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Abstract 

Estimating animal abundance is a key component of wildlife management and mark-recapture surveys 

are one of the most commonly used methods of obtaining population estimates.  Photographic 

identification has recently been explored as a method of ‘marking’ individuals for mark-recapture 

surveys.  It is most often used on species with spots, stripes of other unique markings however, in a few 

cases, species that do not have such obvious marks have been successfully identified using 

morphological measurements.  There is a need for the development of non-invasive, affordable and 

accurate methods of censusing wide-ranging and elusive northern populations of ungulates.  In this 

study, I tested a likelihood-based photographic identification method on 4 species of ungulates: muskox 

(Ovibos moschatos), Dall sheep (Ovis dalli), mountain goats (Oreamnos americanos) and mule deer 

(Odocoileus hemionus).  False-rejection (FRR) and false-acceptance (FAR) error rates were identified for 

each species. These measures varied widely among species (i.e., FRR = 0–13%, FAR = 2–22%).  Matching 

success was also determined for each species and ranged from 48% to 96%.  Muskox (FRR=0% and FAR 

=3%) and sheep (FRR=4% and FAR=2%) had the lowest misidentification rates and the highest matching 

success rates (96% and 88%, respectively).  Moderate results were obtained for goats (FRR=11% and 

FAR=6%) and deer (FRR=11% and FAR=0%) with matching success rates of 81% and 80%, respectively.  

An automated matching success rate was calculated based on the top-ranked photograph for each 

potential match and was compared to the observer matching success rate.  The observer matching 

success rate was significantly higher for all analyses (t9=7.2, p<0.05), indicating that the final subjective 

user choice step of the method was important.  An observer bias test was conducted for deer and sheep 

and significant observer bias was found for deer, and affected matching success rates for both species 

pointing to the importance of observer training and/or experience in the species of interest and the use 

of the program.  This study provides a proof-of-concept for the use of photogrammetric identification on 

sheep and muskox and lays the groundwork for future capture-mark-recapture studies on wild 
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populations by establishing misidentification rates and determining the effect of observer bias.  Future 

work should address the stability of horn measurements over time and the feasibility of capturing 

useable photographs from remote cameras.   
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1.0 Introduction 

1.1 Estimating Animal Abundance 
Since the 1950s, attempts have been made to solve the problem of estimating animal abundance (Otis, 

1978) and a wide range of methods exist to address the issue.  Estimates of animal abundance inform 

most wildlife management decisions and allow managers to track the impacts of those decisions, as well 

as other influences such as climate change, development, and habitat loss. Generally, a population 

estimate is used to make inferences about total population, as counting every animal in a population is 

often not feasible.  The simplest methods involve counting individual animals, either in random sample 

plots, or in line transects, and calculating population density estimates (Schwartz & Seber, 1999).  

Sampling is usually randomly distributed on the landscape to ensure representative samples are 

captured.  However, in the case of species or populations that have aggregated distributions (like some 

birds or fish), adaptive sampling may be used.  Adaptive sampling involves using knowledge obtained 

from initial sampling to inform future sampling locations (Schwartz & Seber, 1999).  Estimating animal 

abundance using such methods can, however, be difficult for highly mobile, cryptic, or patchily 

distributed species. 

Capturing, tagging, and marking animals has long been used by wildlife managers for population 

estimation through capture-mark recapture (CMR) surveys.  In this case, a sample of animals are 

captured, then tagged or marked, and released. After allowing time for the marked and unmarked 

animals to mix, subsequent rounds of capturing and marking occur in which some of the marked animals 

are re-captured and some unmarked animals are also captured.  This allows for an estimation of the 

population size based on the proportion of marked individuals that are recaptured (i.e., the ratio of 

marked individuals to total population size at the original time of sampling is the same ratio of marked 

individuals to total sample size in the second sample).  This is called the Lincoln-Petersen index and is 

used for closed populations (Seber, 1982).  If further sampling events occur then capture histories can 

be collected for each individual and more accurate population estimates can be derived.   

Closed-population CMR relies on the following assumptions: 1) that the population is closed (i.e., that 

there are no births and deaths, and no immigration or emigration); 2) that individuals do not lose their 

marks over the course of the study; 3) that all marks are correctly read and recorded; and 4) that the 

marking or trapping does not affect the probability of the animal being recaptured (Otis et al., 1978).   

Implicit in assumptions 2, 3 and 4, is the importance of the relative permanency of the marks, their 

identifiability and their relative lack of influence on the animal in question.  Marks that rub off, are lost, 
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or are unreadable may bias population estimates, as can marks that affect the survival or fitness of the 

animal or alter its future behaviour.  Historically, capturing and marking animals have been invasive 

practices requiring handling individuals, and often permanently scarring or affixing tags or collars, which 

may be detrimental to their fitness or survival.   

