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Abstract

In an increasingly data-driven society, there is a growing need to simplify

high-dimensional data sets. Over the course of the past three decades, the

Johnson and Lindenstrauss (JL) lemma has evolved from a highly abstract

mathematical result into a useful tool for dealing with data sets of immense

dimensionality. The lemma asserts that a set of high-dimensional points can

be projected into lower dimensions while approximately preserving the pair-

wise distance structure. The JL lemma has been revisited many times, with

improvements to both its sharpness (i.e., bound on the reduced dimensional-

ity) and its simplicity (i.e., mathematical derivation). In 2008 Matous̆ek [36]

provided generalizations of the JL lemma that lacked the sharpness of earlier

approaches. The current investigation seeks to strengthen Matous̆ek’s results

by maintaining generality while improving sharpness. First, Matous̆ek’s re-

sults are reproved with more detailed mathematics and, second, computational

solutions are obtained on simulated data in Matlab. The reproofs result in a

more specific bound than suggested by Matous̆ek while maintaining his level of

generality. However, the reproofs lack the sharpness suggested by earlier, less

general approaches to the JL lemma. The computational solutions suggest the

existence of a result that maintains Matous̆ek’s generality while attaining the

sharpness suggested by his predecessors. The collective results of the current

investigation support the notion that computational solutions play a critical

role in the development of mathematical theory.
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Notation

The following notation is used throughout this thesis.

• Random variables are denoted by capital letters, such as X, with the

exception of the letter C, which is used to denote a constant value of

particular importance.

• A sequence of n random variables is denoted as X1, X2, · · · , Xn

• X ∼ F is the notation that is used to say that the random variable X

follows the probability distribution F .

• X D
= Y is the notation that is used to say that the random variables X

and Y share the same probability distribution. That is, X
D
= Y means

that there is a particular probability distribution F , such that X ∼ F

and Y ∼ F .

• ‖x‖ is used to denote the L2 norm of the point x. That is, if x is a

d-dimensional vector, then ‖x‖=
√∑d

i=1 x
2
i

• ‖x‖∞ is used to denote the L∞ norm of the point x. That is, if x is a

d-dimensional vector, then ‖x‖∞= max{|xi|: 1 ≤ i ≤ d}

viii



Chapter 1

Introduction and Overview

Human decision making depends upon the analysis of data, although meth-

ods of data analysis have changed dramatically over time. Data analysis has

evolved from basic cognitive processing of sensory input to statistical analysis

of data sets that consist of a wide array of information. Classical statisti-

cal analysis requires data sets wherein the number of dimensions correspond

to a small number of carefully chosen variables. In recent years, advances

in computer technology have allowed for the collection of massive amounts of

data which often include a large number of irrelevant and redundant variables.

Accordingly, classical statistical methods are limited in their capacity to deal

effectively with contemporary data sets. This has led to a new branch of

statistics referred to as high-dimensional data analysis [21, 41]. To appreciate

the scope of the current investigation, it is necessary to review the concepts of

dimensionality and dimensionality reduction.
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1.A Dimensionality

Statistics is a branch of mathematics focused primarily on the analysis of

data. A data set is an n × d matrix X, consisting of n observations, where

each observation is characterized by d covariates. From a purely mathematical

standpoint, X is viewed a collection of n points, x ∈ Rd. The dimensionality of

x refers to the number of dimensions to which x belongs; in this case, x is said

to be d-dimensional, expressed as x = (x1, x2, · · · , xd), where xi ∈ R is said to

be the ith coordinate of x, for i = 1, 2, · · · , d. From a statistical standpoint, x is

viewed as an observation whose dimensions correspond to different variables,

where each coordinate xi of x corresponds to a measurement of the ith variable

of interest.

Although each row of X is represented by a point x in d-dimensional space,

it is often the case that most of the structure in X can be expressed through

a lower dimensional representation. The extrinsic dimensionality of X refers

to the dimensionality in which its data points are recorded; in this case, X

has d extrinsic dimensions. There is an alternative, and arguably more impor-

tant, type of dimensionality known as intrinsic dimensionality. The intrinsic

dimensionality of X refers to the number of dimensions that are needed in

order to answer a particular query of interest. For example, in d-dimensional

signal processing, the intrinsic dimensionality is the number k ≤ d of variables

that are required to effectively represent the signal [13].
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1.B Dimensionality Reduction

The main goal of inferential statistics is to collect sample data in order to

develop models that may be used to make claims about a population of interest.

Classical statistical methods are not always viable when dealing with high-

dimensional data. Thus, the first step in the analysis of a high-dimensional

data set is to reduce its dimensionality. That is, given some Xn×d, where d >>

n, find a lower dimensional representation Yn×k, with k < d, so that much of

the information contained in X can be obtained from Y . There are a number

of statistical approaches to dimensionality reduction including model selection

methods in regression and classification, regularization methods such as Lasso

and support vector machines, principal component analysis, multidimensional

scaling, and isometric mappings [13, 21, 24, 43]. Some of these approaches

aim to directly identify the intrinsic dimensionality of the data while others

aim to reduce the extrinsic dimensionality by transforming the data into an

alternative, low-dimensional representation.

An issue common to many classical statistical approaches is that they re-

quire matrix operations that are computationally expensive when dealing with

high-dimensional data. For example, principal component analysis and multi-

dimensional scaling rely on some form of eigendecomposition while regression

requires matrix inversion. Consequently, there is a growing need for techniques

in dimensionality reduction that efficiently reduce the extrinsic dimensional-

ity of high-dimensional data sets so that classical methods can be performed.

The Johnson and Lindenstrauss lemma is essential to modern techniques in

dimensionality reduction.
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1.C Johnson and Lindenstrauss Lemma

In 1984 Johnson and Lindenstrauss [31] introduced a mathematical result

that came to be known as the JL lemma. The lemma asserts that a set of

high-dimensional points can be projected into lower dimensions while approx-

imately preserving the pairwise distance structure between points. Specifi-

cally, the lemma guarantees the existence of a mapping T : Rd → Rk, where

k = O(ε−2 log n), such that pairwise distances are maintained to within a mul-

tiplicative factor of 1± ε. Johnson and Lindenstrauss use the lemma as a tool

to prove extensions of Lipschitz mappings into a Hilbert space. The JL lemma

has since evolved into an effective tool in high-dimensional data analysis.

Since its inception, the JL lemma has been subject to numerous improve-

ments which have contributed to its evolution into an essential tool in dimen-

sionality reduction. The evolution of the JL lemma is characterized by two

phases. The first phase of the evolution reflects a number of improvements to

the lower bound on the reduced dimensionality k. These improvements are the

result of a series of probabilistic refinements which have both simplified the

proof of the lemma and provided a tighter lower bound on k. The second phase

of the evolution of the JL lemma involves improvements to the efficiency of

the transformation T . Improvements to efficiency occur in two ways: 1) reduc-

tion of the number of operations needed to compute the transformation and

2) reduction of the amount of space needed to compute the transformation.

Currently, the JL lemma is among the leading approaches to dimensionality

reduction.

The JL lemma appears in a wide array of applications. In some cases,

the lemma is used as an alternative to classical methods in dimensionality

4



reduction; in other cases, it is used as a preprocessing step prior to use of clas-

sical methods. However, there are certain situations in which the JL lemma is

the ideal method of dimensionality reduction. Applications of the JL lemma

to dimensionality reduction include image retrieval, genetic algorithms, clas-

sification in machine learning, data streaming, nearest neighbor search, and

compressed sensing. Despite successful applications of the JL lemma, recent

treatments have lost the clarity and precision that characterized earlier stages

of its evolution.

1.D The Problem and the Approach

In 2008 Matous̆ek [36] made a significant improvement to the JL lemma. Par-

ticularly, he proves several generalized statements of the JL lemma, two of

which are relevant to this thesis: one ties together a number of earlier treat-

ments of the lemma; the other stimulates subsequent treatments of the lemma.

The following gives a brief summary of Matous̆ek’s results while Chapter 2

contains a detailed discussion. Matous̆ek provides two families of mappings

T : Rd → Rk such that each x ∈ Rd satisfies

P((1− ε)‖x‖≤ ‖T (x)‖≤ (1 + ε)‖x‖) ≥ 1− δ.

Here, d ∈ N is the initial dimensionality of x, ε ∈ (0, 1/2] is the distortion

parameter that controls the degree to which the length of x is distorted under

T , and δ ∈ (0, 1) is the probability parameter that controls the probability

that this length is distorted by no more than 1 ± ε. Matous̆ek provides two

mappings that satisfy the above conditions: one gives reduced dimensionality
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of k = C log(2/δ)
ε2

and the other gives reduced dimensionality of k = C log(4/δ)
ε2

, for

a constant C.

The generality of Matous̆ek’s results leads to bounds on the reduced di-

mensionality k that are weaker than those given by previous mathematicians.

In particular, Matous̆ek does not provide clear formulation for the constant

C; he merely asserts that it must be “sufficiently large”.

My approach to improving the JL lemma involves the development of math-

ematically refined theorems that are tested and further refined with a compu-

tational approach. First, I develop theorems based on Matous̆ek’s treatment

of the JL lemma [36]. Through detailed analysis, I obtain specific bounds on k

while maintaining Matous̆ek’s level of generality. Next, I measure the efficacy

of these results using a computational approach with simulated data. Specif-

ically, several data sets are simulated in the Matlab environment and each of

these data sets are projected into k dimensions using the results of my refined

theorems. The results of this computational approach imply a lower bound

on k than that suggested by my theorems, since the proportion of lengths

distorted by no more than 1 ± ε is much larger than 1 − δ. Accordingly, the

computational approach is repeated several times, with repetitions projecting

points into sequentially decreasing dimensions. The true value of k is approx-

imated with the reduced dimensionality of the data points as the proportion

of lengths distorted by no more than 1± ε approaches 1− δ.

6



1.E Improvements to the Johnson and Lin-

denstrauss Lemma

My approach to addressing limitations of the JL lemma results in numerous

improvements to the lemma. My mathematical results are obtained by follow-

ing the same line of reasoning as Matous̆ek [36]. In particular, my proofs are

built upon the construction of six lemmas which I prove in a sequential manner

similar to Matous̆ek. However, each of my proofs contain more detail, clar-

ity and precision. Accordingly, my results contain specific bounds, whereas

Matous̆ek relies exclusively on asymptotic notation. More importantly, my

detailed treatment clearly indicates dependencies between the constants and

parameters of interest. This provides valuable insight that may motivate fur-

ther research.

My computational results are of equal importance to my mathematical

results. I first test the results of my refined theorems with simulated data

and such tests indicate weakness in the bounds suggested by my theorems.

I then utilize a computational approach to empirically estimate the bound

on the reduced dimensionality. This approach provides evidence of a much

smaller bound, although only on certain sets of simulated data. However, the

computational results also contain patterns that may guide future refinement

of my theorems.

My hybrid mathematical-computational approach results in significant im-

provements to the JL lemma. These improvements have far reaching implica-

tions for continued research in dimensionality reduction.
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Chapter 2

Evolution of the Johnson and

Lindenstrauss Lemma

This chapter provides a review of the literature relevant to a comprehensive

understanding of the Johnson and Lindenstrauss lemma (JL lemma). First,

the main features of the JL lemma are presented. Next, the key improvements

to the JL lemma are discussed. Lastly, current applications of the JL lemma

are reviewed.

2.A Inception of the Johnson and Lindenstrauss

Lemma

In 1984 Johnson and Lindenstrauss [31] assert the existence of a mapping

T that gives an orthogonal projection of n points from Rd onto a random

k-dimensional subspace with dimensionality O(ε−2 log n), such that pairwise

distances are maintained to within a factor of 1±ε. Johnson and Lindenstrauss

propose following result:

8



Theorem 2.1: Johnson and Lindenstrauss (1984): Given a set P of

n points in Rd, for some n, d ∈ N, and given ε ∈ (0, 1), there exists k0 =

O(ε−2 log n) such that, if k ≥ dk0e, there exists a linear mapping T : Rd →

Rk such that for any two points u, v ∈ P ,

(1− ε)‖u− v‖2≤ ‖T (u)− T (v)‖2≤ (1 + ε)‖u− v‖2.

Since T is a linear mapping, there is no loss of generality in replacing the

quantities u− v and T (u)−T (v) with x and T (x), for a unit vector x ∈ Rd, so

that the above equation can be re-expressed in the following, more convenient

form:

(1− ε) ≤ ‖T (x)‖2≤ (1 + ε). (2.1)

Johnson and Lindenstrauss provide a lengthy, technical proof using geo-

metric approximation. In their proof, Johnson and Lindenstrauss choose the

mapping T to be an orthogonal projection onto a random k-dimensional sub-

space of Rd, multiplied by the scaling factor of
√
d/k. The main idea is as

follows:

• Project a collection of points from d-dimensions into a random k-dimensional

subspace.

• The pairwise distances between each set of points, both before and after

projection, correspond to a vector starting at the origin.

• On average, the length of each k-dimensional vector is
√
k/d times the

length of the corresponding initial vector in d-dimensions and most of

these lengths are closely concentrated about this expectation.

9



• Hence, multiplying each projection by the scaling factor of
√
d/k yields a

set of k-dimensional vectors, each similar in lengths to their d-dimensional

counterpart.

• Lastly, choose some prespecified level of tolerance for distortion of length.

Then, with nonzero probability, each length is preserved to within this

level of tolerance.

A mapping T that satisfies (2.1) is said to preserve ε-distortion of the

length of x. Thus, the JL lemma states that an arbitrary set of points can be

projected into lower dimensions, under a mapping that preserves ε-distortion

of pairwise distances. The image of a set P under the mapping T is referred

to as a JL embedding [1]

Since its inception in 1984, the JL lemma has been subject to considerable

scrutiny. The JL lemma has been reproved many times, with each new proof

providing a sharpened (i.e., reduced bound) and/or simplified result. However,

there is one particular feature that is common to all JL embeddings: the

mapping T projects a vector into lower dimension, and the length of this

projection is sharply concentrated around its expectation [1]. The existence

of each such mapping is established through the probabilistic method: the

random mapping T is shown to have nonzero probability of being sufficiently

concentrated about its expectation. Each proof of the JL lemma relies on the

construction of a random linear map T : Rd to Rk of the form

T = XR,

where R=Rd×k is a random projection matrix acting on the data structure

10



X=Xn×d (with row vectors corresponding to the points in P ) and T=Tn×k is

the resulting, transformed data structure in k-dimensions.

The proof then follows by establishing that the random mapping T satisfies

a probability statement akin to the following: if x is a unit vector in Rd, then

P((1− ε) ≤ ‖T (x)‖2≤ (1 + ε)) ≥ 1− 1

n2
. (2.2)

There exists a wide array of mappings T that satisfy a statement similar to

(2.2). However, there are two features of such a map that are of particular

importance:

1. The transformation T leads to a reduced dimensionality k that is as

small as possible for any fixed ε.

2. The transformation T is as efficient as possible so as to minimize runtime

(which can be very expensive when dealing with data sets of immense

dimensionality).

The next two sections contain a detailed summary of the evolution of the

JL lemma with respect to the above two features of the transformation T .

Section 2.B covers the early development of the JL lemma, wherein particular

focus is placed on improving the lower bound on the reduced dimensionality

k. Section 2.C covers some of the more recent treatments of the JL lemma

which aim to improve the efficiency of JL embeddings. Section 2.D focuses on

practical issues regarding applications of the JL lemma.
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2.B Improving the Lower Bound of JL Em-

beddings

This section provides a detailed summary of the significant improvements on

the lower bound of k, the reduced dimensionality of JL embeddings. Recall

that Johnson and Lindenstrauss [31] provide the first statement of the lemma,

which asserts the existence of a mapping T that gives an orthogonal projection

of n points from Rd onto a random k-dimensional subspace with dimensionality

O(ε−2 log n), such that pairwise distances are maintained to within a factor of

1±ε, i.e., they preserve ε-distortion. Although the JL lemma was an impactful

result that stimulated considerable research, there was room for improvement.

In particular, as Rojo observes [39], Johnson and Lindenstrauss do not actually

provide a clear construction of the orthogonal mapping T but rather, they

merely assert its existence. Moreover, the lower bound O(ε−2 log n) begged

further investigation.

Frankl and Meahara [23] provide the first significant improvement to the

JL lemma. They tighten the lower bound on the reduced dimensionality k.

Additionally, they provide an explicit formulation for a mapping that yields a

JL embedding. The key to their improvement involves replacing the random

k-dimensional subspace with a collection of k random, orthonormal vectors.

Such an approach allows for a simpler proof than that given by Johnson and

Lindenstrauss and, at the same time, it attains a sharper bound on k. The

following is the result provided by Frankl and Meahara.
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Theorem 2.2: Frankl and Meahara (1988): Given a set P of n points

in Rd, for some n, d ∈ N, and given ε ∈ (0, 1/2), choose k ≥ d9(ε2 −

2ε3/3)−1 log(n)e+ 1. If n > k2, then there exists a linear mapping T : Rd →

Rk such that for any two points u, v ∈ P ,

(1− ε)‖u− v‖2≤ ‖T (u)− T (v)‖2≤ (1 + ε)‖u− v‖2.

Frankl and Meahara establish that the mapping is of the form T =
√

d
k
XR,

where X=Xn×d is the data structure corresponding to the points in P , and

R=Rd×k is the projection matrix consisting of random orthonormal column

vectors.

Indyk and Motwani [28] provide the next improvement to the JL lemma by

simplifying Frankl and Meahara’s proof through relaxation of the conditions

of orthogonality and unit length among the column vectors of the projection

matrix R. More specifically, Indyk and Motwani reprove Theorem 2.2 using

a projection matrix R that consist of independent, Gaussian random vectors,

with each coordinate following N (0, 1/d).

The approach taken by Indyk and Motwani leads to a result that is almost

equivalent to that of Frankl and Meahara because, in high dimensions, inde-

pendent random vectors have high probability of being nearly orthogonal [11]

and also, the length of each column vector Ri of R has high probability of be-

ing close to the expected length of 1. The latter result follows from Gaussian

2-stability : if αi ∈ R and Zi ∼ N (0, 1) for i = 1, 2, · · · , d, then
∑d

i=1 αiZi ∼

N (0,
∑d

j=1 α
2
j ). Hence, choose projection coefficients rij that are independent,

identically distributed random variables, rij ∼ N (0, 1/d)
D
= 1√

d
Zi, and let

Ri = (r1i, r2i, · · · , rdi) denote the ith column of R so that

13



‖Ri‖2 D
=

d∑

j=1

r2j,i

D
=

1

d

d∑

j=1

Z2
i

D
=

1

d
χ2
d.

Thus, the squared length of each column of R has mean 1 and variance 2/d

which, for large d, is very close to 0. Gaussian 2-stability also plays a role in

simplifying the proof of Theorem 2.2. In particular, an argument similar to

that above shows that each projected point has squared length equal to

‖T (x)‖2 = ‖
√
d

k
xR‖2

=
k∑

i=1

( d∑

j=1

√
d

k
xjrj,i

)2

D
=

1

k

k∑

i=1

( d∑

j=1

xjZi

)2

D
=

1

k

k∑

i=1

(
‖x‖Zi

)2

D
=
‖x‖2
k

k∑

i=1

Z2
i

D
=
‖x‖2
k

χ2
k.

