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Abstract

In many industrial plants, development and implementation of advanced monitoring and

control techniques require real-time measurement of process quality variables. However,

on-line acquisition of such data may involve difficulties due to inadequacy of measurement

techniques or low reliability of measuring devices. These concerns motivate the design

of inferential sensors to infer process quality indicators from real-time measurable process

variables. Development and implementation of inferential sensors entail many challenges

that are often addressed in a rather ad hoc manner. Although many of the encountered

challenging issues are interconnected, most of the existing solutions are disjoint. The main

contribution of this dissertation is development of an integrative and holistic Bayesian

inferencing paradigm to provide general and integrated solutions to certain outstanding

inferential sensing problems.

The core component of an inferential sensor is the process model which is identified

through first-principles and process data analysis. The problem of model identification

from contaminated data is formulated under a hierarchical Bayesian framework to

simultaneously consider different aspects of data analysis and inferential modeling.

A Bayesian approach is developed for identification of multi-modal systems switching

among non-linear continuous-state dynamics. The proposed procedure provides a

framework to accommodate the overlapping operating regions, facilitate the inclusion of

prior knowledge about the operating conditions, and include a global adaptation mechanism

within the envelope of previously identified operating conditions.



Real-time identification of inferential models can be viewed as a special modeling

technique for design of multi-model inferential sensors with infinite number of local

models. A Bayesian framework is developed to provide a systematic and computationally

feasible method for real-time similarity function parametrization and model structure

selection in just-in-time/space modeling methods.

One of the practical challenges faced in implementation of inferential sensors is to assess

the accuracy of their real-time predictions. A data-driven Bayesian approach is proposed

to capture conditional dependence of the reliability of inferential sensor predictions on

characteristics of the input space and reliability of the empirical process model.

The practicality and validity of the proposed Bayesian frameworks are verified using data

from various simulation configurations, experimental set-ups, and industrial processes.



Preface

”My grandfather once told me that there are two kinds of people: those who work and those

who take the credit. He told me to try to be in the first group; there was less competition

there.” Indira Gandhi
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Chapter 1

Introduction

1.1 Motivation

In many industrial applications, successful implementation of advanced monitoring and

control techniques highly depends on representativeness of identified process models as

well as accuracy and reliability of measurements (Qin and Badgwell, 2000). Specifically,

real-time analysis of key performance indicators constitutes an essential prerequisite for

advanced monitoring and control of industrial processes. However, on-line measurement

of process quality variables is often restricted by inadequacy of measurement techniques

or low reliability of measuring devices. Even if appropriate instrumentation exists, the key

performance indicators are normally determined by off-line sample analysis in laboratory

or on-line product quality analyzers which are often expensive and require frequent and

high-cost maintenance. Furthermore, discontinuity and significant delays associated with

laboratory analysis or slowly-processed quality measurements of on-line analyzers can

reduce the efficiency of control policies. In industrial processing plants, such limitations

can have a severe influence on the quality of products, production of waste, and safety of

operations.

In the last two decades, there has been a growing interest in the development of

inferential models, also called soft sensors, to provide frequent on-line estimates of

quality variables on the basis of their correlation with real-time process measurements.

1
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Such predictive models devoted to producing real-time estimates of desired plant variables

can help to reduce the need for measuring devices, improve system reliability, and develop

tight control policies (Fortuna et al., 2007).

There are several advantages of inferential sensors in comparison with traditional

instrumentation:

1. They give more insight into the process through capturing the information hidden in

data.

2. They are an emerging technology that allows industrial users to improve productivity,

become more energy efficient, reduce environmental impact, and improve business

profitability by reducing the production cost associated with off-specification

products.

3. They can be easily implemented on existing hardware. Further, various on-line

identification algorithms can be used to maintain the model when system parameters

change.

4. They involve little or no capital costs such as the cost of installation, management of

the required infrastructure, and commissioning.

The range of tasks fulfilled by inferential sensors is broad. Inferential models may not only

be used as a substitute or complement to physical sensors, but can also perform several

other tasks efficiently. Good reviews of inferential sensor applications in a number of

different fields of process engineering can be found in Stephanopoulos and Han (1996);

Chiang et al. (2001); Qin and Badgwell (2003); Fortuna et al. (2007); Kadlec et al. (2009);

Kano and Ogawa (2010). At a general level, these fields can be divided into three broad

categories:

1. Process monitoring
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• Substituting/complimenting on-line instrumentation

• Predicting process quality variables or key performance indicators

• Monitoring and analysis of process trends

• Fault detection

2. Process control

• Development of advanced control strategies, such as model predictive control

• Heuristics and logic in planning and scheduling of process operations

3. Off-line operation assistance

• Diagnosis of process operations

• Knowledge-based engineering design

• Development of plant simulator

As indicated by existing research efforts, development and implementation of industrial

inferential sensors entail many challenges (Hangos and Cameron, 2001; Paoletti et al.,

2007; Kadlec et al., 2009; Pani and Mohanta, 2011; Kano and Fujiwara, 2013). Despite

the increasing number of publications dealing with industrial applications, several issues

remain open for future investigation. The main objective of this research is to develop

novel Bayesian frameworks to reformulate and solve some of these outstanding problems.

Specific problems investigated in this thesis are briefly described in Section 1.2. An equally

important objective of this work is to implement the developed Bayesian frameworks in

experimental and industrial case studies to demonstrate practicality and validity of the

methods.



Sec. 1.2 Problems of Interest 4

1.2 Problems of Interest

Incorporation of prior process knowledge. Depending on the level of a priori

knowledge, two different philosophies may guide the choice of modeling strategies, namely

first principles analysis and statistical data analysis (Ljung, 1999). First principles

or knowledge-driven models are obtained based on formulating and solving a set of

differential and algebraic equations representing physical phenomena. Development of

such models requires a deep understanding of transport phenomena, possible reaction

pathways, and thermodynamic behavior of the studied systems. The complexity of

chemical, petroleum, and biological processes could make first principles modeling

infeasible or prohibitively difficult. Therefore, decades of research have been devoted to

developing system identification techniques for situations in which complete understanding

of the internal mechanisms governing the system dynamics is absent. Traditionally,

data-driven models are constructed only based on computational inference of historical

relations among system components. However, it has been widely realized that good

modeling practice requires exploitation of all available sources of information. The

limited knowledge offered by first principles analysis of known mechanisms may form

the core of inferential process models, while the impacts of the observed but not

sufficiently understood phenomena can be accounted for through system identification

and computational inference techniques. Therefore, synthesizing the information obtained

from first principles analysis and statistical data analysis is one of the issues arising in

some inferential sensing problems. Since available process knowledge cannot be easily

expressed in many of the classical formalisms, it might become challenging to fully

incorporate a priori knowledge about the process operation and underlying mechanisms

into the identification procedure.

Controlling the complexity of inferential models. Proper identification of a

representative process model is another essential prerequisite for development of an
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efficacious inferential sensor. The choice of knowledge-driven models for industrial

processes depends on the complexity of the underlying physical systems and thus the

availability of phenomenological knowledge of the involved unit operations. In the

absence of any process knowledge, the task is to find a suitable inferential model that is

well supported by historical data. Therefore, a data-driven model is identified without

investigating the internal mechanisms. In such cases, the main criteria to be considered

in model selection are simplicity, generality, and flexibility (Hangos and Cameron, 2001).

The more degrees of freedom are allowed in the inferential model structure, the closer the

model can approximate the identification data-set. On the other hand, too much flexibility

might reduce the generalization performance of the developed inferential sensor when the

process is operated under a wide range. Determination of a proper model structure plays a

key role in achieving a compromise between accuracy and complexity of the model. The

problem of model complexity control is often dealt with in a rather ad hoc manner. Thus,

there is a need to develop a reliable systematic method for model structure selection.

Identification of inferential models from contaminated data. Some of the challenging

issues encountered in inferential sensing problems arise due to the varying quality

of industrial data. In the context of process industry, measurement noise, missing

measurements, outlying observations, multi-rate data, and drifting disturbances are the

common factors affecting the quality of operational and laboratory data. Satisfactory

performance of inferential sensors can be achieved only if such challenging issues are

addressed. Therefore, process data analysis in general and data quality assessment/pre-

processing in particular is of essential significance for design of inferential sensors. The

problems of process data pre-processing and inferential model identification are often

interconnected. However, most of the existing solutions are disconnected and each solution

targets mainly one problem. Therefore, it is desired to seek for a unified framework that

simultaneously considers different aspects of data analysis and inferential modeling.
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Design and implementation of multi-model inferential sensors. Representation of

multi-modal processes is another issue that may arise in the identification of inferential

models. Some chemical processes experience discrete changes superimposed on their

predominantly continuous dynamic behavior. The continuous-state dynamics is typically

associated with physical phenomena involved, while the discrete-state dynamics may

come from switching controllers, inherent non-linearities in the system, different operating

conditions, or any other external discrete events influencing the process under investigation.

In such cases, only multi-model inferential sensors can describe both the continuous

dynamic behavior and the transitions between discrete modes. Multi-model inferential

sensors can also be used to approximate complex processes by concatenating multiple local

models with simple structures. Real-time model identification (Cleveland, 1979; Atkeson

et al., 1997), also known as just-in-time/space modeling (Zheng and Kimura, 2001), can

be viewed as a special modeling technique for design of multi-model inferential sensors

with infinite number of local models. The multi-model paradigm has attracted increasing

attention in the process control community due to its many potential industrial applications.

Commonly, the existing identification methods hinge on the assumption that any operating

space can be partitioned into a finite number of linearly separable regions. Consequently,

identification data points lying in the proximity of the intersection of multiple regions

cannot be effectively handled. Besides, available process knowledge and relevant

background information cannot be easily incorporated in partitioning the operating space

and identifying the sub-systems. Therefore, development and implementation of multi-

model inferential sensors require further investigation to meet the specific requirements of

the process industries.

Monitoring the real-time performance of inferential sensors. Real-time performance

assessment of inferential sensors is another important topic to be further investigated. In

order to maintain the reliability of an inferential sensor, it is required to track its on-line
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performance. However, designing a performance index and specifying a threshold are not

straightforward. The main body of research in this area has been focused on exploiting

advanced strategies for development of inferential sensors; only a few publications have

provided methodologies for on-line reliability analysis of inferential models. The proposed

methodologies are rather ad hoc and have a number of practical and theoretical limitations.

Hence, it is of paramount importance to search for general criteria and techniques for on-

line performance assessment of inferential sensors.

In view of the aforementioned challenging issues, this thesis concerns formulating the

stated problems of interest as rigorous conditional probabilistic problems within systematic

Bayesian frameworks. In principles, Bayesian methods suggest a general solution for many

types of systems including linear and non-linear systems, in the presence of Gaussian or

non-Gaussian disturbances, with or without constraints, and in handling regular or irregular

data samples. As a result of the demonstrated potential of Bayesian methods in dealing with

certain outstanding issues associated with inferential modeling, interest in investigating

these methods has grown in recent years. Combined with a suite of inference and learning

algorithms, Bayesian methods have proven to be powerful in many applications (Korb and

Nicholson, 2004; Khatibisepehr and Huang, 2008; Shao et al., 2011; Qi and Huang, 2011).

However, these methods are not yet widely applied to inferential sensing practices in the

process industry.

1.3 An Overview of Bayesian Inference

Bayesian philosophy originates from an interpretation of Bayes’ theorem (Bayes,

1763/1958), which updates the probability of a query variable, x, conditioned on observed

data, D, in the light of new information (Korb and Nicholson, 2004):

p(x|D) =
p(D|x)p(x)

p(D)
(1.1)

where,
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• p(x) is the prior probability of the query variable, which represents the state of

knowledge about x before incorporating any information about the observed data,

D.

• p(x|D) is the posterior probability of the query variable, which is derived from or

depends upon the observed data.

• p(D|x) is the conditional probability of the observed data given that the query

variable takes on a certain value; as a function of x given D, it is also called the

likelihood function.

• p(D) is the prior or marginal probability of D, and acts as a normalizing constant,

i.e. p(D) =
∫
p(D|x)p(x)dx.

Bayes’ theorem is commonly applied to solving probabilistic inference problems. The steps

considered necessary in performing Bayesian inference can be summarized as follows.

First, the subjective and/or objective prior knowledge is taken into consideration in order

to specify the prior distribution of query variables, p(x). Next, the effect of observed data

is investigated in order to incorporate the likelihood of various values of x by multiplying

the prior distribution with the likelihood function, p(D|x). The posterior distribution of

query variables, p(x|D), is thus more concentrated than the prior distribution. Finally, the

maximum a posteriori (MAP) estimates of query variables are obtained from the following

expression:

xMP = argmax
x

p(x|D) (1.2)

It is noteworthy that all conclusions drawn from evaluation of posterior distributions

depend on the quality and extent of the prior information included in Bayesian inference

processing. Nevertheless, the choice of prior distribution becomes less significant as

more observations are collected. In the case of the non-informative priors (i.e., uniform

distribution), the MAP estimates are identical to the maximum likelihood (ML) estimators
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which can be expressed as follows:

xML = argmax
x

p(D|x) (1.3)

There are two other types of intractable problems inherently related to the Bayesian

statistics that play an important role in Bayesian inference:

• Marginalization: Given the joint probability density function p(x, y), the marginal

probability density function of the random variable x can be obtained by integrating

out y such that

p(x) =

∫
Y

p(x, y)dy (1.4)

• Expectation: Given the conditional probability density function p(x|y), the expected

value of an arbitrary function of the random variable x, g(x), is calculated as

Ep(x|y)[g(x)] =

∫
X

g(x)p(x|y)dx (1.5)

Adopting Bayesian methods to formulate and solve the inferential sensing problems bears

several benefits.

1. Process knowledge can be easily incorporated in a Bayesian scheme by specifying

proper prior distributions over model parameters, functional forms, and constraints.

2. Bayesian methods force one to make the tacit assumptions explicit in the prior

distributions. In this way, the assumptions are easier to evaluate, criticize, and

modify.

3. The model identification problem can be rigorously formulated under a principled

framework, which features fewer heuristic design choices. For instance, a Bayesian

approach to modeling can naturally deal with complexity control to avoid over-fitting

by integrating out the uncertain model parameters and/or hyperparameters.
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4. Within a full Bayesian framework, the uncertainty in model parameters is

characterized through posterior probability density functions which give rise to a

so called predictive distribution. Thus, probabilistic predictions are made by

marginalizing over the parameters.

5. General Bayesian learning techniques convert the identification problem into an

equivalent problem of computing expectation or evaluating an integral as opposed

to solving a global optimization problem as in likelihood methods.

6. Incomplete data and non-Gaussian distributions can be handled naturally.

1.4 Thesis Outline

The main contributions of this research are presented in six chapters the contents of which

have been published or to be published in peer-reviewed journals:

1. Khatibisepehr, S., B. Huang and S. Khare (2013). Design of inferential sensors in

the process industry: A review of Bayesian methods. Journal of Process Control. in

press.

2. Khatibisepehr S., B. Huang, E. Domlan, E. Naghoosi, Y. Zhao, Y. Miao, X. Shao, S.

Khare, M. Keshavarz, E. Feng, F. Xu, A. Espejo and R. Kadali (2013). Soft sensor

solutions for control of oil sands processes. The Canadian Journal of Chemical

Engineering 91(8), 1416-1426.

3. Khatibisepehr, S. and B. Huang (2013). A Bayesian approach to robust process

identification with ARX models. AIChE Journal 59(3), 845-859.

4. Khatibisepehr, S. and B. Huang (2012). A Bayesian approach to design of adaptive

multi-model inferential sensors with application in oil sand industry. Journal of

Process Control 22(10), 1913-1929.
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5. Khatibisepehr S., B. Huang, F. Ibrahim, J.Z. Xing and W. Rao (2011). Data-based

modeling and prediction of cytotoxicity induced by contaminants in water resources.

Computational Biology and Chemistry 35(2), 69-80.

6. Khatibisepehr S., B. Huang, S. Khare, E. Domlan, F. Xu, A. Espejo and R. Kadali. A

probabilistic framework for real-time performance assessment of inferential sensors.

Submitted to Control Engineering Practice.

The organization of the thesis is as follows.

Chapter 2 provides a general introduction to the main steps involved in development and

implementation of industrial inferential sensors, and presents an overview of the relevant

Bayesian literature. The potential Bayesian solutions to some of the main issues associated

with inferential sensor design are discussed. A review of the literature on the industrial

applications of Bayesian inferential sensors is also presented.

Chapter 3 provides a classical non-Bayesian framework to capture the non-linearity

in the local region around a query point in a real-time manner. The proposed real-time

model identification approach, also known as just-in-time/space modeling, can cope with

variations in process characteristics and handle non-linearity of underlying mechanisms.

An ν-support vector regression (ν-SVR) model is adopted to form the core of the predictive

framework. The formulation of the SVR embodies the structural risk minimization (SRM)

principle that is used to minimize an upper bound on the expected risk. Given a query

point, a search algorithm is applied to select spatial and temporal nearest neighbors within

the identification data-set. The selected sub-set of identification data is then used to identify

a local ν-SVR model. Since the SRM principle provides means of constructing regularized

risk functions, it can be motivated from a Bayesian perspective. The regularization term

included in the regularized risk function can be interpreted as the prior belief over the level

of complexity of the SVR model structure. The developed framework is implemented to

facilitate real-time modeling and prediction of cytotoxicity effects on living cells induced
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by certain water contaminants. The structural risk minimization approach is used for model

order selection, while the cross-validation is performed for hyperparameter tuning.

In the method proposed in Chapter 3, the search for optimal model structure and

hyperparameters are not interconnected. In Chapter 4, a unifying Bayesian framework

is developed to facilitate real-time model structure selection and similarity function

parametrization in just-in-time/space modeling methods. The proposed framework would

bridge the gap between the model structure selection and hyperparameter tuning. Since

partial least squares (PLS) regression can effectively handle the collinear identification

data, the locally weighted PLS algorithm is adopted as the main modeling technique.

It is assumed that the operating space can be partitioned into a finite number of

sub-spaces. A Bayesian procedure is outlined for partitioning and characterizing the

operating space. For each sub-space, the problem of finding the locally optimal LW-

PLS model structure and similarity function hyperparameters is formulated under an

iterative hierarchical Bayesian optimization framework. Thus, the real-time identification

problem amounts to detecting the underlying operating sub-space and estimating the LW-

PLS model parameters. The proposed method has the following attractive features: 1.

The Bayesian model comparison allows us to perform objective comparisons between

alternative model structures. Therefore, the resulting optimization problem in each sub-

space would automatically be subjected to model complexity control to avoid over-fitting.

2. Objective criteria for local tuning of the hyperparameters of the similarity function are

provided. 3. Real-time model structure selection and similarity function parametrization

would become computationally efficient.

In Chapter 5, the problem of inferential model identification in presence of outliers

is formulated and solved under a robust Bayesian framework consisting of consecutive

levels of optimization. The resulting optimization problem was hierarchically decomposed

and a layered optimization strategy was implemented. An iterative hierarchical Bayesian
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approach is adopted to coordinate the solutions obtained in subsequent layers of

optimization. The proposed optimization strategy not only yields maximum a posteriori

estimates of model parameters, but also provides an automated mechanism for determining

the hyper-parameters and investigating the quality of each observation. Moreover, the

developed framework allows us to incorporate the prior knowledge of the contaminating

distributions. Thereby, the restrictive assumptions made in traditional robust identification

methods about contaminating distributions (e.g. symmetric noise distribution) are relaxed.

Chapter 6 presents a Bayesian approach for identification of multi-modal systems

switching among non-linear continuous-state dynamics to meet the specific requirements

of the process industries. The proposed identification procedure provides a framework

to accommodate the overlapping operating regions and facilitate the inclusion of prior

knowledge about the operating conditions. A Bayesian decision-support scheme has

also been developed for real-time implementation of the multi-model inferential sensors.

The developed scheme includes a global adaptation mechanism, within the envelope of

previously identified operating conditions. The efficacy of the method is demonstrated

through a successful industrial application of an adaptive multi-model inferential sensor

designed for real-time monitoring of a key quality variable in an oil sands processing unit.

Chapter 7 presents a data-driven Bayesian approach for real-time performance

assessment of inferential sensors. A statistical inference framework is developed to

capture conditional dependence of the reliability of inferential sensor predictions on

characteristics of the input space and reliability of the empirical process model. The

details of the proposed Bayesian method are presented for both discrete and continuous

operating statuses. Real-time performance assessment of multi-model inferential sensors

is also discussed. The proposed method has the following attractive features: 1. A priori

knowledge of process operation and underlying mechanisms can be easily incorporated in

identifying the criteria for real-time performance assessment of the designed inferential
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sensors. 2. Since probability density functions would reflect the actual data distribution,

empty regions within the identification data-set can be diagnosed. 3. Correlations between

input variables are taken into account. 4. Contribution of each input variable to prediction

uncertainty is automatically considered. 5. Application of the method does not depend on

the identification techniques employed for inferential model development. 6. Real-time

implementation of the method is computationally efficient.

In Chapter 8, the methods proposed throughout the thesis are incorporated to lay out

a novel unified Bayesian framework for the design of multi-model inferential sensors.

The chapter also includes a summary of the major contributions of the thesis as well as

recommendations for future research.

1.5 Main Contributions

This thesis can be used as a guide to Bayesian inferential sensing practice in process

industries. The main contributions of this work are summarized below.

1. Development of an integrative and holistic Bayesian framework for design of

adaptive multi-model inferential sensors from contaminated industrial data with little

or no need for subjective knowledge. The proposed approach is the first attempt to

integrate the otherwise disjoint steps required for development of inferential sensors

including data quality assessment and model identification.

2. Providing objective criteria for simultaneous model structure selection and similarity

function parametrization in just-in-time/space modeling methods. The developed

framework provides a systematic approach for model structure selection and

similarity function parametrization.

3. Proposing a reliability analysis methodology for real-time performance assessment

of inferential sensors. The proposed method is of paramount importance to the
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implementation of industrial inferential sensors.

4. Development of a data-driven framework to facilitate real-time prediction of

cytotoxicity effects on living cells induced by certain water contaminants. The

developed framework allows us to analyze intrinsic cell behavior and predict the

trajectory of its progress (growth or death) over a considerable time horizon.

5. Design of adaptive multi-model inferential sensors for real-time monitoring of key

quality indicators of an oil sands processing unit. The developed inferential sensors

have been running on-line reliably and successfully since July 2011.
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Byrenes, Eds.). Vol. 26 of Progress in Systems and Control Theory. pp. 369–392.
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Chapter 2

Design of Inferential Sensors in the
Process Industry: A Review of Bayesian
Methods

2.1 Introduction

Depending on the level of a priori knowledge of the process, three different classes

of inferential models can be developed: 1. knowledge-driven, 2. data-driven, and 3.

gray-box models. Knowledge-driven models, also called first-principles models, are

developed on the basis of first principles analysis and, thus, require full phenomenological

knowledge about the underlying mechanisms (Grantham and Ungar, 1990; Prasad et al.,

2002; Friedman et al., 2002; Cinar et al., 2003). Although first-principles models have

many advantages, they can often be expensive and time-consuming due to the complexity

of industrial processes. In contrast, data-driven models are constructed only based on the

historical relations among the existing measurements, and prevent one from the laborious

study of complex chemical and physical phenomena involved (Kano and Nakagawa, 2008;

Olanrewaju et al., 2010; Wang et al., 2010a; Jampanaa et al., 2010). Data-driven models,

also called black-box models, are proposed for situations in which physical understanding

of the process under investigation is absent or not relevant. In between the two extremes,

A version of this chapter has been accepted for publication in Journal of Process Control (Khatibisepehr
et al., 2013).
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there are many possible combinations of knowledge-driven and data-driven models. The

prior knowledge offered by the simplified first principles analysis forms the core of a

so called gray-box model, while data-driven methods can compensate for fractions that

cannot be modeled easily in terms of phenomenological models. Satisfactory results of

gray-box techniques have been widely reported in literature, because any available source

of information is exploited to refine such models (Bohlin and Graebe, 1995; Dadhe et al.,

2001; Jiaa et al., 2011; Liu et al., 2012). In this paper, we focus our attention mainly on

gray-box modeling due to its growing popularity in industrial applications.

Regardless of which modeling approach is taken, an inferential sensor design procedure

is an iterative process consisting of the following steps: 1. Process data analysis, 2. Model

identification, 3. Model validation, 4. Model implementation and calibration. Figure 2.1

presents a flowchart of the inferential sensor design procedure. As a general guideline,

Appendix A outlines some of the main tasks to be performed at different stages. Since each

industrial application has unique requirements and challenges, the recommended tasks does

not necessarily include all steps required for development or implementation of a specific

inferential sensor.

Development and implementation of industrial inferential sensors entail many

challenges. As a result of the demonstrated potential of Bayesian methods in dealing with

certain outstanding issues associated with inferential modeling, interest in investigating

these methods has grown in recent years. As indicated by existing research efforts,

Bayesian methods suggest a general solution for many types of systems including linear

and non-linear systems, in the presence of Gaussian or non-Gaussian disturbances, with

or without constraints, and in handling regular or irregular data samples. Combined with a

suite of inference and learning algorithms, Bayesian methods have proven to be powerful in

many applications (Korb and Nicholson, 2004; Khatibisepehr and Huang, 2008; Shao et al.,

2011; Qi and Huang, 2011). Despite the increasing number of publications dealing with
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Figure 2.1: Flowchart of the inferential sensor design procedure

industrial applications, these methods are not yet widely applied to inferential modeling

practices in the process industry.

The purpose of this Chapter is twofold. The first objective is to provide a general

introduction to the main steps involved in development and implementation of industrial

inferential sensors, and present an overview of the relevant Bayesian literature. The use of

Bayesian techniques in industrial applications, in particular in design of inferential sensors

for process industries, is relatively new. An equally important objective of this Chapter

is thus to discuss the potential Bayesian solutions to some of the main issues associated

with inferential sensor design. A review of the literature on the industrial applications of
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Bayesian inferential sensors is also presented. This Chapter is not intended to provide

a comprehensive review of the great variety of methods used in the design of inferential

sensors, but is rather focused on the techniques that have their origin in Bayesian Statistics.

Therefore, the main contribution of this work is complementing the existing reviews in

the field. Gonzalez (1999); Fortuna et al. (2007); Kadlec et al. (2009); Pani and Mohanta

(2011); Kano and Fujiwara (2013) are among the most cited publications providing reviews

of the inferential sensor applications, the most popular inferential modeling techniques, and

the challenging issues involved.

2.2 Process Data Analysis

Process data analysis is the initial step in the design of inferential sensors. Careful

investigation of laboratory and operational data enables us to extract relevant information

contained in historical data, select influential variables, and assess data quality (e.g.

reliability, accuracy, completeness, and representativeness). In particular, the query

variable measurements should be thoroughly assessed to ensure that reference data of

sufficiently high quality and variability are used in the design of inferential sensors. In

this phase, conducting interviews with plant experts and operators plays a key role in fully

exploiting the wealth of historical data. The experiences and expertise of those involved in

day to day operation provide valuable insight into underlying mechanisms, relevant process

variables, performance of measuring devices, and operating modes, among others.

The collected process data is often divided into three subsets: the identification data-

set, the validation data-set, and the test data-set. The identification data-set is used

for inferential model identification purposes, while the validation and test data-sets are

reserved for evaluating the performance of the developed inferential sensor. The difference

between the latter two data-sets will be explained in Section 2.4. It is noteworthy that the

distribution of identification data within the process operating region is crucial to ensuring
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the quality of inferential sensors. Therefore, the identification data-set should adequately

represent the possible operating modes of the process under investigation.

In Bayesian data analysis, marginal and joint probability distributions of observed and

query variables are investigated in order to extract hidden patterns (e.g. dependencies and

multiple operating ranges) from historical process data. These patterns can be considered

as a summary of the input data, which can then be used to obtain more accurate results by

a decision support system (Gelman et al., 2003).

2.2.1 Characteristics of Laboratory Data

From an inferential modeling point of view, laboratory data are often considered as

reference measurements. Therefore, it is important to acquire sufficient knowledge about

the characteristics of laboratory data, such as sampling interval, sampling procedure,

analysis techniques, and basics of measuring devices.

Although laboratory analysis often provides accurate and reliable measurements, the

quality of laboratory data might be affected by the following factors:

1. The exact sampling instants are often not recorded; rather nominal time, as required

by the assigned sampling intervals, is attributed to each collected sample.

2. There are potential human errors that may occur in collecting samples, conducting

experiments, and recording the results.

3. The laboratory equipment is frequently calibrated within a specified accuracy.

However, the tolerable range of inaccuracy for a certain instrument may introduce a

considerable error when the operational range of variation of the measured property

is relatively small.

Therefore, laboratory data quality assurance is of essential significance for design of

inferential sensors.
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2.2.2 Data Pre-processing

Development and implementation of inferential sensors entail many challenges that

may arise due to the varying quality of industrial data. In the context of process

industry, measurement noise, missing measurements, outlying observations, multi-rate

data, measurement delay, and drifting disturbances are the common factors affecting the

quality of process data. Satisfactory performance of inferential sensors can be achieved

only if such challenging issues are addressed. As a preliminary step, data pre-processing is

often required in order to obtain a data-set which adequately represents the characteristic

properties of the process under investigation (Kadlec et al., 2009; Pani and Mohanta, 2011).

2.2.2.1 Incomplete Data

In many industrial plants, missing measurements and irregularly sampled data are

commonly experienced mainly due to hardware sensor failure or routine maintenance,

data acquisition system malfunction, different acquisition rates from different sensors, or

delays associated with laboratory analysis. Background information about the pattern and

extent of data incompleteness is often not included in process data analysis. Rubin (1976)

developed a probabilistic framework to describe different plausible assumptions that might

be made about the incompleteness mechanisms. Suppose the identification data can be

segregated into two parts: the complete and the incomplete attributes, i.e. D = {Dc,Dic}.

A matrix of binary indicator variables, M, can be constructed to denote whether or not a

data point is observed. The incompleteness mechanism can be described as the posterior

probability distribution of M given the identification data i.e. p(M|D,Φ), where Φ denotes

hyperparameters characterizing this conditional probability distribution. Depending on the

extent of conditional dependence between M and D, the incompleteness mechanism can

be categorized into three classes (Rubin, 1976; Imtiaz and Shah, 2008):

1. Missing Completely At Random (MCAR): The incompleteness mechanism is
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defined to be MCAR, if the posterior probability distribution of M does not depend

on any part of D, i.e. p(M|D,Φ) = p(M|Φ). For instance, incomplete data resulting

from instrument failures or transmission problems may not follow a discernible

pattern.

2. Missing At Random (MAR): The incompleteness mechanism is defined to be

MAR, if the posterior probability distribution of M depends on complete attributes

Dc, but not on the incomplete ones, i.e. p(M|D,Φ) = p(M|Dc,Φ); this is a

considerably weaker assumption. In some industrial plants, frequent measurement

of key performance indicators is costly or time-consuming. In such cases, the

process is monitored and controlled through regularly-measured variables. That is,

the quality variables are measured only when process variables indicate the process is

drifting away from the normal operating conditions. Thus, incompleteness of quality

variables depends on the regular measurements of process variables.

3. Not Missing At Random (NMAR): The incompleteness mechanism is defined to be

NMAR, if the posterior probability distribution of M depends on both complete and

incomplete attributes. Under this assumption, the cause of incompleteness has to be

identified and included in the process data analysis, i.e. the cause of incompleteness

is not ignorable. For instance, if measured variables violate the technological

limitations of the measuring device, the instrument would fail to measure values

falling outside its nominal range.

The techniques for handling incomplete data can be divided into two broad categories,

namely ad hoc methods and statistically principled methods (Little and Rubin, 2002;

Osborne, 2008; Mason et al., 2012). Under the MCAR assumption, case-wise deletion

and single imputation are the most primitive ad hoc methods. It is noteworthy that removal

of incomplete samples may lead to a considerable loss of information and biased estimates,

which could negatively impact the prediction and/or generalization performance of the
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inferential models. Also, the statistical distribution of the data is distorted by substituting

all missing values of a variable with a single statistical measure (e.g. mean or median of

the corresponding observed values) (Schafer and Graham, 2002).

Unlike ad hoc methods, statistically principled methods include explicit assumptions

about the incompleteness mechanisms to take into the consideration the statistical

uncertainty introduced by the imputed values of missing measurements (Osborne, 2008). A

wide variety of statistically principled methods has been developed; among them maximum

likelihood (ML), multiple imputation (MI), and data augmentation (DA) are most widely

used (Dempster et al., 1977; Rubin, 1987; Tanner and Wong, 1987).

Let Θ denote a set of unknown parameters that govern the identification data likelihood,

L(Θ|D). Under the MAR assumption, all the relevant information about Θ is contained

in the fully-observed data likelihood, L(Θ|Dc) = p(Dc|Θ). Through marginalization, this

likelihood can be expressed as

L(Θ|Dc) =

∫
Dic

p(Dic,Dc|Θ)dDic (2.1)

Direct maximization of L(Θ|Dc) is often intractable due to the presence of integral.

To circumvent the difficulties associated with direct maximization of L(Θ|Dc), the

expectation-maximization (EM) algorithm is often used to obtain maximum likelihood

estimates of the query parameters. Comprehensive overviews of the formal procedures and

key properties of EM algorithm have been given by Rubin (1987); Osborne (2008); Graham

(2009). Briefly, the EM algorithm is an iterative procedure consisting of two consecutive

steps:

1. Expectation Step: Given complete data and the current parameter estimates,

calculate the expectation of the logarithm of the likelihood of the full identification
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data with respect to the incomplete or missing data:

QΘ|Θ̂k = Ep(Dic|Dc,Θ̂k)[logL(Θ|Dic,Dc)] (2.2)

=

∫
Dic

log p(Dic,Dc|Θ)p(Dic|Dc, Θ̂
k)dDic

Note that rather than directly filling in the missing observations, the sufficient

statistics of the full identification data likelihood is used.

2. Maximization Step: Maximize the expression above obtained with respect to Θ to

find Θ̂k+1:

Θ̂k+1 = argmax
Θ

QΘ|Θ̂k (2.3)

Multiple imputation (MI) bears a close resemblance to the EM algorithm. The MI

procedure involves the following distinct steps (Graham, 2009; Lin, 2010):

1. Fill in the missing elements of the incomplete data-set with plausible values drawn

randomly (with replacement) from a proper predictive distribution, p(Dic|Dc), in

order to construct M complete data-sets.

2. Perform analysis on each of the complete data-sets applying standard complete-data

techniques.

3. Combine the results obtained from the M complete data-sets into a single set of

results. The confidence intervals are obtained by calculating the within and between

imputation variance.

Suppose that D = {Dc,Dic} follows a parametric model p(D|Θ), where Dic is caused by

an ignorable incompleteness mechanism. Through marginalization, we obtain

p(Dic|Dc) =

∫
Θ

p(Dic|Dc,Θ)p(Θ|Dc)dΘ (2.4)

For proper multiple imputation the parameters Θ governing the predictive distribution of

Dic are first sampled from their complete data posterior distribution Θ(m) ∼ p(Θ|Dc). Next,
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a plausible value of Dic is randomly drawn from p(Dic|Dc,Θ
(m)). Therefore, it is natural to

motivate multiple imputation from a Bayesian perspective in which the state of knowledge

about the parameters is represented through a posterior distribution (Schafer and Graham,

2002).

Markov Chain Monte Carlo (MCMC) methods such as data augmentation (DA) are

commonly applied to simulate random draws from Bayesian posterior distributions under

complicated parametric models. DA may be viewed as Bayesian counterpart of the EM

algorithm in which the deterministic expectation and maximization steps are replaced by

their stochastic equivalents. As described by Allison (2002), DA is an iterative process

involving two main steps as detailed below:

1. Imputation Step: Perform a random imputation of Dic given the current parameter

estimates, i.e. D(k+1)
ic ∼ p(Dic|Dc,Θ

(k)).

2. Sampling Step: Draw plausible values of unknown parameters from a Bayesian

posterior distribution reconstructed from the observed and imputed data, i.e.

Θ(k+1) ∼ p(Θ|D(k+1)
ic ,Dc).

This iterative procedure generates a Markov chain that eventually stabilizes to p(Θ|Dc) and

p(Dic|Dc,Θ), the distributions from which MIs are generated.

Successful applications of EM and DA algorithms to handle incomplete data have

been widely reported. Khatibisepehr and Huang (2008) conducted a comparative study

on a variety of incomplete data handling techniques widely adopted for process data

analysis. The authors concluded that under the assumption of MAR the EM-based Bayesian

algorithm outperforms the other procedures in terms of accuracy of the parameter estimates.

Raghavan et al. (2006) presented an EM-based strategy for data-driven identification of

state-space models when output observations are missing at regular or irregular intervals.

The proposed strategy is applied to developing an inferential sensor for a bleaching unit

at Millar Western’s Bleached-Chemi Thermo-Mechanical Pulp (BCTMP) mill located in
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Whitecourt, Alberta. The developed inferential sensor is intended to provide optimal

predictions of pulp brightness as one of the quality variables of the BCTMP process. Jin et

al. (2012) presented a linear parameter-varying scheme for inferential sensor development

in which the EM algorithm is employed for handling the irregular and incomplete output

data. Imtiaz and Shah (2008) proposed a method which combines the principal component

analysis imputation algorithm with the ideas of Bootstrap resampling and DA strategies.

Moreover, multivariate missing data handling techniques are combined with dynamic time

warping (DTW) to synchronize uneven length batch process data. The proposed method

conserves the correlation between the variables and leads to a compact latent variable

model. Qi et al. (2010) proposed a novel Bayesian method based on marginalization

over underlying complete evidence matrix to handle incomplete data in data-driven control

loop diagnosis. To enhance the MPC performance monitoring for an industrial diluted

bitumen heating process, the proposed Bayesian approach is used to synthesize monitor

outputs to distinguish different problems of similar phenomena. Ge and Song (2011)

introduced a semi-supervised Bayesian method through which the information contained in

the incomplete data-set Dic can be incorporated into development of probabilistic principle

component regression (PCR) models. The parameter estimation problem is formulated

under the EM framework. The authors have followed their proposed approach to develop

various industrial inferential sensors for advanced process monitoring of a sulphur recovery

unit and a debutanizing distillation process.

2.2.2.2 Outlying Observations

Industrial data-sets are generally corrupted by the presence of outlying observations, also

called outliers. Outliers are observations which appear to deviate markedly from the

typical ranges of other observations (Grubbs, 1969). The outliers in operational data

mostly represent a random error caused by issues such as process disturbances, instrument

degradation, and transmission problems (Zeng and Gao, 2009; Lee et al., 2011). In
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some cases, however, outliers may arise due to infrequent yet important changes in

system dynamics (Hodge and Austin, 2004). Statistical analysis of the process data

contaminated with outliers may lead to biased parameter estimation and plant-model

mismatch. Therefore, outlier identification constitutes an essential prerequisite for design

of inferential sensors (Khatibisepehr and Huang, 2013). A comprehensive review of the

outlier identification problem and several outlier identification methods is provided by

Hodge and Austin (2004); Kadlec et al. (2009); Chandola et al. (2009).

Ben-Gal (2010) has distinguished two main categories for outlier detection methods,

namely parametric and non-parametric. Since the focus of this review is on the Bayesian

methods, we limit our literature review to parametric, also called statistical, approaches.

Statistical methods often indicate those observations that widely deviate from the center

of the data distribution. For instance, the simplest statistical technique is the 3σ edit rule

in which data are assumed to follow a Gaussian distribution. In this method, a data point

xi is labeled as an outlier if |xi − µx| > 3σx, where the distribution mean µx and standard

deviation σx are calculated from all attribute values including the query value x(i). To

reduce the influence of outliers in estimating the distribution mean and standard deviation,

Davies and Gather (1993) introduced the Hample identifier in which median and median

absolute deviation from median (MAD) are used to represent the underlying distribution.

Several solutions have been proposed for solving the outlier detection problem by

estimating a probability density of the normal data. For instance, in (Bishop, 1994) the

density distribution of the input space is first estimated by a standard Parzen window

approach with Gaussian kernel functions:

p̂(x) =
1

n(2π)d/2σd

N∑
n=1

exp
{
− |x − xn|2

2σ2

}
(2.5)

where xn represents a data vector from the training set, d is the dimension of input space,

and σ is the smoothing parameter. Next, a suitable threshold is specified based on the

identification data-set which is known to be representative of normal data. The new
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observation is then flagged as an outlier if the value of the density function p̂(xnew) is

above the threshold. Roberts (1999) suggested the use of extreme value statistics when the

identification data-set is contaminated by the presence of outliers. Yu (2012) proposed a

Bayesian approach to estimate the posterior probabilities of all samples within the model

input space and specify the appropriate confidence levels. A calibration procedure is then

followed to correct the observations identified as outliers.

An alternative approach for probability density estimation is to model normal instances

as a mixture of parametric distributions. Bishop (1994) and Agarwal (2006) used Gaussian

mixture models for such techniques. In Ritter and Gallegos (1997), both normal instances

and outliers are modeled as separate parametric distributions i.e. DMix = (1 − δ)DReg +

δDOut, where δ is the prior probability of appearance of an outlier. First, the ellipsoidal

multivariate trimming (MVT) technique (Rousseeuw and Leroy, 1996) is used to detect

outliers and to estimate distribution parameters of both outliers and regular observations.

Next, a Bayesian classifier is designed to compare certain linear combinations of posterior

densities of each data vector with respect to the estimated distributions. In Khatibisepehr

and Huang (2013), a contaminated distribution is adopted to describe the observed data

and a set of indicator variables is introduced to denote the quality of each data point.

The model identification problem in the presence of outliers is then formulated under

a robust Bayesian framework consisting of consecutive levels of optimization. The

proposed solution strategy not only yields maximum a posteriori (MAP) estimates of

model parameters, but also provides hyperparameters that determine data quality as well

as the prior distribution of model parameters. Assuming a uniform distribution of outliers,

Eskin (2000) provided a measure to determine the likelihood of an observation being an

outlier by comparing the change in the log likelihood of the mixture distribution (i.e.

logLi(DMix) − logLi−1(DMix)) if the observation is removed from the regular instance

distribution, DReg. Several variations of Bayesian classification technique have further
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been proposed in Varbanov (1998); Ghosh-Dastidar and Schafer (2006); Das and Schneider

(2007), and many others. The underlying principle of these methods is to evaluate the

posterior probability of an observation acting as an outlier conditional upon the observed

data and estimated values of the distribution parameters.

It is noteworthy that there exist a number of comparative studies on various outlier

identification methods such as the work presented in Lalor and Zhang (2001); Penny and

Jolliffe (2001); Ben-Gal (2010). These studies have shown the benefits of using a battery

of methods to boost the performance of outlier identification procedures.

2.2.2.3 Collinearity

Process variables are often causally related, consequently, process measurements are

strongly collinear. From the inferential modeling point of view, such collinear data provide

little independent information. Some classical modeling techniques such as regression-

based methods cannot deal with collinear identification data. There are several issues that

might arise as a result of collinearity (Greene, 2007):

1. Since the identification data do not contain sufficient information to estimate all

parameters simultaneously, precision of the estimated parameters would be degraded.

2. Parameters of the identified model may not be statistically significant.

3. Parameter estimates might have incorrect signs and/or implausible magnitudes.

4. Small changes in identification data may result in wide swings in parameter

estimates.

Therefore, it is important to assess the degree of collinear relationships among process

variables (Belsley and Welsch, 2004). Although a definite criterion for evaluating

multi-collinearity does not exist, various techniques have been developed in an attempt

to detect and assess collinearity. Draper and Smith (2003) proposed construction of
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a correlation matrix of process variables to examine pairwise correlation coefficients.

However, relatively large correlation coefficients do not necessarily imply collinearity.

Marquardt (1970) suggested to evaluate the magnitude of diagonal elements of the

variance-covariance matrix, also known as variance inflation factors. The major drawback

of this method is that significant multi-collinearity between three or more variables cannot

be indicated. To overcome this shortcoming, Belsley and Welsch (2004) introduced a

method called condition index analysis to detect multi-collinearity based on singular value

decomposition of the data matrix and decomposition of regression variance estimates.

Principal component analysis (PCA), partial least squares (PLS), and canonical variate

analysis (CVA) are among the methods commonly employed to deal with the collinearity

problem in the process industry (Marjanovic et al., 2006; Mobaraki and Hemmateenejad,

2011; Lin and Jørgensen, 2011; Shao et al., 2012). The basic idea behind such methods is

to project process variables into a lower number of orthogonal latent variables (Lin et al.,

2007). However, the over-fitting phenomenon may occur if the number of identification

data points is small relative to the number of variables (Huopaniemi et al., 2009). As

pointed out by Yu (2012), conventional PCA and PLS models also become ill-suited for

non-linear processes with non-Gaussian disturbances.

The Bayesian solution to collinearity problem is to incorporate subjective and/or

objective prior information in order to alleviate the weak identification data problem

(Leamer, 1973; Western and Jackman, 1994). In general, there are two different levels

at which expert knowledge may be included in handling issues caused by collinear process

measurements (MacKay, 2002; Gelman and Hil, 2007):

1. Parameter estimation: Since Bayesian methods treat parameters as random

variables, subjective and/or objective process information can be used to describe

informative prior distributions for model parameters. For instance, Nounou

and Bakshi (2004) proposed Bayesian latent variable regression (BLVR) as a
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new approach for linear process modeling that can handle collinear variables.

Temperature measurements at different trays of a distillation column are used to

develop an inferential sensor providing real-time estimates of ethanol content of

the distillate stream. Prior knowledge about regression parameters and measured

variables is incorporated through BLVR method to handle highly collinear input

data. It is noteworthy that conventional regularization techniques such as ridge

regression and mixed-estimation can be viewed as special cases of Bayesian

parameter estimation dealing with collinear data (Belsley and Welsch, 2004; Marco

and Gutierrez-Galvez, 2012).

2. Model selection: Expert knowledge about influential process variables and

functional relationships of causally related variables can be represented by prior

distributions to eliminate redundant collinear variables or determine a set of plausible

model structures (Lambers et al., 2006; de Vocht et al., 2012). For instance,

Prı́vara et al. (2010) presented a Bayesian algorithm to incorporate prior information

about the model structure, such as static gain and input-output feed-through, into

subspace identification of multiple-input multiple-output (MIMO) systems. The

proposed algorithm was applied to handle multi-collinear measurements collected

for identification of an industrial HVAC system.

Interested readers are referred to Dormann et al. (2013) for a comprehensive overview of

the major aspects and topics related to the collinearity problem.

2.3 Model Identification

The design of inferential sensors finds its roots in process modeling. Therefore, proper

identification of a representative process model is an essential prerequisite for development

of an efficacious inferential sensor. Generally, the model identification procedure

comprises two steps, model structure selection and model parameter estimation.
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Having established the objective of the inferential sensor, one of the key problems in

process identification is to find a suitable model structure that best describes the underlying

system dynamics. Depending on the level of a priori knowledge of the process, two

different philosophies may guide the choice of model structure (Ljung, 1999): 1. First

principles analysis and 2. Process data analysis. Balance and constitutive equations

often form the basis of quantitative and/or qualitative first principles analysis performed

for inferential sensing purposes. In principle, a knowledge-driven model structure

can be obtained based on formulating and solving a set of differential and algebraic

balance equations at microscopic and macroscopic levels. Selection of appropriate system

boundaries is essential for derivation of mass, momentum, and energy balance equations.

Depending on the objective of first principles analysis, the system boundaries might enclose

an entire plant, a few unit operations, or an equipment. For a defined system, the general

balance equation can be stated[
Accumulation
within System

]
=

[
Input through

Boundaries of System

]
−
[

Output through
Boundaries of System

]
+

[
Generation

within System

]
−
[
Consumption
within System

]
(2.6)

Himmelblau and Riggs (2004) provide an introduction to the principles and techniques

used in formulating and solving balance equations. Comprehensive coverage of principal

chemical engineering unit operations including fluid mechanics, heat transfer, mass

transfer, and equilibrium stages can also be found in McCabe et al. (2005); Bird et al.

(2007); Perry and Green (2008).

The choice of knowledge-driven model structures for industrial processes depends

on the complexity of the underlying physical systems and thus the availability of

phenomenological knowledge of the involved unit operations. In the absence of any process

knowledge, the task is to find a suitable model structure that is well supported by historical

data. Therefore, a data-driven model structure is selected without investigating the internal

mechanisms. In such cases, the main criteria to be considered in model selection are
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simplicity, generality, and flexibility (Hangos and Cameron, 2001). A comprehensive

overview of the wide variety of black-box structures (e.g. autoregressive models with

exogenous inputs and state-space models) as well as an in-depth discussion of the general

aspects of the choice of model structure (e.g. model order selection) can be found in Ljung

(1999). Also, a general introduction to non-linear black-box structures including neural

networks, radial basis networks, wavelet networks, hinging hyperplanes, and fuzzy models

is provided by Sjöberg et al. (1995).

Having selected a representative structure, various classical or Bayesian estimation

techniques can be applied in order to estimate the relevant model parameters. We follow

with a comprehensive overview of the Bayesian methods that have been widely applied in

identification of inferential sensors. The methods listed below are those most commonly

suggested in the literature, though others can also be found.

2.3.1 Classical Bayesian Model Identification Methods

In this section, we introduce several classical Bayesian methods to build models for

inferential sensors. In the case of data-driven methods, the emphasis is given on building

simple models with a minimum number of influential variables. These compact models are

easy to implement and maintain on-line.

One of the most important issues in the design of inferential sensors is the concept of

model complexity. The more degrees of freedom are allowed in the model structure, the

closer the model can approximate the identification data-set. On the other hand, too much

flexibility might reduce the generalization performance of the developed inferential sensor

when the process is operated under a wide range. Determination of a proper model structure

(e.g. model order within a specified class) plays a key role in achieving a compromise

between accuracy and complexity of the model.
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2.3.1.1 Selection of Influential Variables

The problem of variable selection arises when complete process knowledge is not available.