1.1.2 Invasive Sampling Methods 
Traditional approaches of tracking individuals use invasive and costly methods such as marking and 

radio-collaring animals (Powell & Proulx 2003; Krausman et al., 2004; Cattet et al., 2008).  Marking or 

radio-collaring large mammals most often requires that they be captured and anesthetized, which can 

cause injury or mortality.  Documented rates of mortality vary by species; for example, based on long-

term research in Scandinavia: moose (Alces alces) 0.7%, grizzly bears (Ursus arctos) 0.9%, wolverines 

(Gulo gulo) 2.8%, Eurasian lynx (Lynx lynx) 3.9%, and gray wolves (Canis lupus) 3.4% (Arnemo et al., 

2006). Mortality can be caused directly from the capture process or anesthetic, or indirectly due to 

secondary effects such as stress from pursuit, separation from offspring, or trauma from traps (Arnemo 

et al., 2006).  Mortality rates, however, are often under-estimated, due to scavenging, malfunctioning 

transmitters, emigration, or simply due to too short a post-capture monitoring period to confirm 

survival (Cattet et al., 2008).  Moreover, mortality rates provide only part of the picture, as other 

negative sub-lethal impacts may occur, including injury (Jacques et al., 2009; Dechen-Quinn et al., 2014) 

or behavioural changes (Rachlow et al., 2014; Jung et al., 2019) caused by capture and handling, as well 

as physical and psychological stress caused by trapping, tagging and marking (Wilson & McMahon, 2006; 

Delehanty & Boonstra, 2009).   

In a study of long term capture effects on black bears (Ursus americanus) and grizzly bears, Cattett et al. 

(2008) found that capture and handling affected movement rates and body condition with effects 

directly proportional to the number of times an animal had been captured.  Captured and marked 

white-tailed deer (Odocoileus virginianus) fawns had lower survival rates than unmarked fawns, possibly 

due to the marking reducing their cryptic camouflage, as well as abandonment by does (White et al., 

1972).  Offspring abandonment is a common problem resulting from capture and handling, and has 

been documented in ungulates in particular.  Capture-induced abandonment of moose (Alces 

americanus) calves was 18% in one study (DelGiudice et al., 2015), and 28% in another; and ranged from 

22% for caribou (Rangifer tarandus), 19% for pronghorn (Antilocapra americana), 15% for mule deer 

(Odocoileus hemionus), 11% for elk (Cervus canadensis), and 4% for white-tailed deer, among other 

ungulate species (Livezey, 1990).  
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Chemical immobilization can also affect the behaviour of some animals.  In male bighorn sheep (Ovis 

canadensis), an increase in the frequency of dominance fights was observed post-capture, and captured 

males lost these fights, which affected their subsequent social status (Pelletier & Festa-Bianchet, 2013).  

Chemical immobilization and radio-collaring of mountain goats (Oreamnos americanus) was found to 

have a negative effect on their reproduction and survival (Cote et al., 1998).  Moose were found to have 

lower reproductive rates following chemical immobilization from helicopters (Ballard and Tobey, 1981), 

while immobilization of pregnant moose in late winter can cause an increase in post-natal mortality 

(Larsen & Gauthier, 1989).  Chemical immobilization and capture has also been shown to cause short 

term changes in movements and behaviour (Northrup et al., 2014; Rode et al., 2014; Becciolini et al., 

2019; Jung et al., 2019). 

The method of marking animals may also have detrimental effects on individuals.  Marking methods 

include brands, implanted tags, external tags, or scarring (Walker et al., 2011). Hot iron branding is the 

most effective way to mark many marine mammals, such as elephant seals (Mirounga leonina), as tag 

loss can be very high; however, it can cause large weeping sores and infected wounds, and result in the 

animals being in poor physical condition in some cases (Caiafa et al., 2005).  Flipper banding of seabirds 

has been used since the 1950s to mark individuals, but has also been linked to increased energy 

expenditure and foraging time, lower survival rates and severe flipper damage (Sherley et al., 2010). 

Moose calves marked with ear transmitters were found to have a significantly higher mortality rate than 

unmarked calves and calves marked with ear tags (Swenson et al., 1999).   