Therefore,

k‖T (x)‖2
‖(x)‖2 ∼ χ2

k. (2.3)

In order to verify that (2.2) holds true when using projection coefficients
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that are N (0, 1/d), use (2.3) and the well established concentration bounds

for the Chi-square distribution.

Dasgupta and Gupta [17] provide the next significant improvement to the

JL lemma. Like Indyk and Motwani, Dasgupta and Gupta rely on projection

coefficients that are spherically symmetric, (in the form of normal random

variables that are scaled so that the expected length of each column of R

is 1, i.e., rij ∼ N (0, 1/d)). However, Dasgupta and Gupta take spherical

symmetry one step further by making the following observation: the projection

of a fixed unit vector onto a random hyperplane through the origin follows

the same distribution as the projection of a uniformly random unit vector

projected onto a fixed, k-dimensional subspace. A uniformly random unit

vector is a Gaussian vector scaled to unit length and, for simplicity, the fixed

k-dimensional subspace is taken to be the first k coordinates of this scaled

Gaussian vector. Dasgupta and Gupta’s proof reduces to analysis of a scaled

Gaussian random variable, leading to the following result:

Theorem 2.3: Dasgupta and Gupta (1999): Consider a set P of n

points in Rd, for some n, d ∈ N. Choose ε ∈ (0, 1) and k ≥ d4(ε2/2 −

ε3/3)−1 log(n)e. Then there exists a linear mapping T : Rd → Rk such that

for any two points u, v ∈ P ,

(1− ε)‖u− v‖2≤ ‖T (u)− T (v)‖2≤ (1 + ε)‖u− v‖2.

Theorem 2.3 gives the tightest bound on k thus far discussed and, sur-

prisingly, the proof is much simpler than the proofs of previously discussed

approaches. In fact, Dasgupta and Gupta provide a bound on k that is so

tight that nearly a decade would elapse before its next improvement.
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Matous̆ek [36] makes the next contribution by generalizing and simplifying

many of the previously discussed treatments of the JL lemma. In particular,

Matous̆ek provides a generalized statement of the JL lemma using the language

of subgaussian tails. Although Matous̆ek’s results do not actually lead to a

tighter JL embedding, his treatment of the JL lemma deserves mention due

to its clever marriage of generality and simplicity.

Matous̆ek’s first main result follows from the observation that many of the

previous treatments of the JL lemma rely on projection coefficients that have

a subgaussian tail. A random variable X is said to have a subgaussian upper

tail if ∃ a > 0 so that P(X > λ) ≤ exp(−aλ2), for all λ > 0; if this inequality

holds for all λ ≤ λ0, then X is said to have a subgaussian upper tail up to λ0.

Furthermore, if −X also has a subgaussian upper tail, then X is said to have

a subgaussian tail. Lastly, suppose that X1, X2, · · · is a sequence of random

variables, each with subgaussian tail. If the constant a in the subgaussian tail

inequality is the same for each Xi, then the Xis are said to have a uniform

subgaussian tail. Matous̆ek’s first result follows.

Theorem 2.4: Matous̆ek (2008): Consider a collection {Rij}i,j of inde-

pendent random variables, where E(Rij) = 0 and V(Rij) = 1 for each Rij

and also, suppose that {Rij}i,j has a uniform subgaussian tail. Next, for

fixed d ∈ N, ε ∈ (0, 1/2], δ ∈ (0, 1), set k = C log(2/δ)
ε2

, for a constant C which

depends on the constant a in the subgaussian tail inequality for Rij. Finally,

define the random linear map T : Rd → Rk as follows:

T (x)i =
1√
k

d∑

j=1

Rijxj, for i = 1, 2, · · · , k,

where T (x)i is the ith coordinate of T (x) ∈ Rk, and xj is the jth coordinate
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of x ∈ Rd. Then every x ∈ Rd, satisfies

P((1− ε)‖x‖≤ ‖T (x)‖≤ (1 + ε)‖x‖) ≥ 1− δ.

In the proof of Theorem 2.4, Matous̆ek defines the random mapping T :

Rd → Rk as T (x) = 1√
k
xR, where R = Rd×k is the projection matrix consisting

of projection coefficients with a uniform subgaussian tail. He then shows

that P(‖T (x)‖≤ 1 − ε) ≤ δ/2 and that P(‖T (x)‖≥ 1 + ε) ≤ δ/2, so that

P(1 − ε ≤ ‖T (x)‖≤ 1 + ε) ≥ 1 − δ. The proof relies on Markov’s inequality

(defined in Chapter 4), and the properties of subgaussian tails, together with

the fact that ‖T (x)‖2−1 has a subgaussian tail up to
√
k.

Rojo and Nguyen [39] provide an alternative approach to improving the

lower bound of JL embeddings which involves the use of numerical methods.

Indeed, each of the previously discussed approaches generally involve the use

of Markov’s inequality and often resort to the use of moment generating func-

tions. Rojo and Ngueyn’s result is given below in Theorem 2.5.

Theorem 2.5: Rojo and Nguyen (2010): For any ε ∈ (0, 1), n ∈ N, let

k be the smallest even integer satisfying: (1+ε
ε

)g(k, ε) ≤ 1
n2 , where g(k, ε) =

k(1+ε)
2

k
2−1

( k
2
−1)! e−

k(1+ε)
2 is a decreasing function in k. Then for any set P of n points

in Rd, there is a linear map T : Rd → Rk such that for any u, v ∈ P ,

P [(1− ε)‖u− v‖2≤ ‖T (u)− T (v)‖2≤ (1 + ε)‖u− v‖2] ≥ 1− 2/n2.

The bound for k can be obtained numerically by finding the smallest even

integer k satisfying the inequality (1+ε
ε

)g(k, ε) ≤ 1
n2 .

Rojo and Nguyen present results from a variety of simulations which sug-
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gest that their approach can lead to significantly smaller k (in some instances

up to 40 % smaller than what has been obtained using previously discussed

methods). Their treatment of the JL lemma is the most recent improvement

on the lower bound for the reduced dimensionality k.

The improvements to the JL lemma discussed in this section have led to

a lower bound on k that is essentially optimal. However, each approach fails

to address one major issue, namely, the immense runtime associated with the

computation of JL embeddings. The next section shifts to improvements to

the JL lemma regarding the efficiency of JL embeddings.

2.C Improving Efficiency of JL Embeddings

This section provides a detailed summary of significant improvements regard-

ing the efficiency of JL embeddings. Although the JL lemma is improved

upon by each of the results discussed in Section 2.B, none of these approaches

address the immense runtime associated with the computation of the corre-

sponding JL embedding. A JL embedding can be performed to transform

high-dimensional data into lower dimensions so that computationally expen-

sive operations can be performed with less runtime. The embedding itself can

be computationally expensive, so much so that, in some situations, there is

little to gain by performing the embedding. For this reason, the JL lemma

has been subjected to a new sequence of improvements, each of which improve

the efficiency of the JL embedding, either through reduction in the number of

operations required or through reduction in the amount of space required.
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2.C.1 Improving Efficiency via Sparsification of the Pro-

jection Matrix

One approach to improving the efficiency of the JL lemma is through increas-

ing the speed of JL embeddings via sparsification of the projection matrices.

In this context, sparsification refers to replacing a large number of matrix en-

tries with zero entries. This leads to a significant reduction in the number of

operations needed to perform an embedding. The methods discussed in the

previous section involve matrix multiplication between the data structure X

and a projection matrix R populated with real numbers; as n and d increase,

the computational expense of such matrix multiplication grows rapidly. This

issue is overcome by the use of the sparse projection matrices.

Achlioptas [1] (2003) provides the first development of a faster JL em-

bedding through the use of projection coefficients rij that are independent

random variables, identically distributed according to either of the following

distributions:

rij =





1 with probability 1/2,

− 1 with probability 1/2, (2.4)

or

rij =





√
3 with probability 1/6,

−
√

3 with probability 1/6,

0 with probability 2/3. (2.5)
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Achlioptas essentially reproves Theorem 2.3, (the result of Dasgupta and

Gupta discussed in section 2.B) using projection coefficients distributed ac-

cording to either (2.4) or (2.5). The main advantage of using projection coef-

ficients that are distributed according to (2.4) is that each coordinate T (x)i of

the embedding is computed using only addition and subtraction of the origi-

nal coordinates of a data point x while no multiplication is necessary. More

specifically, T (x)i is calculated as follows: partition the coordinates of x ran-

domly into two groups, compute the sum of each group, and set T (x)i to be

the difference of these two sums. This approach significantly improves runtime

when obtaining a JL embedding, since it is not necessary to perform repeated

matrix multiplication (as is the case when projection coordinates are indepen-

dent, identically distributed Gaussian random variables). Furthermore, a JL

embedding can be found roughly 3 times faster when projection coefficients are

distributed according to (2.5) instead of (2.4). Regardless of whether projec-

tion coefficients are distributed according to (2.4) or (2.5), computation of each

coordinate T (x)i involves addition and subtraction of the original coordinates.

However, when (2.5) is used, only about 1/3 of the original coordinates are

considered while the remaining coordinates are set to 0 and therefore, roughly

1/3 as many operations are required.

Achlioptas’ approach results in much faster computation of JL embeddings

and, perhaps more importantly, this improvement in efficiency does not pe-

nalize the quality of the embedding. First, he shows that spherical symmetry

of the projection coefficients is not necessary in order to obtain a JL embed-

ding but rather, concentration of the projected points is sufficient. He then

shows that the even moments of his random projections are dominated by

those of the spherically symmetric case, so that a JL embedding can be found
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with probability at least as large as that in the spherical case. The question

becomes: can efficiency be further improved while maintaining tightness of

the embedding through use an even sparser projection matrix? Achlioptas

addresses this question, claiming that the projection matrix cannot consist of

much more than two thirds zero entries without sacrificing tightness of the

embedding.

Ailon and Chazelle [2] (2006) extend Achlioptas’ result by showing that

highly sparse projection matrices can be used, but only on data points that

are well-spread1. Recall that Achlioptas [1] shows that roughly two thirds

of the projection matrix should be zero entries in order to guarantee that

the optimal lower bound on k is attained; as the sparsity of the projection

matrix increases beyond this threshold, the bound on k begins to suffer. In

particular, sparse projection matrices are ineffective when dealing with data

of low intrinsic dimensionality, since a sparse projection matrix tends to cause

large distortion of a sparse vector. However, Ailon and Chazelle avoid this

issue by considering data points that are well-spread across the dimensions

in which they are observed; they show that, in this case, sparser projection

matrices, more than two thirds of which are zero entries, can be used to obtain

a faster JL embedding.

Ailon and Chazelle not only prove that sparse projection matrices may be

used on data points that are well-spread, they also provide a clever construction

that allows for the use of a sparse projection matrix on any data. The key

to their approach involves preconditioning the projection with a randomized

Fourier transform that isometrically increases the support of a sparse vector

1A unit vector is well-spread if it is close to 1√
d
(±1,±1, · · · ,±1) while something close

to (1, 0, · · · , 0) is not well-spread since most of its mass lies in its first dimension.
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[2]; such a preconditoning is achieved by defining the projection matrix R to

be the product of three matrices: R = (MHD)T , where M and D are random

matrices, and H is deterministic2. More specifically:

• M = Mk×d is a sparse matrix consisting of roughly 1−q zero entries, and

roughly q entries that are i.i.dN (0, 1/q), where q = min
{

Θ(d−1 log2 n), 1
}

.

• H = Hd×d is a normalized Walsh matrix3.

• D = Dd×d is a diagonal matrix whose entries are independent, identically

distributed Uniform{0, 1}.

Ailon and Chazelle then prove the following variant of the JL lemma using

a projection matrix R = (MHD)T :

Theorem 2.6: Ailon and Chazelle (2006): Given a set P of n points in

Rd, for some n, d ∈ N, and given ε ∈ (0, 1), choose k = Cε−2 log(n), for

some suitably large constant C. Then there exists a random linear mapping

T : Rd → Rk of the form T (x) = x(MHD)T , such that, with probability of

at least 2/3, the following two events occur:

1. (1− ε)k‖x‖≤ ‖T (x)‖≤ (1 + ε)k‖x‖, and

2. The mapping T requires O(d log(d) + min{dε−2 log(n), ε−2 log3(n)}) op-

erations

2Actually, Ailon and Chazelle consider x to be a d × 1 column vector and they define
T (x) = MHDx. In the current discussion, however, x is regarded as a 1 × d row vector
which leads to the alternative expression T (x) = x(MHD)T

3A Walsh matrix consists of entries that are equal to ±1 such that any two row vectors
are orthogonal, and any two column vectors are orthogonal; normalized simply means the
matrix is multiplied by d−1/2.
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Ailon and Chazelle introduce the term Fast Johnson and Lindenstrauss

Transform, or simply FJLT, to describe JL embeddings of the form discussed

in Theorem 2.6. The FJLT has itself sparked a great deal of research focused on

improving the speed of the transform. These improvements are subsequently

discussed in Section 2.C.2

Matous̆ek [36] (2008) makes the next contribution by providing a simplified

version of Ailon and Chazelle’s result, wherein he introduces a computation-

ally simpler alternative to the sparse matrix M from Theorem 2.6. In fact,

Matous̆ek improves upon Ailon and Chazelle’s result in a manner analogous

to Achlioptas’ improvement on the Indyk and Motwani result. In particular,

Matous̆ek replaces the Gaussian projection coefficients of the matrix M with

scaled coefficients distributed over ±1 such that the projection matrix R has

entries that are distributed according to the following:

rij =





1/
√
q with probability q/2,

− 1/
√
q with probability q/2,

0 with probability 1− q, (2.6)

where, q controls the sparsity of the projection matrix.

Before moving on, it is useful to note that Theorem 2.4 (Matous̆ek’s first

result, discussed in section 2.B) can be applied when projection coefficients are

distributed according to (2.6), since such coefficients have a zero mean, unit

variance, and a uniform subgaussian tail with coefficient a = q2/2. However,

recall that the reduced space has dimension k = C log(2/δ)
ε2

, where C depends on

the constant a in the subgaussian tail inequality of the elements of R. It can be

shown that C = O(a−2), so that q → 0 implies a → 0, which further implies
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k → ∞. Therefore, Theorem 2.4 is not practical when dealing with highly

sparse projection matrices distributed according to (2.6). In order to deal with

the issues that arise from using highly sparse projection matrices, Matous̆ek

further considers data points that are well-spread; in particular, he defines the

sparsity parameter q to be inversely proportional to the sparsity of the input

vector. Matous̆ek’s construction is such that the reduced dimensionality k no

longer depends on the constant aS, provided x is sufficiently well spread. More

formally,

Theorem 2.7: Matous̆ek (2008): Let each of d ∈ N+, ε ∈ (0, 1/2), δ ∈

(0, 1), and α ∈ [d−1/2, 1] be parameters, and define the sparsity parameter

q = C0α
2 log(d/εδ),

where C0 is a sufficiently large constant, and where q is assumed to be in

[0, 1]. Next, define the independent, identically distributed random variables

Sij =





q−1/2 with probability q/2,

−q−1/2 with probability q/2,

0 with probability 1− q,

for i = 1, · · · , k, j = 1, · · · , d. Next, set k = Cε−2 log(4/δ), where C is a

sufficiently large constant, and define the random linear mapping T : Rd →

Rk as follows:

T (x)i =
1√
k

d∑

j=1

Sijxj,
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for i = 1, · · · , k. Then if x ∈ Rd such that ‖x‖∞≤ α‖x‖, it follows that

P((1− ε)‖x‖≤ ‖T (x)‖≤ (1 + ε)‖x‖) ≥ 1− δ.

In the proof of Theorem 2.7, Matous̆ek defines the random mapping T :

Rd → Rk as T (x) = 1√
k
xS, where S = Sdxk is the sparse projection matrix

consisting of projection coefficients following the distribution S defined above.

Similar to proof of Theorem 2.4, Matous̆ek shows that P(‖T (x)‖≤ 1−ε) ≤ δ/2

and that P(‖T (x)‖≥ 1 + ε) ≤ δ/2, so that P(1− ε ≤ ‖T (x)‖≤ 1 + ε) ≥ 1− δ.

The proof also relies on Markov’s inequality.

The main difference between Theorems 2.4 and 2.7 is that the proof of

the former relies on projection coefficients with a subgaussian tail while the

proof of the latter relies on the sparsity of the input vector. More specifically,

Matous̆ek shows that ‖T (x)‖2−1 has a subgaussian tail, but this subgaussian

tail is only guaranteed up to a constant that depends on the sparsity of both S

and x. Recall that x is assumed to be a fixed data point, or input vector, and

so the sparsity of x can be measured prior to constructing S. The sparsity of S

is chosen in such a way that the subgaussian tail of ‖T (x)‖2−1 is guaranteed

up to
√
k and, from this point, the remainder of the proof follows in a manner

similar to that of Theorem 2.4.

In summary, Achlioptas proves a variant of the JL lemma using slightly

sparse projection matrices. His approach preserves the nearly optimal tight-

ness of Dasgupta and Gupta’s version of the JL lemma. Ailon and Chazelle as

well as Matous̆ek prove variants of the JL lemma using highly sparse projec-

tion matrices. However, neither of their results are particularly tight, since the

bound on the reduced dimensionality k depends on loosely defined constants
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C and C0. Such loose bounds are acceptable since an even tighter bound

on k can be obtained using a data-driven approach, as illustrated by feature

hashing.

2.C.2 Improving Efficiency via Feature Hashing

Computer scientists have also contributed to increased efficiency of the JL

lemma by improving methods of data storage and retrieval; faster access to

data leads to a faster JL embedding. The aim is efficiency in the amount of

required computing resources: time and space. There is a time/space trade-off

in implementation; a gain in time efficiency leads to a loss in space efficiency

and vice versa. Since computing cycles are already fast, efficiency is gained by

trading time for space [34].

A computer science approach to improving the JL lemma is feature hashing.

Feature hashing is a space-efficient way to convert a feature vector into an

index vector via the use of a hash function. A hash function is a storage

organization strategy that speeds up retrieval by mapping data of arbitrary

size to data of fixed size. Feature hashing applies a hash function to each

feature in the feature vector; the features are then identified with the hash

values in the index vector. Hashing methods offer a gain in efficiency of JL

embeddings because the hash function computes the indices, reducing the size

of the index vector needed to represent the input feature vector [34, 35, 45].

Dasgupta, Kumar and Sarlos [18] begin a series of enhancements that follow

FJLT. They improve the speed of JL embeddings by suppressing the use of

projection coefficients that are independent random variables. Instead, they

rely upon the construction of a hash function that entails dependencies within
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feature vectors. For a subclass of matrices, their hashing scheme leads to

fewer non-zero entries per column being needed to guarantee that the resulting

matrix can lead to a JL embedding that maintains ε-distortion.

Each of the previously discussed treatments of the JL lemma have con-

tributed to its evolution in terms of improvements to the lower bound of the

reduced dimensionality k as well as the efficiency of JL embeddings via sparse

projection matrices and feature hashing. The JL lemma has evolved into an

essential tool in dimensionality reduction. Numerous practical applications of

the JL lemma have resulted.

