ;

¥

which system performance changes with T changes. The

X
e

conclusion could be put in another! way: when T is very

-

- ‘ . L,



larée,vtﬁe bdaﬁtive control algorithm performed like an
. s . "

non-adaptive algorithm, with the unstable factor introdacggﬂ Y

into the system by unmodeled dynamics all but non-present;

. .
with the decreasing of T, the adaptive algorithm began to

o .- e

adjust controller gains and for a range of T values the
“system“pérﬁﬁgmance is steady,‘without much}increase’ﬁf///‘
'4unmode}ed;dynamics effect; and gpen it'comég to a point
where with further decreases of T, the unmodeled dynamics’
- gffecé.increasé§ very rapidly. There are apparently two
reasons fafﬁgsfs beh;vior.&Decreasing the T-value while,
keeping every‘pther factor constant effectiveiy causé‘tbe;
gain adjustmenf to work faster (f=0.2 wjth T=.04 and £=0.2
with TM are entifbly different). Inather words the f
value could be régafded as ffegtively enlarged by the
decreaée_éf T;,MoreOVQr, smaller .values q&i? permit moré

| i’x‘}formation‘ fxﬁ’ the o1;1nmodeled dynamic po‘llé'!s“to reach the

" gain. adjustment mechanism, while laréér T's might 16 effect
block out this jnformation.' | ’ .

‘ 14
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31 Evaluation of Algorxthm At in lts Second; Order Form

' i3
b 3 :‘r' ! s . 4 fy
. . :
B

3.1 Introduction

Lg e 4

In the previous chapter, the effects of unmodeled
dynamics on the algorithm A1 are invéstigated through
e X
simulation studies. In these simulations, algorithm.A1

!

Ped

: ' ~ . ;
appeared'in its first order form, ‘ie., n=1, =0 and d=1. The
third arder model (1. 3 10) was used as the plant with ;he'
non- dom1nant complex palr of poles actlng l

. f ’
dynamics. ' ' e j

s unmodeled

These studies, while -elatively simple because of, the
loworder of the systems invoived, offer only a limited

g‘f1eld of results. A study of the algor1thm in a hzgh r order

i)

Aenv1ronment will be helpiul to clar1fy certain quesyions’ 1 ‘r .

which cannot be answered by a study of first order/

v,
L4

algorlthms These fhclude the effect of overest1mét1ng the.

plant order wh11e desﬁ@nlng the controllet, the/éltuatlon w?/‘
/ ‘ .

where no group of planekpoles can be cla551f1ed as unmodeled j

w‘a,“ﬂyna“&lﬁs, t?tc.-’t- el s R
. . "4( | N ; ) . | { U /—~
In this,chdpéer, the algorithm A1 will be studied in x
its second oorder. form, and the plénr. will follow the model
(1,3.11) The consequences of overestlmatlng ‘the plant order

. in the control law design wiN{be analyzed’zn Sectxon 3. 2..'
. 80 . ) b
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gdegree of the plant model polynom;als Ay and By is not

n - . . ) : - o '[

. In 3.3,, 'studies similar to those conducted in the previous

Ehapter; especially‘in 2, 2. and‘z 3., are done with second

‘»order contnol law on the plant model (1.3.11), again withf

hthe complex pa1r of poles ‘as unmodeled dynamlcs. The purpose

of these stud1es‘ is to try to confirm the conclusions

' reached in Chapter 2, or to see whether these_results are

true only in a first order sitﬁation,' o .
. . . _,\ - ) ' 'Avr

In Sectlon 3.4., we w11l carry out 51mu1atlon studies "\

‘»ffor a spec1f1c %ase, 1e.,”the algo&}thm a1 w1ll be used in’

/

“‘1ts second order form for a plant of, the type used in the

f‘prev1OUS~chapter. The comparlsonsfof the performance of A1

3

o in d1fferent orders on ‘the same plant W11l help resolve the
bproblem of whether 1ncrea51nQ control law order ‘improves
'system performance. Inw!hls case, no. clear cut

clas51f1cat10n of unmodeled dyhamlcs could be g1ven to a

‘group. of plant poles.

$H

3.2 Higher Order Control Law for Loweér Order Plant

L
-

.3.2.1 General Comments

. . . . \
I3 * . . . . .

~

In Chaptér 1;,‘the conditions reqﬁired for'the

N

‘stablllty of a system controlled by an algorxthm like A1

were 1gtroduced Accordang toethese cond1t10ns, the, exact S
q "

v



requxred to be known. It is. only necessary that the upper
~.bound of the plant order (ie., the upper bound of the degree
of polynomzal AM) as well as the\re?at1ve degree of the |
‘plant be known. If thewupper bound of the degree of Ay is N

“and relative degree 1s n1 then th@ control algor1thm should

)

/
" be chosen so that n is an 1nteger at least equal toqﬂ.d no
less than N, and m-n—n1 The system will then be stable [19

20]..Th15 does prov1de mathematlcal assurance that

overest1mat1on of plant order does not affect’ system

. 'stab111ty adversely.; o kﬁ

/
foo e

From the 51mulat1oﬁ stud1es conducted in the prev1ous

chapter, it was concl?ded that dnderest1mat1ng the plant

order may ‘result the degradat1on/of system performance, ,*
\ 4

, espec1ally,stab111by The tendency\therefore to apply the

control algor1thm/1n the hlghest order permlslble under the
' operatlng cond1t1ons whenever the plant order could not be
-~ exactly predetermlned _

£
/
!

feHowever~such an approach has its. limitatlons, not ‘the
\ . least of wh1ch is the cost involved. There also ex1st types
of processes which could not be acCurately represented by a

/
lxnear model For these 1nf1n1te order" systems unmodeled

. dynamﬁcs is always present no matter how- hlgh the order of

q

S the,adaptlve control algorithm is set at. ‘There is also,the®
i S : -
\ ppobability of a higher order control algorithm being used

‘ EE

| “ ) N ’..‘A Ce ) N e
\kon a lower order plant. This is ‘the result of overestimating
\// ’ ) : - \ : . T ' »

_ : - :



| d
r‘the‘plant order.

The sxmulatlons in thls sectzon are conducted to
'observe the effect on system performance of overest1mat1ng
o “plant order. Compar1sons will be made between the . |
performance*of.g}gor;thms resultlng from a correct plant‘
order estimatekand an,overeetimate. The plant’being |
controlled is descrlbed by transfer function (2 1. 2),

. . . -
relntroduceq\here as : R

’

" (s*1)¥(s)=20(s) = S & PO SR
L (s*1 | o L B

A \

. 4 ’ €
“ : B} v

- Two formsjof\the control algorithm A1 will ‘be compared; one
with:n=1,,mﬁ0, d=1; and the other with n=2,.m;1,¢d=1.

r ., . . .
. AN \.__.
v . . .
u ! . " . o . +
.