Radio-collaring is one of the most common methods of monitoring wildlife and can be used to collect 

information about home range size, movement patterns, and behaviour.  However,  the collars can have 

negative impacts on animals and neck lesions have been documented across a range of species, 

including mule deer, bighorn sheep, and howler monkeys (Alouatta palliata) (Krausman et al., 2004; 

Hopkins & Milton, 2016).  Global Positioning System (GPS) and Very High Frequency (VHF) collars placed 

on mule deer for one year were found to cause skin loss and ulcer formation, and similar injuries were 

found when collars were placed on bighorn sheep (Krausman et al., 2004).  Skin loss and more serious 

subcutaneous tissue and muscle damage injuries were found when ball chain radio collars were 

deployed on female mantled howler monkeys (Hopkins and Milton, 2016).  While advances in collar 

technology and deployment methods reduce these kinds of injuries, they still occur in some cases and 

avoiding collaring altogether is the most effective way of avoiding the associated detrimental effects.  

Hence, there is a need for less invasive sampling techniques to mark individuals for CMR studies and to 
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address issues of animal welfare, as well as those of measurement bias introduced by the methods 

themselves.  GPS collars, for example, are prone to frequent failures and are costly, which can lead to 

reduced sample sizes and poorer statistical inference (Hebblewhite & Haydon, 2010).  While invasive 

methods of sampling, tracking and marking are predominant, new non-invasive approaches are being 

developed to track animals and identify individuals for population counts and demographic studies 

(Waits & Paetkau 2005; Bolger et al., 2012).   

1.1.3 Non-Invasive Sampling Methods 
In northern Canada, the development and application of non-invasive sampling methods for wildlife is 

also necessary to address cultural sensitivities to invasive sampling methods.  The Inuvialuit and Dene 

believe that live wild animals should not be handled, and that it is disrespectful to affix any man-made 

object to their bodies (Byers, 1999).  The Heiltsuk First Nation of BC similarly voiced concern over the 

radio-collaring of wolves in their traditional territory (Darimont et al., 2008).  These concerns and beliefs 

are shared across many northern indigenous communities (Byers, 1999), and are not necessarily unique 

to First Nations.  The evolution of co-management practices and policies, such as those that have been 

created as a result of Yukon First Nation land claims agreements, and the need for consultation with 

First Nations without such agreements, means that addressing these concerns is vital.   

Non-invasive methods of identifying individuals, such as genetic sampling (Waits & Paetkau 2005), and 

photogrammetry (Berger, 2012), are being developed to monitor and study populations while reducing 

disturbance to animals and costs to researchers and managers.  Non-invasive genetic sampling methods 

can reveal information about populations and individuals from the extraction of genetic information 

from hair, feces, or other DNA sources.  Genetic sampling can, however, be limited in its application due 

to the rapid degradation of DNA, high genotyping error rates, contamination, relatively low success rates 

(Waits & Paetkau, 2005), and high cost.  Genetic sampling methods can thus benefit from cross 

correlation or validation with other methods (Anile et al., 2014; Drechsler et al., 2015). 

1.2 Photographic Mark Recapture 
Photography has been used to document wildlife occurrence and behaviour almost since its advent.  

Remote deployment of cameras has also recently precipitated a revolution in the collection of data in 

the field of wildlife biology (Cutler & Swann, 1999; Dertien et al., 2014).  Remote cameras have been 

primarily used for the collection of data on behaviour, predation, activity patterns, habitat use and 

occupancy (Burton et al., 2015).  The use of remote cameras for the collection of demographic 

information has been slower, but recent advances in image processing software have allowed the 
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development of programs to uniquely identify individuals of a population.  Photographic mark-recapture 

(PMR) has recently gained attention as a method of estimating animal abundance (Lubow & Ransom, 

2009; Bolger et al., 2012; Tancredi et al., 2013; Alonso et al., 2015; Schmidt et al., 2017).  Photographic 

mark-recapture is similar to other forms of CMR modelling; however, it uses photographic identification 

to “mark” individuals and record capture histories, as opposed to traditional mark-recapture monitoring, 

which uses physical marks and requires physically recapturing individuals (Lubow & Ransom, 2009).  

Photographic mark-recapture demands that individuals be amenable to being photographed (either 

remotely, while captured, or while free-ranging), have variable traits that can be measured, and that 

these traits remain stable over the period of study (Bolger et al., 2012).  Applying PMR to a new 

population requires identification of the phenotypic traits to be measured, development of a method of 

capturing the traits in photographs, and determination of the length of time over which the traits are 

stable.  The application of PMR to northern species would increase the tools available to researchers 

and wildlife managers, and could allow for the population estimation of wide-ranging species that are 

otherwise costly or difficult to monitor. 

The application of PMR methods involves identification of individuals from photographs, which requires 

quantifying unique phenotypic characteristics (Kelly 2001; Goswami et al., 2007; Sacchi et al., 2010).  