2.D Applications of the Johnson and Linden-

strauss Lemma

An application that includes an n×d matrix may benefit from a JL embedding,

especially if d is large. Although there are other methods of dimensionality

reduction [24], such methods typically involve algorithms, wherein the number

of steps grows exponentially with the number of dimensions. Hence, a reduc-

tion in d prior to execution of such algorithms means that the corresponding

problem can be solved more efficiently. One such application is image retrieval,

wherein an image is retrieved from the internet or any large image database

by scanning its feature vector. Images are characterized by a large number of

features which must be distinguished and therefore, an image feature vector

is of huge dimensionality. An efficient feature reduction technique is provided

by the Fast Johnson and Lindenstrauss transform (FJLT) image hashing algo-

rithm as described in Section 2.C.2 and improved upon by using a parameter
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estimation algorithm for FJLT introduced in [22].

Genetic algorithms (GAs) are another class of applications that involve

high-dimensional data. In GAs, a population of individuals is viewed as a

matrix such that each row is a bitmap that encodes a possible solution to a

given problem. The goal is to find the best solution among possible solutions,

each of which can be viewed as an organism with the matrix entry representing

the organism’s chromosome. Mutation occurs by flipping a random bit in the

string that represents a solution and crossover by mingling bits from different

solutions. The genome of an organism is typically huge as is the number of

bits representing a solution, particularly with the occurrence of mutation and

crossover. Bertoni and Valentini [7] use JL embeddings to reduce dimension-

ality in GAs.

Classification is an approach in statistics and machine learning that may

benefit from dimensionality reduction. Classification refers to the development

of models that predict class membership of new observations on the basis of

a training set of examples with known membership [40, 27]. A specific appli-

cation is the diagnosis of a new patient based on observed characteristics of

previous patients. The symptoms of previous patients are many and varied,

leading to feature vectors of high-dimensionality. A feature reduction tech-

nique would be helpful because the learning algorithm converges more quickly

on a training set of reduced dimensionality [25].

Paul, Athithan and Murty [38] investigate the use of random projections

(akin to JL embeddings) as a preprocessing step to data analysis. Specifically,

they compare the efficacy of principal component analysis with random pro-

jections as a preliminary step that reduces the dimensionality of data prior to

further analysis. Their results suggest that random projections provide a more
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efficient preprocessing step than principal component analysis, as illustrated

by increased speed of the algorithm they consider.

The applications reviewed above do not necessitate the use of JL embed-

dings for dimensionality reduction but rather, a JL embedding is one choice

for dimensionality reduction and/or it may be used as a preprocessing step

prior to use of other approaches. However, there are applications where a JL

embedding is the most suitable choice, which include data streaming, nearest

neighbor searches and signal compression.

2.D.1 Data Streaming

Streaming applications [14, 15, 30, 33] are characterized by huge amounts

of data that need to be processed with limited storage. In such situations,

dimensionality reduction based on the JL lemma is particularly useful since

not all data is needed prior to computation. Section 2.B discussed several

improvements to the JL lemma and, in each, the reduced dimensionality k

is of the order log(n). Thus, a data stream consisting of n points can be

represented with only O(log(n)) dimensions. Moreover, this bound on the

reduced dimensionality is determined prior to streaming, and so dimensionality

reduction may begin prior to receiving the nth data point in the stream.

Theorem 2.3 in Section 2.B provides the tight bound of k ≥ d4(ε2/2 −

ε3/3)−1 log(n)e given by Dasgupta and Gupta [17]. For some prespecified ε,

the bound on k can be determined without any information other than the

value of n. The bound on k can be used to determine the dimensionality of the

projection matrix prior to receiving any data. Therefore, if a high-dimensional

data set consisting of n points is streamed one point at a time, pointwise JL
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embeddings can be performed. This application illustrates a situation where a

JL embedding is superior to other methods of dimensionality reduction, such

as principal component analysis and multidimensional scaling, each of which

require all n data points prior to dimensionality reduction.

2.D.2 Nearest Neighbor Search

Nearest neighbor searches can also benefit from application of the JL lemma,

since the nearest neighbour problem is computationally expensive when dealing

with high-dimensional data. The nearest neighbor problem states the following:

Given a set P consisting of n points in Rd, preprocess P in such a way that

for any query point, q ∈ P , its nearest neighbor p can be found quickly, where

p =argmin
pi∈P

‖pi − q‖.

Since there are n points in d-dimensions, each such query requires O(nd)

steps, and this grows very fast with d. A solution to the nearest neighbor

problem for high-dimensional data allows the use of randomization and ap-

proximation [2, 19, 20, 28]. In particular, the ε-approximate nearest neighbor

problem is the following:

Given a set P consisting of n points in Rd, preprocess P in such a way that

for any query point, q ∈ P , the point p can be found quickly, where p is the

point such that, for every p′ ∈ P ,

‖p− q‖≤ (1 + ε)‖p′ − q‖.

ε-nearest neighbor queries can be solved in as little as O(ε−2d log(n)) time by
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preprocessing P with a JL embedding [2].

2.D.3 Compressed Sensing

JL embeddings are also a central tool in compressed sensing. Compressed sens-

ing is a class of problems that aim to recover signals from few measurements

with small error. Many signals are sparse (only a few non-zero coefficients) and

they can be reconstructed in a known basis. However, there is a theoretical

limit on the amount of information needed to provide a digital reconstruction of

an analog signal, and this limit is larger than current technologies can support

for applications such as video and medical imaging. Fortunately, the JL lemma

provides a guarantee of the existence of a compressed sensing matrix that sat-

isfies the restricted isometry property; such a matrix is an essential part of the

reconstruction of a signal from limited information [4, 5, 6, 12, 16, 26, 44].

This chapter provided a review of the literature spanning 4 different topics

regarding the JL lemma. Section 2.A provided an introduction to JL embed-

dings, which refer to transformations into lower dimensions using the result

of the JL lemma. Section 2.B discussed the first phase of improvements to

the JL lemma, which focus on improving the lower bound on the reduced di-

mensionality k. Section 2.C reviewed methods for dimensionality reduction

based on the JL lemma, where such methods are efficient in the amount of

computing resources required (time and space). Section 2.C also demonstrated

improvements to the speed of JL embeddings by reducing the computational

expense of matrix multiplication and by providing faster access to data via fea-

ture hashing. Section 2.D provided a review of applications of the JL lemma,

together with a discussion of the lemma’s suitability for such applications:
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some applications may benefit from the JL lemma (image retrieval, genetic

algorithms, and classification in machine learning) while the JL lemma is an

ideal tool for other applications (data streaming, nearest neighbor search, and

compressed sensing).

In summary, the JL lemma first appeared in the literature 1984 [31]. Since

then, the lemma has evolved in a number of ways. The first phase of its

evolution is characterized by a number of theoretical improvements to the

lower bound on reduced dimensionality [23, 28, 17, 36, 39]. The second phase

of its evolution shifted to computational improvements in efficiency through

reduction of the number of operations required [1, 2, 36] and reduction in the

amount of space required [18, 34, 35, 45]. Such evolutionary processes have

rendered the JL lemma an essential tool in high dimensional data analysis

[2, 4, 5, 6, 7, 12, 14, 15, 16, 26, 22, 25, 27, 30, 33, 38, 40, 44]. Despite the

successful applications which result from data-driven computational solutions,

there is a pressing need to revisit recent treatments of the JL lemma with the

mathematical rigor of earlier approaches. Matous̆ek [36] rests at the junction

between mathematical and computational approaches.

Section 2.D provided a review of applications of the JL lemma, together

with a discussion of the lemma’s suitability for such applications: some appli-

cations may benefit from the JL lemma (image retrieval, genetic algorithms,

and classification in machine learning) while the JL lemma is an ideal tool for

other applications (data streaming, nearest neighbor search, and compressed

sensing).
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Chapter 3

Statement of Problem and

Methodology

The JL lemma is an essential tool in high dimensional data analysis. The

current investigation seeks to improve the mathematical foundations of the JL

lemma through improving upon Matous̆ek’s results [36]. First, Matous̆ek pro-

vides a generalized statement of the JL lemma using subgaussian tails and this

statement subsumes previous treatments of the JL lemma. Second, Matous̆ek

provides a variant of the JL lemma that contains a simple and efficient con-

struction using sparse projection matrices that are included in current algo-

rithms in dimensionality reduction. However, Matous̆ek’s treatment of the JL

lemma leads to results that lack the specificity of earlier approaches. In partic-

ular, Matous̆ek’s results contain a lower bound on k that depends on constants

C and C0 which are not well-defined. This thesis aims to obtain specific val-

ues for C and C0 using a blend of mathematical analysis and computational

solutions.
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3.A Statement of Problem

Recall from sections 2.B and 2.C that Matous̆ek’s results are fairly general but

this generality comes at the cost of weakened bounds on the reduced dimen-

sionality k. More specifically, Theorems 2.4 and 2.7 respectively consider two

families of projection coefficients: those with a subgaussian tail and those that

are sparsely distributed. When the projection coefficients have a subgaussian

tail, a JL embedding can be obtained for any input vector. Although this

approach can reduce the dimensionality of a high-dimensional data set, the

embedding itself can be computationally expensive and so this approach is

not always useful. On the other hand, sparse projection matrices can be used

in order to obtain a JL embedding that requires much less runtime. How-

ever, sparse projection matrices are only suitable when the input vectors are

sufficiently dense: denser input vectors allow for sparser projection matrices;

sparser input vectors require denser projection matrices. One problem with

Matous̆ek’s results, pertaining to these two situations, is that he does not

give specific bounds for the reduced dimensionality k but rather, he relies on

asymptotic notation.

Inspired by Matous̆ek’s results, the first goal of this thesis is to obtain

specific bounds for k. The approach is based largely on that of Matous̆ek, using

nearly identical arguments but more detailed analysis and in some proofs, an

altogether different approach is taken. The second goal of this thesis is to test

and improve the accuracy of these new results on simulated data.
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3.B Methodology

Two approaches are employed in an attempt to improve the JL lemma. First

variants of Matous̆ek’s results are proved using similar but more detailed anal-

ysis. Second, the results of these variants are tested and improved with simu-

lated data.

3.B.1 Proving Variants of Matous̆ek’s Results

Matous̆ek [36] provides results that are essential to the methodology of this

thesis. Recall from Section 2.B and 2.C the following two theorems:

Theorem 2.4: Matous̆ek : Consider a collection {Rij}i,j of independent ran-

dom variables, where E(Rij) = 0 and V(Rij) = 1 for each Rij and also,

suppose that {Rij}i,j has a uniform subgaussian tail. Next, for fixed d ∈ N,

ε ∈ (0, 1/2], δ ∈ (0, 1), let us set k = C log(2/δ)
ε2

, for a constant C which de-

pends on the constant a in the subgaussian tail inequality for Rij. Finally,

let us define the random linear map T : Rd → Rk as follows:

T (x)i =
1√
k

d∑

j=1

Rijxj, for i = 1, 2, · · · , k,

where T (x)i is the ith coordinate of T (x) ∈ Rk, and xj is the jth coordinate

of x ∈ Rd. Then every x ∈ Rd, satisfies

P((1− ε)‖x‖≤ ‖T (x)‖≤ (1 + ε)‖x‖) ≥ 1− δ.
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Theorem 2.7: Matous̆ek : Let each of d ∈ N+, ε ∈ (0, 1/2), δ ∈ (0, 1), and

α ∈ [d−1/2, 1] be parameters, and define the sparsity parameter

q = C0α
2 log(d/εδ),

where C0 is a sufficiently large constant, and where q is assumed to be in

[0, 1]. Next, define the independent, identically distributed random variables

Sij =





q−1/2 with probability q/2,

−q−1/2 with probability q/2,

0 with probability 1− q,

for i = 1, · · · , k, j = 1, · · · , d. Next, set k = Cε−2 log(4/δ), where C is a

sufficiently large constant, and define the random linear mapping T : Rd →

Rk as follows:

T (x)i =
1√
k

d∑

j=1

Sijxj,

for i = 1, · · · , k. Then if x ∈ Rd such that ‖x‖∞≤ α‖x‖, it follows that

P((1− ε)‖x‖≤ ‖T (x)‖≤ (1 + ε)‖x‖) ≥ 1− δ.

Matous̆ek proves each of Theorems 2.4 and 2.7 with the use of standard

techniques from analysis and probability theory; his proofs are outlined in

Sections 2.B and 2.C. In his proofs, Matous̆ek does not provide specific bounds

on the constants C or C0. In the next chapter, I provide variants of Theorems

2.4 and 2.7, which provide specific bounds on the constants C and C0. My

proofs are structured in the same way as Matous̆ek’s, but they contain detailed

analysis that lead to the specific bounds.
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3.B.2 Testing and Improving Variants of Matous̆ek’s

Results on Simulated Data

Having completed the proofs of my more detailed variants of Theorems 2.4

and 2.7, the next step is to determine the efficacy of these results on simulated

data. JL embeddings are performed on four simulated data sets in order to

empirically estimate the bound on C. For several choices of ε and δ, distortion

is measured after each embedding and the proportion of lengths that maintain

ε-distortion is compared to the theoretical probability 1 − δ. This process is

repeated with decreasing values of C until the empirical probability approaches

the theoretical probability of 1− δ.

The simulations are performed using Matlab with the default random num-

ber generator, i.e., the random seed automatically generated by Matlab. Data

sets are simulated using four different probability distributions: Uniform, Non-

Central Cauchy, Exponential and Mixed Beta. To test the result of my variant

of Theorem 2.4, projection coefficients are chosen from a variety of spherically

symmetric distributions including the Gaussian and Uniform distributions as

well as the distributions given in equations (2.4) and (2.5). To test the re-

sult of my variant of Theorem 2.7, the projection coefficients are chosen to

be distributed over {−q−1/2, 0, q−1/2}, where 0 has probability 1 − q, ±q−1/2

each have probability q/2, and where q is proportional to the L∞ norm of the

simulated data points in accordance with Theorem 2.7. Refer to Appendices

A and B for the Matlab code.

In the next chapter, results are presented in two sections that correspond

to the mathematical and computational approaches used to improve the JL

lemma. It is important to note that considerable credit is given to Matous̆ek
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because he developed Theorems 2.4 and 2.7. However, it is also important that

my own significant and extensive contribution is clearly credited. In essence,

I borrow Matous̆ek blueprint to build a stronger house.
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Chapter 4

Mathematical and

Computational Results

I develop three theorems, two of which are refinements of Theorems 2.4 and

2.7 that give more specific bounds on C than given by Matous̆ek [36]. I

then provide detailed proofs of my refined theorems using a similar, but more

detailed, approach than that of Matous̆ek. Next, I test the results of my refined

theorems by obtaining JL embeddings on a variety of simulated data sets. The

results of these tests imply a lower dimensional embedding than that suggested

by my refined theorems. Accordingly, a computational approach is taken in

order to improve upon the results of my refined theorems by repeating these

tests with sequentially decreasing values of C. This approach leads a tighter

estimate of the bound on the reduced dimensionality than suggested by my

refined theorems. The results of a representative selection of embeddings are

then summarized.
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4.A Mathematical Results

This section introduces three theorems, the proofs of which are presented in

Section 4.B. Theorem 4.1 provides a simple and practical result that can be

used in applications of the JL lemma. Theorems 4.2 and 4.3 are refinements

of Theorems 2.4 and 2.7; refined in the sense that they provide more specific

values for the bound on the reduced dimensionality. These theorems are based

on Matous̆ek’s treatment of the JL lemma [36].

Theorem 4.1: Consider a set P of n points in Rd, for some n, d ∈ N. Given

ε ∈ (0, 1/2), let k = O(ε−2 log n). Then there is a mapping T : Rd → Rk

such that

P((1− ε)‖u− v‖≤ ‖T (u)− T (v)‖≤ (1 + ε)‖u− v‖, ∀u, v ∈ P ) ≥ 1/2.

The proof of Theorem 4.11 relies on the existence of a random linear map,

T : Rd → Rk that satisfies the following condition: if x ∈ Rd, then

P((1− ε)‖x‖≤ ‖T (x)‖≤ (1 + ε)‖x‖) ≥ 1− 1

n2
. (4.1)

The next two theorems provide two families from which the mapping T

can be taken, and any such T can be used to obtain the result of Theorem

4.1. In both theorems, the mapping T is of the form T (X) = 1√
k
XR, where

R=Rd×k is the projection matrix, and X=Xn×d is the data structure. In each

theorem, T is defined as in Theorems 2.4 and 2.7, with the former relying on

subgaussian projection coefficients and the latter relying on sparse projection

1In fact, all known proofs of the JL lemma rely on statements akin to (4.1).
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matrices.

Theorem 4.2: Consider a collection {Rij}i,j of independent random variables,

where E(Rij) = 0 and V(Rij) = 1 for each Rij and also, suppose that {Rij}i,j
has a uniform subgaussian tail. Next, for fixed d ∈ N, ε ∈ (0, 1/2], δ ∈ (0, 1),

let us set k = C log(2/δ)
ε2

, for C ≥ 384(1 + 8/aR)2, where aR is the constant

in the subgaussian upper tail of the Rijs. Finally, let us define the random

linear map T : Rd → Rk as follows:

T (x)i =
1√
k

d∑

j=1

Rijxj, for i = 1, 2, · · · , k,

where T (x)i is the ith coordinate of T (x) ∈ Rk, and xj is the jth coordinate

of x ∈ Rd. For every x ∈ Rd, it turns out that

P((1− ε)‖x‖≤ ‖T (x)‖≤ (1 + ε)‖x‖) ≥ 1− δ.

Theorem 4.2 can be improved upon by further requiring that the projection

matrix is sparse, as discussed in Section 2.C.1. That is, define the mapping

T = 1
k
XS, where elements of S are independent, identically distributed ac-

cording to the following distribution

Sij =





q−1/2 with probability q/2,

−q−1/2 with probability q/2,

0 with probability 1− q.

In this case, the mapping T can be used to find a JL embedding provided

the data points in X are sufficiently well-spread2. More specifically, the choice

2A unit vector is well-spread if it is close to 1√
d
(±1,±1, · · · ,±1) while something close
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of the sparsity parameter q depends on the sparsity of data; sparse data vectors

require large q while dense data vectors allow for small q (smaller q implies a

sparser projection matrix).

Before moving on, it is useful to note that Theorem 4.2 can be applied when

projection coefficients are independent, identically distributed according to S,

since S is mean 0, unit variance, and S has a subgaussian tail with coefficient

aS = q2/2 (a simple exercise involving inequality (4.2)) . However, recall that

the reduced space has dimension k = C log(2/δ)
ε2

, where C ≥ 384(1 + 8/aS)2, so

that q → 0 implies aS → 0, which further implies k → ∞. Therefore, Theo-

rem 4.2 is not practical when dealing with highly sparse projection matrices

distributed according to S while the following theorem is because it gives a

formulation for the reduced dimensionality k that no longer depends on the

constant aS, so long as x is sufficiently well spread.

Theorem 4.3: Let each of d ∈ N+, ε ∈ (0, 1/2), δ ∈ (0, 1), and α ∈

[d−1/2, 1]be parameters, and define the sparsity parameter

q = C0α
2 log(d/εδ),

where C0 ≥ 1 and all parameters are chosen in such a way that q ∈ [0, 1].

Next, define the independent, identically distributed random variables

Sij =





q−1/2 with probability q/2,

−q−1/2 with probability q/2,

0 with probability 1− q,

for i = 1, · · · , k, j = 1, · · · , d. Next, set k = Cε−2 log(4/δ), where C ≥ 768,

to (1, 0, · · · , 0) is not well-spread since most of its mass lies in its first dimension.
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and define the random linear mapping T : Rd → Rk as follows:

T (x)i =
1√
k

d∑

j=1

Sijxj,

for i = 1, · · · , k. Then if x ∈ Rd such that ‖x‖∞≤ α‖x‖, it follows that

P((1− ε)‖x‖≤ ‖T (x)‖≤ (1 + ε)‖x‖) ≥ 1− δ.