In such cases, influential variables are usually identified based on the limited process

knowledge as well as the sensitivity analysis of operational and laboratory data. The main

purpose of sensitivity analysis is two-fold. First, it is conducted to investigate how changes

in the candidate input variables influence the query variable and, consequently, identify the

most informative variables (Warne et al., 2004). Second, it is performed to determine

the degree of interaction between potential influential variables thereby preventing the

undesired effects of collinearity in the process measurements (Chan et al., 1997). General

introduction to different aspects of variable selection as well as good reviews of the non-

Bayesian methods of sensitivity analysis can be found in Saltelli et al. (2000); Guyon and

Elisseeff (2003); Yuan and Lin (2006); Bhuyan (2011); Fujiwara et al. (2012).

In the context of inferential modeling for industrial applications, correlation analysis

is the simplest and most widely used statistical approach to detect linear dependencies

between input and query variables (Warne et al., 2004; Komulainena et al., 2004; Fortuna

et al., 2007). One can plot the color coded graph as illustrated in Figure 2.2 to identify

variables with maximum correlation. A threshold value for the correlation coefficient can

be chosen to decide on the number of variables to be selected.

The other commonly used variable screening techniques are step-wise methods such

as forward selection and backward elimination (Wang et al., 2006; Smits et al., 2006;

Fuchs and Maria, 2007; Wang et al., 2010a). As a general implementation procedure of

such methods, the following steps are iteratively performed to evaluate the significance

of all candidate variables. In each stage, one variable is first added to (or removed from)

the existing inferential model. The prediction performance of the revised model is then

assessed on a suitable validation data-set to check whether or not the model’s predictive

capability has been improved. The classical Bayesian step-wise method involves evaluating
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Figure 2.2: Color coded graph for correlation analysis

the Bayesian information criterion (BIC), also known as Schwarz information criterion

(SIC), over a set of candidate models (Schwarz, 1978). The best approximating model is the

one with minimum value of BIC or equivalently the one with highest posterior probability.

In general, the BIC is defined as

BIC = −2 log
(
L(Θ̂|D)

)
+K log(T ) (2.7)

where K is the number of parameters, T is the number of observations, and L(Θ̂|D) is the

likelihood of the estimated model parameters given the identification data. It is noteworthy

that the likelihood term tends to decrease as more parameters are added to the model (i.e.

K increases). A number of alternative information criteria also exist. These include:

Akaike’s information criterion (AIC), Takeuchi’s information criterion (TIC), second-order

information criterion (AICc), and quasi-likelihood information criterion(QAIC), among

others. All these criteria are intended to minimize the prediction error of the model while

penalizing the number of freely estimated parameters in order to identify a model that is

both parsimonious and accurate (Burnham and Anderson, 2002; Lütkepohl, 2006; Shittu

and Asemota, 2009). For neural network modeling with small identification data-sets,
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Ingrassia and Morlini (2005) proposed to modify the number of degrees of freedom to

be used in BIC. The authors used the modified BIC to select influential variables from

an identification data-set concerning a vibration severity chart for centrifugal pumps in an

ethylene system. Kaneko and Funatsu (2012) used different information criteria, including

AIC and BIC, to identify important process variables affecting the operation of a distillation

column at Mizushima plant of Mitsubishi Chemical Corporation. Also, the efficiency

of different variable selection methods was compared by evaluating the accuracy and

complexity of the resulting models.

The variance-based methods form an important class of probabilistic sensitivity analysis

approaches in which the relative importance of each candidate input variable is quantified in

terms of the resulting reduction in the output variance (Saltelli et al., 2000; Lind and Ljung,

2005, 2008). Oakley and O’Hagan (2004) presented a unifying Bayesian framework for

estimating various sensitivity measures. Their proposed framework provides a link between

the sample-based regression measures and variance-based sensitivity analyses. Dufour et

al. (2005) presented a neural network-based strategy for detection of feedstock variations

in a continuous pulp digester. The authors studied sensitivity of the network outputs to the

typical manipulated variables using the variance-based sensitivity analysis. Gonzagaa et

al. (2009) developed an inferential sensor to provide on-line estimates of the viscosity of

Polyethylene Terephthalate (PET). The authors used sensitivity analysis to select a proper

set of process variables considering their degree of correlation with the polymer viscosity.

In many Bayesian variable selection approaches the problem is transformed into

separating non-zero regression coefficients θj ̸= 0 from zero regression coefficients θj = 0

(O’Hara and Sillanpää, 2009; Frühwirth-Schnatter and Wagner, 2011). First, a binary

indicator variable, Ij ∈ {0, 1}, is associated with each coefficient. Next, a mixture of

Gaussian prior distribution is specified for θj such that p(θj|Ij) = (1 − Ij)N (0, σ2
0j) +

IjN (0, ρσ2
1j), where σ2

0j ≪ σ2
1j . Finally, the posterior inclusion probability for each
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candidate variable is evaluated based on the estimated values of Ij and θj . If Ij = 0

and σ2
0j is close to zero, it can be concluded that θj is likely to be close to zero, i.e., the

corresponding process variable is practically not significant (Fahrmeir et al., 2010). In the

indicator model selection approach proposed by Kuo and Mallick (1998), an additional

auxiliary variable is introduced such that θj = Ijβj . Each coefficient has a spike-and-slab

prior distribution characterized by a spike at zero (i.e. σ2
0j = 0) and a flat slab equal to

βj elsewhere (i.e. σ2
1j → ∞). Also, it is assumed that p(βj|Ij) = p(βj). To identify

a set of influential process variables, the posterior distribution of indicator variables is

approximated by the means of the Markov chain Monte Carlo (Robert and Casella, 2004).

George and McCulloch (1993) developed a stochastic search variable selection (SSVS)

procedure utilizing a hierarchical Gaussian mixture model such that σ2
1j = ρσ2

0j , with

ρ ≫ 1. To obtain a computationally efficient sampling scheme, it is further assumed

that σ2
1 = σ2

1j and σ2
0j = σ2

0 . The posterior distribution is then evaluated through Gibbs

sampling. Finally, influential process variables are selected according to their frequency

of appearance in the sequences of Gibbs sample. The major drawback of SSVS is that

ρ and σ2
0 are assumed to be known and fixed. To address the aforementioned issue,

Meuwissen and Goddard (2004) treated σ2 as an uncertain hyperparameter to be estimated

in an intermediate step.

Another Bayesian approach to select influential variables is to specify a continuous prior

distribution on θj = 0 that approximates the spike-and-slab shape without the inclusion

of indicator variables, i.e. θj = βj with βj ∼ N (0, σ2
j ). The main task is to define a

prior distribution over hyperparameter σ2
j such that the values of βj are shrunk towards

zero if the corresponding process variable is practically not significant. Griffin and Brown

(2010) discussed the interpretations of different prior distributions over σj and concluded

that a wide range of shrinkage behavior can be specified through a gamma distribution.

A special case of a gamma prior distribution would result in a Bayesian formulation of
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Lasso (Tibshirani, 1996) which is a very popular classical method of variable selection.

As discussed by O’Hara and Sillanpää (2009), the methodologies of Bayesian variable

selection generally possess the following properties:

1. Subjective prior probabilities of variable inclusion can be incorporated to set the

required degree of sparseness.

2. Model tuning parameters can be included by specifying data-based prior

distributions. Hyperparameters of prior distributions can also be estimated in an

intermediate step of hierarchical variable selection approaches.

4. Posterior variable inclusion probability can be evaluated through marginalization

over different models.

A general introduction to various Bayesian variable selection methods as well as a

comprehensive review of proper prior distributions are given by George and McCulloch

(1997); Oakley and O’Hagan (2004); O’Hara and Sillanpää (2009); Frühwirth-Schnatter

and Wagner (2011).

Despite many advantages of classical Bayesian variable selection methods, they have not

been widely explored for inferential modeling practices in the process industry. One of the

successful applications of Bayesian variable selection methods is reported by Ge and Song

(2010). This paper introduced a Bayesian regularization method to effectively determine

dimensionality of latent variables within a probabilistic PCA framework for multi-mode

process monitoring. The authors treated the latent variable dimensionality as a model

complexity problem, which can be handled using a Bayesian variable selection method.

2.3.1.2 Delayed Measurements

In many industrial plants, some process variables affect quality variables only after some

time-delays. Therefore, another important aspect to be taken into consideration is that of
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estimation of time-delays in the process variables. In order to select optimal time-delay of

each variable, one can treat lagged process variables as independent variables and apply

the same techniques introduced in Section 2.3.1.1. For instance, Gonzagaa et al. (2009)

used sensitivity analysis to simultaneously select influential process variables and their

time-delays for on-line prediction of the viscosity of Polyethylene Terephthalate (PET).

Knowledge of plant operation (e.g. residence time inside a separation vessel, reaction time

in a batch reactor, and etc.) can be included to determine possible upper bounds on time-

delays.

2.3.1.3 Parameter Estimation

Once an appropriate model structure has been selected, Bayesian estimation techniques can

be employed in order to estimate unknown model parameters, Θ. Since Bayesian methods

treat parameters as random variables, subjective and/or objective process information can

be used to specify informative prior distributions for model parameters. The importance

of this point should be emphasized when estimating the parameters of complex model

structures chosen on the basis of first-principles analysis. Such complex models contain a

large number of highly correlated parameters that need to be estimated from operational or

experimental identification data (Chu et al., 2009). For inferential sensor applications the

focus is on identifying a model providing accurate prediction rather than estimating each

physical parameter. Although the true values of the model parameters are not known, the

available process knowledge can often be translated into proper prior distributions of the

parameters. This would prevent the over-fitting phenomenon commonly encountered in

estimating the parameters of complex knowledge-driven model structures.

In classical Bayesian parameter estimation techniques ML estimates are penalized by

prior knowledge. That is, the posterior distribution of model parameters, p(Θ|D), is



Sec. 2.3 Model Identification 43

maximized to obtain a vector of single-point MAP estimates:

ΘMP = argmax
Θ

p(Θ|D)

= argmin
Θ

[
− logL(Θ|D)− log p(Θ|D)

]
(2.8)

Equation 2.8 suggests that classical Bayesian parameter estimation bears a close

resemblance to regularized parameter estimation (Fahrmeir et al., 2010). It is important

to note that the above solution is not fully Bayesian because the entire a posteriori

information obtained for parameters is represented by point estimates. Yet, classical

Bayesian estimation techniques are still of interest in some industrial applications. For

instance, in on-line implementation of inferential sensors, it might not be computationally

feasible to integrate over the distribution of model parameters. Gunawan et al. (2003)

proposed a systematic MAP estimation approach combining a priori information with

after-anneal boron secondary ion mass spectroscopy (SIMS) profiles to obtain estimates

of transient enhanced diffusion parameters. In Nounou and Bakshi (2004), temperature

measurements at different trays of a distillation column were used to develop an inferential

sensor providing real-time estimates of ethanol content of the distillate stream. The authors

incorporated prior knowledge about model parameters in a Bayesian framework in order to

obtain their MAP estimates. Fujiwara et al. (2005) used Bayesian estimation to compute the

MAP parameter estimates of multiple inferential models developed for advanced control of

pharmaceutical crystallization processes.

2.3.2 Full Bayesian Model Identification

The full Bayesian approach to model identification consists of two main steps. The first

step concerns learning the model structure, H, while the second step focuses on estimating

the relevant model parameters, Θ.

Bayesian model comparison provides a probabilistic approach to rank alternative models

without the introduction of ad hoc penalty terms (MacKay, 1992). In the light of
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identification data-set, D, the posterior probability of each model, Hi, is evaluated as

follows:

p(Hi|D) =
p(D|Hi)p(Hi)∑
i p(D|Hi)p(Hi)

(2.9)

where p(Hi) represents the prior over Hi and p(D|Hi) is the likelihood obtained by

integrating over the Hi’s parameter space:

p(D|Hi) =

∫
Θ

p(D|Θ,Hi)p(Θ|Hi)dΘ (2.10)

MacKay (2002) showed that under certain conditions the likelihood can be approximated

by the height of the peak of the integrand p(D|Hi,Θ)p(Hi|Θ) times its width, σΘ|D:

p(D|Hi) ≃ p(D|ΘMP,Hi)p(Θ
MP|Hi)σΘ|D (2.11)

where p(D|ΘMP,Hi) is the best-fit likelihood that Hi can achieve and p(ΘMP|Hi)σΘ|D is

known as Occam factor. Complexity of the model is then automatically penalized by

the magnitude of the Occam factor. As pointed out by MacKay (2002), ideal Bayesian

predictions do not involve model selection; rather, predictions are made by summing over

all the alternative models, weighted by their probabilities.

Having selected a model structure, the posterior distribution of the parameters can thus

be computed as

p(Θ|D,Hi) =
p(D|Θ,Hi)p(Θ|Hi)

p(D|Hi)
(2.12)

As mentioned previously, the full Bayesian parameter estimation results in posterior

distributions over parameters to reveal the level of uncertainty of the estimated values

(Khatibisepehr and Huang, 2008).

Recently, there has been a growing interest in the application of full Bayesian model

identification for the development of inferential sensors. Yan et al. (2004) developed an

inferential sensor for real-time estimation of the freezing point of light diesel oil produced

in a distillation column. The underlying inferential model was identified within a Bayesian



Sec. 2.3 Model Identification 45

evidence framework first proposed by (MacKay, 1992). Beck and Yuen (2004) presented

a Bayesian framework for selecting the most plausible class of models for a structural or

mechanical system within some specified set of model classes. Bermak and Belhouari

(2006) developed a gas classification framework based on Bayesian model identification

as well as principal components analysis. For real-time monitoring of dynamic non-linear

processes, Khawaja (2010) proposed a Bayesian failure prognosis scheme. The author

applied the method to develop a Bayesian framework for detection and identification of

cracks in the blades of a turbine high-power compressor disk.

2.3.3 Bayesian Interpretation of Classical Identification Methods

Many classical identification methods can be formulated within a Bayesian framework.

Bishop and Tipping (2003); Tipping (2004) provided an overview of Bayesian formulation

of the classical regression and classification problems. MacKay (1995) presented a

Bayesian interpretation of neural network modeling. Kwok (2000); Suykens et al.

(2002) derived a probabilistic formulation of the least squares support vector machine

(LS-SVM) within a hierarchical Bayesian evidence framework. Nounou et al. (2002)

developed a Bayesian PCA (BPCA) algorithm to integrate modeling and feature extraction

by simultaneously solving parameter estimation and data reconciliation optimization

problems.

2.3.4 Multi-model Inferential Sensors

Inferential model structures can be characterized as static and dynamic models; to develop

a dynamic model the temporal dimension is added to the otherwise static model. Since

temporal data arises in various areas of engineering, many industrial processes need to

be naturally modeled as dynamic systems in order to express their behavior over time.

In such cases, an inferential model structure should reflect both the static and dynamic

characteristics of the process. Multi-model structures form an important class of model
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structures that have been extensively adopted to represent time-varying dynamic behavior

of industrial processes (Kim et al., 2005; Li et al., 2009; Domlan et al., 2011). Multi-

model inferential sensors typically describe both the continuous dynamic behavior and the

transitions between discrete modes. The continuous dynamics is typically associated with

the physical phenomena involved, while the discrete dynamics may come from switching

controllers, inherent non-linearities in the system, different operating conditions, or any

other external discrete events influencing the process under investigation. A general

introduction to the identification of multi-modal processes, a discussion of the main issues

connected with multi-modal system modeling, and an overview of the related literature are

given in Paoletti et al. (2007); Lauer (2008). Readers are further directed to Murray-Smith

and Johansen (1997); an early edition of the progress of work in the area of multi-model

approach.

The multi-model paradigm has attracted increasing attention in the process control

community due to its many potential industrial applications. The problem of multi-

modal system modeling has been considered widely and to date several approaches have

been proposed, such as the algebraic procedure (Vidal et al., 2003), the clustering-based

procedure (Ferrari-Trecate et al., 2003), the EM-based procedure (Jin and Huang, 2010),

and the bounded-error procedure (Bemporad et al., 2005). In the recursive identification

procedure implemented in these approaches, operating space is first partitioned into a finite

number of non-overlapping regions. The regions are either defined a priori or estimated

along with different sub-models. The operating regions and sub-models can be identified

simultaneously by minimizing a suitable objective function. If the performance of the

identified model is not satisfactory, the identification procedure is repeated with new sub-

models and/or regions. The operating regions and sub-models can also be identified

recursively. First, identification data is attributed to relevant regions based on descriptive

classification criteria; the identification data-set is divided into multiple exclusive sub-
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sets. Next, standard identification techniques are applied to develop sub-models that best

describe the associated regions; the identified sub-models would be well supported by the

corresponding identification data sub-sets.

A Bayesian identification procedure was proposed by Juloski et al. (2005) for piecewise

autoregressive exogenous (PWARX) models and was extended by Juloski and Weiland

(2006) for piecewise output error (PWOE) models. First, each attribute is classified to

the mode with the highest probability by sequential processing of the identification data

points. Next, Bayesian parameter estimation is performed to identify each sub-model

from the corresponding data. A limitation of the described procedure is that the operating

space is partitioned into a finite number of linearly separable regions, i.e., at each time

instant only one mode is active. If the identification data is not linearly separable or if the

relevant residuals are comparable the violating attributes are excluded from analysis. In

industrial applications, however, the operating modes are often overlapped or have non-

linear boundaries in continuous unit operations. Moreover, the classification rule only

relies on evaluating the residuals obtained from each sub-model. Thus, the available

information about the process operation cannot be fully incorporated in the identification

procedure. Khatibisepehr and Huang (2012) proposed a Bayesian procedure in order to

accommodate the overlapping regions and facilitate the inclusion of prior knowledge about

the operating conditions. The authors applied their proposed method to developing an

adaptive multi-model inferential sensor for real-time monitoring of a key quality variable

in an industrial oil sands processing unit. Li and Huang (2006) introduced a Bayesian-

based model-set management method for selecting a statistically superior model-set for

implementation of multi-model inferential sensors. The authors applied their method to

design of a multi-model inferential sensors for automotive paint spray process where the

thickness of the thin film on the vehicle surface should be precisely predicted. Suzdaleva

and Nagy (2012) argued that combination of fault detection methods in the form of a hybrid
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system allows us to exploit different types of knowledge and, consequently, leads to a

more comprehensive intelligent supervisory control system. They further discussed that

different types of information appearing in an on-line diagnostic system can be processed

via combination of algorithms subject to probability distributions. Based on this argument,

the authors proposed a decomposed version of Bayesian filtering specialized for hybrid

dynamic systems with normal and discrete multinomial states and observations.

2.4 Model Validation

Model validation is the phase required to evaluate the performance of the identified

inferential models. The validation criteria are chosen based on the intended applications of

an inferential sensor. If the required criteria are not satisfied the inferential sensor design

procedure should be reconsidered through close examination of each development step.

Off-line model validation usually comprises two steps, namely, self-validation and

cross-validation. Self-validation determines the adequacy of fit by evaluating the

prediction performance of the inferential model on the identification data. However,

adequacy of model fit does not reliably ascertain the performance of the developed

inferential sensor, i.e., satisfactory prediction capability on the identification data does not

guarantee generalization to other data-sets. Cross-validation assesses the generalization

capability by evaluating the prediction performance of the identified inferential model on

an independent data-set that has not been used for the model identification. Therefore,

cross-validation plays an important role in preventing over-fitting the identification data.

Depending on the amount of available data, efficacy of the developed inferential sensor

can be assessed on different data subsets. When the available data-set is sufficiently large,

two independent subsets are constructed for cross-validation:

1. Validation data-set: The validation data-set is used to tune the identified inferential

model and thus is indirectly involved in the identification procedure. Since such
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data-sets are intended to guide the development of inferential sensors, satisfactory

performance on the validation data might still be biased.

2. Test data-set: The prediction performance of the fully developed inferential sensor

is evaluated on a test data-set consisting of completely independent data; test data is

used neither in identification nor in tuning steps.

Often, accuracy of identification and reliability of validation procedures are sensitive

to size of the corresponding data-sets. The required size of the historical data varies

with application. In fact, whether the available data size should be small or large can

be determined by several factors such as complexity of inferential model structure and

extent of prior process knowledge. When the original data-set is relatively small, a

single division of the available data into identification, validation, and test subsets is

not feasible. Repeated partitioning and resampling of the available data are the main

strategies adopted to overcome the limitations imposed by small data-sets (Ye, 2003). The

techniques commonly applied in the inferential sensor applications include leave-one-out

cross-validation (Wang et al., 2010a), k-fold cross-validation (Kadlec, 2009; Chitralekha,

2011), and bootstrap resampling (Braga-Neto and Dougherty, 2004; Bolf et al., 2009). In

the k-fold cross-validation, the data are randomly divided into k equal partitions, k-1 of

which are used for identification and the remaining one used for testing. This process

is repeated until all the partitions are eventually used for both model identification and

validation. The leave-one-out cross-validation procedure corresponds to a special case

of k-fold cross-validation, in which k equals the number of data points. Applying the

bootstrap resampling, an identification data-set is constructed by randomly sampling with

replacement from the equally-likely available data. Given an original data-set of size n,

the probability that a data point will not appear in the bootstrap identification data-set is

(1 − 1/n)n ≈ e−1 ≈ 0.368 (Efron and Tibshirani, 1993). Consequently, a fraction of the

original data points will likely not be used in the identification phase and, thus, can be
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reserved for validation purposes.

2.4.1 Performance Evaluation Criteria

Generally, the major purpose of model validation is to evaluate the accuracy and reliability

of the developed inferential sensor. Accuracy is the level of agreement between the

predicted and reference values, while reliability is the degree to which the prediction

errors vary. Evaluating the performance of an inferential sensor amounts to analyzing the

characteristics of prediction errors, which are also referred to as residuals. Some of the

graphical and numerical methods are briefly described next.

2.4.1.1 Graphical Techniques

Common graphical techniques used in analysis of residuals include, but are not limited to,

the following:

• Scatter plot of predicted values versus target values: The ideal case would be for

all the data points to lie on the identity line (y = x), indicating perfect agreement

between the predicted and target values.

• Run-sequence plot of predicted and target values: The time trend of the predicted

and target values are plotted together to visually assess the accuracy and reliability

of the inferential model.

• Histogram of residuals: The probability distribution of residuals is used to verify

the assumptions made in the identification process about the error distribution.

• Residual lag plot: The lag plot of the residuals indicates whether or not the

prediction errors are independent from their past values. Ideally, the auto-covariance

function of residuals is a pulse function i.e. the auto-covariance is zero for all lags τ

except for τ = 0 (Shumway and Stoffer, 2000).
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• Residuals versus input variables: The residuals are plotted versus the input

variables (or independent variables) to verify that the prediction errors contain no

information about system dynamics. Mathematically, the cross-covariance between

residuals and each input variable should be zero (Shumway and Stoffer, 2000).

• Residuals run-sequence plot: The run-sequence plot of residuals is analyzed to

search for any identifiable anomaly or pattern (e.g. drift in the process) in the

prediction errors.

Comprehensive reviews of graphical techniques can be found in Chambers et al. (1983)

and NIST/SEMATECH (2011).

2.4.1.2 Performance Measures

To provide a numerical basis for model assessment, a wide variety of performance measures

have been proposed in the literature. Mean absolute error (MAE), standard deviation of

errors (StdE), and mean squared error (MSE) are the most common statistical measures

used for evaluating the performance of instruments and inferential sensors.

The MAE is a measure of accuracy defined as the average of absolute prediction errors:

MAE =
1

N

N∑
n=1

|εn| (2.13)

where N is the number of observations and εi is the prediction error for the ith observation.

Since the MAE is an indication of the magnitude of prediction errors, small values

correspond to accurate predictions with low bias and high precision (Pillai and Nair, 1997).

The StdE is a measure of reliability expressed through the variation of prediction errors:

StdE =

√√√√ 1

N − 1

N∑
n=1

(εn − ε̄)2 (2.14)

where ε̄ is the mean of error distribution. The StdE can be interpreted as the probability

that prediction errors exceed the acceptable level of tolerance. Small values are obtained
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from reliable inferential sensors, which exhibit consistent prediction performance, i.e.,

the prediction errors are clustered closely around the mean (Pillai and Nair, 1997). It is

noteworthy that if an inferential sensor provides accurate predictions, the mean of error

distribution is around zero.

Finally, the MSE is used to indicate the overall prediction performance in terms of both

accuracy and reliability:

MSE =

√√√√ 1

N

N∑
n=1

ε2n (2.15)

Small values imply that the prediction errors are normally distributed around zero with a

relatively small variance. This indicates that the inferential model produces accurate and

reliable predictions (Pillai and Nair, 1997).

Other statistical performance measures are reviewed in Zhang (2004); Dawsona et al.

(2007).

2.5 Dynamic Bayesian State Estimation

Temporal data arises in many areas of science and engineering. As a result, many real-

world processes need to be naturally modeled as dynamic systems in order to describe their

time-dependent behavior. State-space models are among the formulations extensively used

to represent, and hence model, dynamic systems (Franklin et al., 1998). Described as a

generic state-space formulation, a dynamic Bayesian model (Murphy, 2002) can be derived

to represent sequences of variables as they evolve over time. Let x1:t , {x1, · · · , xt},

u1:t , {u1, · · · , ut}, and y1:t , {y1, · · · , yt} denote the sequence of hidden state variables,

input variables, and output variables, respectively. Suppose that at each time instant, t, the

output variables, yt ∈ Rny , have been generated from the hidden state variables, xt ∈ Rnx ,



Sec. 2.5 Dynamic Bayesian State Estimation 53

and the input variables, ut ∈ Rnu , such that

xt+1 = ft(xt,ut, vt) (2.16)

yt = ht(xt,ut,wt) (2.17)

where the uncorrelated random variables vt and wt denote the process noise and the

measurement noise, respectively. The state transition function ft describes the evolution

of the state with time, while the measurement function ht relates the noisy measurements

to the state. Within a Bayesian framework, Equation 2.16 characterizes the state

transition density function, p(xt+1|xt), and Equation 2.17 characterizes the likelihood of

the measurements, p(yt|xt). Note that it is assumed that the hidden state variables satisfy

the first-order Markov condition, i.e. p(xt+1|x1, · · · , xt) = p(xt+1|xt). Since the inputs are

always considered as known, it is convenient that all the PDFs of the form p(.|., ., u1:t) are

denoted by p(.|., .) without explicitly showing the dependence on the input.

Given all measurements up to and including time t, the main inference tasks performed

in dynamic Bayesian models can be usually categorized as one of four possible types of

query (Chen, 2003):

1. Filtering: The most common inference problem is to estimate the state at time instant

t, i.e. x̂(t|y1:t) , x̂t|t, which is amount to evaluating the posterior PDF of the state at

time t, p(xt|y1:t).

2. Smoothing: It might be desired to estimate the states at previous time instants, i.e.

x̂(t − l|y1:t) , x̂t−l|t, by evaluating the posterior PDF of the state at time t − l,

p(xt−l|y1:t), for l ∈ [1, t− 1].

3. Prediction: It is often required to predict the future states or outputs, i.e. x̂(t +

h|y1:t) , x̂t+h|t and ŷ(t + h|y1:t) , ŷt+h|t, which is amount to evaluating the prior

PDF of the state at time t + h, p(xt+h|y1:t), or the prior PDF of the output at time

t+ h, p(yt+h|y1:t), for h > 1.
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4. Viterbi decoding: Another interesting inference problem is to estimate the most

likely sequence of states, i.e. x̂(1 : t|y1:t) , x̂1:t|t, by evaluating the probability

density function p(x1:t|y1:t).

In many industrial applications, the model identification problem should be formulated in

an on-line inference scheme, for example, by augmenting states and parameters, in order

to track the parameter and state trajectories using a sequence of noisy measurements. In

such cases, a sequential Bayesian inference approach provides a rigorous framework for

dynamic parameter and state estimation problems∗. The basic idea behind the sequential

Bayesian inference is to evaluate and propagate the probability density functions through

an iterative process consisting of two steps:

1. Prediction step: The prior p(xt+1|y1:t) is evaluated to obtain x̂t+1|t:

p(xt+1|y1:t) =

∫
p(xt+1|xt)p(xt|y1:t)dxt (2.18)

where p(xt+1|xt) is defined by the state transition function ft(xt,ut, vt).

2. Update step: Once yt+1 becomes available, the posterior p(xt+1|y1:t+1) is evaluated

to obtain x̂t+1|t+1:

p(xt+1|y1:t+1) =
p(yt+1|xt+1)p(xt+1|y1:t)

p(yt+1|y1:t)
(2.19)

where p(yt+1|xt+1) is defined by the measurement function ht+1(xt+1, ut+1, vt+1),

which essentially determines the measurement noise model.

Figure 2.3 illustrates the described sequential procedure of Bayesian inference.

In Chen (2003); Simon (2006), Bayesian filtering theory has been thoroughly discussed

and different Bayesian filtering techniques have been comprehensively reviewed with

emphasis on non-linear and non-Gaussian scenarios. Also, a review of recent developments

∗It is well-known that the parameter estimation problem can be formulated as a state estimation problem.
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Figure 2.3: Sequential Bayesian inference

in the area of non-linear state estimators from a Bayesian perspective is given by

Patwardhan et al. (2012). We follow with a brief overview of the theory and application

of the most commonly used dynamic Bayesian state estimation techniques. Rather than

being exhaustive, this section provides a general description of on-line state estimation in

the context of inferential modeling.

2.5.1 Kalman-based Filters

Kalman filter (Kalman, 1960) can be viewed as a particular case of sequential Bayesian

inference under the linear Gaussian assumptions. The computationally efficient nature

of implementation of this filter makes it a very popular sequential Bayesian inference

algorithm. Because of the efficiency of the Kalman filter in dynamic data processing,

various Kalman-based fault detection and identification strategies have been proposed to

develop a fault-tolerant control scheme (Prakash et al., 2002; Villez et al., 2011). For

monitoring and controlling the operation of polymerization reactors, Freire and Giudici
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(2004) derived an inferential model for joint estimation of the rate of heat generation

and the overall heat transfer coefficient. The authors used a Kalman-based observer to

estimate these two time-varying parameters from temperature measurements. For advanced

monitoring of a biomass pre-treatment process, Prunescu et al. (2012) developed an

inferential model capturing the environmental temperature differences inside a pressurized

thermal reactor. The authors pointed out that it was hard to properly model the energy loss

due to the open end of the reactor. Therefore, a Kalman filter was added to account for any

missing dynamics.

Extended Kalman filter (EKF) (Sorenson, 1985) is an analytical approximation method

used when the underlying process and/or measurement equations are non-linear. First,

the non-linear state and measurement equations are linearized using first-order Taylor’s

series expansion. Next, the Kalman filter is applied to the linearized model of the non-

linear equations. Therefore, the EKF enables us to apply Kalman filter structure to non-

linear Gaussian systems. However, analytical computation of the state and output matrices

involves evaluating the Jacobian of the non-linear models around the filtered and predicted

values of the states at the previous time instant. Moreover, application of EKF would result

in biased estimates for systems with significant non-linearity. As mentioned previously,

the EKF estimates are accurate up to first order. Yet, this filtering technique has been

widely used for the design of inferential sensors. Hagenmeyer and Nohr (2008) designed

a flatness-based two-degree-of-freedom control scheme for temperature control in semi-

batch reactors. Thereby, an EKF approach was chosen to estimate the reaction heat and

the overall heat transfer coefficient. Bosca and Fissore (2011) applied an EKF-based

approach to developing an inferential scheme for monitoring of the primary drying phase

of a lyophilization process. The authors first derived first-principles models based on

energy and mass balance analysis. The EKF algorithm was then used to estimate model

parameters describing heat transfer to the product and mass transfer from the sublimation
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interface to the bulk. Moreover, linearized models were developed to provide real-time

predictions of product temperature as well as duration of primary drying within the EKF

framework. Combining first-principles analysis and the EKF technique, Nair et al. (2011)

developed an inferential sensor to obtain real-time estimates of furnace gas temperature for

a tangentially-fired furnace used in steam generators of thermal power plants.

Unscented Kalman filter (UKF) (Norgaard et al., 2000; Julier and Uhlmann,

2004) provides a method to approximate the probability density functions rather than

approximating the non-linear functions. The main advantage of UKF over EKF is that

it does not require explicit calculation of Jacobian and Hessian matrices (Chen, 2003).

Moreover, UKF can better handle heavy-tailed distributions and hence is more tailored for

non-Gaussian scenarios. Owing to the deterministic sampling approach followed, UKF is

capable of estimating the posterior means and covariances accurately up to third-order for

Gaussian data and at least second-order for non-Gaussian data (Julier and Uhlmann, 2004;

Patwardhan et al., 2012). Since the number of required samples is of the same order as

the system, however, implementation of UKF would become computationally expensive

for high dimensional model. Qu and Hahn (2009) introduced a moving horizon estimation

formulation for non-linear constrained processes in which the arrival cost was determined

by UKF. In Wang et al. (2010b), reliability of on-line tracking of a penicillin-fed batch

fermentation process was improved by combining simplified mechanistic dynamic models

and support vector regression (SVR)-based measurement equations. The authors developed

an unscented Kalman filter for on-line estimation of key state variables. Salahshoor et al.

(2012) proposed a new method for implementation of carbon dioxide (CO2) sequestration

process in saline aquifers through which reservoir pressure would follow a desired profile.

The authors formulated their pressure control methodology within a non-linear model

predictive control (MPC) to determine a sequence of optimum CO2 injection rates. The

reservoir pressure was predicted using a neural network model that was recursively trained
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using EKF and UKF algorithms. To identify potential faults in controlling liquid levels

in a three-tank hydraulic system, Mirzaee and Salahshoor (2012) developed a UKF-based

inferential framework by integrating multiple stochastic models into an interpretive fuzzy

decision-making scheme. Miyabayashi et al. (2012) developed a knowledge-driven state

estimation system in order to detect catalyst deterioration and predict product concentration

for monitoring of catalyst-packed tubular micro-reactors. The authors adopted UKF and

EKF as non-linear filters and showed that UKF gave better estimation performance than

EKF due to high non-linearity of underlying processes.

2.5.2 Particle Filters

Particle filter (PF) (Gordon et al., 1993; Doucet et al., 2001; Ristic et al., 2004) provides a

comprehensive approach to estimate the probability density functions of non-linear and

non-Gaussian systems without making any explicit assumptions. The basic idea is to

approximate the posterior PDFs through a set of weighted random samples, also called

particles. Ensemble Kalman filter (EnKF) (Evenson, 2003) is a combination of Kalman

and particle filtering techniques. The major advantage of EnKF over UKF is a reduced

computational cost for high dimensional model, as samples are generated randomly and not

deterministically. The general particle filtering approach to perform sequential Bayesian

inference is outlined below.

First, N samples of the initial state, {x(n)
0 }Nn=1, are randomly drawn from the initial prior

PDF of the state, i.e. x(n)
0 ∼ p(x0). At each time instant t, the particles are propagated

through the state transition and updated by measurement functions. N samples of xt+1 at

time t + 1 are generated from the posterior particles of the state and state noise at time t,

i.e. x(n)
t+1 ∼ p(xt+1|x(n)

t ).

Once a new measurement becomes available, the posterior PDF can be approximated as

p(xt+1|y1:t+1) =
1

N

N∑
n=1

w
(n)
t+1|t+1δ(xt+1 − x(n)

t+1) (2.20)
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where w(n)
t+1|t+1 denotes the importance weight assigned to the ith particles and is given by

w
(n)
t+1|t+1 , p(xt+1 = x(n)

t+1|y1:t+1)

=
p(yt+1|x

(n)
t+1)∑N

j=1 p(yt+1|x
(j)
t+1)

(2.21)

A common problem with the above procedure is that after a few iterations, all but a few

particles will have negligible importance weights. One way to avoid this degeneracy

phenomenon is to remove particles that have small weights and to concentrate on particles

with large weights (Arulampalam et al., 2002). The idea is to resample N particles from

the set {x(n)
t+1}Nn=1 according to the importance weights {w(n)

t+1|t+1}Nn=1.

Chen et al. (2005) developed a particle filtering framework for on-line state and

parameter estimation of first-principles inferential models of a highly non-linear batch

process. Gopaluni (2008) proposed an identification algorithm formulated within the

framework of expectation-maximization (EM) algorithm for identification of non-linear

state-space models from incomplete identification data-sets. The complete log-likelihood

functions in the expectation step of EM algorithm are approximated using the particle

filtering technique. Similarly, Deng and Huang (2012) presented an EM-based framework

for identification of non-linear parameter varying systems, in which the density functions

of the expectation step are approximated using particle filters and smoothers. Zhao et al.

(2011) presented a particle filtering strategy for on-line estimation of glucose and biomass

concentration in a penicillin fermentation process. The prediction performance of the

identified model was further improved by imposing state constraints on prior particles

through projection of the violated particles onto a valid region. Jampanaa et al. (2010)

proposed an inferential framework for detection of Bitumen-froth and Middlings interface

level in separation cells of an oil sands primary extraction plant. The authors combined an

image processing method, known as edge detection, with state-space model-based particle

filtering in order to develop a PF-based vision sensor. Shenoy et al. (2010) applied various

filtering techniques such as EKF, UKF, and PF onto the data from a Methyl Methacrylate



Sec. 2.6 Model Implementation and Calibration 60

(MMA) continuous stirred tank reactor (CSTR) for various scenarios of Gaussian and

non-Gaussian state and measurement noise sequences as well as plant-model mismatch.

The authors concluded that for highly non-linear chemical processes, the UKF and PF

would exhibit superior performance over the EKF. Moreover, it has been pointed out that

the estimation performance of UKF and PF would vary depending on the degree of non-

linearity of system dynamics, state and measurement noise levels, and the degree of plant-

model mismatch.

2.6 Model Implementation and Calibration

On-line performance verification is the final step of the inferential sensor design procedure.

If the off-line performance of the developed inferential sensor is satisfactory, the inferential

sensor should be further tested on-line to address possible implementation issues.

The accuracy of an inferential sensor is guaranteed only for a particular region in which

the model has been identified. However, most of the industrial processes exhibit a certain

form of time-variant behavior due to fouling and/or abrasion in the process equipment,

variation in the quality of feed, changes in the weather, and so on. In order to detect

abrupt changes and gradual drifts in the process operations, process monitoring and on-line

adaptation is often integrated in the implementation procedure. Once a significant variation

is detected, the inferential model should be adjusted to compensate for deviations from the

off-line design conditions. Several on-line adaptation methods have been proposed in the

literature on the basis of moving windows techniques, recursive adaptation techniques, and

ensemble-based methods (Kadlec et al., 2011). Notwithstanding such precautions, periodic

maintenance procedures should be considered.
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2.6.1 Recursive and Real-time Identification Methods

In the cases where the prior process knowledge is not available, an inferential model

for the quality variable can be built using only the historical data. In this case, the

interactions between the process variables and their effects on the quality variable are not

known. Therefore, data-driven inferential models are developed only based on the data

mining techniques. Hence, these models are subject to recursive update as and when a

new reference measurement becomes available. The advantage of the recursive methods

is twofold. First, recursive identification of data-driven models ensures high prediction

performance of inferential sensors. Second, recursive updates of model parameter estimates

ensures that the model describes true current behavior of the underlying process. The most

commonly used recursive methods are recursive least squares (RLS) and recursive partial

least squares (RPLS) algorithms. In these algorithms, the influence of the past data is

discounted for by using a forgetting factor. RLS algorithm can also be interpreted as a

form of Kalman filter. This equivalence sometimes is helpful in implementation of RLS

algorithm. For further details about the recursive methods and procedures of tuning the

forgetting factor the readers are referred to Ljung (1999); Dayal and MacGregor (1997),

and the references therein.

Locally weighted regression (LWR) (Cleveland, 1979; Atkeson et al., 1997), also

known as just-in-time modeling (Zheng and Kimura, 2001), is another on-line adaptation

technique with a long history of development. The general idea behind the LWR algorithm

is to identify a local model in real-time by prioritizing the identification data-points. The

search for the nearest neighbors is carried out from the historical data-set using a predefined

notion of similarity. This approach can cope with abrupt and gradual changes in the process

characteristics and operating conditions. Kano and Fujiwara (2013) have provided a good

review of the recent theoretical developments and successful industrial applications of the

LWR algorithm.
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2.6.2 Local Adaptation Mechanisms

In some industrial applications, recursive update of all parameters may not be feasible or

desirable. In such cases, local adaptation mechanisms are integrated in the implementation

procedure to detect and handle potential unknown drifts of process operating conditions.

Consider an input-output representation of an adaptive inferential sensor expressed as

yt = αtf(rt,Θ) + βt + νt (2.22)

where αt and βt respectively denote the scale factor and discrepancy term of the model

at time instant t and νt is the noise term. There are a variety of update rules that can

be specified to guide the adjustment of the scale factor and discrepancy term. In many

industrial applications, the general form of an exponentially weighted moving average filter

is employed to develop local adaptation mechanisms, such that

αt+1 = λ

(
yRef
t − yRef

t−1

f(rt,Θ)− f(rt−1,Θ)

)
+ (1− λ)αt (2.23)

βt+1 = κ
(
yRef
t − αt+1f(rt,Θ)

)
+ (1− κ)βt (2.24)

where λ and κ are the smoothing parameters, also known as forgetting factors. As

illustrated in Figure 2.4, the bias is updated to reduce the prediction offset. On the other

hand, the scale factor is updated to adjust the slope of the imaginary line passing through the

predictions. The formulation described above allows for straightforward implementation

of on-line adaptation mechanisms for industrial inferential sensors, though others may also

be used (Khatibisepehr and Huang, 2012).

State-space representation of inferential sensors with local adaptation mechanism can

be considered as a special case of information synthesis as will be discussed in the next

section.
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Figure 2.4: Inferential sensor calibration philosophy (Khatibisepehr and Huang, 2012)

2.6.3 Information Synthesis

State-space models are among the formulations extensively used to fuse the information

gathered from several sources, such as physical and inferential sensors. An information

synthesis problem is often posed as a filtering problem. In this way, the well-developed

filtering techniques introduced in Section 2.5 can be adopted to solve this problem. In

general, two different cases of information synthesis can be considered:

Case I. There is more than one instrumentation sensor and/or on-line analyzer along with

the inferential model. However, each available sensor by itself may not be accurate.

Therefore, it is required to incorporate all the information together in order to predict

the query variable as accurately as possible.

Case II. The physical sensor is not available for some period due to limitations in the

instrumentation. In such cases, the inferential sensor should provide real-time

predictions of the query variable. Similarly, infrequent laboratory measurements are

also used as another source of information. The inferential sensors are intended to

provide real-time predictions of the query variable when the lab measurements are
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not available. This case is the classic example of a multi-rate filtering problem.

2.6.3.1 Case I

Let xt denote the true value of the query variable of interest, while yit and ymt represent the

measurements available from the physical sensor and inferential model, respectively. The

state-space model can be formulated as follows:

State equations: xt+1 = f(xt,ut) + vpt (2.25)

αt+1 = αt + vαt (2.26)

βt+1 = βt + vβt (2.27)

Measurement equations: yit = xt + wi
t (2.28)

ymt = αtxt + βt + wm
t (2.29)

Several terms in the proposed state-space model are discussed below:

1. The process model (f ): Whenever the physical sensor is available and reliable,

the sensor measurements can be considered as the true values of the query variable

and then corresponding data can be used to build a dynamic model which would

represent the true process behavior. Note that the data should be collected so that the

sensor measurements are highly reliable and the data covers all possible operating

conditions. If such data is not available or none of the physical sensors are reliable for

building a model, one can use a simple random walk model in place of the identified

model f as in the following equation:

xt+1 = xt + vpt (2.30)

Equation 2.30 simply reflects the fact that the query variable is varying

2. Measurement noise (wm
t ): Tuning of measurement noise is a key issue in

this information synthesis formulation. In many applications reliability of the
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physical sensor measurements is specified with introduction of a performance index

associated with the physical sensor. For instance, the higher the performance index,

the better the accuracy of the sensor measurement. This performance index value can

be exploited while tuning the measurement noise. In fact, measurement noise can be

considered as a function of the performance index. This function is set such that the

variance of noise is less when the performance index is higher and vice versa. A

graphical representation of a typical function relating the performance index to the

noise variance is shown in Figure 2.5.

3. Process noise terms (vpt , vαt , vβt ): These terms represent process uncertainty and

adapting parameter variation. As discussed in Section 2.6.2, the inferential sensor

may drift away from the variable of interest over time and hence there is a need to

develop adaptation mechanisms. In state-space representation of adaptive inferential

sensors, Equations 2.26 and 2.27 are used to update the scaling factor, αt, and the bias

term, βt, respectively. In this formulation, the noise variances are tuning parameters

that affect adaptation speed and magnitude.

4. Error in the inferential sensor prediction (wi
t): This noise or more precisely error

term can be estimated using the historical data of the query variable as well as the

predictions of the inferential model.

Note that with this set-up, we can estimate the query variable (xt) using standard filtering

techniques like KF if f is linear and no scaling factor is considered, or otherwise EKF,

UKF, or PF.

Shao et al. (2011) proposed a Bayesian framework, which facilitated inclusion of

additional information in the form of prior knowledge and synthesis of multiple-source

quality variable observations to derive a more accurate posterior distribution for the

unknown state and parameters. To enhance the robustness of the proposed framework

in the presence of abnormal data, the authors also developed a robust Bayesian fusion
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Figure 2.5: Performance index function

formulation with a time-varying measurement noise variance. In Shao et al. (2012), the

Bayesian information synthesis approach of their previous was followed to fuse all the

available information in order to obtain accurate and reliable predictions of bitumen froth

quality in an oil sands natural froth lubricated transportation process.

2.6.3.2 Case II

A multi-rate state-space model would be developed to handle infrequently measured quality

variables. This model can be described as follows:

State equations: xt+1 = f(xt,ut) + vpt (2.31)

αT+1 = αT + vaT (2.32)

βT+1 = βT + vbT (2.33)

Measurement equations: yiT = xT + wi
T (2.34)

ymt = αtxt + βt + wm
t (2.35)

In this formulation, the slower sampling rate denoted by T corresponds to the slow-rate

measurements of the query variable (e.g. laboratory data), while the faster sampling rate

denoted by t corresponds to fast-rate measurements/predictions of the query variable. The
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scaling factor and bias term are updated only when a reliable slow-rate measurement is

available. In order to identify an inferential model, one needs to keep in mind the slow-

rate sampling of the variable of interest. The presented filtering problem is then solved

using multi-rate filtering techniques. Under multi-rate sampling conditions, Wu and Luo

(2010) introduced a data fusion framework based on Kalman filter for on-line calibration

of inferential sensors using infrequent laboratory measurements. The authors applied their

method to the maintenance of an inferential sensor providing real-time estimates of the

mixture quality in a blending system (e.g. pH neutralization system).

The concept of Bayesian information synthesis is not only used in process industry,

but is also a popular tool for inferential modeling in other industries. For example, the

Bayesian information synthesis helps in analyzing unstructured digital data in several

forms. Autonomy (available at http://www.autonomy.com/) provides solution to

such problems using innovative tools in Bayesian information synthesis.

2.6.4 Data Reconciliation and Gross Error Detection

Accuracy of measured process variables is a key requirement for successful implementation

of inferential sensors. However, real-time measurements are subject to two types of errors:

1. random errors caused by imprecision of instruments and 2. systematic gross errors

caused by instrument biases, malfunctioning of measuring devices, and significant heat

or material loss (Narasimhan and Jordache, 2000; Romagnoli and Sánchez, 2000). The

techniques used to improve the accuracy of measurements by reducing the effect of random

errors are termed as data reconciliation methods. In order for data reconciliation to be

effective, gross error detection methods are applied to identify and eliminate systematic

errors. Generally, data reconciliation and gross error detection methods are intended to

deal with instrument measurements that do not satisfy mass and energy balance constraints

associated with the steady state or dynamic process operation (Tamhane and Mah, 1985).

As pointed out by Tamhane (1988), Bayesian methods provide a natural framework
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for data reconciliation and gross error detection. Under certain restrictive assumptions,

Tamhane (1988) presented a Bayesian scheme for detecting gross errors in chemical

process data. For pseudo steady-state processes, Devanathan et al. (2005) proposed a

Bayesian decision rule to detect mean shifts in process variables leading to an inference

regarding the presence of multiple measurement biases. The authors discussed that the

performance of their method for measurement bias identification would not be affected by

the presence of leaks and cancelation of the effects of multiple biases in material balance.

Gui et al. (2007) introduced a Bayesian framework for gross error detection that utilizes

the available prior information on the unknown parameters of the mean shift model as

well as the variance inflation model. Gonzalez et al. (2011) proposed a Bayesian approach

for gross error detection allowing for the separation and estimation of measurement noise

variance as well as process disturbance variance to gain more-informative estimates of

gross errors. The proposed method focuses on estimating a model that is simultaneously

consistent with mass balance equations and measurement noise covariance. Gonzalez et

al. (2012) have developed a dynamic Bayesian methodology for real-time detection and

quantification of instrument gross errors. This method can be considered as a type of

switching Kalman filter through which future measurements are reconciled. In Gonzalez

et al. (2011, 2012), the authors successfully applied their methods for on-site performance

monitoring of weightometers in an oil sands slurry preparation plant, which could reduce

costs of maintenance and aid in dealing with the unavoidable presence of systematic errors.