The method was initially developed on species with spots, stripes, or other unique markings, such as 

tigers (Panthera tigris; Karanth & Nichols, 1998), zebras (Equus quagga; Foster et al., 2006), whale 

sharks (Rhincodon typus; Meekan et al., 2006), marbled salamanders (Ambystoma opacum; Gamble et 

al., 2008) and giraffes (Giraffa camelopardalis tippelskirchi; Bolger et al., 2012).  Three-dimensional 

computer-aided matching has been used on Serengeti cheetahs (Acinonyx jubatus) with a high degree of 

accuracy (100% when poor quality and bad angle photos were removed; Kelly, 2001). Camera trap 

studies on tigers demonstrated that individuals could be accurately identified by their stripe patterns, 

and the resulting data could be used for CMR modelling (Karanth & Nichols, 1998).  Zebras can similarly 

be differentiated based on stripe patterns (Foster et al., 2006).  Marbled salamanders also have unique 

dorsal patterns that have been used in mark-recapture studies (Gamble et al., 2008).  Colouration of the 

pelage on the chest of Asiatic black bears (Ursus thibetanus) and sun bears (Helarctos malayanus) has 

been captured via specially designed remote camera setups: the method was found to be highly reliable, 

cost effective, and easy to use, for determining population status (Higashide et al., 2012; Ngoprasert et 

al., 2012).  Wolverine also have distinctive coat colouration on their chest which can be captured with 

specially designed remote camera setups and used to “mark” and identify individuals (Magoun et al., 

2011).  Similarly, African penguins (Spheniscus demersus) have unique chest plumage patterns, and a 
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fully automated program was developed for population monitoring of this species (Sherley et al., 2010). 

Whisker spot patterns also produce a unique ‘fingerprint,’ and have been used to identify individual 

polar bears (Ursus maritimus; Anderson et al., 2010) and Australian sea lions (Neophoca cinerea; 

Osterreider et al., 2015).    

Photographic identification studies have been conducted on a large range of marine animals (Table 1).  

In many cases, they provide ideal candidates, as they are often the subject of long-term studies, which 

result in more individuals being ‘captured’ and thus increases the reliability of the method (Hillman et 

al., 2003).  In addition, marine tourism and citizen science databases have been established to help 

document their locations and populations.  A prime example of a charismatic, highly photographed 

marine species is the Wunderpus photogenicus octopus, which can be uniquely identified from white 

spots on its dorsal mantle and is a popular target of tourists’ cameras (Huffard et al., 2008).  In harbor 

seals (Phota viculina), pelage markings, flipper scars and tags were used as unique identifiers (Hastings 

et al., 2008), based on a similar method developed for gray seals (Halichoerus grypus; Hiby & Lovell, 

1990; Hiby et al., 2013).  Mediterranean monk seals (Monachus monachus) have also been identified 

using unique pelage patterns (Forcada et al., 2000).   

Another type of computer-assisted matching program relies on a string-like representation of the 

curvature of dorsal or pectoral fins (Araabi et al., 2000; Gope et al., 2005), and a similar multi-curve 

matching method was developed for the ears of African elephants (Loxodonta spp.; Ardovini et al., 

2008). 

1.2.1 Computer-Assisted Photographic Identification Programs  
Many programs have been developed for computer-assisted photographic identification, some of which 

are species-specific, but many of which can be applied to multiple species and are generally free and 

open sourced. ExtractCompare (http://conservationresearch.org.uk/), for example, is an interactive 

photo matching software that uses 3D body models to automatically identify animals from their 

individual markings. It was originally developed for gray seals (Hiby & Lovell, 1990) but has been used on 

other species such as harbor seals and wildebeest (Connochaetes taurinus; Hastings et al., 2008; 

Morrison & Bolger, 2012).  Misidentification rates for this method varied (Table 1) from 8% for 

wildebeest (Morrison & Bolger, 2012) to 14% for gray seals (Hiby & Lovell, 1990).  Wild-ID 

(https://envs.dartmouth.edu/people/douglas-thomas-bolger) uses a Scale Invariant Feature Transform 

(SIFT) operator to reduce preprocessing of the images and allow the use of a greater range of images 

taken at varying angles.  It has been used for the identification of wildebeest and Masai giraffes (Giraffa 

http://conservationresearch.org.uk/
https://envs.dartmouth.edu/people/douglas-thomas-bolger
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camelopardalis tippelskirchi) but can theoretically be used for any distinctively patterned species (Bolger 

et al., 2012; Morrison & Bolger, 2012).  Both programs require some preprocessing of the photographs 

and subsequent user selection from the top-ranked matches presented by the program, however 

ExtractCompare requires three preprocessing steps, while Wild-ID requires only one (Morrison & Bolger, 

2012). Many marine mammals can be identified by their fin shapes, and a multi-species program called 