This section introduced Theorems 4.1, 4.2 and 4.3, each of which are based

on Matous̆ek’s discussion of the JL Lemma [36]. Indeed, Theorems 4.2 and

4.3 are simply refinements of Theorems 2.4 and 2.7 that provide more specific

values for the bound on the reduced dimensionality. The next section contains

detailed proofs of Theorems 4.1 through 4.3. The proofs contained in the next

section are similar to Matous̆ek’s proofs of 2.4 and 2.7, but they contain more

detailed and specific arguments that lead to more specific results.

4.B Proofs of Theorems 4.1, 4.2 and 4.3

Much preliminary work is required in order to prove Theorems 4.1 through

4.3. This section provides proofs of Theorems 4.1, 4.2 and 4.3. First, relevant

inequalities are stated, followed by necessary facts, lemmas and their respective

proofs, and this section is concluded with proofs of Theorems 4.1 through

4.3. The proofs of Theorems 4.2 and 4.3 are structured in a manner that is

essentially identical to that of Matous̆ek’s proofs of Theorems 2.4 and 2.7, as

found in [36]. The key difference between my proofs and those of Matous̆ek

is that I provide more detailed arguments and I avoid the use of asymptotic
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notation in my proofs in order to obtain a more specific bound on the reduced

dimensionality.

4.B.1 Inequalities

The proofs of my refined theorems make use of the following inequalities

involving the exponential function:

1 + x ≤ ex, ∀x ∈ R, (4.2)

ex ≤ 1 + 2x ∀x ∈ [0, 1], (4.3)

ex ≤ 1 + x+ x2, ∀x ≤ 1, (4.4)

1

2
(ex + e−x) ≤ ex

2/2 ∀x ∈ R, (4.5)

e−1/x ≤ xk, ∀x > 0, k = 1, 2 (4.6)

as well as Markov’s Inequality which states the following: for any random

variable X ≥ 0, and for all λ > 0,

P(X ≥ λ) ≤ E(X)/λ. (4.7)

4.B.2 Facts

In order to provide detailed proofs of my refined theorems, I introduce and

prove the following facts.

Fact 1: The following equality holds for all constants a, t, provided a > 0.

∫ ∞

−∞
etxe−ax

2

dx =

√
π

a
et

2/4a.
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Fact 2: If X has a subgaussian upper tail, and t is a constant, then

lim
x→∞

etxP(X > x) = 0.

Proof of Fact 1: Let X ∼ N (0, 1/2a). Then X has the following moment

generating function.

MX(t) = E(etX)

=

√
a

π

∫ ∞

−∞
etxe−ax

2

dx

= et
2/4a

√
a

π

∫ ∞

−∞
e−a(x−t/2a)

2

dx

= et
2/4a,

by noting that e−a(x−t/2a)
2√

π/a
is the density function of X + t/2a. In particular,

et
2/4a =

√
a

π

∫ ∞

−∞
etxe−ax

2

dx,

so that ∫ ∞

−∞
etxe−ax

2

dx =

√
π

a
et

2/4a

as claimed.

Proof of Fact 2: Since X has a subgaussian upper tail, it’s easy to see

that

0 ≤ etxP(X > x) ≤ etxe−ax
2

. (4.8)

for every x > 0. Moreover, since a > 0 it follows that tx − ax2 → −∞, as

x→∞. Therefore, limx→∞ etx−ax
2

= 0.
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4.B.3 Lemmas

The following six lemmas will be used to prove the Theorems 4.2 and 4.3.

The lemmas are variants of five lemmas and one proposition that Matous̆ek

establishes in order to prove Theorems 2.4 and 2.7. However, the lemmas in

this section are treated in a more rigorous and detailed manner.

Lemma 4.1: Let X be a mean 0 random variable. If there exists a constant c

such that E[etX ] ≤ ect
2

for t > 0, then X has a subgaussian upper tail, with

constant a = 1/4c. If, instead, E[etX ] ≤ ect
2

holds only for t ∈ (0, t0], then

X has a subgaussian upper tail up to 2ct0.

Proof of Lemma 4.1: Let λ > 0 be some constant. Then, using Markov’s

inequality,

P(X ≥ λ) = P(etX ≥ etλ), ∀ t > 0

≤ E(etX)

etλ

≤ ect
2

etλ

= ect
2−λt

= e−
λ2

4c ,

by setting t = λ/2c. This shows that X has a subgaussian upper tail, with

constant a = 1/4c. Note that if E[etX ] ≤ ect
2

holds only for t ∈ (0, t0] then,

t = λ/2c implies λ ≤ 2ct0, so that X has a subgaussian upper tail up to 2ct0

as claimed. .

The next lemma is the partial converse to Lemma 4.1. The proof requires

the additional assumption that V(X) = 1, and also, note the relationship
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between c and a is different than that in the previous case.

Lemma 4.2: Let X be a random variable with E(X) = 0, V(X) = 1, and

further suppose that X has a subgaussian upper tail. Then for all t > 0,

E[etX ] ≤ ect
2

where c = 1 + 8/a, with a being the constant in the subgaussian tail of X.

Proof of Lemma 4.2:

Lemma 2 is proved separately for the two different cases, where t ≤ √a/2

and t >
√
a/2.

Case 1: t ≤ √a/2:

Let F be the distribution function of X, so that

E(etX) =

∫ ∞

−∞
etxdF (x) =

∫ 1/t

−∞
etxdF (x) +

∫ ∞

1/t

etxdF (x).

The above integrals are analyzed separately, starting with the left hand

integral. Using inequality (4.4), and the fact that X is a mean zero, unit

variance random variable, it’s not hard to see that

∫ 1/t

−∞
etxdF (x) ≤

∫ 1/t

−∞
(1 + tx+ (tx)2)dF (x)

≤
∫ ∞

−∞
(1 + tx+ (tx)2)dF (x)

= 1 + tE(X) + t2E(X2)

= 1 + t2. (4.9)

Equation (4.9) contributes to the upper bound of E(etX) when X ≤ 1/t.

Next, consider the second part of the expectation, where X > 1/t. Recall that
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X has a subgaussian upper tail and the assumption that t ≤ √a/2. Then,

setting j = tx gives

∫ ∞

1/t

etxdF (x) =

∫ ∞

1

ejdF (j/t) ≤
∞∑

i=1

∫ i+1

i

ejdF (j/t)

≤
∞∑

i=1

ei+1

∫ i+1

i

dF (j/t) ≤
∞∑

i=1

e2iP(X ≥ i/t)

≤
∞∑

i=1

e2i−ai
2/t2 =

∞∑

i=1

ei(2−ia/t
2)

≤
∞∑

i=1

e−ia/2t
2

=
∞∑

i=1

(e−a/2t
2

)i,

so that ∫ ∞

1/u

etxdF (x) ≤
∞∑

i=1

(e−a/2t
2

)i. (4.10)

Now, notice that the sum in (4.10) is a geometric series, with both the first

term and the ratio equal to e−a/2t
2
. Hence,

∞∑

i=1

(e−a/2t
2

)i =
e−a/2t

2

1− e−a/2t2 . (4.11)

Thus, since t ≤ √a/2 implies e−a/2t
2 ≤ 1/2, it follows from equation (4.11)

that
∞∑

i=1

e(−a/2t
2)i ≤ 2e−a/2t

2

. (4.12)

Combining equations (4.10) and (4.12) yields

∫ ∞

1/t

etxdF (x) ≤ 2e−a/2t
2

. (4.13)
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Finally, (4.9) and (4.13) are combined to obtain

E(etX) =

∫ 1/t

−∞
etxdF (x) +

∫ ∞

1/t

etxdF (x)

≤ 1 + t2 + 2e−a/2t
2 ≤ 1 + t2 + 2(2t2/a)

= 1 + (1 + 4/a)t2 ≤ e(1+4/a)t2 ,

with the last 2 inequalities following from (4.6) and (4.2), respectively. This

shows that

E(etX) ≤ e(1+4/a)t2 , (4.14)

for t ≤ √a/2. Next, consider the case where t >
√
a/2.

Case 2: t >
√

a/2:

First, split the integral as follows:

E(etX) =

∫ ∞

−∞
etxdF (x) =

∫ 0

−∞
etxdF (x) +

∫ ∞

0

etxdF (x).

Since x ≤ 0 implies etx ≤ 1, the above can be estimated with

E(etX) ≤
∫ 0

−∞
dF (x) +

∫ ∞

0

etxdF (x),

= F (0) +

∫ ∞

0

etxdF (x). (4.15)

Next, apply integration by parts to the right hand integral of equation
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(4.15), and apply the result of Fact 2 in order to obtain

∫ ∞

0

etxdF (x) =

∫ ∞

0

(1− F (x))tetxdx− etx(1− F (x))
∣∣∣
∞

0

=

∫ ∞

0

tetxP(X ≥ x)dx−
(

lim
x→∞

etx(1− F (x))− 1 + F (0)
)

≤ 1− F (0) +

∫ ∞

0

tetxP(X ≥ x)dx,

with the inequality following from the fact that −etx(1− F (x)) ≤ 0 for all

x > 0. Thus,

∫ ∞

0

etxdF (x) ≤ 1− F (0) + t

∫ ∞

0

etxP(X ≥ x)dx,

and since X has a subgaussian upper tail,

∫ ∞

0

etxdF (x) ≤ 1− F (0) + t

∫ ∞

0

etxe−ax
2

dx

≤ 1− F (0) + t

∫ ∞

−∞
etxe−ax

2

dx.

Therefore Fact 1 implies

∫ ∞

0

etxdF (x) ≤ 1− F (0) + t

√
π

a
et

2/4a. (4.16)

Note that t >
√
a/2 implies

e2t
2√π/a > et

√
π/a. (4.17)
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Therefore, applying inequality (4.6) to equation (4.16) and then using

(4.17), leads to

∫ ∞

0

etxdF (x) ≤ 1− F (0) + et
√

π
a e

t2

4a

≤ 1− F (0) + e
2t2
√
π

a e
t2

4a

= 1− F (0) + e
8
√
π+1
4a

t2

≤ 1− F (0) + e
4
a
t2 .

Thus, ∫ ∞

0

etxdF (x) ≤ 1− F (0) + e
4
a
t2 . (4.18)

Next, note that t >
√
a/2 implies 4t2/a > 1, so that

2 < e1 < e4t
2/a. (4.19)

Plugging (4.18) into (4.15), and then using (4.19), gives

E(etX) ≤ 1 + e
4
a
t2 ≤ 2e

4
a
t2 ≤ e

8
a
t2 .

In summary, when t ≤ √a/2

E(etX) ≤ e(1+4/a)t2 ,

and when t >
√
a/2

E(etX) ≤ e(8/a)t
2

.

Finally, setting c = 1 + 8/a, gives E[etX ] ≤ ect
2

for any t > 0, which proves

the claim.
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Lemma 4.3: Let X1, X2, · · · , Xd be independent random variables with uni-

form subgaussian tail with constant aX , and assume that E(Xi) = 0 and

that V(Xi) = 1, for each i. Next, let α ∈ Rd be any unit vector, and define

Y =
∑d

i=1 αiXi. Then E(Y ) = 0, V(Y ) = 1, and Y has a subgaussian tail

with constant a = aX
4(aX+8)

.

Proof of Lemma 4.3:

To show that Y has mean 0, simply use the linearity of the expectation

and that fact that each E(Xi) = 0, so that

E(Y ) = E(
d∑

i=1

αiXi) =
d∑

i=1

αiE(Xi) = 0.

Next, show that Y has unit variance by using the basic properties of the

variance operator, and that fact each V(Xi) = 1. That is,

V(Y ) = V(
d∑

i=1

αiXi) =
d∑

i=1

α2
iV(Xi) =

d∑

i=1

α2
i = 1,

with the last equality following from the assumption that α is a unit vector.

Then, show that Y has a subgaussian tail. Let t ≥ 0 and apply Lemma 4.2 to

obtain

E(etY ) = E(e
∑
i tαiXi)

=
d∏

i=1

E(etαiXi)

≤
d∏

i=1

e(1+8/aX)(tαi)
2

= e(1+8/aX)t2
∑
i α

2
i

= e(1+8/aX)t2 .

52



Therefore, since E(etY ) ≤ e(1+8/aX)t2 , it follows from Lemma 4.1 that Y

has a subgaussian upper tail, with constant a = 1
4(1+ 8

aX
)

= aX
4(aX+8)

. Moreover,

since the Xis have a subgaussian tail, an identical argument shows that −Y

also has a subgaussian upper tail. This completes the proof.

Lemma 4.4: Let Y be a random variable with a subgaussian tail with constant

a, E(Y ) = 0, and V(Y ) = 1. Then for all t ∈ [0, a/4],

E(et(Y
2−1)) ≤ e(12/a

2)t2 , (i)

and

E(et(1−Y
2)) ≤ e(4/a

2)t2 . (ii)

Proof of Lemma 4.4 (i)

First, let F be the distribution function of Y 2 so that, for t ≥ 0,

E(etY
2

) =

∫ ∞

0

etxdF (x) =

∫ 1/t

0

etxdF (x) +

∫ ∞

1/t

etxdF (x) (4.20)

Once again, the two integrals are analyzed separately. The left integral of

equation (4.20) is estimated using inequality (4.4), in order to obtain

∫ 1/t

0

etxdF (x) ≤
∫ 1/t

0

(1 + tx+ t2x2)dF (x)

≤
∫ ∞

0

(1 + tx)dF (x) + t2
∫ 1/t

0

x2dF (x)

= 1 + tE(Y 2) + t2
∫ 1/t

0

x2dF (x)

= 1 + t+ t2
∫ 1/t

0

x2dF (x). (4.21)
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The remaining integral in (4.21) is then analyzed by two applications of

integration by parts:

t2
∫ 1/t

0

x2dF (x) = t2[−x2(1− F (x))|1/t0 +2

∫ 1/t

0

x(1− F (x))dx]

= −P(Y 2 > 1/t) + 2t2
∫ 1/t

0

xP(Y 2 > x)dx

≤ 2t2
∫ 1/t

0

xP(Y 2 > x)dx

= 2t2
∫ 1/t

0

xP(|Y |> √x)dx

≤ 2t2
∫ 1/t

0

x2e−axdx, since Y has a subgaussian tail,

= 4t2
∫ 1/t

0

xe−axdx

=
4t2

a
[−xe−ax|1/t0 +

∫ 1/t

0

e−axdx]

=
4t2

a
[−1

t
e−a/t − 1

a
e−ax|1/t0 ]

=
−4t

a
e−a/t − 4t2

a2
(e−a/t − 1)

≤ 4t2

a2
. (4.22)

The left integral of (4.20) is then estimated by combining (4.21) and (4.22):

∫ 1/t

0

etxdF (x) ≤ 1 + t+
4t2

a2
. (4.23)

Before analyzing the right integral of equation (4.20), note that t ∈ [0, a/4]

implies

t− a ≤ −3a/4 < 0. (4.24)

With this in mind, apply integration by parts to the right hand integral of
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equation (4.20) to obtain

∫ ∞

1/t

etxdF (x) = −etx(1− F (x))|∞1/t + t

∫ ∞

1/t

etx(1− F (x))dx

≤ e1(1− F (1/t)) + t

∫ ∞

1/t

etx(1− F (x))dx

= e1P(Y 2 ≥ 1/t) + t

∫ ∞

1/t

etxP(Y 2 ≥ x)dx

≤ 2e1e−a/t + 2t

∫ ∞

1/t

etxe−axdx

= 2e
t−a
t + 2t

∫ ∞

1/t

etx−axdx

= 2e
t−a
t +

2t

a− te
t−a
t . (4.25)

Applying inequalities (4.5) and (4.24) to (4.25) yields

∫ ∞

1/t

etxdF (x) ≤ 2e
t−a
t +

2t

a− te
t−a
t

≤ 2

(
t

a− t

)2

+
2t

a− t

(
t

a− t

)

=
4t2

(a− t)2

≤ 64t2

9a2
≤ 8

a2
t2. (4.26)

Combining (4.23) with (4.26) gives

E(etY
2

) =

∫ 1/t

0

etxdF (x) +

∫ ∞

1/t

etxdF (x)

≤ 1 + t+
4

a2
t2 +

8

a2
t2

= 1 + t+
12

a2
t2

≤ et+ 12
a2
t2 .
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Finally, we conclude that

E(et(Y
2−1)) = E(etY

2

)e−t

≤ et+ 12
a2
t2e−t

= e
12
a2
t2 ,

which proves our first claim.

Proof of Lemma 4.4 (ii)

To prove part (ii) of this lemma, use inequalities (4.4) and (4.2), and inte-

gration by parts:

E(e−tY
2

) =

∫ ∞

0

e−txdF (x)

≤
∫ ∞

0

(1− tx+ (tx)2)dF (x)

= 1− tE(Y 2) + t2
∫ ∞

0

x2dF (x)

= 1− t+ t2[−x2(1− F (x))
∣∣∣
∞

0
+ 2

∫ ∞

0

x(1− F (x))dx]

= 1− t+ t2[−x2(P(|Y |≥ √x)
∣∣∣
∞

0
+ 2

∫ ∞

0

xP(|Y |≥ √x)dx]

≤ 1− t+ 2t2
∫ ∞

0

x2e−axdx

= 1− t+
4t2

a
[−xe−ax

∣∣∣
∞

0
+

∫ ∞

0

e−axdx]

≤ 1− t+
4t2

a

∫ ∞

0

e−axdx

= 1− t+
4t2

a2

≤ e−t+(4/a2)t2 ,
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so that

E(et(1−Y
2)) = E(e−tY

2

)et ≤ e−t+
4
a2
t2et = e

4
a2
t2 ,

which proves the second claim.

Lemma 4.5: Given some k ∈ N+, let Y1, · · · , Yk be independent random vari-

ables with uniform subgaussian tail with constant a, and moreover, suppose

that each E(Yi) = 0 and V(Yi) = 1. Next, define the random variable

Z = 1√
k

∑k
i=1(Y

2
i − 1). Then, Z has subgaussian tail up to

√
k, with sub-

gaussian tail coefficient aZ = a2/48.

Proof of Lemma 4.5: Suppose that t ∈ (0, a
4

√
k]. Since the Yis are

independent with uniform subgaussian tail, it follows from Lemma 4.4 that

E(etZ) = E(e(t/
√
k)(Y 2

1 +···+Y 2
k −k))

= E(e(t/
√
k)(Y 2

1 −1))k

≤ (e(12/a
2)t2/k)k

= e(12/a
2)t2 ,

and that

E(e−tZ) = E(e(−t/
√
k)(Y 2

1 +···+Y 2
k −k))

= E(e(t/
√
k)(1−Y 2

1 ))k

≤ (e(4/a
2)t2/k)k

= e(4/a
2)t2 .

Thus, Lemma 4.1 implies Z has a subgaussian upper tail up to 6
√
k/a, with

constant aZ+ = a2/48, and that −Z has a subgaussian upper tail up to 2
√
k/a,
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with constant aZ− = a2/16. Hence, setting aZ = min(aZ− , aZ+) = a2/48, and

noting that 6
√
k/a ≥ 2

√
k/a ≥

√
k, 3 it follows that Z has a subgaussian tail

up to
√
k, with constant aZ = a2/48 which completes the proof.