3

-3.2. b~S1mu1at1ons with Step Input

Slmulatlons here are conducted w1th step reference
1nput 51gnals. The results are in Figures 3.1 to 3.4. Ih
\\; each, the responses of the same plant (3 2.1) controlled by
h\i1rst order algorlthm and the second order algor1thm are“
shown together for comparlson. The. 1n1t1a1 values of the . |
~ control galns are\eet at zero for all simulations in this
“section. The SeCOnd\order algorithm,has,four control gains\'
while the first“order‘alternative'nasftwo. All their values

“3re set to zero at the start of the simulations toAproyide

)’ .
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eome-k1nd of consxstency. Other 1n1tial vglues like those .

used in the prev1ous chapter for the flrst order controller

‘ffiare 1mpossahle to match in the caSe of the second order o

algorzthm.

In order to make mean1ngful comparlsons, 1t is
'

'necessary to make both algorlthms get the plant to follow

the response of the same reference'model The model used in’

L

~this sect1on is the same one used in the prev1ous chapter,

g —

}whose transfer function is rerntroduced below:’
Ty : N ‘

?
SN . . . PR A

o ks

.ot e

_(s+3)Y(,S')=_3U(s)» | R - ”(3.2.2)”\

] ' :
: - . 3

rStrlctly speaklng; a- second order algor1thm should. be used
to get the plant to follow a second order model However,
since only the~output of‘the reference model is used in any
Iway»by,the controlialgorithms in this.system;_model (3.2.2);
.¢ou1d be;redarded as the approximation of aiseconduorder |

system with anlaﬁditional pole near -o on the S plane.

ft factors were conducted ‘As stated

values and adju'
earller, the results are plotted in F1gures 3.1 to 3.4,

In theseﬂflgures, the varlables are defined as:
_ AR o . B » ‘ : ¢

v . ‘ .
y1....;.output of system controlled by algorithm At in

its first order form,"
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¥g.....0utput of system controlled by algorithm Al in.
its second-order form, *
y*......reference'model output}qnd '

. , 73 -
r......reference input to the model.

In Figgrés(3;1, 3.2 and 3.3 the reference input is set

‘at 10, and in Figure 3.4 the reference input is r=3. The

—

adju¥tment factors for these simulations are f=0.2 in Fiqure

3.1, £=0.5 in figure 3.2, and £=1,0 in Fiqures 3.3 and 3.4.
From thgéeﬂsimulation_reSUIts it should be noted that—
for a first order plant, the first order algorithm performs
better thén the second order one. In the end, both
algérithms are stable but ;hégsecond order algorithm has
more trouble in its initial adjustment stage, resulting ih
‘greater overshoot. The additioqal effort (which couid be'
measured by a quadratic cost function) is probably spent by
the!estimatdr part of the control algorithm before it
"realizes" that the plant is actually‘of a lower order thaXL

expected. The higher order algorithm, however, does speed up

thelsystem responsé somevhat. . .-

3.2.3 Simulations with Rectangular Wave Input Signals

4

L= To further illustrate thé\éfkect of overestimating the

‘plant order on system performance, another form of input

i/
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sigﬁgls will be tried i this section. Traditionally, in

i'simulhtions of adaptive control systems the rectangular wave'

input have been frequently used bhecause of its unique

v'characteristic of exciting all the frequencieg uniformly.

‘This character1stic normally enhances robustness(;¥ the

system in the presence of disturbances, If the.xnpqt s1gna1
does not 6ff§; coﬁtinuous excitation of all the frgquencies,
sooner or }atég'the estiméfor'part of the algorithm will be
working on the\noise or disturbance signals alone, which
could result in keulty estimations ?”d adjustments. In the
present dxscu551on, no noise is 1nc1ude§

-

The rectangular waves used here have periods of 8

‘seconds, and 2.5 periods in the 20 seconds of simulation

time. THe simulation results are shown in Figures 3.5 to

3.8.

Again, the results sth that the unnécessarily high-
order of the adaptive control algorifhm A1 does not imprové
the system performapce. Rather,_the transient response of_'
the system is somewhat degraded. The overshoots axe-higher.

And furthermore, in the subsequent periods the second order

. algorithm has some erratic output harmonics while clearly

the first order AIQOrithm'has already stablized. This shaws
that the second order algor1thm while not slower in its
ga1n adjustments, is more sensitive to changes of the

reference 1nput.b -
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'3.2.4 simulations with Sinusoidal Input Signals -

[ In(ifzs 5ubsect10n the 51nu501dal signal is used as the
,reference 1nput 51gnal Since th1s k1nd of 1nput 51gnal does
;not coﬁta1n all the frequenc1es, 1t W111 not excite all the
/ modes in the system. Hence it is not very suitable for the
adaptﬁve'cgptrol approach because the estimator part of the
control algorlthm would not be supplled wifh ‘the complete
““1nformatlon it needed to. reconstruct plant parameters

-However, if the system is globally stable, its stab111ty

i

. sinusoidal. . | L S o v

The sinusoidal_signals employed here have the sa;e

? period as the rectangular waves'used’in the previdus/

r

isection, ie. seconds or92 5 perlods in the 20 se76nd

s1mulat10 urationy The resultant system respon/és are

» ~ :
plot ed in Flgures 3 9 to 3. ‘ -/
: ‘ -/

From_these results, it is again veryvcyéar that
overestimatin9'0f the piant order 3esuits ﬁnddegradation of
’Isysten“responsel‘This time;‘the respOnse of the second order

“control algorithm lags further beh1nd that, of the first

’order one, in addition tb hav1ng greater overshoot.

s

will not be affected by the reference input being e



96

)

7 VoL © LEGEND - - o -

i

Dutput
9.0

(1

L

|

System
6.0

0O

“y

=30

[(S)
o
(@]

0e 40 g0 20 16.0

j

Fig. 3.9 Comparison of st-and 2ng Order Algorithms, =0.2, Il

\



o 5
(x.—
- ", . -
. ' LEGEND - .
1 —Yr
o vl

o 2
2] B

"
3
Q
+
2
<
]
L ©
>~
m .
:D'.
My e .
| 1 T T T ¥ T T —
0.C . 4.0 go 2.0 16 G RAVRS)

Fig. 3.10 Comparison of st anc ?nc Orcer Algorithms, f=0.5, it



- LEGEND

< YL
il
" "
[} v
n
#
ty
Kl
LN |
o i
o
' [}
[N ]
[}
i
[} .
. (] N
‘ ta L
-t [N )
3O
am“’lk‘f .
4t [ IS
2
) :
- il
'
© .
o i
N
(Va] o

2

0.0

- y T — —T T T
00 40 2.0 . 12.¢ €0 °
’ Time in S2conds

-3.0

T
20.0

\\ .zg(v) .