FinScan was developed to identify bottlenose dolphins (Tursiops truncatus), dusky dolphins 

(Lagenorhynchus obscurus), spinner dolphins (Stenella longirostris), long-finned pilot whales 

(Globicephala melas) and white sharks (Carcharodon carcharias), as well as sperm whale (Physeter 

microcephalus) fluke photographs (Hillman et al., 2003).  The program performed well for dolphins and 

sharks with the correct match appearing in the top-ranked position 50% of the time and in the top 3-4 

matches 75% of the time; however, species-specific adjustments are required for use of the program on 

the two whale species. These programs are computer-assisted and are thus particularly useful in dealing 

with large databases, which are becoming increasingly common.  A program based on an astronomical 

pattern matching algorithm was developed to deal with a large database of photographs of whale sharks 

in Australia, based on the spatial arrangement of spots on their skin which achieved 90% matching 

success rates (Arzoumanian et al., 2005).  To further automate and simplify the process another 

software program was applied to whale sharks called the Interactive Individual Identification System 

(I3S) that can be used to identify individuals based on distinct spot patterns, achieving a 93% matching 

success rate (http://www.reijns.com/i3s/; Speed et al., 2007).  HotSpotter is another software for the 

automated identification of patterned species that has been used on Grevy’s zebras (Equus grevyi), 

plains zebras (Equus quagga), giraffes (Giraffa spp.), leopards (Panthera spp.) and lionfish (Pterois spp.; 

Crall et al., 2013).  It achieved 100% matching success for giraffes, lionfish and jaguar, 95-98% for Grevy's 

zebras and 99% for plains zebras.  AMPHIDENT was developed for the identification of great-crested 

newt (Triturus cristatus) from their ventral spot patterns and achieved a false rejection rate of 2%; it was 

cross-correlated with a genetic study and found to have better recapture rates (Drechsler et al., 2015).  

The authors posit that the program could have a much wider applicability to a broad range of species 

with highly variable and discriminative patterns such as sand lizards (Lacerta agilis), Galapagos marine 

iguanas (Amblyrhynchus cristatus), adders (Vipera berus), Near East fire salamanders (Salamandra 

infraimmaculata), and Pyrenean mountain brook newt (Calotriton asper). 

Spots, stripes and other patterns are recognizable, variable and unique; however, other measurable 

features or groups of features can similarly be used to identify individuals of species that don’t possess 

such conspicuous ‘marks’.  Pumas (Puma concolor), for example, do not possess spots or stripes, but 

http://www.reijns.com/i3s/
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may be uniquely identified by scars, kinked tails, tail-tip coloration, and other subtle marks, with an 

average agreement between pairs of investigators of 79.3% (Kelly et al., 2008).  Coyotes (Canis latrans) 

have similarly been identified using colouration, banding and other pelage variation characteristics with 

100% agreement between five observers, albeit when comparing only 3 individuals (Larrucea et al., 

2007).  Physical characteristics combined with spatial locations and group sizes have been used to 

temporarily “mark” grizzly bears in a CMR survey that produced abundance, density and occupancy 

estimates (Schmidt et al., 2017).  Identification of many species of deer using fur characteristics, in 

combination with other identifiers such as the presence or absence of antlers or fawns, was deemed 

successful in a camera trapping census in Mexico where 97% agreement between two independent 

observers was achieved (Soria-Diaz & Monroy-Vilchis, 2015).  However, less subjective methods have 

also been developed such as photogrammetry and facial recognition.   

1.2.2 Photogrammetry 
Photogrammetry (taking measurements from photographs) has been successfully applied to a number 

of species globally for the estimation of population condition and individual fitness (Krause et al., 2017; 

Berger, 2012), age (Bergeron, 1992; Flinn, 2010; Gee et la, 2014), as well as the unique identification of 

individuals (Merkle & Fortin, 2013).  While such measures are typically collected from dead or live-

captured individuals, non-invasive methods have been developed.  Parallel lasers, for instance, have 

been used to measure horn size in ibex (Capra ibex; Bergeron, 1992), and drones have been used to 

measure body mass and estimate body condition in pinnipeds (Krause et al., 2017).  Manual 

photography and remote camera traps in particular have become increasingly useful in this regard.  

Photogrammetry has been used to measure body size variation in moose and its effect on juvenile 

survival, and head size variation in muskoxen (Ovibos moschatos) in relation to environmental variation 

(Berger, 2012).  The measurement of antler size from photographs of white-tailed deer has been used to 

accurately estimate their age (Flinn, 2010).  While useful, this type of photogrammetry is limited to the 

measurement of morphological traits which can help estimate a population’s condition or even its 

demography, but not population size.  The application of photogrammetry to the identification of 

unique individuals is an obvious next step in the evolution of the use of photogrammetry. 