Lemmas 4.1 through 4.5 are sufficient for proving Theorem 4.2. The proof

of Theorem 4.3 require one more lemma.

Lemma 4.6: Let α2 ≤ q ≤ 1 and, for notational simplicity, let Y =
∑d

j=1 S1jxj =
√
kT (x)1. Then Y has a subgaussian tail up to 2

√
2q/α, with coefficient

a = 1/4.

Proof of Lemma 4.6

First, note that

E(etY ) =
d∏

j=1

E(etxjS1j)

=
d∏

j=1

(
q

2
(etxj/

√
q + e−txj/

√
q) + 1− q)

≤
d∏

j=1

(qet
2x2j/2q + 1− q), (4.27)

with the inequality following from (4.5). Next, let t ∈ (0,
√

2q/α], so that

t2α2/2q ≤ 1. Then, since ‖x‖∞≤ α, it follows that t2x2j/2q ≤ 1. Thus, using

inequalities (4.3) and (4.2),

qet
2x2j/2q + 1− q ≤ q(1 + 2(t2x2j/2q)) + 1− q

= 1 + t2x2j

≤ et2x2j . (4.28)

3Lemmas 4.1 and 4.2 imply a = aR/(4aR + 32), where aR > 0 is the constant in the
subgaussian tail of R. This further implies that 1/a > 4, and the inequality follows.
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Next, apply (4.28) to (4.27) in order to obtain

E(etY ) ≤
d∏

j=1

(qet
2x2j/2q + 1− q)

≤
d∏

j=1

et
2x2j

= et
2‖x‖2

= et
2

.

Thus, since the above holds for t ∈ (0,
√

2q/α], Lemma 4.1 may be applied

to show that Y has a subgaussian upper tail up to 2
√

2q/α and also, that the

coefficient in the subgaussian upper tail of Y is a = 1/4.

Finally, since Y is symmetric about 0, an identical approach verifies the

subgaussian upper tail of −Y , which completes the proof.

The above 6 lemmas allow for the following proofs of Theorems 4.2 and

4.3.

4.B.4 Proofs of Theorems

The following are proofs of Theorems 4.1 through 4.3. The proof of Theorem

4.1 relies on the results of the Theorems 4.2 and 4.3, and so it is proved

last. The proofs Theorems 4.2 and 4.3 follow the same overall structure as

Matous̆ek’s proofs of Theorems 2.4 and 2.7 [36]. However, the provided proofs

contain more detail, as was the case with the proofs of Lemmas 4.1 through

4.6. Moreover, the proofs depend on those of Lemmas 4.1 through 4.6, and so

the increased specificity of these lemmas is reflected in the results of Theorems

4.2 and 4.3.

59



Proof of Theorem 4.2

Consider a fixed unit vector x ∈ Rd, and let Yi =
∑d

j=1Rijxj, for i =

1, · · · , k. It follows from Lemma 4.3 that E(Yi) = 0 and V(Yi) = 1, for i =

1, · · · , k, and that the collection of Yis has a uniform subgaussian tail, with

constant a = aR
4(aR+8)

. Therefore, Lemma 4.5 shows that Z = 1√
k
((
∑k

i=1 Y
2
i )−k)

has subgaussian tail up to
√
k, with constant aZ =

a2R
768(aR+8)2

. Next, observe

that

‖T (x)‖2−1 =
1√
k
Z. (4.29)

Thus, using equation (4.29), the fact that Z has a subgaussian tail up to
√
k, and recalling that k = C log(2/δ)

ε2
,

P(‖T (x)‖≥ 1 + ε) ≤ P(‖T (x)‖2≥ 1 + 2ε)

= P(‖T (x)‖2−1 ≥ 2ε)

= P(Z ≥ 2ε
√
k)

≤ e−aZ(2ε
√
k)2

= e−4aZε
2k

= e−4aZC log(2/δ).

Hence ,

P(‖T (x)‖≥ 1 + ε) ≤ e−4aZC log(2/δ). (4.30)

Choose C ≥ 1
2aZ

(= 384(1 + 8/aR)2 by Lemma 4.5) so that equation (4.30)

becomes

P(‖T (x)‖≥ 1 + ε) ≤ e−2 log(2/δ) =
1

(2/δ)2
≤ δ

2
,
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which shows that

P(‖T (x)‖≥ 1 + ε) ≤ δ/2. (4.31)

A similar argument shows that

P(‖T (x)‖≤ 1− ε) = P(‖T (x)‖2≤ 1− 2ε+ ε2)

= P(‖T (x)‖2−1 ≤ ε2 − 2ε)

= P(Z ≤ (ε2 − 2ε)
√
k)

= P(−Z ≥ (2ε− ε2)
√
k)

≤ e−aZ((2ε−ε2)
√
k)2

= e−aZε
2k(4−4ε+ε2)

≤ e−2aZε2k

= e−2aZC log(2/δ).

Hence ,

P(‖T (x)‖≤ 1− ε) ≤ e−2aZC log(2/δ). (4.32)

The choice of C ≥ 1
2aZ

, together with (4.32), leads to

P(‖T (x)‖≤ 1− ε) ≤ e− log(2/δ) =
δ

2
,

which shows that

P(‖T (x)‖≤ 1− ε) ≤ δ/2 (4.33)

Thus, combine equations (4.31) and (4.33) in order to obtain

P({‖T (x)‖≤ 1− ε} ∪ {‖T (x)‖≥ 1 + ε}) ≤ δ/2 + δ/2 = δ,
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which shows that

P((1− ε) ≤ ‖T (x)‖≤ (1 + ε)) ≥ 1− δ. (4.34)

Lastly, observe that equation (4.34) is true for any fixed unit vector x ∈ Rd.

Thus, since T is a linear mapping, it follows that for any y ∈ Rd x can be

replaced with y/‖y‖ to obtain

P((1− ε)‖y‖≤ ‖T (y)‖≤ (1 + ε)‖y‖) ≥ 1− δ,

which completes the proof.

Proof of Theorem 4.3

Let Yi =
∑d

j=1 Sijxj, for i = 1, 2, · · · , k. Then, since E(Sij) = 0 and

V(Sij) = 1, it’s easy to see that E(Yi) = 0 and V(Yi) = 1. Next, set Z =

1√
k
(Y 2

1 + · · · + Y 2
k − k), so that 1√

k
Z = ‖T (x)‖2−1. Hence, the proof requires

establishing that

P({‖T (x)‖≥ 1 + ε} ∪ {‖T (x)‖≤ 1− ε}) ≤ δ. (4.35)

First, note that

P(‖T (x)‖≥ 1 + ε) = P(‖T (x)‖2≥ 1 + 2ε+ ε2)

≤ P(Z ≥ 2ε
√
k). (4.36)
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Next, observe that

P(‖T (x)‖≤ 1− ε) = P(‖T (x)‖2≤ 1− 2ε+ ε2)

= P(Z ≤ (ε2 − 2ε)
√
k). (4.37)

Equation (4.35) is verified by considering equations (4.36) and (4.37) sep-

arately. However, Lemma 4.5 cannot be used to prove (4.36) or (4.37), since

the subgaussian tail of each Yi is only guaranteed up to the threshold 2
√
2q
α

.

This problem addressed by truncating Y at the level 2
√

2q/α. That is, define

the random variables Ỹi as follows

Ỹi =




Yi if |Yi|≤ 2

√
2q/α,

0 otherwise,

for i = 1, · · · , k. Accordingly, define Z̃ using each Ỹi (in the same manner

as Z was defined using each Yi in the proof of Theorem 4.2). That is, set

Z̃ = 1√
k
(Ỹ1

2
+ · · ·+ Ỹk

2 − k), so that

P(Z ≥ 2ε
√
k)

= P(Z ≥ 2ε
√
k ∩i Ỹi = Yi) + P(Z ≥ 2ε

√
k ∩ ∃i : Ỹi 6= Yi)

= P(Z̃ ≥ 2ε
√
k ∩i Ỹi = Yi) + P(Z ≥ 2ε

√
k ∩ ∃i : Ỹi 6= Yi)

≤ P(Z̃ ≥ 2ε
√
k) + P(Z ≥ 2ε

√
k ∩ ∃i : Ỹi 6= Yi). (4.38)

Similarly,

P(Z ≤ (ε2 − 2ε)
√
k)

≤ P(Z̃ ≤ (ε2 − 2ε)
√
k) + P(Z ≤ (ε2 − 2ε)

√
k ∩ ∃i : Ỹi 6= Yi). (4.39)
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Next, combine equations (4.36) through (4.39) , in order to obtain

P({‖T (x)‖≥ 1 + ε} ∪ {‖T (x)‖≤ 1− ε})

≤ P(Z̃ ≥ 2ε
√
k) + P(Z̃ ≤ (ε2 − 2ε)

√
k) + P(∃i : Ỹi 6= Yi). (4.40)

The next step of the proof is to analyze the 3 terms to the right of the

inequality in equation (4.40). First, consider the rightmost term of equation

(4.40). Note that Lemma 4.6 implies

P(Ỹi 6= Yi) = P(|Yi|≥ 2
√

2q/α) ≤ 2e−2q/α
2

,

so that

P(∃i : Ỹi 6= Yi) = P(∪iỸi 6= Yi)

=
k∑

i=1

P(Ỹi 6= Yi)

≤ 2ke−2q/α
2

. (4.41)

Next, choose C0 ≥ 1. Then it follows from (4.41) and the choice of the

parameters that

P(∃i : Ỹi 6= Yi) ≤ 2ke−2q/α
2

= 2ke−2C0 log(d/εδ)

≤ 2ke−2 log(d/εδ)

≤ 2d2e−2 log(d/εδ)

≤ δ/2, (4.42)
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provided k ≤ d2 is satisfied4. Next, consider the two remaining terms on

the right hand side of equation (4.40). Note that the construction of Ỹ implies

Ỹ has a subgaussian tail, E(Ỹ ) = 0 (recalling that Y is symmetric about 0)

and V(Ỹ ) ≤ 1. However, application of Lemma 4.5 requires V(Ỹ ) = 1. Hence,

Ỹ requires further manipulation as follows. First, note that

|Yi| =
∣∣∣

d∑

j=1

Sijxj

∣∣∣ ≤
d∑

j=1

|Sijxj|

=
d∑

j=1

|Sij||xj|≤
d∑

j=1

α√
q

=
dα√
q
,

so that maxi|Yi|≤ dα√
q
, and therefore

1 = E(Y 2)

= E(Y 2||Y |≤ 2
√

2q/α)P(|Y |≤ 2
√

2q/α) + E(Y 2||Y |> 2
√

2q/α)P(|Y |> 2
√

2q/α)

≤ E(Ỹ 2) + max(Y 2)P(|Y |> 2
√

2q/α)

≤ E(Ỹ 2) +
d2α2

q
2e−2q/α

2

≤ E(Ỹ 2) +
d2α2

q
2e−2 log(d/εδ)

≤ E(Ỹ 2) + ε,

which implies V(Ỹ ) ≥ 1− ε. So, let 1− v = V(Ỹ ) and define Ŷ = 1√
1−v Ỹ .

Then, E(Ŷ ) = 0, V(Ŷ ) = 1, and Ŷ has a subgaussian tail with coefficient

a = 1/4.

4In fact, this theorem is only applicable when d is sufficiently large so that d > k holds
for some fixed ε and δ; d < k, implies projection into higher dimensions which is clearly not
the objective of this theorem.
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Next, define Ẑ in a manner analogous to Z and Z̃, so that Lemma 4.5

implies Ẑ has subgaussian tail up to
√
k, with aẐ = a2/48 = 1/768. Then, for

all t ∈ (0,
√
k],

P(Ŷ1
2

+ · · ·+ Ŷk
2 ≥ k + t

√
k) ≤ e−aẐt

2

, (4.43)

and

P(Ŷ1
2

+ · · ·+ Ŷk
2 ≤ k − t

√
k) ≤ e−aẐt

2

. (4.44)

Thus, choose C ≥ 1/aẐ = 768, so that (4.43), gives

P(Z̃ ≥ 2ε
√
k) = P(Ỹ1

2
+ · · ·+ Ỹk

2 ≥ (1 + 2ε)k)

= P(Ŷ1
2

+ · · ·+ Ŷk
2 ≥ 1 + 2ε

1− v k)

≤ P(Ŷ1
2

+ · · ·+ Ŷk
2 ≥ k + 2εk)

≤ e−aẐ(2ε
√
k)2

= e−4aẐε
2k

= e−4aẐC log(4/δ)

≤ e−4 log(4/δ)

= (δ/4)4

≤ δ/4. (4.45)
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Similarly, apply the result of (4.44), in order to obtain

P(Z̃ ≤ (ε2 − 2ε)
√
k) = P(Ỹ1

2
+ · · ·+ Ỹk

2 ≤ (1− 2ε+ ε2)k)

= P(Ỹ1
2

+ · · ·+ Ỹk
2 ≤ (1− ε)2k)

= P(Ŷ1
2

+ · · ·+ Ŷk
2 ≤ (1− ε)2

1− v k)

≤ P(Ŷ1
2

+ · · ·+ Ŷk
2 ≤ (1− ε)k)

= P(Ŷ1
2

+ · · ·+ Ŷk
2 ≤ k − εk)

≤ e−aẐε2k

= e−aẐC log(4/δ)

≤ e− log(4/δ)

= δ/4. (4.46)

Finally, plug (4.42), (4.45) and (4.46) into (4.40) to obtain

P({‖T (x)‖≥ 1 + ε} ∪ {‖T (x)‖≤ 1− ε}) ≤ · · ·

≤ P(Z̃ ≥ 2ε
√
k) + P(Z̃ ≤ (ε2 − 2ε)

√
k) + P(∃i : Ỹi 6= Yi).

≤ δ/4 + δ/4 + δ/2 = δ.

This completes the proof.
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Proof of Theorem 4.1: This proof follows quite simply by applying the

result of either of the above Theorems, and by choosing δ = 1
n2 :

P((1− ε)‖u− v‖≤ ‖T (u)− T (v)‖≤ (1 + ε)‖u− v‖, ∀u, v ∈ P )

= P( ∩u,v∈P {(1− ε)‖u− v‖≤ ‖T (u)− T (v)‖≤ (1 + ε)‖u− v‖})

= 1− P( ∪u,v∈P {(1− ε)‖u− v‖≤ ‖T (u)− T (v)‖≤ (1 + ε)‖u− v‖}C)

≥ 1−
(
n

2

)
P
({

(1− ε)) ≤ ‖T
( u− v
‖u− v‖

)
‖≤ (1 + ε)

}C)

≥ 1−
(
n

2

)
δ

≥ 1− n2

2n2

= 1/2.

This section provided detailed proofs of Theorems 4.1, 4.2 and 4.3, the

last two of which were based on Matous̆ek’s proofs of Theorems 2.4 and 2.7

[36]. The proof of Theorem 4.1 was short and simple; it required the choice of

δ = 1
n2 , application of the simple union bound, along with the result of either

of Theorems 4.2 or 4.3. The proof of Theorems 4.2 and 4.3 required Lemmas

4.1 through 4.5 while the proof of Theorem 4.3 further required Lemma 4.6.

The key difference between Theorems 4.2 and 4.3 is that the former re-

lies upon projection coefficients with a uniform subgaussian tail while the

latter relies upon projection coefficients that follow the sparse distribution

S, given in Theorem 4.3. Note, however, that Theorem 4.2 can be applied

with such projection coefficients, since they are mean 0, unit variance, and

have a subgaussian tail with coefficient aS = q2/2 (a simple exercise involv-

ing inequality (4.2)). The reason Theorem 4.2 should not be applied when
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S is sparse is because it gives reduced dimensionality of k = C log(2/δ)
ε2

, where

C ≥ 384(1 + 8/aS)2. Thus, q → 0 implies aS → 0, which further implies

k → ∞. For this reason, Theorem 4.2 is not practical when dealing with

highly sparse projection matrices distributed according to S (i.e., when q is

very small).

Theorem 4.3 is very practical when dealing with sparse projection matrices

since it gives a formulation for the reduced dimensionality k that no longer

depends on the constant aS, provided x is sufficiently well spread. In particu-

lar, Lemma 4.6, provides an additional constraint that ensures that a = 1/4,

which does not depend on the coefficient aS in the subgaussian tail of S. This

is key to obtaining the improved value of the constant k, since the constant

C no longer depends on aS. The idea is as follows. Let Y = 1√
k
xS be the

embedding of a point x as in Theorem 4.3. The result of Lemma 4.6 only guar-

antees the subgaussian tail of Y up to 2
√

2q/α. On the other hand, the proof

of Theorem 4.2 requires elements of the projection matrix to have subgaussian

tail up to
√
k which is likely much larger than 2

√
2q/α. Thus, the proof of

Theorem 4.3, truncates Y and then defines Z on the truncated version of Y in

order to obtain a mean zero random variable with subgaussian tail. Next, Z

is transformed so that it also has unit variance and then Lemma 4.5 is applied

in a manner similar to the proof of Theorem 4.2. Finally, the proof follows

since truncation sets Y to 0 with probability ≤ δ/2 while that the transformed

Z maintains ε-distortion with probability δ/4 + δ/4 (similar to the proof of

Theorem 4.2 where we show that Z maintains ε-distortion with probability

δ/2 + δ/2).
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To summarize, refinements of Theorems 2.4 and 2.7 were presented as

Theorems 4.2 and 4.3. My proofs established the specific bounds on C and C0

that are given in the statement of Theorems 4.2 and 4.3. I next test the results

of my refined theorems by obtaining JL embeddings on a variety of simulated

data sets.

4.C Computational Results

This section summarizes the results of a representative selection of JL em-

beddings obtained from simulated data. First, the results of Theorems 4.2

and 4.3 are tested on data sets simulated using three different probability

distributions. The efficacy of each theorem is measured by comparing the

theoretical and empirical probability of obtaining a JL embedding that main-

tains ε-distortion. Here, the theoretical probabilities refer to 1− δ, for various

choices of δ, and empirical probabilities refer to the relative frequencies of

pairs of points that preserve ε-distortion, i.e.,
#pairs preserving distortion

#pairs =

#pairs preserving distortion
(n2)

. For all simulated data sets, for all choices of the

distortion parameter ε, and for all choices of the probability parameter δ, the

empirical probabilities are equal to 1. The discrepancy between the theoreti-

cal and empirical probabilities suggests an inflated bound on the constant C.

Hence, the tests are repeated with smaller and smaller values of C, until the

empirical probabilities match those suggested by Theorems 4.2 and 4.3, for

fixed values of ε and δ. More specifically, as the empirical probabilities ap-

proach the corresponding theoretical probabilities of 1− δ, a neighborhood of

typical values of C begins to emerge (refer to Appendices A and B for Matlab

code).
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4.C.1 Improving the Results of Theorems 4.2 and 4.3

with Computation

In order to test the results of Theorems 4.2 and 4.3, several data sets are

simulated and then projected into lower dimensions using the transformations

outlined in each theorem. Each data set consists of n = 1000 points, each of

which are simulated as random, 10 000-dimensional vectors. The simulations

are performed using Matlab and using the default random number genera-

tor, i.e., the random seed automatically generated by Matlab. Data sets are

simulated using four different probability distributions: Uniform over (0,1),

Exponential with mean 1, Non-Central Cauchy with non centrality parameter

of 5, and Mixed Beta, where points are selected from Beta (1,3) with proba-

bility 0.25 and from Beta(4,1) with probability 0.75. These distributions are

available through the built-in Matlab functions: “unifrnd, exprnd, nctrnd, and

betarnd”; in order to construct the mixed distribution, points are randomly

selected from two different distributions, which further required use of the

built-in function “rand.” refer to Appendices A and B for Matlab code.