3

Fig. 3.1 Comparison of st oi_:\d 2nd Order Aigorithms, f=1.0, V.



t
\

X

3.6 4.8
|

System Output
24

- = S - -
E——— - .
s v

—

L
A L

LEGEND

99

Q.

o AY)

N { . A |

— ) :

| - 1 I - i -
0.0 4.0 8.0 12.0 16.C 260
/\ . ime ir Seconds

Fig. 3.12 Comnparison of st and 2nd Order Algorithms, =10, VL.

X



100

3.2.5 A Quantitative Comparison

: \
It 19 useful to examxne the quant:tatzve aspect of the -

problem’ of overest1mat1ng the plant order. I; was stated |
earlier that the difference of the 9ystem performance caused
‘vby us1ng a h1gher order controller algor1thm on a lower

order glant could be measured by a quadratic cost funct1on.

Pt

Such a funct1on is 1ntroduced here:

Ip=llyp(t)-y*())de . e (3.2.3)
‘ . [ . ‘
a,=é[y,<t>-y*(t>lzdt | (3.2.4)
wa o
320,73, Ly , - (3.2.5)

where y, and y, are defined in Subsection 3.2.3. above.

It will be interestino to exaﬁine the effect of
changing of'operating condicions such as reference input
"level r and aajustmenr factor f on the value of J. Figures
3.13 and 3.14 show the,patrern of these changes. In Figure"
3.13, £ is :ixed-at 0.6, while r chances from 2 to 20. In
Figure 3.14, r is. flxed at 10, while f changes from 0.1 to

1. All the results are obtalned with step 1nput signals.
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From these results, it is clear that J,. is alvays of

positive value, which means the algorithm A1 per drm;‘better

o

j& rather
interesting because it shows that the greater tqj*{ajustment
W
rate, the greater is the difference between . the [Jefif
X R4y

AN A
Iy -

of the two algorithms.

The simulation results of this section'éll point out to
the s&me conclusion: overgstimating the plant order;reshlt
in poorer performance of the complete system. This |
characteristic of algorithm A1.i's rather important because
while designing a adaptive.control system, some people tend =
to set the controller order as high és possible, While this
will not adversely affect the stability of ‘the system, it
might degrade ifs performance it the order f the control
algorithm is chosen to be higher than that of the plant.
This degradation is, however, small compared to what will

happen if the plant order is underestimated.

3.3 Effects of Unyodeled Dynamics on Algorithm A1 in Its

Second Order Form "\\fh\\

3.3.1 General Comments

———



In this. section, simulations similar to those done i
Sections 2.3. and 2.4. will bg\:onducted, with the algotithm
A1 used in ite second order form, wh1le the plant follow
the model (1.321 . This type of work is done to rexnforcL

\
the conclusions reached in Section 2.4. with new data from a

higher ordered plant and control algorithm,

By changing the position of the compiex pole pair of
(1.3.11) and observing the resulting change {n system
performance under algorithm A1 in its second order fofm, a
broader picture of how different unmodeled dynamicé affect
system performance including stabilit§'could be obtained. It
is possible to determine whether the results‘{rom Section
2.3. are ;estricted to first order systfms.‘ﬁér this
purpose, the same measure used earlier to compare effects on
system behavior of individual unmodeled pole positions is
employed again, namely, ~

—

J=(I)[y(t)-yp(t)]’dt o (3.3.1)

The simulations will be conducted with the complex pole pair

again serv1ng as ﬁhﬁodeled dynamics. And their pos1tlons
will be moved around. The other measure of system

. performance used in Chapter 2, ie. 1 thf gain dev1at1on D
will not be used since with a d1fferent number of galns it

is difficult to compare the resulgs numerically.
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The difference between these simulations and those of"
Section 2.3. is related to the area of movement of the-
unmodeled dynamics poles. These simulations require the
system to be in a stable situation throughout.ﬁér the
quantity J to be finite and meaningful, The second order
systgm in this section turns out to_be less stable, so that
the area of uémodeled pole positions is smaller here, fhe

. 13 s [ ?‘
area in the s plane is shown in Figure 3.15, g

j * N 4

[§

In order determine whther the results obtained through
the ‘simulation studies in Section 2.4. are restricted to the
.first order algorithm situation, similar studies will be
congycted in this section. The difference will be in the
‘order of the plant and the algorithm, and the ppsitionTof
the unmodeled poles. The effect of é;ahges in the control
and adjustment period T on s?sﬁem performance will be
examined in similar fashion.

—

3.3.2 Simulation Results with J vs. Sepdration Ratio

Preliminary testé show éhat the pole range in Figure
3.15 is appropriate (the.system remains stable under our
simulatign conditions when the unmodeled dynamics polgé are
in this Eéngé) for the simulations in'this section. The
unmodeled.pqle pair will be moved around within this range

for the simﬁlations that follow.
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In these simulations, system parameters that aro‘not
changed tollow the same pattern used in SQction 2.3. oxcopt
for the initial values of the control gainl. rollowinq is a
list of these parameters which will remain unchanged in this

section:

.- sampling period for adjustment and control T=0.04(sec),

reference input r=10.0;

adjustment factor f=0.2; v
plant -dominant poles at a,=1 and a2-1 5, and
f(ﬁ\\\ all gains have the 1nit1a1 valye of zero.
4
The separation ratio SR used here 'is defined as :;
SR-/a’+B’/a2 _ § (3.3.4)

The reference model in the following simulations is:

’ P
(s+3) (5+10)Y(s)=60U(s) " ' | (3.3.5)

Figure 3.16 shows the results of changes in J due to \\
s

changes in the unmédeled,pole positions. From theéb result
»

it is clearhthat'géherally, the greater the separation
ratio, the less is.effect the unmodeled pole pair has on
system performance. However, the plotted results again cover
an area, not forming a curve; meaning there is no_ohe to one

-

relationship- between the SR value and J. Recalling the /
ol
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| result in Figure 3.5, the similarity is obvious.

«f

3.3.3 Varistions in J due ‘to Plaht_DeViations

Thls subsectlon covers the same ground as 2.3.2.. The
open- loop response of the plant model (1.3, 11) approx1mates

that of

{s+a;) (s+ay)¥(s)=2a,a,0(s) |  (3.3.5)
R o i o : . ‘ |
‘uiflthe real poles are dominant.

