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Abstract

This thesis describes the design, fabrication, and characterization of 3D supercon-

ducting microwave cavities for two applications. It first describes a cryogenically

compatible microwave filter that is able to tune its resonant frequency by an un-

precedented 5 GHz via deformation caused by a a helium pressure vessel. Then, it

describes a novel microwave optomechanics device where such a cavity is coupled to

an aluminized SiN membrane. It demonstrates that this device can be back-action

cooled from the 450 mK base temperature of the cryostat down to 160 mK.
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Chapter 1

Introduction

This thesis describes the development of superconducting 3D microwave cavities for

cryogenic filtering and for microwave optomechanics. This work is motivated by the

enormous progress in cavity quantum electrodynamics and optomechanics recently

made through use of 3D cavities like the ones described in this thesis.

3D Microwave cavities have recently become integral components in the devel-

opment of new technologies in a variety of fields. For example, they been shown

to enable unprecedentedly long coherence time transmon qubits [1], optomechanical

systems in the strong coupling regime [2], hybrid systems that convert signals from

microwave to optical frequencies [3, 4, 5]. Their high quality factors and ease of in-

tegration with a variety of interesting systems make them an attractive and exciting

tool.

Filters are a ubiquitous technology, and although 3D cavities are well suited as

filters due to their potentially high quality factors, ease of cryogenic integration,

and straightforward machining, they are only one of the possible implementations at

cryogenic temperatures. Printed circuit board approaches [6, 7, 8], as well as elegant

methods using waveguides as simple as a shielded twisted pair [9, 10] also exist, but

these implementations tend to enable ease of miniaturization at the either expense of
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manufacturing and design complexity or filter narrowness. Employing superconduc-

tors allows for sharp reduction of surface resistance at microwave frequencies, which

allows for higher quality factors and narrower filters [11, 12]. Filter tunability is often

desired to allow for a single filter to be used to multiple applications, as well as to fine

tune the filter frequency to the application at hand. Much attention has been paid to

the tunability of microfabricated and printed circuit board filters [13, 14, 15, 16, 17]

due to the high demand for miniturization in conjunction with well established fab-

rication techniques. This thesis pursues an option that sacrifices miniaturization to

instead focus on filter narrowness and large tunability.

The thesis will be organized as follows:

1.1 Summary of Thesis

Chapter 1 has briefly outlined the motivation for studying systems like the ones shown

in this thesis.

Chapter 2 describes a novel implementation of a microwave cavity that enables

very large tunabilities of the cavity frequency at cryogenic temperatures using a pres-

sure vessel of helium to deform the cavity.

Chapter 3 describes a novel microwave optomechanical system developed for this

thesis that couples a metallized SiN membrane to a microwave cavity.

Chapter 4 summarizes the results and gives some thoughts regarding future di-

rections.
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Chapter 2

Extremely Tunable Filter Cavity

This chapter will outline the design, simulation and measurement of a cryogenic mi-

crowave resonator capable of tuning its original 8 GHz resonance frequency by more

than 5 GHz without serious degradation of its quality factor. Tunable cryogenically

compatible cavities have been designed before using piezoelectric [18, 19], dielectric

[20], mechanical [21], or MEMS-based [22] tuning elements, but each of these has

drawbacks that make them less attractive. Piezoelectric crystals suffer from greatly

reduced range at low temperatures, a macroscopic mechanical solution as proposed

in [20, 21] requires expensive and bulky cyogenically compatible actuators, and a

MEMS-based approach is expensive and time consuming to implement. This solu-

tion leverages deformation of a microwave cavity by a pressurized volume of helium,

which is inherently crogenically compatible with no loss of efficacy and requires only

standard machining processes.

The chapter will begin by considering the properties of a particular type of mi-

crowave cavity: The re-entrant post cavity. I will derive both toy and quantitative

models for how such a cavity can be deformed to tune its resonant frequency, then

show how coupling to this type of cavity can be simulated using a commercial finite

element method solver. I will then describe the fabrication details of the cavity and

3



outline the measurement scheme I used to experimentally determine its quality factor

center frequency.

I will conclude the chapter with a demonstration of the cavity as a phase noise

filter, which necessitates first some explanation of phase noise and its measurement,

then of our particular measurement apparatus.

2.1 Tunable Re-Entrant Cavities

Microwave cavities contain capacitive and inductive sub-components that allow for the

storage of energy in electric and magnetic fields. These cavities can be constructed in

a myriad of ways, from lumped elements on a circuit prototyping board, to reflectors

made from vias on a printed circuit board [6], to the klystrons used to accelerate

beams of particles to relativistic speeds [23].

Although the details of the fields in these resonators vary as widely as their ge-

ometry, all implementations will resonate with a frequency governed by:

ω =

√
1

LC
, (2.1)

where L is the total inductance and C is the total capacitance [24].

This chapter will begin with the description of one such implementation: The

3D re-entrant cavity, which has recently been demonstrated to be a powerful tool in

cavity electrodynamics where it has been leveraged for a variety technologies such

as the creation of long coherence time quantum memories [1], the demonstration of

bidirectional frequency conversion via coupling to ferrimagnetic spheroids [3], and the

implementation of universal gate sets on qubits [25].

There are two significant geometrical regimes for post cavities, but in order to

understand them most clearly, some terminology needs to first be introduced. For

the length of this thesis, I’ll be referring to directions within the cavity using the
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language of cylindrical coordinates, where in Fig 2.1 the radial direction runs left to

right within a cavity and the vertical direction runs up and down. A radial (vertical)

face is one who’s normal is in the radial (vertical) direction. I will be constantly

referring to some critical geometrical elements, so I’m going to give them names here.

The central protrusion extending from the lowest vertical face into the cavity volume

can be called the stub or the post interchangeably. The highest vertical face is called

the cap or the lid, a name inspired by how I have constructed these cavities. The

cavity volume pinched between the vertical faces of the cap and the stub is called the

gap, which as we will see is a critical design feature of this type of cavity. With this

nomenclature, we can turn our attention to the different geometric regimes.

Figure 2.1: Finite element method (FEM) simulations of the electric and magnetic
fields in the small and large gap regimes. The electric field in the small gap regime
is highly localized in the gap, whereas in the large gap regime it is localized in a ring
around the edge of the stub, and extends radially toward the wall. The magnetic field
in both regimes in qualitatively identical, with the field circulating about the stub
and decreasing in magnitude radially and along the length of the stub.
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The first regime is characterized by having the dominant capacitance of the cavity

caused by contributions between the radial face of the post and the radial cavity outer

wall. In this regime, the gap between the vertical face of the post and the vertical

face of the cavity lid is large. This regime is characterized by lowest order modes

exhibiting a magnetic field circulating about the post, and an electric field flowing

from the stub radially to the wall. Cavities in this regime have been used to great

effect in developing 3D transmon qubits with long coherence times [1]. This regime

is attractive not only due to its potential for extremely low losses, but also due to

its similarities with a coaxial waveguide with open circuit termination, which permits

analytical analysis of its resonant frequencies and fields. In this regime, due to the

negligible effects of the metallic cap, the cap can be omitted entirely (leaving the

uppermost “face” of the cavity to be air) with only minor perturbation to the cavity

eigenmode. This approach can allow open access to the cavity volume and the fields

therein: a potentially useful feature.