The result of each theorem is tested by estimating the probability of ob-

taining a JL embedding that maintains ε-distortion of pairwise distances.

That is, for each simulated data set, every simulated data point x is trans-

formed into the embedded point T (x), and for each x, y in the data set, the

distortion of distance is computed as ‖T (x) − T (y)‖/‖x − y‖; the transfor-

mation is said to preserve ε-distortion of the distance between x and y if

1 − ε ≤ ‖T (x) − T (y)‖/‖x − y‖≤ 1 + ε. The probability that the embedding

preserves ε-distortion is then estimated with the relative frequency of em-

beddings that maintain ε-distortion of pairwise distances between the points
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within each simulated data set. That is, for a particular data set, let f de-

note the frequency of pairs of points whose distance is distorted by no more

than 1± ε. Then the empirical probability that the particular JL embedding

preserves ε-distortion is:

p̂ =
#pairs preserving ε-distortion

#pairs
=

f(
1000
2

) =
f

499500

In all cases, 100% of the embeddings maintain ε-distortion and this number

is far too high, especially for the situations when the probability parameter

δ is chosen to be rather large; for example, if δ is chosen to be 0.5, at least

50% of the pairwise distances are expected to preserve ε-distortion; it seems

very unlikely, however, that 100% of these distances preserve ε-distortion. The

discrepancy between the theoretical and empirical probabilities suggests an in-

flated bound on the constant C. Hence, in order to empirically estimate these

values, the constant C is first chosen to be C=384 (when strengthening Theo-

rem 4.2), and C=768 (when strengthening Theorem 4.3). The simulations are

repeated with smaller and smaller values of C until the empirical probabilities

begin to converge upon those suggested by Theorems 4.2 and 4.3. This process

is repeated for each combination of ε and δ equal to 0.1, 0.3, and 0.5. The

computation results are summarized in the next two sections.

4.C.2 Computational Approach to Theorem 4.2

To simulate the result of Theorem 4.2, the projection coefficients are chosen

from a variety of spherically symmetric distributions, including the Gaussian

and Uniform distributions as well as the discrete discrete distributions given

by Achlioptas [1] which were discussed in section 2.C. Moreover, the parame-
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ters for each of these distributions are chosen in such a way that the projection

coefficients are mean zero with unit variance. The coefficients are simulated

using the built-in Matlab functions “unifrnd, normrnd”, as well as the “dis-

cretesample” function that may be downloaded from the internet. Three of

the four data sets are considered 5 , those following the Uniform, Cauchy, and

Mixed Beta distributions outlined in Section 4.C.1. Refer to Appendix A for

Matlab code.

Each simulated data set is projected into k dimensions, where k = C
ε2

log(2/δ),

and this is repeated for each combination of ε and δ being equal to 0.1, 0.3 and

0.5. The constant C is first chosen to be C = 384 (which is smaller than that

suggested by Theorem 4.2, being equal to the value of C if aR =∞). However,

this value is too large since 100% of the projections preserve ε-distortion of

pairwise distances. Thus, the simulations are repeated with sequentially de-

creasing values of C until the empirical probabilities begin to converge upon

1− δ, as suggested by Theorem 4.2.

For each choice of projection coefficients, for each of the three data sets,

nine combinations of ε and δ are considered for a number of choices of C. This

results in a large number of embeddings. Similar results are obtained for each

choice of projection coefficients and for each data set. For this reason, only

the embeddings using Gaussian projection coefficients are reported; further

reporting would be redundant.

The following tables summarize the results of the embeddings that rely

upon projection coefficients that are scaled Gaussian random variables, fol-

lowing 1√
k
N (0, 1). In the tables, the columns correspond to each of the three

5Initially, only three data sets were simulated. However, the embeddings discussed in
the next section required the use of an additional data set
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simulated data sets, the rows correspond to each combination of the consid-

ered values of ε and δ, and the intersecting cells give the relative frequency of

pairwise distances that preserve ε-distortion.

Uniform N.C. Cauchy Mixed Beta
ε=0.1,δ=0.1 1.00 1.00 1.00
ε=0.1,δ=0.3 1.00 1.00 1.00
ε=0.1,δ=0.5 1.00 1.00 1.00
ε=0.3,δ=0.1 1.00 1.00 1.00
ε=0.3,δ=0.3 1.00 1.00 1.00
ε=0.3,δ=0.5 1.00 1.00 1.00
ε=0.5,δ=0.1 1.00 1.00 1.00
ε=0.5,δ=0.3 1.00 1.00 1.00
ε=0.5,δ=0.5 1.00 1.00 1.00

Table 4.1: Estimated probability of preserving ε-distortion using Theorem 4.2
with C=384, so that k ranges from 2130 (when δ = ε = 0.5) to 115037 (when
δ = ε = 0.1).

Uniform N.C. Cauchy Mixed Beta
ε=0.1,δ=0.1 1.00 1.00 1.00
ε=0.1,δ=0.3 1.00 1.00 1.00
ε=0.1,δ=0.5 1.00 1.00 1.00
ε=0.3,δ=0.1 1.00 1.00 1.00
ε=0.3,δ=0.3 1.00 1.00 1.00
ε=0.3,δ=0.5 1.00 1.00 1.00
ε=0.5,δ=0.1 1.00 1.00 1.00
ε=0.5,δ=0.3 1.00 1.00 1.00
ε=0.5,δ=0.5 1.00 1.00 1.00

Table 4.2: Estimated probability of preserving ε-distortion using Theorem 4.2
with C=10, so that k ranges from 56 (when δ = ε = 0.5) to 2996 (when
δ = ε = 0.1).
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Uniform N.C. Cauchy Mixed Beta
ε=0.1,δ=0.1 0.99 0.99 0.99
ε=0.1,δ=0.3 0.94 0.94 0.95
ε=0.1,δ=0.5 0.90 0.90 0.90
ε=0.3,δ=0.1 0.99 0.99 0.99
ε=0.3,δ=0.3 0.95 0.96 0.95
ε=0.3,δ=0.5 0.90 0.91 0.90
ε=0.5,δ=0.1 0.98 0.98 0.98
ε=0.5,δ=0.3 0.94 0.94 0.94
ε=0.5,δ=0.5 0.89 0.90 0.89

Table 4.3: Estimated probability of preserving ε-distortion using Theorem
4.2 with C=1, so that k ranges from 6 (when δ = ε = 0.5) to 300 (when
δ = ε = 0.1).

Uniform N.C. Cauchy Mixed Beta
ε=0.1,δ=0.1 0.92 0.92 0.91
ε=0.1,δ=0.3 0.83 0.83 0.83
ε=0.1,δ=0.5 0.76 0.75 0.76
ε=0.3,δ=0.1 0.92 0.92 0.91
ε=0.3,δ=0.3 0.82 0.84 0.83
ε=0.3,δ=0.5 0.73 0.75 0.73
ε=0.5,δ=0.1 0.89 0.90 0.89
ε=0.5,δ=0.3 0.78 0.77 0.78
ε=0.5,δ=0.5 0.67 0.68 0.67

Table 4.4: Estimated probability of preserving ε-distortion using Theorem
4.2 with C=0.5, so that k ranges from 3 (when δ = ε = 0.5) to 150 (when
δ = ε = 0.1).

The above tables illustrate that, on these particular data sets, the constant

C is actually less than 0.5. To see this, recall from Theorem 4.2 that if C

is chosen to be greater than 384(1 + 8/a)2 > 384, then the probability of

maintaining ε-distortion is bounded below by 1− δ:

P((1− ε)‖x− y‖≤ ‖T (x)− T (y)‖≤ (1 + ε)‖x− y‖) ≥ 1− δ.

However, each choice of C ≥ 1 leads to a relative frequency that is far
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greater than 1 − δ. Only when C ' 0.5 do the empirical probabilities begin

to converge upon the desired probability of 1 − δ. Moreover, the relative

frequencies begin to fall below 1−δ when C is chosen to be much smaller than

0.5.

4.C.3 Computational Approach to Theorem 4.3

To simulate the result of Theorem 4.3, the projection coefficients are chosen

to be distributed over {−q−1/2, 0, q−1/2}, where 0 has probability 1− q, ±q−1/2

each have probability q/2, and where q is proportional to the L∞ norm of

the simulated data points in accordance with Theorem 4.3. The coefficients

are simulated using the “discretesample” function that may be downloaded

from the internet. Three of the four data sets are considered, those following

the Uniform, Exponential, and Mixed Beta distributions outlined in Section

4.C.1 (refer to Appendix B for Matlab code). Note that the current set of

computations, the Exponential distribution replaces the Cauchy distribution

for simulation of the third data set; this is due to the fact that Cauchy ran-

dom variables have infinite variance and therefore, data simulated from this

distribution (and scaled to have unit length) is too sparse to apply the result

of Theorem 4.3.

Each simulated data set is projected into k dimensions, where k = C
ε2

log(4/δ),

and this is repeated for each combination of ε and δ being equal to 0.1, 0.3

and 0.5. The constant C is first chosen to be C = 768 (as suggested by The-

orem 4.3) but this value is too large since 100% of the projections preserve

ε-distortion of pairwise distances. Thus, the simulations are repeated in the

same way as those from the previous section, with sequentially decreasing val-
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ues of C, until the empirical probabilities begin to converge upon 1 − δ, as

suggested by Theorem 4.3.

The following tables summarize the results of the embeddings on each of

the simulated data sets in the same way as the tables from 4.C.2. That is,

the columns correspond to each of the three simulated data sets, the rows

correspond to each combination of the considered values of ε and δ, and the

intersecting cells give the relative frequency of pairwise distances that preserve

ε-distortion.

Uniform Exponential Mixed Beta
ε=0.1,δ=0.1 1.00 1.00 1.00
ε=0.1,δ=0.3 1.00 1.00 1.00
ε=0.1,δ=0.5 1.00 1.00 1.00
ε=0.3,δ=0.1 1.00 1.00 1.00
ε=0.3,δ=0.3 1.00 1.00 1.00
ε=0.3,δ=0.5 1.00 1.00 1.00
ε=0.5,δ=0.1 1.00 1.00 1.00
ε=0.5,δ=0.3 1.00 1.00 1.00
ε=0.5,δ=0.5 1.00 1.00 1.00

Table 4.5: Estimated probability of preserving ε-distortion using Theorem 4.3
with C=768, so that k ranges from 6389 (when δ = ε = 0.5) to 283306 (when
δ = ε = 0.1).

Uniform Exponential Mixed Beta
ε=0.1,δ=0.1 1.00 1.00 1.00
ε=0.1,δ=0.3 1.00 1.00 1.00
ε=0.1,δ=0.5 1.00 1.00 1.00
ε=0.3,δ=0.1 1.00 1.00 1.00
ε=0.3,δ=0.3 1.00 1.00 1.00
ε=0.3,δ=0.5 1.00 1.00 1.00
ε=0.5,δ=0.1 1.00 1.00 1.00
ε=0.5,δ=0.3 1.00 1.00 1.00
ε=0.5,δ=0.5 1.00 1.00 1.00

Table 4.6: Estimated probability of preserving ε-distortion using Theorem 4.3
with C=10, so that k ranges from 84 (when δ = ε = 0.5) to 3689 (when
δ = ε = 0.1).
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Uniform Exponential Mixed Beta
ε=0.1,δ=0.1 0.99 0.99 0.99
ε=0.1,δ=0.3 0.98 0.98 0.98
ε=0.1,δ=0.5 0.96 0.96 0.95
ε=0.3,δ=0.1 0.99 0.99 0.99
ε=0.3,δ=0.3 0.98 0.97 0.98
ε=0.3,δ=0.5 0.96 0.96 0.96
ε=0.5,δ=0.1 0.99 0.99 0.99
ε=0.5,δ=0.3 0.98 0.98 0.97
ε=0.5,δ=0.5 0.95 0.96 0.95

Table 4.7: Estimated probability of preserving ε-distortion using Theorem
4.3 with C=1, so that k ranges from 8 (when δ = ε = 0.5) to 369 (when
δ = ε = 0.1).

Uniform Exponential Mixed Beta
ε=0.1,δ=0.1 0.95 0.95 0.94
ε=0.1,δ=0.3 0.89 0.89 0.89
ε=0.1,δ=0.5 0.85 0.84 0.85
ε=0.3,δ=0.1 0.94 0.95 0.94
ε=0.3,δ=0.3 0.89 0.89 0.89
ε=0.3,δ=0.5 0.84 0.84 0.83
ε=0.5,δ=0.1 0.94 0.95 0.94
ε=0.5,δ=0.3 0.89 0.89 0.88
ε=0.5,δ=0.5 0.84 0.85 0.84

Table 4.8: Estimated probability of preserving ε-distortion using Theorem 4.3
with C=0.5, so that k ranges from 4 (when δ = ε = 0.5) to 184. (when
δ = ε = 0.1).

The above tables illustrate that, on these particular data sets, the constant

C is actually less than 0.5. To see this, recall from Theorem 4.3 that if C is

chosen to be greater than 768, then the probability of maintaining ε-distortion

is bounded below by 1− δ:

P((1− ε)‖x− y‖≤ ‖T (x)− T (y)‖≤ (1 + ε)‖x− y‖) ≥ 1− δ.

However, each choice of C ≥ 1 leads to a relative frequency that is far

greater than 1 − δ. Only when C ' 0.5 do the empirical probabilities begin
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to converge upon the desired probability of 1 − δ. Moreover, the relative fre-

quencies begin to fall below 1−δ when C is chosen to be much smaller than 0.5.

This chapter presented Theorems 4.1, 4.2 and 4.3; Theorems 4.2 and 4.3

are refinements of Theorems 2.4 and 2.7 given by Matous̆ek [36]. I provided

detailed proofs that contained novel arguments that led to more specific bounds

on C than given by Matous̆ek. The results were tested with a computational

approach using simulated data. The computational approach implied a lower

dimensional embedding than suggested by my refined theorems. Such results

contribute to the continued evolution of the JL lemma.
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Chapter 5

Summary and Discussion of

Improvements to the Johnson

and Lindenstrauss Lemma

In view of the mathematical detail and complexity of Chapter 4, the current

chapter provides a succinct summary of the research results. A detailed review

of the mathematical improvements is provided including a list of specific con-

tributions to the work of Matous̆ek. The chapter concludes with a summary

of the computational results that further contribute to improvements to the

JL lemma.

5.A Summary of Results

My contribution to improving the JL lemma involved mathematical develop-

ments that were tested and improved with a computational approach. First, I

developed theorems that are refinements of two of Matous̆ek’s previous results
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[36]. Next, I tested the results of my refined theorems with simulated data;

these tests suggested further improvements to my refined theorems. As such,

I utilized a computational approach that provided a strong indication of the

magnitude of such improvements and also, it supported existing arguments

that are of practical significance, but have not yet been well established.

Section 4.A presented Theorems 4.1, 4.2 and 4.3, all of which are based

on Matous̆ek’s treatment of the JL lemma [36]. Theorem 4.1 is a simple and

practical result that can be used in applications of the JL lemma. Theorems

4.2 and 4.3, refinements of Theorems 2.4 and 2.7, give more specific bounds

on the reduced dimensionality k than those given by Matous̆ek. I proved each

of my theorems in Section 4.B using a similar, more detailed approach than

Matous̆ek. It is through this detailed treatment that I obtained the specific

bounds on k.

Section 4.C presented the results of tests of Theorems 4.2 and 4.3 by ob-

taining JL embeddings on a variety of simulated data sets. The results of these

tests implied a lower dimensional embedding than that suggested by my re-

fined theorems. Accordingly, a computational approach was taken in order to

empirically estimate the bound on the reduced dimensionality by performing

JL embeddings on simulated data. The results of a representative selection of

embeddings were then summarized.

5.B Mathematical Improvements

The essence of my results is reflected in Theorems 4.1, 4.2 and 4.3, all of

which are based on Matous̆ek’s treatment of the JL lemma [36]. Theorem 4.2

establishes the existence of a JL embedding using projection coefficients with
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a subgaussian tail. Theorem 4.3 establishes the existence of a JL embedding

using sparse projection matrices. Theorem 4.1 is a simple and practical result

that can be used in applications of the JL lemma. The results of Theorems

4.2 or 4.3 provide two families of mappings that can be used in Theorem 4.1

Motivation for the inclusion of both Theorems 4.2 and 4.3 follows. Theorem

4.2 asserts the existence of a mapping T : Rd → Rk of the form T (X) = 1√
k
XR,

where elements of R are mean zero and unit variance with uniform sub-

gaussian tail (with constant a in the subgaussian tail inequality), and where

k = Cε−2 log(δ/2), with C = 384(1 + 8/a)2. However, such a mapping can be

computationally expensive since it involves multiplication of high dimensional

matrices. This is overcome by considering sparse projection matrices which

contain coefficients that are distributed according to

S =





q−1/2 with probability q/2,

−q−1/2 with probability q/2,

0 with probability 1− q,

Such projection matrices greatly improve the speed of JL embeddings, since

matrix multiplication reduces to aggregate evaluation of approximately q of

the original coordinates of each data point. Moreover, Theorem 4.2 can be

applied when projection coefficients are independent, identically distributed

according to S, since S is mean 0, unit variance, and has a subgaussian tail with

coefficient aS = q2/2 (a simple exercise involving inequality (4.2)). However,

Theorem 4.2 is not practical when S is highly sparse, since q → 0 implies

aS → 0, which implies C →∞, which further implies k →∞. This limitation

of Theorem 4.2 is remedied by the additional assumptions of Theorem 4.3.

That is, Theorem 4.3 asserts the existence of a mapping T : Rd → Rk of the
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form T (X) = 1√
k
XS, where elements of S follow the above distribution, and

where k = Cε−2 log(δ/4), with C = 768. Theorem 4.3 is, therefore, applicable

when S is highly sparse since the reduced dimensionality k no longer depends

on the constant aS, as long as x is sufficiently well spread.

As previously mentioned, Matous̆ek [36] deserves much credit since Theo-

rems 4.2 and 4.3 are based on his treatment of the JL lemma. Indeed, The-

orems 4.2 and 4.3 are refinements of Theorems 2.4 and 2.7, first given by

Matous̆ek. Moreover, my proofs follow the same overall structure of those

given by Matous̆ek. However, I prove each of my theorems using a more de-

tailed approach which leads to more specific results. My contributions to the

improvement of Matous̆ek’s proofs include the following:

1. The proofs of Theorems 4.2 and 4.3 rely upon six results, which I refer

to as Lemmas 4.1 through 4.6. These lemmas are based on six results1

given by Matous̆ek, which involve loosely defined constants. My detailed

approach leads to the specific formulations for each of the constants in

Lemmas 4.1 through 4.6.

2. My proof of Lemma 4.2 is broken into two cases, as was Matous̆ek’s

proof. However, Matous̆ek does not prove the second case but rather, he

claims it is true with two short, somewhat intuitive sentences. I provide

a convincing, three page proof of the second case. Moreover, my proof

of Lemma 4.2 requires the inclusion of Facts 1 and 2, which I introduce

and prove in Section 4.B.2.