2.6.5 Monitoring of inferential Sensor Performance

In order to maintain the reliability of an inferential sensor, it is often necessary to track its

on-line performance. However, designing a performance index and specifying a threshold

are not straightforward. For each particular application, the historical process data and

the prior physical knowledge should be exploited to identify the criteria that might affect

on-line performance of the designed inferential sensor. Although much effort has been
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devoted to dealing with several challenges associated with industrial applications, only a

few publications provide a methodology for on-line performance assessment of inferential

models. In Nomikos and MacGregor (1995), approximate confidence intervals have been

developed to assess the accuracy of PLS predictions based on the traditional statistical

properties. Kaneko et al. (2010) proposed a method to quantify the relationship between the

applicability domains and accuracy of inferential sensor predictions. The authors discussed

that a larger distance to the average as well as nearest neighbor of identification data would

indicate a lower accuracy of prediction. Kaneko and Funatsu (2011) proposed an ensemble

prediction method with time difference for inferential sensor development. In this work, the

accuracy of the predictions is estimated using empirical models describing the relationship

between the standard deviation of the multiple predicted values and the standard deviation

of the prediction errors.

It is of great interest to thoroughly assess the quality of laboratory data as they will

be trusted in on-line implementation of the inferential sensor to adjust the real-time

predictions. Therefore, it is worthwhile to develop a procedure for reliability analysis of

the laboratory data.

2.7 Concluding Remarks and Future Research
Challenges

Real-time analysis of process quality variables constitutes an essential prerequisite for

advanced monitoring and control of industrial processes. However, on-line acquisition of

such quality variables is often restricted by inadequacy of measurement techniques, low

reliability of measuring devices, and significant time-delays associated with laboratory

analysis. Therefore, there has been a growing interest in the development of inferential

sensors to provide frequent on-line estimates of quality variables on the basis of their

correlation with real-time process measurements. In this paper, we provided a general
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introduction to the main steps involved in design of industrial inferential sensors, discussed

some of the challenging issues associated with development and implementation of

inferential sensors, and presented an overview of the relevant Bayesian literature. Due

to the demonstrated advantages of Bayesian methods as well as the increasing interest in

their applications, the main focus of this paper was to introduce the potential of Bayesian

methods for inferential modeling practices in the process industry. Adopting Bayesian

methods bears several benefits.

1. Process knowledge can be easily incorporated in a Bayesian scheme by specifying

proper prior distributions over model parameters, functional forms, and constraints

(Tulleken, 1993). Such information obtained from first-principles is forced upon the

data-driven models to obtain grey-box models.

2. The model identification problem can be rigorously formulated under a principled

framework, which features fewer heuristic design choices. For instance, a Bayesian

approach to modeling can naturally deal with complexity control to avoid over-

fitting by integrating out the hyperparameters (Hutter, 2007). The significance of

this advantage should be highlighted for estimation of the parameters of complex

knowledge-driven model structures. In such applications, it is often required to

estimate a large number of correlated parameters from scarce and noisy identification

data, resulting in an ill-conditioned inferential model (Chu et al., 2009).

3. Within a full Bayesian framework, the uncertainty in model parameters is

characterized through posterior PDFs which give rise to a so called predictive

distribution. Thus, probabilistic predictions are made by marginalizing over the

parameters. This feature allows us to quantify the effects of model uncertainty on the

reliability of predicted values.

4. General Bayesian learning techniques convert the identification problem into an
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equivalent problem of computing expectation or evaluating an integral as opposed

to solving a global optimization problem as in likelihood methods. This may

be advantageous in many situations as solving a global non-convex optimization

problem is avoided.

5. Incomplete data and non-Gaussian distributions can be handled naturally.

As indicated by existing research efforts, development and implementation of inferential

sensors entail many challenges. Despite the increasing number of publications dealing with

industrial applications, several issues remain open for future investigation. Some of the

challenging issues that foreshadow interesting topics for future research are summarized

below.

1. Although the problems of process data analysis and model identification are

interconnected, most of the existing solutions are disconnected. It is desired to

seek for a unified framework that simultaneously considers different aspects of data

analysis and inferential modeling. There is potential in formulating the problems of

interest as rigorous conditional probabilistic problems within a Bayesian framework.

2. In order to maintain the reliability of an inferential sensor, it is required to track its on-

line performance. However, the main body of research in this area has been focused

on exploiting advanced strategies for development of inferential sensors. Hence, it

is of paramount importance to search for general criteria and techniques for on-line

performance assessment of inferential models.

3. Maintenance of inferential sensors is another important topic to be further

investigated. There have been several efforts to develop real-time and recursive

identification methods as well as local adaptation mechanisms. Yet, proper

maintenance of the identification data-set remains a challenging task. Theoretical and
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practical developments are required to effectively assess the reliability of operational

and laboratory measurements in real-time.

4. There is a growing realization that off-line operation assistance tools can play a

significant role in improving plant-wide operations. The main research challenge

is to develop information synthesis schemes that can coordinate processing of

diverse forms of knowledge. Further research is imperative to effectively synthesize

qualitative and quantitative information provided by operations personnel, inferential

and physical sensors, laboratory analysis, and many other sources.

5. Long and uncertain time-delays in reference data (e.g. lab data) constitute one

of the main practical problems in inferential sensor development. Samples are

frequently collected from the operational field and the recorded sampling time can

deviate significantly from the actual time. Laboratory analysis of each sample can be

time consuming, thereby introducing a significant time-delay. Therefore, modeling,

filtering, and information synthesis in the presence of long and uncertain time-delays

are of great research interest in inferential sensor development.

6. Bias update has been common practice in inferential sensor applications. Advanced

updating strategies, as reviewed in this Chapter, include the multi-rate information

fusion method and the filtering method. However, due to the slow rate of sampling

of lab data, these updates are often associated with an abrupt change of the prediction,

introducing undesired bumps to the inferential sensor predictions. Optimal synthesis

of multi-rate data is another topic of interest.

7. The main objective of developing inferential sensors is for industrial applications.

Almost for certain, all inferential sensors have to be converted to the distributed

control system (DCS) language. Initial inferential sensor development is most

likely completed in an advanced program environment such as MATLAB. Reliable
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implementation of the advanced program into DCS program or simplification of

the advanced algorithm for implementation in DCS constitute a significant practical

challenge.
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Bibliography 86

of dynamic PlS to a dearomatization process. Computers and Chemical Engineering

28(2), 2611–2619.

Korb, K. B. and A. E. Nicholson (2004). Bayesian Artificial Intelligence. first ed.. Chapman

& Hall/CRC. London, UK.

Kuo, L. and B. Mallick (1998). Variable selection for regression models. Sankhyā: The

Indian Journal of Statistics 60, 65–81.

Kwok, J. T. (2000). The evidence framework applied to support vector machines. IEEE

Transactions on Neural Network 11(5), 1162–1173.

Lalor, G. C. and C. Zhang (2001). Multivariate outlier detection and remediation in

geochemical databases. The Science of The Total Environment 281(1-3), 99–109.

Lambers, J. Hille Ris, B. Aukema, J. Diez, M. Evans and A. Latimer (2006). Effects

of global change on inflorescence production: A Bayesian hierarchical analysis. In:

Hierarchical Modelling For The Environmental Sciences - Statistical Methods And

Applications (J. S. Clark and A. Gelfand, Eds.). pp. 59–73. Oxford University Press.

Cary, USA.

Lauer, F. (2008). From Support Vector Machines to Hybrid System Identification. PhD

thesis. Nancy University. Lorraine, France.

Leamer, E. E. (1973). Multicollinearity: A Bayesian interpretation. The Review of

Economics and Statistics 55(3), 371–380.

Lee, J., B. Kang and S. Kang (2011). Integrating independent component analysis and local

outlier factor for plant-wide process monitoring. Journal of Process Control 21(7), 1519–

1528.



Bibliography 87

Li, J. and Y. Huang (2006). Bayesian-based on-line applicability evaluation of neural

network models in modeling automotive paint spray operations. Computers and

Chemical Engineering 30, 1392–1399.

Li, X. L., H. Su and J. Chu (2009). Multiple model soft sensor based on affinity

propagation, Gaussian process and Bayesian committee machine. Chinese Journal of

Chemical Engineering 17(1), 95–99.

Lin, B. and S. B. Jørgensen (2011). Soft sensor design by multivariate fusion of image

features and process measurements. Journal of Process Control 21(4), 547–553.

Lin, B., B. Recke, J. K. H. Knudsen and S. B. Jørgensen (2007). A systematic approach for

soft sensor development. Computers and Chemical Engineering 31(5-6), 419–425.

Lin, T. H. (2010). A comparison of multiple imputation with EM algorithm and MCMC

method for quality of life missing data. Quality and Quantity 44(2), 277–287.

Lind, I. and L. Ljung (2005). Regressor selection with the analysis of variance method.

Automatica 41(4), 693–700.

Lind, I. and L. Ljung (2008). Regressor and structure selection in NARX models using a

structured anova approach. Automatica 44(2), 383–395.

Little, R. J. A. and D. B. Rubin (2002). Statistical Analysis With Missing Data. second ed..

John Wiley & Sons. New York, USA.

Liu, X., K. Li, M. McAfee, B. K. Nguyen and G. M. McNally (2012). Dynamic grey-

box modelling for online monitoring of extrusion viscosity. Polymer Engineering and

Science 52(6), 1332–1341.

Ljung, L. (1999). System Identification - Theory For the User. second ed.. Prentice Hall.

Upper Saddle River, USA.



Bibliography 88

Lütkepohl, H. (2006). New Introduction to Multiple Time Series Analysis. second ed..

Springer-Verlag. New York, USA.

MacKay, D. J. C. (1992). Bayesian interpolation. Neural Computation 4(3), 415–447.

MacKay, D. J. C. (1995). Probable networks and plausible predictions - a review of

practical Bayesian methods for supervised neural networks. Network: Computation in

Neural Systems 6(3), 469–505.

MacKay, D. J. C. (2002). Information Theory, Inference, and Learning Algorithm. first ed..

Cambridge University Press. New York, USA.

Marco, S. and A. Gutierrez-Galvez (2012). Signal and data processing for machine

olfaction and chemical sensing: A review. IEEE Sensors Journal 12(11), 3189–3214.

Marjanovic, O., B. Lennox, D. Sandoz, K. Smith and M. Crofts (2006). Real-time

monitoring of an industrial batch process. Computers and Chemical Engineering 30(10-

12), 1476–1481.

Marquardt, D. W. (1970). Generalized inverses, ridge regression, biased linear estimation,

and nonlinear estimation. Technometrics 12(3), 591–612.

Mason, A., S. Richardson, I. Plewis and N. Best (2012). Strategy for modelling nonrandom

missing data mechanisms in observational studies using Bayesian methods. Journal of

Official Statistics 28(2), 279–302.

McCabe, W. L., J. C. Smith and P. Harriott (2005). Unit Operations Of Chemical

Engineering. seventh ed.. McGraw-Hill. Boston, USA.

Meuwissen, T. H. E. and M. E. Goddard (2004). Mapping multiple QTL using linkage

disequilibrium and linkage analysis information and multitrait data. Genetics Selection

Evolution 36(3), 261–279.



Bibliography 89

Mirzaee, A. and K. Salahshoor (2012). Fault diagnosis and accommodation of nonlinear

systems based on multiple-model adaptive unscented Kalman filter and switched MPC

and H-infinity loop-shaping controller. Journal of Process Control 22(3), 626–634.

Miyabayashi, K., O. Tonomura, M. Kano and S. Hasebe (2012). Comparative study of state

estimation of tubular microreactors using ukf and ekf. In: Proceedings of the 8th IFAC

Symposium on Advanced Control of Chemical Processes. IFAC. Singapore. pp. 513–518.

Mobaraki, N. and B. Hemmateenejad (2011). Structural characterization of carbonyl

compounds by IR spectroscopy and chemometrics data analysis. Chemometrics and

Intelligent Laboratory Systems 109(2), 171–177.

Murphy, K. P. (2002). Dynamic Bayesian Networks: Representation, Inference and

Learning. PhD thesis. University of California. Berkely, USA.

Murray-Smith, R. and T. R. Johansen (1997). Multiple Model Approaches to Modelling

and Control. first ed.. Taylor & Francis. London, UK.

Nair, A. T., T. K. Radhakrishnan, K. Srinivasan and S. R. Valsalam (2011). Kalman filter

based state estimation of a thermal power plant. In: Proceedings of the International

Conference on Process Automation, Control and Computing (PACC). IEEE. Coimbatore,

India. pp. 1–5.

Narasimhan, S. and C. Jordache (2000). Data Reconciliation & Gross Error Detection: An

Intelligent Use of Process Data. first ed.. Gulf Publishing Company. Houston, USA.

NIST/SEMATECH (2011). e-Handbook of Statistical Methods.

http://www.itl.nist.gov/div898/handbook/.

Nomikos, P. and J. F. MacGregor (1995). Multi-way partial least squares in monitoring

batch processes. Chemometrics and Intelligent Laboratory Systems 30(1), 97–108.



Bibliography 90

Norgaard, M., M. Poulsen and O. Ravn (2000). New developments in state estimation for

nonlinear systems. Automatica 36(11), 1627–1638.

Nounou, M. N. and B. R. Bakshi (2004). Process modeling by Bayesian latent variable

regression. AIChE Journal 48(8), 1775–1793.

Nounou, M. N., B. R. Bakshi, P. K. Goel and X. Shen (2002). Bayesian principal

component analysis. Chemometrics and Intelligent Laboratory Systems 16(11), 576–

595.

Oakley, J. E. and A. O’Hagan (2004). Probabilistic sensitivity analysis of complex models:

A Bayesian approach. Journal of the Royal Statistical Society, Series B: Statistical

Methodology 66(3), 751–769.
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Chapter 3

A Classical Framework for Real-time
Inferential Modeling and Prediction of
Cytotoxicity Induced by Contaminants
in Water Resources

3.1 Introduction

Development of a reliable model is a key requirement for investigating the behavior of

complex systems. Such descriptive models can help to improve analysis, simulation,

design, and control of process systems at both micro and macro levels. Depending on

the level of a priori knowledge, two different philosophies may guide the choice of

modeling strategies, namely first principles analysis and statistical data analysis (Ljung,

1999). First principles or knowledge-driven models are obtained based on formulating

and solving a set of differential and algebraic equations representing physical phenomena.

Development of such models requires a deep understanding of transport phenomena,

possible reaction pathways, and thermodynamic behavior of the studied systems. The

complexity of chemical and biological processes could make first principles modeling

infeasible or prohibitively difficult. Therefore, decades of research have been devoted to

A version of this chapter has been published in Computational Biology and Chemistry, Volume 35
(Khatibisepehr et al., 2011a). An abbreviated version of this chapter was presented at the 4th International
Symposium on Advanced Control of Industrial Processes, May 23-27, 2011, Hangzhou, China (Khatibisepehr
et al., 2011b).
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developing system identification techniques for situations in which complete understanding

of the internal mechanisms governing the system dynamics is absent. Data-driven models

are thus constructed only based on computational inference of historical relations among

system components. The main task is to build a suitable inferential model that is well

supported by historical data. In such cases, the main criteria to be considered in model

identification are simplicity, generality, and flexibility (Hangos and Cameron, 2001). The

more degrees of freedom are allowed in the model structure, the closer the model can

approximate the identification data-set. However, adequacy of model fit does not reliably

ascertain the performance of the developed inferential sensor, i.e., satisfactory prediction

capability on the identification data does not guarantee generalization to other data-sets.

Determination of a proper model structure (e.g. model order within a specified class) plays

a key role in achieving a compromise between accuracy and complexity of the model. In

recent years, support vector regression (SVR) (Vapnik, 1999) is gaining popularity due

to its many attractive features and promising empirical modeling performance. While

the empirical risk minimization (ERM) principle is generally employed in many of the

statistical modeling techniques, the SVR implements the structural risk minimization

(SRM) principle. This would minimize the upper bound on the generalization error instead

of the training error. Based on SRM principle, SVR achieves a balance between the

model accuracy and generalization performance. Thus, the over-fitting phenomenon can be

avoided and, consequently, a better generalized prediction performance can be achieved.

Another important issue arising in development of data-driven models is related to the

non-linearity of underlying mechanisms. In many complex biological processes, a single

non-linear model cannot fully capture the dynamics of the system under investigation. In

such cases, multi-model inferential sensors can be used to approximate complex processes

by concatenating multiple local models. Real-time model identification (Cleveland, 1979;

Atkeson et al., 1997), also known as just-in-time/space modeling (Zheng and Kimura,
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2001), can be viewed as a special modeling technique that results in multi-model inferential

sensors with infinite number of local models. The general idea behind this approach is

to identify a local model in real-time by prioritizing the identification data-points. The

search for the nearest neighbors is carried out from the historical data-set using a predefined

notion of similarity. The just-in-time/space modeling techniques can cope with variations

in process characteristics and handle non-linearity of underlying mechanisms (Kano and

Fujiwara, 2013).

3.1.1 Practical Motivation

Chemical disinfection of water was a major public health triumph of the 20th century. Yet,

The ever-increasing number of chemical compounds produced by various industries has

prompted the development of research methods for rapid cytotoxicity screening to enhance

monitoring the quality of water resources. An essential prerequisite for a successful early-

warning system is continuous collection of accurate data describing the risk of toxicant

contamination. However, real-time measurement of critical quality variables, such as

identity and concentration of potential contaminants, may involve difficulties due to the

inadequacy of measurement techniques or low reliability of measuring devices. The key

quality indicators are normally available through off-line sample analysis with significant

time delays in the order of a few days. Moreover, sampling frequency for routine laboratory

analysis might not be adequate to detect intermittent and short-lived contamination. The

lack of suitable key variable information in a timely manner can have a severe influence

on monitoring the quality of water resources. Therefore, there has been a need to develop

on-line sensing tools for timely detection and quantification of potential contaminants with

adequate sensitivity, specificity, accuracy, and precision.

Several methods have been applied for detection and identification of the hazardous

events in water resources. Analytical-chemical methods have been developed to detect

a specific compound or a range of compounds having similar properties. The main
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shortcoming of these methods is that they do not necessarily provide any information

about the potential toxic effects on the living mechanisms (Brosnan, 1999). In

contrast, biological early warning methods are capable of detecting the presence and

identifying the consequences of hazardous events, regardless of the type and concentration

of contaminants. Despite recent advances in biological monitors and microsensor

technologies, effective implementation of these tools has been restricted by the high rate

of false positive as well as the need for frequent and high-cost maintenance. To overcome

these limitations, applications of inferential models in the assessment of water quality have

been widely investigated during the past few decades (Clark et al., 1986; Mazijk, 1996). In

recent years, inferential process modeling has been established as a valuable supplement

to the classical methods for real-time monitoring the quality of water supplies (Yang et al.,

2008).

Water contaminants have two major effects on living cells: 1. toxicity effects resulting in

cell death by apoptosis and/or necrosis and 2. cancer effects resulting in uncontrolled cell

proliferation. In general, living cells undergo physiological and pathological changes as a

result of exposure to toxic compounds. These changes include: morphological dynamics,

cell adhesion alterations, cell cycle arrest, DNA damage, and tissue apoptosis and necrosis

(Xing et al., 2005). Such cellular changes are dynamic and greatly depend on the cell

types as well as the nature, concentration, and exposure duration of toxicant (Botham,

2004). Inferential models can be developed to describe these effects on human cells. Such

descriptive models can help to predict cell responses to different type and concentration

of water contaminants and, consequently, to assess the biological consequences and

cytotoxicity effects of toxicants in environmental contamination (Ibrahim et al., 2010).

3.1.2 Main Contributions

The focus of this work is to provide a classical non-Bayesian framework to capture the

non-linearity in the local region around a query point in a real-time manner. The proposed
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just-in-time/space modeling approach can cope with variations in process characteristics

and handle non-linearity of underlying mechanisms. The developed framework will be

implemented to facilitate real-time prediction of cytotoxicity effects on living cells induced

by certain water contaminants. Real-time analysis of the intrinsic cell behavior and

predicting the trajectory of its progress (growth or death) over a considerable time horizon

is a significant contribution in the context of water quality monitoring.

3.2 Problem Statement

For dynamic modeling and prediction of cytotoxicity, both knowledge-driven and data-

driven models have been constructed and their results have been presented in the earlier

work of Huang and Xing (2006). Not surprisingly, classical knowledge-driven modeling

approaches can provide good estimations of dynamic cell responses based on transport

equations for cell population. However, the development of a first-principle model becomes

practically infeasible if the underlying mechanism is not truly understood. For instance,

some phenomena observed in cytotoxicity experiments, such as initial cell fusion, have not

been well understood and, thus, cannot be explained from first principles. The difficulties

in developing first-principle models for cell-killing mechanisms induced by toxicant were

discussed previously in Huang and Xing (2006) in details. Since certain dynamics in

cytotoxicity process are very difficult or impossible to model from the first principles

due to limited understanding of the complex underlying biochemical and morphological

processes, the focus of this work is thus on development of data-driven predictive models.

Some techniques have been developed during the past years for data-driven dynamic

modeling of cytotoxicity, most of which are based on time series analysis (Huang and Xing,

2005). However, the nature of cytotoxicity mechanisms is highly non-linear. Being capable

of approximating the non-linearity, artificial neural networks (ANNs) with hyperbolic

tangent activation functions and non-linear autoregressive with exogenous input (NARX)



Sec. 3.2 Problem Statement 103

model structures have been developed by Huang and Xing (2006). It has been reported that

ANN is an effective method for short-term prediction of cell population dynamics in the

presence of toxicants. However, it suffers from several limitations:

1. The model performance deteriorates as prediction horizon increases.

2. The accuracy of long-term predictions deteriorate quicker for faster dynamics, such

as that of As (III), and for unstable responses resulting from low dose of toxicants.

3. There is no guarantee of convergence and avoidance of local minima.

4. The ANN follows the empirical risk minimization (ERM) approach, which is

commonly employed by conventional machine learning methods. In the ERM

approach, unknown parameters are adjusted to minimize the prediction errors

pertaining to the identification data-set. Since the ERM is based exclusively on

the prediction errors for the identification data, a good generalization performance

cannot be guaranteed.

5. There are no general methods available to specify the network architecture (Yan et

al., 2004).

6. In spite of the ability of ANNs to handle non-linearity, a single non-linear model

cannot fully capture the dynamics of such complex biological processes.

To overcome the aforementioned shortcomings, the proven advantages of SVR inspire us

to employ it in constructing a data-driven predictive model to improve the effectiveness and

efficiency of cytotoxicity monitoring investigated in Huang and Xing (2006). Among the

different formulations of the SVR problem, the ν-SVR (Schölkopf et al., 2000) algorithm is

adopted to form the core of the inferential model. Moreover, a just-in-time/space modeling

technique is developed to better approximate the local process behavior. Thus, it is required

to effectively construct an identification sub-set from the most relevant training samples.
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Since postulate of conventional statistic theory is infinite numbers of identification samples,

for small size training data-sets the principle of ERM cannot deduce the principle of

expectation risk minimization (Han et al., 2004). However, support vector regression

is based on small-sample statistical learning theory, in which the optimal solution can

be obtained from limited identification samples rather than infinite samples in theory

(Vapnik, 1998). The formulation of SVRs embodies the structural risk minimization (SRM)

principle that minimizes an upper bound on the expected risk, as opposed to the ERM

principle that minimizes the prediction error on the identification data. The difficulties of

choosing network structure are automatically handled in SVR.

One of the standard MATLAB toolboxes, LIBSVM, is applied to the construction of cell

index prediction models. The developed model is found capable of analyzing intrinsic cell

behavior and predicting the trajectory of its progress (growth or death) over considerable

time horizon.

3.3 Cytotoxicity Experiments

Collecting reliable experimental data is the first and the most important step to ensure the

quality of the inferential models. However, dynamic monitoring of the cytotoxicity is not an

easy task in most of the conventional cell-based assays. The main reason is that the required

chemical and radiation indicators may kill or disturb target cells. In order to detect a broad

range of physiological and pathological dynamic responses of living cells to toxicants, an

automatic, real-time cell electronic sensing (RT-CES) system has been used to conduct the

cytotoxicity experiments as detailed in Xing et al. (2005).

The RT-CES system (ACEA Biosciences, CA, U.S.A.) has been used to monitor cellular

events by measuring the electronic impedance of sensor electrodes integrated on the bottom

of microtiter plates. The RT-CES system has been described in details in Xing et al. (2005).

Briefly, the system is composed of three main components: 1. electronic sensor analyzer,
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2. device station, and 3. 16x microelectronic sensor device. Cells were grown onto the

surfaces of microelectronic sensors, which are comprised of circle-on-line electrode arrays

and are integrated into the bottom surfaces of the microtiter plate. The device station is

located inside a tissue culture CO2 incubator and is capable of electronically switching any

one of the wells to the sensor analyzer for impedance measurement. Sensor analyzer can

automatically select wells for measurement and continuously transfer measured impedance

data to the computer. Based on the measured impedance, a dimensionless parameter termed

cell index (CI) is defined to provide quantitative information about the biological status of

the cells such as cell number. The CI can be calculated as (Xing et al., 2005)

CI = max
n=1,...,N

[Rcell(fn)

Rb(fn)
− 1
]

(3.1)

where Rb(fn) and Rcell(fn) are the frequency-dependent electrode impedance (resistance)

without or with cells present in the wells, respectively, andN is the number of the frequency

points at which the impedance is measured.

Since the cell index is an indirect indication of the biological consequences of toxic

contaminants in the aquatic environment, the CI measurements can be used to outline

and implement a concept for developing dynamic predictive models. For cytotoxicity

assessment, the NIH 3T3 cell-lines were treated with three potential water toxicants,

sodium arsenite [As (III)], mercury (II) chloride, and sodium dichromate [chromium (VI)].

The starting cell number was 10,000 cells per sensor wells. When the CI values reached

a range between 1.0 and 1.2, the cells were exposed to one of the toxicants at different

concentrations. The cell responses were continuously monitored and recorded every hour

by the RT-CES system.

3.4 Support Vector Regression

The standard support vector regression algorithm is revisited in this section. First, a brief

overview of the principles of SVR is presented. Next, the issues related to solving dynamic
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modeling problems and tuning hyperparameters are discussed. Readers are referred to

Vapnik (1998) for a more in depth discussion of the associated statistical learning theory.

3.4.1 Historic Background

Support vector machines (SVMs) are a group of supervised learning methods

that implement the structural risk minimization inductive principle to obtain good

generalization on a limited number of training samples. The support vector (SV) theory is

firmly grounded in the framework of statistical learning theory which has been developed

over the last three decades by Vapnik and Chervonenkis (1974) and others. In its present

form, the SVM was developed by Vapnik and his co-workers on a basis of a separable

bipartition problem at the AT & T Bell Laboratories. The SV method has now evolved

into an active area of research oriented towards real-world applications. There are two

main categories of support vector machines, namely support vector classification (SVC)

and support vector regression (SVR).

3.4.2 Basis of Support Vector Regression

The basic idea of the SVR is to non-linearly map the input variables into a high dimensional

feature space wherein they are linearly correlated with the output variable. Let D =

{(xn, yn)}Nn=1 denote the identification data-set, where xn ∈ RP is the vector of input data

and yn is the corresponding scalar output value. Support vector regression aims at finding

the flattest linear regression function that deviates from the identification data by ε at most.

That is,

f(x) = ⟨w,Ω(x)⟩+ b (3.2)

satisfies the following condition:

|f(xn)− yn| ≤ ε n = 1, . . . , N (3.3)
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where w denotes the weight vector connecting the feature space to the output space, b is

the bias term, f denotes the feature function, Ω is the mapping function (i.e. Ω : RP 7→ F),

and ⟨w,Ω(x)⟩ represents the dot product in the feature space, F.

Support vector regression models are identified by solving the following optimization

problem (Smola and Schölkopf, 2004):

min
w,b,ξn,ξ∗n

1

2
wTw + C

N∑
n=1

(ξn + ξ∗n) (3.4)

Subject to


yn − (⟨w,Ω(xn)⟩+ b) ≤ ε+ ξn

(⟨w,Ω(xn)⟩+ b)− yn ≤ ε+ ξ∗n

ξn, ξ
∗
n ≥ 0

where ξn (and ξ∗n) are the slack variables of the upper (and lower) training error subject to

the ε-insensitive tube (Figure 3.1). The constant C determines the trade-off between the

flatness of function f and the acceptable amount of deviations from ε. In other words, C is

a bound on Lagrangian multipliers.

The formulation above corresponds to dealing with the ε-insensitive loss function

described by (Vapnik, 1998)

|ξ|ε :=

{
0 |ξ| ≤ ε

|ξ| − ε Otherwise
(3.5)

As shown in Figure 3.1, this loss function builds a tube of insensitivity inside which the

prediction errors are not of concern. Only points outside of the ε-insensitive tube are

penalized to minimize the resulting errors, ξ or ξ∗, in the objective function. Besides the

ε-insensitive, other loss functions such as quadratic, Laplace or Huber can be used in SVR

algorithm.

Using an ε-insensitive loss function, the non-linear SVR solution is found by minimizing
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Figure 3.1: Right Panel: Tube of insensitivity. Left Panel: ε-insensitive loss function

the following primal Lagrangian:

L =
1

2
wTw + C

N∑
n=1

(ξn + ξ∗n)−
N∑

n=1

(ηnξn + η∗nξ
∗
n)

−
N∑

n=1

αn(ε+ ξn − yn + ⟨w,Ω(xn)⟩+ b)

−
N∑

n=1

α∗
n(ε+ ξ∗n + yn − ⟨w,Ω(xn)⟩ − b) (3.6)

Equation 3.6 is minimized with respect to the primal variables, w, b, ξn and ξ∗n. Moreover,

the dual Lagrangian needs to be maximized with respect to the non-negative Lagrangian

multipliers, αn and α∗
n:

LD = −1

2

N∑
n,j=1

(αn − α∗
n)(αj − α∗

j )K(xn, xj)

− ε
N∑

n=1

(αn + α∗
n) +

N∑
n=1

yn(αn − α∗
n) (3.7)

Subject to
∑N

n=1(αn − α∗
n) = 0 0 ≤ αn, α

∗
n ≤ C n = 1, . . . , N

where K(xn, xj) = ⟨Ω(xn),Ω(xj)⟩ is the Kernel function. The most common Kernel

functions are listed in Table 3.1.

After calculating αn and α∗
n, optimal desired weights of the regression hyperplane is

obtained from

w =
N∑

n=1

(αn − α∗
n)Ω(xn) (3.8)
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Table 3.1: Summary of the most common kernel functions

Kernel K(xn, x) Hyperparameters
Linear ⟨xn, x⟩ None

Polynomial
(
γ⟨xn, x⟩+ c

)d
d ∈ N, c ≥ 0

Gaussian RBF exp
(−∥xn − x∥2

2σ2

)
σ > 0

Sigmoidal tanh
(
γ⟨xn, x⟩+ c

)
γ, c ≥ 0

Finally, the SVR model is given by

f(x) =
nSV∑
n=1

(αn − α∗
n)K(xn, x) + b (3.9)

where nSV is the number of support vectors.

A final note has to be made regarding the tuning of hyperparameters of the SVR model.

Hyperparameters are high level parameters that may influence the training procedure. They

are the constants defining a particular instance of a learning algorithm or involved in the

model. They are not usually determined by the learning algorithm, but are instead fixed

at the design stage. Several possibilities of hyperparameter determination exist. A very

rare possibility is that hyperparameters are known in advance as prior knowledge. Almost

always, however, they must be determined during the identification phases (Cherkassky

and Ma, 2004). Since the quality of the SVR models depends greatly on the proper

tuning of the hyperparameters, the procedures available for tuning the two most relevant

hyperparameters are discussed next.

3.4.3 Tuning of Hyperparameters

The tuning of the regularization constant, C, is a delicate task. A larger C implies a

smaller training error but possibly a lower generalization performance. On the other hand,

a smaller C gives more weight to the regularization term as a result of which a better
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generalization performance can be achieved. According to Cherkassky and Ma (2004), the

value of hyperparameter C can be directly adjusted on the identification data-set:

C = max(|ȳ + 3σy|, |ȳ − 3σy|) (3.10)

where ȳ and σy are the mean and standard deviation of the measured outputs, respectively.

For an SVR-based model, the value of ε determines the level of accuracy of the ε-

insensitive loss function. Hyperparameter ε has an effect on both the complexity and the

generalization performance of the developed model. It is well-known that the value of

hyperparameter ε depends on the level of noise in the identification data, and on the size of

the training data-set. However, in many real-world applications, the noise level is unknown.

This problem is partially resolved using a new support vector regression algorithm known

as ν-SVR (Schölkopf et al., 2000). In this algorithm, a new parameter ν allows us to

automatically adjust the width of ε-insensitive tube. Thus, the optimization problem of

Equation 3.4 is rewritten as

min
w,b,ξn,ξ∗n,ε

1

2
wTw + C

( N∑
n=1

(ξn + ξ∗n) +Nνε
)

(3.11)

Subject to


yn − (⟨w,Ω(xn)⟩+ b) ≤ ε+ ξ∗n

(⟨w,Ω(xn)⟩+ b)− yn ≤ ε+ ξn

ν, ξn, ξ
∗
n ≥ 0

The procedure followed to solve the ν-SVR optimization problem is similar to that of

classical SVR. This would lead to the same expression given by Equation 3.9. Schölkopf

et al. (2000) showed that ν ∈ (0, 1] can be interpreted both as an upper bound on the

percentage of errors and as a lower bound on the fraction of support vectors at the end of the

training. In this way, one can directly control the number of parameters needed to build the

regression function. This interesting aspect becomes particularly advantageous when one

has to deal with small number of training samples in training phase or rigorous limitations

in implementation phase. Note that choosing ν to represent a certain level of accuracy does
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of course only guarantee that accuracy on the training set. Often, it is required to choose a

larger value of ν in order to achieve a certain level of accuracy overall.

3.4.4 Local ν-Support Vector Regression

The adjacent CI measurements would reflect similar dynamic behavior of the living cells.

Given a query sample, the local ν-SVR model identified from the neighboring training

samples are thus expected to better capture the local non-linearity and produce more

accurate predictions. In this section, a local ν-SVR modeling technique inspired by the

work of Fernández (1999) is presented.

Given a query sample, xt, the search for at most O nearest neighbors is carried out from

the identification data-set using a pre-defined notion of similarity or locality. A local ν-

SVR model is identified from at most the O nearest neighbors among the training data.

In this work, the distance between the query and identification samples is selected as the

measure of similarity. The distance metric is defined in terms of the toxicant concentration

and latest CI measurements. Having constructed a sub-set of identification data, the ν-SVR

algorithm can be used to identify a local model.

Let D and DV denote the identification and validation data-sets, respectively. The

implementation procedure of the local ν-SVR approach employed in this study is

summarized in Algorithm 3.1.

Algorithm 3.1. Local ν-Support Vector Regression Modeling

1. Choose an appropriate Kernel mapping function. A summary of the most common

Kernel functions is given in Table 3.1.

2. Determine a search space for the hyperparameters. Find the optimal values of the

hyperparameters from the identification data-set (Equation 3.10).

3. Given a query sample xt, find at most the P spatial and temporal nearest neighbors

among the training samples. Construct a new identification data-set based on the
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selected O neighbors such that Dq
O ∈ D.

4. Identify a local ν-SVR model from Dq
O to obtain the support vectors and

corresponding weight coefficients (Equation 3.8).

5. Obtain a prediction of yq, denoted as ŷq, based on the identified local ν-SVR

inferential model (Equation 3.9).

6. Repeat the above steps until CI predictions of all query samples in the validation

data-set are all acquired. Tune the hyperparameters of the model as required.

3.5 SVR-Based Predictive Model

3.5.1 Data Selection

The entire data-set is divided into two sub-sets, namely the identification and validation

data-sets. The identification data-set is used to develop a SVR-based model, whereas the

validation data-set is adopted to monitor the level of agreement between the identified

model and the process under investigation. Since the distribution of the identification data

within the process operating region is crucial for obtaining reliable predictions, the data for

model training should be chosen carefully. Model predictions can be trusted only if a new

query sample belongs to the operating region covered by the identification data.

For As (III) experiments, experimental data consist of eight different doses of toxicant

including one zero-dosage (also known as controlled experiment). For chromium (VI) and

mercury (II) chloride experiments, experimental data consist of seven different doses of

toxicant including one zero-dosage. Each dose corresponds to 25 dynamic data points

recorded after the injection of the toxicant with one-hour sampling interval. Identification

and validation data-sets are chosen such that both consist of a mixture of low-dose and

high-dose samples.
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3.5.2 Model Development

Two different types of predictions will be investigated, namely k-step-ahead prediction and

varying-horizon prediction.

First, let us consider the following one-step-ahead predictor for short-term dynamic

prediction of future CI values:

ŷt+1|t =
nSV∑
n=1

(αn − α∗
n)K(xn, xt) + b (3.12)

where {x1, . . . , xnSV } are the support vectors selected from the training data-set and xt is

the regression vector constructed from three lagged outputs, yt, yt−1, and yt−2, as well as

toxicant concentration at time t+ 1, ut+1. That is, xt = [yt, yt−1, yt−2, ut+1]. Finally, ŷt+1|t

denotes the one-step-ahead prediction of yt obtained from all information available up to

and at time t.

The k-step-ahead predictions are obtained by iterating the one-step-ahead predictor up

to the desired horizon. In order to perform a k-step-ahead prediction, the regressor should

be updated upon the arrival of new measurements. Hence, the regression vector consists of

predicted values as well as available actual measurements. A prediction iterated for k times

returns a k-step-ahead prediction. Hence, the multi-step-ahead predictive model is defined

as

ŷt+k|t =
nSV∑
n=1

(αn − α∗
n)K(xn, xt) + b (3.13)

To illustrate for a model using three lagged outputs, the iterative three-step-ahead

prediction, ŷt+3|t, is achieved as follows:

• First stage:

ŷt+1|t =
nSV∑
n=1

(αn − α∗
n)K(xn, xt) + b

with xt = [yt, yt−1, yt−2, ut+1]
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• Second stage:

ŷt+2|t =
nSV∑
n=1

(αn − α∗
n)K(xn, xt) + b

with xt = [ŷt+1|t, yt, yt−1, ut+2]

• Third stage:

ŷt+3|t =
nSV∑
n=1

(αn − α∗
n)K(xn, xt) + b

with xt = [ŷt+2|t, ŷt+1|t, yt, ut+3]

For a k-step-ahead predictor, the derived model can pass the validation easier when the

prediction horizon k is small and output response is smooth. However, the prediction

becomes less accurate as k increases.

Now, let us further investigate the potential of the one-step-ahead predictor. The

objective is to evaluate the performance of the derived one-step-ahead predictor to predict

the long-term cytotoxicity response only based on the first three measurements such that

ŷ3+k|3 = f(y1, y2, y3;u3) for k = 1 . . . 22 (3.14)

or equivalently,

ŷt = f(y1, y2, y3;u3) for t = 4 . . . 25 (3.15)

The k-step-ahead prediction approaches the infinite-step-ahead prediction, also known as

simulation, as prediction horizon increases. To illustrate, consider a stable system (i.e.

|a1| < 1) of the form

ŷt+1|t = a1yt + b1ut (3.16)

One approach to find ŷt+2|t is to back-substitute from the defining equation of the process
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so as to eliminate future values of yt. Thus,

ŷt+2|t = a1ŷt+1|t + b1ut+1

= a1(a1yt + b1ut) + b1ut+1

= a21yt + a1b1ut + b1ut+1 (3.17)

Similarly, ŷt+k|t can be calculated as

ŷt+k|t = ak1yt + b1z
k−1ut

k−1∑
j=0

aj1z
−j (3.18)

As k goes to infinity, the first term approaches zero. Assuming the input remains constant,

the infinite-step-ahead prediction can be approximated as

ŷt+k|t = b1z
k−1ut

∞∑
j=0

aj1z
−j

=
b1z

k−1

1− a1z−1
(3.19)

leading to

ŷt+∞|t =
b1

1− a1z−1
ut (3.20)

Taking advantage of the above fact, varying-horizon predictions can be calculated to

simulate the dynamic response of living cells to various concentrations of toxic compounds.

Given the first three CI measurements, the varying-horizon predictive model is defined as

ŷt =
nSV∑
n=1

(αn − α∗
n)K(xn, x̂t) + b for t = 4 . . . 25 (3.21)

In this framework, the predicted output is fed back as an input to the following

prediction. Hence, the regression vector consists of predicted values as opposed to actual

measurements, i.e. x̂t = [ŷt−1, ŷt−2, ŷt−3, ut].

There are two types of model validations performed, namely self-validation and cross-

validation. Self-validation determines the adequacy of fit by evaluating the prediction

performance of the inferential model on the identification data. Cross-validation assesses
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Table 3.2: Summary of the optimal values of hyperparameters C and ν

Toxicant Hyperparameter C Hyperparameter ν
As (III) 3.7 0.7
Chromium (VI) 2.7 0.9
Mercury (II) Chloride 2.5 0.95

the generalization capability by evaluating the prediction performance of the identified

inferential model on an independent data-set that has not been used for the model

identification. It is noteworthy that the prediction plots do not have the first k points because

the previous k outputs must be known for a k-step-ahead prediction.

3.6 Results and Discussion

3.6.1 Dynamic Prediction

In this section, the accuracy of short-term and long-term predictions is evaluated. For

evaluating the short-term prediction performance, the accuracy of one-step-ahead (one-

hour) and five-step-ahead (five-hour) predictions are considered. For evaluating the long-

term prediction performance, the accuracy of varying-horizon predictions are considered

in which only first three measurements are used to predict all future responses. To show the

relationship between the prediction performance and prediction horizon, the performance

of the one-step-ahead, three-step-ahead, and five-step-ahead predictors are compared.

For As (III) modeling, four experimental data-sets corresponding to 1.25, 6.21, 13.58

and 29.64 µM are used for model training and hyperparameter tuning, while the remaining

four are reserved for cross-validation. As mentioned previously, it is of primal importance

to find optimal values for the hyperparameters of the SVR-based model. Equation 3.10 is

thus used to directly choose hyperparameter C based on the identification data. For a fixed

C, the whole parameter range (0, 1] is examined to search for the optimal value of ν. The

selected values of hyperparameters C and ν are presented in Table 3.2.
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Figure 3.2 shows comparison of model fit based on one-step-ahead and five-step-ahead

predictions for As (III) toxicant. Both self-validation and cross-validation results are

presented in this figure. The one-step-ahead predictions obtained from the SVR-based

model are comparable with the corresponding predictions from ANNs presented in Huang

and Xing (2006). However, the five-step-ahead predictions have noticeably improved in

this work. Given the first three CI measurements, varying-horizon predictions are presented

in Figure 3.3. With reasonable fits overall, one can see that better models and predictions

are obtained for larger doses of AS(III). Compared to the simulation results illustrated in

Huang and Xing (2006), a significant improvement of the long-term predictions is observed

here. To provide an arithmetical basis for comparison, mean absolute error (MAE) of

predictions of SVR-Based models and ANNs are summarized in Table 3.3.
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Figure 3.2: Model fit based on short-term predictions for As (III) toxicant; solid line
is one-step-ahead prediction; marked line is five-step-ahead prediction; circle is actual
measurement of CI
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Figure 3.3: Varying-horizon predictions for As (III) toxicant given the first three CI
measurements; solid line is prediction; circle is actual measurement of CI.

Table 3.3: Comparison of mean absolute errors resulted from SVR-Based models and
ANNs for As (III) toxicant

0 1.25 4.06 6.21 9.20 13.58 20.01 29.64
One-step-ahead Predictions

SVR 0.024 0.027 0.026 0.011 0.024 0.022 0.021 0.003
ANN 0.032 0.041 0.033 0.025 0.024 0.032 0.024 0.067

Five-step-ahead Predictions
SVR 0.166 0.152 0.129 0.071 0.096 0.070 0.084 0.042
ANN 0.182 0.257 0.186 0.140 0.134 0.089 0.099 0.325

Varying-horizon Predictions
SVR 0.246 0.289 0.199 0.049 0.073 0.052 0.032 0.018
ANN 0.218 0.455 0.292 0.252 0.147 0.092 0.103 0.377
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For chromium (VI) modeling, four experimental data-sets corresponding to 0, 0.91,

2.89 and 5.78 µM are used for model training and hyperparameter tuning, while the

remaining three are retained for cross-validation. The optimal values of hyperparameters

are determined as C = 2.7 and ν = 0.9 as presented in Table 3.2. Figure 3.4 shows

comparison of model fit based on one-step- and five-step-ahead predictions for chromium

(VI) toxicant. Given the first three CI measurements, long-term prediction results for

varying-horizons of k = 1 . . . 22 are plotted in Figure 3.5. Long-term predictions have

been greatly improved in comparison with the five-step-ahead predictions as well as the

simulation results presented in Huang and Xing (2006). From Table 3.4 it can be observed

that the magnitude of the prediction errors resulting from the SVR-based models are

markedly smaller than those of the ANNs.
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Figure 3.4: Model fit based on short-term predictions for chromium (VI) toxicant; solid
line is one-step-ahead prediction; marked line is five-step-ahead prediction; circle is actual
measurement of CI.
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Figure 3.5: Varying-horizon predictions for chromium (VI) toxicant given the first three CI
measurements; solid line is prediction; circle is actual measurement of CI.

Table 3.4: Comparison of mean absolute errors resulted from SVR-Based models and
ANNs for chromium (VI) toxicant

0 0.62 0.91 1.97 2.89 4.25 5.78
One-step-ahead Predictions

SVR 0.014 0.031 0.028 0.026 0.018 0.009 0.008
ANN 0.017 0.032 0.032 0.029 0.020 0.017 0.011

Five-step-ahead Predictions
SVR 0.037 0.064 0.079 0.080 0.042 0.032 0.012
ANN 0.068 0.069 0.083 0.085 0.067 0.048 0.043

Varying-horizon Predictions
SVR 0.077 0.056 0.092 0.144 0.043 0.040 0.024
ANN 0.082 0.143 0.289 0.240 0.191 0.062 0.621

For mercury (II) chloride modeling, four experimental data-sets corresponding to 0,

15.2, 32.8 and 71 µM are used for model training and hyperparameter tuning, while the
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remaining three are reserved for validation. The optimal values of hyperparameters C and

ν are presented in Table 3.2. Figure 3.6 shows comparison of model fit based on one-step-

and five-step-ahead predictions for mercury (II) chloride toxicant. Long-term prediction

results for varying-horizons of k = 1 . . . 22 based on first three CI measurements are

presented in Figure 3.7. The statistical results of the comparison are presented in Table

3.5. It is observed that the SVR-based models, on average, outperform the ANNs in terms

of accuracy particularly for longer prediction horizons.

Overall, the one-step-ahead predictions indicate a good fit to the CI data for the

developed SVR-based models. The predictive performance of the developed models

deteriorates with the increase of the prediction horizon, as expected. To demonstrate

the pattern of the prediction performance versus the prediction horizon, one-step-, three-
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Figure 3.6: Model fit based on short-term predictions for mercury (II) chloride toxicant;
solid line is one-step-ahead prediction; marked line is five-step-ahead prediction; circle is
actual measurement of CI.
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Figure 3.7: Varying-horizon predictions for mercury (II) chloride toxicant given the first
three CI measurements; solid line is prediction; circle is actual measurement of CI.

Table 3.5: Comparison of mean absolute errors resulted from SVR-Based models and
ANNs for mercury (II) chloride toxicant

0 10.43 15.2 22.35 32.8 48.3 71
One-step-ahead Predictions

SVR 0.024 0.038 0.017 0.019 0.013 0.007 0.003
ANN 0.017 0.019 0.014 0.020 0.007 0.033 0.006

Five-step-ahead Predictions
SVR 0.062 0.074 0.077 0.0600 0.043 0.009 0.003
ANN 0.033 0.094 0.076 0.067 0.028 0.148 0.004

Varying-horizon Predictions
SVR 0.035 0.120 0.128 0.057 0.032 0.021 0.0004
ANN 0.101 0.661 0.101 0.088 0.023 0.117 0.4121
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Table 3.6: Comparison of mean absolute errors based on different prediction horizons

As (III) Toxicant
0 1.25 4.06 6.21 9.20 13.58 20.01 29.64

k = 1 0.0241 0.0270 0.0264 0.0110 0.0237 0.0222 0.0208 0.0026
k = 3 0.0833 0.0906 0.0865 0.0385 0.0624 0.0447 0.0469 0.0209
k = 5 0.1660 0.1524 0.1291 0.0714 0.0961 0.0703 0.0842 0.0415

Chromium (VI) Toxicant
0 0.62 0.91 1.97 2.89 4.25 5.78

k = 1 0.0142 0.0309 0.0281 0.0263 0.0184 0.0095 0.0084
k = 3 0.0313 0.0444 0.0460 0.0475 0.0271 0.0277 0.0154
k = 5 0.0369 0.0635 0.0791 0.0800 0.0422 0.0321 0.0119

Mercury (II) Chloride Toxicant
0 10.43 15.2 22.35 32.8 48.3 71

k = 1 0.0239 0.0380 0.0174 0.0188 0.0127 0.0071 0.0031
k = 3 0.0426 0.0507 0.0473 0.0378 0.0302 0.0087 0.0028
k = 5 0.0621 0.0742 0.0770 0.0599 0.0432 0.0093 0.0034

step- and five-step-ahead prediction errors are summarized in Table 3.6 for comparison. A

deterioration in the predictive performance is clearly observed as the prediction horizon

becomes larger. It can be observed that the short-term predictions are more accurate

than the varying-horizon predictions. This is expected since the regressor for short-

term predictions are continuously updated as and when new CI measurements become

available. However, the long-term varying-horizon predictions are obtained based on only

the first three CI measurements. That being said, the prediction results indicate that the

local ν-SVR is feasible for making one-step-ahead as well as multi-step-ahead predictions.

With the prediction horizon k growing, prediction performance does not show remarkable

descending tendency on both training and validation data-sets.

3.6.2 Dynamic Cytotoxicity Analysis

The dynamic CI patterns of the NIH 3T3 cells in response to As (III), mercury (II) chloride,

and chromium (VI) are distinct. This would indicate that different cell-killing mechanisms
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were induced in response to these toxic compounds. The As(III)-treated cells show a

significant but transient increase in the CI values during the first 5 hr after the treatment,

followed by a gradual decrease in cell population due to cell apoptosis. It is also observed

that the As(III)-induced cell fusion is much less dose-dependent at the given dose range.