The second regime is where the gap between post and the metallic lid of the cavity

grows small, and the capacitance contained between the lid and closest face of the post

becomes large. In this regime the magnetic field still circulates about the stub, but

the electric field becomes highly localized between the stub and lid. This dominating

capacitance is the enabling feature of much of the technology outlined in this thesis: as

the gap size is perturbed by some mechanism, this dominant capacitance is modified,

which causes a shift in the cavity’s resonance frequency. This frequency tunability

can be useful in and of itself, as demonstrated by the phase noise filtration of this

chapter, but it can also be used as an enabling factor for the implementation of various

optomechanical systems, as will be shown in the next chapter.

Finite element simulations of these two regimes are displayed in Fig. 2.1, demon-

strating the character of the electric and magnetic fields in this type of cavity.
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2.1.1 Tuning Mechanism

Due to the central importance of cavity frequency changes caused by perturbations

to the gap size for the technologies in this thesis, I’ll take some time here to develop

both an intuitive and a quantitative understanding of them. In either case, two things

will need to be developed: A model for the mechanism of deformation, and a formula

for the resonant frequency of a cavity that accounts for the effect of the changing gap

size.

I’ll start by developing a toy model for both of these, then improve the sophisti-

cation of the models and derive a quantitative formula for our specific experiment.

2.1.2 Deformation Mechanism Toy Model

A conceptually simple way to change the gap size would be to apply a uniform pressure

to the top of the cap and deform it toward the stub. As a first approximation, we

can pretend that there is no spatial dependence to the deformation and that the lid

is an elastic material such that the deformation is given by:

x =
F

k
=

P · A
k

, (2.2)

where x is the displacement, F = P · A describes the force caused by our imaginary

uniform pressure being applied over the area of our cap, and k is the spring constant

of the cap. With this in hand, we can turn our attention to understanding how this

simplified deformation affects the cavity frequency.

2.1.3 Capacitance Change Toy Model

Roughly, the capacitance of the post-lid gap can be approximated as a parallel plate

capacitor, with capacitance C = ϵA
d
. We can mathematically model the changing gap
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caused by the uniform pressure we considered in the last section by introducing the

displacement, x, into this equation as:

C =
ϵA

d0 − x
. (2.3)

The resonant frequency of a microwave resonator is given by ω = 1√
LC

. By

substituting in the expression for a parallel plate capacitor, one arrives at:

ω ≈
√

d0 − x

ALϵ
. (2.4)

By inspection of this equation, it is clear that the changing gap affects the resonant

frequency, taking the derivative gives us information about the regime in which the

chance is most rapid:

∂ ω

∂ x
= − 1

2
√

ALϵ · (d0 − x)
. (2.5)

From this simplified equation, one can see that as the gap becomes very small (x

becomes close to d0) the cavity resonance frequency becomes more sensitive to further

displacements. This motivates the use of very small gap sizes to maximize tunability

given limited deformation.

This simple model is useful to develop intuition, but does not allow for accurate

quantitative analysis. In order to more carefully understand the changing resonant

frequency, we can turn to the analytical model.

2.1.4 Quantitative Model

We can begin our quantitative model by casting a more critical eye at our equation

for the resonance frequency of a post cavity.
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Quantitative Post Cavity Resonance Frequency

The analytic expression for a post cavity, called a klystron cavity in the context of

the original paper, can be derived through the used of Green’s functions methods

[26]. The details are beyond the scope of this thesis, but when the dust settles the

frequency is given by:

ωc =
1

2π

√ µ0ϵ0

rposth

(
rpost
2d

+ 2
π
log
(
elm
d

))
log
(

rcav
rpost

) , (2.6)

where rpost, rcav, and h are the radius of the post, the radius of the cavity, and

the height of the cavity respectively. lm is a purely geometric factor, given for our

geometry by lm = 0.5
√
(rcav − rpost)2 + h2, and e is Euler’s constant.

Before blindly advancing with this equation in hand, it is instructive to pause to

re-iterate some of the assumptions made in its derivation to ensure our conclusions

and subsequent designs are reasonable. In order for the above expression to be valid,

our cavity must satisfy:

1. lM/λ0 is small. This is a statement that the cavity size needs to be on the order

of the vacuum wavelength.

2. rpost/lM is not too small. This is a statement that the post must take up

a significant part of the cavity volume. If the post is exceedingly small, the

formula becomes inaccurate

The COMSOL simulations of Fig. 2.1 suggest that a centimeter scale cavity has

frequencies on the order of 1 GHz, implying a vacuum wavelength on the order of 10s of

centimeters, satisfying the first condition. Comparison to some of the example cavities

given in [26] suggests that we should expect to satisfy the second to a reasonable

extent.
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Plate Deformation

Armed with this more precise equation for post cavities in our small gap regime, we

can now turn to more carefully accounting for the effects of the changing gap. If the

circular lid of the cavity is deformed by a pressure that is constant over the area of

the lid, and the deformation is relatively small with respect to the thickness of the

lid, we can model the lid as a circular plate with uniform loading and fixed support

boundary conditions. The deformation of such a system is given by [27]:

w(r) =
Pr20
64D

[
1− r2

r20

]2
, (2.7)

where w(r) is the displacement from the undeformed plane of the plate, P is the

applied pressure, r is the radial distance from the center of the plate and, r0 is the

radius of the plate. D is the flexural rigidity, a purely material property given by:

D =
Et3

12(1− ν2)
, (2.8)

where E, t, ν are the Young’s Modulus, thickness, and Poisson’s ratio respectively.

In order to approximate the capacitance of a capacitor with one of its walls de-

formed in this way, we can compute the average displacement caused by a pressure

as:

d =
1

πr20

∫ ∫
Pr20
64D

[
1− r2

r20

]2
δA =

Pr202π

πr2064D

∫ r0

0

[
r − r3

r20

]·
δr =

Pr20
128D

. (2.9)

The important take-away from this equation is that the average deformation is linear

with applied pressure. This means that the average gap size as a function of pressure

can be written as:

d = d0 −XP, (2.10)
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where X is a sensitivity parameter that describes how much the average gap changes

as a function of applied pressure, defined above as:

X =
r20

128D
. (2.11)

X depends only on geometry and material properties, which makes it a useful

figure of merit for how sensitive a given plate is to applied pressure.

By inserting this expression into the expression for resonant frequency, we arrive

at the final functional form for the frequency of our cavity:

ωc =
1

2π

√ µ0ϵ0

rposth

(
rpost

2(d−XP )
+ 2

π
log
(

elm
(d−XP )

))
log
(

rcav
rpost

) . (2.12)

With this understanding of how our filter’s frequency response will shift as a function

of pressure, we can turn our attention to a critical parameter of all oscillators: the

quality factor.

2.1.5 Quality Factor

One of the main figures of merit for both cavities and filters is the quality factor.

This parameter describes how damped a resonator is, with a higher quality factor

indicating smaller damping. Quantitatively, the quality factor can be described by

Q = ω · Energy Stored

Energy Dissipated
. (2.13)

Many loss mechanisms can contribute to the overall damping of a resonator, and often

it is convenient to describe their effects separately. The overall damping rate is given

by:

κTotal =
∑
n

κn, (2.14)
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where κTotal, κn refer to total damping rate and the damping rate caused by an indi-

vidual, yet to be specified, loss mechanism respectively.

For the purposes of this thesis, it is sufficient to consider the total loss as a sum of

two parts: The external losses that stem from energy leaking from the cavity into the

ports we use to intentionally couple to our measurement apparatus, and the internal

losses that arise due to processes internal to the cavity such as Ohmic losses. This

conceptual splitting lets us write

1

Qtotal

=
∑
n

1

Qn

=
1

Qexternal

+
1

Qinternal

(2.15)

There is a wealth of literature that describes the physical origin of the internal losses

of microwave cavities. A particularly complete account is given in [28], but for the

purposes of this thesis this simple separation will suffice.