3. My proof of Lemma 4.4 is far more detailed than Matous̆ek’s proof. In

1Matous̆ek refers to Lemmas 4.1 through 4.6, respectively, as Lemmas 2.3, 2.4, 2.2, 3.3,
Proposition 3.2, and Lemma 4.2. To avoid confusion, I will refer to these results only as
Lemmas 4.1 through 4.6 even when discussing Matous̆ek’s approach.

83



particular, Matous̆ek’s proof relies upon asymptotic statements that he

does not prove. I avoid the asymptotic notation and I provide a lengthy

step-by-step proof of the result.

4. My proof of Lemma 4.5 is more detailed than Matous̆ek’s proof and, more

importantly, his proof contains a rather questionable assumption about

the constant C. In particular, Matous̆ek’s proof requires the assumption

that C ≥ 1/2, but he provides no justification for this assumption; it is

not possible for such a conclusion to be reached from the loosely defined

constants in Matous̆ek’s approach. In contrast, my detailed approach

to Lemmas 4.1 to 4.4 allows for a proof of Lemma 4.5 that is free of

ambiguous assumptions.

5. The increased specificity of Lemmas 4.1 to 4.5 leads to the more specific

bounds on k that are given in Theorems 4.2 and 4.3.

6. I justify the necessity of Theorem 4.3 when dealing with highly sparse

projection matrices. My detailed arguments make clear that Theorem

4.2 can be applied when the sparse projection matrix S is used, but that

it is impractical to do so because the reduced dimensionality grows with

the sparsity of S.

My contributions to improving the JL lemma are not limited to mathe-

matical refinements but rather, extend to computational improvements that

suggest a lower dimensional embedding than given by my theorems.
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5.C Computational Improvements

A computational approach was employed to improve the results of Theorems

4.2 and 4.3. In particular, the theorems were tested on data sets simulated

in the Matlab environment. The efficacy of each theorem was measured by

comparing the theoretical and empirical probability of obtaining a JL em-

bedding that maintains ε-distortion. Here, the theoretical probabilities re-

fer to 1 − δ and empirical probabilities refer to the relative frequencies of

pairs of points that preserve ε-distortion, i.e.,
#pairs preserving distortion

#pairs =

#pairs preserving distortion
(n2)

.

Preliminary tests gave an empirical probability that was far too large,

which suggested an inflated bound on the constant C. This idea of an in-

flated bound on C is supported by previous treatments of the JL lemma.

Indeed, Chapter 2 discussed the results of Dasgupta and Gupta [17] as well as

Achlioptas [1], both of which give the bound k ≥ 4
ε2/2−ε3/3 log(n). Note that

Dasgupta and Gupta and Achlioptas take different approaches than myself and

Matous̆ek, since they provide a probability statements involving the squared

length of the points before and after projection. Nevertheless, Dasgupta and

Gupta use Gaussian projection coefficients (which fit into the subgaussian

class) while Achlioptas uses slightly sparse projection matrices (which fit into

the class of sparse projection matrices). Hence, the results of Dasgupta and

Gupta and of Achlioptas can be compared to the results of Matous̆ek in order

to approximate the value of C, when these specific projection coefficients are

used. Such comparisons do not provide an exact value for C but rather, they

provide a bound for C which may only apply to a given choice of ε, when

δ = 1/n2. In any case, such comparisons seem to support the notion of an
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inflated bound on the constant C given in Theorems 4.2 and 4.3.

In light of the discrepancy between the empirical and theoretical probabil-

ities, a computational approach was taken in order to obtain a tighter bound

on the constant C. In particular, the tests were repeated using sequentially

decreasing values of C until the empirical probabilities matched those sug-

gested by Theorems 4.2 and 4.3. For all sets of simulated data, for all choices

of projection coefficients, and for all choices of ε and δ, the empirical results

suggested that the constant C is less than 1. Specifically, the empirical prob-

abilities began to converge upon the theoretical probabilities of 1− δ when C

approached 1, and the empirical probabilities began to fall below 1− δ when

C fell below 0.5. Since these results depended on simulated data, it is possible

that the true lower bound on C is greater than 1. Nonetheless, once any em-

pirical probability falls below 1− δ, the corresponding value of C provides an

upper bound under which the true C cannot exist. For example, for each of

the JL embeddings performed using subgaussian projection coefficients with

C = 0.5, more than 1− δ of the pairwise distances maintained ε-distortion of

distances. However, when C = 0.4 was selected, certain embedded data sets

had less than 1−δ of the pairwise distances maintain ε-distortion. This implies

that the use of subgaussian projection coefficients has a true lower bound on

C that is somewhere between 0.4 and 384(1+8/a)2. Indeed, it is possible that

the true lower bound on C (for all data) could be larger than 1. However, the

computational results suggested that the value of C is in the neighborhood of

C = 1. This C is much smaller than those given in Theorems 4.2 and 4.3 sug-

gesting the need for further refinement, as described in the section on future

research in the next chapter.

The computational results led to another noteworthy observation: there
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seems to be a dependency between the constant C and the parameter δ. In

particular, the empirical probabilities tended to first fall below 1− δ, for small

δ while the empirical probabilities remain large relative to 1 − δ, for large δ.

The discrepancy between the theoretical and empirical results, together with

the apparent dependency between C and δ indicates that the bounds on C can

be improved in each of Theorems 4.2 and 4.3. Such observations compelled me

to reinvestigate my proofs of Theorems 4.2 and 4.3 in an attempt to identify

any weak statements relating C to δ. Reinvestigation led to the discovery of

the following weak inequality used in my proof of Theorem 4.3:

P(∃i : Ỹi 6= Yi) ≤ 2ke−2q/α
2

= 2ke−2C0 log(d/εδ)

≤ 2ke−2 log(d/εδ)

≤ 2d2e−2 log(d/εδ)

≤ δ/2.

This weak inequality is improved using the fact that ε ∈ (0, 1/2] and δ ∈

(0, 1). It is likely the first of many theoretical improvements based on insights

from my computational results. The improvement follows:

P(∃i : Ỹi 6= Yi) ≤ 2ke−2q/α
2

= 2ke−2C0 log(d/εδ)

≤ 2ke−2 log(d/εδ)

≤ 2k
(εδ)2

d2

≤ δ2

2d
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A particular consequence of this tightened inequality is that each of the

remaining probabilities in equation (4.40) can be bounded above by 1
2
(1− δ2

2d
),

instead of δ/4, as in the proof of Theorem 4.3. This leads to the improved

bound

C ≥ − log(1
2
− δ2

2d
)

log(4
δ
)aZ

. (5.1)

For example, in the situation where d = 10000 and δ = 0.5 the improved

bound on C reduces to

C ≥ − log(1
2
− 1

160000
)

log(8)aZ

' 0.337

aZ
,

It was established in the proof of Theorem 4.3 that aZ = 1/768. Conse-

quently, the new bound on C decreases to roughly 258, given the particular

choices of d = 10000 and δ = 0.5. Moreover, it is apparent that the bound on

C becomes larger for small choice of δ while the bound decreases as δ grows.

The new bound on C given in equation (5.1) remains suspiciously large, but

it is only the first improvement to my mathematical results that follows from

my computational results.

This chapter reviewed and discussed the manner in which my results con-

tributed to the continued evolution of the JL lemma. A hybrid mathematical-

computational approach resulted in significant improvements to the JL lemma.

These improvements have far reaching implications for continued research in

dimensionality reduction. Although such continued research is beyond the

scope of this thesis, it is briefly discussed in the next chapter.
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Chapter 6

Conclusions, Limitations, and

Future Research

The first version of the JL lemma was introduced over thirty years ago; it is

a piece of mathematical beauty. Subsequent research collectively contributed

to the evolution of the lemma and today it is an essential tool in dimension-

ality reduction. In fact, the lemma is of such practical significance that its

applicability has evolved faster than its theoretical development. As such,

contemporary variants of the JL lemma lack mathematical clarity.

In 2008 Matous̆ek [36] provided particularly important evolutionary im-

provements to the JL lemma in the form of Theorems 2.4 and 2.7. Unfortu-

nately, due to his untimely death in 2015, continuation of his work is left to

others. I am honored to follow the work of Matous̆ek by providing Theorems

4.2 and 4.3 in an effort to re-establish the mathematical clarity that once char-

acterized the JL lemma. (Refer to Appendix C for my first contribution to

the continued evolution of the JL lemma).
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6.A Conclusions

This thesis focused on improving the JL lemma. A union of mathematical and

computational techniques was applied in order to obtain specific bounds on the

reduced dimensionality of JL embeddings constructed with the use of either

subgaussian projection coefficients or sparse projection matrices. Subgaussian

projection coefficients are particularly important because they guarantee the

existence of a JL embedding for any input data. Moreover, the proof of the JL

lemma with subgaussian projection coefficients leads into the proof of the JL

lemma with sparse projection matrices. Sparse projection matrices allow for

faster JL embeddings, but their applicability is restricted to non-sparse input

data. Matous̆ek acknowledged such restriction, but failed to clearly articulate

the conditions under which one approach is preferred over the other.

The contributions of this thesis to ongoing research include:

• indication that sparse projection matrices should be used whenever pos-

sible, since the coefficients are particular members of the subgaussian

class that lead to a faster JL embedding

• specific values for the constants in the statements of refined theorems

which led to specific bounds on the reduced dimensionality k

• step-by-step proofs of theoretical results, free of ambiguity

• “apparent” reduction to the bounds on k as indicated through compu-

tational solutions

• indication of relationships between constants and parameters that may

guide subsequent improvements to the bound on k
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• concrete evidence that theoretical development benefits from reciprocity

between mathematical analysis and computational solutions

6.B Limitations

Despite the significant contributions of this thesis, it is not without limitations.

Although mathematical results provided specific bounds on k, computational

results suggested that this bound is inflated. This was apparent for at least

two reasons: 1) unacceptably large empirical probabilities that JL embeddings

maintain ε-distortion of pairwise distances and 2) significantly lower dimen-

sional embeddings regarding squared distance are provided in the literature.

Computational results further suggested a relationship between the constant

C (in the formulation of k) and the probability parameter δ: small δ seems to

require a larger choice of C while larger δ seems to permit a smaller choice of

C. This relationship was not addressed in the my theoretical results. Thus,

my improvements to Matous̆ek’s results remain incomplete.

Another limitation of this thesis is its disregard for the L1 norm. The

current investigation focused exclusively on statements of the JL lemma that

regard the L2 norm, although the L1 norm is an alternative, and sometimes

more relevant, measure of distance. The literature includes a number of treat-

ments of the JL lemma regarding the L1 norm. Although such treatments are

relevant, they are beyond the scope of this thesis.

This thesis is directed toward mathematical and computational improve-

ments to the JL lemma to provide data analysts with improved tools for dimen-

sionality reduction. However, my results demand further refinement prior to

application to real-world data. This thesis addresses the increasingly apparent
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necessity to re-establish mathematical clarity that has been lost in recent years

due to the pandemic of trial-and-error applications that currently characterize

data science.

6.C Future Research

Limitations of the current thesis suggest areas of future research. It is im-

portant to continue revision of Matous̆ek’s discussion of the JL lemma [36].

For example, Matous̆ek provides an alternative treatment of the JL lemma

involving the L1 norm; he provides loosely defined constants similar to those

given in Theorems 2.4 and 2.7 (which involve the L2 norm). Thus, there is

room to improve Matous̆ek’s L1 results using a more detailed approach as I

did in the L2 case.

It is necessary to more clearly discuss the trade-off between subgaussian

projection coefficients and sparse projection matrices. Recall that Matous̆ek

fails to clearly articulate the conditions under which sparse projection matrices

should be used instead of subgaussian projection coefficients and vice versa.

Although I provided an explanation of why sparse projection matrices are the

preferred choice, I did not provide an indication of when sparse projection

matrices cannot be used. Comprehension of the applicability of sparse projec-

tion matrices requires more careful analysis of the sparsity parameter q (from

Theorems 2.7 and 4.3). In particular, Theorem 4.3 defines q = C0α
2 log(d/εδ),

where C0 ≥ 1, α ∈ [d−1/2, 1] and ‖x‖∞≤ α‖x‖. However, this further implies

that α ≤
√

1
log( d

εδ
)
, which illustrates that Theorem 4.3 is only applicable when

the input data are sufficiently well spread. I am not satisfied with this state-

ment alone, since α is defined over a region of possible values, but minimal α
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is desired in order to maximize sparsity. Moreover, the inclusion of the con-

stant C0 is questionable since C0 = 1 seems sufficient to prove Theorem 4.3.

A deeper investigation into the possible relationship between C0 and α may

provide valuable insight prerequisite to the development of the optimal choice

of q.

My computational results indicate dependencies among the constants and

parameters in my theorems; such dependencies are not included in my results.

Future research may provide further improvements to the lower bound on

k which are contingent upon reducing the lower bound on the constant C.

My computational results suggest a relationship between C and δ that is not

stated in my theorems. Brief reinvestigation of my proofs provides immediate

and overwhelming evidence of a significant reduction to the bound on C. For

example, in the proof of Theorem 4.3, the following reduced bound on C can

be obtained

C ≥ − log(1
2
− δ2

2d
)

log(4
δ
)aZ

. (6.1)

However, it is not yet clear whether the relationship between C and δ given

in (6.1) is generally true (i.e., it is not yet known whether the relationship holds

in alternative contexts). Future research may examine this relationship more

closely and subsequently provide a tighter bound on k.

Finally, further investigation is required of data-driven solutions to improv-

ing the JL lemma. Such improvements lack mathematical clarity and yet, they

can lead to highly efficient JL embeddings. For example, improvements to the

JL lemma have been made via hashing schemes which can lead to sparser

projection matrices than guaranteed by previous treatments of the JL lemma

regarding sparse projeciton matrices. Such data-driven approaches are fairly
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recent, highly computational in nature and as such, there is room for theoret-

ical development. It may be of interest to applied statisticians to explore the

practical utility of data-driven approaches to the JL lemma. Moreover, such

applied approaches may provide insight that motivates subsequent theoretical

improvements. Indeed, regardless of whether computation is performed on

real-world or simulated data, a hybrid mathematical-computational approach

is an effecive means of theoretical development.
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Abstract— The Johnson-Lindenstrauss lemma is a famous
result that has lead to the development of tools that may be
used when dealing with datasets of immense dimensionality.
The lemma asserts that a set of high dimensional points
can be projected into lower dimensions, while approximately
preserving the pairwise distance structure. Significant im-
provements of the JL-lemma are summarized, followed by
a detailed treatment of the more recent approach taken
by Matous̆ek [13]. Particular focus is placed on reproving
Matous̆ek’s versions of the lemma first using subgassian
projection coefficients and then using sparse projection
matrices. The results of the lemma are then tested using
simulated data. The simulation suggests a projection that is
more effective in terms of dimensionality reduction than that
which is born out by the theory.

Keywords: Johnson-Lindenstrauss, dimensionality reduction

1. Introduction
Statistics is a branch of mathematics focused largely on

data. To the applied statistician, a dataset is an n×d matrix
X , consisting of n observations, where each observation is
characterized by d covariates. From a geometric standpoint,
one can view X as a collection of n points, x ∈ Rd. The
dimensionality of x refers to the number of dimensions to
which x belongs; in this case, x is said to be d-dimensional,
and we can express x as x = (x1, x2, · · · , xd), where
xi ∈ R is said to be the ith coordinate of x, for i =
1, 2, · · · , d. From a statistical standpoint, one can view x
as an observation consisting of d measurements, with each
coordinate xi of x corresponding to measurement for the ith

variable.
The main objective of statistics is to collect sample data

in order to develop models that may be used to make
claims about a population of interest. However, methods
of data collection and model development have evolved
over the years. David Donoho [5] argues that traditional
statistical analyses relied upon the collection of a large num-
ber of observations, each characterized by a few carefully
chosen variables. Accordingly, the observations themselves
correspond to points in relatively low-dimensional space.
However, as Donoho goes on to claim, modern data are often
represented by a number of dimensions that is too large for
classical statistical approaches to be feasible. Indeed, thanks
to advancement in computer power, our capacity to sense

and record information has grown immensely; so much so
that the dimensionality of modern datasets can be in the
thousands or even in the millions. This has created a new
challenge for statisticians: how does one begin to fit a model
to a dataset consisting of significantly more variables than
observations (when d is much larger than n)?

The difficulty in analyzing high-dimensional data is
known as The Curse of Dimensionality. Issues revolving
around the Curse of Dimensionality have become common-
place in data analysis, and this has lead us to an exciting
area of research known as dimensionality reduction.

1.1 Dimensionality Reduction
The first step in the analysis of a high dimensional data

set is to reduce its dimensionality. That is, given some
dataset Xn×d, where d >> n, we wish to find a lower
dimensional representation Yn×k of X , with k < d, so that
much of the information contained in X can be obtained
from Y . Techniques in dimensionality reduction are being
used in a variety of fields, including research in dentistry
and orthodontics. For example Heo et al. explore the use
of dimensionality reduction techniques to landmark-based
data [7], [8], [9]. In particular, they apply dimensionality
reduction techniques to orthodontic data sets in order to
compare two types of rapid maxillary expansion treatments.
Their initial dataset consisted of high-dimensional landmark
configuration data that were obtained from cone beam CT
scans. Techniques in dimensionality reduction were applied
to these data in order to allow for computation of between-
subject variation. The next question to address is this: what
are the different methods of dimensionality reduction, and
when should one method be used instead of another?

There are a number of statistical approaches that may be
used to reduce the dimensionality of a dataset, and such
approaches can be classified as either feature selection or
feature extraction techniques. Some of the well-known meth-
ods of feature selection include model selection methods
in regression and classification, as well as regularization
methods such as Lasso and support vector machines. Some
of the well-known methods of feature extraction include
clustering, principal component analysis, multidimensional
scaling, and ISO maps. Most of the statistical approaches
to dimensionality reduction are based on uncovering the
intrinsic dimensionality of a data set, which is the number
of dimensions (variables) that contribute to the majority of
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the observed structure in the data; on the other hand, the
extrinsic dimensionality of a data set gives the number of
dimensions in which the data are observed [14].

Although it is of interest for us to uncover the intrinsic
dimensionality of a dataset, it is not always possible to do
so. In particular, many of the above approaches rely ma-
trix operations that are computationally expensive for high
dimensional data. For example, regression requires matrix
inversion, while MDS and PCA rely on eigendecomposition
and such matrix operations require a great deal of memory
when acting on high-dimensional matrices. As such, there is
a growing need for methods of dimensionality reduction that
enable us to significantly decrease the extrinsic dimension-
ality of the data while preserving its structure. Accordingly,
new methods in dimensionality reduction are emerging, and
such methods effectively reduce the extrinsic dimensionality
of the data, without any consideration of the true intrinsic
dimensionality. As a result, these new methods do not
provide a clear picture of the intrinsic dimensionality of a
dataset, nor do they provide us with the variables responsible
for much of the structure in the data. Nevertheless, the
new approaches to dimensionality reduction are becoming
an integral part of various algorithms designed to deal with
high-dimensional data. The following gives a brief summary
of the Lemma that started this movement, and some of the
key improvements it has seen since its inception.

1.2 Johnson-Lindstrauss Lemma
The Johnson-Lindenstrauss Lemma is a famous result

that has lead to the creation of a new class of techniques
in dimensionality reduction. The approach is much more
general than some of the classical, statistical methods in that
it may be applied to any set of points in high dimensions
(unlike statistical methods of dimensionality reduction, in
which it is assumed that the intrinsic dimensionality is very
small relative to the extrinsic dimensionality).