Unlike the As(III)-treated cells, the chromium-treated and mercury-treated ones do not

show a sharp initial increase in cell numbers. Yet, the initial toxic effects on the cells

are quite different between these two toxic compounds; chromium (VI) causes a relatively

slower cell-killing effect right after the toxicant exposure. The chromium-induced gradual

cell death has led to the slowly declining CI values after the toxicant treatment, which is in

fact dose-dependent. Due to the cell necrosis and quick apoptosis, however, the mercury-

induced cytotoxicity has resulted in a quick decrease in the CI values with a strict dose-

dependency.

It has been pointed out that apoptosis may undergo several complicated biochemical

and morphological processes, which have not been well understood (Huang and Xing,

2006). For instance, the initial cell fusion process observed in As (III) experiments (and

partially observed in chromium (VI) experiments) remains largely unexplained. Such

unknown mechanisms bring challenges to the modeling and prediction of cytotoxicity

responses through first-principle approaches. Therefore, it is desired to search for data-

driven techniques that can reasonably capture the effect of unknown mechanisms on

cytotoxicity responses. To this end, we have achieved significantly better models for the

apoptosis-induced cytotoxicity by applying the proposed local ν-SVR modeling technique.

Since the lack of accurate predictions in the initial phase can certainly propagate into long-

term predictions, the predictive performance over different prediction horizons has been

considered.

The prediction curves presented in Figures 3.3, 3.5 and 3.7 represent cell population

dynamics in the presence of different toxicants. Unlike the ANNs and the first-principle
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models, the SVR-based models are clearly capable of consistently predicting the dose-

dependent dynamic cytotoxicity patterns (growth or death) over a considerable time

horizon, indicating that the effect of underlying mechanisms have been captured to a certain

degree. Consequently, the SVR-based predictive models enable the prediction of transient

as well as ultimate cell behavior in the presence of a given toxic compound without the need

to wait for completion of the experiment. Since our ultimate objective is the application in

an early warning system, reasonably predicting the dose-dependent dynamic cytotoxicity

patterns (growth or death) over a considerable time horizon is a significant contribution in

this context.

3.6.3 Model Reproducibility

An essential assumption on the use of data-driven models is that the developed models

generate consistent and reproducible results under appropriate conditions. In many cases,

the lack of a reproducible result may act to limit the situations to which a model may

apply. Therefore, reproducibility of the SVR-based model shall be tested to further check

the validity of the proposed approach. The reliability and reproducibility of the SVR-

based model is evaluated by comparing the prediction results for two different runs of

chromium (VI) toxicant experiment conducted under identical conditions on January 20

and 27, 2010. Two data-sets consisting of experimental data corresponding to 0, 4.94, 7.40,

11.1, 16.66, 24.99 and 37.48 µM of chromium (VI) are considered. One data-set is used

to train the model, while the other one is reserved to assess the robustness of the developed

model. Figure 3.8 shows comparison of model fit based on one-step-ahead prediction for

chromium (VI) toxicant, while Figure 3.9 shows comparison of model fit based on five-

step-ahead prediction. Although the two experiments do not produce the identical results,

it is observed that the model developed based on first experimental data-set can predict the

dynamic behavior of CI in the second experiment. CI prediction results for t = 4 . . . 25

based on first three CI measurements are next compared in Figure 3.10. Even though the



Sec. 3.7 Conclusion 126

0 5 10 15 20 25
0.8

1

1.2

1.4

1.6

Time

CR Dose=0

0 5 10 15 20 25
0.4

0.6

0.8

1

1.2

1.4

Time

CR Dose=7.40

0 5 10 15 20 25
0

0.5

1

1.5

Time

CR Dose=16.66

0 5 10 15 20 25
0

0.5

1

1.5

Time

CR Dose=37.48

0 5 10 15 20 25
1

1.05

1.1

1.15

1.2

1.25

Time

CR Dose=4.94

0 5 10 15 20 25
0

0.5

1

1.5

Time

CR Dose=11.1

0 5 10 15 20 25
0

0.5

1

1.5

Time

CR Dose=24.99

 

 

Measured CI − 1st  Run

Predicted CI − 1st  Run

Measured CI − 2nd  Run

Predicted CI − 2nd  Run

Figure 3.8: Model fit based on one-step-ahead prediction for repeated chromium (VI)
toxicant experiment; solid line and dashed line correspond to CI prediction for 1st and
2nd run, respectively; circle and point are actual measurements of CI in 1st and 2nd run,
respectively.

model only includes the very first few measurements, a good agreement is achieved for

varying-horizon predictions.

3.7 Conclusion

In this study, we have considered dynamic modeling and prediction of cytotoxicity induced

by certain water contaminants. A real-time cell electronic sensing (RT-CES) system has

been used for conducting cytotoxicity experiments and obtaining CI measurements. Due

to the limited understanding of the biochemical and morphological processes involved,

the focus of this work was on development of data-driven predictive models. However, the

highly non-linear nature of underlying mechanisms would greatly deteriorate the prediction

performance of global data-driven models as prediction horizon increases. To address this

issue, we developed an inferential framework to capture the non-linearity in the local region

around a query point in a real-time manner. The ν-SVR model was selected to form the core
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Figure 3.9: Model fit based on five-step-ahead prediction for repeated chromium (VI)
toxicant experiment.

of the predictive framework. The ν-SVR algorithm has been chosen, because it is capable

to automatically adjusting the width of ε-insensitive tube. The prediction performance of

the developed models has been verified on the validation data. Moreover, optimal multi-

step-ahead predictions have been obtained and compared with the measured CI values. The

long-term dynamic prediction of cytotoxicity based on the first three CI measurements also

has been investigated. We examined the reproducibility of the identified SVR-based models

on the chromium (VI) experimental data. It has been concluded that the identified models

can reproduce the measured CI remarkably well. In summary, the local ν-SVR predictor

has some notable advantages in comparison with the ANN approach presented in Huang

and Xing (2006). The short-term prediction performance of the local ν-SVR models is

superior to that of the ANN. Finally, it has been observed that the SVR-based models are

more robust to the increase of the prediction horizon.
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Figure 3.10: Model fit based on first three CI measurements for repeated chromium (VI)
toxicant experiment.
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Chapter 4

A Bayesian Framework for Model
Structure Selection and
Hyperparameters Tuning in Locally
Weighted Partial Least Squares
Regression

4.1 Introduction

4.1.1 Practical Motivation

Process variables are often causally related and, consequently, process measurements are

strongly collinear. From the inferential modeling point of view, the collinear measurements

of dependent input variables provide little independent information. Partial least squares

(PLS) regression can effectively handle the collinear identification data, while classical

model identification techniques such as ordinary least squares (OLS) regression may

result in an ill-conditioned inferential model (Marjanovic et al., 2006; Mobaraki and

Hemmateenejad, 2011; Lin and Jørgensen, 2011). The PLS regression provides a robust

solution to the collinearity problem by projecting process variables into a lower number

of orthogonal latent variables (Lin et al., 2007). The inherent limitation of this method

is the linearity assumption. Therefore, the PLS models become ill-suited for non-linear

processes with non-Gaussian disturbances (Yu, 2012). Moreover, if process operations

133
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deviate from the previously identified operating envelope, the prediction performance of

the PLS models would deteriorate. Locally weighted partial least squares (LW-PLS) is

an adaptive modeling technique that has been widely adopted to cope with variations in

process characteristics and handle non-linearity of underlying mechanisms (Schaal et al.,

2002; Kim et al., 2011). The basic idea behind the LW-PLS is to identify a local PLS

model at a certain operating point by prioritizing the identification samples. Given a query

sample, the problem of real-time identification of LW-PLS models involves the following

main steps:

1. Selection of nearest neighbors: The search for the nearest neighbors is carried out

from the historical data-set using a pre-defined notion of similarity or locality. The

similarity function is often characterized by a set of hyperparameters that determine

the size and shape of region of validity of each local model, also known as receptive

field.

2. Selection of model structure: Having quantified the similarity between the query

and identification samples, one of the key steps in the identification procedure is

to find a suitable model structure that best approximates the local behavior of the

underlying process. In order to select a proper structure for the LW-PLS models,

it is required to find influential input variables and determine the optimal number

of latent variables. The choice of the influential input variables and the number of

retained latent variables affect the model complexity.

3. Estimation of model parameters: Once the structure of the local PLS model

is chosen, the LW-PLS algorithm can be used to calculate the loading and score

matrices.

It is desired to parameterize the similarity function, select model structure, and estimate

model parameters in a real-time manner for identification of LW-PLS models. Several
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optimization methods can be applied to obtain the optimal combination of the influential

input variables, number of retained latent variables, and hyperparameter values resulting

in the lowest root mean squared error of cross-validation (RMSECV) (Perez-Guaita et

al., 2013). Many of these methods are often not computationally feasible for real-

time implementation (Kim et al., 2013). It is common practice to find the globally

optimal structure of the local PLS models as well as estimates of the similarity function

hyperparameters in an off-line identification phase. In this way, the computational costs

imposed by real-time model structure selection and similarity function parametrization can

be avoided. However, variations in process characteristics and non-linearity of underlying

mechanisms may not only affect model parameters, but also functional forms and size

of receptive fields. Furthermore, evaluating the RMSECV would often lead to the over-

fitting phenomenon (Shao, 1993; Ljung, 1999). Kim et al. (2013) have pointed out

that in industrial applications the trade-off between the model complexity and prediction

performance is decided upon by taking into account the experiences and expertise of the

plant experts. Thus, there is need to develop a reliable systematic method for selection of

the optimal LW-PLS model structure and its region of validity.

4.1.2 Main Contributions

Motivated by the above considerations, this paper presents a novel and computationally

feasible Bayesian approach to address the aforementioned issues. It is assumed that

the operating space can be partitioned into a finite number of sub-spaces. For each

sub-space, the problem of finding the locally optimal LW-PLS model structure and

similarity function hyperparameters is formulated under an iterative hierarchical Bayesian

optimization framework (MacKay, 2002). The real-time identification problem thus

amounts to detecting the underlying operating sub-space and estimating the LW-PLS model

parameters. The proposed method has the following attractive features:
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1. The Bayesian model comparison allows us to perform objective comparisons

between alternative model structures. Therefore, the resulting optimization problem

in each sub-space can automatically deal with the model complexity control to avoid

over-fitting.

2. Objective criteria for local tuning of the hyperparameters of the similarity function

are provided.

3. Real-time model structure selection and similarity function parametrization would

become computationally efficient.

4.2 Problem Statement

Let D = {(xn, yn)}Nn=1 denote the identification data-set. The general form of a PLS model

is given by

X = TPT + Ex (4.1)

y = TqT + ey (4.2)

where X ∈ RN×K and y ∈ RN×1 are input and output matrices, respectively. T ∈ RN×L

and P ∈ RK×L are score and loading matrices, respectively. q ∈ R1×L is the vector of

regression coefficients. Ex ∈ RN×K and ey ∈ RN×1 are additive Gaussian noise terms

with time-varying variance.

Given a query sample xq, a similarity matrix is constructed to prioritize the identification

samples:

Sq(Φ) = diag(s1|q(Φ), · · · , sN |q(Φ)) (4.3)

where Φ = {ϕ1, · · · , ϕD} are the hyperparameters of the similarity function and sn|q is the

similarity between xq and xn.

Once a similarity matrix is specified, the task is to identify a LW-PLS model. It can be
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shown that

ŷq = xqW(PTW)−1qT

= xqΘq (4.4)

where the columns of W ∈ RK×L are orthonormal weight vectors.

The lth column of W, P, and q can be estimated from the following expressions (Kim et

al., 2011):

wl =

(
X −

∑l−1
j=1 tjpT

j

)T
Sq

(
y −

∑l−1
j=1 tjqj

)
∥∥∥(X −

∑l−1
j=1 tjpT

j

)T
Sq

(
y −

∑l−1
j=1 tjqj

)∥∥∥
2

(4.5)

pl =

(
X −

∑l−1
j=1 tjpT

j

)T
Sqtl

tTl Sqtl
(4.6)

ql =

(
y −

∑l−1
j=1 tjqj

)T
Sqtl

tTl Sqtl
(4.7)

where tl denotes the lth column of T (i.e. the lth latent vector) and is calculated as

tl =
(

X −
l−1∑
j=1

tjpT
j

)
wl (4.8)

In general, the identification problem is to tune the hyperparameters of the similarity

function, Φ, select the structure of the LW-PLS model, H, and estimate the underlying

parameters, Θ. There are several algorithms for efficiently estimating the parameters of the

local PLS models (Wold, 1966; Chen et al., 2007; Chun and Keleş, 2010; Kim et al., 2011;

Perez-Guaita et al., 2013). However, model structure selection and similarity function

parametrization are computationally expensive for real-time implementation. Commonly,

the structure of the local PLS models as well as the hyperparameters of the similarity

function are globally optimized in an off-line identification phase. Algorithm 4.1 presents

a widespread optimization technique in which the RMSE of the leave-one-out cross-

validation (LOOCV) is regarded as the cost function (Wold et al., 1984; Atkeson et al.,

1997; Kim et al., 2013).
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Algorithm 4.1. Classical Cross-validation Procedure for Model Structure Selection and

Similarity Function Parametrization

1. Choose an appropriate similarity function.

2. Determine a search space for the hyperparameters of the similarity function. Often,

continuous hyperparameters are discretized to construct a finite set of reasonable

values for each hyperparameter. Therefore, the search is performed over Φ ∈

{Φ1, · · · ,ΦF} with Φf = {ϕf,1, · · · , ϕf,D}.

3. Specify a set of plausible model structures H ∈ {H1, · · · ,HL}.

4. For each set of (Φf ,Hl), repeat the following steps:

4.1. Let D−q denote the identification data-set consisting of all the training samples

except (xq, yq), i.e. D−q , D\{(xq, yq)}. In this way, Θq parameterizes the LW-

PLS model identified from D−q. Complete the following steps for each training

sample (xq, yq) ∈ D: (1) Construct the similarity matrix Sq(Φf ) (Equation 4.3).

(2) Identify a LW-PLS model with Hl structure from D−q (Equations 4.5-4.8).

(3) Use the identified LW-PLS model to calculate Θq and obtain a prediction of

yq denoted as ŷcvq (Equation 4.4).

4.2. Calculate the corresponding RMSECV as follows:

RMSECVf,l =

√∑N
q=1(yq − ŷcvq )2

N
(4.9)

5. Select the model structure and hyperparameters that minimize the RMSECV as the

globally optimal setting.

Since evaluating the RMSECV is prone to over-fitting, the globally optimal setting obtained

from Algorithm 4.1 is not always reliable in industrial applications. In such cases,

the experience of the engineers needs to be taken into account to compromise between
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the robustness and prediction performance. This task is performed in a rather ad hoc

manner. Therefore, a reliable systematic method for LW-PLS model structure selection

and similarity function parametrization is yet to be developed.

4.3 Hierarchical Bayesian Optimization Framework

A Bayesian learning approach converts the problem of interest into an equivalent problem

of evaluating the joint posterior probability density function (PDF) of the model structure

and similarity function hyperparameters, P
(
Φ,H|D, {Θq}Nq=1

)
. Evaluating the joint

posterior PDF provides a systematic method for selecting the structure of the LW-PLS

model as well as an objective criterion for parameterizing the similarity function. Such

Bayesian approach can automatically deal with the model complexity control issue to avoid

over-fitting (Guyon et al., 2010). To circumvent the difficulties associated with direct

maximization of P
(
Φ,H|D, {Θq}Nq=1

)
, the problem is formulated and solved under an

iterative hierarchical Bayesian optimization framework (MacKay, 1992, 2002). First, the

chain rule of probability theory is used to factorize the joint posterior PDF as

P
(
Φ,H|D, {Θq}Nq=1

)
∝ P

(
Φ|H,D, {Θq}Nq=1

)
P
(
H|D, {Θq}Nq=1

)
(4.10)

Then, the optimization problem is decomposed hierarchically into two layers:

max
Φ,H

P
(
Φ|H,D, {Θq}Nq=1

)
P
(
H|D, {Θq}Nq=1

)
= max

H

{
P
(
H|D, {Θq}Nq=1

)
max
Φ

{
P
(
Φ|H,D, {Θq}Nq=1

)}}
(4.11)

4.3.1 Inference of Hyperparameters of the Similarity Function

Applying Bayes’ rule, the posterior PDF of hyperparameters can be expressed as

P
(
Φ|H,D, {Θq}Nq=1

)
∝ P

(
D|Φ,H, {Θq}Nq=1

)
P
(
Φ|H, {Θq}Nq=1

)
(4.12)
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Table 4.1: Some properties of gamma distribution

Property Explicit Form
Parameter Restriction bd > 0 and β > 0

Mode (bd − 1)/β

Mean bd/β

Variance bd/β
2

Skewness 2/
√
bd

As priors, it is reasonable to assume that the structure/parameters of the LW-PLS model

and hyperparameters of the similarity function are statistically independent:

P
(
Φ|H, {Θq}Nq=1

)
= P (Φ) (4.13)

In the absence of explicit background information, non-informative priors are often

specified in the form of uniform distributions. To incorporate the available prior knowledge,

conjugate priors are commonly assigned for which the resulting posterior distributions can

be conveniently evaluated. Since the gamma distribution is the conjugate prior to many

likelihood functions, the prior distribution over Φ can be represented by

P (ϕd) =
βbd
d

Γ(bd)
ϕbd−1
d exp

(
− βdϕd

)
∝ ϕbd−1

d exp
(
− βdϕd

)
(4.14)

where bd is the shape parameter and βd is the rate parameter for the dth hyperparameter, ϕd.

Hence,

P (Φ) ∝
D∏

d=1

ϕbd−1
d exp

(
− βdϕd

)
(4.15)

Table 4.1 gives a summary of the properties of gamma distribution.

In the case of conditionally independent observations, the LOOCV predictive likelihood

in Equation 4.12, also known as the pseudo-likelihood, can be expressed as (Sundararajan
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and Keerthi, 2001)

P
(
D|Φ,H, {Θq}Nq=1

)
∝

N∏
q=1

P
(
yq|xq,H,Φ,Θq

)
=

N∏
q=1

1√
2πσ2

q

exp

(
−

(yq − ŷcvq )2

2σ2
q

)

= exp

(
−

N∑
q=1

(yq − ŷcvq )2

2σ2
q

)
N∏
q=1

1√
2πσ2

q

(4.16)

where the mean and variance of the predictive distribution for yq are obtained as follows:

ŷcvq = xqΘq (4.17)

σ2
q (Φ) =

N∑
n=1, n ̸=q

sn|q(Φ)
(
yn − xnΘq

)2
N∑

n=1, n ̸=q

sn|q(Φ)

(4.18)

Substituting Equations 4.15 and 4.16 into Equation 4.12, the posterior PDF over

hyperparameters of the similarity function is given by

P
(
Φ|H,D, {Θq}Nq=1

)
∝ P

(
D|Φ,H, {Θq}Nq=1

)
P
(
Φ|H, {Θq}Nq=1

)
∝ exp

(
−

N∑
q=1

(yq − ŷcvq )2

2σ2
q

−
D∑

d=1

βdϕd

) N∏
q=1

σ−1
q

D∏
d=1

ϕbd−1
d (4.19)

The MAP estimates of Φ can be obtained by solving the following optimization problem:

ΦMP = argmin
Φ

D∑
d=1

[
(1− bd) log ϕd + βdϕd

]
+

N∑
q=1

[(yq − ŷcvq )2

2σ2
q

+ log σq

]
(4.20)

The above optimization problem can be solved using either discrete or continuous search

methods such as gradient descent and grid search approaches (Atkeson et al., 1997; Kolda

et al., 2003; Sra et al., 2011).
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4.3.2 Inference of Model Structure

Applying Bayes’ rule, the posterior PDF of the LW-PLS model structure can be expressed

as

P
(
H|D, {Θq}Nq=1

)
∝ P

(
D|H, {Θq}Nq=1

)
P
(
H|{Θq}Nq=1

)
(4.21)

Suppose that a set of candidate model structures are given, i.e. H ∈ {H1, · · · ,HL}. The

random variable H is a categorical variable and can be modeled by

P (H) =
L∏
l=1

P (H = Hl)
[H=Hl] (4.22)

where [H = Hl] evaluates to 1 if H = Hl and evaluates to 0 otherwise. The above

prior distribution reflects the prior knowledge of plausibility of the alternative models. In

the absence of any prior information, a uniform distribution, i.e. P (H = H1) = · · · =

P (H = HL), will suffice (Chipman et al., 2001). Even with uniform prior distribution over

plausible model structures, the posterior distribution in Equation 4.21 naturally penalizes

model complexity.

The Bayesian inference of model structure requires evaluating the model evidence,

P
(
D|H, {Θq}Nq=1

)
. This likelihood function, also known as the pseudo-marginal

likelihood, can be obtained by integrating over the hyperparameters of the similarity

function:

P
(
D|H, {Θq}Nq=1

)
=

∫
P
(
D|Φ,H, {Θq}Nq=1

)
P
(
Φ|H, {Θq}Nq=1

)
dΦ (4.23)

There are a variety of methods available to analytically evaluate or approximate the above

integral (MacKay, 2002; Penny et al., 2006). For instance, the model evidence can be

approximated using Laplace’s method, under certain assumptions (Kass and Raftery, 1995;

MacKay, 1999):

P
(
D|H, {Θq}Nq=1

)
≈ P

(
D|ΦMP,H, {Θq}Nq=1

)
P
(
ΦMP|H, {Θq}Nq=1

)
det(A/2π)−

1
2 (4.24)
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Table 4.2: Interpretation of Bayes factors

Bayes Factor P (H = Hl|D) Evidence Supporting Model Hl

1− 3 50− 75% Weak
3− 20 75− 95% Positive
20− 150 95− 99% Strong
≥ 150 ≥ 99% Very Strong

where A = −∇∇ logP
(
Φ|H,D, {Θq}Nq=1

)
. In the Laplace’s method of approximation it

is assumed that P
(
Φ|H,D, {Θq}Nq=1

)
is highly peaked around ΦMP.

Substituting Equations 4.22 and 4.24 into Equation 4.21, the alternative models can be

ranked by evaluating the following posterior probability:

P
(
H = Hl|D, {Θq}Nq=1

)
∝

[
exp

(
−

N∑
q=1

(yq − ŷcvq )2

2σ2
q

−
D∑

d=1

βdϕd

) N∏
q=1

σ−1
q

D∏
d=1

ϕbd−1
d

]
Φ=ΦMP

× det(A/2π)−
1
2P (H = Hl) (4.25)

The most probable model structure can be selected as the one with the largest posterior

probability calculated from Equation 4.25:

HMP = argmax
H

P
(
H|D, {Θq}Nq=1

)
(4.26)

Moreover, pairwise comparison of models Hl and Hj can be summarized by the posterior

odds:

P (Hl|D, {Θq}Nq=1)

P (Hj|D, {Θq}Nq=1)︸ ︷︷ ︸
Posterior odds

=
P (D|Hl, {Θq}Nq=1)

P (D|Hj, {Θq}Nq=1)︸ ︷︷ ︸
pseudo-Bayes factor

P (Hl)

P (Hj)︸ ︷︷ ︸
Prior odds

(4.27)

The ratio of the pseudo-marginal likelihoods is a surrogate for the Bayes factor and

is thus known as the pseudo-Bayes factor (PsBF) (Geisser and Eddy, 1979; Gelfand and

Dey, 1994). The pseudo-Bayes factor is a summary of the information provided by the

data about the plausibility of the alternative model structures (Kass and Raftery, 1995).
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As shown in Table 4.2, Bayes factors have been classified into different ranges in order to

evaluate the strengths of evidence assuming uniform priors over model structures (Penny

et al., 2006). It should be highlighted that Bayesian model selection naturally penalizes

model complexity, thus preventing the over-fitting phenomenon (MacKay, 2002).

To summarize our discussion, the implementation procedure of the proposed hierarchical

Bayesian approach is outlined in Algorithm 4.2.

Algorithm 4.2. Hierarchical Bayesian Procedure for Model Structure Selection and

Similarity Function Parametrization

1. Choose an appropriate similarity function.

2. Characterize the prior distribution of hyperparameters, P (Φ), based on the explicit

prior knowledge. The available prior information over hyperparameters can be

represented by gamma distributions (Equations 4.14 and 4.15). If there is no explicit

information available for the hyperparameters, a uniform distribution can then be

used to describe appropriate non-informative priors.

3. Specify an ordered set of plausible model structures H ∈ {H1, · · · ,HL}.

4. Characterize the prior distribution over model structures, P (H). The prior

knowledge of plausibility of alternative model structures can be generally well-

represented by categorical distributions (Equation 4.22). In the absence of any prior

information, a uniform prior distribution can be assumed.

5. Specify a suitable threshold for comparing the plausible model structures in terms of

posterior odds which are the ratio of posterior probabilities. Table 4.2 can guide the

choice of an appropriate threshold in the case of uniform priors.

6. Select the model Hl. Choose a set of initial values for hyperparameters of the

similarity function, Φ
[0]
l . Repeat the following steps iteratively until no further

improvements are gained:
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6.1. Complete the following steps for each training sample (xq, yq) ∈ D: (1)

Construct the similarity matrix Sq(Φ
[k]
l ) (Equation 4.3). (2) Identify a LW-

PLS model with Hl structure from D−q (Equations 4.5-4.8). (3) Use

the identified LW-PLS model to calculate Θ
{k}
q and obtain predictions of

{y1, · · · , yq, · · · , yN} denoted as {ŷ1|q, · · · , ŷcvq , · · · , ŷN |q} (Equation 4.4).

6.2. Maximize P
(
Φl|Hl,D, {Θ[k]

q }Nq=1

)
, or equivalently, minimize its negative

logarithm to update the MAP estimates of hyperparameters, Φ[k+1]
l (Equations

4.19 and 4.20).

7. Repeat Step 6.2 given ΦMP
l to obtain {ΘMP

q }Nq=1.

8. Calculate the model evidence P
(
D|Hl, {ΘMP

q }Nq=1

)
(Equation 4.24).

9. Calculate the posterior probability of Hl, P
(
H = Hl|D, {ΘMP

q }Nq=1

)
(Equation 4.25).

If the posterior odds in pairwise comparison of Hl−1 and Hl is greater than a pre-

specified threshold, go to step 6 to evaluate the plausibility of Hl+1. Otherwise,

select Hl−1 and ΦMP
l−1 as the globally optimal setting.

4.4 Adaptive Locally Weighted Partial Least Squares

There are several reasons to consider real-time model structure selection and similarity

function parametrization. These include: (1) sparsity and heteroscedasticity of training

samples; and (2) variations in process characteristics and non-linearity from of the

underlying mechanisms. However, solving such optimization problem in a real-time

manner might be computationally expensive. To obtain a computationally feasible solution,

we propose an adaptive scheme in which the optimal hyperparameters and model structures

are found for different regions of the operating space in the off-line identification phase.

Thus, the real-time identification problem amounts to detecting the underlying operating

region and estimating the corresponding model parameters.
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Suppose that the operating space can be partitioned into a finite number of sub-spaces,

i.e. M operating modes. An input-output representation of an adaptive, also called multi-

model, LW-PLS is given by{
ŷ
(m)
q = H(m)(xq,Θ

(m)
q ,Φ(m)) m = 1, · · · ,M

ŷq =
∑M

m=1 ψ
(m)
q ŷ

(m)
q

(4.28)

where a proper interpolation function is defined to assign an importance weight, ψ(m)
q , to

the output of each sub-model, ŷ(m)
q .

The problem of identification of the multi-model LW-PLS is divided into two phases:

1. Off-line identification: First, the operating space is partitioned into M sub-

spaces. Next, training samples are attributed to relevant regions based on

descriptive classification criteria; the identification data-set is divided into multiple

exclusive sub-sets. Let D(m) = {(xq, yq)}Nm
q=1 denote the set of Nm identification

samples that belong to the mth operating sub-space. Finally, the joint posterior

PDF of the LW-PLS model structure and similarity function hyperparameters,

P
(
Φ,H|D(m), {Θq}Nm

q=1

)
, is optimized for m ∈ {1, · · · ,M}. Thus, the optimization

problem for the mth operating region becomes

{Φ̂(m), Ĥ(m)} = argmax
Φ,H

P
(
Φ,H|D(m), {Θq}Nm

q=1

)
(4.29)

where Φ̂(m) and Ĥ(m) are the maximum a posteriori (MAP) estimates of Φ and H

for the mth operating region.

2. Real-time identification Given a query sample, the parameters of the mth LW-PLS

sub-model are estimated based on Φ̂(m) and Ĥ(m). The identified sub-models are used

to obtain ŷ(m)
q for m ∈ {1, · · · ,M}. Appropriate importance weights are assigned to

ŷ
(m)
q for m ∈ {1, · · · ,M} in order to obtain a global prediction, ŷq.
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4.4.1 Partitioning of the Operating Space

A discrete-state dynamics can be associated with the system under investigation in order

to partition the operating space into a finite number of sub-spaces. The discrete-state

dynamics may come from switching controllers, inherent non-linearities in the system, or

different production policies. In the absence of relevant process information, the operating

space can be partitioned by evaluating the residuals obtained from a global model. In

such cases, the task is to partition the operating space such that the identified sub-models

would be well-supported by the corresponding identification data sub-sets. It is noteworthy

that the choice of the number of sub-spaces is a trade-off between representativeness and

complexity of the adaptive LW-PLS framework.

Having partitioned the operating space, it is required to select a representative scheduling

variable reflecting changes in the operating region. As shown in Equation 4.28, the

interpolation function assigns a proper importance weight to the output of each sub-model

in the multi-model LW-PLS scheme. The importance weight assigned to ŷ
(m)
q can be

obtained by evaluating the posterior probability of themth sub-model capturing the process

behavior (Khatibisepehr and Huang, 2012):

P (m|νq,D) ∝ P (νq|m,D)P (m) (4.30)

where νq is a set of scheduling variables parameterizing the interpolation function.

P (νq|m,D) is the likelihood that νq belongs to the mth operating region. Marginal

and joint PDFs of the scheduling variables, influential input variables, and retained latent

variables could be investigated in order to specify such likelihood from identification

data. P (m) is the prior probability that the system operates in the mth operating region.

Background information about the process operation can be used to specify the prior PDFs.

It is noteworthy that the choice of suitable scheduling variables is problem specific. All or

a sub-set of the latent variables may be investigated as potential scheduling variables.

Depending on the application, the importance weights can be calculated using one of the
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following weight functions:

ψ(m)
q =

{
1 m = argmaxP (m|νq,D)

0 Otherwise
(4.31)

or

ψ(m)
q =

P (νq|m,D)P (m)∑M
m=1 P (νq|m,D)P (m)

for m = 1, · · · ,M (4.32)

If the importance weights are assigned according to Equation 4.31, the global prediction is

simply equal to the output of the LW-PLS sub-model with the highest posterior probability.

The steps required to characterize an adaptive LW-PLS framework are summarized in

Algorithm 4.3.

Algorithm 4.3. Bayesian Procedure for Characterization of an Adaptive LW-PLS

Framework

1. Partition the operating space into M sub-spaces by taking into account the prior

knowledge of the nominal operating conditions or evaluating the performance of the

global model.

2. Classify training samples to relevant operating regions in order to construct D(m) =

{(xq, yq)}Nm
q=1 for m = 1, · · · ,M .

3. Select a representative scheduling variable, ν, that effectively reflects the operating

region at each time instant.

4. Determine the likelihood that ν would be generated by the mth operating mode,

P (ν|m,D). Marginal and joint PDFs of the scheduling variables should be

investigated in order to specify such conditional PDFs from historical data.

5. Assign the prior probability of the system operating in the mth mode, P (m).

Information about the typical process operation can be used to specify the prior

PDFs. P (m) can also be viewed as the prior probability that the mth sub-model
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captures the process behavior. If such background information is not available or

relevant, a uniform prior distribution can be assumed over the operating space.

6. Implement the hierarchical Bayesian procedure outlined in Algorithm 4.1 to obtain

the locally optimal model structure and similarity function hyperparameters for

each operating space. This is equivalent to optimizing P
(
Φ,H|D(m), {Θq}Nm

q=1

)
for

m ∈ {1, · · · ,M}.

Finally, the real-time implementation procedure of the proposed adaptive LW-PLS scheme

is outlined in Algorithm 4.4.

Algorithm 4.4. Real-time Implementation Procedure of an Adaptive LW-PLS Scheme

1. Given a query sample (xq, νq), evaluate the posterior probability of the mth operating

region to assign an importance weight to the output of the mth sub-model, ŷ(m)
q

(Equations 4.29-4.32).

2. Estimate the parameters of the mth LW-PLS sub-model based on Φ̂(m) and Ĥ(m)

(Equations 4.5-4.8). If the importance weights are assigned according to Equation

4.31, it is only required to identify the sub-model with the highest posterior

probability, i.e. m = argmaxP (m|νq,D). If the importance weights are assigned

according to Equation 4.32, all the M sub-models should be identified.

3. Calculate the output of the mth sub-model, ŷ(m)
q , in order to obtain a global

prediction, ŷq (Equation 4.28).

4.4.2 A Special Case

To demonstrate the steps required in development of an adaptive LW-PLS framework, a

special case is considered in this section.
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4.4.2.1 Globally Optimal Model Structure and Similarity Function
Hyperparameters

1. The following similarity measure is adopted in this work (Kim et al., 2011):

sn|q = exp

(
−
ϕdn|q
σd|q

)
(4.33)

where dn|q is the Euclidean distance between xq and xn, σd|q is the standard deviation

of {dn|q}Nn=1, and ϕ is a localization parameter. In this way, all the identification

samples are weighted depending on their distance to the query sample. The similarity

between the query and identification samples decreases steeply when ϕ is relatively

large.

2. The prior distribution over the localization parameter is specified as follows to assure

generality:

P (ϕ|m) ∝ ϕb−1 exp
(
− βϕ

)
(4.34)

3. To specify a set of plausible model structures, H ∈ {H1, · · · ,HL}, Hl is considered

to be a PLS model with l latent variables. Therefore, L is the maximum number of

retained latent variables.

4. A uniform prior distribution is assumed over model structures:

P (H = Hl) =
1

L
for l = 1, · · · , L (4.35)

5. The threshold for comparing the plausible model structures in terms of posterior odds

is set to a certain pre-specified value (e.g. 20).

6. The model with l latent variables, Hl, is selected. For this model, the following steps

are repeated iteratively until no further improvements are gained:
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6.1. The initial value of the localization parameter, ϕ[0]
l , is set to a certain number

(e.g. 10). Note that the similarity between xq and all the identification sample

is equal to 1 for ϕ = 0. Consequently, the LW-PLS model becomes identical to

the PLS model.

6.2. The following steps are completed for each training sample (xq, yq) ∈ D:

(1) The similarity matrix, Sq

(
ϕ
[k]
l

)
, is constructed (Equation 4.3). (2) A LW-

PLS model with l retained latent variables is identified from D−q (Equations

4.5-4.8). This is equivalent to calculating Θ
[k]
q . (3) The identified LW-

PLS model is used to obtain predictions of {y1, · · · , yq, · · · , yN} denoted as

{ŷ1|q, · · · , ŷcvq , · · · , ŷN |q} (Equation 4.4).

6.3. The following cost function is minimized to update the MAP estimates of

hyperparameters, ϕ[k+1]
l (Equation 4.19):

J (ϕ) = (1− b) log ϕ+ βϕ+
1

2

N∑
q=1

[(yq − ŷcvq )2

σ2
q

+ log σ2
q

]
(4.36)

where

σ2
q =

N∑
n=1, n ̸=q

exp

(
−
ϕdn|q
σd

)(
yn − xnΘ

[k]
n

)2
N∑

n=1, n ̸=q

exp

(
−
ϕdn|q
σd

) (4.37)

7. Given ϕMP
l , Step 6.2 is repeated to obtain {ΘMP

q }Nq=1.

8. The Hessian of the cost function J (ϕ) is evaluated at ϕMP
l :

A =
(b− 1)

ϕ2

+
N∑
q=1

[
3σ−4

q (yq − ŷcvq )2 − σ−2
q

](∂σq
∂ϕ

)2
−
[
σ−3
q (yq − ŷcvq )2 − σ−1

q

]∂2σq
∂ϕ2

(4.38)
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where

∂σq
∂ϕ

=
σq
2

N∑
n=1, n ̸=q

−
dn|q
σd

exp

(
−
ϕdn|q
σd

)(
yn − xnΘ

MP
n

)2
N∑

n=1, n ̸=q

exp

(
−
ϕdn|q
σd

)(
yn − xnΘ

MP
n

)2

− σq
2

N∑
n=1, n ̸=q

−
dn|q
σd

exp

(
−
ϕdn|q
σd

)
N∑

n=1, n ̸=q

exp

(
−
ϕdn|q
σd

) (4.39)

∂2σq
∂ϕ2

=
σq
2

N∑
n=1, n ̸=q

(
dn|q
σd

)2

exp

(
−
ϕdn|q
σd

)(
yn − xnΘ

MP
n

)2
N∑

n=1, n ̸=q

exp

(
−
ϕdn|q
σd

)(
yn − xnΘ

MP
n

)2

− σq
2

N∑
n=1, n ̸=q

(
dn|q
σd

)2

exp

(
−
ϕdn|q
σd

)
N∑

n=1, n̸=q

exp

(
−
ϕdn|q
σd

)

− 2
∂σq
∂ϕ

N∑
n=1, n ̸=q

dn|q
σd

exp

(
−
ϕdn|q
σd

)
N∑

n=1, n ̸=q

exp

(
−
ϕdn|q
σd

) − σ−1
q

(∂σq
∂ϕ

)2
(4.40)

Having calculated A, the model evidence P (D|Hl, {ΘMP
q }Nq=1) is calculated

(Equation 4.24)

9. The posterior probability of Hl is evaluated (Equation 4.25). Since the objective

of model structure selection in this case is to find the optimal number of retained

latent variables, {H1, · · · ,HL} would be an ordered set of plausible models. If

the posterior odds in pairwise comparison of Hl−1 and Hl is greater than the pre-

specified threshold, one returns to Step 6 to evaluate the plausibility of the model
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l + 1 latent variables. Otherwise, l − 1 and ϕMP
l−1 are selected as the globally optimal

number of retained latent variables and localization parameter, respectively.

4.4.2.2 Partitioning and Characterizing the Operating Space

1. The operating space is partitioned into M sub-spaces by evaluating the performance

of the global model. Suppose that {HMP
l , ϕMP

l } is the globally optimal setting

obtained from Section 4.4.2.1.

1.1. The following steps are completed for each training sample (xq, yq) ∈ D: (1)

The similarity matrix, Sq

(
ϕMP
l

)
, is constructed (Equation 4.3). (2) A LW-PLS

model with l retained latent variables is identified from D−q (Equations 4.5-

4.8). This is equivalent to calculating ΘMP
q . (3) The identified LW-PLS model

is used to obtain predictions of yq denoted as ŷcvq (Equation 4.4).

1.2. The prediction errors are calculated, i.e. eq = yq − ŷcvq .

1.3. The probability density of the absolute prediction errors can be used to decide

on the number of sub-spaces. For instance, the operating space can be

partitioned into two sub-spaces based on the PDF shown in Figure 4.1.

2. The training samples are classified into relevant operating regions in order to

construct D(m) = {(xq, yq)}Nm
q=1 for m = 1, · · · ,M .

3. All or a sub-set of the latent variables of the global model are selected as the

scheduling variables, ν. This can be viewed as partitioning of the latent operating

space.

4. The joint PDF of the latent variables in the mth operating mode, P (ν|D(m)), is

approximated from the identification data. This is equivalent to specifying the

likelihood that ν would be generated by the mth operating mode.
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Figure 4.1: Probability density of the absolute prediction errors resulting from the LW-PLS
model with the globally optimal setting

5. A uniform prior distribution is assumed over the operating space:

P (mode = m) =
1

M
for m = 1, · · · ,M (4.41)

4.4.2.3 Locally Optimal Model Structure and Similarity Function Hyperparameters

The hierarchical Bayesian procedure outlined in Section 4.4.2.1 is followed to obtain the

locally optimal model structure and similarity function hyperparameters for each operating

space. This is equivalent to optimizing P
(
Φ,H|D(m), {Θq}Nm

q=1

)
for m ∈ {1, · · · ,M}.

4.5 Case Studies

4.5.1 Active Substance in Pharmaceutical Tablets

To illustrate the advantages of the proposed hierarchical Bayesian optimization framework,

we consider the problem of chemometric quantization of the active substance of a

pharmaceutical tablet using near-infrared (NIR) transmittance spectra. The objective is to

develop a LW-PLS model for predicting the active substance content, i.e. weight percent,

of a pharmaceutical tablet from NIR transmittance spectra (404 points in the range of
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Table 4.3: Tablet specifications (Dyrby et al., 2002)

Nominal content of active Nominal tablet Nominal weight
substance per tablet (mg) weight (mg) percent (%)

5.0 90 5.6
10.0 125 8.0
15.0 188 8.0
20.0 250 8.0

4.3-5.7 90 4.8-6.3
8.3-11.4 125 6.9-9.1

12.9-17.1 188 6.9-9.1
17.3-22.8 250 6.9-9.1

7, 400 − 10, 500 cm−1). The real-world data-set used in this case study is taken from

Dyrby et al. (2002).

As shown in Table 4.3, the data was collected for different dosage values of this

pharmaceutical drug, ranging from 4.3 to 22.8 mg tablets. Two different cases are

considered for constructing the calibration and test data-sets:

• Case I. Calibration samples covering range 85 − 115% of the nominal content are

available for all dosages (Figure 4.2.a). The NIR spectra are subject to the standard

normal variate transformation (Barnes et al., 1989) in the pre-processing step.

• Case II. Calibration samples covering range 85 − 115% of the nominal content are

available only for some dosages (Figure 4.2.b). In the pre-processing step, the NIR

spectra are subject to the standard normal variate transformation as well as the first-

order differentiation using Savitzky-Golay filter (Savitzky and Golay, 1964).

The procedure outlined in Section 4.4.2.1 is followed to find the globally optimal number

of the retained latent variables as well as estimate of the localization parameter of the

similarity function defined in Equation 4.33. A uniform prior distribution is assumed over

the number of retained latent variables. If the pseudo-Bayes factor in pairwise comparison
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Figure 4.2: Calibration and test samples of the content (weight percent) of the active
substance

of Hl−1 and Hl is less than 20 (Table 4.2), Hl−1 with l − 1 latent variable is selected as

the best model structure. Moreover, a constrained uniform prior distribution, within the

ranges reported in Table 4.4, is assumed over the localization parameter. The results are

compared by the ones obtained from the classical global cross-validation method. That

is, the optimal combination of the number of retained latent variables and the value of
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localization parameter is found by implementing Algorithm 4.1.

The comparison results are presented in Table 4.4 and Table 4.5 for Case I and Case II,

respectively. It can be observed that the optimal global values obtained from the classical

cross-validation approach are sensitive to the specified search range. For instance, if the

maximum number of latent variables changes from 5 to 8, the number of the latent variables

resulting in the lowest RMSECV increases from 5 to 8 for Case I and from 3 to 7 for Case

II. Furthermore, as the search range increases, the RMSE of prediction decreases for the

training data-set but increases for the test data-set. It can be concluded that evaluating the

RMSECV resulted by LOOCV technique has led to the over-fitting phenomenon. The

proposed hierarchical Bayesian optimization framework, in contrast, can deal with the

model complexity control to avoid over-fitting.

Table 4.4: Comparing the prediction performance of the LW-PLS models characterized
by the hierarchical Bayesian optimization and classical cross-validation methods using
calibration data-set I

Hierarchical Classical
Bayesian LOOCV

Maximum number of LVs = 5; Range of localization parameter = [0.5,10]
Selected number of retained LVs 4 5
Selected value of localization parameter 0.91 1
RMSE of prediction for training data 0.3278 0.3093
RMSE of prediction for test data 0.4010 0.4096

Maximum number of LVs = 8; Range of localization parameter = [0.5,10]
Selected number of retained LVs 4 8
Selected value of localization parameter 0.91 0.5
RMSE of prediction for training data 0.3278 0.2707
RMSE of prediction for test data 0.4010 0.5345

Maximum number of LVs = 8; Range of localization parameter = [0.1,10]
Selected number of retained LVs 4 8
Selected value of localization parameter 0.94 0.18
RMSE of prediction for training data 0.3278 0.2653
RMSE of prediction for test data 0.4010 0.5353
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Table 4.5: Comparing the prediction performance of the LW-PLS models characterized
by the hierarchical Bayesian optimization and classical cross-validation methods using
calibration data-set II

Hierarchical Classical
Bayesian LOOCV

Maximum number of LVs = 5; Range of localization parameter = [0.5,10]
Selected number of retained LVs 1 3
Selected value of localization parameter 3.7 5
RMSE of prediction for training data 0.2341 0.2290
RMSE of prediction for test data 0.3873 0.3748

Maximum number of LVs = 8; Range of localization parameter = [0.5,10]
Selected number of retained LVs 1 7
Selected value of localization parameter 3.7 3.3
RMSE of prediction for training data 0.2341 0.2243
RMSE of prediction for test data 0.3873 0.4828

Maximum number of LVs = 8; Range of localization parameter = [0.1,10]
Selected number of retained LVs 1 7
Selected value of localization parameter 3.7 3.3
RMSE of prediction for training data 0.2341 0.2243
RMSE of prediction for test data 0.3873 0.4828

To further improve the results, the procedure outlined in Section 4.4.2.2 is followed

to partition the operating space into two sub-spaces by evaluating the residuals of the

globally identified LW-PLS model. For each sub-space, the optimal number of the retained

latent variables as well as the optimal value of the localization parameter are obtained by

implementing the Bayesian hierarchical optimization scheme. The maximum number of

the latent variables is set to 5. A constrained uniform prior distribution in the range of

[0.5, 2] is assumed over the localization parameter. The results are reported in Table 4.6.

The smaller values of the RMSE indicate that the LW-PLS with multiple sets of the locally

optimal number of the latent variables and the localization parameter estimate has a better

prediction performance than the classical LW-PLS with a single globally optimal set.
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Table 4.6: Prediction performance of the multi-model LW-PLS

Sub-model 1 Sub-model 2 Multi-model
Case I
Selected number of retained LVs 4 2 -
Selected value of localization parameter 2 0.77 -
RMSE of prediction for test data - - 0.3700

Case II
Selected number of retained LVs 2 2 -
Selected value of localization parameter 2 0.5 -
RMSE of prediction for test data - - 0.2993

4.5.2 Reid Vapor Pressure of Gasoline

In this case study, the objective is to develop a LW-PLS model for real-time prediction of

Reid vapor pressure (RVP) of gasoline that is a measure of the volatility of gasoline. The

industrial data have been provided by a refinery located in Edmonton, Canada. A total of

423 gasoline samples were collected from on-line operation between August 2007 and July

2012. The NIR spectra of the collected samples were recorded using an NIR spectrometer

having the wavelength range of 800− 1, 700 nm and nominal spectral resolution of 1 nm.

The reference data for the RVP were obtained using standard ASTM testing methodologies.

The NIR spectra are subject to the standard normal variate transformation in the pre-

processing step. The minimum and maximum number of the latent variables are set to

12 and 20, respectively. A constrained uniform prior distribution in the range of [0.5, 1] is

assumed over the localization parameter. The comparison results are reported in Table 4.7

and illustrated in Figure 4.3. From both arithmetical and graphical comparisons, it can be

observed that the proposed Bayesian framework results in the LW-PLS models with better

prediction performance.
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Table 4.7: Comparing the prediction performance of the LW-PLS models characterized by
the hierarchical Bayesian optimization and classical cross-validation methods

Hierarchical Classical
Bayesian LOOCV

Selected number of retained LVs 15 12
Selected value of localization parameter 0.59 1
RMSE of prediction for training data 0.4937 0.6044
RMSE of prediction for test data 0.5678 0.8825

4.6 Concluding Remarks

The objective of this study was twofold. First, it was desired to develop a systematic

approach for selection of the LW-PLS model structure and its region of validity. Second,

it was required to develop a computationally feasible method through which the effect

of the system non-linearity on the functional forms and size of the receptive fields can

be taken into account for real-time identification of the LW-PLS models. To achieve

the aforementioned objectives, the proposed method consists of two main steps. First,

the operating space is partitioned into a finite number of sub-spaces during the off-line

identification phase. Next, the problem of finding the locally optimal LW-PLS model

structure and similarity function hyperparameters is formulated and solved under an

iterative hierarchical Bayesian optimization framework for each sub-space. In this way,

the real-time identification problem only amounts to detecting the underlying operating

sub-space and estimating the LW-PLS model parameters. Therefore, the real-time model

structure selection and similarity function parametrization become more computationally

efficient. In the proposed optimization scheme the leave-one-out predictive densities

are evaluated to perform objective comparison between alternative model structures. It

also provides objective criteria for obtaining the locally optimal hyperparameters of the

similarity function. Two industrial case-studies were considered to demonstrate the
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Figure 4.3: Prediction performance of the LW-PLS

effectiveness of the proposed method: 1. real-time prediction of Reid vapor pressure of

gasoline in a petrochemical refinery, and 2. real-time prediction of the active substance
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content of a pharmaceutical tablet. The method was successfully applied to identify

inferential LW-PLS models for real-time prediction of these quality variables using near-

infrared (NIR) transmittance spectra.
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Chapter 5

A Hierarchical Bayesian Framework for
Robust Identification of Inferential
Models from Contaminated Data-set

5.1 Introduction

5.1.1 Practical Motivation

Reliable process models are key requirements for investigating the behavior of industrial

processes. Such descriptive models can help to improve process productivity, achieve

safety of operation, and develop tight control policies (Fortuna et al., 2007).