A final important statement regarding the quality factor is its relation to linewidth

in frequency space. A resonator with a large quality factor is sharp (has a small

linewidth) in frequency space. Quantitatively, we can write:

Q =
ωc

κ
, (2.16)

where ωc is the cavity center frequency, and κ here take on the meaning of the full

width half maximum linewidth of the Lorentzian cavity response.

2.2 Input-Output Coupling

In general, one can couple to a microwave cavity by exciting either the electric or

magnetic fields. Commonly, this is achieved by the use of either an “antenna” coupler,

or a “loop” coupler, which exchange energy with the electric and magnetic fields

respectively. Antenna couplers usually consist of a small straight length of conductor
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fed from a coaxial cable that either extends into the cavity volume (for large coupling

rates) or is recessed into a cylindrical waveguide leading up to cavity volume (for

smaller coupling rates). A schematic of an antenna coupler is shown in Fig. 2.3.

Loop couplers are similar, but the length of conductor is bent into a physical loop

and is electrically connected to the ground of the coaxial feed line. Fig. 2.4 shows a

schematic of loop couplers, as well as some simulation details that will be discussed

later in this chapter.

Each of these two coupler types can furthermore be arranged in three measure-

ment geometries: Reflection, Transmission, or Notch. These geometries are shown in

Fig. 2.2 below.

Figure 2.2: The three possible geometries for coupling to a two port cavity. The
geometries are schematically shown with arrows indicating the flow of microwave
power through the cavity, with details in the main text. It is important to note that
each of these three have slightly different expressions for their scattering parameters,
which is critically important when extracting the internal and external quality factors.

The differences between these geometries are outlined in brief below.

2.3 Scattering Parameters

A common tool in microwave engineering, which deserves brief mention here, is the

idea of scattering parameters. Scattering parameters are values that relate the inci-
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dent and reflected waves at each port of a microwave device [24]. They fully charac-

terize the response of a microwave network to an applied microwave probe.

Fundamentally, the expressions for the scattering parameters can be derived from

the lumped element models of their respective LC circuits, as in [29, 30], but for

expediency only the final results and a reference for each are here stated.

2.3.1 Notch Geometry

The notch geometry is characterized by a continuous waveguide that passes by the

cavity, with some mechanism allowing energy to be passed into and out of the cavity,

such as via evanescent or inductive means, as described in [31]. The S12 scattering

parameter of a notch cavity is given by:

SNotch
21 (f) = aeiαe−2πifτ

[
1− Ql/|Qc|eiϕ

1 + 2iQl(f/fr − 1)

]
, (2.17)

where a, α, τ are parameters characterizing the influence of the external environment,

encompassing the amplitude and phase shift of the measurement apparatus, as well

as the cable delay respectively. Ql, Qc are the loaded and coupling quality factors,

elsewhere in this thesis referred to as the total and external quality factors, fr is the

resonance frequency of the microwave cavity, and f is the frequency at which the

cavity is being probed. Finally, ϕ characterizes the impedance mismatch between the

coupler and the cavity.

2.3.2 Transmission Geometry

The transmission geometry is characterized by two separate waveguides that allow

coupling to the cavity. In this geometry, the S12 Scattering parameter is given by

[32, 31]

STransmission
21 (f) = aeiαe−2πifτ

[
Ql/|Qc|eiϕ

1 + 2iQl(f/fr − 1)

]
. (2.18)
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This geometry, in contrast to the reflection case, has close to zero power flowing

through the output port when the incident drive is off resonant. This is a useful

feature for applications such as filtration, and will be the geometry we use for this

chapter. This configuration comes with one serious detractor compared with the other

two: due to the lack of a non-zero baseline, one can’t separately determine Ql and

Qc. This stems from the fact that the arbitrary constant describing the measurement

apparatus, a, cannot be separated from Ql/|Qc|. In this topology, one can only derive

Ql from this measurement, and separate characterization of the reflection at each port

is necessary to determine Qc.

2.3.3 Reflection Geometry

A cavity in reflection has only one port, with the incident and reflected waves typi-

cally separated by external circuitry such as a circulator. In this geometry, the S11

scattering parameter takes a slightly different form. This is derived from [33] using

the same form for the coupling to the environment as [31]:

SReflection
11 (f) = aeiαe−2πifτ

[
−1 +

2Ql

|Qc|−Ql
eiϕ

1 + 2jQl(f/fr − 1)

]
. (2.19)

2.4 Input-Output Coupling : Analytical Methods

When the coupler terminates before the volume of the cavity itself, the analysis

developed by [28] can be applied. The coupler in this case can be thought of as

first coupling from a coaxial waveguide to a cylindrical waveguide in cutoff, then

subsequently coupling via an aperture into the cavity.

In the case of a cavity geometry that permits simple analytical forms for the elec-

tric and magnetic eigenmodes inside the cavity, such as the rectangular or cylindrical

geometry, this can be used to find analytic formulas for the external quality factor.
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Figure 2.3: a) The coupling between the TEM mode of the coaxial waveguide to a cir-
cular waveguide. b) The subsequent aperture coupling from the cylindrical waveguide
to the cavity body. Figure adapted from [28].

In our case, however, the field formulas are not straightforward and a numerical ap-

proach is preferable to determine how rapidly a given coupler will exchange energy

with our cavity.

2.5 Input-Output Coupling: Simulations

Using the microwave waves package in COMSOL Multiphysics, the input output

coupling can be simulated using the finite element method. This approach sidesteps

the complicated analytical form of the mode inside the cavity and allows for rapid

design of couplers.

The non-axisymmetric nature of the coaxial ports necessitate the use of a three-

dimensional simulation. In order to extract the coupling strength, a frequency study

can be used. Through fitting of the reflection coefficients as a function of frequency

both the total and external quality factors can be determined.

In order to most closely determine the overall quality factor, the walls of the cavity

body should be chosen to be impedance boundary conditions. This allows for Ohmic

losses caused by finite resistivity. The coaxial port can be modeled as two concentric
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metallic cylinders, with the annulus at their termination defined as a port boundary

condition.

Figure 2.4: a) A wireframe view of the geometry used for calculating coupling to our
microwave cavity. In this wireframe diagram, only the internal parts of the cavity are
shown. The metal that encapsulates this shown volume is described by a boundary
condition, and thus not included in the simulation volume. A detail view of the loop
coupler is included, with the radius and depth of the loop coupler indicated. b) The
electric field of the lowest order eigenmode of this cavity. The electric field is strongly
localized in the small gap between the top of the cavity and the stub protruding into
the cavity volume. c) The corresponding magnetic field of the lowest order eigenmode
d) A sample nyquist plot produced by this simulation. This could be fit to Eq. 2.18
to extract the quality factors.
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Two studies are carried out for a given cavity geometry. First, an eigenmode solver

is run to yield the frequency of the resonance and to permit visual inspection of the

modes. Once this center frequency is known, then a frequency study is run. This

frequency study allows for the determination of the scattering parameters, which can

be fit to determine the quality factors. The results of one such simulation is shown in

Fig. 2.4. Once one is able to determine the quality factors at a given coupler depth,

the depth of the coupler inside the cavity can be swept, and in this way the depth can

be chosen to satisfy a condition of the designer’s choosing. Looking forward to this

cavity’s application as a filter at the end of this chapter, I aimed to achieve maximum

power throughput, which is achieved when the cavity satisfies both of Qc,1 = Qc,2 and

Qc = Q0.