The Johnson Lindenstrauss Lemma asserts that a set
of high dimensional points can be projected into lower
dimensions, while approximately preserving the pairwise
distance structure between points. More formally, the JL
Lemma states the following:

Given a set P of n points in Rd, for some n, d ∈ N,
there exists k0 = O(ε−2 log n) such that, if k ≥ dk0e, there
exists a linear mapping T : Rd → Rk such that for any two
points u, v ∈ P ,

(1− ε)‖u− v‖ ≤ ‖T (u)− T (v)‖ ≤ (1 + ε)‖u− v‖.

Since T is a linear mapping, we can, without loss of
generality, replace the quantities u−v and T (u)−T (v) with
x and T (x), for a unit vector x ∈ Rd. That is, x represents
the distance between two points in P , and T (x) represents
the distance between the two mapped points. The mapping
T , is referred to as a JL-embedding.

The result of this theorem ensures that any set of points
can be projected into O(ε−2 log n) dimensions while main-
taining ε-distortion of pairwise distances between points.
Here, ε-distortion implies the ratio of distance after projec-
tion over that before projection is within (1− ε, 1 + ε).

2. Evolution of the JL Lemma
Over the years, the JL-Lemma has been reproved many

times, with new proofs providing a sharpening and/or sim-
plification of the result. However, there is one particular
feature that is common to all JL-embeddings: the mapping
T projects a vector into lower dimension, and the length of
this projection is sharply concentrated around its expectation.
Moreover, the existence of such mappings are typically
established through the probabilistic method, i.e. one shows
that the random mapping T has nonzero probability of being
sufficiently concentrated about its expectation.

In the original paper that introduced the JL-lemma, John-
son and Lindenstrauss [12] assert the existence of a mapping
T that gives an orthogonal projection of n points from Rd
onto a random k-dimensional subspace with dimensionality
O(log(n/ε2)), such that pairwise distances are maintained to
within a factor of 1±ε. Johnson and Lindenstrauss provide a
lengthy, technical proof using geometric approximation, and
reading through every detail of their proof is a challenging
endeavor, even for an experienced mathematician.

The first significant improvement to the JL-lemma came
from Frankl and Meahara [6], who replace the random
k-dimensional subspace with a collection of k random,
orthonormal vectors; this approach requires a much simpler
proof that attains a sharper bound on the reduced dimen-
sionality of T (x). In particular, Frankl and Meahara show
that n points from Rd can be projected into k ≥ d9(ε2 −
ε3/3)−1 log(n)e dimensions while maintaining ε-distortion
of pairwise distances. Moreover, Frankl and Meahara estab-
lish that the mapping is of the form T =

√
d
kXR, where

X=Xn×d is the data structure corresponding to the points
in P , and R=Rd×k is the projection matrix consisting of
random orthonormal column vectors.

Indyk and Motwani [11] then provide the next improve-
ment by relaxing the condition of orthogonality in the projec-
tion matrix. Instead, they show that a projection matrix need
only consist of independent, Gaussian random vectors, with
each coordinate following N (0, 1/d). This result greatly
simplifies the proof of the JL-lemma since independent
vectors are easier to deal with than orthogonal vectors and in
high dimensions, independent Gaussian vectors are almost
orthogonal.

Dasgupta and Gupta [4] then provide an alternative, much
simpler proof of the result of Indyk and Motwani using
moment generating functions. Moreover, they provide a
tighter bound than all previous versions of the JL-lemma,
wherein n points from Rd can be projected into k ≥
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d4(ε2/2 − ε3/3)−1 log(n)e dimensions while maintaining
ε-distortion. The results of both Indyk and Motwani, and
Dasgupta and Gupta rely on projection coefficients that are
spherically symmetric.

Achlioptas [1] then shows that spherical symmetry of the
projection coefficients is not necessary in order to obtain a
JL-embedding that maintains ε-distortion. Instead, he shows
that concentration of the projected points is sufficient. In
particular, he chooses projection coefficients that are inde-
pendent, identically distributed (i.i.d.) random variables, uni-
formly distributed over {−1, 1} or, alternatively, distributed
over 1/

√
3{−1, 0, 1}, where ±1 occur with probability 1/6

and 0 occurs with probability 2/3; he then shows that the
even moments of such random projections are dominated
by those of the spherically symmetric case, so that a JL-
embedding can be found with probability at least as large as
that in the spherical case (that is, when spherically symmetric
projection coefficients are used).

Finally, Matous̆ek [13] improves upon the above results
in two ways. First, he proves a generalized version of
the JL-lemma using the language of subgaussian tails,
and this approach contains many of the previously men-
tioned approaches, which involve spherical symmetry of the
projection coefficients. In particular, Matous̆ek shows that
a JL-embedding can be found by using i.i.d. projection
coefficients that follow a distribution with a mean of 0,
variance of 1, and with tails that are tighter than those of the
standard normal distribution. Matous̆ek’s next contribution is
an extension of Achlioptas’ result mentioned above. More
specifically, Matous̆ek proves that highly sparse projection
matrices can be used, but the sparsity of the projection
matrix depends on the density of the input vectors: denser
input vectors allow for sparser projection matrices which
is desirable since sparse projection matrices lead to faster
embeddings.

3. Two Approaches to the JL-Lemma:
Subgaussian Projection Coefficients and
Sparse Projection Matrices

The following three theorems are based largely on
Matous̆ek’s rendition of the JL Lemma [13].

Theorem 1: Consider a set P of n points in Rd, for some
n, d ∈ N. Given ε ∈ (0, 1/2), let k = O(ε−2 log n). Then
there is a mapping T : Rd → Rk such that

P
(
(1− ε)‖u− v‖ ≤ ‖T (u)− T (v)‖ ≤ (1 + ε)‖u− v‖,∀u, v ∈ P ) ≥ 1/2.

The proof of Theorem 11 relies on the existence of a random
linear map, T : Rd → Rk that satisfies the following
condition: if x ∈ Rd, then

1In fact, all known proofs of the JL-Lemma rely on statements akin to
(1).

P
(
(1− ε)‖x‖ ≤ ‖T (x)‖ ≤ (1 + ε)‖x‖

)
≥ 1− 1

n2
. (1)

The proof then follows by choosing δ = 1/n2, and
applying the result of either of the next two together with the
union bound. The next two theorems provide two particular
families of mappings T , that can be used in Theorem 1. In
both theorems, the mapping T is of the form T (x) = XRT ,
where R=Rk×d is the projection matrix, and X=Xn×d is
the data structure. Theorem 2 requires that elements of R
are i.i.d. random variables, with mean 0, unit variance, and
uniform a subgaussian tail, while Theorem 3 uses a sparse
projection matrix.

Definition 1: Subgaussian Tails
Let X be a real-valued random variable, with E(X) = 0. X
is said to have a subgaussian upper tail if ∃ a > 0 so that

P(X > λ) ≤ exp(−aλ2), (2)

for every λ > 0. If there is some λ0 such that equation (2)
holds only when λ ∈ (0, λ0), then we say that X has a
subgaussian upper tail up to λ0. Furthermore, we say that X
has a subgaussian tail if both X and −X have subgaussian
upper tails. Lastly, suppose that X1, X2, · · · is a sequence of
random variables, each with subgaussian tail. If the constant
a in the subgaussian tail inequality is the same for each Xi,
then we say that the Xis have a uniform subgaussian tail.

Theorem 2: Consider a collection {Rij}i,j of indepen-
dent random variables, where E(Rij) = 0 and V(Rij) = 1
for each Rij and also, suppose that {Rij}i,j has a uniform
subgaussian tail. Next, for fixed d ∈ N, ε ∈ (0, 1/2],
δ ∈ (0, 1), let us set k = C log(2/δ)

ε2 , for C ≥ 384(1+8/aR)2,
where aR is the constant in the subgaussian upper tail
of the Rijs. Finally, let us define the random linear map
T : Rd → Rk as follows:

T (x)i =
1√
k

d∑

j=1

Rijxj , for i = 1, 2, · · · , k,

where T (x)i is the ith coordinate of T (x) ∈ Rk, and xj
is the jth coordinate of x ∈ Rd. For every x ∈ Rd, it turns
out that

P
(
(1− ε)‖x‖ ≤ ‖T (x)‖ ≤ (1 + ε)‖x‖

)
≥ 1− δ.

Theorem 2, can be improved upon by further requiring that
the projection matrix is sparse. That is, define the mapping
T = XST , where elements of S are i.i.d. according to the
following distribution

Sij =





q−1/2 with probability q/2,
−q−1/2 with probability q/2,
0 with probability 1− q.

107



In this case, the mapping T can be used to find a JL
embedding provided the data points in X are sufficiently
well-spread2.

This idea was first introduced by Achlioptas [1], who
considers the two specific cases where q = 1 and q = 1/3,
and shows that q = 1/3 is nearly optimal. Ailon and
Chazelle [2], then extend this idea by considering highly
sparse matrices with q → 0; they show that, as the sparsity
of our projection matrix increases, so too does the need for
our data points to be well-spread across the dimensions in
which they are observed. That is, if our projection matrix
consists largely of 0s, then each coordinate of a data point x
should hold about the same mass as each other coordinate.

One advantage to using projection coefficients that are
i.i.d uniform over {−1, 1} is that each coordinate T (x)i
of our projection involves only addition and subtraction
of the original coordinates xj . More specifically, T (x)i is
calculated as follows: partition the coordinates of x randomly
into two groups, compute the sum of each group, and set
T (x)i to be the difference of these two sums. This greatly
improves runtime when searching for a JL-embedding, since
we need not perform repeated matrix multiplication (as is
the case when our projection coordinates are i.i.d. gaussian
random variables).

If we use i.i.d. projection coefficients with distribution
equal to that of S, then we can obtain a JL-embedding about
q times faster than when using projection coefficients that
are uniform over {−1, 1}. This is because, in both cases,
computation of each coordinate T (x)i involves addition
and subtraction of the original coordinates, but when the
projection coefficients are distributed as S, only about q of
the original coordinates are considered, with the remaining
coordinates sent to 0.

Before moving on, it is useful to note that Theorem
2 can be applied when projection coefficients are i.i.d.
according to S, since S is mean 0, unit variance, and
S has a subgaussian tail with coefficient aS = q2/2 (a
simple exercise) . However, recall that the reduced space has
dimension k = C log(2/δ)

ε2 , where C ≥ 384(1 + 8/aS)2, so
that q → 0 implies aS → 0, which further implies k →∞.
Therefore, Theorem 2 is not practical when dealing with
highly sparse projection matrices distributed according to S.

The following provides a formal discussion of JL-
embeddings using sparse projection matrices, following
closely the work present in [13]. The key difference between
this theorem and Theorem 2 is that the reduced dimension-
ality k no longer depends on the constant aS , so long as x
is sufficiently well spread.

Theorem 3: Let each of d ∈ N+, ε ∈ (0, 1/2), δ ∈ (0, 1),
and α ∈ [d−1/2, 1] be parameters, and define the sparsity

2A unit vector is well-spread if it is close to 1√
d

(±1,±1, · · · ,±1),
while something close to (1, 0, · · · , 0) is not well-spread since most of its
mass lies in its first dimension.

parameter
q = C0α

2 log(d/εδ),

where C0 ≥ 1 and all parameters are chosen in such
a way that q ∈ [0, 1]. Next, define the i.i.d. random variables

Sij =





q−1/2 with probability q/2,
−q−1/2 with probability q/2,
0 with probability 1− q,

for i = 1, · · · , k, j = 1, · · · , d. Next, set k =
Cε−2 log(4/δ), where C ≥ 768, and define the random
linear mapping T : Rd → Rk as follows:

T (x)i =
1√
k

d∑

j=1

Sijxj ,

for i = 1, · · · , k. Then if x ∈ Rd such that ‖x‖∞ ≤ α‖x‖,
it follows that

P
(
(1− ε)‖x‖ ≤ ‖T (x)‖ ≤ (1 + ε)‖x‖

)
≥ 1− δ.

3.1 Methodology
Our goal is provide a more specific bound on k than that

given by Matous̆ek. Matous̆ek gives the same bounds as
those given in Theorems 2 and 3, only in both cases, he does
not give a specific bound on the constant C but rather, he
simply asserts that C is "a sufficiently large constant". First,
we reprove Matous̆ek’s results in a more detailed manner in
order to obtain specific lower bound on the constant C. Next,
we perform a variety of simulations in order to empirically
estimate the bound on C.

4. Theoretical Results
Through mathematical analyses similar to those used by

Matous̆ek, we obtain the bounds on k given in Theorems
2 and 3. That is, when using subgaussian projection co-
efficients we obtain k = C log(2/δ)/(ε2), where C >
384(1 + 8/aR)2, and where aR is the coefficient in the
subgaussian tail inequality of the projection coefficients R.
On the other hand, when using sparse projection matrices
we obtain k = C log(4/δ)/(ε2), where C > 768.

5. Simulation Results and Discussion
The simulations were performed using Matlab R2013b

and using the default random number generator, i.e. the
random seed automatically generated by Matlab. To simulate
the result of Theorem 2, the projection coefficients were
chosen to be standard normal random variables (scaled so
that the expected length of each row is equal to 1) using
the built-in function normrnd. To simulate the result of
Theorem 3, the projection coefficients were chosen to be
multinomial distributed over {−q−1/2, 0, q−1/2}, where 0
has probability 1−q, ±q−1/2 each have probability q/2, and
where q is proportional to the L∞ norm of the simulated
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data points in accordance with Theorem 3. In an attempt
to compare the results for different types of data, datasets
were simulated using four different probability distributions:
Uniform, Cauchy, Mixed Non-Central Cauchy, and Mixed
Beta. These distributions are available through the built-in
Matlab functions: unifrnd, trnd, nctrnd, and betarnd; in order
to construct each of the mixed distributions, points were
randomly selected from two different distributions, which
further required use of the built-in function rand.

Each of the simulated datasets consist of n = 1000
10000-dimensional points which are projected into lower
dimensions using several different choices of the parameters
ε and δ, and the values for C suggested by Theorems
2 and 3. The theory is then tested by using the relative
frequency approach in order to estimate the probability that
each JL embedding maintains ε-distortion. That is, for each
simulated data set, and for each choice of ε and δ, we
construct the mapping T using projection matrices outlined
in Theorems 2 and 3. Then, for each simulated point x,
we compute the ratio ‖T (x)‖/‖x‖; if this ratio is within
(1 − ε, 1 + ε), then this particular embedding is considered
to be a success. Finally, for each simulated data set, and each
choice of ε and δ, the probability of success is estimated by
the number of successful embeddings, over the number of
points, n = 1000.

Now, according to Theorems 2 and 3, for each fixed ε and
δ, each point should preserve ε-distortion with probability
of at least 1 − δ. However, for each simulated data set,
100% of the projected points preserve ε-distortion. This
very high frequency of success seems unusual, especially
for situations when δ is chosen to be rather large. This
discrepancy between the theoretical and empirical results
is likely due to an inflated bound on the constant C in
each of Theorems 2 and 3. For this reason, the above
simulations are repeated using smaller and smaller values
of C until the probability bound appears to fall closer to
the expected bound of 1 − δ. Repeating the simulations in
this way seems to suggest a significantly lower bound on the
reduced dimensionality k than that suggested by the theory.
In particular, the simulations consistently suggest that the
constant C is between 0.5 and 2.

Concrete Example: The following example illustrates the
above discrepancy between the theorized value for C and
that which is suggested by simulations. Using δ = 0.2, ε =
0.5. and the sparse projection matrix given in Theorem 3,
we project n = 1000 uniformly random, 10000-dimensional
datapoints into k dimensions, where

k = C log(4/δ)/(ε2).

Thus, our choices of δ = 0.2 and ε = 0.5, together with the
bound C > 768 imply

K > 768 log(4/0.2)/(0.52) = 9202.

Thus, the random mapping T sends a 10000-dimensional
point x to the 9202-dimensional point T (x) such that

P (1− ε < ||T (x)||/||x|| < 1 + ε) > 1− δ.

Due to our choices of δ = 0.2 and ε = 0.5, we should
therefore expect

P (0.5 < ||T (x)||/||x|| < 1.5) > 0.8. (3)

Now, in order to check the validity of (3), we simply com-
pute the ratio of norms ||T (x)||/||x|| for each projected point
and count the number of projections that are not distorted by
more than 0.5. Finally, we estimate the probability of success
with the relative frequency of such successful projections.

Using the value of C = 768, we obtain a success rate
of 100%, which is quite large compared to the probability
bound of 0.8 suggested by Theorem 3. Accordingly, the
above was repeated using smaller and smaller values of C
until a value was found that seems to have roughly 80%
success rate. It turns out that for C as low as C = 10,
we still have 100% success rate. Choosing C = 1, leads to
93.9% success; choosing C = 0.75 leads to 89.5% success,
choosing C = 0.5 leads to 79.6% success probability. Thus,
using the value C = 768, given in Theorem 3, leads
to a reduced dimensionality of k = 9202, whereas the
simulations suggested instead that we can use C = 0.5
which leads to k = 6.

There are a few questions that should follow from the
result of this example:

1) Do these results change significantly if we use dif-
ferent data points? (In this particular example, the
points were simulated by generating uniformly random
10000-dimensional vectors). The answer is that after
generating various random data sets and repeating the
above approach, it seems that the type of data point is
not a major factor contributing to the huge discrepancy
between the reduced dimensionality k obtained by the
math vs that obtained by simulations (different data
results in slightly different reduced dimensionality,
maybe as high as 20 dimensions, but never anything
close to 9202).

2) Do these results change significantly if we try different
values for the parameters ε and δ? The answer is that
it does not seem to matter. Changing the values of
ε and δ leads to different values of k and different
probabilities of success (according to the math) but
once again, the probabilities are consistently far too
high for any fixed k, and in order to make the
simulated probability (relative frequency of successful
projections) match with the theoretical probability of
1 − δ we need to make the constant C much smaller
than the value of 768 given in the theorem.

3) Do these results change significantly if we use The-
orem 2 instead of Theorem 3? Once again, it seems

109



that the observed discrepancy is not due to the choice
of theorem, but agian due to an inflated value of C.

In summary, the mathematical bounds are far too large
and not of much practical use. However, the simulated results
seem to suggest that the value C can simply be estimated and
tweaked to the particular dataset. Moreover, the simulated
results suggest a much more practical result. In the above,
for example, the math says that we can go from 10000
dimensions to 9202 (not very helpful), while the simulated
results suggest that we can go from 10000 dimensions into
only 6 dimensions (very useful indeed).

6. Conclusions
We have discussed a non-statistical method of dimen-

sionality reduction, where any given set of points can be
embedded into lower dimensions, although such embeddings
are typically subject to some form of distortion. Regardless
of the initial dimensionality, the JL-lemma guarantees the
existence of a lower dimensional representation, the dimen-
sionality of which depends on the number of points as well
as the level of distortion one is willing to accept.

Mathematics gives a weaker bound on k than do our
simulations. In particular, the simulations seem to suggest
that C is generally around C = 1. This means that our
mathematical result (in particular, the bound on C) is hun-
dreds of times larger than the simulations suggest (or even
thousands when using Theorem 2 , depending on the choice
of subgaussin projection coefficients) and as such, our bound
on k is hundreds (to thousands) times larger than that which
is suggested by simulation.
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