Depending on the level of a priori knowledge, different strategies have been proposed

in the literature to model chemical processes. Traditionally, knowledge-driven models are

developed on the basis of first principles analysis, which requires complete understanding

of underlying mechanisms (Prasad et al., 2002; Muller et al., 2011; Sabbe et al., 2011).

Not surprisingly, development of first principle models can often be prohibitively difficult

and time-consuming due to the complexity of industrial processes. Therefore, decades

of research have been devoted to developing empirical process models without complete

a priori knowledge of the internal mechanisms governing the process dynamics. The

A version of this chapter has been published in AIChE Journal, Volume 59 (Khatibisepehr and Huang,
2013). An abbreviated version of this chapter was presented at the 2012 American Control Conference, June
27-29, 2012, Montreal, Canada (Khatibisepehr and Huang, 2012).
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empirical models are usually constructed based on the limited process knowledge as well as

the great amount of historical data acquired for monitoring purposes (Kano and Nakagawa,

2008; Kadlec et al., 2009). In the context of process industries, various data-driven model

structures can be used to describe the behavior of unit operations. Owing to the capability

of autoregressive with exogenous input (ARX) models in approximating complex linear

dynamic systems, ARX model structure is commonly adopted in industrial applications

(Fortuna et al., 2007). Regardless of the model structure selected, the procedures applied to

identify empirical process models are often highly sensitive to the quality of identification

data, i.e. the varying quality of process data can greatly deteriorate the performance of

data-driven identification methods.

Outlying measurements, also called outliers, are one of the common factors that may

affect the quality of operational and laboratory data (Chiang et al., 2003; Liu et al.,

2004; Khatibisepehr and Huang, 2008). Outliers are observations which appear to deviate

markedly from the typical ranges of other observations (Grubbs, 1969). The outliers

in operational data mostly represent a random error caused by such issues as process

disturbances, instrument degradation, and transmission problems (Zeng and Gao, 2009;

Lee et al., 2011). Moreover, the outlying laboratory measurements may be generated due

to potential human errors that may occur in collecting samples, conducting experiments,

and recording results. Statistical analysis of process data contaminated with outliers may

lead to biased parameter estimation and plant-model mismatch. Therefore, the problem of

process model identification in the presence of outliers has received great attention during

the last two decades and a wide variety of so-called outlier identification approaches have

been proposed (Hodge and Austin, 2004; Chandola et al., 2009). As pointed out by Kadlec

et al. (2009), however, this issue is currently solved in a rather ad hoc manner. Therefore,

there is a great need to seek for more advanced and more general solutions.
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5.1.2 Main Contributions

The main contribution of this work is to formulate and solve the ARX model identification

problem in the presence of outliers under a novel robust Bayesian framework consisting of

consecutive levels of optimization. First, we adopt a contaminated distribution to describe

the observed data and introduce a set of indicator variables to denote the quality of each

data point. Next, we propose a unified objective function for model identification in the

presence of outliers. The resulting optimization problem is hierarchically decomposed and

a layered optimization strategy is implemented. In order to obtain explicit solutions, we

adopt an iterative hierarchical Bayesian approach through which the solutions obtained in

subsequent layers of optimization are coordinated. The proposed method has the following

attractive features:

1. The outlined optimization strategy not only yields maximum a posteriori (MAP)

estimates of model parameters, but also provides an automated mechanism

for determining the hyperparameters and for investigating the quality of each

observation.

2. The developed framework allows us to incorporate the prior knowledge of the

noise distribution and to include the relevant information contained in identification

data. Thereby, restrictive assumptions made in traditional robust methods about

contaminating distributions (e.g. symmetric noise distribution) can be relaxed.

3. The identification procedures employed in classical statistical estimation techniques

often result in a set of single-valued parameter estimates. In contrast, the full

Bayesian model identification results in posterior distributions over parameters to

reveal how uncertain the estimated values would be (Khatibisepehr and Huang,

2008).

4. In the classical approaches available for identification of inferential models from
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contaminated data, the data quality assessment and model identification steps are

often disjoint. Within the proposed hierarchical framework, however, the Bayesian

inference at a particular level takes into account the uncertainty in the estimates of

the previous level. This is a great feature that allows us to link different levels of

Bayesian inference together and, consequently, interconnect the solutions obtained

in subsequent layers of optimization. In this way, the data quality assessment and

model identification steps become integrated.

5.1.3 Chapter Outline

The remainder of this Chapter is organized as follows. A brief overview of the existing

outlier identification techniques is presented in Section 5.2. In Section 5.3, the problem of

ARX model identification in the presence of outliers is discussed. Our proposed objective

function resulting in the consecutive layers of optimization is described in Section 5.4. The

idea of hierarchical Bayesian inference approach adopted to solve the layered optimization

problem is also explained in this Section. The most common outlier models are introduced

in Section 5.5. In Section 5.6, the problem of ARX model parameter estimation is

formulated in a unified Bayesian framework and the details of the identification procedure

are presented. In Section 5.7, the application of the developed framework is demonstrated

on numerical simulation and experimental examples. These case studies will show

robustness of the proposed parameter estimation method in the presence of outliers, which

is an attractive feature for applying the proposed method to real world problems. Finally,

this Chapter is summarized with the concluding remarks in Section 5.8.

5.2 An Overview of the Existing Outlier Identification
Methods

Outlier identification constitutes an essential prerequisite for identification of process

models and thus several outlier handling approaches have been developed in the past few
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decades. Since the focus of this work is on the Bayesian methods, we limit our literature

review to the most common statistical approaches. A comprehensive review of the outlier

detection problem and several outlier detection algorithms is given by Hodge and Austin

(2004); Kadlec et al. (2009); Chandola et al. (2009).

Statistical analysis of residuals described in Fortuna et al. (2007) is one of the common

outlier detection approach. This is based on the use of a regression model between

dependent and independent variables. First, the least square method is applied to obtain

an estimation of model parameters for normal operating condition. Outliers can then be

detected if the model residuals of new data lie outside a specified confidence interval.

Since outliers can significantly deteriorate least-squares solutions, robust regression can

be applied to handle them while fitting regression models. In general, robust regression

methods are designed to iteratively downweight the influence of outliers. The most

common robust regression analysis is performed with M (maximum likelihood) estimators,

introduced by Huber (1981). The general M-estimator minimizes the objective function∑N
t=1 ρ(εn), where the function ρ gives the contribution of each residual to the objective

function. Least-squares estimation would be an special case for which ρ(εn) = ε2n).

Differentiating the objective function with respect to the parameters and setting the partial

derivatives to 0, the estimating equations may be written as
∑N

t=1wnεnXn = 0, where the

robustness weight assigned to the tth observation, wn = w(εn), is obtained from the weight

function defined as w(ε) = ρ′/ε. For instance, the robustness weights in the Huber robust

regression technique are determined using the Huber weighting function defined as

wn =

[
max

(
1,
∣∣∣ εn
c× s

∣∣∣)]−1

(5.1)

where εn is the residual calculated from the previous iteration, c is the tuning constant, and

s = MAD/0.6745 is an estimate of the standard deviation of the error term.

Several solutions have been proposed for solving the outlier detection problem by

estimating a probability density of the normal data. For instance, in Bishop (1994) the
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density distribution of the input space is first estimated by a standard Parzen window

approach with Gaussian kernel functions. Next, a suitable threshold is specified based

on the identification data-set which is known to be representative of normal data. The

new observation is then flagged as an outlier, if the value of the density function is above

the threshold. Yu (2012) proposed a Bayesian approach to first estimate the posterior

probabilities of all samples within the model input space and specify appropriate confidence

levels. A calibration procedure is then followed to correct the observations identified as

outliers. An alternative approach for probability density estimation is to model normal

instances as a mixture of parametric distributions. Bishop (1994) and Agarwal (2006) used

Gaussian mixture models for such techniques. In Ritter and Gallegos (1997), both normal

instances and outliers are modeled as separate parametric distributions. First, the ellipsoidal

multivariate trimming (MVT) (Rousseeuw and Leroy, 1996) technique is used to detect

outliers and to estimate distribution parameters of both outliers and regular observations.

Next, a Bayesian classifier is designed to compare certain linear combinations of posterior

densities of each data vector with respect to the estimated distributions. Several variations

of Bayesian classification technique have further been proposed by Varbanov (1998);

Ghosh-Dastidar and Schafer (2006); Das and Schneider (2007), and many others.

In this research, we take a hierarchical Bayesian approach to address the problem of

model identification in the presence of outliers. We develop a robust Bayesian inference

framework consisting of three consecutive steps: 1) Given an identification data-set, the

posterior probability of each observation acting as an outlier is evaluated; a set of indicator

variables is specified to denote the quality of each data point. 2) The hyperparameters are

then estimated by solving an optimization problem that maximizes the posterior probability

distribution of hyperparameters conditional upon the indicator variables. 3) Given current

estimates of hyperparameters and indicator variables, the posterior probability distribution

of model parameters is maximized to obtain MAP estimates. These three steps will be
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repeated until the estimates change within a given tolerance.

5.3 Problem Statement

In the identification of an empirical model, the overall objective is to find a model that best

fits the identification data-set, D = {(rt, yt)}Nt=1. Bayesian models are a compact way to

represent probabilistic relationships between a set of random variables in a system. Before

going into details of how to learn Bayesian models, we need a more detailed definition

of what the model includes. A model is defined by its functional form, f , and a set of

parameters, Θ. Let us consider a general form of a non-linear model:

yt = f(rt; Θ) + et (5.2)

where yt ∈ R is the output, rt ∈ RP is the regressor constructed from past inputs and

outputs, and et is the noise/error term.

Suppose et is modeled as a zero-mean Gaussian noise with constant standard deviation

σe. Given the model structure, H, and the model parameters, Θ, the likelihood of the data

can be expressed as

p(D|Θ, ζ,H) =
( ζ
2π

)N/2

exp
(
− ζED(D|Θ, ζ,H)

)
(5.3)

where ζ defines a noise level with σ2
e = ζ−1, and ED is the error term defined as

ED =
1

2

N∑
t=1

e2t =
1

2

N∑
t=1

(
yt − f(rt; Θ))2 (5.4)

It is well-known that finding the maximum likelihood estimates of the parameters, ΘML,

may be an ill-posed problem. Since the Θ that minimizes ED may depend sensitively

on the details of the noise in the data, the maximum likelihood estimates would oscillate

widely so as to fit the noise (MacKay, 1992). Bayesian methods solve this type of ill-

posed problem by combining information contained in the observed data with available

information concerning the distribution of the parameters. Introducing a regularizing
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constant, α, such a prior can be expressed on the parameters; p(Θ|α,H) represents the

current state of knowledge about the plausible values of model parameters. Therefore,

the prior distribution of model parameters is parameterized by a set of variables called

hyperparameters∗. Both ζ and α are considered as hyperparameters, because they describe

the overall characteristics of the priors. If a hyperparameter is not known a priori, its

probability distributions can be estimated in an intermediate step of the model identification

process.

To develop a Bayesian formulation of inferential models that is robust to inconsistent

data, we need to be able to efficiently perform different levels of Bayesian inference even if

the data-set is contaminated with outlying observations. Given an identification data-set D,

we can consider a set of hyperparameters {ζ1, ..., ζN}. Thus, the hyperparameter ζt defines

a noise level σ2
et = ζ−1

t on the tth sample in the given training data-set. When having non-

constant values of ζt, the outliers will be automatically handled by assigning less weights to

the observations with relatively larger σ2
et . However, the underlying formulation involves a

heavy non-linear optimization problem in dealing with large data-sets.

To obtain a computationally feasible formulation, we adopt a contaminated distribution

to describe the observed data and then solve the problem under a unified Bayesian

framework. The error distribution function is thus expressed as F (e) = δG(e) +

(1 − δ)H(e), where δ is the unknown prior probability of appearance of an outlier,

H(e) = N (0, σ2
e) is a normal distribution, and G(e) is a contaminating distribution. This

model arises for instance if the observations are assumed to be normal with variance σ2
y ,

but a fraction δ of them is affected by gross errors (Huber, 1981). Moreover, a set of

indicator variables {q1, · · · , qN} is introduced to denote the quality of the observed data;

the indicator variable associated with each data point determines whether that observation

comes from the regular or contaminating distribution. However, the indicator variables are

usually not known a priori and should be estimated in an intermediate step of the model
∗The term is used to distinguish them from model parameters.
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identification process.

5.4 Outlier Models

In general, we need to tackle two types of outliers, namely scale outliers and location

outliers. As the names suggested, scale and location outliers are generated by a shift

in the scale (variability) or in the location (mean) of measurement noise. The process

measurements that violate the physical limitations of the involved unit operations can be

modeled as scale outliers, while the ones that violate the technological limitations of the

measuring devices can often be considered as symmetric location outliers. Moreover, the

outlying measurements made by a jammed instrument may be modeled as asymmetric

location outliers.

In this section, we present our proposed scale and location outlier models which later

will be needed to develop a robust Bayesian framework.

5.4.1 Scale Outlier Model

The error distribution affected by scale outliers is a mixture of two multivariate normal

distributions centered at the same mean but with different covariance matrices, one being

proportionately larger than the other. Therefore, it is assumed that the noise term, et, is

distributed as

et ∼ δN (0, ρ−1σ2
e) + (1− δ)N (0, σ2

e) (5.5)

where 0 < ρ < 1 is the variance inflation factor that indicates the magnitude of the errors

leading to an outlying observation. Note that the proposed Bayesian framework does

not require any knowledge of the noise distribution parameters (e.g. δ, σe and ρ); these

parameters are iteratively estimated in the identification process using the observations

identified as outliers.

Introduce a set of indicator variables, q1:N = {q1, · · · , qN}, to denote identity of each
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data point, i.e. qt = ρ if et is distributed as N (0, ρ−1σ2
e) and qt = 1 if et is distributed as

N (0, σ2
e). Therefore, qt is Bernoulli distributed with parameter δ. That is,

p(qt; δ) = δ

(
1− qt − ρ

1− qtρ

)
(1− δ)

( qt − ρ

1− qtρ

)
(5.6)

5.4.2 Location Outlier Model

Now, suppose the contaminating distribution consists of two multivariate normals such that

G(e) = N (−∆, σ2
e) + N (∆, σ2

e). To capture the presence of location outliers, it is thus

assumed that the noise term, et, is distributed as

et ∼ δ
[
N (∆, σ2

e) +N (−∆, σ2
e)
]
+ (1− δ)N (0, σ2

e) (5.7)

where ∆ indicates the location shift in the outlying observations. As mentioned previously,

the proposed Bayesian framework does not require any knowledge of the noise distribution

parameters (e.g. δ, σe and ∆); these parameters are iteratively estimated in the identification

process using the observations identified as outliers.

Introduce a set of indicator variables, q1:N = {q1, · · · , qN}, to denote identity of each

data point, i.e. qt = +∆ if et is generated from N (+∆, σ2
e), qt = −∆ if et is generated

from N (−∆, σ2
e), and qt = 0 if et is distributed as N (0, σ2

e). Therefore, qt has a categorical

distribution expressed as

p(qt; δ) = (0.5δ)

( |qt| − qt
2∆

)
(0.5δ)

( |qt|+ qt
2∆

)
(1− δ)

(
1− |qt|

∆

)
(5.8)

or equivalently, |qt| has a Bernoulli distribution:

p(|qt|; δ) = δ

( |qt|
∆

)
(1− δ)

(
1− |qt|

∆

)
(5.9)

5.5 Hierarchical Optimization Framework

In general, the identification problem is to estimate the model parameters, Θ, the

hyperparameters of the prior distribution of model parameters, Φ, and the indicator
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variables, Q, using the process data-set, D. To obtain MAP estimates simultaneously, the

joint probability density function, p(Θ,Φ, Q|D) should be optimized. However, evaluating

such posterior density functions requires a complex non-linear optimization problem

to be solved. To circumvent the difficulties associated with the direct maximization

of p(Θ,Φ, Q|D), the identification problem is formulated under a layered optimization

framework, as we will show in the following.

First, the chain rule of probability theory is used to factorize the joint probability density

function (JPDF) as

p(Θ,Φ, Q|D) = p(Θ|Φ, Q,D)p(Φ|Q,D)p(Q|D) (5.10)

Then, the optimization problem is decomposed hierarchically into three layers:

max
Θ,Φ,Q

p(Θ|Φ, Q,D)p(Φ|Q,D)p(Q|D)

= max
Φ,Q

{
p(Q|D)p(Φ|Q,D)max

Θ

{
p(Θ|Φ, Q,D)

}}
= max

Q

{
p(Q|D)max

Φ

{
p(Φ|Q,D)max

Θ

{
p(Θ|Φ, Q,D)

}}}
(5.11)

The three-layer optimization problem is formulated as follows:

1. Inference of model parameters Θ by maximizing the following posterior density

function

p(Θ|D,Φ, Q) = p(D|Θ,Φ, Q)p(Θ|Φ, Q)
p(D|Φ, Q)

(5.12)

2. Inference of hyperparameters Φ by maximizing the following posterior density

function

p(Φ|D, Q) = p(D|Φ, Q)p(Φ|Q)
p(D|Q)

(5.13)

3. Inference of outlier indicator variables Q by maximizing the following posterior

density function

p(Q|D) =
p(D|Q)p(Q)

p(D)
(5.14)
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In this Bayesian formulation, the likelihood function at a particular level corresponds to the

evidence function at the previous level. For example, the likelihood at Level 2, p(D|Φ, Q),

is equal to the evidence at Level 1. Through this pattern, the optimization variables

are gradually integrated out at different levels of Bayesian inference. Consequently, the

optimal solutions obtained in subsequent layers of optimization are coordinated. However,

direct optimization of all these three layers is still not a tractable problem and further

simplification is required.

In order to obtain a tractable explicit solution to the above layered optimization problem,

we adopt a hierarchical Bayesian approach through which the posterior probability density

functions are sequentially approximated in each layer and the procedure is iterated. The

hierarchical Bayesian approach has been applied to a great variety of problems. For

instance, MacKay (1992) is the first author who proposed the heuristic Bayesian evidence

framework and later on applied it to neural network modeling (MacKay, 1995). Molina et

al. (2008) and Galatsanos et al. (2000) used the hierarchical Bayesian paradigm to address

the image modeling and restoration problem. Kwok (2000) and Suykens et al. (2002)

derived a probabilistic formulation of the least squares support vector machine (SVM)

within a hierarchical Bayesian evidence framework.

5.6 Formulation of Inferential Modeling Problem in a
Bayesian Framework

To derive analytical expressions for all levels of inference, here we use the popular

autoregressive with exogenous input (ARX) model to illustrate the design of a robust

unified Bayesian framework. The application of the ideas presented in this section is

not limited to ARX models. The derivations can be directly extended to other classes

of dynamic models, though numerical optimization may be required.

For fixed model orders na and nb, an ARX model is defined by introducing the
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regression vector rt ∈ RP :

rt = [yt−1, . . . , yt−na,uT
t−1, . . . , u

T
t−nb]

T (5.15)

where ut ∈ RM is the input and P = na+M · nb.

The output can then be expressed as a linear function of rt such that

yt = ΘT

[
rt
1

]
+ et (5.16)

where yt is the output, et is a zero-mean Gaussian noise with non-constant variance and

Θ = [θ1, . . . , θj, θP+1]
T ∈ RP+1 denotes the parameter vector including a subset of model

parameters, Θ1:P = [θ1, . . . , θj]
T , and a bias term, θP+1.The reason for keeping Θ1:P and

θP+1 distinct will become clear in deriving analytical expressions for the location outlier

model.

Given the identification data-set that is contaminated by the presence of outliers,

the objective is to identify model parameters Θ. The proposed hierarchical Bayesian

optimization framework allows us to obtain MAP estimates of model parameters with an

automated mechanism for determining the hyperparameters and investigating the quality

of each data point.

5.6.1 Inference of Model Parameters Θ

Given the identification data-set D = {(rt, yt)}Nt=1 = {Zt}Nt=1 along with a set of indicator

variables q1:N = {q1, · · · , qt} and the hyperparameters α1:P+1 = {α1, · · · , αP+1} =

{σ−2
θ1
, · · · , σ−2

θP+1
} and ζ = σ−2

e , the MAP estimates of model parameters are obtained

by maximizing the posterior p(Θ|D, α1:P+1, ζ, q1:N). Thus, the formulation of Bayes’

Theorem in the first level of optimization becomes

p(Θ|D, α1:P+1, ζ,q1:N) =
p(D|Θ, α1:P+1, ζ, q1:N)p(Θ|α1:P+1, ζ, q1:N)

p(D|α1:P+1, ζ, q1:N)
(5.17)

It is reasonable to assume that the prior distribution of each parameter θj ∈ Θ is

independent of hyperparameter ζ and indicator variables q1:N , i.e. p(θj|αj, ζ,q1:N) =
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p(θj|αj). In the absence of other prior information, the prior distribution of Θ is taken as

independent Gaussian with zero-mean and variance of σ2
θj
= α−1

j :

p(Θ|α1:P+1) =
P+1∏
j=1

p(θj|αj)

=
P+1∏
j=1

√
αj

2π
exp

(
− 1

2
αjθ

2
j

)
(5.18)

It is noteworthy that a set of independent hyperparameters {α1, ..., αP+1} is specified in

order to obtain sparsity. Considering that the bias could be any value, an uniform prior is

chosen for θP+1; that is, αP+1 → 0 to approximate a uniform distribution, which can also

be considered as a Gaussian distribution in the limit. Plugging in our assumptions, the prior

is then expressed as follows:

p(Θ|α1:P , ζ, q1:N) ∝
P∏

j=1

√
αj

2π
exp

(
− 1

2
αjθ

2
j

)
(5.19)

The chain rule of probability theory allows us to factorize joint probabilities as

p(D) = p(Z1, Z2, ..., ZN)

=
N∏
t=1

p(Zt|Z1:t−1) (5.20)

Given Θ, the sampled data D would be independent of hyperparameters α1:P (inverse of

the variance of the prior distribution of model parameters), i.e. p(D|Θ, α1:P , ζ, q1:N) =

p(D|Θ, ζ, q1:N). Applying the chain rule, therefore, the likelihood can be further expressed

as

p(D|Θ, ζ, q1:N) =
N∏
t=1

p(Zt|Z1:t−1,Θ, ζ, qt)

∝
N∏
t=1

p(et|Θ, ζ, qt) (5.21)

where

p(et|Θ, ζ, qt) =
√
ζqt
2π

exp
(
− ζqt

1

2
e2t

)
(5.22)
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if the identification data-set is contaminated with scale outliers and

p(et|Θ, ζ, qt) =
√

ζ

2π
exp

(
− ζ

1

2
(et − qt)

2
)

(5.23)

if the identification data-set is contaminated with location outliers.

To be able to carry forward the derivations, we need to take the underlying outlier model

into account.

5.6.1.1 Scale Outlier Model

Combining Equations 5.19 and 5.21 (along with 5.22), the posterior probability of the

model parameters is then

p(Θ|D, α1:P , ζ, q1:N) ∝ exp
(
− 1

2

P∑
j=1

αjθ
2
j −

1

2

N∑
t=1

ζqte
2
t

)
= exp

(
−

P∑
j=1

αjEθj − ζ
N∑
t=1

qtEet

)
= exp

(
− J1(Θ)

)
(5.24)

where Eθj = θ2j/2 and Eet = e2t/2. All constants are neglected in Equation 5.24, because

the optimal solution will not be affected by constant terms in the objective function.

One then proceeds to estimate the most probable values of the model parameters,

ΘMP, by maximizing the posterior probability, or equivalently, by minimizing the negative

logarithm of Equation 5.24. The gradient of the cost function J1(Θ) is

∂J1

∂Θ1:P

= DαΘ1:P − ζRDqy + ζRDqRTΘ1:P + ζRDq1⃗NθP+1 (5.25)

∂J1

∂θP+1

= ζ 1⃗
T

NDqy − ζ 1⃗
T

NDqRTΘ1:P − ζsqθP+1 (5.26)

where 1⃗N = [1, ..., 1]T ∈ RN , y = [y1, ..., yt]
T ∈ RN , R = [r1, ..., rN ] ∈ RP×N ,

Dα = diag(α1, ..., αj) ∈ RP×P , Dq = diag(q1, ..., qt) ∈ RN×N and sq =
∑N

t=1 qt. Note

that Dq may be viewed as a weighting matrix constructed to downplay the effect of scale

outliers on the parameter estimates.
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Making the partial derivatives expressed in Equations 5.25 and 5.26 equal to zero, the

analytical expressions for ΘMP
1:P and θMP

P+1 can be derived:

ΘMP
1:P =

(
RCRT +

1

ζ
Dα

)−1

RCy (5.27)

θMP
P+1 =

1

sq

(
1⃗
T

NDqy − 1⃗
T

NDqR
TΘMP

1:P

)
(5.28)

where C = Dq − sq
−1Dq1⃗N 1⃗

T

NDq.

The posterior given by Equation 5.24 is complex in general and cannot be directly used

for the three-layer optimization of Equation 5.11. The key to the hierarchical Bayesian

approach is to obtain an approximation of the posterior. This approach of MacKay (2002)

is adopted here to obtain an approximated solution first and then the optimization problem

is solved through iteration. Approximating the logarithm of the posterior distribution by its

second order Taylor expansion around ΘMP
1:P+1, we obtain

log p(Θ|D, α1:P , ζ, q1:N) ≈ log p(Θ|D, α1:P , ζ, q1:N)
∣∣
ΘMP

+∇ log p(Θ|D, α1:P , ζ, q1:N)
∣∣
ΘMPm

+
1

2
mT∇∇ log p(Θ|D, α1:P , ζ, q1:N)

∣∣
ΘMPm (5.29)

where m =
[
Θ−ΘMP

]
.

Since ΘMP corresponds to a maximum of the logarithm of the posterior, the second term

on the right hand side of Equation 5.29 evaluates to zero. A Gaussian approximation of the

posterior distribution can therefore be obtained as

p(Θ|D, α1:P , ζ,q1:N) ≈ p(ΘMP|D, α1:P , ζ,q1:N) exp
(
− 1

2
mTHm

)
=

1√
(2π)(P+1) detH−1

exp
(
− 1

2
mTHm

)
(5.30)

where H is the Hessian of the cost function J1(Θ) evaluated at ΘMP. The Hessian of the



Sec. 5.6 Formulation of Inferential Modeling Problem in a Bayesian Framework 183

cost function J1(Θ) is defined as

H =

[
H11 H12

HT
12 H22

]

=


∂2J1

∂Θ2
1:P

∂2J1
∂Θ1:P∂θP+1

∂2J1
∂θP+1∂Θ1:P

∂2J1

∂θ2P+1

 (5.31)

where

H11 = Dα + ζRDqRT (5.32)

H12 = ζRDq1⃗N (5.33)

H22 = ζsq (5.34)

Using the Schur complement of the Hessian matrix, we obtain (Suykens et al., 2002)

H =

[
In H12H−1

22

0 1

] [
H11 − H12H−1

22 HT
12 0

0 H22

] [
In 0

H−1
22 HT

12 1

]
(5.35)

Hence,

detH = det

[
H11 − H12H−1

22 HT
12 0

0 H22

]
= H22 det(H11 − H12H−1

22 HT
12)

= ζsq det(Dα + ζG)

= ζsq

P∏
j=1

(αj + ζλG,j) (5.36)

where λG,j are the eigenvalues of the symmetric matrix G = RCRT ; the eigenvalue

problem is

R(Dq −
1

sq
Dq1⃗N 1⃗

T

NDq)RTνG,j = λG,jνG,j (5.37)
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5.6.1.2 Location Outlier Model

Combining Equations 5.19 and 5.21 (along with 5.23) and neglecting all constants, the

posterior probability of the model parameters is then

p(Θ|D, α1:P , ζ,q1:N) ∝ exp
(
− 1

2

P∑
j=1

αjθ
2
j −

1

2

N∑
t=1

ζ(et − qt)
2
)

= exp
(
−

P∑
j=1

αjEθj − ζ

N∑
t=1

Ee
′
t

)
= exp

(
− J2(Θ)

)
(5.38)

where Ee
′
t
= Eet + q2t /2− etqt.

The MAP estimates of the model parameters, ΘMP, are obtained by maximizing the

posterior probability, or equivalently, by minimizing the negative logarithm of Equation

5.38. The gradient of the cost function J2(Θ) is

∂J2

∂Θ1:P

= DαΘ1:P − ζRy + ζRRTΘ1:P + ζR1⃗NθP+1 + ζRDq1⃗N (5.39)

∂J2

∂θP+1

= ζ 1⃗
T

Ny − ζ 1⃗
T

NRTΘ1:P − ζNθP+1 − ζ 1⃗
T

NDq1⃗N (5.40)

Note that Dq may be viewed as a correction matrix constructed to reduce the effect of

location outliers on the parameter estimates.

Making the partial derivatives expressed in Equations 5.39 and 5.40 equal to zero, the

analytical expression for ΘMP
1:P and θMP

P+1 can be derived:

ΘMP
1:P =

(
RC

′
RT +

1

ζ
Dα

)−1

RC
′
(

y − Dq1⃗N

)
(5.41)

θMP
P+1 = N−11⃗

T

N

(
y − Dq1⃗N − RTΘMP

1:P

)
(5.42)

where C
′
= In −N−11⃗N 1⃗

T

N .

As explained previously, a Gaussian approximation of the posterior distribution is given

as

p(Θ|D, α1:P , ζ, q1:N) ≈
1√

(2π)(P+1)detH−1
exp

(
− 1

2
mTHm

)
(5.43)
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where H is the Hessian of the cost function J2(Θ) evaluated at ΘMP.

It can be shown that the elements of the Hessian are

H11 = Dα + ζRRT (5.44)

H12 = ζR1⃗N (5.45)

H22 = ζN (5.46)

The Cholesky factorization of the Hessian would be similar to Equation 5.35. In order to

obtain an expression for detH , thus, one needs to solve the following eigenvalue problem:

R(In −
1

N
1⃗N 1⃗

T

N)R
TνG,j = λ

′

G,jνG,j (5.47)

where λ′

G,j are the eigenvalues of the symmetric matrix G
′
= RC

′
RT .

Finally, we obtain

detH = ζN det(Dα + ζG
′
)

= ζN
P∏

j=1

(αj + ζλ
′

G,j) (5.48)

5.6.2 Inference of Hyperparameters α1:P and ζ

Hyperparameters α1:P and ζ are inferred from the identification data D by applying

Bayes’ rule in the second layer of optimization. First, the posterior distribution of the

hyperparameters is written as

p(α1:P , ζ|D, q1:N) =
p(D|α1:P , ζ, q1:N)p(α1:P , ζ|q1:N)

p(D|q1:N)
(5.49)

As priors, it is assumed that the hyperparameters are statistically independent, i.e.

p(α1:P , ζ|q1:N) = p(ζ|q1:N)
∏P

j=1 p(αj|q1:N). If there is no explicit information available

for the hyperparameters, a uniform distribution can then be used to describe appropriate
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non-informative priors on logαj and log ζ . To incorporate limited prior knowledge,

however, conjugate priors (Raiffa and Schlaifer, 1961) are commonly assigned for which

the resulting posterior distribution can be conveniently evaluated. To assure generality, we

consider the following gamma distributions as hyperpriors:

p(αj|q1:N) =
s
kj
j α

kj−1
j

Γ(kj)
exp(−sjαj)

∝ α
kj−1
j exp(−sjαj) (5.50)

p(ζ|q1:N) =
sk00 ζ

k0−1

Γ(k0)
exp(−s0ζ)

∝ ζk0−1 exp(−s0ζ) (5.51)

where kj is the shape parameter and sj is the inverse of the scale parameter. Therefore,

gamma distribution is a simple peaked distribution for which mean and variance are defined

by kj/sj and kj/s2j , respectively. The fact that the gamma distribution is the conjugate prior

to many likelihood distributions justifies the choice of gamma hyperpriors.

Under the stated assumptions, the prior distribution over hyperparameters is expressed

as

p(α1:P , ζ|q1:N) ∝ ζk0−1 exp(−s0ζ)
P∏

j=1

α
kj−1
j exp(−sjαj) (5.52)

Hereinafter, the underlying outlier model will be taken into account in order to lay out a

computational procedure for the inference of hyperparameters.

5.6.2.1 Scale Outlier Model

The likelihood p(D|α, ζ, q1:N) is equal to the normalizing constant in Equation 5.17 for

the first level of inference. Substituting Equations 5.19, 5.21 (along with 5.22) and 5.30 in

Equation 5.17, we can derive the following expression for the likelihood:

p(D|α1:P , ζ, q1:N) ∝
∏P

j=1

√
αj

∏N
t=1

√
ζqt√

detH
exp

(
− J1(Θ) +

1

2
mTHm

)∣∣∣∣
ΘMP

(5.53)
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Substituting Equations 5.52 and 5.53 into Equation 5.49, the posterior probability of the

hyperparameters becomes

p(α1:P , ζ|D, q1:N) ∝

√√√√ ζN
∏P

j=1 αj

∏N
t=1 qt

ζsq
∏P

j=1(αj + ζλG,j)
exp

(
− J1

(
ΘMP))

× ζk0−1 exp(−s0ζ)
P∏

j=1

α
kj−1
j exp(−sjαj) (5.54)

Minimizing the negative logarithm of Equation 5.54 leads to the following optimization

problem:

min
α1:P ,ζ

J1(α1:P , ζ) =
P∑

j=1

αj

[
sj + Eθj(θ

MP
j )
]
+ ζ
[
s0 +

N∑
t=1

qtEet(Θ
MP)
]

− N + 2k0 − 3

2
log ζ − 1

2

P∑
j=1

(2kj − 1) logαj +
1

2

P∑
j=1

log(αj + ζλG,j) (5.55)

The gradient of the cost function J1(α1:P , ζ) is

∂J1

∂α1:P

=
(

Ds + EΘ(Θ
MP) +

1

2
(Dα + ζDλ)

−1 − 1

2
D−1

α (2Dk − IP )
)

1⃗P (5.56)

∂J1

∂ζ
= s0 + 1⃗

T

NDqEe(Θ
MP)⃗1N +

1

2
1⃗
T

p Dλ(Dα + ζDλ)
−11⃗P − N + 2k0 − 3

2ζ
(5.57)

where Ds = diag(s1, . . . , sp) ∈ RP×P , EΘ = diag(Eθ1 , . . . , Eθj) ∈ RP×P ,

Ee = diag(Ee1 , . . . , Eet) ∈ RN×N , Dλ = diag(λG,1, . . . , λG,P ) ∈ RP×P , Dk =

diag(k1, . . . , kP ) ∈ RP×P , and 1⃗P = [1, ..., 1]T ∈ RP .

Setting the partial derivatives equal to zero and carrying out a few algebraic

manipulations, the following expressions are obtained in the optimum of J1(α1:P , ζ):

DMP
α =

(
Ds + EΘ(Θ

MP)
)−1(1

2
Dγ + Dk − IP

)
(5.58)

ζMP =
1

2

(
s0 + 1⃗

T

NDqEe(Θ
MP)⃗1N

)−1(
N + 2k0 − 3− 1⃗

T

p Dγ 1⃗P

)
(5.59)

where Dγ = diag(γ1, . . . , γP ). The jth diagonal element of Dγ is defined as

γj =
ζMPλG,j

αMP
j + ζMPλG,j

(5.60)
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where λG,j is obtained by solving the eigenvalue problem of Equation 5.37.Thus, γj ∈ [0, 1]

is a measure of the strength of the likelihood in relation to the prior in determining θj .

For instance, γj −→ 0 (i.e. λj ≪ αj) indicates that θj is poorly measured from the

identification data. Consequently,

γeff = 1 +
P∑

j=1

ζMPλG,j

αMP
j + ζMPλG,j

= 1 + 1⃗
T

p Dγ 1⃗P (5.61)

is the number of well-determined parameters (MacKay, 1995).

Since α1:P and ζ are positive scale variables, we can consider a separable Gaussian

distribution for p(logα1:P , log ζ|D,q1:N) such that†

p(logα1:P , log ζ|D,q1:N) ≈
1

2π
√
detA−1

exp
(
− 1

2
dTAd

)
(5.62)

where d =
[
logα1:P − logαMP

1:P log ζ − log ζMP
]T and A is Hessian of the cost function

J1(α1:P , ζ) evaluated at αMP
1:P , ζ

MP.

It is pointed out by MacKay (1999) that the Gaussian approximation over logαMP
j and

log ζ holds good if the model parameters are all well-determined in relation to their prior

range by the identification data.

Having obtained MAP estimates of hyperparameters, the elements of the A are

calculated as follows:

A11 =
∂2J1(α1:P , ζ)

∂(logα1:P )2

∣∣∣
αMP
1:P ,ζMP

=
(

Ds + EΘ(Θ
MP)
)

DMP
α +

1

2
ζMPDMP

α Dλ

(
DMP

α + ζMPDλ

)−2

≈
(

Ds + EΘ(Θ
MP)
)

DMP
α

=
1

2
Dγ + Dk − IP (5.63)

†It is natural to represent the uncertainty associated with positive scale variables on a log scale.
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A22 =
∂2J1(α1:P , ζ)

∂(log ζ)2

∣∣∣
αMP
1:P ,ζMP

= ζMP
(
s0 + 1⃗

T

NDqEe(Θ
MP)⃗1N

)
+

1

2
ζMP1⃗

T

p DMP
α Dλ

(
DMP

α + ζMPDλ

)−2

1⃗P

≈ ζMP
(
s0 + 1⃗

T

NDqEe(Θ
MP)⃗1N

)
=

1

2

(
N + 2k0 − 2− γeff

)
(5.64)

These approximations are valid if γj +2kj −2 ≫ 1 and N +2k0−2−γeff ≫ 1 (MacKay,

1999).

From Equations 5.63 and 5.64 it is straightforward to show that

detA =
1

2
(N + 2k0 − 2− γeff )

P∏
j=1

(
γj
2

+ kj − 1) (5.65)

5.6.2.2 Location Outlier Model

When the identification data-set is contaminated with location outliers, Equations 5.19,

5.21 (along with 5.23) and 5.43 are substituted in Equation 5.17 to obtain an expression for

the likelihood:

p(D|α1:P , ζ,q1:N) ∝
√
ζN
∏P

j=1

√
αj√

detH
exp

(
− J2(Θ) +

1

2
mTHm

)∣∣∣∣
ΘMP

(5.66)

Substituting Equations 5.52 and 5.66 into Equation 5.49, the posterior distribution of the

hyperparameters α1:P and ζ becomes

p(α1:P , ζ|D,q1:N) ∝

√√√√ ζN
∏P

j=1 αj

ζN
∏P

j=1(αj + ζλ
′
G,j)

exp
(
− J2

(
ΘMP))

× ζk0−1 exp(−s0ζ)
P∏

j=1

α
kj−1
j exp(−sjαj) (5.67)

One can then proceed to infer the hyperparameters in a similar way as for the scale outlier

model. The condition for optimality is thus expressed as

DMP
α =

(
Ds + EΘ(Θ

MP)
)−1(1

2
Dγ′ + Dk − IP

)
(5.68)
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ζMP =
1

2

(
s0 + 1⃗

T

NEe′ (Θ
MP)⃗1N

)−1(
N + 2k0 − 3− 1⃗

T

p Dγ′ 1⃗P

)
(5.69)

where Dγ′ = diag(γ ′
1, . . . , γ

′
P ). The jth diagonal element of D′

γ is defined as

γj =
ζMPλ

′

G,j

αMP
j + ζMPλ

′
G,j

(5.70)

where λ′

G,j is obtained by solving the eigenvalue problem of Equation 5.47.

A separable Gaussian approximation of p(logα1:P , log ζ|D,q1:N) can be obtained as

p(logα1:P , log ζ|D,q1:N) ≈
1

2π
√
detA−1

exp
(
− 1

2
dTAd

)
(5.71)

where A is Hessian of the cost function J2(α1:P , ζ) evaluated at αMP
1:P , ζ

MP.

Finally, it can be shown that

detA =
1

2
(N + 2k0 − 2− γ

′

eff )
P∏

j=1

(
γ

′
j

2
+ kj − 1) (5.72)

5.6.3 Inference of Outlier Indicator Variables q1:N

So far in our derivations, we have assumed that the indicator variables q1:N are known.

Since q1:N are unobserved variables, they still need to be estimated from the identification

data-set. Applying Bayes’ rule in the third level of optimization, we obtain the following

posterior distribution:

p(q1:N |D) =
p(D|q1:N)p(q1:N)

p(D)
(5.73)

where the prior distribution of q1:N is expressed as

p(q1:N) =
N∏
t=1

p(qt)

=
N∏
t=1

δ

(
1− qt − ρ

1− qtρ

)
(1− δ)

( qt − ρ

1− qtρ

)
(5.74)
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and as

p(q1:N) =
N∏
t=1

p(qt)

=
N∏
t=1

(0.5δ)

( |qt| − qt
2∆

)
(0.5δ)

( |qt|+ qt
2∆

)
(1− δ)

(
1− |qt|

∆

)

=
N∏
t=1

(0.5δ)

( |qt|
∆

)
(1− δ)

(
1− |qt|

∆

)
(5.75)

for the scale and location outliers, respectively. In deriving Equations 5.74 and 5.75, we

assumed that the occurrence of the outliers is completely random.

The likelihood p(D|q1:N) can be obtained by integrating over α1:P and ζ , and then an

approximate solution is obtained (MacKay, 1995):

p(D|q1:N) =

∫
p(D|q1:N , α1:P , ζ)p(α1:P , ζ|q1:N)dα1:Pdζ

≈ p(D|q1:N , α
MP
1:P , ζ

MP)p(αMP
1:P , ζ

MP|q1:N)2π
√

detA−1 (5.76)

At this stage, the type of outliers should be determined in order to obtain explicit

expressions for evaluating the posterior probability of indicator variables.

5.6.3.1 Scale Outlier Model

Combining Equations 5.52, 5.53 and 5.65 and neglecting all constants, the likelihood of

the third level of Bayesian inference is expressed as

p(D|q1:N) ∝
P∏

j=1

(αMP
j )kj−1 exp(−sjαMP

j )

√
αMP
j

(0.5γj + kj − 1)(αMP
j + ζMPλG,j)

×

√
(ζMP)N+2k0−3

∏N
t=1 qt

sq(N + 2k0 − 2− γeff )
exp

(
− s0ζ

MP − J1

(
ΘMP)) (5.77)



Sec. 5.6 Formulation of Inferential Modeling Problem in a Bayesian Framework 192

The posterior probability of the indicator variables is obtained by substituting Equations

5.74 and 5.77 into Equation 5.73:

p(q1:N |D) ∝
P∏

j=1

(αMP
j )kj−1 exp(−sjαMP

j )

√
αMP
j

(0.5γj + kj − 1)(αMP
j + ζMPλG,j)

×

√
(ζMP)N+2k0−3

sq(N + 2k0 − 2− γeff )
exp

(
− s0ζ

MP − J1

(
ΘMP))

×
N∏
t=1

δ

(
1− qt − ρ

1− qtρ

)
(1− δ)

( qt − ρ

1− qtρ

)
√
qt (5.78)

To assess the quality of each data pair, Zt = (ri, yt), the posterior probability p(qt|D) is

first evaluated for qt ∈ {1, ρ}. The normalized probabilities are then used to estimate the

expected value of qt as follows:

E[qt|D] = p(qt = 1|D) + ρp(qt = ρ|D) (5.79)

5.6.3.2 Location Outlier Model

Combining Equations 5.52, 5.66 and 5.72, the likelihood of the third level of Bayesian

inference is expressed as

p(D|q1:N) ∝
P∏

j=1

(αMP
j )kj−1 exp(−sjαMP

j )

√
αMP
j

(0.5γ
′
j + kj − 1)(αMP

j + ζMPλ
′
G,j)

×

√
(ζMP)N+2k0−3

N(N + 2k0 − 2− γ
′
eff )

exp
(
− s0ζ

MP − J2

(
ΘMP)) (5.80)

Substituting Equations 5.75 and 5.80 into Equation 5.73, the posterior probability of the

indicator variables becomes

p(q1:N |D) ∝
P∏

j=1

(αMP
j )kj−1 exp(−sjαMP

j )

√
αMP
j

(0.5γ
′
j + kj − 1)(αMP

j + ζMPλ
′
G,j)

×

√
(ζMP)N+2k0−3

N(N + 2k0 − 2− γ
′
eff )

exp
(
− s0ζ

MP − J2

(
ΘMP))

×
N∏
t=1

(0.5δ)

( |qt|
∆

)
(1− δ)

(
1− |qt|

∆

)
(5.81)
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For the data pair, Zt = (rt, yt), the posterior probability p(qt|D) is first evaluated over the

set of possible values qt ∈ {0,−∆,+∆}. The expected value of qt is then estimated from

the normalized probabilities:

E[qt|D] = ∆p(|qt| = ∆|D)sign
[
p(qt = +∆|D)− p(qt = −∆|D)

]
(5.82)

5.6.4 Robust Model Identification Procedure

To summarize our discussion, the implementation procedure of the proposed robust

identification approach is outlined in Algorithm 5.1.

Algorithm 5.1. Hierarchical Bayesian Optimization Framework for Robust Model

Identification

First, a few preparatory steps are completed to incorporate the relevant prior knowledge.

Given a contaminated identification data-set,

1. Specify a set of indicator variables, q1:N = {q1, · · · , qN}, to denote the quality of the

observed data.

2. Select an appropriate outlier model to describe the contaminating distribution

(Equations 5.5 and 5.7).

3. Include the noise distribution information to describe the prior distribution of p(q1:N)

(Equations 5.74 and 5.75). In the absence of relevant prior information, the 3σ edit

rule is used to detect potential outliers and hence to initialize the estimation of noise

distribution parameters i.e. δ[0], σe[0], and ∆[0] or ρ[0].

4. Characterize the prior distribution of hyperparameters p(α1:P , ζ|q1:N) based on

the explicit prior knowledge. The prior information over hyperparameters can

be generally well-represented by gamma distributions (Equations 5.50 and 5.51).

If there is no explicit information available for the hyperparameters, a uniform
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distribution can then be used to describe appropriate non-informative priors on logαj

and log ζ .

5. Determine the prior distribution of model parameters p(Θ|α1:P , ζ) based on the

available background information. In the absence of other prior information, the

prior probability of Θ can be approximated by independent Gaussian distributions

(Equation 5.18). Depending on the model structure, it might be reasonable to assume

that α1 = α2 = ... = αj .

6. Choose a set of initial values for indicator variables, q[0]
1:N , and hyperparameters, α[0]

1:P

and ζ [0].

Next, the following steps will be repeated iteratively until no further improvements are

gained:

1. Maximize p(Θ[k]|D, α[k−1]
1:P , ζ [k−1],q[k−1]

1:N ) to update the MAP estimates of model

parameters, Θ[k] (Equations 5.27-5.28 and 5.41-5.42).

2. Maximize p(α[k]
1:P , ζ

[k]|D,q[k−1]
1:N ) to update the MAP estimates of hyperparameters,

α
[k]
1:P and ζ [k] (Equations 5.58-5.59 and 5.68-5.69).

3. Evaluate the posterior probability of each observation acting as an outlier to update

the MAP estimates of indicator variables, q[k]
1:N (Equations 5.78-5.79 and 5.81-5.82);

the updated estimates are used in the next iteration.

4. Update the estimated values of the noise distribution parameters, δ[k], σe[k], and ∆[k]

or ρ[k], using the observations identified as outliers.

Although Gaussian approximations to posterior density functions may not always be

adequate, the application of the robust identification procedure proposed in this Chapter

is not limited to ARX models. For robust identification of non-linear models with non-

Gaussian noise distributions, it is often required to adopt more sophisticated approximation
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methods such as variational Bayes methods or Monte Carlo methods with various Bayesian

sampling schemes. The derivations can thus be directly extended to other classes of

dynamic models, though numerical optimization may be required.

5.7 Simulation and Experimental Study

In this section, we demonstrate the effectiveness of the proposed identification approach

through the simulated and experimental data-sets. The purpose is to verify the performance

of the Bayesian-based outlier detection algorithm and to evaluate the overall robust

behavior of the proposed framework. The robustness of the Bayesian framework is

compared with that of the Huber estimator, which is one of the most widely used methods

of robust regression.

It is noteworthy that the M-estimation with various weighting functions were performed.

In general, the results were similar to those of the Huber robust regression.

5.7.1 Second-order Finite Impulse Response Model

Consider the following linear second-order finite impulse response (FIR) model:

yt =
[
6.5 −2 −1

] [ xt

1

]
+ et (5.83)

with xt =
[
u1(t) u2(t)

]T . Three different scenarios will be considered to simulate noise

distribution:

Case I. et ∼ 0.85N (0, 4) + 0.15N (0, 40)

Case II. et ∼ 0.85N (0, 2.25) + 0.15[N (−5, 2.25),N (5, 2.25)]

Case III. et ∼ 0.85N (0, 2.25) + 0.15N (5, 2.25)

Total number of data points is set to N = 200 in which around 15 percents have been

generated from the contaminating distribution. The comparison is performed between the

following methods using standard implementations:
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1. Ordinary least square (OLS) regression: The most straightforward method for

identification of ARX models is the OLS method, relying on minimization of the

sum of squared errors between measurements and model predictions.

2. Regular Bayesian: The identification data-set used in the proposed Bayesian method

is considered to be healthy i.e. δ = 0.

3. Robust Regression: The M-estimation with the Huber weight function is performed.

The tuning parameters of this algorithm are adjusted based on the recommended

settings in MATLAB.

4. Robust Bayesian: The robust Bayesian framework does not require any knowledge

of the noise distribution parameters as these parameters are actually iteratively

estimated in the identification process. To illustrate how the proposed Bayesian

identification framework is implemented, Figure 5.1 shows a detailed flowchart

demonstrating the sequence of steps performed for Case I. Basic MATLAB

commands can be used to execute each step.