2.6 Fabrication

Now that we have considered the fields in a stub cavity and the methods through

which one can couple to it, we can shift our attention to actually implementing such

a cavity. We fabricated the cavity in three parts. The microwave cavity itself is

composed of two pieces of 6061 aluminium, a “body” and a “lid”. These two pieces

were fabricated on a lathe, then the body was sanded to reduce the gap between

the lid and the stub to its final value of ∼100 µm. Two coupling waveguides (1.1

mm diameter) were drilled at a radial distance of 5mm from the center of the cavity

to permit the introduction of couplers such that the cavity can be excited. Finally,

both pieces were carefully polished to reduce losses stemming from contact resistance

across the seam using brasso and a shop towel. The remaining piece of the cavity,

which holds the volume of helium, was fabricated from multipurpose copper, and

attached to the lid using an indium seal. An exploded view of the cavity design is

shown in Fig. 2.5.

18



Figure 2.5: An exploded view of the cavity design. 1) is the copper mount to affix the
experiment to the mixing chamber of our dilution refrigerator. 2) is the helium fill
line, 3) is the deformable membrane, 4) is the re-entrant stub, 5) and 6) are standard
screws. Adapted from personal correspondence with Dr. Fabien Souris.

2.7 Refrigeration

For this experiment, we rigidly affixed our cavity to the bottom of a dilution refriger-

ator. This system is interrogated through 40 dB of attenuation to thermally anchor

the coax lines to each stage of the fridge. This refrigeration allows for the system to

be probed well below the onset of superconductivity, which drastically improves the

quality factor of the cavity. This improvement in quality factor is important for this

application because it is related to the bandwidth of phase noise filtration, as will be

explained in the coming sections. The base temperature of our dilution refrigeration
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is ≈ 200 mK. In addition to the microwave measurement lines, we have also run a

helium fill line to pressurize the volume of helium in the copper reservoir.

Figure 2.6: a) An image of the entire dilution system, with labels. b) A close-up image
of the microwave cavity, open to expose the microwave cavity volume and the stub.
The helium fill line to deform the cavity is visible soldered to the copper reservoir.

2.8 Cavity Measurements

The first set of measurements undertaken on this cavity are aimed at determining its

quality factor and frequency as a function of applied pressure in the helium reservoir.

These measurements consist of interrogation via a vector network analyser (VNA).

This measurement apparatus allows for complete determination of the complex scat-

tering parameters of our two-port cavity, which in turn allows for determination of

our two figures of merit: the total quality factor and the cavity throughput.

In order to determine the quality factor, the cavity is probed with a VNA and the

measurement is fit to the analytical formula for a transmission resonator in section
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1.3. A typical measurement, along with a schematic of the VNA measurement scheme

are shown in Fig. 2.7. In this measurement, the data is expressed in its complex form

to facilitate fitting. It’s important to note that this somewhat unintuitive form holds

all the same information as the more familiar Lorentzian amplitude response and

arctangent phase response.

Figure 2.7: a) A schematic outlining the simplified measurement apparatus for deter-
mining the quality factor and resonance frequency as a function of applied pressure.
b) A sample transmission measurement with its associated fit.

Once a single measurement can be taken and fit, we are able to demonstrate the

tunability of this cavity by applying pressure via the helium fill line. This time, to

make the data easier to interpret, only the amplitude of each measurement is shown

(|S11|). The pressure is applied through a fill line, which is connected to a high

pressure helium cylinder at room temperature. The fill line is slowly pressurized while

the pressure is monitored through a gauge. When the desired pressure is reached, a

valve is closed to isolate the helium reservoir from the pressurization circuit. This is

repeated for each pressure measurement. The response of our cavity is shown in Fig.

2.8.
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Figure 2.8: a) The normalized amplitude response of our cavity resonance as pressure
is applied. Each Lorentzian response is separated by 0.5 bar.
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Fitting each of these resonances in turn allows for the extraction of a quality

factor and a resonance frequency for each applied pressure. This fitting procedure

reveals that the cavity response to pressure is nonlinear, with the sensitivity becoming

greater for large pressures, as expected from the expressions derived in section 1. The

theoretical expectation for the cavity’s response to pressure is overlaid in red. The

results of this fitting procedure is outlined in Fig. 2.9.

Figure 2.9: The resonance frequency and quality factor of our cavity as a function
of applied pressure. Only minor degradation of the quality factor is evident over
the entirety of the pressurization range. Overlaid in red is a fit to the theoretical
expression, from which a sensitivity parameter is derived. The disagreement from the
theory is discussed in the main text.

This fit allows us to extract an experimental value for both the responsivity pa-

rameter X, and the gap between the re-entrant stub and our membrane d. We find

that the membrane has a responsivity of 7.3 µm/bar, and that the gap between the

membrane and the stub is 100 µm, which is close to the design goal of 70 µm. It

is worthy of note that the fit is imperfect. This imperfection likely comes from a

deviation of the assumption of small membrane deflection in the deformation relation
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for circularly clamped plates, and from the inaccuracy imparted from the small ratio

of rcav/lm as described in Ref. [26].

2.9 Phase noise

One of the applications for a cavity of this type is the construction of a phase noise

filter. Phase noise is a ubiquitous problem in any signal source, and causes a variety of

problems ranging from errors in classical communication protocols such as phase shift

keying [34], to causing unwanted heating in the measurement of an optomechanical

system [35].

Phase noise is a deviation from the ideal sinusoid that manifests as a random

function perturbing the phase of a sinusoidal signal:

V (t) = cos(ωt+ ϕo + ϕ(t)). (2.20)

This can be thought of as an instantaneous, time varying change to the frequency of

the signal, which will be critical in understanding the measurement apparatus later

in this chapter.

Phase noise can be pictured in the time and frequency domains follows. Note the

apparent overall phase shift between the blue and red signals near the end of the

trace. This is the total accumulated phase. One way of reducing the phase noise of

a signal is to filter it. By applying a band pass filter centered in frequency space on

the signal with phase noise, some of the noise can be rejected.

This filtration can be understood by consideration of the frequency response of

the the resonator and of the signal generator. In the presence of phase noise, the

power spectrum of the generator will be broadened with respect to a clean signal,

as seen in Fig. 2.10. If the cavity is connected in transmission, then the cavity will

reject noise outside of its linewidth, as pictured in Fig. 2.11.
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Figure 2.10: a) Sample signals demonstrating the effect of phase noise. The noise
is modeled as a random perturbation to the phase at each time step b) Numerical
Fourier transforms of the data presented in a, demonstrating the broadening effect of
phase noise.

2.10 Phase Noise measurement

Although a variety of measurement schemes for phase noise exist, and are detailed in

[36], this thesis will only outline the use of one of them: the delay line discriminator.

This method was chosen due to its simplicity and the availability of equipment in

conjunction with its commonplace and effective usage.

The delay line discriminator intuitively functions by splitting a noisy signal into

two arms, then converting a phase noise into an absolute phase difference between the

two arms through use of different path lengths. This phase difference is then measured

with a mixer and a data acquisition card (DAQ). The details of this measurement
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Figure 2.11: Graphical representation of the effect of a filter cavity. Outside of the
linewidth of the cavity, power is reflected from the cavity instead of passed through
it. This has the net effect of sharpening the spectral profile of the source, potentially
significantly for high quality factor filters.

can be more completely understood by following the signal explicitly though the

measurement path, as below.

Figure 2.12: A schematic of the phase noise measurement scheme, taken from [36].
The following section will explicitly outline the signal as it travels through this dia-
gram.