1.2.3 Facial Recognition 
Facial recognition, as developed for humans, involves automated programs that take morphological 

measurements of human faces.  Eigenfaces is a computer-assisted photographic identification program 

based on principal component analyses of human faces (Turk & Pentland, 1990). It was subsequently 

applied to elephant seals (Mirounga leonina) with 100% effectiveness (Caiafa et al., 2005).  Other human 
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facial recognition software programs have been extended and applied to chimpanzees (Pan troglodytes) 

for use in mark-recapture studies, with false rejection rates ranging from 12.5% to 17.7%, and false 

acceptance rates ranging from 3.5% to 13.5% (Loos & Ernst, 2013).  A more recent and accurate facial 

recognition of chimpanzees was developed using a deep learning artificial intelligence that achieved 

92.5% recognition accuracy (Schofield et al., 2019).  A similar feature extraction program was applied to 

lemurs with a 98.7% success rate (Crouse et al, 2017).  Identification of loggerhead sea turtles (Caretta 

caretta) has also been achieved with a 99% success rate using facial photographs of their scale patterns 

and an identification tree (Schofield et al., 2008).  Common bottlenose dolphins have also been the 

subject of a facial identification study.  It was not computer-assisted but was conducted by 27 biologists 

looking at folders of left and right side photographs and was compared to identification done by dorsal 

fin.  The results suggest that the dolphins are symmetrical, such that they can be identified by right or 

left-sided facial images, and that the facial traits are stable over long periods of time (up to 5 years; 

Genov et al., 2017).  Facial identification in wildlife is otherwise relatively uncommon (Table 2). 

However, a method has been developed for identifying individual bison (Bison bison) from photographs 

of their faces, using measurements of their horns in combination with other morphological traits 

(Merkle & Fortin, 2013).   

Morphological measurements taken from photographs of 33 known free-ranging bison from Prince 

Albert National Park, Canada, using the program ImageJ, were first converted into ratios to standardize 

the measurements across photographs taken from different distances (Merkle & Fortin, 2013).  The 

ratios were then compared between pairs of individuals and a probability statistic, and likelihood scores 

were generated to determine the prospect of a match.  The top five matches were presented to the user 

for final selection of the matching individual.  The program relies on high quality photographs from 

which details such as hair colour differences and horn patterns can be distinguished, as well as head-on 

shots with little deviation from a forward-facing angle.  While the use of photographic identification has 

been rapidly expanding, most of the work has relied on pattern recognition and not on photogrammetry 

of morphological traits.  As such, this method is unique in that it uses morphological measurements of 

the horns and faces of the ungulates.  Importantly, though, the method relies heavily on horn 

measurements.  The method has not yet been used on ungulates without horns (i.e., cervids).  The 

extension of this method to antlered species, and to other species of bovids, would expand the 

applicability of the method and provide a proof of concept for the use of facial recognition in ungulates.   
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The main objective of my study is to test and apply a photographic identification method to four species 

of ungulates with the goal of providing a non-invasive method that may be used to estimate animal 

abundance.  My specific objectives are to 1) test Merkle and Fortin’s (2013) likelihood-based 

photographic identification method that was developed for bison, to other species of bovids including 

sheep, goats and muskox; 2) modify the method such that it can be tested on a species of cervid (mule 

deer); 3) test a modified method to determine the relative importance of horn measurements for 

unique identification of a bovid; 4) test the importance of the final subjective step of the method to 

determine its relative importance compared to a completely automated version of the method; and 5) 

determine the effect of observer bias on the method.  I predicted that this method would be applicable 

to other species of bovids due to the similarity of the morphological facial features available to be 

measured.  The application to a species of cervid proved more challenging due to their lack of horns; 

however, deer possess other facial landmarks that may be measurable, and facial colour patterns that 

may allow for identification.  The final step of the method requires that the user choose the right match 

from the top-ranked matches provided by the program; while this step likely improves the accuracy of 

the method; it also adds a significantly time-intensive and subjective step.  Quantifying its value for 

different species, as well as the resultant misidentification rates, may be an important consideration for 

future application of the method.  In addition, observer bias may be particularly problematic in photo-

identification studies where there are varying degrees of experience and of subjectivity.  The effect of 

observer bias is a factor in considering the use and application of the method and quantifying if it will be 

valuable for potential users, particularly in relation to different species.   

Methods to uniquely identify individuals may be achieved a variety of ways, and has been developed for 

many species (Table 1 & 2).  Most species that do not possess spots, stripes, or other distinct 

‘fingerprints’, require more creative solutions to be uniquely identified.  Northern ungulates fall into this 

category and are also species that would benefit from the development of a non-invasive sampling 

method like photographic identification.  Large and remote areas with wide-ranging, elusive species are 

often hard to survey accurately and the high costs of traditional invasive methods can limit their use.  