Table 5.1 shows the mean relative estimation error (MRE) and mean squared error (MSE)

of prediction averaged over 50 trials with different noise sequences. Not surprisingly,

the robust methods improve the parameter estimation performance by detecting and

accommodating outlying observations of the identification data-set. The smaller values of

MRE indicate that the robust Bayesian framework outperforms the Huber robust regression

in terms of accuracy of the parameter estimates. As a result, the models identified using

robust Bayesian framework show better predictive performance, with smaller values of

MSE. Specifically, the Huber robust regression can suffer from the effect of outliers when

the contaminating distribution is asymmetric. In general, traditional robust regression

methods assume a symmetric Gaussian distribution for the contaminating distribution and

assign robustness weights accordingly. Therefore, in the case of asymmetric contaminating
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Figure 5.1: The flowchart of the Bayesian procedure followed for robust identification of
the second-order FIR model in the presence of scale outlier
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Table 5.1: Comparison of estimated parameters of the 2nd-order FIR model

OLS Robust Regular Robust
Regression Regression Bayesian Bayesian

Case I: Scale Outliers in the Identification Data
MRE of θ1 (%) 2.48± 1.84 2.02± 1.46 2.46± 1.84 1.86± 1.24
MRE of θ2 (%) 3.96± 3.42 3.51± 2.42 3.95± 3.42 3.01± 2.15
MRE of θ3 (%) 23.18± 15.63 16.30± 13.32 23.18± 15.63 12.27± 11.72
MSE of Prediction 0.161± 0.135 0.098± 0.093 0.160± 0.135 0.069± 0.074

Case II: Symmetric Location Outliers in the Identification Data
MRE of θ1 (%) 2.95± 2.04 2.27± 1.57 2.95± 2.03 1.08± 0.88
MRE of θ2 (%) 4.17± 3.57 3.52± 2.65 4.16± 3.55 2.18± 1.98
MRE of θ3 (%) 19.26± 12.79 14.48± 11.25 19.26± 12.78 7.44± 5.44
MSE of Prediction 0.149± 0.100 0.092± 0.069 0.148± 0.100 0.029± 0.030

Case III: Asymmetric Location Outliers in the Identification Data
MRE of θ1 (%) 1.80± 1.33 1.72± 1.22 1.76± 1.32 1.46± 0.97
MRE of θ2 (%) 3.34± 2.70 2.85± 2.56 3.34± 2.70 2.59± 1.99
MRE of θ3 (%) 65.30± 10.21 40.40± 11.77 65.3± 10.21 7.60± 7.04
MSE of Prediction 0.481± 0.137 0.215± 0.095 0.480± 0.136 0.042± 0.036

distribution (e.g. the noise term, et, is distributed as et ∼ δN (∆, σ2
e) + (1 − δ)N (0, σ2

e)),

downweighting the outliers causes a strong bias to the estimates.

Figures 5.2.a, 5.3.a, and 5.4.a show the number of iterations required for the convergence

of model parameter estimates, while Figures 5.2.b, 5.3.b, and 5.4.b present the percentage

of the outliers detected in the individual runs of Monte Carlo simulation. Although the

iterations needed for the robust Bayesian and Huber methods are comparable, the former

is capable of successfully detecting a higher percentage of outliers.

5.7.2 Continuous Fermentation Reactor Simulation

To illustrate potential applications of the proposed method in process industries,

identification of a simulated continuous fermentation reactor is considered in this section.

The non-linear dynamic behavior of a continuous fermentation reactor (CFR) is described
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Figure 5.2: Scale outlier
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Figure 5.3: Symmetric location outlier
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Figure 5.4: Asymmetric location outlier
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as follows (Henson and Seborg, 1997):

Ẋ = −DX + µX (5.84)

Ṡ = D(Sf − S)− 1

YX/S

µX (5.85)

Ṗ = −DP + (αµ+ β)X (5.86)

where specific growth rate (µ) is defined as

µ =
µm

(
1− P

Pm

)
S

Km + S + S2

Ki

(5.87)

X , S, and P are the state variables of the system representing the biomass concentration,

substrate concentration and product concentration, respectively. Dilution rate (D) and feed

substrate concentration (Sf ) are normally treated as the system inputs. The cell-mass

yield (YX/S), the yield parameters (α, β), the maximum specific growth rate (µm), the

product saturation constant (Pm), the substrate saturation constant (Km), and the substrate

inhibition constant (Ki) are the model parameters. In this study, the case where the CFR has

a single stable steady-state is considered for which the parameter settings and the operating

conditions are given by Henson and Seborg (1997). The objective is to identify a multiple-

input single-output (MISO) model relating the two input variables, dilution rate (u1) and

feed substrate concentration (u2), with product concentration (y1); the identification data-

set is contaminated with the scale or location outliers. Dilution rate is assumed to vary

between 0.13 hr−1 and 0.17 hr−1, while feed substrate concentration is assumed to vary

between 18 kg/m3 and 22 kg/m3.

For both steady-state and dynamic modeling exercises presented below, Gaussian noise

with a relative variance of 10% was added to the outputs. To test the robustness of

the proposed Bayesian framework, several outliers are randomly added to the simulated

identification data-set. To fairly investigate the performance of different identification

procedures in the presence of outliers, Monte-Carlo simulation is performed. The
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percentage of the observations generated from the contaminating distribution is fixed

as 15%. Three different scenarios will be considered to simulate the contaminating

distribution

Case I. Identification data-set is contaminated with scale outliers.

Case II. Identification data-set is contaminated with symmetric location outliers.

Case III. Identification data-set is contaminated with asymmetric location outliers.

The steady-state model to be identified is chosen as the form

y1(k) = θ1u1(k) + θ2u2(k) + θ3 (5.88)

We also consider the dynamic ARX-based identification of the fermentation problem in the

neighbor of the nominal operating point to approximately capture the dynamic relationship

between the input and output variables. The model to be identified is of the form

y1(k) = θ1u1(k) + θ2u2(k) + θ3y1(k − 1) + θ4 (5.89)

OLS regression, regular Bayesian, Huber robust regression, and robust Bayesian are

applied for identification of the steady-state and dynamic models. To evaluate the

robustness of these methods, the prediction performance of the identified models is

compared in Tables 5.2 and 5.3 for validation data-sets; the results are summarized from

50 simulation runs. Mean squared error (MSE), mean absolute error (MAE), and standard

deviation of error (StdE) are the performance metrics evaluated. It can be observed that

the models identified using robust Bayesian framework are both more accurate (with

smaller MAE) and more reliable (with smaller StdE). Moreover, the relatively smaller

values of MSE imply the overall better prediction performance in terms of both accuracy

and reliability. The advantage of the proposed robust framework over the traditional

robust regression techniques is highlighted specially when the identification data-set is

contaminated with the location outliers.
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Table 5.2: Comparison of the prediction performance of the identified steady-state models
on the validation data

OLS Robust Regular Robust
Regression Regression Bayesian Bayesian

Case I: Scale Outliers in the Identification Data
MSE of Prediction 0.313± 0.067 0.286± 0.033 0.313± 0.045 0.250± 0.039
StdE of Prediction 0.230± 0.042 0.220± 0.031 0.230± 0.041 0.215± 0.024
MAE of Prediction 0.254± 0.059 0.230± 0.045 0.253± 0.045 0.198± 0.033

Case II: Symmetric Location Outliers in the Identification Data
RMSE of Prediction 0.308± 0.076 0.249± 0.036 0.307± 0.075 0.208± 0.020
StdE of Prediction 0.265± 0.057 0.224± 0.030 0.265± 0.056 0.201± 0.018
MAE of Prediction 0.251± 0.067 0.202± 0.030 0.250± 0.066 0.165± 0.016

Case III: Asymmetric Location Outliers in the Identification Data
RMSE of Prediction 0.487± 0.086 0.383± 0.059 0.486± 0.084 0.229± 0.039
StdE of Prediction 0.229± 0.040 0.227± 0.036 0.228± 0.038 0.212± 0.025
MAE of Prediction 0.432± 0.084 0.321± 0.054 0.432± 0.083 0.182± 0.029

Table 5.3: Comparison of the prediction performance of the identified dynamic models on
the validation data

OLS Robust Regular Robust
Regression Regression Bayesian Bayesian

Case I: Scale Outliers in the Identification Data
RMSE of Prediction 0.462± 0.124 0.445± 0.120 0.460± 0.142 0.424± 0.119
StdE of Prediction 0.400± 0.120 0.394± 0.112 0.396± 0.129 0.387± 0.113
MAE of Prediction 0.363± 0.080 0.346± 0.074 0.363± 0.107 0.324± 0.078

Case II: Symmetric Location Outliers in the Identification Data
RMSE of Prediction 0.478± 0.108 0.448± 0.081 0.0.475± 0.109 0.409± 0.072
StdE of Prediction 0.435± 0.088 0.415± 0.072 0.433± 0.088 0.393± 0.066
MAE of Prediction 0.376± 0.090 0.343± 0.0.62 0.374± 0.089 0.312± 0.054

Case III: Asymmetric Location Outliers in the Identification Data
RMSE of Prediction 0.745± 0.113 0.633± 0.097 0.739± 0.111 0.438± 0.097
StdE of Prediction 0.390± 0.087 0.390± 0.086 0.390± 0.087 0.395± 0.089
MAE of Prediction 0.660± 0.116 0.541± 0.094 0.657± 0.112 0.341± 0.080

The averaged noise variance (σ2
e ) estimates along with the standard deviation of the

estimated values obtained from each of the robust methods are presented in Table 5.4. The
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Table 5.4: Comparison of the noise variance estimates obtained using different robust
methods

Simulated Value Robust Regression Robust Bayesian
Case I: Scale Outliers in the Identification Data

Steady-State Model 0.490± 0.048 1.092± 0.124 0.408± 0.098
Dynamic Model 0.490± 0.040 1.387± 0.109 0.645± 0.126

Case II: Symmetric Location Outliers in the Identification Data
Steady-State Model 0.494± 0.053 1.554± 0.204 0.451± 0.044
Dynamic Model 0.507± 0.046 2.201± 0.278 0.636± 0.073

Case III: Asymmetric Location Outliers in the Identification Data
Steady-State Model 0.495± 0.046 1.219± 0.186 0.352± 0.066
Dynamic Model 0.512± 0.044 2.238± 0.293 0.462± 0.074

reported results show that the robust Bayesian outperforms the robust regression in terms of

the accuracy of the noise variance estimates. Therefore, another advantage of the developed

Bayesian framework is that it provides much more accurate estimates of hyperparameters

such as the measurement noise variance.

5.7.3 Continuous Stirred Tank Heater Experiment

To further demonstrate the capability of the proposed Bayesian method, identification of

an ARX model using the experimental data obtained from a pilot-scale continuous stirred

tank heater (CSTH) is considered. The CSTH pilot plant is located in the Computer

Process Control Laboratory in the Department of Chemical and Materials Engineering at

the University of Alberta. As illustrated in Figure 5.5, the feed stream of the cold water

flows into a well-stirred heated tank. The cold water is heated using saturated steam through

a heating coil and drained from the tank through a long pipe (Thornhill et al., 2008). Given

a fixed volume of water in the tank, it is desired to heat the inlet stream to a higher setpoint

temperature. To achieve this control objective the outflow temperature is measured and the

steam flow rate is adjusted accordingly.

We consider the problem of identifying a dynamic model relating the steam flow rate
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Figure 5.5: A simplified configuration of the CSTH

(input u) to the outlet water temperature (output y); the experimental data was taken from

Jin (2010). A random binary sequence (RBS) based variation in the steam flow rate was

used to sufficiently excite the process for collecting identification data; the input was varied

between 10 kg/hr and 15 kg/hr. It is noteworthy that the level of water in the tank

is controlled at 25 cm to isolate the significant effect of level variations on the process

dynamics. The input-output data collected from the CSTH pilot plant is shown in Figure

5.6.
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Figure 5.6: Input-output experimental data from a pilot scale CSTH
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The identification data-set is used to identify empirical models of the form

y(k) = θ1u(k) + θ2y(k − 1) + θ3 (5.90)

OLS regression, regular Bayesian, Huber robust regression, and robust Bayesian are

applied to estimate the model parameters. The prediction performance of the identified

models is then tested on the validation data-set.

Since the main focus of this study is to investigate the robustness of different

identification procedures, an identification data-set contaminated with outliers is of interest.

Therefore, several outliers are randomly added to the identification data-set. It is expected

that the presence of outliers will decrease the performance of various identification

procedures. Thus, the parameter estimates obtained from the original identification data-set

are considered as reference values.

Table 5.5 compares the parameter estimates obtained from the original data-set with

the ones identified from the contaminated data-sets. In the absence of contamination,

parameter estimation results from the investigated identification methods are comparable.

Regardless of the form of contamination, however, presence of outliers in the identification

data generally destroys the performance of non-robust estimators. Also, it can be clearly

observed that the OLS regression and the regular Bayesian methods fail similarly. In

contrast, the robust methods provide reasonably accurate parameter estimates, even when

the identification data-set is contaminated by either scale or location outlying observations.

Having included the contaminating model in the identification procedure, it is evident that

the proposed Bayesian approach outperforms the Huber estimator in robustness especially

in the presence of location outliers.

In order to evaluate the performance of the identified models, infinite horizon predictions

(simulation) are performed on the validation data-set. The results are compared in Figures

5.7, 5.8, and 5.9. In the case of the contaminated identification data, the models identified

through the use of non-robust methods exhibit poor prediction performance. However, it



Sec. 5.7 Simulation and Experimental Study 206

Table 5.5: Comparison of estimated parameters of the CSTH model

OLS Robust Regular Robust
Regression Regression Bayesian Bayesian

Case I: No Outlier in the Identification Data
θ1 0.0243 0.0248 0.0243 0.0254
θ2 0.9866 0.9862 0.9866 0.9859
θ3 0.1547 0.1599 0.1547 0.1639

Case II: Scale Outliers in the Identification Data
θ1 0.0537 0.0252 0.0539 0.0241
θ2 0.9626 0.9856 0.9624 0.9865
θ3 0.6236 0.1789 0.6271 0.1608
Case III: Symmetric Location Outliers in the Identification Data
θ1 0.0613 0.0285 0.0615 0.0250
θ2 0.9566 0.9831 0.9564 0.9865
θ3 0.7393 0.2212 0.7432 0.1513
Case IV: Asymmetric Location Outliers in the Identification Data
θ1 0.0642 0.0294 0.0644 0.0249
θ2 0.9545 0.9823 0.9542 0.9860
θ3 0.7834 0.2404 0.7838 0.1684
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Figure 5.7: Prediction performance of the identified CSTH models; identification data-set
is contaminated with the scale outliers.

can be observed that the robustness of the proposed Bayesian approach and Huber estimator

significantly improve the predictive accuracy of the identified models. The prediction

performance of the models identified using the robust Bayesian framework is better than

that of the ones identified using Huber robust regression.

To summarize, this experimental study shows that the proposed robust Bayesian

framework performs well under a wide variety of circumstances: with or without

contamination, with scale or location outliers, and with symmetric or asymmetric

contaminating distributions.

5.8 Concluding Remarks

Identification of ARX models in the presence of outliers was considered in this Chapter. To

obtain a computationally feasible formulation, a set of indicator variables was introduced

to denote the quality of each data point. Also, a contaminated Gaussian distribution
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Figure 5.8: Prediction performance of the identified CSTH models; identification data-set
is contaminated with the symmetric location outliers.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
29

30

31

32

33

34

35

36

37

38

39

Sampling Instant

O
u
tf
lo

w
 T

e
m

p
e
ra

tu
re

 

 
Measurement
OLS Regression
Bay Regression
Robust Regression
Robust Bayesian

Figure 5.9: Prediction performance of the identified CSTH models; identification data-set
is contaminated with the asymmetric location outliers.
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was adopted to describe the observed data. The ARX identification problem was then

formulated and solved under an iterative hierarchical Bayesian optimization framework.

The layered optimization scheme allows us to obtain MAP estimates of model parameters

with an automated mechanism for determining the hyperparameters and investigating the

identity of each data point. The effectiveness of the developed framework for robust

identification was demonstrated on the simulated and experimental data-sets. The layered

optimization solution builds a unified framework that ensures that the model identification

process is not significantly affected by outliers, which makes this method more applicable

to the real world problems.
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Chapter 6

A Bayesian Approach to Design of
Adaptive Multi-model Inferential
Sensors with Application in Oil Sand
Industry

6.1 Introduction

6.1.1 Practical Motivation

The design of inferential sensors finds its roots in process modeling. In general, inferential

sensors produce valid results only for a particular region in which the underlying models

have been identified. Hence, proper identification of a representative process model is

key to the design of an efficacious inferential sensor. Having established the intended

application of the sensor, selection of an optimal model structure that best captures the

behavior of the system would be the first step in any model identification procedure.

Depending on the level of a priori knowledge of the process, two different philosophies

may guide the choice of model structure (Ljung, 1999): 1. First principles analysis and

2. Process data analysis. Regardless of the source of available information, inferential

model structures can be further characterized as static and dynamic models; to develop

a dynamic model the temporal dimension is added to the otherwise static model. Since

A version of this chapter has been published in Journal of Process Control, Volume 22 (Khatibisepehr
and Huang, 2012).
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many unit operations are naturally subject to temporal variations, industrial processes need

to be modeled as dynamic systems in order to capture their time-varying characteristic.

Nonetheless, some chemical processes experience discrete changes superimposed on their

predominantly continuous dynamic behavior. The continuous-state dynamics is typically

associated with physical phenomena involved, while the discrete-state dynamics may

come from switching controllers, inherent non-linearities in the system, different operating

conditions, or any other external discrete events influencing the process under investigation.

In such applications, only multi-model inferential sensors can describe both the continuous

dynamic behavior and the transitions between discrete modes (Murray-Smith and Johansen,

1997; Azimzadeh et al., 1998).

The multi-model paradigm has increasingly attracted attention in process control

community because of its many potential industrial applications (Paoletti et al., 2007;

Lauer, 2008). Hybrid models with multi-model structures have been adopted to represent

time-varying dynamic behavior of industrial processes for prediction, estimation, or

control purposes. The polymer industry is a typical application field where modeling of

hybrid systems is of great interest. Suitable production policies drive a single polymer

manufacturing plant switching among various operating conditions to produce many

different grades; this system has multiple modes or regimes of behavior. Kim et al. (2005)

have designed a clustering-based hybrid inferential sensor for an industrial Polypropylene

process with grade changeover operation. Kadlec and Gabrys (2011) have designed an

adaptive inferential sensor based on the local learning framework in order to predict the

catalyst activation rate in a polymerization reactor. Angelov and Kordon (2010) have

developed an adaptive multi-model inferential sensor based on the concept of evolving

fuzzy models for product composition estimation in a distillation tower. Multi-model

inferential sensors can be used to represent complex processes by concatenating multiple

models with simple structures. For instance, Domlan et al. (2011) have developed
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an inferential sensor with decoupled multiple model structure to approximate the non-

linear dynamic behavior of a separation unit by switching among various piecewise linear

models.s

The problem of multi-modal system identification has been considered widely and

several approaches have been proposed such as algebraic procedure (Vidal et al., 2003),

the clustering-based procedure (Ferrari-Trecate et al., 2003), the Bayesian procedure

(Juloski, 2004; Juloski et al., 2005), the EM-based procedure (Jin and Huang, 2010),

and the bounded-error procedure (Bemporad et al., 2005). The recursive identification

procedure implemented in most of the aforementioned approaches comprises three steps.

First, the operating space is partitioned into a finite number of non-overlapping regions.

Next, identification data is attributed to relevant regions based on descriptive classification

criteria; the identification data-set is divided into multiple exclusive sub-sets. Finally, the

standard identification techniques are applied to develop sub-models that best describe the

associated regions; the identified sub-models would be well supported by the corresponding

identification data sub-sets.

Despite the increasing number of publications dealing with identification of multi-

modal systems, yet several challenging issues remain open (Paoletti et al., 2007; Lauer,

2008). Firstly, most of the existing methods focus mainly on switched linear system

identification or piecewise affine function approximation. The identification of hybrid

systems switching between non-linear continuous-state dynamics have not been extensively

studied. Another issue to be considered is related to overlapping regions. Many of the

identification procedures hinge on the assumption that an operating space can be partitioned

into linearly separable regions. There are two main approaches available in the literature to

deal with data points lying in the proximity of the intersection of multiple regions. In the

first category of approaches, attributes with undecidable data points are discarded during

the classification step (Bemporad et al., 2003; Juloski, 2004). This could be a feasible
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solution when there are only few undecidable data points; otherwise, excluding a large

number of identification data from analysis may lead to a considerable loss of information

and biased estimates. In the second category of approaches, each attribute is first classified

to one and only one region. Next, a refinement step based on the certainly attributed closest

neighbors is considered (Bemporad et al., 2005; Jin and Huang, 2010). Although the size

of the identification data-set is preserved in such methods, the misclassified data points

could decrease the accuracy and generalization performance of inferential sub-models.

Finally, available process knowledge cannot be easily incorporated in many of the current

formalisms. Thus, including relevant prior information in the identification process is

another important issue to be addressed.

6.1.2 Main Contributions

The main contribution of this work is to present a novel Bayesian procedure for

the development and implementation of adaptive multi-model inferential sensors for

industrial applications. The proposed approach provides a framework to accommodate

the overlapping regions, facilitates the inclusion of prior knowledge about the operating

conditions, and implements local adaptation mechanisms. An equally important

contribution of this research is to demonstrate practicality and validity of the proposed

approach through a successful application in the oil sand industry. Oil sands development

is both a costly and technically complex business with potential environmental impacts

due to land use, water consumption and air emissions. Therefore, it is of practical interest

to further investigate techniques for design of inferential sensors in virtually all areas of

this industry to improve process operations and control to reduce environmental footprints,

improve recovery and lower the production costs of bitumen. Even a small incremental

increase of less than 1% in Alberta oil sands production, for instance, can increase the total

annual revenue of the producers by several millions of dollars in a typical oil sands complex

(Dougan and McDowell, 1997).
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6.1.3 Chapter Outline

The remainder of this Chapter is organized as follows. In Section 6.2, the identification

problem of interest is formulated. Section 6.3 presents a Bayesian procedure for the

design of multi-model inferential sensors. Section 6.4 presents a general procedure for

the implementation of multi-model inferential sensors and discusses the importance of

adaptation mechanisms for maintaining the on-line performance. In Section 6.5, the

efficacy of the proposed procedures is demonstrated through a simulation case study. An

adaptive multi-model inferential sensor is developed to predict the product concentration of

a continuous stirred tank reactor which is a benchmark example of a process with non-linear

dynamics. In Section 6.6, the effectiveness of the proposed Bayesian approach is further

highlighted through an industrial case study. The objective was to design an inferential

sensor for real-time monitoring of a key quality variable of an oil sands processing unit.

Finally, Section 6.7 summarizes this Chapter with some concluding remarks.

6.2 Problem Statement

Consider an input-output representation of a multi-modal system expressed as{
y
(m)
t = f (m)

(
rt; Θ(m)

)
m = 1, · · · ,M

yt =
∑M

m=1 ψ
(m)
t (st)y

(m)
t + εt

(6.1)

where rt is the regressor vector constructed from the lagged outputs and inputs, M is the

number of sub-models, and εt is the error term.

As suggested by Equation 6.1, the design of a multi-model inferential sensor comprises

two steps. First, each sub-model, m ∈ {1 · · · ,M}, is represented by its functional

form, f (m), and a set of corresponding parameters, Θ(m). Next, a proper interpolation

function is defined to assign an importance weight, ψ(m), to the output of each sub-model,

y(m), in order to combine the information included in a set of local sub-models into a

global predictive model. The interpolation function is often parameterized by a scheduling
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variable, st, that effectively determines the discrete-state dynamics at time instant t. The

choice of a suitable scheduling variable is problem specific.

A general introduction to the identification of multi-modal systems and a good review

of several identification techniques are provided by Paoletti et al. (2007); Lauer (2008).

The focus of this study is on Bayesian methods, which have the potential to overcome the

aforementioned shortcomings of the other approaches in the design of inferential sensors.

6.3 Bayesian Approach for Design of Multi-model
Inferential Sensors

A Bayesian identification procedure was proposed by Juloski et al. (2005) for piecewise

autoregressive exogenous (PWARX) models and was extended by Juloski and Weiland

(2006) for piecewise output error (PWOE) models. First, each attribute is classified to the

mode with the highest probability by sequential processing of the identification data points.

Next, Bayesian parameter estimation is performed to identify each sub-model from the

corresponding data. The limitation of the described procedure is that the operating space is

partitioned into a finite number of linearly separable regions i.e. at each time instant only

one mode is active. In the context of process industries, however, the operating modes are

often overlapped or have non-linear boundaries in continuous unit operations. Moreover,

the classification rule only relies on evaluating the residuals obtained from each sub-model.

Thus, the available information about the process operation cannot be fully incorporated in

the identification procedure. Finally, if the identification data is not linearly separable or if

the relevant residuals are comparable, the violating attributes are excluded from analysis.

In this work, a Bayesian procedure is proposed in order to accommodate the overlapping

regions and facilitate the inclusion of prior knowledge about the operating conditions.

The first step in the identification of industrial multi-model inferential sensors is

to thoroughly investigate all the available source of information (e.g. first principles,
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operational data, and etc.). The purpose of such preliminary studies is twofold. Firstly, it is

desired to identify possible operating modes and, consequently, to determine the number of

sub-models. Secondly, it is important to select a representative scheduling variable, through

which the operating space can be properly partitioned. There are a few criteria that may

guide the choice of a suitable scheduling variable:

1. A scheduling variable should reflect changes in plant dynamics as operating

conditions vary.

2. A slowly-varying scheduling variable would guarantee smooth transitions between

different sub-models.

3. The availability of real-time measurements of a scheduling variable is one of the key

requirements for successful application of a multi-model inferential sensor.

From a Bayesian point of view, the interpolation function introduced in Equation 6.1 is

defined as

ψ
(m)
t = p(it = m|st) (6.2)

where it is the discrete-state dynamics at time instant t and p(it = m|st) denotes the

conditional probability of the mth sub-model capturing the discrete-state dynamics at time

instant t, given the scheduling variable st.

The above posterior probability can be evaluated using Bayes’ theorem:

p(it = m|st) =
p(st|it = m)p(it = m)∑M

m=1 p(st|it = m)p(it = m)
(6.3)

where p(st|it = m) is the likelihood that st was generated by the mth mode and p(it = m)

is the prior probability that the system operates in the mth mode.

Given the identification data-set D = {(st, rt, yt)}Nt=1 = {Zt}Nt=1, the parameter and

mode estimation problem is formulated under a Bayesian framework as follows

p({Θ(m)}Mm=1|D) =
p(D|{Θ(m)}Mm=1)p({Θ(m)}Mm=1)

p(D)
(6.4)
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where Θ(m) =
[
θ
(m)
1 , · · · , θ(m)

p

]T
.

The available knowledge regarding the model parameters is exploited by specifying

informative prior distributions. In the absence of other relevant information, the

prior probability of {Θ(m)}Mm=1 can be defined as independent multivariate Gaussian

distributions, such that

p({Θ(m)}mi=1) =
M∏

m=1

p(Θ(m))

∝
M∏

m=1

exp

(
− 1

2

(
Θ(m) −Θ

(m)
0

)T
Σ−1

Θ
(m)
0

(
Θ(m) −Θ

(m)
0

))
(6.5)

where Θ
(m)
0 denotes the explicitly specified expected values of Θ(m) and

Σ
Θ

(m)
0

=


σ2

θ
(m)
1

σ
θ
(m)
1
σ
θ
(m)
2

· · · σ
θ
(m)
1
σ
θ
(m)
p

σ
θ
(m)
1
σ
θ
(m)
2

σ2

θ
(m)
2

· · · σ
θ
(m)
2
σ
θ
(m)
P

...
... · · · ...

σ
θ
(m)
1
σ
θ
(m)
P

σ
θ
(m)
2
σ
θ
(m)
P

· · · σ2

θ
(m)
P

 (6.6)

represents the prior degree of belief over possible values of Θ(m) that are centered around

Θ
(m)
0 in the parameter space. As mentioned previously, Θ

(m)
0 is the parameter vector

selected based on the available prior information. Thus, lack of prior knowledge about

specific parameters would be quantitatively demonstrated by the relatively large values of

the elements of covariance matrices, {Σ
Θ

(m)
0

}Mm=1. For instance, if θ(1)1 is specified based on

the vague information, the high prior uncertainty is expressed through 0 ≪ σ2

θ
(1)
1

. Hence,

the importance of the non-informative or imprecise priors can be considerably reduced.

Applying the chain rule of probability theory, the likelihood can be expressed as

p(D|{Θ(m)}Mm=1) =
N∏
t=1

p(Zt|{Θ(m)}Mm=1)

∝
N∏
t=1

exp

(
− 1

2σ2
ε

(
yt −

M∑
m=1

ψ
(m)
t ŷ

(m)
t

)2)
(6.7)

where N is the size of identification data-set, yt is the measured value, ŷ
(m)
t =

f (m)
(
rt; Θ(m)

)
is the predicted value, and σ2

ε denotes the variance of the prediction error.
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Substituting Equations 6.5 and 6.7 in Equation 6.4, the posterior probability of the model

parameters becomes

p({Θ(m)}Mm=1|D) ∝
N∏
t=1

exp

(
− 1

2σ2
ε

(
yt −

M∑
m=1

ψ
(m)
t ŷ

(m)
t

)2)

×
M∏

m=1

exp

(
− 1

2

(
Θ(m) −Θ

(m)
0

)T
Σ−1

Θ
(m)
0

(
Θ(m) −Θ

(m)
0

))
(6.8)

The MAP estimates of the model parameters are obtained by maximizing the posterior

probability, or equivalently, by minimizing the negative logarithm of Equation 6.8. The

parameter estimation problem is then posed as

min
{Θ(m)}Mm=1

JN

(
{Θ(m)}Mm=1

)
=

1

2σ2
ε

N∑
t=1

(
yt −

M∑
m=1

ψ
(m)
t ŷ

(m)
t

)2
+

1

2

M∑
m=1

(
Θ(m) −Θ

(m)
0

)T
Σ−1

Θ
(m)
0

(
Θ(m) −Θ

(m)
0

)
(6.9)

The optimization problem of Equation 6.9 can be solved in a Bayesian Gauss-

Newton framework (Mirikitani and Nikolaev, 2010). Approximating the cost function

JN

(
{Θ(m)}Mm=1

)
by its second-order temporal Taylor expansion, we obtain

JN(Θ) ≈ JN

(
Θ̂[k]

)
+∇JN

(
Θ̂[k]

)(
Θ− Θ̂[k]

)
+

1

2

(
Θ− Θ̂[k]

)T
∇2JN(Θ̂

[k])
(
Θ− Θ̂[k]

)
(6.10)

where k denotes the iteration step and Θ =
[
θ
(1)
1 , · · · , θ(1)P , · · · , θ(m)

1 , · · · , θ(m)
P

]T
is

introduced for notational convenience. The gradient of the approximated cost function

is thus expressed as

∇JN(Θ) = ∇JN

(
Θ̂[k]

)
+∇2JN

(
Θ̂[k]

)(
Θ− Θ̂[k]

)
(6.11)

Putting the gradient equal to zero, the update equation for parameter estimation can be

derived:

Θ̂[k+1] = Θ̂[k] −
(
∇2JN

(
Θ̂[k]

))−1

∇JN

(
Θ̂[k]

)
(6.12)
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where,

∇JN(Θ) = − 1

σ2
ε

N∑
t=1

φt(Θ)εt(Θ) +
M∑

m=1

Σ−1

Θ
(m)
0

(
Θ(m) −Θ

(m)
0

)
(6.13)

and

∇2JN(Θ) =
1

σ2
ε

N∑
t=1

φt(Θ)φT
t (Θ)− φ

′

t(Θ)εt(Θ) +
M∑

m=1

Σ−1

Θ
(m)
0

(6.14)

with

φt(Θ) =

[
∂ŷt

∂θ
(1)
1

, · · · , ∂ŷt
∂θ

(1)
P

, · · · , ∂ŷt

∂θ
(m)
1

, · · · , ∂ŷt

∂θ
(m)
P

]T
(6.15)

The main advantage of the Bayesian parameter estimation is that the explicit prior

knowledge on the parameters can be incorporated by specifying appropriate prior

probabilities.

Based on the above theoretical derivations, the implementation procedure of the

proposed Bayesian identification approach is outlined in Algorithm 6.1.

Algorithm 6.1. Iterative Bayesian Procedure for Identification of Multi-model Inferential

Sensors

1. The following preparatory steps are completed to incorporate the relevant prior

knowledge and include the available background information:

1.1. Select a representative scheduling variable, st, that effectively determines the

discrete-state dynamics at time instant t.

1.2. Specify the number of sub-models, m, based on the prior knowledge of the

nominal operating conditions or analysis of the historical operational data.

1.3. Assign the prior probability of the system operating in the mth mode,

p(it = m). Information about the typical operation schedule is obtained by

interviewing the plant experts or analysis of the historical data.

1.4. Determine the likelihood that st would be generated by themth mode, p(st|it =

m). Marginal and joint probability distributions of the scheduling variable and
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the influential process variables could be investigated in order to specify such

conditional probability density functions from historical data.

1.5. Characterize the prior distribution of model parameters, p({Θ(m)}Mm=1), based

on the available background information.

2. Given the identification data-set D = {(st, rt, yt)}Nt=1 evaluate the posterior

probability of Equation 6.2 for all the identification data points to construct the

interpolation matrix {Ψ(m)}Mm=1 with Ψ(m) = {ψ(m)
t }Nt=1.

3. Choose a set of initial values for model parameters, Θ̂[0]; the following steps will be

repeated iteratively until no further improvement is gained:

3.1. Given the current estimate of the parameters Θ̂[k], calculate ∇JN(Θ̂
[k]) and

∇2JN(Θ̂
[k]) from Equations 6.13 and 6.14, respectively.

3.2. Update the MAP estimates of model parameters, Θ̂[k+1], using Equation 6.12.

6.4 Adaptation of Multi-model Inferential Sensors

The accuracy of an inferential sensor is usually guaranteed for only a particular region in

which the model has been identified. However, most of the industrial processes exhibit

a certain form of time-variant behavior due to fouling and/or abrasion in the process

equipments, variation in the quality of feed, changes in the weather, and so on. In order

to detect abrupt changes and gradual drifts in the process operations, process monitoring

and on-line adaptation is often integrated in the implementation procedure. As a result

of such precautions, the inferential model will be adjusted on-line to compensate for

deviations from the off-line design conditions. Several on-line adaptation methods have

been proposed in the literature on the basis of moving windows techniques, recursive

adaptation techniques, and ensemble-based methods (Kadlec et al., 2011; Khatibisepehr

et al., 2013).
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The Bayesian decision-support scheme, presented in Section 6.3, inherently includes

a global adaptation mechanism, within the envelope of previously identified operating

conditions. The importance weights assigned to the sub-models are defined as time

dependent to reflect the discrete-state dynamics at each time instant. The time-varying

nature of the importance weights facilitate compensation of the expected slow and abrupt

changes. Yet, there is a need to develop local adaptation mechanisms to detect and handle

potential unknown drifts of process operating conditions which have not been captured in

the model identification phase discussed previously. The local adaptation is accomplished

through scaling and bias update; the latter is the common industrial practice. There are

several approaches to dealing with unknown drifts caused by unidentified sources. The

parameters of most of these adaptation techniques are often selected in a rather ad-hoc

manner. This section extends the proposed Bayesian approach to provide a systematic

procedure for estimation of adaptation parameters.

Consider an adaptive multi-model inferential sensor of the form{
y
(m)
t = α

(m)
t f (m)

(
rt; Θ(m)

)
+ β

(m)
t i = 1, · · · ,m

yt =
∑M

m=1 ψ
(m)
t (st)y

(m)
t + εt

(6.16)

where α(m)
t and β(m)

t respectively denote the scale factor and bias update term of the mth

sub-model at time instant t. There are a variety of update rules that can be specified to guide

the adjustment of the scale factor and bias update term. In this work, the general form of

an exponentially weighted moving average filter is employed to develop local adaptation

mechanisms, such that

α
(m)
t+1 = λ(m)

(
ψ

(m)
t yRef

t − ψ
(m)
t−1y

Ref
t−1

ψ
(m)
t

[
α
(m)
t f (m)(rt; Θ(m)) + β

(m)
t

]
− ψ

(m)
t−1

[
α
(m)
t f (m)(rt−1; Θ(m)) + β

(m)
t

])α(m)
t

+ (1− λ(m))α
(m)
t (6.17)

β
(m)
t+1 = κ(m)

(
ψ

(m)
t

[
yRef
t − α

(m)
t+1f

(m)(rt; Θ(m))− β
(m)
t

]
+ β

(m)
t

)
+
(
1− κ(m)

)
β
(m)
t (6.18)
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Figure 6.1: Inferential sensor calibration philosophy

where λ(m) and κ(m) are the smoothing parameters, also known as forgetting factors, that

may be estimated off-line. yRef
t denotes the accurate reference value (e.g. laboratory

measurement) at time instant t. Equations 6.17 and 6.18 can be best illustrated by Figure

6.1. As shown in this figure, the bias is updated to reduce the prediction offset; the bias

error is corrected with reference to yRef
t , which is often sampled in a slow-rate. On the other

hand, the scale factor is updated to adjust the slope of the imaginary line passing through

predictions. The formulation adopted here allows for the straightforward implementation

of on-line adaptation mechanisms for industrial inferential sensors, though other forms can

also be considered.

The sub-model parameter vectors are augmented to include the local smoothing

parameters, such that

Θ =
[
Θ(1), · · · ,Θ(m)

]T
=
[
θ
(1)
1 , · · · , θ(1)P , λ(1), κ(1), · · · , θ(m)

1 , · · · , θ(m)
P , λ(m), κ(m)

]T
(6.19)

The augmented parameter vector can thus be used to directly extend the proposed Bayesian

identification algorithm to estimate the local adaptation parameters and the sub-model
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parameters simultaneously.

Once an adaptive multi-model inferential sensor has been identified, the Bayesian

procedure presented in Algorithm 6.2 would be followed to obtain real-time predictions.

Algorithm 6.2. Implementation Procedure of the Developed Adaptive Multi-model

Inferential Sensors

1. Based on the real-time measurement of the scheduling variable, evaluate the posterior

probability of Equation 6.2 to construct the interpolation vector {ψ(m)
t }Mm=1.

2. Calculate the output of each sub-model form the identified local models.

3. Combine the calculations of Steps 1 and 2 in order to obtain a real-time prediction of

the query variable (see Equation 6.16).

4. Upon the arrival of a laboratory measurement (or any other reliable off-line data), use

Equations 6.17 and/or 6.18 to respectively update the scale factor and the bias term

for the next interval until a new reference value is available.

6.5 CSTR Simulation Example

Continuous stirred tank reactors (CSTR) are commonly used in the process industries.

An irreversible and exothermic reaction takes place inside the tank of a single perfectly

mixed CSTR shown in Figure 6.2. The coolant water is continuously circulated through a

cooling jacket surrounding the reactor to absorb the generated reaction heat. The governing

equations of a CSTR are given by (Xu et al., 2009)

dCa(t)

dt
=
Fi

V

(
Cai − Ca(t)

)
− k0Ca(t) exp

(
−E
RT

)
(6.20)

dT (t)

dt
=
Fi

V

(
Ti − T (t)

)
− ∆Hk0Ca(t)

ρCp

exp

(
−E
RT

)
+
ρcCpc

ρCpV
Fc(t)

(
1− exp

(
−hA

Fc(t)ρCp

))(
Tci − T (t)

)
(6.21)
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Figure 6.2: Schematic of a continuous stirred tank reactor

where Ca is the product concentration, T is the product temperature, and Fc is the coolant

flow-rate. The CSTR model parameters and steady state operating conditions are listed in

Tables 6.1 and 6.2, respectively (Xu et al., 2009).

In this study, the product concentration (Ca) is monitored as the output variable and

the coolant flow-rate (Fc) is selected as the manipulated variable, i.e. yt = Ca(t) and

rt = Fc(t). As coolant flow-rate increases, the product temperature decreases and,

consequently, the product concentration increases. The process is simulated using the

non-linear dynamic model given in Equations 6.20 and 6.21. As listed in Table 6.2, five

operating conditions are considered throughout the feasible range of the coolant flow-rate

that is limited to the range of 95 L/min to 111 L/min. To illustrate the non-linearity of

the CSTR process over this operating range, the step responses from the coolant flow-rate

to the product concentration are displayed in Figure 6.3.

The noise contaminating Fc and Ca are assumed to be zero mean Gaussian random

variables with variance of 2.25 × 10−2 and 10−8, respectively. Although not a common

industrial practice, a random sequence of the operating conditions has been used for both

identification and validation purposes. The random sequences were selected to illustrate

that the application of the proposed identification and implementation procedures does

not require any specific transition patterns. The validation values of the coolant flow-rate
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Table 6.1: A summary of the CSTR model parameters

Parameter Symbol Value
Feed flow-rate Fi 100 L/min
Feed concentration Cai 1mol/L
Feed temperature Ti 350 K
Reactor volume V 100 L
Reactor rate constant k0 7.2× 1010 min−1

Activation energy term E/R 1× 104 K
Heat of reaction ∆H −2× 105 cal/mol
Reactant density ρ 1000 g/L
Reactant specific heat Cp 1 cal/g/K
Heat transfer term hA 7× 105 cal/min/K
Coolant inlet temperature Tci 350 K
Coolant density ρc 1000 g/L
Coolant specific heat Cpc 1 cal/g/K

Table 6.2: CSTR steady state operating conditions

Coolant Flow-rate Product Concentration Product Temperature
L/min mol/L K

Mode 1 97 0.0795 443.4566
Mode 2 100 0.0885 441.1475
Mode 3 103 0.0989 438.7763
Mode 4 106 0.1110 436.3091
Mode 5 109 0.1254 433.6921

are different from the ones used in the identification phase. To switch between different

operating points, the coolant flow-rate is changed by a fixed step size. The sampling interval

is assumed to be Ts = 0.1min.

The non-linear dynamic behavior of the CSTR is modeled by a set of piecewise linear

models interconnected through a Bayesian decision-support interpolation function. The

coolant flow-rate is selected as the scheduling variable, i.e. st = Fc(t), because it

effectively determines the discrete-state process dynamics. As presented in Figure 6.4, the

probability distribution of the coolant flow-rate can be approximated as a mixture of five
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Figure 6.3: Step responses from the coolant flow-rate to the product concentration

Gaussian distributions. Themth distribution reflects the likelihood that Fc(t) was generated

by the mth operating condition. Also, the prior probability that the system operates around

themth mode is assumed to be equal among all modes. Figure 6.5 illustrates the importance

weights assigned to the sub-models within the feasible range of the scheduling variable.

Algorithm 6.1 is followed to identify sub-model parameters and Algorithm 6.2 is

implemented to predict the product concentration given the coolant flow-rate. The

predicted and reference values are compared in Figure 6.6.a and the importance weights

are presented in Figure 6.6.b. A close agreement between the predictions and reference

values are obtained on the identification data. The prediction performance of the identified

hybrid model is further tested on the validation data. The predicted and reference values

are compared in Figure 6.7.a and the importance weights are presented in Figure 6.7.b.

It is observed that the identified system is capable of producing accurate predictions and

tracking the significant changes in the reference data.

As discussed previously, the proposed Bayesian method accommodates the overlapping

operating modes, which would increase the robustness of an inferential sensor. This



Sec. 6.5 CSTR Simulation Example 232

95 97 99 101 103 105 107 109 111
0

0.05

0.1

0.15

0.2

0.25

Coolant Flow−rate (F
c
 )

D
en

si
ty

 

 
Coolant Flow−rate Distribution
Mixture of Gaussian Distribution

Figure 6.4: Probability distribution of coolant flow-rate

95 97 99 101 103 105 107 109 111

0

0.2

0.4

0.6

0.8

1

Coolant Flow−rate (F
c 

)

Im
po

rt
an

ce
 W

ei
gh

t

 

 

w
1

w
2

w
3

w
4

w
5

Figure 6.5: Importance weights assigned to the sub-models
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Figure 6.6: CSTR: Self-validation
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Figure 6.7: CSTR: Cross-validation
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unique feature of our method is highlighted through demonstration of the smooth transition

between operating modes. It is contrary to the abrupt changes observed in the predictions

obtained from a conventional Bayesian method at transition periods, as demonstrated in

Figure 6.8.

To illustrate the importance of local adaptation mechanisms, suppose that the coolant

inlet temperature (Tci) fluctuates randomly between 349.5 K and 350 K with switching

probability of 0.01. Furthermore, it is assumed that Fc is contaminated by zero

mean Gaussian noise with variance of 2.5 × 10−3. Note that the coolant flow-rate

measurements are considered to be available, while the random fluctuations in the coolant

inlet temperature are treated as unmeasured.

The raw predictions, without bias compensation, and the measured values of product
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concentration are compared in Figure 6.9.a. Evidently, there is an offset between the

predicted and reference values. In order to minimize the prediction errors, the bias is

updated every 200 sampling instants. As shown in Figure 6.9.b, the bias compensation

has certainly improved the prediction performance of the inferential sensor.

6.6 Industrial Case Study

6.6.1 Process Description

The main objective of the oil sand extraction process is to separate bitumen from other

components, which are mainly water and solids. The oil sand is first mixed with hot water

and the resulting slurry is then fed into a primary separation vessel (PSV) to facilitate

bitumen flotation and sand settling. The froth floats off the top of PSV and the deaerated

froth is further treated in the froth treatment plant to remove residual water and fine solids.

The froth is first mixed with diluent and some process aids such as demulsifier. The diluent

is mixed with froth to produce lighter hydrocarbon phase and, consequently, to enhance the

density difference between the various components, while the demulsifier is added to break

water-oil emulsions. The diluted froth is fed into various separation units, most of which

rely on gravity separation principles. The inclined plate settler (IPS) units are one of the

key froth treatment processes. The IPS units allow for the space efficient gravity separation

of diluted bitumen from the other components. The IPS overflow product stream mainly

consists of the diluted bitumen floating to the top of the vessel. The other components of

the diluted froth such as water and minerals settle down at the bottom of the vessel to be

treated by the centrifuges (Domlan et al., 2010; Shao et al., 2011). A schematic diagram

of an IPS unit is illustrated in Figure 6.10.

The Diluent to Bitumen (D:B) ratio in the IPS product stream is used to control the

quality of diluted bitumen and, thus, serves as one of the key indicators of the separation

process performance. It is very important to maintain the D:B ratio in both product and
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Figure 6.10: Schematic diagram of the inclined plates settler (IPS) operation

feed streams at certain levels so as to achieve optimal separation efficiency with effective

cost. However, D:B measurements are normally determined by on-line analyzers or off-

line analysis in laboratory, which are often not reliable. Furthermore, significant delay

is incurred in laboratory testing such that the measured signal cannot be used as the

feedback signal for control systems. Therefore, there is an economic necessity to develop

inferential mechanisms in order to improve the accuracy and reliability of real-time D:B

ratio estimates and, consequently, improve product quality. Specifically, the objective of

this study is to design an inferential sensor for real-time monitoring of the D:B ratio in the

IPS product stream, i.e yt = DBt. Two parallel IPS vessels are considered, namely IPS A

and IPS B.

6.6.2 Process Data Analysis

A list of the influential process variables is presented in Table 6.3. These variables

have been identified by exploiting the analytical knowledge as well as considering the

availability of measuring devices. The real-time measurements are recorded every minute,
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whereas the laboratory analysis of D:B is logged approximately every 2 hours. The

operational and laboratory data was collected through an automated data historian. Since a

large amount of historical data was available, two independent sub-sets were constructed.

An identification data-set was constructed from the data recorded from September 1 to

December 31, 2010; altogether 156140 fast-rate and 1286 slow-rate measurements are

used. Also, a validation data-set was constructed from the data recorded from January 1 to

April 30, 2011; altogether 168030 fast-rate and 1352 slow-rate measurements were used.

The identification data-set was used for inferential model identification purposes, while

the validation data-set was reserved for cross validating the performance of the designed

inferential sensor. All industrial data presented here has been normalized in order to protect

proprietary information.

The careful investigation of the collected historical data reveals that missing

measurements and outlying observations are the main factors affecting the data quality.

Yet, these factors did not show a considerable impact on the completeness and reliability

of the selected identification data-set. Various pre-processing techniques were adopted to

refine the quality of operational data.

Through Bayesian data analysis, the marginal and joint probability distributions of the

influential process variables were investigated in order to extract hidden patterns (e.g.

dependencies, operating ranges, and etc.) from historical data. Having incorporated the

knowledge and experience of the plant experts, these patterns would be considered as a

summary of the input data. As illustrated in Figures 6.11.a and 6.11.b, the probability

distributions of historical diluent flow-rate and IPS feed flow-rate can be approximated as

a mixture of three Gaussian distributions. This motivates the application of multi-model

inferential sensors to cover different operating conditions, while preserving the accuracy

of predictions in the normal operating region. The real-time feed flow-rate is selected as

the scheduling variable, i.e. st = Fdf,t. Consequently, the operating space of the IPS is
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Table 6.3: A summary of the influential process variables

Process Variable Symbol
Demulsifier flow-rate Fde

Diluent flow-rate Fdi

IPS diluted feed flow-rate Fdf

IPS product flow-rate Fp

IPS underflow flow-rate Fu

partitioned into multiple operating modes, namely low feed flow-rate, medium feed flow-

rate, and high feed flow-rate. It is noteworthy that the choice of the number of sub-models

is a trade-off between accuracy of the distribution fitting and complexity of the inferential

sensor.

6.6.3 Model Identification

on-line estimation of D:B ratio on the basis of first principles analysis requires real-

time density and composition measurements for different streams. Due to the lack of

such measurements, it is not possible to develop a complete knowledge-driven model

of the process. Instead, the available process knowledge is considered to search for

an appropriate model structure, while historical operational data are used to reveal the

parametric relationship between D:B ratio and on-line measurable process variables.