The first signal of interest in our measurement chain is the signal directly from

the signal generator, here described as an entirely real function to facilitate the later
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handling of the mixer, which acts only on the real part of a voltage signal.

2.10.1 Input Signal

Vs(t) = v0 · cos
(
2πf0t+

∆f

fm
· cos (2πfmt)

)
(2.21)

The signal is then split by a splitter:

2.10.2 Splitter Output

Vd(t) = Vs(t) = v · cos
(
2πf0t+

∆f

fm
· cos(2πfmt)

)
(2.22)

Where I have denoted the voltage in the signal arm as Vs and the voltage in

the delay arm as Vd. Directly after the splitter, these voltages are the same, with

amplitude v.

2.10.3 Introduction of Delay

By design, one arm of the interferometer is made to be much longer than the other.

This asymmetry develops a phase difference between the two arms. The larger the

difference in length between the two arms, the larger the phase difference. Accounting

for the added phase difference, the signals just before the mixer are:

Vs(t) = v · cos
(
2πf0t+

∆f

fm
· cos(2πfmt)

)
(2.23)

Vd(t) = v · cos
(
2πf0 (t− τd) +

∆f

fm
· cos (2πfm (t− τd))

)
(2.24)

27



2.10.4 Mixer Output

One can now employ a mixer in order to measure this phase difference. The sensitivity

of the mixer is captured in the math by a constant Kϕ which must be experimentally

calibrated. Here is the output of the mixer:

Vm(t) = Kϕ·[
cos

(
2πf0(t− τd) +

∆f

fm
cos(2πfm(t− τd))− 2πf0t−

∆f

fm
cos(2πfmt)

)
  

difference frequency

+ cos

(
2πf0(t− τd) +

∆f

fm
cos(2πfm(t− τd)) + 2πf0t+

∆f

fm
cos(2πfmt)

)
  

sum frequency

+ harmonics

]
(2.25)

2.10.5 Filter Output

The information that we are looking for, although this is not obvious yet, is ensconced

in the difference frequency term. This term can be isolated through the use of a low-

pass filter. This filter is important not only to simplify analysis, but also to eliminate

aliasing of the high frequency harmonics due to finite sampling time of the DAQ. If

the filter is chosen such that only the difference frequency remains, then the output

of the low pass filter is:

VLPF = Kϕ ·

(
cos (2πf0(t− τd)) +

∆f

fm
cos(2πfm(t− τd)))

− 2πf0t−
∆f

fm
cos(2πfm(t))

)
. (2.26)
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We can now collect like terms and simplify the above to:

VLPF = Kϕ ·
(
cos(−2πf0τd) + 2

∆f

fm
sin(πfmτd) sin(2πfm(t− τd/2))

)
. (2.27)

2.10.6 Quadrature Assumption

If we introduce a phase shifter into the signal arm of the interferometer, as depicted in

Fig. 2.12, we gain the freedom to easily tune the relative phase between the two arms.

If we choose the two arms to be perfectly in quadrature (with noise being only small

excursions from this phase relationship), a couple of convenient property emerges:

the output voltage becomes linearly dependent on the phase, and the sensitivity to

phase differences between the two arms is maximized. To see this more clearly, let us

do a quick example.

Quadrature Demonstration

To see more clearly the utility in choosing the two arms to be in quadrature, let’s

momentarily dispense of the complicated notation of this section and just look at the

multiplication of two sinusoids in quadrature:

sin(θ) cos(θ). (2.28)

This can be re-written as

1

2
sin(2θ), (2.29)

and for small values of θ, this can be approximated as

1

2
sin(2θ) ≈ θ. (2.30)
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In addition to this, setting the phases in quadrature makes the apparatus maximally

sensitive to changes in phase between the two arms. This is hinted at in Eq. 1.27,

but can be seen explicitly with only a little bit of extra machinery. Consider two

sinusoids with an arbitrary phase difference:

sin(θ) sin(ωt+ ϕ) (2.31)

This can be simplified as.

sin(ωt) sin(ωt+ ϕ) =
cos(2ωtϕ)− cos(ϕ)

2
. (2.32)

In order to see the sensitivity maximum, we need to imagine this is acted on by a low

pass filter, just as in the actual measurement setup

LPF [sin(ωt) sin(ωt+ ϕ)] =
− cos(ϕ)

2
. (2.33)

Taking the derivative, yields

d

dϕ
LPF [sin(ωt) sin(ωt+ ϕ)] =

sin(ϕ)

2
. (2.34)

This is maximized when ϕ is 90◦, implying the original sinusoids are in quadrature.

These points together are the heart of why it is a useful thing to choose the phase in

the arms to be in quadrature to one-another. The output becomes as close to linear

as possible, and the sensitivity is maximized.

With this intuition in hand, let us return to the explicit calculation.

30



2.10.7 Mixer Inputs In Quadrature

By tuning the phase shifter in the signal arm, we can tune the two arms to be in

quadrature. This is mathematically described by taking:

2πf0τd = (2K + 1)
π

2
, Kϵ(1, 2, 3...). (2.35)

Introducing this into our equation for the voltage and applying trigonometric identi-

ties to simplify yields the following equation for the voltage after the mixer:

V Quadrature
Mixer = Kϕ sin

[
2
∆f

fm
sin(πfmτd) sin(2πfm(t− τd/2)

]
. (2.36)

In practice, the quadrature assumption is satisfied by monitoring the DC part of the

output of the low pass filter and adjusting the phase until this DC part is zero. Kϕ

is determined by finding the slope of this DC part as you change the phase.

2.10.8 Small Signal Assumption

We can make a final simplification to our above equations. In the case where the

phase excursions are small, as would be expected in a commercial signal generator,

we can make the usual small angle approximation for sinusoids: sin(θ) ≈ θ. This

approximation leaves us with

V Quadrature
Mixer (t) ≈ 2Kϕ

∆f

fm
sin(πfmτd) sin(2πfm(t− τd/2). (2.37)

This is the final form of the voltage signal we read with our DAQ card.
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2.10.9 Transfer Function

A powerful tool in interpreting the data being recorded on our DAQ is the system’s

transfer function. This is the function that describes the output of the system when

it experiences an input at a given frequency.

The prefactors to the sinusoid in the previous equation are exactly this response.

For an applied sinusoidal voltage with frequency fM , the amplitude of the response

will be those prefactors. Explicitly:

∆V ≈ 2Kϕ
∆f

fm
sin(πfmτd). (2.38)

This function can also be thought of in this context as the sensitivity of our system

to phase noise. In order to interpret it most clearly, and to conform to convention,

we choose to re-arrange this expression slightly:

∆V ≈ 2Kϕπτd∆f
sin(πfmτd)

πfmτd
= 2Kϕπτd∆fsinc(πfmτD). (2.39)

The first important thing to note about this function is that the sensitivity is not

constant for all frequencies. In fact, the sensitivity goes to zero when fm · τd is an

integer. This can cause serious issues in the accuracy of the reported phase noise if

not handled appropriately.

This non-constant sensitivity can be addressed in two ways: most crudely, one

could limit the measurement frequencies to a range where the sinc function is ap-

proximately 1. Mathematically, this condition is given by:

πτdfm ≪ 1. (2.40)
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Physically, this corresponds to only measuring small frequencies of noise, or having an

extremely short delay line, which directly reduces the sensitivity of the measurement.