Additionally, the development of non-invasive sampling methods would help to address the cultural 

sensitivities of northern First Nations to invasive sampling methods.  Photographic identification based 

on morphological measurements of faces and horns is a method that has worked for bison and is likely 

applicable to other species of bovids: it may also be adaptable to cervid species, further expanding the 

use of the method.   



11 
 

2.0 Methods 
To test Merkle and Fortin’s (2013) likelihood-based matching algorithm on different species of 

ungulates, I first collected data at the Yukon Wildlife Preserve (YWP) in Whitehorse, Yukon between 

September 2016 and May 2017, and at the Large Animal Research Station (LARS) in Fairbanks, Alaska, in 

July 2017.  The YWP is a not-for-profit organization that seeks to promote research into non-invasive 

wildlife conservation techniques.  The YWP has captive populations of 12 species of mammals that they 

aim to maintain in as wild a state as possible.  Some of the animals were born in captivity while others 

were brought to the preserve from the wild.  Many of the muskox at LARS came from farms and the 

research aims of the facility are mainly aimed at the raising of muskox for commercial purposes: thus 

most of the animals have had their horns cut off making them un-useable in this study.  The habitats at 

both facilities are fenced, and in some cases quite large, often making photography of the entire 

population challenging.   

I took photographs of 19 male and female mountain goats, 26 female Dall sheep, 10 male and female 

muskox, and 30 female mule deer.  The goats and muskox were not sexually segregated in photographic 

sessions as the populations were small (19 and 10, respectively) and they are less sexually dimorphic 

than the sheep and deer.  The sheep and deer were segregated by sex in their enclosures and had large 

enough populations that they could be sampled separately.  Females were chosen because, in the case 

of sheep, they had a larger population of females than males at the YWP.  In the case of deer, females 

were chosen because they are antlerless and had a large population for sampling.  The sessions were 

conducted so that the maximum number of animals could be photographed and taken note of 

separately, as many of the animals were not tagged or otherwise individually identifiable.  The 

methodological process is depicted in a flow chart (Figure 7). 

Multiple photographs were taken of each individual capturing head-on shots and various angles 

deviating from head-on shots (up to 20°).  Acquiring multiple photographs of each individual was 

required to be able to calculate photo error and to determine the program limits for using acute angle 

photographs.  To adequately capture all of the individuals, deer were photographed on 6 different 

occasions, goats on 7 different occasions, sheep on 9 different occasions, and muskox on 3 different 

occasions at the YWP (and 1 occasion at the LARS).  The photographs were taken with a Nikon D5100 

Digital SLR Camera (Nikon, Tokyo, Japan) with an AF-S Nikkor 18-55mm lens and 16.2 megapixels and 

with a Fujifilm Finepix S3400 Digital Camera (Fuji, Tokyo, Japan) with a 28X Zoom and 14 megapixels.  

Two cameras were used because some individuals required more zoom (achievable with the Fuji) and 



12 
 

some required more speed (achievable with the Nikon); having two cameras also helped to avoid the 

problem of running out of batteries during a photographic session.  Photo quality was subjectively 

comparable between the cameras.  

2.1 Morphological measurements 
Distances between selected morphological (i.e., facial) landmarks in the photographs were manually 

measured (in pixels) using the program ImageJ (Abramoff et al., 2004). Initially 9–10 measurements 

similar to those used by Merkle and Fortin (2013) for bison were measured including: distance between 

the horn tips, length of each horn, width of the base of each horn and distance between the eyes. 

Subsequently, up to 20 other measurements were made for deer, sheep, and goats, these included: the 

distance between the inner and outer corner of the eyes, length and base width of the ears, length of 

the nose, width of the nose, and septum, and a variety of measurements between the mid and 

endpoints of these measurements.  Twenty measurements were used to account for the potential for 

increased false rejection rates with a larger population and a higher degree of photo error (Merkle and 

Fortin, 2013).  To control for varying distances and angles between the photographs, each measurement 

was then standardized by converting it into a derived ratio. In the case of muskox, the measurements 

used were analogous to those used by Merkle and Fortin (2013; Figure 1 and Table 3), as were the 

derived ratios.  Ratios 1–8 were calculated by dividing measurements M1–M8 by M9 (the measurement 

with the least variability).  Ratio 9 is based on the ratio between M1 and M2: the widest point of the 

horn width and the tips of the horn width (Table 4).   