* : ‘ ' oo L - : v ' ‘
.~ If the unmodeled poles change position, the (1.3.11) -
open-loop response to a step input signal will aiSO,change.

Again define the-open-loop deviation as ‘ L .

L)
,4) o™ ‘ / N N ‘ .
J =Sy (t)-y. (&) 124t (3.3.6)
©o7C ep ‘ i T

«

where yo(t) is the open-loop response of (1.3. 11) to a step ,

P

input and yop(t) is- the same - response of (3 3. 5) This 1s

51m11ar ‘to.the definition in (2 2 6) o*/(

In the followlng 51mulat10ns, the)valhes of J are. . -
vcompared with those ofago, u51ng the latter .as a. substltute
for the separatlon ratjo as a measure of the deviation df
plant hedel‘cahsedfby the pteéehce efeunmodeled dynamics.

. . v a
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The results of the simulations are shown in Figure
3.17. It/ is clear that the system performance, measured by .
J, deteriorated with increase of J,. ‘The sxmulatlon results

of F1gures 2. 10 and 3.17 are remarkably szmzlar.

3.3.4 The Effect of Changing T on Sys%em Performance

'3

The simulation work in this aubsection'is simiiar to
that in‘Section\2.4..,The difference againkis in the system
order. Here a fourth order piant is controlled by an |
’ algor1thm of second order and a aalr of complex poles act’as
unmodeled dynamics. The purpose of this sectlon is to see
whether the results and conclusions reached in Section 2.4,
are 1solated cases oOr not.,The de51gn gu1de11ne ‘proposed by
Rohrs in [4b] concetn1ng the control and adjustment rates is
farther teeted: ' | ’ |

. | | _ | ‘ '
Y : p )
| In the following s1mu1at10ns, plants of the (1.3.11)
type w1th different unmodeled pole p051t10ns are subjected
to control algorlthm Al in_its second order form<w1th
gradually/chan;ing f, and the resultant perforhance value of

J is obderved.

In these simuLations, the adjustment and control period

-

T is changed from 0.04 to 0.4 in small 1ncrements (0.01),

,whlle the resultant performance value J is observed The
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results of thqunsimulations are made relevent by the small
“sampling period (Tb-0.01) used in the plant model
discretization. The model of the plant and the accuracy of
its represenfétioq of" the actual plant do not change when T

is changed. The plant unmodeled dynamics are algo changed to

observe whether the method of using‘as large‘a T‘as po;sible

has the same effectiveness for different unmbdelea pole

positions.. = - = - ' S 3 ' . .
. o “ )

»

| First of all; three different unmodeled‘polevpositions
ére chosen for thisksimulation:'-Qth, -14+j6 and_-15%33,
because atrT=0;04,’thgy all result in similar Qaiues’of J
around 30.0. The'simulation resulté are shoyn in Figure 3.18
(c. Figure‘2;13); |

Comparing with Figdre12.13, it is clear that &hf -
pétterns afe véry‘similar; From these‘reéuits, we EOuid‘say R
that iﬁdeed, the sygtems respond similarly to changes iﬁ f.'

: s . . _
quinbthe J values fall sharply with initial iﬁcreasé

of T. This shows that thé effectiveness of the method‘of |
séeking stability by increasing T is not uniform in a hiqher
orderbsitugtioh either. There seems again to be a
'saturation_pointf where the ihcfease of T does ndt improve

4

- system performance anymore.

Fighre 3.19 'shows another group of pole positjons,.that
. . . . &
of -9+j7, -13+3j8 and -16%j2, as their effects on system
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.performancquhange with changes of T. The similarity of
these results eith those shown in Figure 2.15 is clear. -

— ) * ’l

3.3.5 The Square Root Values of J

'

g

™ : . . .
xu)hs noted in the previous chapter and confirmed above
\ [} . .

\

when the adjustment and control interval T is increased, the
system performance 1mproves markedly for e while. After‘a
certa1n point, however, thlsmtrend stops and further

1ncreasevof T dQ‘not give further improvement of syst‘m

performance anymore.

Is this beqause'of the nature of the performance
measures that are chosen? Sure, they are quadratic
guantities. This could have been the reason for the sharp

o

fall of J with the increase of T.

In Figures 3.20 and 3;21 the square root of J is
plotted versus the control period'T; Figure 3.20 represent
the same simulations as Figure 3.18,\and Fighre 3.21 is from
the same simulations as Figure 3.19. |

The results of these s1mulat1ons further extended those
- from the prev1ous chapter and glve_full support to the
conclusions reached’in Section 2.4.. It is very clear that‘
the sharpyfélllof‘petformance with the increase of T and the

'saturation point' characteristics are as marked in these

3
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plots as in the earlier ones. Hence it is safe to say that
the conclusions concerning the effect of T reached in the"
previous chapter and confirmed in this sgction are valid
even if yJ is,uéed aswthe perfofmance index.

LS

3.3.6 Discusion

%
s )
f

4
]

From the results obta'i'ryﬁg in this section, alk-the’
conclusions reached in Sections 2.3. and 2.4.. are

supported. These include the qﬂdnging patterp_pf'the
performance index J with the change of unmodeled pole‘
positions, and with-the changes in the adjustﬁent and

. o’y
control interval T. -

The patterns of the changes 6f J as sﬁpwn in the
simulation results here are very similar to those in Chapter
2.. The difference is that generally, the highe; order
systems of this chapter are less stable comparéd with the
lower order systems of the previous chapter. In this
chapter, two poles act as the "modeled" aynamics instead of
the one poie in Chapter 2.. The effect of the unmodeled
poles on‘the plant ppen—loop responses are less evident
here, while their’ééfect on the'clo;ed-loop system is more
marked. This means fhaévwith the same number of high

frequency poles as unmodeled dynamiés, a higher order

adaptive control system performs better than a lower’ order



4

3.4 Effect of Changing the Controller Order

In section 3.1.,, the simulation results showed that

hsing a higher order form of the control algorithm A1 on a
lower order plant degrades the system performance soméwhat,.
although the system stabilftx\i;'not(adversely affected,

+* Some people tend to use higher order -gontrol laws when the
actual plant order is not known. When there are unmodeled
dynamics in the system, would a higher §£der control law T_\\
perform better than a lower order one? Combinfhg the
theoretical conclusions from-[19, 20) with the siﬁuﬂation
results reached so far in this thesis, it is clear tﬁszgﬁ
the increase of the order of the control law eliminates the
uhmo@eled dynamics, the system performaﬁce will bg improved.
What if such an increase of the controller order does not
eliminate unmodeled dynamics?