When this condition is satisfied, the transfer function reduces to

∆V ≈ Kϕ2πτd∆f. (2.41)

A more sophisticated approach involves accounting for the non-uniform, but

known, sensitivity of the measurement apparatus and adjusting the measured voltage

spectrum to reflect the changing sensitivity. Practically, this is achieved by calcu-

lating τd using the known difference in coaxial cable length between the two lines,

and then dividing the apparent voltage spectrum by the known transfer function to

acquire the true voltage spectrum. This is the approach taken in this work.

A set of labeled, normalized, transfer functions taking τd = 5 µs , 1 µs are shown

in Fig. 2.13 to make concrete the ideas introduced above.

2.11 Results

The results of our phase noise measurement are summarized in Fig. 2.14. In a) our

aparatus is sketched, showing our physical implementation of the math described in

this chapter.

From the results in section b), it can be seen that our tunable filter topology is

capable of reducing the phase noise of a commercial signal generator by approximately

10 dB. The data indicates that the filtration begins to take effect ≈ 400 kHz from the

carrier. This is consistent with the intuition that the filtration will take place outside

of the cavity linewidth. Our cavity quality factor of ∼7000 implies a full width half

max linewidth of:

∆f =
f0
Q

=
5 GHz

7000
≈ 715 kHz. (2.42)
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Figure 2.13: Two representative normalized transfer functions demonstrating the
nature of the sensitivity of a delay line discriminator. They are normalized to the
sensitivity of the 5 µs delay line, demonstrating the improved sensitivity for longer
delay lines. At low frequencies, the sensitivity is flat and maximal, which can be used
to justify approximating the sensitivity as a constant for small frequency ranges. It
can be seen that the shorter delay line, while having reduced overall sensitivity, is
flatter over a larger range.

We anticipate filtration to begin at around half of the full width from the carrier, or

ffilter ≈ 357 Hz, consistent with visual inspection of Fig. 2.14.

2.12 Conclusion

In conclusion, we have here presented a tunable filter cavity with a novel, intrinsically

cryogenically compatible tuning mechanism. The range of our tuning at cryogenic

temperatures is an unprecedented 5 GHz. We have demonstrated that its quality

factor does not degrade significantly over the entire course of tuning, and although

the quality factor we present is modest, the literature suggests that this type of

cavity’s quality factor can be improved substantially through more the use of higher

purity aluminium [1].
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Figure 2.14: a) A schematic representation of our entire phase noise measurement
apparatus, including the dilution refrigerator, the helium fill line, the cavity, and
the delay line discriminator. b) Measurements of our source measured with no fil-
tration, and then with the cavity phase noise filter in line. ∼ 10 dB of filtration is
demonstrated from ∼ 400 kHz until the limit of our detection range.
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Chapter 3

Microwave optomechanics

Cavity optomechanics, which at its core entails the cavity enhanced interaction of

photons and phonons, has proven to be a powerful technique over the past decade. It

has enabled such remarkable quantum experiments as ground-state cooling of mechan-

ical resonators [37, 38], the entanglement of itinerant photons and localized phonons

[39], the entanglement of two mechanical resonators [40], quantum-limited sensing

[41], and even promises to allow for quantum nondemolition measurements of single

phonons [42, 43, 44, 45], and conversion between single microwave photons and single

telecom-wavelength photons [4, 5, 46]. One of the strengths of cavity optomechanics

is that mechanical resonators can be coupled to a wide variety of electromagnetic cav-

ities – motivating wavelength conversion applications – but most experiments have

focused on GHz-frequency microwave cavities and telecom-wavelength optical cavities

for practical reasons.

While remarkable experiments have been performed with telecom-wavelength op-

tical cavities, microwave cavity optomechanics have two major advantages when it

comes to experiments and applications in the quantum regime. First, the mechani-

cal resonator in microwave optomechanics often incorporates a metallic layer, which

allows for rapid thermalization to a cryogenic environment, even deep in the supercon-
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ducting state. Second, many photons can be pumped into a microwave cavity without

causing heating, in large part because of the remarkable properties of superconduct-

ing electronics, but also because the higher energy photons of telecom-wavelengths

are easily absorbed into materials and cause significant heating, even at the single

photon level. [43, 47, 48]

This chapter will describe the design, fabrication, and measurement of a microwave

optomechanical system that exploits the dominant capacitance of a re-entrant cavity

to couple with an aluminized silicon nitride membrane. I begin with a description

of this system and a toy model describing the coupling between the microwave and

mechanical elements. I then outline measurements of the microwave and mechanical

properties of the system using a vector network analyser and microwave homodyne

respectively. I continue by describing the calculation and finite element method sim-

ulations required to estimate the optomechanical coupling parameter. Finally, I show

that the optomechanical coupling is sufficient to cool the mechanical element from its

450 mK environment to 160 mK using backaction cooling.

3.1 A Post Cavity Implementation

3.1.1 Microwave Cavity

The cavity chosen for the optomechanical study carried out here is the re-entrant

cavity. Just as in the previous chapter, the re-entrant stub allows for the capaci-

tance of the system to be localized in one area. The cavity was machined out of

6061 aluminium due to its low cost, availability of materials, ease of machining, and

readily accessible superconducting transition temperature of 1.2 K. The outer radius

of the cavity was chosen to fit the inner vacuum can of our closed-loop 3He cryostat.

The inner stub was chosen for ease of machining and to maximize overlap with the

membrane above.
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Additionally, as will be shown in the next section, optomechanical coupling is

maximized for small gaps. For this reason, the stub was machined as close to the lid

as possible. Nominally, this gap is 5 thousandths of an inch, which is the smallest

increment on our milling machine.

3.1.2 Mechanical Resonator

The mechanical element in this system is an aluminium coated SiN membrane. The

membrane is produced by depositing a 50 nm thick layer of SiN on top of a thick

Si handle, then selectively etching away a window of Si to leave only the thin SiN

suspended from the remaining Si handle. These membranes are sold commercially by

Norcada in a variety of sizes.

Figure 3.1: a) A cross-sectional schematic of the aluminized membrane. b) A COM-
SOL simulation of the lowest order mechanical mode of this membrane.

In order to couple the mechanical motion of the membrane and the microwave

mode, the lid of the resonator had a small depression milled into it, and the chip

was placed inside. To mechanically hold the chip in place, as well as to ensure that

a continuous layer of metal could be deposited on the chip, a small amount of silver

paste was applied to the face of the chip, bridging the gap between the faces of the

lid and chip. This silver paste was cured at 200◦ C for 1 hour. Once the curing was

complete, the entire lid was loaded into a sputtering machine and 50 nm of aluminium

was sputtered on top of the entire lid. A schematic of our aluminized chip with a
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COMSOL simulation of its lowest order mode is shown in Fig. 3.1. A photograph

of the cavity is shown in Fig. 3.2.

Figure 3.2: A photograph of the microwave cavity with the Norcada membrane re-
cessed into the lid. Visible just above the chip is the antenna coupler used measure
the microwave properties of the cavity.

To maximize the changing capacitance, and to allow for relatively large posts, a

2 mm x 2 mm membrane was chosen. Its large size loosens the alignment tolerances

between the chip recession and the stub below.