Based on the insight obtained from first principles and process data analysis, the

following model is found to provide reasonable real-time predictions of DBt from rt =

[Fde,t, Fdi,t, Fdf,t, Fp,t, Fu,t]:

D̂B
Fast

t =
∑
i

ψ
(m)
t D̂B

(m)

t

=
∑
i

p(it = m|Fdf,t)D̂B
(m)

t i ∈ {Lo,Med,Hi} (6.22)

with

p(it = m|Fdf,t) =
p(Fdf,t|it = m)p(it = m)

Σip(Fdf,t|it = m)p(it = m)
(6.23)
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Figure 6.11: Historical probability distributions of influential process variables
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and

D̂B
(m)

t =
1− z−1

1−
(
1− ψ

(m)
t κ(m)

)
z−1

×

(
Fdi,t(θ

(m)
1 Fdf,t + θ

(m)
2 Fde,t + θ

(m)
3 Fdi,t)

−1 + θ
(m)
4 Fu,tF

−1
df,t + θ

(m)
5

1 + θ
(m)
6 Fu,tF

−1
df,t

)

+
ψ

(m)
t κ(m)z−1

1−
(
1− ψ

(m)
t κ(m)

)
z−1

DBLab
T (6.24)

where z−1 is the back-shift operator, T corresponds to the slower sampling rate (e.g. every

1 hour), and t corresponds to the faster sampling rate (e.g. every 1 minute). Therefore,

D̂B
(m)

t represents the real-time fast-rate estimate obtained from the mth sub-model, while

z−1DBLab
T = DBLab

T−1 denotes the off-line slow-rate laboratory measurement with T − 1 <

t ≤ T . For the mth sub-model, an adaptive bias term with smoothing parameter κ(m)

is included to keep track of drifts in the process data through the adjustment of on-line

predictions to the newly arrived laboratory data. By manipulating such adaptive structure,

the second term on the right-hand side of Equation 6.24 would appear as a function of

the lagged slow-rate D:B measurements (laboratory data). Moreover, p(it = m|Fdf,t)

is the likelihood that Fdf,t was generated by the mth mode and p(it = m) is the prior

probability that the system operates in the mth mode. The prior probabilities and the

likelihood functions are determined on the basis of the available operational information

as well as the historical process data. Finally, the sub-model parameters are estimated

according to the procedure outlined in Algorithm 6.1. It is noteworthy that the developed

inferential sensor is only parameter-varying with respect to the scheduling variable, i.e.

the functional form of the sub-models obtained from mass balance equations remains

the same. Figure 6.12 illustrates the relative variation of the sub-model parameters, i.e.

Θ(m) = {θ(m)
1 , · · · , θ(m)

6 , κ(m)}, with respect to the operating modes.
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Figure 6.12: Sub-model parameter estimates

6.6.4 Model Evaluation
6.6.4.1 Performance Evaluation Criteria

Generally, the major purpose of model validation is to evaluate the accuracy and reliability

of the developed inferential sensor. Accuracy is the level of agreement between the

predicted and target values, while reliability is the degree to which the prediction errors

vary. Evaluating the performance of an inferential sensor thus amounts to analyzing the

characteristics of prediction errors, which are also referred to as residuals. The graphical

techniques used in analysis of residuals are listed below:

• Scatter plot of predicted values versus target values: The ideal case would be for

all the data points to lie on the identity line (y = x), indicating perfect agreement

between the predicted and target values.

• Run-sequence plot of predicted and target values: The time trend of the predicted

and target values are plotted together to visually assess the accuracy and reliability

of the inferential model.
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To provide an arithmetical basis for evaluating the performance of the developed inferential

sensor, mean absolute error (MAE), standard deviation of errors (StdE), and mean squared

error (MSE) are assessed.

The MAE is a measure of accuracy defined as the average of absolute prediction errors:

MAE =
1

N

N∑
n=1

|εn| (6.25)

whereN is the number of observations and εn is the prediction error for the nth observation.

The StdE is a measure of reliability expressed through the variation of prediction errors:

StdE =

√√√√ 1

N − 1

N∑
n=1

(εn − ε̄)2 (6.26)

where ε̄ is the mean of error distribution.

Finally, the MSE indicates the overall prediction performance in terms of both accuracy

and reliability:

MSE =

√√√√ 1

N

N∑
n=1

ε2n (6.27)

Readers are referred to Section 2.4.1 for more details.

6.6.4.2 Off-line Performance Evaluation

The off-line performance evaluation comprises two steps, namely, self-validation and

cross-validation. Self-validation determines the adequacy of fit by evaluating the

prediction performance of the developed inferential model on the identification data. Cross-

validation assesses the generalization capability by evaluating the prediction performance

of the identified inferential model on the validation data that has not been involved in the

identification procedure.

The performance of the developed inferential sensor is first verified on the identification

data-set. Figures 6.13.a and 6.14.a show the scatter plots of the D:B predictions versus

laboratory measurements for IPS A and IPS B, respectively. Also, Figures 6.13.b and
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Figure 6.13: IPS A: Self-validation
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Figure 6.14: IPS B: Self-validation
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6.14.b display the run-sequence plots of predicted and target values for IPS A and IPS

B, respectively. It is observed that the D:B predictions for both IPS A and IPS B are

able to accurately fit the laboratory data. However, the adequacy of model fit does not

reliably ascertain the prediction performance i.e. satisfactory prediction capability on the

identification data does not guarantee generalization to other data-sets. Thus, the prediction

performance of the developed inferential sensor is next evaluated on the validation data-set.

Figures 6.15.a and 6.16.a show the scatter plots of the D:B predictions versus laboratory

measurements for IPS A and IPS B, respectively. Also, Figures 6.15.b and 6.16.b display

the run-sequence plots of predicted and target values for IPS A and IPS B, respectively.

It is observed that the developed inferential sensor is capable of producing fairly accurate

D:B predictions and tracking the significant changes in laboratory data.

6.6.4.3 On-line Performance

Since the off-line performance of the developed inferential sensor was satisfactory, the

sensor was further tested on-line in the IPS unit of an oil sands processing plant. The

model parameters were estimated off-line before the on-line implementation. In order to

perform an on-line implementation of the soft sensor, an object linking and embedding

for process control (OPC) in MATLAB has been used as the communication channel

between the inferential sensor and a tag created on the distributed control system (DCS).

All the necessary computations for the inferential sensor are performed in MATLAB and

the predicted values as well as performance indices are sent back to the DCS through the

OPC connection.

Implementation of inferential sensors entail many challenges that may arise due to the

varying quality of industrial data. In order to enhance the robustness of the designed

inferential sensors, various univariate and multivariate pre-processing procedures were

developed to assess the availability and reliability of the input measurements.

The developed inferential sensor has been running on-line reliably and successfully
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Figure 6.15: IPS A: Cross-validation
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Figure 6.16: IPS B: Cross-validation
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Figure 6.17: IPS A: On-line testing
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Figure 6.18: IPS A: On-line testing
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Table 6.4: A summary of the performance measures

MAE STD MSE
Self-validation

IPS A 0.0180 0.0242 5.8613e-004
IPS B 0.0181 0.0243 5.9165e-004

Cross-validation
IPS A 0.0195 0.0254 6.4431e-004
IPS B 0.0195 0.0255 6.4892e-004

On-line Testing
IPS A 0.0205 0.0276 7.7303e-004
IPS B 0.0186 0.0249 6.5491e-004

since July 20, 2011. Figures 6.17.a and 6.18.a show a snapshot of the scatter plots of the

D:B predictions versus laboratory measurements for IPS A and IPS B, respectively. Also,

Figures 6.17.b and 6.18.b display the run-sequence plots of predicted and target values for

IPS A and IPS B, respectively. It is evident that the developed inferential sensor provides

fairly accurate D:B predictions and tracks the significant changes in laboratory data.

Finally, MAE, StdE, and MSE for the real-time D:B predictions are reported in Table

6.4; the results are obtained through the comparison of the soft sensor predictions and the

laboratory measurements. The designed inferential sensor is considered by the engineers to

be both accurate (with small MAE) and reliable (with smaller StdE). Moreover, relatively

small values of MSE implies the overall good performance.

6.7 Conclusion

In this Chapter, a Bayesian framework for the development and implementation of adaptive

multi-model inferential sensors was proposed. The presented Bayesian procedure for

model identification allows for accommodating the overlapping operating modes and

facilitating the inclusion of the prior knowledge about the process operation. Also, the

presented implementation procedure inherently includes a global Bayesian adaptation
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mechanism, within the envelope of previously identified operating conditions. Moreover,

local adaptation mechanisms were included in order to detect and handle potential unknown

drifts. The effectiveness of the identification and implementation procedures were

demonstrated through simulation and industrial applications. In the simulation case study,

a multi-model inferential sensor was developed to capture the non-linear dynamic behavior

of the CSTR by concatenating multiple linear models through a Bayesian decision-support

system. In the industrial application, two inferential sensors were successfully designed

for predicting the quality of the product of a separation unit in oil sands processing. The

variable of interest was the Diluent to Bitumen (D:B) ratio in the IPS product streams. The

off-line validation and on-line implementation results showcase the prediction performance

of the designed adaptive multi-model inferential sensors.
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Chapter 7

A Probabilistic Framework for
Real-time Performance Assessment of
Inferential Sensors

7.1 Introduction

7.1.1 Practical Motivation

In order to maintain the reliability of an inferential sensor, it is important to assess

the accuracy of its on-line predictions. Model uncertainty (plausible alternative model

structures and/or parameters) is one of the major sources of prediction uncertainty (McKay

et al., 1999). In the context of process industries, deviations from design operating

conditions are the main factors resulting in the model uncertainty and thus deterioration

in performance of inferential sensors. In most of the classical identification methods,

the objective is to minimize prediction errors pertaining to the identification data-set.

Therefore, the generalization performance of the resulting inferential sensors is not

guaranteed. In such cases, significant changes in the operating space in which the model

has been identified would contribute to the model uncertainty.

Therefore, the conditional dependence of the reliability of inferential sensor predictions

A version of this chapter has been submitted to Control Engineering Practice (Khatibisepehr et al.,
2013b). An abbreviated version of this chapter will be presented at the 12th IFAC International Symposium
on Dynamics and Control of Process Systems, December 18-20, 2013, Mumble, India (Khatibisepehr et al.,
2013a).
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on characteristics of the input space and reliability of the empirical process model

should be thoroughly assessed in order to develop an on-line performance measure.

From the application point of view, a desired performance measure has two essential

characteristics. First, it should effectively estimate any significant deterioration in

the prediction performance when process operates outside the valid inferential region.

Second, implementation and interpretation of a performance metric should be simple

enough for practitioners to use. Therefore, designing a proper performance index is

not straightforward. Although inferential sensors have been widely used in process

industries, there are only a few publications providing a methodology to assess their on-line

performance. In Nomikos and MacGregor (1995); Vries and Braak (1995), approximate

confidence intervals have been developed to assess the accuracy of PLS predictions based

on the traditional statistical properties. The principal limitation of these approaches is that

the internal empty regions within the identification data (i.e. the internal regions that do not

contain any identification data points) cannot be diagnosed (Soto et al., 2011). Kaneko et al.

(2010) proposed a distance-based method to quantify the relationship between applicability

domains and accuracy of inferential sensor predictions. The authors discussed that a

larger Euclidean distance of an observation to the center of identification data and to its

nearest neighbors would indicate a lower prediction accuracy. This method suffers from

two major drawbacks. First, variability of the input variables is not taken into account

when determining the Euclidean distance from the center. Second, the different effects

of input variables on the prediction uncertainty are ignored by correlating the prediction

accuracy with a general distance measure. Yang et al. (2009) applied an ensemble method

to evaluate the uncertainty of inferential sensor predictions. The basic idea is to repeatedly

generate bootstrap samples of the identification data-set to re-estimate inferential model

parameters. With this multitude of models, the model variation and the average model bias

can be estimated. Depending on the identification procedure used, however, this method
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could be computationally intensive and would not be suited for on-line applications.

Kaneko and Funatsu (2011) proposed to develop a multi-model inferential sensor based

on the time difference of input variables in order to combine the information included in

a set of local sub-models into a global predictive model. Furthermore, the accuracy of

global predictions has been estimated using empirical models describing the relationship

between standard deviation of local predictions and standard deviation of prediction errors.

The major problem of this method is that small variation in local predictions does not

necessarily imply a small prediction error. The proposed metric only reflects the degree of

similarities between the prediction performance of different models and does not contain

any information about the reliability of each individual model.

7.1.2 Main Contributions

To address the aforementioned issues, this Chapter provides a data-driven Bayesian

framework for real-time performance assessment of inferential sensors. Such Bayesian

frameworks utilizing discrete probability distributions have proven to be useful for a variety

of fault diagnosis problems such as diesel engine fault diagnosis (Pernestål, 2007) and

control loop performance diagnosis (Qi et al., 2010). The major contribution of the

present work is to formulate and solve the problem of inferential sensor performance

assessment under a Bayesian framework utilizing both discrete and continuous probability

distributions. The main focus is to characterize the effect of the operating space on the

prediction accuracy in the absence of target measurements. The proposed method has the

following attractive features:

1. A priori knowledge of process operation and underlying mechanisms can be easily

incorporated in a Bayesian scheme so as to identify the criteria that might affect

on-line performance of the designed inferential sensor.

2. Since probability density functions would reflect the actual data distribution, empty
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regions within the identification data-set can be identified.

3. Correlations between input variables are taken into account.

4. Contribution of each input variable to prediction uncertainty is studied.

5. Its application does not depend on the identification techniques employed for

inferential model development.

6. Its real-time implementation is computationally efficient.

7.1.3 Chapter Outline

The remainder of this Chapter is organized as follows. The problem of real-time

performance assessment of inferential sensors is explained in Section 7.2. In Section 7.3,

the problem of reliability analysis of real-time predictions is rigorously formulated under

a Bayesian framework. The details of the Bayesian solution are presented for discrete

operating statuses. The details of the Bayesian solution for continuous operating statuses

are given in Section 7.4. The real-time performance assessment of multi-model inferential

sensors is discussed in Section 7.5. A simulated continuous fermentation reactor is used as

a working example to outline the ideas throughout Sections 7.3, 7.4, and 7.5. In Section

7.6, the effectiveness of the proposed Bayesian approach is demonstrated through industrial

case studies; the methodology is applied for performance assessment of two industrial

inferential sensors. Section 7.7 summarizes this Chapter with concluding remarks.

7.2 Problem Statement

Consider a class of inferential models given by

ŷt = g(ut; Θ) (7.1)

where ŷt denotes the predicted value of query variable inferred from the real-time

measurements of influential process variables, ut = {uk,t}Kk=1.
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Evaluating the performance of an inferential sensor often amounts to analyzing the

characteristics of prediction errors. Prediction error, also known as residual, is defined

as the difference between the actual and predicted values of query variable:

et = yt − ŷt (7.2)

where yt denotes the actual value of the query variable.

The absolute value of the prediction errors can be used to identify the events that

would affect the reliability of the inferential model. Suppose that the performance of

the inferential sensor at each time instant, rt, can take Re discrete reliability statuses, i.e.

rt ∈ {r1, ..., rRe}. For instance, when Re = 3, different degrees of reliability can be

assigned to the inferential sensor predictions as follows:

rj =


Reliable 0 < |et| ≤ 2σe

Moderately reliable 2σe < |et| ≤ 3σe

Unreliable Otherwise

(7.3)

where the thresholds are considered as design parameters reflecting the tolerable amount

of prediction error, and need to be adjusted based on the requirements of each application.

If yt is observed, calculation of the performance index is straightforward. During

on-line implementation of an inferential sensor, however, such real-time measurements

are often not available frequently and regularly. Therefore, the main challenge is to

assess the reliability of the inferential sensor predictions in the absence of actual values.

Mathematically, the objective is to evaluate the conditional probability mass function

f
(
et|ut, ŷt;σe

)
.

7.3 Real-time Performance Assessment from Discrete
Operating Statuses

In this section, the problem of reliability analysis of real-time predictions is rigorously

formulated under a Bayesian framework utilizing discrete operating statuses.
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Given the identification (training) data-set D = {(ut, yt)}Nt=1, an inferential sensor

provides a real-time prediction, ŷt, on the basis of real-time measurements of k input

variables, ut = {uk,t}Kk=1. It is noteworthy that the identification data-set contains both

input and output measurements that are typically available from plant tests and/or historical

plant operations often at lower sampling frequency. Therefore, the model prediction errors

within the identification data-set, {et}Nt=1, can be directly calculated from {(ut, yt)}Nt=1.

A set of indicator variables, {qt}Nt=1 = {qu1
t , . . . , q

uK
t }Nt=1 ∈ RK×N , is introduced

to partition the operating space into multiple modes. Suppose that each real-time input

measurement, uk,t, can take Ouk
discrete operating statuses. Prior knowledge of process

operation (e.g. normal or unusual operating conditions) can be incorporated to properly

partition the operating range of each process variable as well as the operating space of

a set of process variables. In the absence of a priori knowledge, statistical analysis of

operational and laboratory data may guide the choice of partitions. For instance, if it

can be assumed that the input variables are Gaussian distributed random variables such

that uk ∼ N (µk, σ
2
k), then different operating statuses may be assigned to the input

measurements as follows:

quk
t =



Normal Oper. 1 0 < uk,t − µk ≤ 2σk

Normal Oper. 2 −2σk ≤ uk,t − µk ≤ 0

Risky 2σk < uk,t − µk ≤ 3σk

Abnormal Oper 1 3σk < uk,t − µk

Abnormal Oper. 2 uk,t − µk < −2σk

(7.4)

where the thresholds are considered as design parameters chosen to provide adequate

coverage of the operating space. Moreover, the generalization performance of the

inferential sensor may guide the assignment of operating statuses. We would like to

emphasize that our proposed method does not require any assumption about the probability

density function (PDF) of input variables.

The on-line performance assessment of the inferential sensor amounts to evaluating the
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posterior probability distribution of rt given the operating status of the current measured

inputs with reference to the historical data. The maximum a posteriori (MAP) estimate of

reliability status is thus obtained from the following expression:

r̂t = argmax
rt

p(rt|qt,D) (7.5)

Following the approach of Pernestål (2007); Qi et al. (2010), the desired posterior

p(rt|qt, D) is derived next. Applying Bayes’ rule, the posterior probability of r given

reliability status of the current measured inputs and output can be written as

p(rt|qt,D) =
p(qt|rt,D)p(rt)

p(qt|D)

= γp(qt|rt,D)p(rt) (7.6)

where γ−1 = p(qt|D) =
∑
p(qt|rt,D)p(rt) is a normalizing constant.

The random variable rt is a categorical variable and can be modeled by

p(rt) =
Re∏
j=1

p(rt = rj)[rt=rj ]

=
Re∏
j=1

(
ϖe

j

)[rt=rj ] (7.7)

where the operation [rt = rj] evaluates to 1 if rt = rj and evaluates to 0 otherwise.

Note that {ϖe
j}Re

j=1 can be determined based on the prior knowledge of the inferential

sensor prediction performance as well as the misclassification cost associated with each

reliability status. Depending on the intended application of the inferential sensor, it might

be desired to consider unequal misclassification costs. For instance, if the predicted

values are automatically used for set-point adjustment, the unreliable predictions are

the most expensive ones to misclassify. Such economic, operational, or environmental

requirements can be considered within the proposed Bayesian framework by specifying

appropriate prior distributions over the possible reliability statuses. If such knowledge is

not available or relevant, a uniform prior distribution can be considered. The impact of the
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prior distributions on the characteristics of the performance assessment framework will be

illustrated through an industrial case study in Section 7.6.1.

Each input indicator variable is a random categorical variable. As a result, the vector

of indicator variables qt is an assembly of K random categorical variables. Given the

reliability status of the inferential sensor, qt can thus be modeled by a joint multinomial

distribution with S =
∏K

k=1Ouk
points in its sample space (i.e. qt ∈ {Q1, ..., QS}):

p(qt|ϖ
Q
j , rt = rj,D) =

S∏
s=1

p(qt = Qs|rt = rj,D)[qt=Qs]

=
S∏

s=1

(
ϖs|j

)[qt=Qs] (7.8)

where ϖQ
j = {ϖs|j}Ss=1 is a set of hyperparameters characterizing the likelihood function

in Equation 7.6.

Since the hyperparameters are typically not known a priori, the likelihood function is

evaluated by integrating over the hyperparameters’ space:

p(qt|rt = rj,D) =

∫
p(qt|ϖ

Q
j , rt = rj,D)p(ϖQ

j |rt = rj,D)dϖQ
j (7.9)

The first term in the above integral is given by Equation 7.8. Besides, Bayes’ rule

can be applied to derive an explicit expression for the second term. Therefore, the

posterior probability distribution of the hyperparameters given the identification data

D = {(qt, et)}Nt=1 can be written as

p(ϖQ
j |rt = rj,D) =

p(D|ϖQ
j , rt = rj)p(ϖQ

j |rt = rj)

p(rt = rj|D)

= ξp(D|ϖQ
j , rt = rj)p(ϖQ

j |rt = rj) (7.10)

where ξ−1 = p(rt = rj|D) =
∫
p(D|ϖQ

j , rt = rj)p(ϖQ
j |rt = rj)dϖQ

j is a normalizing

constant.

The chain rule of probability theory is used to factorize the likelihood function in
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Equation 7.10:

p(D|ϖQ
j , rt = rj) =

Nj∏
t=1

p(qt|q1, . . . , qt−1, ϖ
Q
j , rt = rj)

=

Nj∏
t=1

p(qt|ϖ
Q
j , rt = rj)

=
S∏

s=1

(
ϖs|j

)νs|j (7.11)

where Nj =
∑S

s=1 νs|j denotes the number of samples in the identification data-set for

which the reliability status of inferential sensor predictions was rj . Equation 7.11 holds

true only if it is reasonable to assume that the indicator variables are time-wise statistically

independent.

Furthermore, the following Dirichlet distribution is considered as the hyperprior in

Equation 7.10 to assure generality:

p(ϖQ
j |rt = rj) =

1

B(Aj)

S∏
s=1

(
ϖs|j

)αs|j−1 (7.12)

where {αs|j}Ss=1 are the Dirichlet parameters specified such that Aj =
∑S

s=1 αs|j denotes

the number of prior samples for which the reliability status of inferential sensor predictions

was rj . Also, B(Aj) is the normalizing constant expressed in terms of the gamma function:

B(Aj) =

∏S
s=1 Γ(αs|j)

Γ
(∑S

s=1 αs|j
) (7.13)

where Γ(x) = (x − 1)! for all positive integers x. The fact that the Dirichlet distribution

is the conjugate prior to the multinomial distributions justifies the choice of the Dirichlet

hyperprior.

Combining Equations 7.10, 7.11 and 7.12, the posterior probability of the

hyperparameters then becomes (DeGroot, 1970)

p(ϖ|rt = rj,D) =

∏S
s=1

(
ϖs|j

)νs|j+αs|j−1∫ ∏S
s=1

(
ϖs|j

)νs|j+αs|j−1
dϖ

=
Γ(Aj +Nj)∏S

s=1 Γ(αs|j + νs|j)

S∏
s=1

(
ϖs|j

)νs|j+αs|j−1 (7.14)
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Substituting Equations 7.8 and 7.14 into Equation 7.9, the posterior predictive distribution

can be further expressed as

p(qt|rt = rj,D) =
Γ(Aj +Nj)∏S

s=1 Γ(αs|j + νs|j)

∫ S∏
s=1

(
ϖs|j

)[qt=Qs](
ϖs|j

)νs|j+αs|j−1
dϖQ

j (7.15)

Hence,

p(qt = Qd|rt = rj,D) =
Γ(Aj +Nj)

Γ(Aj +Nj + 1)
×

Γ(αd|j + νd|j + 1)
∏S

s̸=d Γ(αs|j + νs|j)∏S
s=1 Γ(αs|j + νs|j)

=
αd|j + νd|j
Aj +Nj

(7.16)

Finally, Equations 7.7 and 7.16 can be combined to obtain an explicit expression for the

posterior probability distribution of Equation 7.6:

p(rt = rj|qt = Qd,D) = γϖe
j

αd|j + νd|j
Aj +Nj

(7.17)

The above posterior probability distribution can be evaluated to obtain the MAP estimates

of the qualitative reliability status (e.g. highly reliable, moderately reliable, uncertain, etc.)

of the inferential sensor (see Equation 7.5). As illustrated in Figure 7.1, rt = rj implies

that bj−1 < |yt − ŷt| ≤ bj , where bj−1 and bj are the lower and upper boundaries of |et|,

respectively. Note that an expression similar to Equation 7.17 has also been derived by

Qi et al. (2010) for fault isolation assuming that each discrete random variable can only

take two values (e.g. faulty and normal). In this work, however, Equation 7.17 applies to

multiple values of the discrete random variables.

In order to quantify the real-time performance of inferential sensors, it is proposed to

associate a numerical value to each reliability status in the light of the historical probability

distribution of prediction errors. Suppose that F (ẽt|ut, yt) denotes the cumulative

distribution function (CDF) of the absolute value of prediction error, ẽt = |yt − ŷt|. As

the final stage of the training process, a quantifiable measure of reliability may be defined
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Figure 7.1: Probability density function of absolute value of prediction errors

based on the CDF of the random variable ẽt as follows:

rj , p(ẽt > bj)

p(ẽt > b1)

=
1− p(ẽt < bj)

1− p(ẽt < b1)

=
1− F (bj)

1− F (b1)
for j = 1 · · ·Re (7.18)

where p(ẽt > b1) is a normalizing constant.

Moreover, F (bj) = p(ẽt < bj) is the historical probability of the inferential model

resulting in a prediction error smaller than bj . Alternatively, rj ∝ p(ẽt > bj) is the

historical probability of the inferential model resulting in a prediction error greater than

bj . The values of rj satisfy the following conditions:

r1 = 1 and rRe → 0 as bRe → ∞ (7.19)

where r1 and rRe corresponds to the highest and lowest performance of the inferential

sensor, respectively. To illustrate, the following reliability statuses can be specified, when

rj can only take three values, with reference to the cumulative distribution function shown
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in Figure 7.2:

rj =


1 0 < ẽt ≤ b1

1− F (b2)

1− F (b1)
b1 < ẽt ≤ b2

0 b2 < ẽt

(7.20)

Note that the random variable ẽt can take any non-negative real value.

Finally, a reliability index (RI) can be assigned to each real-time prediction such that,

RIt , E[rt]

=
∑
j

p(rt = rj|qt = Qd,D)rj

=
1

1− F (b1)

∑
j

p(rt = rj|qt = Qd,D)(1− F (bj)) (7.21)

where RIt ∈ [0, 1] is the expected value of the reliability status based on the estimated

posterior probability of rt.

If the absolute value of prediction errors follows a half-normal distribution, the reliability

index is therefore expressed as

RIt =

(
1− erf

( b1√
2σe

))−1∑
j

p(rt = rj|qt = Qd,D)

(
1− erf

( bj√
2σe

))
(7.22)
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7.3.1 Design Procedure

To summarize our discussion thus far, the procedure followed to design a Bayesian

performance assessment framework is outlined in Algorithm 7.1.

Algorithm 7.1. Real-time Performance Assessment of Inferential Sensors from Discrete

Operating Statuses

1. Include the prior knowledge of process operation to properly partition the operating

range of each process variable as well as the operating space of a set of process

variables. In the absence of relevant prior information, the operating range of the kth

input variable may be partitioned as follows:

1.1. Approximate the CDF of the kth input, Fk(.), based on the identification data.

1.2. Specify the operating range of each input variable as F−1
k (b) − F−1

k (a), where

a, b ∈ [0, 1] and b > a. Note that a and b are design parameters chosen based

on the quality of identification data. For instance, a = 0.05 and b = 0.95 can

be selected to reduce the effect of outlying observations.

1.3. Decide on the number of operating statuses, Ouk
, to be considered.

1.4. Partition the operating range of uk into equal-width intervals, i.e. the width of

each interval would be equal to (F−1
k (b)− F−1

k (a))/(Ouk
− 2).

It should be noted that any other data-driven approach can be used to partition the

operating space (Equation 7.4).

2. Specify a set of indicator variables to denote the operating status of each input

variable.

3. Calculate the model prediction errors within the identification data-set.

4. Specify possible reliability statuses of inferential sensor predictions by analyzing the

PDF of the absolute value of prediction error (Equation 7.3).
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5. Assign a numeric value to each reliability status based on the CDF of the absolute

value of prediction error (Equation 7.18).

6. Determine the prior distribution of reliability statuses, {ϖe
j}Re

j=1 , based on the

known prior information about the inferential sensor behavior. In the absence of

such prior information, the prior distribution of reliability statuses can be specified

based on the expected prediction performance of the inferential sensor as well

as the misclassification costs involved in inaccurately predicting the reliability of

predictions.

7. Specify appropriate Dirichlet parameters, {αs|j}Ss=1, such that Aj =
∑S

s=1 αs|j

denotes the number of prior samples for which the reliability status of inferential

sensor predictions was rj (Equation 7.12).

8. Determine the likelihood parameters, {νs|j}Ss=1, such that Nj =
∑S

s=1 νs|j denotes

the number of samples in the identification data-set for which the reliability status of

inferential sensor predictions was rj (Equation 7.11).

9. Characterize the posterior probability distribution of each reliability status, p(rt =

rj|qt,D) (Equation 7.17).

7.3.2 Continuous Fermentation Reactor Simulation

The governing equations of a continuous fermentation reactor (CFR) are given by (Henson

and Seborg, 1997)

Ẋ = −DX + µX (7.23)

Ṡ = D(Sf − S)− 1

YX/S

µX (7.24)

Ṗ = −DP + (αµ+ β)X (7.25)
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Figure 7.3: A simplified schematic of the CFR

where specific growth rate (µ) is defined as

µ =
µm

(
1− P

Pm

)
S

Km + S + S2

Ki

(7.26)

As shown in Figure 7.3, biomass concentration (X), substrate concentration (S) and

product concentration (P ) are state variables of the system. Dilution rate (D) and feed

substrate concentration (Sf ) are considered as system inputs. Moreover, cell-mass yield

(YX/S), yield parameters (α, β), maximum specific growth rate (µm), product saturation

constant (Pm), substrate saturation constant (Km) and substrate inhibition constant (Ki)

are model parameters.

The identification data was simulated using the variable settings presented in Table

7.1 as well as the non-linear dynamic model given by Equations 7.23-7.26. Data were

collected at a relatively slow sampling rate so that data can be considered at the steady-

state. An empirical linear model has been identified to describe the steady-state relationship

between the input variables, dilution rate and feed substrate concentration, and the output

quality variable, biomass concentration. Linear models are often used for development of

inferential sensors in practical applications. In this case study, however, the identified linear
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Table 7.1: Summary of simulated variables of CFR

Description Distribution Unit
Dilution rate, u1 N (0.165, 4.5× 10−4) hr−1

Substrate concentration, u2 N (25, 14.15) kg/m3

Noise added to biomass concentration, w N (0, 0.022) -

Table 7.2: Parameter settings for performance assessment of the CFR inferential model

Property Parameter Setting
Number of operating statuses for u1 10
Number of operating statuses for u2 10
Number of reliability statuses 3
Reliability statuses of inferential sensor Reliable iff 0 < |et| ≤ 1.379

Moderately reliable iff 1.379 < |et| ≤ 2.758
Unreliable iff 2.758 < |et|

Prior probability of a reliable prediction ϖe = {0.40, 0.48, 0.12}
Total number of prior samples A = 22
Total number of identification samples N = 2000

model may not sufficiently represent the non-linear behavior of the fermentation process

over such a wide operating space. Due to the inherent structural limitations of the identified

model, the inferential sensor is thus expected to exhibit a degraded prediction performance

in operating regions with low densities of identification data. Therefore, it is desirable to

estimate the real-time prediction performance of the inferential sensor as well.

To determine the real-time prediction performance of this inferential sensor, a set of

binary indicator variables is introduced as {qt}Nt=1 = {(qu1
t , q

u2
t )}Nt=1 ∈ R2×N . Given the

reliability status of the identified inferential model, the vector of quality variables qt has

S = 102 points in its sample space. The proposed Bayesian approach is used to assess the

reliability status of the predictions. The parameter settings required to design a Bayesian

reliability index are presented in Table 7.2. The boundaries of each reliability status have

been selected based on the PDF of the historical absolute prediction error shown in Figure
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Figure 7.4: Probability density function of the absolute prediction error obtained from the
CFR inferential model

7.4. Moreover, the data-driven approach recommended in Section 7.3.1 was applied to

partition the operating range of each input variable.

Table 7.3 shows the confusion matrix obtained based on the reliability analysis results for

N = 1000 test samples. The diagonal and cross-diagonal elements of the confusion matrix

shown in Table 7.3 represent the number of predictions with correctly and incorrectly

identified reliability status, respectively. The low number of incorrectly identified instances

indicates that the method could effectively determine the reliability of inferential model

predictions.

Let nj|i denote the number of instances with reliability status i (i.e. rt = ri) that are

predicted to have reliability status j (i.e. r̂t = rj). The entries of the confusion matrix

can be used to quantify the performance of the proposed method in terms of the following

metrics (Yang, 1999; Sebastiani, 2002; Sokolova and Lapalme, 2009):

1. False positive or type I error: The sum of cross-diagonal elements along the jth

column is the number of instances that are incorrectly assessed to have the jth
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Table 7.3: Confusion matrix for the Bayesian reliability analysis of the CFR inferential
model using discrete operating statuses

Predicted Status

Reliable Moderately Reliable Unreliable

A
ct

ua
lS

ta
tu

s Reliable 432 68 0

Moderately Reliable 20 371 15

Unreliable 0 5 89

reliability status:

FPj =
∑
i̸=j

nj|i (7.27)

2. False negative or type II error: The sum of cross-diagonal elements along the jth

row is the number of instances with reliability status j that are incorrectly assessed

to have the other reliability statuses:

FNj =
∑
j ̸=i

ni|j (7.28)

3. Sensitivity: The number of instances correctly assessed to have the jth reliability

status, among all the instances with the jth reliability status, determines the

sensitivity to detecting the jth reliability status:

Senj =
nj|j

nj|j + FNj

(7.29)

Moreover, the overall micro-averaged sensitivity can be defined as follows:

Seno =

∑
j nj|j∑

j(nj|j + FNj)
(7.30)
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4. Precision: The number of instances correctly assessed to have the jth reliability

status, among all the instances correctly and incorrectly assessed to have the jth

reliability status, determines the relevance of the instances classified to the jth

reliability status:

Prej =
nj|j

nj|j + FPj

(7.31)

Moreover, the overall micro-averaged precision can be defined as follows:

Preo =

∑
j nj|j∑

j(nj|j + FPj)
(7.32)

5. Accuracy: The fraction of instances correctly assessed whether or not they have the

jth reliability status determines the accuracy of detecting the jth reliability status:

Accj =
nj|j + n¬j|¬j∑

j

∑
i nj|i

(7.33)

Moreover, the overall micro-averaged accuracy can be defined as the fraction of all

instances with correctly identified reliability status:

Acco =

∑
j nj|j + n¬j|¬j∑

i

∑
j ni|j

(7.34)

A summary of the metrics quantifying the performance of the Bayesian reliability analysis

of the CFR inferential model is reported in Table 7.4. The large values of the sensitivity,

precision and accuracy are indicative of the effectiveness of the proposed method.

Regardless of the distribution of prediction error, a quantifiable measure of reliability can

be defined solely based on the CDF of the absolute prediction error. From the CDF shown

in Figure 7.5, it is evident that the prediction error does not follow a Gaussian distribution

in this example. Figure 7.6 shows the reliability indices assigned to the inferential sensor

predictions obtained for the test data. It can be observed that smaller reliability indices are

assigned to larger prediction errors.
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Table 7.4: Performance metrics for the Bayesian reliability analysis of the CFR inferential
model using discrete operating statuses

Reliability Class Type I Err. Type II Err. Sensitivity Precision Accuracy

(%) (%) (%)

Reliable 20 68 86.4 95.6 91.2

Moderately Reliable 73 35 91.4 83.6 89.0

Unreliable 15 5 94.7 85.6 98.0

Total 108 108 89.2 89.2 89.2
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Figure 7.5: Cumulative distribution function of the absolute prediction error obtained from
the CFR inferential model

7.4 Real-time Performance Assessment from Continuous
Operating Statuses

As the number of operating statuses of input variables increases, discretization of the

operating space becomes computationally intensive. In addition, in some applications, it

may not be feasible to partition the input space. In such cases, the operating statuses can
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Figure 7.6: Performance assessment of the CFR inferential model using discrete operating
statuses

be treated as continuous variables.

Given the identification data-set D = {(ut, yt)}Nt=1 = {Zt}Nt=1 with ut = {uk,t}Kk=1, the

MAP estimate of reliability status is obtained from the following expression:

r̂t = argmax
rt

p(rt|ut,D) (7.35)

Applying Bayes’ rule, the posterior probability of r given input measurements can be

written as

p(rt|ut,D) =
p(ut|rt,D)p(rt)

p(ut|D)

= ϕp(ut|rt,D)p(rt) (7.36)

where ϕ−1 = p(qt|D) =
∑
p(ut|rt,D)p(rt) is a normalizing constant.

Given the reliability status of the inferential sensor, the likelihood of inferential sensor

inputs in Equation 7.36 may be approximated by a multivariate Gaussian distribution such

that

p(ut|Σj, µj, rt = rj,D) =
1√

(2π)K |Σj|
exp

(
− 1

2
(ut − µj)

TΣ−1
j (ut − µj)

)
(7.37)
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where Σj denotes the covariance matrix and µj = [µ1|j, ..., µK|j] denotes the vector of

conditional mean values.

Σj and µj are the hyperparameters characterizing the likelihood function in Equation

7.37. If these hyperparameters are not known a priori, the likelihood function is evaluated

by integrating over the hyperparameters’ space:

p(ut|rt = rj,D) =

∫
p(ut|Σj, µj, rt = rj,D)p(Σj, µj|rt = rj,D)dΣjdµj (7.38)

The first term in the above integral is given by Equation 7.37. Besides, Bayes’ rule can

be applied to derive an explicit expression for the second term. The posterior probability

distribution of the hyperparameters given the identification data can be expressed as

p(Σj, µj|rt = rj,D) =
p(D|Σj, µj, rt = rj)p(Σj, µj|rt = rj)

p(D|rt = rj)

= ξp(D|Σj, µj, rt = rj)p(µj|Σj, rt = rj)p(Σj|rt = rj) (7.39)

where ξ−1 = p(D|rt = rj) =
∫
p(D|Σj, µj, rt = rj)p(Σj, µj|rt = rj) is a normalizing

constant.

The chain rule of probability theory is used to factorize the likelihood function in

Equation 7.39:

p(D|Σj, µj, rt = rj) =

Nj∏
t=1

p(ut|u1, . . . , ut−1,Σj, µj, rt = rj)

=

Nj∏
t=1

p(ut|Σj, µj, rt = rj)

=

Nj∏
t=1

1√
(2π)K |Σj|

exp

(
− 1

2
(ut − µj)

TΣ−1
j (ut − µj)

)

=
1√

(2π)KNj |Σj|Nj
exp

(
− 1

2

Nj∑
t=1

(ut − µj)
TΣ−1

j (ut − µj)

)
=

1√
(2π)KNj |Σj|Nj

exp

(
− 1

2
tr(ΩjΣ

−1
j )

)
(7.40)

where Ωj =
∑Nj

t=1(ut − µj)(ut − µj)
T .
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It should be noted that u1, . . . , ut are assumed to be independent in the derivation of

Equation 7.40. This assumption is reasonable as we can consider the steady-state data of

sufficient sampling intervals.

The prior knowledge of the mean values may be incorporated through a Gaussian

hyperprior:

p(µj|Σj, rt = rj) =

√
BK

j

(2π)K |Σj|
exp

(
− Bj

2
(µj − µ0

j)
TΣ−1

j (µj − µ0
j)
)

(7.41)

where µ0
j is the prior mean and Bj is the number of prior samples on the Σj scale, i.e.

µj ∼ N (µ0
j ,Σj/Bj).

Also, a hyperprior for the covariance matrix can be represented by the inverse Wishart

distribution, which is the multivariate analogue of the inverse chi-squared distribution:

p(Σj|rt = rj) =
h(Aj,Ψj)√
|Σj|Aj+K+1

exp
(
− 1

2
tr(ΨjΣ

−1
j )
)

(7.42)

where Aj and Ψj respectively denote the degrees of freedom and the scale matrix for the

inverse-Wishart distribution on Σj . Also, h is the normalizing constant given by

h(Aj,Ψj) = Γ−1
K

(Aj

2

)√ |Ψj|Aj

2KAj
(7.43)

where ΓK+1 is the multivariate Gamma function,

ΓK

(Aj

2

)
= πK(K−1)/4

K∏
k=1

Γ
(Aj + 1− k

2

)
(7.44)

Therefore, putting together Equations 7.41 and 7.42 the normal inverse Wishart distribution

defines a joint prior probability distribution over the hyperparameters:

p(Σj, µj|rt = rj) , NIW(µ0
j , Bj, Aj,Ψj)

= h(Aj,Ψj)

√
BK

j

(2π)K |Σj|Aj+K+2

× exp
(
− 1

2
tr(ΨjΣ

−1
j )− Bj

2
(µj − µ0

j)
TΣ−1

j (µj − µ0
j)
)

(7.45)
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The fact that the normal inverse Wishart distribution is the conjugate prior to the

multivariate Gaussian distribution justifies the choice of the hyperprior given by Equation

7.45. As pointed out by Gelman et al. (2003), as Aj → −1, Bj → 0 and |Ψj| → 0 the joint

prior probability distribution over the hyperparameters can be expressed as

p(Σj, µj|rt = rj) ∝ 1√
|Σj|K+1

(7.46)

which is the multivariate Jeffrey’s prior distribution viewed as the limit of the normal

inverse Wishart distribution.

Substituting Equations 7.45 and 7.40 into Equation 7.39, the joint posterior probability

distribution is expressed as (Murphy, 2007)

p(Σj, µj|rt = rj,D) = NIW(Σj, µj|µ∗
j , B

∗
j , A

∗
j ,Ψ

∗
j)

= h(A∗
j ,Ψ

∗
j)

√
(B∗

j )
K

(2π)K |Σj|A
∗
j+K+2

× exp
(
− 1

2
tr(Ψ∗

jΣ
−1
j )−

B∗
j

2
(µj − µ∗

j)
TΣ−1

j (µj − µ∗
j)
)

(7.47)

where,

A∗
j = Aj +Nj (7.48)

B∗
j = Bj +Nj (7.49)

ūj = N−1
j

Nj∑
t=1

ut (7.50)

µ∗
j =

Bj

Bj +Nj

µ0
j +

Nj

Bj +Nj

ūj (7.51)

Ψ∗
j = Ψj + Ωj +

BjNj

Bj +Nj

(ūj − µ0
j)(ūj − µ0

j)
T (7.52)

Substituting Equations 7.47 and 7.37 into Equation 7.38, the predictive posterior

distribution can be expressed as (Gelman et al., 2003; Jackman, 2009)

p(ut|rt = rj,D) = tA∗
j−K+1

(
ut|µ∗

j ,Υj

)
(7.53)
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where

Υj =
Ψ∗

j(B
∗
j + 1)

B∗
j (A

∗
j −K + 1)

(7.54)

Finally, Equations 7.7 and 7.53 can be combined to obtain an explicit expression for the

posterior probability distribution of Equation 7.36:

p(rt = rj|ut,D) =
ϕϖe

j√
|Υj|(A∗

j −K + 1)KπK
Γ

(
A∗

j + 1

2

)
Γ−1

(
A∗

j −K + 1

2

)

×
(
1 +

1

A∗
j −K + 1

(ut − µ∗
j)

TΥ−1
j (ut − µ∗

j)
)−(A∗

j+1)/2

=
ϕϖe

j√
|Υj|(A∗

j −K + 1)KπK

K/2−1∏
l=0

(
A∗

j + 1−K

2
+ l

)

×
(
1 +

1

A∗
j −K + 1

(ut − µ∗
j)

TΥ−1
j (ut − µ∗

j)
)−(A∗

j+1)/2

(7.55)

As discussed previously, the reliability index defined in Equation 7.21 can be used to obtain

a quantifiable measure of reliability from r̂t = rj .

7.4.1 Design Procedure

To summarize our discussion on the performance assessment under a Bayesian framework

utilizing continuous operating statuses, the design procedure is outlined in Algorithm 7.2.

Algorithm 7.2. Real-time Performance Assessment of Inferential Sensors from Continuous

Operating Statuses

1. Calculate the model prediction errors within the identification data-set.

2. Specify possible reliability statuses of inferential sensor predictions by analyzing the

PDF of the absolute value of prediction error (Equation 7.3).

3. Assign a numeric value to each reliability status based on the CDF of the absolute

value of prediction error (Equation 7.18).
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4. Determine the prior distribution of reliability statuses, {ϖe
j}Re

j=1 , based on the

expected prediction performance of the inferential sensor and/or the misclassification

costs involved in inaccurately predicting the reliability of predictions.

5. Determine the prior distribution of hyperparameters given the reliability status,

p(ϖQ
j |rt = rj), based on the explicit prior knowledge. In the case of continuous

operating statuses, the prior information over hyperparameters can be generally

well-represented by normal inverse Wishart distribution (Equation 7.45). In the

absence of relevant prior information, a non-informative prior distribution such as

the multivariate Jeffrey’s prior distribution can be assumed (Equation 7.46).

6. Characterize the posterior probability distribution of hyperparameters given the

reliability status, p(ϖQ
j |rt = rj,D) (Equation 7.47).

7. Characterize the likelihood of input variables for each reliability status, p(ut|rt =

rj,D), by integrating over the hyperparameters’ space (Equation 7.53).

8. Characterize the posterior probability distribution of each reliability status, p(rt =

rj|ut,D) (Equation 7.55).

7.4.2 Continuous Fermentation Reactor Simulation

Let us once again consider the CFR simulation example presented in Section 7.3.2. The

operating statuses of dilution rate and feed substrate concentration can be treated as

continuous variables. The Bayesian approach for continuous operating statuses outlined

in Section 7.4.1 is used to assess the reliability status of inferential sensor predictions.

However, only a sub-set of identification data with N = 1000 is used to train the

performance assessment framework. Table 7.5 shows the confusion matrix obtained based

on the reliability analysis results for the same test data considered before. The low

number of incorrectly identified instances indicates that the method could more effectively
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determine the reliability of inferential model predictions. A summary of the metrics

quantifying the performance of the Bayesian reliability analysis of the CFR inferential

model is reported in Table 7.6. The large values of the sensitivity, precision and accuracy

are indicative of the effectiveness of the proposed method. Comparing the performance

metrics reported in Tables 7.4 and 7.6, it can be observed that the Bayesian framework

with continuous operating statuses shows a better performance in estimating the reliability

of inferential sensor predictions. It is noteworthy that the size of the identification data-set

used in the continuous case is only half of the one used in the discrete case. Figure 7.7

shows the reliability indices assigned to inferential sensor predictions obtained for the test

data. Like the discrete case, smaller reliability indices are assigned to larger prediction

errors using the CDF in Figure 7.5. In comparison with the reliability indices shown in

Figure 7.6, higher resolutions can be obtained using the continuous operating statuses.

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

R
el

ia
bi

lit
y 

In
de

x

Absolute Prediction Error

UnreliableReliable  Moderately

Reliable

Figure 7.7: Performance assessment of the CFR inferential model using continuous
operating statuses
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Table 7.5: Confusion matrix for the Bayesian reliability analysis of the CFR inferential
model using continuous operating statuses

Predicted Status

Reliable Moderately Reliable Unreliable

A
ct

ua
lS

ta
tu

s Reliable 446 54 0

Moderately Reliable 28 368 10

Unreliable 0 8 86

Table 7.6: Performance metrics for the Bayesian reliability analysis of the CFR inferential
model using continuous operating statuses

Reliability Class Type I Err. Type II Err. Sensitivity Precision Accuracy

(%) (%) (%)

Reliable 28 54 89.2 94.1 91.8

Moderately Reliable 62 38 90.6 85.6 90.0

Unreliable 10 8 91.5 89.6 98.2

Total 100 100 90.0 90.0 90.0

7.4.3 Comparison Between Discrete and Continuous Operating
Statuses

In Sections 7.3 and 7.4, the Bayesian performance assessment frameworks have been

developed for both discrete and continuous operating statuses. Each of these cases may

have advantages and disadvantages depending on the application. The main features of the

discrete and continuous operating statuses are compared below:

1. Gaussian assumption. The proposed Bayesian method does not make any
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assumption about the PDF of the input variables in the case of discrete operating

statuses. In the case of continuous operating statuses, however, it is assumed that the

joint PDF of the input variables can be approximated by a multivariate Gaussian

distribution or a mixture of multivariate Gaussian distributions. Although many

practical data may be approximated by a Gaussian distribution, the approximation

may cause loss of performance in some cases with strong non-Gaussian distributions.

2. Information loss. Discretization of the operating space may incur an information

loss, since the input data falling in the same region become indistinguishable. In

addition, small variations in values close to the border of neighboring partitions may

cause unjustifiable effects on the posterior probability distribution of reliability status

on inferential predictions. Therefore, the area and border of each partition should be

chosen carefully.

3. Computational load. As the number of operating statuses of input variables

increases, discretization of the operating space becomes computationally intensive.

Moreover, a larger number of identification data is required to train the likelihood

function. In such cases, the application of the continuous operating statuses is

recommended. Regardless of the type of operating statuses chosen, the real-time

implementation of the proposed Bayesian framework is computationally efficient and

does not involve any practical difficulties.

7.5 Real-time Performance Assessment of Multi-model
Inferential Sensors

In industrial applications to handle varying operating conditions, multi-model inferential

sensors have also been used to represent multi-modal behavior of complex processes

by concatenating multiple sub-models through an appropriate interpolation function.