1
L.

: | -
In chis section, a series of simulations will. bé

—

carried out to answer this qQuestion. Here the algorithm

involved is Al in its second order form but- the plant is the
same to wHat used inéghapter‘Z., ie., that described by the

model (1.3,10). In this case, The aim is to see is whether

e

system stability if this increase does not make the order of

the increase of the algorithm order necessarily enhance
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,w .- .
the control law as high as that of the plant.

L]

S

This is a situation where' thete is no clear cut way of

- defxnxng part1cu1ar plant modes as the "unmodeled. dynamzcs.

.51nce the algorithm is of second order, the plant. is
presumed to be of the form:

(s+a) (s+b)Y(s)=gxaxbxU(s) - . (8.3.6)

or | o
(s'+2astat+fi)V(s)=g(ai+B)U(S) (3.3.7)
by the designer of the system. The real plant model, '
however, is (1.3.10), which has one real pole and a complex
pole pair., For comparisons with results obtained in 2.2y,
thg complex poles will be hoved in the same faéﬁion and the
real pole will'remgin dominant. While it is not possible to
cléssify one of thé complex poles as-the*unmodeléd d}namics
(certainly npﬁ the real pole ei%hif), t§ere is no doubt that
unmodeled GYnamics are pgesenf in the system. The aréa of
locations for thetcémpiex pole pair willlﬁe,the same as in

Chapter 2. (Flgure 2, 7) The results of the simulations are

shown in Elgute 3.22,

Comparing these. results with those shown in Figure

2.10, it is clear tﬁat the second order algorithm, while not

3
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éliminating ihstabiI1ty completely, does perform much better

:than the first order one in most of the unmodeled podes
| '“4‘tried Especially when the unmodeled dynamics modeS’%re
'relat vely 1mportant, add1ng one order to the control law A%
improves the’ system performance greatly When the relatlve
dominance of the real pole is very high, .however, changing -
the first order control law to'a,second”order one degrades
" the performanceoa little. It is'understandable since when
the. complex polelpair is relatibely unfmportant the plant
dbehaVes rather like a flrst grder‘model Applylng a second
oider‘control law on subh a p;ant is 11ka overest1mat1ng the
plant order-ln de51gn1ng the’system (QL the results obtained
;’in Section.3,2‘); : ) . .
3;5.Discussions and:Conclusions
—_— 't -

Inwthfs chapter Simulatﬁons hane beennconducted with
plant model Gl 3.11)" and the algorlthm A1 in 1ts second
order form.lIn Sect1ons 3 2. and 3. 3., 51mulatlons run
paraliel to those conducted in Sections 2.2..and“2.3.,‘with
a;hiéher order piant and a hiéherforder:algorithm;bnii the .

: results and cnciusigns of the previons‘chapterb;hiCh ame

, ‘reached in a lower order situation has been confirmed,

‘ Be51des conf1rm1ng the conc1u51ons of the prevfous

chapter, further exploratlons wh1ch could only be performed

—

, . .-,' TR \ '

a
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uvﬁﬂ hlgher order 51tuat10ns are conducted with the following

results:
v‘y Vb. -

1

' 1, éﬁntrolling a iower order-plant with a higher Orde:“‘”'

' algorithm‘degrédes system performance,somewhat, but
‘ does not make the system unstable;
2, The algorlthm Al always has better stability
| assufgnce in a higher order form than in'a lower
order-one, but does‘not necesserily give better
system performance even if both;orders are lower
than’ the plant»order}' “
3. For a plent_yhose dynamics imclude distinctive
- groups of‘poles'that are dominant and non-dominant;
the aigorithm At migﬁt perform better if its ordet
is;set at the number of dominant poles in the plant
_than.a‘highet order, provided that the higher order
does not cover all the plant dynamlcs, -
4. For a plant .whose dynamics could not be d1v1ded into
_ dominant and non-dominant pole groups, if ‘the
'algotithm A1 has to be used in a lower'order‘than‘
the plant order, the_higher its order the better.

~

These results could be simply stated as: when algorithm

R J

A1l is uSed in a system it is not always true that the

\ A

higher its order is, the better the system performanc§;w1ll

be. For a designer of a control ‘system u51ng Al, the ch01cef?

of'its order is very important. Also, the guideline of "the

A"
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"greater T is the more stable a system will be" is not always

correct either.

These results are reached wlthout any‘cdhéideratibn'of
possible d1sturbances. Greater T ang h1gher order controller
mean more trouble if dlsturbances are present because the |
slower response and more compllcatlcns in §ystem structure.
,The choice of T and t¥% order of the algorithmvshould‘be

done very carefully.



4. Further Evaluations of Algorithms A1 and A2

.

For any control approach to be regarded as useful, it
-has to perform hetter‘than.other approaches at least in some
situations.”As for the aigorithm Al examined in this thesis,;
we have not so far p1np01nted the class of situations where
it is super1or to other algorithms. This we shall attempt to

1

do in this chapter.

As‘mentioned;in,bhapter 1., adaptive control schemes
_are usually designed te tope with uncertain plant

parameters; not uncertain plant orders. TheiunCertainty ef at
plant, presuming it is linear, unfortunately cpuld be in

both its parameter and its order. In this chapter, stedies,
will be done to observe theA‘effect ot addi\ti'f adaptation
~into algorithm A2‘(ie., the-ihtﬁgéhotion of A1)‘AThe two
cases,'namely the plant order unce?talnty and the plant
parameter uncertabhty will be stud1ed Comparlsons will be -
made between the performance of these algorithms to

determine the 51tuat10n or s1tuat10ns where the 1ntroduct10n'

of the adaptatlon scheme 1mproves the system performance.

4.1 Uncertainty in The»Plant\Order

125

-
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In Sectioh 2.2., comparisons are made between the
perfo:mahce of A1 and A2, and the results show.that when the
plant order 1s underest1mated or when there are unmodeled

dynamics in the system, A2 performs better than A1 The

simulations in that section, however, do not cover enough

4dround. In this section'more simulations will be conducted

:hffor the same purpose and different kinds of input signals

X

will be used. Moreover, the performance of the algor1thms Al

~and A2 will be qUant1tat1vely compared. Unllke in Section

:‘2.2., the unmodeled dynamics pole positions will be flexlble

in the studies of this sectlon,

In the sfmulations,that follow, algorithms A1 and A2

»

~will be used in their first order forms, ie., n=1, m=0, and

d=1. The.piant is supposed to be described by the model

(1.3.10) with a=1.0 and flexible « and B as unmodeled

dynamics. The reference model is (2.1.1). Other conditions

of the Simulations are as follows:

*

k (0)--0.8
Akr(0)=1.32
T=0.04 and

£=0.2 7 : —

These conditions are consistent with Section 2.2..
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|

4.1.1 Simulations with Rectangular Wnyehlnput Sicnals'

In thisvsubsection, the reference input signal will be
in the rectangular wave form. The 51gnal has a per1od—o} 8
_seconds. Under tHls reference input, ‘the system output of
plant (1.3, 10) controlled by Al and A2 are plocted and
compared.