3.2 Analytical Optomechanical Coupling for A Re-

Entrant Membrane Cavity

The coupling for any type of cavity that has one dominant pliable capacitance can

be analytically calculated as follows. First consider the expression for the resonant

frequency of a microwave resonator:

ω =
1√
LC

. (3.1)

In our case, where the pliable capacitance dominates all other sources and is very

nearly two parallel plates, C can be replaced with the formula for a parallel plate
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capacitor:

C ≈ ϵ0
A

d
. (3.2)

Now, we can derive an expression for the optomechanical coupling (G, the “frequency

pull parameter”) by modeling the motion of the pliable capacitor plate as a simple

change in the distance between the two plates, here the stub and the lid. We can

thus write d = d0 − x, where d is the total gap between the lid and the body, d0 is

the gap with no deformation of the pliable element, and x is the distance travelled

by the pliable element. Taking the derivative with respect to x yields:

δω

δx
= G =

δ

δx

(
ALϵ0
d0 − x

)−1/2

= −1

2

√
1

ALϵ0(d0 − x)
. (3.3)

If our system is undergoing small amplitude oscillations, we can simplify by consider-

ing the optomechanical coupling for only small excursions from equilibrium (x ≈ 0)

G ≈ −1

2

√
1

ALϵ0(d0 − x)

⏐⏐⏐⏐⏐
x=0

= −1

2

√
1

ALϵ0d0
. (3.4)

This expression is sometimes re-arranged, using the formula for a parallel plate ca-

pacitance above as:

G ≈ ω

2d
, (3.5)

which is useful experimentally when one measures ωc, but obfuscates the true 1/
√
d0

dependence on the gap size.

This derivation gives us an intuitive guide when designing systems such as these:

the unperturbed gap between the plates of the pliable capacitor should be made as

small as possible to maximize optomechanical coupling, consistent with the intuition

derived in the previous chapter.
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3.3 Refrigeration

Armed now with a description of the re-entrant cavity and its opotomechanical cou-

pling, we can turn our attention to preparing it for measurement.

For this experiment, a closed loop 3He system was used to cool the system down

to a base temperature of ∼400 mK, considerably below the 1.2 K superconducting

transition temperature of aluminium. Coaxial cables from Coax-Co Japan were used

to carry signals from room our room temperature measurement equipment to the

device and back. Pasternack Pe-034 connectors were used to connectorize the coax

lines. No attenuation was used on the down due to heating issues that arose upon

their inclusion. A Pasternack directional coupler was included before the cavity to

reduce noise.

3.4 Cavity Characterization

This section will describe the measurements carried out to characterize the microwave

and mechanical elements in our system.

3.4.1 Microwave Cavity Measurements

The system was first interrogated with a VNA to extract its microwave cavity pa-

rameters. As described in chapter 2, a VNA can be used to extract the scattering

parameters of a microwave cavity, and these scattering parameters can be fit to ex-

tract the center frequency and the linewidth. These can be used to derive the quality

factor. The data displayed in Fig. 3.3 demonstrates this process, and yields (κ, ω,Q)

= (67 kHz, 1.8 GHz, 2.7 ×104).
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Figure 3.3: a) A schematic representation of the measurement apparatus used to
determine the microwave cavity parameters. b) Scattering parameter data from the
apparatus in a) with fits and the extracted linewidth overlaid.

3.4.2 Mechanical Measurements

With the microwave properties of the cavity understood, we turn our attention to

the mechanical characteristics of the metallized SiN membrane. To measure the

mechanical properties, we will do two very similar measurements, both exploiting a

phase sensitive measurement scheme called microwave homodyne.

First, to locate the peak, we will sweep the frequency of a piezoelectric buzzer

to drive the mechanical motion. When the frequency of the buzzer is the same as

the mechanical resonance frequency of the Norcada membrane, the amplitude of its

motion will become large, relaxing the noise floor requirements of our measurement.

This is necessary because the deposition of aluminium has modified the resonance

frequency.
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Then, with the frequency of the mechanical resonance known, we will turn off

the piezo and let the environmental thermal energy drive the mechanics. By using

the known sensitivity of our measurement apparatus in conjunction with the known

temperature of the resonator, we extract the optomechanical coupling coefficient.

Driven Mechanics

In order to most easily see the mechanics of the system, the system was strongly driven

with a circular piezo buzzer. Although the piezo buzzer has a nominal resonance

frequency of 9 kHz, dictated by its geometry, it still vibrates with significant amplitude

at the frequencies of interest for this experiment. This type of measurement serves

only to locate the mechanical resonance.

Thermomechanics

Once the piezo driven mechanics have been found, a natural next step is to look

for the thermally driven motion of the mechanical resonator. This type of measure-

ment allows us to determine the optomechanical coupling factor, G, through use of

thermomechanical calibration [49].

Thermomechanical calibration begins with the noise spectrum for a linear optome-

chanical system [49]:

SVV(ω) = Snf
VV + α

4kBTΩm

meffQ
· 1

(Ω2
m − ω2)2 + (ωΩm

Q
)2
, (3.6)

where SVV(ω) is the spectral density, Snf
VV is the spectral contribution of the noise

floor, α is a conversion factor between a spectral density in units of meters and one

in units of volts (which is dependent on the measurement apparatus), Ωm is the

mechanical resonance frequency, Q is the mechanical quality factor, and ω is the

independent variable frequency. In the high Q limit, this can be approximated as a

Lorentzian with center frequency determined by Ωm and width determined by Q, but
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Figure 3.4: a) A schematic of the homodyne apparatus used to measure the mechan-
ical parameters and the optomechanical coupling. b) Calibrated thermomechanical
motion of the metallized SiN membrane at 450 mK taken using the homodyne ap-
paratus of panel a. Fitting the thermomechanical motion allows extraction of the
mechanical linewidth (21.8 Hz), the measurement noise floor (2.9 fm/

√
Hz), and the

optomechanical coupling, G/2π = 300 Hz. c) A COMSOL simulation of the measured
mechanical mode.

in this work this form is used. The only parameter that cannot be fit directly from

thermomechanical data, α, can be expressed as:

√
α =

δV

δz
. (3.7)

By applying the chain rule, and noting that δω
δz

is G, we can write:

√
α =

δV

δz
=

δV

δω

δω

δz
=

δV

δω
· g, (3.8)
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where we have introduced δV/δω as the voltage sensitivity of the system to small

changed in ω. This parameter can be measured experimentally by manually adjust-

ing the phase shifter and approximating the slope at the measurement setpoint. This

can be understood by recalling that a small change in the resonant frequency in a ho-

modyne measurement apparatus results in no change in the magnitude of microwave

power reflected from the cavity, but a large change in phase. This optomechanical

phase shift can be mimicked with a phase shifter, and the voltage output of the

mixer can be monitored to determine the experimental sensitivity. Carrying out this

procedure on our homodyne system yields a sensitivity of 225 mV/radian.

The only remaining unknown, the last barrier before being able to assert G, is the

effective mass of the resonator, meff. This mass can be determined with the help of a

FEM solver like COMSOL. meff can be expressed as: [50]

meff =

∫
ρ|r(x)|2dV. (3.9)

A fruitful assumption for thin membranes is that the density is constant over the

thickness of the membrane. The integral can then be rewritten as

meff =

∫
ρ · t|r(x)|2dA. (3.10)

Breaking the integral into two subdomains of constant ρ (the membrane itself, and

the aluminium coating it), and assuming the density of SiN and Al are constant over

their respective areas of integration, yields:

meff = (ρSiN · tSiN + ρAl · tAl) ·
∫

|r(x)|2dA. (3.11)

All that remains is to actually carry out the integral in COMSOL, which is done

using the built-in integration functions. A screenshot detailing the salient features of

the COMSOL simulation is shown in Fig. 3.5. Via this method, for a 2 mm x 2 mm
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Figure 3.5: A screenshot depicting the required elements to determine effective mass
in COMSOL. Membrane physics are used. Boxed in red are the components related
to defining variables in COMSOL, which are the entities require the evaluation of an
integral or a maximum over the domain of interest. In orange, purple, yellow, blue
are the boundary conditions. Orange sets the z displacement to be zero. Purple and
blue set the x and z to be zero respectively.

membrane, 50 nm thick, with 50 nm of aluminium deposited on it, it is found that

|r(x)|2 = 1× 10−6m2 and that meff= 2916 ng.