Therefore, the sub-models are reliable only for a particular operating region. The
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interpolation function is parameterized by a set of representative process variables, through

which the real-time operating mode can be properly identified.

Consider an input-output representation of a multi-model inferential sensor expressed as{
ŷt|m = f (m)(ut; Θ

(m)) m = 1, · · · ,M

ŷt =
∑M

m=1 ψ
(m)
t ŷt|m

(7.56)

where M is the number of sub-models or, equivalently, the number of identified operating

modes. Each sub-model, m ∈ {1, · · · ,M}, is characterized by its functional form, f (m),

and a set of corresponding parameters, Θ(m). The output of the mth sub-model, ŷt|m, is

inferred from the real-time measurements of influential process variables, ut = {ukt }Kk=1. A

proper interpolation function is defined to assign an importance weight, ψ(m)
t , to the output

of each sub-model, ŷt|m, in order to obtain a global prediction, ŷt.

The importance weight assigned to the output of the mth sub-model can be viewed as

the conditional probability of the mth sub-model capturing the process behavior and can be

evaluated using Bayes’ theorem (Khatibisepehr and Huang, 2012):

p(m|st,D) =
p(st|m,D)p(m)

ΣM
m=1p(st|m,D)p(m)

(7.57)

where st is a scheduling variable parameterized the interpolation function.

Alternatively, the conditional probability of the mth sub-model capturing the process

behavior can be evaluated as follows:

p(m|{RI(m)
t }Mm=1,D) =

p({RI(m)
t }Mm=1|m,D)p(m)

ΣM
m=1p({RI

(m)
t }Mm=1|m,D)p(m)

(7.58)

where RI(m) is the reliability index assigned to the mth sub-model. In this way,

the proposed Bayesian framework provides an automated mechanism for evaluating the

representativeness of each sub-model, thus validating the adequacy of the interpolation

function.

The overall reliability status of multi-model inferential sensors can be evaluated through
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Figure 7.8: Probability distribution of biomass concentration

marginalization over plausible alternative sub-models, such that

p(rt|ut, st,D) =
M∑

m=1

p(rt|m,ut,D)p(m|st,D) (7.59)

or

p(rt|ut, {RI(m)
t }Mm=1,D) =

M∑
m=1

p(rt|m, ut,D)p(m|{RI(m)
t }Mm=1,D) (7.60)

It might be desirable to evaluate the overall reliability status of multi-model inferential

sensors independently, without investigating the internal operations (e.g. the operating

mode or performance of each sub-model). In this case, p(rt|ut,D) can be directly evaluated

applying the Bayesian method outlined in Sections 7.3 and 7.4.

7.5.1 Continuous Fermentation Reactor Simulation

As illustrated in Figure 7.8, the probability distribution of biomass concentration can be

approximated as a mixture of two Gaussian distributions. This motivates the application of

multi-model inferential sensors to approximate the non-linear dynamic behavior of the CFR
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Table 7.7: Confusion matrix for the Bayesian reliability analysis of the CFR multi-model
inferential sensor using continuous operating statuses

Predicted Status

Reliable Moderately Reliable Unreliable

A
ct

ua
lS

ta
tu

s Reliable 578 73 0

Moderately Reliable 61 248 4

Unreliable 0 5 31

by switching between two piece-wise linear models. The Bayesian procedure proposed in

Khatibisepehr and Huang (2012) is employed to design a multi-model inferential sensor

and partition the operating space. In this way, the mean squared error of prediction is

reduced to MSE = 1.2 from MSE = 3.8 obtained from the single model identified

in Section 7.4.2. Therefore, tighter degrees of reliability are assigned to the multi-model

inferential sensor predictions such that

rt =


Reliable 0 < |et| ≤ 1.1

Moderately reliable 1.1 < |et| ≤ 2.2

Unreliable 2.2 < |et|
(7.61)

The reliability status of the overall predictions are evaluated using Equation 7.59. Table 7.7

shows the confusion matrix obtained based on the reliability analysis results for N = 1000

test samples. Also, Table 7.8 presents the metrics quantifying the performance of the

Bayesian performance assessment of the CFR inferential model. The large values of

the sensitivity, precision and accuracy are indicative of the effectiveness of the proposed

method. Figure 7.9 shows the reliability indices assigned to the overall inferential sensor

predictions obtained for the test data. As expected, smaller reliability indices are assigned

to larger prediction errors.



Sec. 7.5 Real-time Performance Assessment of Multi-model Inferential Sensors 290

Table 7.8: Performance metrics for the Bayesian reliability analysis of the CFR multi-
model inferential sensor using continuous operating statuses

Reliability Class Type I Err. Type II Err. Sensitivity Precision Accuracy

(%) (%) (%)

Reliable 61 73 88.8 90.5 86.6

Moderately Reliable 78 65 79.2 76.1 85.7

Unreliable 4 5 86.1 88.9 99.1

Total 143 143 85.7 85.7 85.7
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Figure 7.9: Performance assessment of the CFR multi-model inferential sensor using
continuous operating statuses
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Figure 7.10: Schematic of the primary separation vessel

7.6 Industrial Case Studies

To demonstrate the effectiveness of the proposed method, the real-time performance

assessment of inferential sensors developed from industrial data-sets is considered in this

section.

7.6.1 Oil Sands Primary Extraction Plant

In the Bitumen primary extraction process, the conditioned oil sands slurry is fed into

primary separation vessels (PSVs) to facilitate bitumen flotation and sand settling as

illustrated in Figure 7.10. As a result of the gravity separation and frothing process, three

layers are formed inside the PSV. The rocks and sand settle to the bottom of the vessel,

forming a dense sand slurry tailings layer. The majority of the bitumen rises to the froth

phase formed at the top of the vessel. The hard-to-separate clay particles accumulate

between the froth and tailings layers, forming a middle layer inside the vessel called

middlings.

The interface level between the froth and middlings layers is one of the key quality
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variables that directly affect bitumen recovery. The camera-based real-time measurements

are automatically used for monitoring and regulatory control purposes. However, the

camera fails to provide any visible image of the interface level lying outside of the

sight glass area. Therefore, a data-driven inferential sensor has been developed to

complement/substitute the camera-based sensor. The influential process variables were

chosen based on the simplified first principles analysis as well as the availability of

hardware instruments providing real-time measurements of secondary process variables.

Since the interface level measurements inferred from the camera signals are considered as

the most trustful information source, they are selected as the reference values. To evaluate

the reliability of the inferential sensor predictions, a Bayesian performance assessment

framework was developed following the procedure presented in Section 7.3.1 for discrete

operating statuses. As discussed in Section 7.3, the choice of the prior distribution

of the reliability statuses would impact the characteristics of the presented performance

assessment framework. Figure 7.11 and 7.12 show the impact of the prior distribution on

the sensitivity and precision of the designed framework in detecting each reliability status.

It can be observed that varying the prior probabilities would enable us to adjust the decision

boundaries to some extent. For instance, one can increase the sensitivity in detecting the

unreliable predictions through sacrificing the corresponding precision. In fact, the prior

probabilities of the reliability statuses can be viewed as the importance weights assigned to

satisfy the operational requirements.

In order to effectively evaluate the impact of the prior distribution of the reliability

statuses, an appropriate measure of classification performance has to be selected. Due to

the underlying assumptions of equal misclassification costs and relatively uniform class

distribution, the performance measures derived from the confusion matrix may not be

always suitable for comparison purposes. To address this issue, a cost matrix can be defined

to weight the entries of the confusion matrix. In this way, the total misclassification cost
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Figure 7.11: The impact of the prior distribution on the sensitivity of the designed
framework in detecting each reliability status
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Figure 7.12: The impact of the prior distribution on the precision of the designed framework
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becomes a more effective metric for evaluating whether or not the operational requirements

are satisfied within the developed performance assessment framework. Given confusion

and cost matrices, the total misclassification cost (TMC) is defined as follows (Gorunescu,

2011):

MC =
∑
i

∑
j

ni|jci|j (7.62)

where ni|j denote the number of instances with the jth reliability status that are estimated

to have the ith reliability status and ci|j is the corresponding misclassification cost. Most

often the cost of correct classification is zero, i.e. cj|j = 0, because the right decision has

been made. If the misclassification costs are all equal and the cost of correct classification

is zero, it is straightforward to show that

MC = 1− Acco
∑
i

∑
j

ni|j (7.63)

Different sets of cost matrices can be used to illustrate the effect of the cost entries on the

TMC. Table 7.9 shows the three cost matrices considered in this case study. Cost matrix I

is defined to implement equal misclassification costs. Cost matrix II is defined to balance

the confusion matrix such that each reliability status is represented by approximately equal

proportions. In other words, the cost associated with incorrectly estimating each reliability

status is lowered proportionally to their relative frequency. Cost matrix III is defined to

not only balance the confusion matrix, but also assign higher costs to misclassifying the

unreliable predictions.

Figure 7.13 shows the impact of the prior distribution of the reliability statuses on the

TMC given different cost matrices. As expected, the TMC gradually varies across the

entire range of possible prior probabilities. It is evident that the optimal prior distribution

resulting in the minimum TMC depends on the cost matrix. It is of interest to investigate

the effect of the optimal distributions on the sensitivity and precision of the designed

framework in detecting each reliability status. The optimal prior distributions are used
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Table 7.9: Cost matrices for the Bayesian performance assessment of the interface level
inferential sensor

Cost Matrix I Predicted Status

Reliable Moderately Reliable Unreliable

A
ct

ua
lS

ta
tu

s Reliable 0 1 1

Moderately Reliable 1 0 1

Unreliable 1 1 0

Cost Matrix II Predicted Status

Reliable Moderately Reliable Unreliable

A
ct

ua
lS

ta
tu

s Reliable 0
1∑
i ni|1

1∑
i ni|1

Moderately Reliable
1∑
i ni|2

0
1∑
i ni|2

Unreliable
1∑
i ni|3

1∑
i ni|3

0

Cost Matrix III Predicted Status

Reliable Moderately Reliable Unreliable

A
ct

ua
lS

ta
tu

s Reliable 0
1∑
i ni|1

1∑
i ni|1

Moderately Reliable
1∑
i ni|2

0
1∑
i ni|2

Unreliable
2∑
i ni|3

1∑
i ni|3

0
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Figure 7.13: The impact of the prior distribution on the total misclassification cost
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Table 7.10: Unbalanced confusion matrices for the Bayesian performance assessment of
the interface level inferential sensor

Confusion Matrix I Predicted Status

Reliable Moderately Reliable Unreliable

A
ct

ua
lS

ta
tu

s Reliable 2407 23 113

Moderately Reliable 447 27 54

Unreliable 141 7 217

Confusion Matrix II Predicted Status

Reliable Moderately Reliable Unreliable

A
ct

ua
lS

ta
tu

s Reliable 1565 636 318

Moderately Reliable 115 324 110

Unreliable 26 41 301

Confusion Matrix III Predicted Status

Reliable Moderately Reliable Unreliable

A
ct

ua
lS

ta
tu

s Reliable 1498 637 385

Moderately Reliable 108 312 128

Unreliable 19 41 308
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to train three different frameworks for evaluating the reliability of the inferential sensor

predictions. Table 7.10 presents the original (unbalanced) confusion matrices obtained

from the reliability analysis results on the validation data-set. Cost matrix I is the

default cost matrix in which all reliability statuses are treated equally. As a result, the

misclassification of the majority reliability status (i.e. reliable predictions) contributes the

most to the TMC. Therefore, in the resulting optimal prior distribution a large value is

assigned to the majority reliability status, i.e. ϖe
1 = 0.72, ϖe

2 = 0.15, ϖe
3 = 0.13. This

would be equivalent to specifying the prior distribution by calculating the proportion of

training samples attributed to each reliability status. As shown by confusion matrix I,

the corresponding framework tends to favor the most frequent reliability status. Although

the portion of correctly identified reliable predictions is high, the sensitivity to detecting

moderately reliable and unreliable predictions is relatively low. By implementing cost

matrix II, the cost associated with incorrectly estimating each reliability status is lowered

proportionally to their relative frequency. In this way, all reliability statuses would have

equal impact on the TMC. Therefore, the resulting optimal prior distribution is fairly

uniform, i.e. ϖe
1 = 0.33, ϖe

2 = 0.30, ϖe
3 = 0.37. Confusion matrix II shows that

the corresponding framework demonstrates equally good sensitivity and precision with

respect to all reliability statuses. In cost matrix III, the cost of misclassifying an unreliable

prediction as reliable is higher than that of cost matrix II. As a result, the minority reliability

status (i.e. unreliable predictions) has a greater impact on the TMC. Therefore, in the

resulting optimal prior distribution a larger value is assigned to the minority reliability

status, i.e. ϖe
1 = 0.30, ϖe

2 = 0.30, ϖe
3 = 0.40. As can be seen from confusion matrix III,

the corresponding framework tends to classify more instances as unreliable. It should be

noted that the number of predictions incorrectly estimated to be unreliable increases with

attempts to detect higher percentages of unreliable predictions.

Due to the intended application of the interface level inferential sensor, cost matrix II has
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Table 7.11: Performance metrics for the Bayesian reliability analysis of the interface level
predictions

Reliability Class Sensitivity Precision Accuracy

(%) (%) (%)

Reliable 62.1 68.9 78.1

Moderately Reliable 59.0 61.9 74.2

Unreliable 81.8 71.5 83.1

been used in the design of the Bayesian performance assessment framework. A summary

of the metrics quantifying the performance of the designed framework is reported in Table

7.11. These performance metrics have been derived from the balanced confusion matrix.

The large values of the sensitivity, precision and accuracy are indicative of the effectiveness

of the proposed method.

7.6.2 Oil Sands Secondary Extraction Plant

Following the approach of Khatibisepehr and Huang (2012), an adaptive multi-model

inferential sensor was designed for real-time monitoring of Diluent to Bitumen (D:B)

ratio in the product stream of an inclined plate settler (IPS). In the froth treatment plant,

the bitumen froth is first mixed with diluent to enhance the density difference between

the various components. The diluted bitumen froth is fed into various separation units

including IPS and centrifuges. The IPS unit is one of the key froth treatment processes

which allows for the space efficient gravity separation of diluted bitumen froth from the

other components as illustrated in Figure 7.14. The IPS overflow product stream mainly

consists of the diluted bitumen floating to the top of the vessel. The other components of

the diluted froth such as water and minerals settle down at the bottom of the vessel. In the

IPS unit, D:B ratio is monitored to control the quality of diluted bitumen and, thus, serves
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Figure 7.14: Schematic diagram of the inclined plates settler (IPS) operation

as one of the key indicators of the separation process performance. Based on the insight

obtained from first principles and process data analysis, the following model was proposed

to provide real-time predictions of DBt:

D̂Bt =
M∑

m=1

p(m|Fdf,t,D)D̂B
(m)

t (7.64)

where M = 2 is the number of sub-models, D̂B
(m)

t is the prediction obtained from the mth

sub-model, D̂Bt is the global prediction, and Fdf,t is IPS diluted feed flow-rate that has

been selected as the scheduling variable. Readers are referred to Khatibisepehr and Huang

(2012) for more detail.

Real-time performance assessment of this inferential sensor was one of the practical

issues that arose in the implementation stage. Therefore, it was required to develop a

procedure for evaluating the accuracy of the predicted values in order to enhance the

reliability of the designed inferential sensor. For direct evaluation of the reliability of

the overall D:B predictions, p(rt|ut,D), a Bayesian performance assessment framework

was developed following the procedure presented in Section 7.4.1 for continuous operating
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statuses. An identification data-set was constructed from the data recorded from June 1 to

December 30, 2012. Also, a validation data-set was constructed from the data recorded

from January 1 to March 15, 2013. The identification data-set was used to train the

performance assessment framework, while the validation data-set was reserved for cross

validating the performance of the developed framework. All industrial data presented

here has been normalized in order to protect proprietary information. Different degrees

of reliability were assigned to the overall D:B predictions as follows:

Case I: rj =

{
Reliable 0 < |et| ≤ 2.5σe

Unreliable Otherwise
(7.65)

Case II: rj =


Reliable 0 < |et| ≤ 0.75σe

Moderately reliable 0.75σe < |et| ≤ 2.5σe

Unreliable Otherwise

(7.66)

where et = DBLab
t − D̂Bt denotes the overall prediction error at time instant t.

Table 7.12 shows the confusion matrices obtained based on the reliability analysis

results on the validation data-set for both Case I and Case II. Table 7.13 presents a

summary of the metrics quantifying the performance of the designed frameworks. These

performance metrics have been derived from the balanced confusion matrix. The large

values of the sensitivity, precision and accuracy for Case I show the effectiveness of the

designed performance assessment framework. The framework designed for Case II still

performs well in identifying the unreliable D:B predictions. However, it remains difficult

to distinguish between reliable and moderately reliable predictions due to the following

reasons: (1) Since the structure of the sub-models have been selected based on mass balance

equations, the model uncertainty is only reflected in the model parameters. (2) A large

operating space has already been accounted for in design of this multi-model inferential

sensor. Yet, the large values of accuracy for all reliability statuses imply the overall good

performance in Case II.
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Table 7.12: Confusion matrices for the Bayesian performance assessment of the D:B multi-
model inferential sensors using continuous operating statuses

Case I Predicted Status

Reliable Moderately Reliable Unreliable

A
ct

ua
lS

ta
tu

s Reliable 649 54

Moderately Reliable

Unreliable 1 14

Case II Predicted Status

Reliable Moderately Reliable Unreliable

A
ct

ua
lS

ta
tu

s Reliable 214 164 16

Moderately Reliable 97 171 41

Unreliable 0 1 14
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Table 7.13: Performance metrics for the Bayesian performance assessment of the D:B
multi-model inferential sensors using continuous operating statuses

Case I Sensitivity Precision Accuracy

Reliability Class (%) (%) (%)

Reliable 92.2 93.3 92.8

Unreliable 93.3 92.4 92.8

Case II Sensitivity Precision Accuracy

Reliability Class (%) (%) (%)

Reliable 54.3 63.4 74.3

Moderately Reliable 55.3 53.4 69.0

Unreliable 93.3 84.4 92.0

As discussed in Section 7.5, the importance weight assigned to the output of the

mth sub-model can be obtained by evaluating either p(m|st,D) or p(m|{RI(m)
t }Mm=1,D).

In Khatibisepehr and Huang (2012), the importance weights were obtained based on

p(m|Fdf,t,D) given the real-time feed flow-rate measurements (Method 1). In the present

work, the importance weights were obtained based on p(m|{RI(m)
t }2m=1,D) given the

estimated reliability indices assigned to the sub-models (Method 2). That is, the following

model is used to provide real-time predictions of DBt:

D̂Bt =
2∑

m=1

p(m|{RI(m)
t }2m=1,D)D̂B

(m)

t (7.67)

In order to evaluate p(m|{RI(m)
t }2m=1,D), the following steps were taken:

1. The Bayesian approach outlined in Section 7.4.1 was followed to design a

performance assessment framework for each sub-model. The metrics quantifying

the performance of the designed frameworks are reported in Tables 7.14 and 7.15.



Sec. 7.6 Industrial Case Studies 305

Table 7.14: Performance metrics for the Bayesian performance assessment of the first sub-
model using continuous operating statuses

Case I Sensitivity Precision Accuracy

Reliability Class (%) (%) (%)

Reliable 90.5 91.0 90.8

Unreliable 91.0 90.6 90.8

Case II Sensitivity Precision Accuracy

Reliability Class (%) (%) (%)

Reliable 63.5 63.5 75.6

Moderately Reliable 54.4 53.2 68.9

Unreliable 86.6 88.5 91.8

2. Numeric values were assigned to the reliability status of D̂B
(m)

t based on the

historical CDF of the absolute value of the prediction errors resulted from the mth

sub-model, i.e. |e(m)
t | = |DBLab

t − D̂B
(m)

t |.

Mean absolute error (MAE), standard deviation of errors (StdE), and mean squared error

(MSE) for the real-time D:B predictions from Equations 7.64 and 7.67 have been compared.

The results are obtained through the comparison of the inferential sensor predictions and the

laboratory measurements. It was observed that the values of MAE, StdE and MSE using

Method II-Case I have been reduced by 6.2%, 4.6% and 9.6%, respectively. Similarly,

the values of MAE, StdE and MSE using Method II-Case II have been reduced by 4.6%,

4.5% and 9.3%, respectively. Since the real-time performance of the sub-models can be

successfully assessed within the designed framework, the estimated reliability indices can

be confidently used to assign smaller weights to less reliable sub-models. As a result, the

importance weights assigned in Method II improve the overall prediction performance of



Sec. 7.7 Concluding Remarks 306

Table 7.15: Performance metrics for the Bayesian performance assessment of the second
sub-model using continuous operating statuses

Case I Sensitivity Precision Accuracy

Reliability Class (%) (%) (%)

Reliable 87.1 100 93.5

Unreliable 100 88.5 93.5

Case II Sensitivity Precision Accuracy

Reliability Class (%) (%) (%)

Reliable 56.1 60.8 72.8

Moderately Reliable 52.3 51.2 66.8

Unreliable 92.9 85.8 92.5

the multi-model inferential sensors.

7.7 Concluding Remarks

In this Chapter, a data-driven Bayesian framework for real-time performance assessment

of inferential sensors was proposed. The main focus was to characterize the effect of the

operating space on the prediction reliability in the absence of target measurements. The

details of the design procedures for both discrete and continuous operating statuses were

presented. Moreover, the real-time performance assessment of multi-model inferential

sensors was discussed. It was shown that the application of the proposed Bayesian

solution does not depend on the identification techniques employed for inferential model

development. Furthermore, its real-time implementation is computationally efficient and

simple for practitioners to use. The effectiveness of the proposed method was demonstrated

through simulation and industrial case studies.
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Chapter 8

General Discussion and Concluding
Remarks

8.1 General Discussion

Several challenging issues encountered in the development and implementation of

inferential sensors were addressed in this thesis. It has been shown that the problems of

interest can be formulated as rigorous conditional probabilistic problems within a Bayesian

framework. To summarize our discussion, the methods proposed throughout the thesis can

be incorporated to lay out a novel unified Bayesian framework for the design of multi-

model inferential sensors.

Given the identification data-set D = {(st,ut, yt)}Nt=1, a multi-modal system can be

represented as follows:

ut = ũt + et
st = s̃t + ϵt

ỹ
(m)
t = g(m)

(
ũt; Θ

(m)
)

m = 1, · · · ,M

yt =
∑M

m=1 ψ
(m)
t (s̃t)ỹ

(m)
t + εt

(8.1)

Several terms in the above formulation are described below:

1. Input variables: ut = {uj,t}Pj=1 ∈ RP and ũt = {ũj,t}Pj=1 ∈ RP denote vectors of

the measured (observed) and noise-free (unobserved) values of the input variables at

time instant t, respectively.

310
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2. Output variables: yt ∈ R and ỹt ∈ R denote the measured (observed) and noise-free

(unobserved) values of the output variable at time instant t, respectively.

3. Local sub-models: Each sub-model, m ∈ {1 · · · ,M}, is represented by its

functional form, g(m), and a set of corresponding parameters, Θ(m).

4. Importance weights: A proper interpolation function is defined to assign an

importance weight, ψ(m), to the output of each sub-model, y(m), in order to combine

the information included in a set of local sub-models into a global predictive

model. Let Ψ = [ψ1, · · · , ψN ] ∈ RM×N denotes the interpolation matrix with

ψt = {ψ(m)
t }Mm=1 ∈ RM . A set of mode indicator variables, i1:N = {i1, · · · , iN},

can also be introduced to denote the identity of each data pair. That is, the indicator

variable represents the most probable operating mode at each time instant.

5. Scheduling variable: The interpolation function is parameterized by a scheduling

variable that effectively determines the discrete-state dynamics at each time instant.

st ∈ R and s̃t ∈ R denote the measured (observed) and noise-free (unobserved)

values of the scheduling variable at time instant t, respectively.

6. Measurement noise in input variables: The measurement noise in the input

variables, et = {ej,t}Pj=1 ∈ RP , is assumed to be independent and identical, following

a Gaussian distribution:

et ∼ N
(
0P ,Σe

)
, 0P = [0, · · · , 0]T ∈ RP (8.2)

where the covariance matrix of the input measurement noise, Σe ∈ RP×P , is

diagonal. That is, Σe = diag(σ2
e1
, · · · , σ2

eP
).

7. Measurement noise in scheduling variable: The measurement noise in the

scheduling variable, ϵt ∈ R, is assumed to follow a Gaussian distribution:

ϵt ∼ N (0, σ2
ϵ ) (8.3)
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8. Measurement noise in output variables: It is assumed that the measured values of

the output variable are contaminated by the outliers. Thus, the measurement noise in

the output variable, εt ∈ R, is distributed as

εt ∼ δG(ε) + (1− δ)N (0, σ2
ε) (8.4)

where δ is the unknown prior probability of appearance of an outlier and G(ε)

denotes the contaminating distribution. A set of quality indicator variables, q1:N =

{q1, · · · , qN}, can be introduced to denote the quality of the output measurements.

That is, the indicator variable associated with each data point determines whether

that observation comes from the regular or contaminating distribution.

The identification problem is to estimate the noise-free identification data, D̃ =

{(s̃t, ũt, ỹt)}Nt=1, the model parameters, Θ = {Θ(m)}Mm=1, the hyperparameters, Φ =

{σ−2
ϵ , σ−2

ε ,Σ−1
e }, and the quality and mode indicator variables, Λ = {q1:N , i1:N}. From

a Bayesian modeling point of view, the joint probability density function p(D̃,Θ,Φ,Λ|D)

should be optimized. However, evaluating such posterior density functions requires a

complex non-linear optimization problem to be solved. To circumvent the difficulties

associated with the direct maximization of this joint probability density function, the

identification problem is formulated under a layered optimization framework, as we will

show in the following.

First, the chain rule of probability theory is used to factorize p(D̃,Θ,Φ,Λ|D):

p(D̃,Θ,Φ,Λ|D) = p(D̃|Θ,Φ,Λ,D)p(Θ|Φ,Λ,D)p(Φ|Λ,D)p(Λ|D) (8.5)

Next, the layered optimization problem is formulated as follows:

1. Inference of noise-free data by maximizing the following posterior PDF

p(D̃|Θ,Φ,Λ,D) =
p(D|D̃,Θ,Φ,Λ)p(D̃|Θ,Φ,Λ)

p(D|Θ,Φ,Λ)
(8.6)
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2. Inference of model parameters by maximizing the following posterior PDF

p(Θ|Φ,Λ,D) =
p(D|Θ,Φ,Λ)p(Θ|Φ,Λ)

p(D|Φ,Λ)
(8.7)

3. Inference of hyperparameters by maximizing the following posterior PDF

p(Φ|Λ,D) =
p(D|Φ,Λ)p(Φ|Λ)

p(D|Λ)
(8.8)

4. Inference of indicator variables by maximizing the following posterior PDF

p(Λ|D
)
=
p(D|Λ)p(Λ)

p(D)
(8.9)

In this Bayesian formulation, the likelihood function at a particular level corresponds to the

evidence function at the previous level. Through this pattern, the optimization variables

are gradually integrated out at different levels of Bayesian inference. Consequently, the

optimal solutions obtained in subsequent layers of optimization are coordinated. In order to

obtain a tractable explicit solution to the above layered optimization problem, a hierarchical

Bayesian approach can be adopted through which the posterior PDFs are sequentially

approximated in each layer and the procedure is iterated.

The expressions for the likelihood function and prior PDF in each level of Bayesian

inference are given below.

• Prior PDF of noise-free data:

p(D̃|Θ,Φ,Λ)) = p(D̃

=
N∏
t=1

p(ỹt)p(s̃t)p(ũt) (8.10)

The prior PDF of ỹt is expressed as

p(ỹt) =

√
1

2πσ2
y

exp

(
−
(
ỹt − µy

)2
2σ2

y

)
(8.11)
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where µy and σy respectively denote the expected value and standard deviation of the

noise-free output variable.

The prior PDF of s̃t is expressed as

p(s̃t) =

√
1

2πσ2
s

exp

(
−
(
s̃t − µs

)2
2σ2

s

)
(8.12)

where µs and σs denote the expected value and standard deviation of the noise-free

scheduling variable, respectively.

The prior PDF of ũt is expressed as

p(ũt) =

√
1

2πΣu
exp

(
− 1

2

(
ũt − µu

)T
Σ−1

u

(
ũt − µu

))
(8.13)

where µu and Σu respectively denote the vector of expected values and covariance

matrix of the noise-free input variables.

• Likelihood of noise-free data:

p(D|D̃,Θ,Φ,Λ) =
N∏
t=1

p(yt,ut, st|ỹt, ũt, s̃t,Θ,Φ,Λ)

=
N∏
t=1

p(yt|ũt, s̃t,Θ, σ
−2
ε , qt)p(ut|Σ−1

e , ũt)p(st|σ−2
ϵ , s̃t)

=
N∏
t=1

p(εt|Θ, σ−2
ε , qt, s̃t)p(et|Σ−1

e )p(ϵt|σ−2
ϵ ) (8.14)

The likelihood of yt is expressed as

p(εt|Θ, σ−2
ε , qt, it) =

√
qt

2πσ2
ε

exp

(
−
qt
(
yt −

∑M
m=1 ψ

(m)
t (s̃t)ỹ

(m)
t

)2
2σ2

ε

)
(8.15)

if the output data is contaminated with scale outliers and

p(εt|Θ, σ−2
ε , qt, it) =

√
1

2πσ2
ε

exp

(
−
(
yt −

∑M
m=1 ψ

(m)
t (s̃t)ỹ

(m)
t − qt

)2
2σ2

ε

)
(8.16)

if the output data is contaminated with location outliers. See Sections 5.6.1 and 6.3

for more details.
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The likelihood of ut is expressed as

p(et|Σ−1
e ) =

P∏
j=1

p
(
ej,t|σ−2

ej

)
=

P∏
j=1

√
2

2πσ2
ej

exp

(
−
(
uj,t − ũj,t

)2
2σ2

ej

)
(8.17)

The likelihood of st is expressed as

p
(
ϵt|σϵ

)
=

√
2

2πσ2
ε

exp

(
−
(
st − s̃t

)2
2σ2

ε

)
(8.18)

See Section 5.6.2 for more details.

• Prior PDF of model parameters:

p(Θ|Φ,Λ) = p
(
{Θ(m)}mi=1

)
=

M∏
m=1

p
(
Θ(m)

)
∝

M∏
m=1

exp

(
− 1

2

(
Θ(m) −Θ

(m)
0

)T
Σ−1

Θ
(m)
0

(
Θ(m) −Θ

(m)
0

))
(8.19)

where Θ(m)
0 and Σ

Θ
(m)
0

denote the explicitly specified expected values and covariance

matrix of Θ(m). See Sections 5.6.1 and 6.3 for more details.

• Likelihood of model parameters:

p(D|Θ,Φ,Λ) =
N∏
t=1

p(yt,ut, st|Θ,Φ,Λ) (8.20)

where

p(yt,ut, st|Θ,Φ,Λ) =
∫
p(yt,ut, st|ỹt, ũt, s̃t,Θ,Φ,Λ)

× p(ỹt, ũt, s̃t|Θ,Φ,Λ) dỹt dũt ds̃t (8.21)

The integral in Equation 8.21 often lacks a closed-form expression. Several

methods are available for approximating the integrations in complex models, such
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as Monte Carlo sampling-based techniques, Laplace’s method, and variational

Bayes approaches. The interested readers are referred to MacKay (2002) for more

information.

• Prior PDF of hyperparameters:

p(Φ|Λ) = p
(
σ−2
ε

)
p
(
σ−2
ϵ

) P∏
j=1

p
(
σ−2
ej

)
∝ σ2−2kε

ε exp

(
− sε
σ2
ε

)
σ2−2kϵ
ϵ exp

(
− sϵ
σ2
ϵ

)
×

P∏
j=1

σ2−2kj
ej

exp

(
− sj
σ2
ej

)
(8.22)

See Section 5.6.2 for more details.

• Likelihood of hyperparameters:

p(D|Φ,Λ) =
∫
p(D|Θ,Φ,Λ)p(Θ|Φ,Λ)dΘ

≈ p(D|ΘMP,Φ,Λ)p(ΘMP|Φ,Λ)2π
√
detB−1 (8.23)

where B = −∇∇ log p(Θ|Φ,Λ,D). There are two main assumptions underlying the

evidence approximation in Equation 8.23: 1. The data is not grossly at variance with

the likelihood and the prior. 2. The number of well-determined parameters are large.

See Section 5.6.1 for more details.

• Prior PDF of quality and mode indicator variables:

p(Λ) = p(q1:N , i1:N)

=
N∏
t=1

p(qt)p(it) (8.24)

The prior probability of qt is expressed as

p(qt) = δ

(
1− qt − ρ

1− qtρ

)
(1− δ)

( qt − ρ

1− qtρ

)
(8.25)
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if the output data is contaminated with scale outliers and

p(qt) =
N∏
t=1

(0.5δ)

( |qt|
∆

)
(1− δ)

(
1− |qt|

∆

)
(8.26)

if the output data is contaminated with location outliers. See Sections 5.4 and 5.6.3

for more details.

The prior probability of it is expressed as

p(it) =
M∏

m=1

p(it = m)[it=m] (8.27)

See Section 6.3 for more details.

• Likelihood of quality and mode indicator variables:

p(D|Λ) =
∫
p(D|Φ,Λ)p(Φ|Λ)dΦ

≈ p(D|ΦMP,Λ)p(ΦMP|Λ)2π
√
detC−1 (8.28)

where C = −∇∇ log p(Φ|Λ,D). The above approximation holds good if the

posterior distribution over hyperparameters is sharply peaked around ΦMP. See

Section 5.6.2 for more details.

8.2 Concluding Remarks

In many industrial applications, real-time analysis of key performance indicators

constitutes an essential prerequisite for advanced monitoring and control of industrial

processes. However, on-line measurement of process quality variables is often restricted

by inadequacy of measurement techniques, low reliability of measuring devices, and

significant time-delays associated with laboratory sample analysis. In industrial processing

plants, such limitations can have a severe influence on the quality of products, production

of waste, and safety of operations. These concerns motivate the development of theoretical

and practical methods of inferential sensing, also called soft sensing, to provide frequent
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Figure 8.1: Flowchart of the inferential sensor design procedure

on-line estimates of quality variables on the basis of their correlation with real-time process

measurements (Fortuna et al., 2007; Kadlec et al., 2009). Figure 8.1 presents a flowchart

of the inferential sensor design procedure (Khatibisepehr et al., 2013).

Development and implementation of inferential sensors entail many challenges that are

often addressed in a rather ad hoc manner (Hangos and Cameron, 2001; Paoletti et al.,

2007; Kadlec et al., 2009; Pani and Mohanta, 2011; Kano and Fujiwara, 2013). Despite

the increasing number of publications dealing with industrial applications, several issues

require further investigation. The main objective of this research was to develop advanced

inferencing paradigms to provide rigorous and general solutions to certain outstanding
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inferential sensing problems. The main contributions of this thesis, as explained in each of

the earlier chapters, are summarized below.

Chapter 2 provided a general introduction to the main steps involved in development

and implementation of industrial inferential sensors, presented an overview of the relevant

Bayesian literature as well as a review of the industrial applications of Bayesian inferential

sensors. Since the use of Bayesian techniques in industrial applications, in particular in

design of inferential sensors for process industries, is relatively new, the potential Bayesian

solutions to some of the main issues associated with inferential sensor design were also

discussed. This chapter was not intended to provide a comprehensive review of the great

variety of methods used in the design of inferential sensors, but was rather focused on the

techniques that have their origin in Bayesian Statistics. Therefore, the main contribution of

this chapter is complementing the existing reviews in the field.

Chapter 3 provided a classical non-Bayesian framework for real-time inferential

modeling of complex processes. Given a query point, a search algorithm was applied to

select spatial and temporal nearest neighbors within the identification data-set. The selected

sub-set of identification data was then used to identify a local ν-SVR model, which could

effectively handle small identification data-sets. The proposed just-in-time/space modeling

techniques can cope with variations in process characteristics and handle non-linearity of

underlying mechanisms. The method was implemented to facilitate real-time modeling and

prediction of cytotoxicity effects on living cells induced by certain water contaminants. The

developed framework enabled us to analyze intrinsic cell behavior and predict the trajectory

of its progress (growth or death) over a considerable time horizon.

Chapter 4 presented a novel Bayesian framework for real-time model structure selection

and similarity function parameterization in just-in-time/space modeling methods. The

locally weighted partial least squares (LW-PLS) algorithm was adopted as the main

modeling technique. A Bayesian procedure was developed to partition the operating space
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into a finite number of sub-spaces and characterize them during the off-line identification

phase. The problem of finding the locally optimal LW-PLS model structure and similarity

function hyperparameters was formulated and solved under an iterative hierarchical

Bayesian optimization framework for each sub-space. Two industrial case-studies were

considered to demonstrate the effectiveness of the proposed method: 1. real-time prediction

of Reid vapor pressure of gasoline in a petrochemical refinery, and 2. real-time prediction

of the active substance content of a pharmaceutical tablet. The method was successfully

applied to identify inferential LW-PLS models for real-time prediction of these quality

variables using near-infrared (NIR) transmittance spectra.

Chapter 5 proposed a novel unified Bayesian framework for robust identification of

inferential models in the presence of outliers. First, the most common contaminating

distributions and outlier models were introduced. Next, a unified objective function was

proposed and a layered optimization strategy was implemented. The solutions obtained

in subsequent layers of optimization were coordinated within an iterative hierarchical

Bayesian framework. The proposed optimization strategy not only yields maximum a

posteriori estimates of model parameters, but also provides an automated mechanism

for determining the hyper-parameters and investigating the quality of each observation.

Using a simulated continuous fermentation reactor, it was shown that the proposed robust

Bayesian framework outperforms the traditional robust regression techniques in terms of

the accuracy of model parameters and noise variance estimates. The robustness of the

method was further demonstrated using a pilot-scale continuous stirred tank heater.

In Chapter 6, the problem of identification of multi-modal systems switching among

non-linear continuous-state dynamics was investigated. A novel Bayesian procedure for

the development of multi-model inferential sensors was developed to meet the specific

requirements of the process industries. The importance of adaptation mechanisms for

maintaining the on-line performance of inferential sensors was discussed. A Bayesian
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decision-support scheme for real-time implementation of the multi-model inferential

sensors was presented. The developed scheme includes a global adaptation mechanism,

within the envelope of previously identified operating conditions. The implementation

of the proposed procedures was demonstrated through a simulation case study. An

adaptive multi-model inferential sensor was developed to predict the product concentration

of a simulated continuous stirred tank reactor. The effectiveness of the method was

further highlighted through a successful industrial application of an adaptive multi-model

inferential sensor designed for real-time monitoring of a key quality variable in an oil sands

processing unit.

Chapter 7 presented a novel data-driven Bayesian approach for real-time performance

assessment of inferential sensors. The main contribution of this chapter is to rigorously

formulate the problem of reliability analysis of real-time predictions under a Bayesian

framework utilizing both discrete and continuous operating statuses. The main focus was

to characterize the effect of the operating space on the prediction accuracy in the absence

of target measurements. The real-time performance assessment of multi-model inferential

sensors was also discussed. A simulated continuous fermentation reactor was used as a

working example to outline the ideas throughout this chapter. The proposed Bayesian

approach was successfully applied for performance assessment of two industrial inferential

sensors. These inferential sensors had been designed to provide real-times predictions of

the two quality variables of an oil sands processing unit.

The main problems involved in inferential sensing were outlined and addressed through

a unified Bayesian framework in this thesis. The thesis can be used as a guide to Bayesian

inferential sensing practice in process industries.
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8.3 Future Research

Future research in this area can be taken into multiple different directions. Some of the

challenging issues that foreshadow interesting topics for future research are summarized

below.

1. Although the problems of process data analysis and model identification are

interconnected, most of the existing solutions are disconnected. It is desired to

seek for a unified framework that simultaneously considers different aspects of data

analysis and inferential modeling. As shown in Chapter 5, there is a potential in

formulating the problems of interest as rigorous conditional probabilistic problems

within a Bayesian framework. To derive analytical expressions for all levels of

inference, the popular autoregressive with exogenous input (ARX) model was used

to illustrate the design of a robust unified Bayesian framework. However, the

application of the ideas presented in Chapter 5 is not limited to ARX models. The

derivations can be directly extended to other classes of dynamic models, though

numerical optimization may be required.

2. In order to maintain the reliability of an inferential sensor, it is required to track

its on-line performance. However, the main body of research in this area has been

focused on exploiting advanced strategies for development of inferential sensors.

Hence, it is of paramount importance to search for general criteria and techniques

for on-line performance assessment of inferential models. Model uncertainty

(plausible alternative model structures/parameters) and input uncertainty (plausible

alternative input values) are the major sources of prediction uncertainty. In Chapter

7, the effect of model uncertainty on the prediction performance of the inferential

sensors was explored. Further investigation is required to capture the conditional

dependence of the reliability of inferential sensor predictions on the uncertainty of
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input measurements.

3. Maintenance of inferential sensors is another important topic for future research.

There have been several efforts to develop real-time and recursive identification

methods as well as local adaptation mechanisms. Yet, proper maintenance of

the identification data-set remains a challenging task. Theoretical and practical

developments are required to effectively assess the reliability of operational and

laboratory measurements in real-time.

4. There is a growing realization that off-line operation assistance tools can play a

significant role in improving plant-wide operations. The main research challenge

is to develop information synthesis schemes that can coordinate processing of

diverse forms of knowledge. Further research is imperative to effectively synthesize

qualitative and quantitative information provided by operations personnel, inferential

and physical sensors, laboratory analysis, and many other sources.

5. Long and uncertain time-delays in reference data (e.g. lab data) constitute one

of the main practical problems in inferential sensor development. Samples are

frequently collected from the operational field and the recorded sampling time can

deviate significantly from the actual time. Laboratory analysis of each sample can be

time consuming, thereby introducing a significant time-delay. Therefore, modeling,

filtering, and information synthesis in the presence of long and uncertain time-delays

are of great research interest in inferential sensor development.

6. Bias update has been common practice in inferential sensor applications. Advanced

updating strategies, as reviewed in Chapter 2, include the multi-rate information

fusion method and the filtering method. However, due to the slow rate of sampling

of laboratory data, these updates are often associated with an abrupt change of

the prediction, introducing undesired bumps to the inferential sensor predictions.
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Optimal synthesis of multi-rate data is another topic of interest.
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Appendix A

Guide to Soft Sensor Design Procedure

Project:

Key Investigator:

Industrial Contacts:

Problem Statement

1. Define the problem to be solved in this project.

2. Clarify the intended application of the inferential sensor to be designed.

3. Identify the existing approaches and pinpoint their shortcomings.

4. Specify the control and process needs.

5. Determine the potential benefits of successfully accomplishing the stated objectives.

Calculate the dollar value of the benefits if possible.

Process Description

1. Prepare a schematic diagram of the process under investigation.

2. Investigate the involved unit operations.
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3. Analyse the underlying chemical and physical phenomena.

4. Choose the influential process variables based on first principles analysis.

Process Data Analysis

1. Evaluate adequacy of the available historical data for accurate identification and

reliable validation of the query inferential sensor. Divide the collected data into

different subsets for identification, tuning, and validation purposes.

2. Assess the laboratory data in order to ensure the adequacy of quality and variability.

3. Find out the sampling frequency as well as the method (e.i. snapshot or composite)

used for collecting laboratory samples.

4. Collect information about the followed procedures, measuring devices used, and time

required to conduct laboratory analysis. This information would help to evaluate the

extent of reliability of laboratory measurements.

5. Evaluate the performance of the field instruments and measuring devices.

6. Assess the accuracy, reliability, completeness, and representativeness of the collected

operational and laboratory data. Identify the required data pre-processing techniques.

7. Perform data pre-processing in order to improve the quality of the collected historical

data.

8. Choose the influential process variables based on statistical data analysis. Check

consistency with the prior process knowledge.

9. Identify the possible frequent and infrequent operating conditions.
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10. Prepare a table summarizing the description, operating range, sampling frequency,

and measurement unit of each of the selected influential variables.

Remark. It is critical to conduct interviews with the plant experts and operators in order

to fully exploit the wealth of historical data and completely understand the system under

investigation.

Inferential Model Identification

1. Determine the key considerations in designing the query inferential sensor.

2. Choose appropriate system boundaries for derivation of mass, momentum, and

energy balance equations.

3. Perform quantitative and/or qualitative first principles analysis.

4. State and justify the simplifying assumptions made for first principles analysis.

5. Select a model structure that would sufficiently approximate the behavior of the

system under investigation. One may need to decide on the following features: 1.

Linear or non-linear structure, 2. Static or dynamic relations, 3. Single or multiple

models, 4. State-space or input-output representation.

6. Identify some of the suitable model identification approaches or algorithms that could

be used. State the main strengths, required assumptions, and major limitations of

each approach.

7. Select the identification approach that best meets the operational requirements while

handling the modeling challenges. In the absence of any prior process knowledge,

the main criteria to be considered in model selection are simplicity, generality, and

flexibility.
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Model Validation

1. Evaluate the size of the validation data-set and choose a reliable validation procedure

accordingly.

2. Specify the main criteria to be considered for inferential model validation.

3. Define a set of descriptive performance measures to be evaluated.

4. If the off-line performance validation is satisfactory, develop an implementation

framework for on-line performance verification.

5. Design an user-friendly interface (e.g. excel spreadsheet) to facilitate performance

monitoring while the inferential sensor is tested on-line.

Model Implementation and Calibration

1. Develop proper procedures to evaluate and refine the quality of input measurements

during the real-time implementation.

2. Develop a procedure for real-time performance assessment of inferential sensors.

3. Design an appropriate performance index indicating the reliability of predictions in

real-time.

4. Develop a procedure for evaluating the reliability of laboratory measurements in real-

time.

5. Develop a framework to synthesize the multiple sources of information and

redundant measurements.

6. Develop on-line calibration procedures to detect and handle potential unknown drifts

of the process operating conditions.



Appendix B

Comments on Bayesian Software
Packages

This section comments on particular features of some of the major Bayesian software

packages with which we have had experience through our research and application works.

These include Netica, Bayes Net Toolbox (BNT), and WinBUGS. Although these packages

have a long list of features, we endeavour to point out particular features that relate to the

design of inferential sensors.

B.1 Netica

Netica (available at http://www.norsys.com/) is a user-friendly Bayesian tool that

has been commercially available since 1995. It can be used to build and learn Bayesian

models, as well as perform different types of inference tasks. It is also capable of

representing Dynamic Bayesian models. Netica can learn probabilistic relations from

data through the application of Spiegelhalter & Lauritzen parametrization, EM, or gradient

descent algorithms; missing values are automatically handled. The relationships between

variables may be entered as individual probabilities or in the form of equations. Both

parameter and structure learning are supported by this package. Netica discretizes the

continuous variables by partitioning their domain into some finite number of sub-sets.

Since representation of the resulting discretized model is exponential in the number of
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variables, this approach becomes problematic in large or complex models. For example,

the number of parameters representing a Gaussian distribution over N variables is O(N2).

If these variables are discretized into m ranges, then O(mN) elements are required to be

learnt and stored. Exact general probabilistic inference performed by Netica is based on

message passing in a junction tree of cliques, which is the fastest available algorithm.

Once an inferential model is identified, we can answer queries or find optimal decisions.

Given a case of new observations, both posterior probability of queries and most probable

explanation (MPE) can be found. Netica allows the user to enter and update only individual

cases; it does not handle sets of cases.

In summary, Netica is suitable for application in the following areas: diagnosis,

prediction, decision analysis, sensor fusion, expert system building, probabilistic modeling,

and certain kinds of statistical analysis.

B.2 Bayes Net Toolbox

Bayes Net Toolbox (BNT) (available at http://bnt.googlecode.com/) is

another Bayesian modeling and inference package. Taking advantages of MATLAB

features, BNT has become a widely used and powerful Bayesian software since 2002. BNT

suffers from the lack of GUI, which is currently made up by MATLAB visualization tools;

a preliminary attempt to make a GUI has been done by Murphy. The software can build and

learn static and dynamic Bayesian networks, answer queries, or find optimal solutions using

its powerful inference engine. BNT does not allow the entry of probabilistic relations by

equation. BNT supports both parameter learning and structure learning by several learning

algorithms such as EM and MCMC algorithms. BNT deals with continuous variables

directly without attempting to discretize them. It allows only linear relations between the

continuous variables and does not allow discrete nodes to have continuous parents. In

addition, non-Gaussian probability distributions of continuous variables are not supported.
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Inference tasks in static and dynamic Bayesian networks are performed by various exact

and approximate inference algorithms.

Finally, BNT is applicable for implementation of the following probabilistic models:

linear regression, logistic regression, mixtures of Gaussian distributions, DBNs (such as

hidden Markov models (HMMs), Kalman filters, switching Kalman filters, and ARMAX

models), factor analysis, probabilistic PCA, and many others.

B.3 WinBUGS

WinBUGS (available at http://www.mrc-bsu.cam.ac.uk/bugs/) is the most

advanced version of BUGS (Bayesian Inference Using Gibbs Sampling) that provides

Bayesian analysis of statistical models using Markov Chain Monte Carlo (MCMC)

methods. Since MCMC is inherently less robust to the prior information than analytic

statistical methods, prior knowledge plays an important role in the accuracy of a Bayesian

model identified by WinBUGS. A wide range of non-Gaussian probability distributions for

discrete and continuous variables are provided. WinBUGS allows the entry of probabilistic

relations by equation, and supports non-linear relations between the continuous variables.

However, high correlation among parameters may lead to slow convergence. Therefore,

this program is inefficient for time series structures such as hidden Markov model (HMM).

A new prediction can be obtained by specifying the query variable as missing in the data-set

and assigning it a uniform prior.

WinBUGS is suitable for identification and implementation of generalized linear mixed

models, latent variable models, and measurement error models.
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