Figure 4.1 is theiresult of the siﬁulation‘with the
unmodeled poles at -15%j2 and control elgorithm Al, ’Ficure- —
4.3 is the performance of A2 under the same cond1t10ns.
Fiqure 4.2 shows the result of the simulation with the
nnmodeled poles at -10xj2 and control algorithm Al)-while
Rigure 4.4 shows thevsimulation‘With A2‘in the sanyr

situations.

o

L : \

These.resulfsvagree with the results‘of Sectionn2.2.,
ie., the algorithm Al performs relatively poorlj compareé to
A2 yhen there“are unmodeled dynamics in the systen. The .
system controlled by Al has initial overshoot which are
absent in thejsystem controlled by A2, The A1 system with
unmodeled poles at -10%+j2 will actually go nnstable if the
simulationzis continued (such a)system~Ts stable if r ls a
step input of 10, since -10ij2 is in the‘stable region shown

in-Figure 2.7). This shows that in adaptive codntrol systems

Qwhere unmodeled dynamics are present, an 1nput 51gnal which

]
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offers concinuous excitation of all the frequencies might
make the system less stable by constantly renewing the
informatiqnvfrom the higher order modes. This information
might otherwise havw been lost quickly since they are of

higher frequency.

The presence of higher freqpency Tpdés as unmodeled
dynamics seehs to affect the non—adaptive model reference
algorithm vefy littlé. A2 does a very good job even when the
third order plant is prgsumed to be of figg& oréerwalthough

it fails to perform as a deadbeat controller.

4.1.2 Simulation Results with Sinusoidal Input Signals

-yIn this subsection, the reference input signal will be
~in the sinusoidal wave form. The signal is again similar to
that used in Section 3.2..’The following figures show the
simulation results of the plant {1.3.10) controlled by A1

and A2.

Figure 4.5 is the result of the simulation with the
unmodeled poles at -15+2 and éo;;rol algorithm A1, Figure
4.7 shows the performance of A2 ﬁnder the same conditions.
Figure 4.6 shows the result of the simulation with the
unmodeled poles at -10t2 and control algorithm A1,”while

Figure 4.8 shows the results with A2 in the same situation.
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These resnlts again show thet the algorithm Al does not
perform as well as Az‘when there are unmodeled dynamics in
the systém The overshoot ie again the biggest difference.

.Agaln the unmodeled poleé/made little d1f£erence in the
vperformance of A2, _Q' e T 5W

“ _
{;1%3 Comparisons of the Quadratic Perfdrmance Index of hl

and A2

[

TheyfeSUIts so far have uniformly supported the -
‘tconcluéion thatfalgorithm A1l does not performwas well as A2

5”when the plant order is underestlmated ie, when there are
. L

)

ﬁ;unmodeled dynam1cs in tﬁe system, If thls‘view is supported

bywstudles of a large number of unmodeled pole positions in

fvva quantltatlve sense,- the conclu51on will be well justified.

‘,ecall that in Secfions 2. 3 and 3.2. the quantity J is

7}{

;;T‘,Yusedﬂasﬁ@ berformance index for the control algorlthm used.

‘The same approaeﬁ is used he;e. For ease of comparlson,

s1mulat10ns~%ere are done under the same cond1t1ons as in

Jﬁtlon 2 3.{ The unmodeled poie p051t10ns are changed

ithin the area'shown‘ln flgure 2.7, and.the def1n1t1on of
.J, SR, and Jo remaln the same as before. The only difference
is that in the present simulations the system is controlled

by the -algorithim A2, 1nstead of A1,



.

The simulation results are shown in Figures'4.9 and
4.10, In Figure 4.9, the performance measure J is plotted
versus the separation ratio SR, while in Figure 4.10 it is

plotted versus the plant opep-loop deviation J,

It is clear ,when coéparihqftheSe reshlts with those
shown in Figures 2.8 and 2. 10, that the unmodeled dynamics
ﬁedversely affect the performance of A1 much more than they
’do that of A2. Especially when the system controlled by A1
is approachlng instability, the super1or1ty of A2 is
>51gn1f1cant. Nowhere in, thlS range'of unmodeled dynamics

o
L4

- pole po51t1ons does algorlthm Al perform as well as A2,
= " .
Notevthe fact that the performance measure J is not
much numerically greater than J , which is the'deviation of

: 5
‘the plant open-loop response.
"N‘.../ : ,‘- / b

M @

\
4.1.4 Discussion

0

. - % .
- : “

Srs . "

From the resylts of the studies in this section, it can

be said with confgdeﬁcé:that‘whehvthe plant model
uhcertaxnty concerns its orderwwaddlng gain adaptatlons into
algorlthm%KZ a&és to:)system performamce deteriorate. When
thére are unmgéeled dynsmjcs in the system, the performance
«of Al Jo%t does not begin to compare,with that °£;32°

. 3 ‘. . L E
Furthermore, the application of A1 in cases~where'@he plant
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order is underestimated runs the danger of the final control
system being unstable. Henceﬁ if the order of the plant is
not known but the position(s) éf its dominant pole(s) are

4

known, a better chqice'wold be control'algorithm A2.

4.2 Uncertainty in Plant Parameters

In the st%dieslaboye, it is presuméa that the position
of the dominant pole of the plant model is fixed and. known
%efo;e the control algorifhms are designéd, while the plant
vcontains unknown higher frequency(modes.bln real
.applicatiods, it is not always possiblejto establish the
positions of the dominént poles of the plant. The‘domiﬁant
poles might even change in the-procéss of control. This is
precisely the.situaiion that the adaptive control scheTe is

designed to cope with.

In this section, simulations similar to those of the
previous section will bé-conducted under different
conditions, ie., the prder of the plant model is presuhed
knoﬁn wﬁ;le_its parameters is assumed to be unknown.

In the simulations that follow, algorithms A1 and A2
will be uséd again in their first order forms, ieu, n=1,

m=0, and d=1. The plant is to be described by the modelv

N
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(s+a)¥(s)=2aU(s) 1 (4.2.1)

A ‘ | . . Q

. where a is a variable which will be ¢thanged.
Other conditions of ‘the simulations are the same as in
the previous section. As much consist ncy as possible is

kept this way.