Assuming that the temperature of the mechanical element is the same as the

temperature of the cryostat, which is justified for low microwave drive power, we can

now carry out a fit using Eq. 4.1 and determine G. This fit is shown in Fig. 3.4, and

the corresponding G is 300 Hz/nm.

A related figure of merit for optomechanical systems is the single photon optome-

chanical coupling, g0. It is expressed in terms of G as

g0 = G · xZPF, (3.12)
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where xZPF is the zero point fluctuation of the mechanical oscillator, given by

xZPF =

√
ℏ

2meffΩm

. (3.13)

Using the cavity paramters solved for above and these new equations, we can

determine (xZPF, g0) = (145 am, 4.3× 10−5 Hz).

3.5 Optomechanical Cooling

Now that the cavity is fully characterized, we can leverage the optomechanical inter-

action to cool the mechanical resonator. When we apply a tone on the red-detuned

sideband, the system will undergo an absorption process that preferentially robs en-

ergy from the mechanical oscillator and causes it to cool down [35]. This can be

envisioned classically as a radiation pressure force that is always out of phase with

the mechanical motion. Using the language of quantum mechanics, this is a pref-

erential scattering of the drive photons into the cavity; a process that requires the

absorption of a phonon, and thus the cooling of the mechanical mode. Increasing the

power of the off-resonant tone increases the amount of cooling.

In order to quantify the amount of cooling, we start by noting that the process

of cooling described above can be thought of as an additional source of damping on

the membrane. The total damping is the sum of the intrinsic damping, Γm, and the

damping imparted by the intra-cavity microwave field, Γopt:

Γeff = Γm + Γopt. (3.14)

By characterizing the intrinsic mechanical linewidth at low microwave power, then

observing how the linewidth changes as the power is increased, one can extract the

optical damping at a given microwave power.
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Figure 3.6: a) A schematic representation of the frequency spectrum present in our
cavity optomechanical system. Our microwave resonance at ωc is in black, with side-
bands (red and blue) generated by interaction with the mechanical resonance (green).
To implement radiation pressure cooling of the mechanical mode, we apply a pump
tone to the red side of the microwave resonance, i.e. on the low-energy mechanical
sideband. These red pump photons scatter with a mechanical phonon and are up-
converted to ωc, which is manifested as a broadening of the mechanical resonance. b)
Increasing the power in the red pump tone increases the scattering rate and hence the
cooling of the mechanical mode, as well as enhancing the optomechanical coupling
rate. A fit to the coupling rate allows the extraction of G/2π = 540 Hz/nm).

Additionally, one can use the known total and external loss rates to determine the

intracavity photon number given an input power using [51]:

ncav =
Pin

ℏω
κe

∆2 + κ2/4
. (3.15)

Now, we can use this extracted optical damping rate and intracavity photon number

to find the optomechanical coupling coefficient. In general, we have [51]:

Γopt =
κ

κ2/4 + (∆ + Ωm)2
− κ

κ2/4 + (∆− Ωm)2
. (3.16)
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Simplifying for the case where the applied tone is on the red sideband (∆ = −Ωm)

Γopt =
κ

κ2/4
− κ

κ2/4 + (2Ωm)2
, (3.17)

and further simplifying given that we are in the resolved sideband regime (Ω ≫ κ)

Γopt =
4ncavg

2
0

κ
=

4G2

κ
. (3.18)

Now that we have the cavity enhanced G, we can follow the same procedure we

used in section 3.4.2, but now taking G as an input and solving for the temperature.

This temperature can be converted into a number of intracavity phonons by using

the measured mechanical resonance frequency and noting that the phonons follow

Bose-Einstein statistics:

nphonons =
1

eℏω/kbT − 1
. (3.19)

The results of this procedure are summarized in Fig. 3.6, where I demonstrate

cooling down to a temperature of 160 mK corresponding to a phonon occupancy of

2.4 · 104. It is worth noting that the derived value for G in strong disagreement

with the value derived from fitting the calibrated mechanical data. This disagree-

ment likely stems from the approximations used in deriving our formula (we are not

deeply sideband resolved) as well as other effects such as absorptive heating at high

microwave drive power.

3.6 Conclusion

In this chapter I described the design, fabrication, and measurement of a microwave

optomechanical device consisting of an aluminium re-entrant microwave cavity cou-

pled to a metalized SiN membrane. Through determining the scattering parameters
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with a VNA and fitting them to theory, I show that the microwave cavity parameters

are (κ/2π, ω/2π,Q) = (67 kHz, 1.8 GHz, 2.7 ×104). Then, by doing a microwave

homodyne measurement, I characterize the mechanical properties. I find that the

aluminized membrane has its first mechanical resonance at ω/2π =137 kHz and its

linewidth is Γm/2π = 21.8 Hz, corresponding to a mechanical quality factor of 6×103

I use this mechanical measurement in conjunction with a finite element simulation

to extract the optomechanical coupling coefficient, which is G = 300Hz/nm. Finally,

I demonstrate that this system can be back-action cooled from the 450 mK base

temperature of our fridge down to 160 mK.

50



Chapter 4

Conclusion

4.1 Summary

The primary focus of this thesis was to present some recent work in applying re-entrant

microwave cavities for use in a variety of systems. It summarized and explained the

findings presented in [52], where a novel tuning mechanism involving a pressurized

helium cavity was employed to produce microwave cavity tunabilities of more than

5 GHz without significant reduction in cavity quality factor. This represents the

state of the art for cryogenic tunability of microwave cavities. Although the quality

factor presented is significantly lower than what has been described in literature

for comparable geometries [1], there are straightforward avenues of improvement to

match this standard such as careful cavity surface treatment or the use of high purity

aluminium.

It went on to describe an optomechanical system consisting of an aluminium

coated silicon nitride membrane coupled capacitively to a similar microwave cav-

ity. This optomechanical coupling permits measurement of the mechanical modes

of the membrane, as well as the calibrated measurement of the optomechanical cou-

pling. Although the optomechanical coupling is modest, it is sufficient to demonstrate
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optomechanical cooling via the application of drive tones detuned from the optical

resonance. This is demonstrated and compared to theory.

4.2 Next Steps

A straightforward avenue to improve the phase noise filter is to raise its quality factor.

As aforementioned, this can be pursued through more careful machining and surface

treatments. Following this improvement, the tool is ready for application, although

the complexity of construction and implementation will likely dissuade users unless

very sharp and precise filtering is an absolute necessity for multiple experiments.

The optomechanical system could be improved through more careful galvanic

coupling between the chip’s metalized face and the cavity lid. This would improve

the microwave and mechanical quality factors as well as the optomechanical coupling,

allowing for stronger sideband cooling.

The system, however, intrinsically has what I believe to be a killer defect: the

optomechanical coupling factor is defined exclusively by the gap size between the stub

and the lid. Careful and patient machining could reduce the gap from what we have

presented here, but the techniques of microfabrication are better suited to producing

small gaps, and thus large optomechanical couplings, even in 3D macroscopic cavities

[2, 53].

Microwave cavities have been shown to be indispensable tools in modern science

both for fundamental research and in the generation of new applications. There’s

no doubt in my mind that they will continue to play a part in the development of

beautiful and interesting devices for a variety of purposes many years into the future.
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