' 4.2.1 With Step Input Signals

The reffrence input’ signal! of this subsect:ion}"':aRt a step
functlon, ie., r(t)=10.0 for t20.0. The f1xed parameters of
the algorithm A2 are designed to make the systemkhave
deadbeaf response when the plant parameter’é is 5.0. This is
to say that the estimate of the plant pole position is at -5
on the s plane before the controller is designed. This

‘particular design of A2 will be used throughout Section

- 4.,2..

Aéwfor the adaptive control q}goritﬁm A1, the pole
position of the plant model is not required té be known.
Hehée tﬁe design of A1 only used the order of the plant,
ie., n=1, m=0, and dfi. The positi@n of the plant pole,
denoted by a, ié chénged in the fol}pwing simulations, which

means‘thag the estimate of a=5 could be inappropriate for

the design of A2,



The reference model for the system to follow is:
(s+8)¥(s)=8U(s) | - (4.2.2)

The simulation results are shown in Figures 4.11 to
4.13. In 4.11, a is set at 1. In 4.12, a is set to be 5,
while Figuré 4.13 shows the system output when a=15. 1In
these figures, y, denotes tﬁé output of the system
controlled by A1, while Y, den8te; that of the system
controlled by A2. |

These results show that the algorithm A1\wofks-well for
all the pole positions at -1, -5 and -15 of the s plane. The
élgorithm A2 however, does not work uniformly well. For
instancé,’at a=5, itvperformed,yervaell, acting as a
deadbeat contrélle?, At azuﬁvhpyever, y,(t) lags behind
y*(t) quite a bit, whi;ﬁgéﬁfg¥15,_y2(t) leads y*(t).
Although the overshoot shown in y, is absent in Yoo it could
hot be said fhat A2 performed better than Al. It)is apparent
that the performanée of A2 changes more than that of A1 when

a is changed. .In other words, A2 is more sensitive to

changes of plant parameters than Al.

4.2.2 With Rectangular Wave lnput Signals

&

. In this subsection, the reference input signal will be

in the reﬁtangular wave form, with a period of B seconds.
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With this reference input, the system output of plant -

) hd
Y

(4.5.1) controlled by Al and A2 are plotted and compared:f

In Figure 4.14 are shown the results of the s&muixfions (T
. with plaht pole at -1 on the s plane. Figure 4.15 shows the
results of simulat?bns with a=5 or piant pole at s=-5,
Figure 4.16 shows‘the results with a=15, The wvariables y,~»
and y, take on the same meanings ag in the previous '

subsection. : . ’

Here: it ié very clear fhat the rectangular wave signal
is a type of reference input signal under which thé adaptive
control scheme’is superior to conventional céntrols. In both
cases when the plant pole is incorrectly estimated( Al
perfq;ms much better than A2. The fixed control gains of A2
produce the same respénse each time the input level is
cﬂénged, while\the,adjustment of gains in A1 makes it
possible for the sistem to follo;lﬁhe reference model much
more closélyrin the latter cases of changas in the inbut
level. Whéﬁsfﬁe estimate of thgwplant pole‘is correct, Al .
evgntualnyis/adjusted to A2, ;hd their performance are the
same asyﬁptétically.

g /<
4.2.3 Comparison of the Quadratic g%rformance Measurements
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/,/ In order to see how d1fferent p051t10ns of the plant pole
affect the performance of algorithms. waand A2, the

£pllow1ng measures are introduced:

J=fly,(£)-y*(£)12at o (4.2.3)
_ 0 ' ‘ o
m‘. * ) .v . * .
J1=‘I)[y1(t)-y (t)]*dt o - (4.2.4)
_Note that these are similar to the definitions in (3.2.3-4).
.The’definitiOhs of the octput variables .y, and y, are .

. howew@%ﬁdifferent here from those in Chapter 3.. These

/

quant1t1es measure the quadratlc deviations of the system

/

output y's from the reference mode} output y
_ , | {
In'Figure}4.17 the reference 1nput is r=10.0; A2 is
de51gned for the plant to follow the reference. model (4.2. 2) //
if a=5,«f0r A1, the ad]ustment factor is set to be f=0.6. In

Figure 4.18, the same cond1t1ons-are’used except that the
S c

‘%gput signal is a rectangular wave function. In this case,
| | .
since the J quantitles def1ned%by (4 2,3~ 4) ‘are not bounded,

the 1ntegrat10n is only done for the f1rst 20 seconds of the

‘v
51mulat*ons, wh1ch .covers 2.5 perlods of the 1nput signal.

/;x From these' results, it could.be seen that algorlthm A2

!

-does not work as well as Al if the estimate of the plant

2

. ;\model parameter a is far off, especially when the plant is

'actually slower than what 1s ‘estimated to be. If the

4

reference 1nput is in the form of rectangular waves, the -

- ﬁv‘v:

ke g
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| [ 0o . Y .
superiority of A1/to A2 is more marked. If the actual plant

~pole is near 1ts estimate or a little faster, however, the

performance of A2 ‘and Al is roughly ‘the same w1th J1

m\sllghtly greater than J, because of the initial overshoot in

kﬁthe.systems controlled by Al.
Lol ‘ '

%
Y

4

-f\b‘ h » ' s .
4.2.4 Discussion .

T

Rt
The 51mulat1on results in- thlS section have shown that

the algorlthm éﬁ§1s more sen51t1ve to changes of the plant
’ parameter thgn Al, espec1ally when the reference input

's1gnal ‘has level changes like in a rectangular wave signal.

.‘

If A2 1s used as the coﬁtrol algor1thm, the system response'
\ﬂ

w1ll either lag or lead the reference model response, if the

.estlmate of the plant pole is .incorrect. This happens. in all

b
the level changes 1n the reference input 51gnal On the

other hand 1f Ak /is used after the initial- adjustment of

- %

the control ga1ns 1s donew.thehcontroller ‘performs like a

‘deadbeat one for future level changes of the 1nput.

4.3 Cohclusions

s
éf comparing the performance of A1 and A2 with two
dlfferent klnds ‘of . plant uncertalnty, we have been able to

‘fxnd the appropr1ate applxcatlon range of each, The

1
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advantages and disadvantages of the two algorithms are now’
clear. The addition of the adaptive scheme into a model
reference fontrol appfoach like Aéiimproves the system

g perfbrménéqfin\some‘specific-bperating conditions. The
system perfofhance is degraded in some other situations.

Here is a brief summary of the conclusions of this chapter:

1. When the plant model's uncertainty involves its
| ordér, ie., whenutheré are unmodeled dynamics in the
system, the'model refefence confrol approach works
better in its non-adaptive . form th#h its adaptive
V“QQ» ~ form.. It is more so when the dominant dynamics. of
'k the plant are constant and known. The adaptive
algorithm A1l shows a lot more sensitivifyvto the
plant order uncertainty than the non-adaptive A2,
2. When the structure of the plant model-is‘known and
_thé uncertainty is in the values éf_its parameters,
“the adaptive algorithm Al doéé perform as well as or 
better than the hon-adaptive A2. There are other
fag?ors to be considered in these comparisons. If
thé estimate of the plant parameter is ﬁtong, .
\especially if the actual plant is slower, A2
therall§ does not perform as well as Al. '
3. From the simulation results of this chapt?r, the
capability of thé two algorithms to cope with

‘changiﬁg plant parameters in the control process of

the two algorithms could be%g
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much better than A2 in this respect.

Should the plant order change during the control

pche@AZ; should do much better than A1 if the

dynamics of the plant do not change much..
This is‘presuming that these dominant dynamics are

known and used in the design of A2.
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5. Final Disscusions of the Resulte

- This thesis contais numerous simulation studies of the

algorithm 51 The ma1n part. of this work is concenttated on

the effect b@;unmodeled dynamtcs on the performance of
systems controlled by A1l. In:tﬁls chapter the results
obtained through the studies.of the last three chapters are
put together and discussed.

5.1 The Effects of‘Diffegébt Unmodeled Dynamics

In order to investigate the effects of different
unmodeled dynamics on the performance of systems’comtrolled
by A1, plant models with variant unmodeled poles‘are
introduced. With_the position(s) of the dominant plant
pole(s) constant, the unmodeled poles of the plant are moved
around in a’region on the s plane., The performance of the

adaptive control control systems are then measured using

index J, which is a quadratic quantity.

This quantity means little by itself, However in a
ce*lgratlve sense, it represents the relat1ve system
performance. For 1nstance, the effect on system performance
of the chamges 1n a certalm factor of the control law or the

plant can be measured w1th the resultant changes of J. By

157
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v

keeping all the other factors in the system constant and
changing-only the unmodeled pole positions, we areAable‘ﬁo
confirm the bresumption that generally, the more effect a
particular group of unmodeled dynamics has on the plant
open-l6op response, the more i& its effect on the adaptive

control system.

Another quadfatic quantity is used to measure directly
the effect of unmodeled dynamics on the system gain values.
The almost linear relationship this quantity (D) has with J

(Fi§Ure 2.12) suégests that the degradation of system

performance resulted from the presence of unmodeled dynamics

is closely related to the changes in the control gains
caused by it. The conclusion bzre is that the gain .
adjustment mechanism works erratically® when there are

unmodeled dynamics in the system.

S .

5.2 The Effect of Employing Higher Order Control Laws

Since the preséhCe of unmodeléd dynamics in the system

is caused by the underestimating the plant order while

Ly

designing the control law, people have -preferred hingr

: _ ) ® B
order control laws when they have the choice. In t@%}%ﬁhesis

simulations have been carried to examine the effecggveness
. . ¢

of this approach.. | g

| §4
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b

.is not great enough to get rid oé all the;unmodeled

|

159

The results in Chapter 3. show that generally speaking,

5

u51ng a hlgher cpntrol law make  the system more stable in

the presence of unmodeled dynamlcs. If the increase 6f the
controller order,ellmlnates unmodeled dynamics, the system
will be rid of Eis unstable factor. If this order increase

!

dynamics, the system sStability will still be improved.
t Kf N
: W™ s
The system performance measured by J, however, does nét
always improve with the increase of thei control law order.

&

Espec1ally when the original controller order is already

high enough, the further increase of it actually degrades

) N \ i ) .
the system performance somewhat. This happens because in a

higher order control law there are more gains to adjust,
which makes it harder to perform as well as the control law

of the exact right order. This degradation of system

'performance is quite insignificant numerically, compared

with the loss in the qualiﬁy of the system performance

CausedAby.pnmodeled dynamics.

5.3 The Effect of Changes in T on System Performance

Employing thefquantita;ive measures of system
performance, we are able to investigate the e@fect of using
different control and'édjustment intervals. Since unmodeled

dynamics are usually high frequency modes, it is presumed
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‘that greater values of the controi interval T help redutg

’

their effect on system performance.
‘The simulation results iﬁ Chapters 2. and 3. support
this presumption., However it is not always true that the
increase of T makes the system perform better, Syséem
performance, as measured by J, improves very guickly Qifhi/
the increase of T if the effeét of the unmodeled dynamicskis
relatively significant. When this effect is diminished after’
the increase of° T, however, continuing to increase it does

not improve the system performance any more,

There appears to be an optimal T valug for each system
6 |

}controlled by algorithm A1 that contains unmodeled dyhamics.

Aimlessly using large values of‘T'to'cope with the unmodeled

.. dynamics problem is unnecessary and sometimes undesirable
X r

.even if there is no disturbance in the system. If the

situation permits, the éohtrol interval T should be decided
through trials. An appropriate method is not found to
determine how much of the effect of T on system performance
is linked to the fact that f is effectively dependent on T,
and how much is due to the filter effect of’laréer T values.

This might be an interesting topic for further research.
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5.4 The Advantages of The Adaptive Scheme

The adaptive control approach Qas introduced to cope
with plant parameter uncertainties. The simulation results
of Chapter 4. show fhat it}works well in this éiﬁuation. No
qonv.ntiona}“gpproach could compare with the adaptive
céntfolle; if the plant parameter changes widely in the
control'process, especially with frequent changes in the

-

reference input level.

The changes in thé plant parameters have to be
relatively large, however, to justify the deployment of an
adaptive algorithm like A1l. If these changes are small, even
a control algofithm like A2'which is relatively sensitive to
plant parameter uncertainties among cogyentional controllers

might perform well,

If a decision has to be made as to whether an adaptive
control algorithmbshould be employed in a particular design
'situation, the type of plant uncertainty present has to be
investigéted{ The adaptive approach is very sensitive to
plant order uncertainties, thle"its advéntage in coping
“with plant ﬁhramete} ﬁncertaintiés"is ﬁot,éignifiqant unless
the parameters changé in a very wide rahge.é%ﬁly in the |

cases where the sensjitivity of the conventional control

approaches to plant parameters outweigh the sensitivity of



;o
/

.the adaptive approach to plant orders should one ponsidgr
. ) .1“

the deployment of an algorithm like Al. This is likely to

happen in cas@s where the plant order is fixed.while its

parameters might change widely,
i .

1
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