The measurements used for deer were different than those for bovids, because cervids lack horns and 

their antlers are shed and regrow annually, rendering them an undiagnostic trait over short time 

periods. Twenty measurements were taken of the face and ears of the deer (Figure 2 and Table 5).  

These measurements were chosen based on traits often used in human facial recognition analyses, the 

morphological features available for measure in a head-on photograph, and those used by Merkle and 

Fortin (2013).  The ratios were calculated by dividing each measure by M1 (the measurement with the 

least variability) and ratio 1 is based on the ratio between M4 and M3, the widest part of the nose and 

the narrowest part of the septum (Table 6).    

The initial sheep measurements taken were also based on those used by Merkle and Fortin (2013); 

however, 10 measurements were taken instead of 9 because a distance between horn base 

measurement was available that was not possible with bison or muskox, where their forelock obscures 

their horn bases in most cases (Figure 3 and Table 7).  The derived ratios were calculated in the same 
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way as for muskox and bison: ratios 1–7 and 9–10 were calculated by dividing measurements M1-M7 

and M9-M10 by M8 and ratio 8 is based on the ratio between M1 and M2 (M1-M2/M2) (Table 8).  For a 

subsequent sheep dataset, the same 20 measurements that were used for deer were used, and the horn 

measurements that were used initially were not used (Figure 4 and Table 9).  Ratios were calculated the 

same as the deer ratios (Table 10).   

The goat measurements were also modelled on the measurements used for bison, muskox, and sheep; 

however, due to the shape of their horns (i.e., they are relatively straight compared to bison, muskox 

and sheep), a measurement at the widest point of the horns and the corresponding width of each horn 

was difficult to confidently obtain.  To compensate for this, a measurement at the width of the nose at 

the nostrils and the length of nose were added (Figure 5 and Table 11).  The ratios were then similarly 

calculated such that M1–M4 and M6–M10 were divided by M5 (the measurement with the least 

variability) and ratio 5 is based on the ratio of the outer horn base width to the inner horn base width 

(M8–M2/M2; Table 13).   A subsequent method of analysis was attempted for goats based on that used 

for deer.  Twenty measurements were taken of the faces of the goats and the horn length measurement 

and width of each horn base were included (Figure 5 and Table 12).  The ratios were calculated by 

dividing each measure (M2–M20) by M5 (the measure with the least variability).  As above, ratio 1 is 

based on the ratio between M8 and M2 (Table 14).  A third goat analysis was tried in which 18 of the 

aforementioned 20 measurements were used, leaving out the horn length measurements, in an attempt 

to determine the relative importance of horns for goat identification.  The dataset, measurements and 

ratios were otherwise the same (Figure 6, Table 15 & Table 16). 

2.2 Photograph error and measurer error 
Photograph error (caused by differences in the angles and distance of the photographs) was calculated 

by measuring 4–5 photographs each of 5 different animals and then calculating a mean standard 

deviation (SD) of each of the ratio.  Measurer error (caused by human error or variation when taking the 

measurements in ImageJ) was calculated by the same observer measuring the same photograph 5 times 

and repeating this for 10 individuals of each species.  The mean SD was then taken for each ratio and 

used to calculate the weights (see Tables 9–12).   The weights were calculated as weighted means such 

that the ratio with the smallest mean SD was 1, with each other weight valued at less than 1, scaled 

based on their respective sizes.  The SDs and weights were inputted into the MatchImage package in R. 

For each analysis, the population SD of each ratio was calculated and compared to the photo error SD of 

each ratio.  The photo error SD was divided by the population SD to determine the percent photo error 
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of each ratio.  These were then averaged to calculate the average photo error for each analysis.  The 

degree of photo error was categorized as low=10%, medium=30% and high=50%, expressed as a percent 

of the population SD, as done earlier by Merkle and Fortin (2013).   

2.3 MatchImage 
MatchImage is a package written by Merkle and Fortin (2013) for use in the Program R (available at 

https://r-forge.r-project.org/R/?group_id=1628).  It uses a likelihood approach based on a Gaussian 

distribution and uses the morphological measurements to calculate a similarity score between an 

unknown photograph and a known photograph (at least one photograph in the database must be 

specified as known).  To calculate the similarity score, for each pair of measurements (of the two 

photographs being compared), a density distribution is estimated based on the 2 ratios and their 

respective SDs; the density value is then multiplied by the weight.  The sum of all the values (for each 

measurement) is then divided by the maximum possible similarity score (if 2 photographs had the exact 

same measurements).  The similarity score is calculated as follows: 

𝑠. 𝑠𝑐𝑟 =∑𝑓(𝑥𝑛|𝜇𝑛, 𝜎𝑛)

𝑛

𝑖=1

× 𝜔𝑛 

where 

𝑓(𝑥𝑛|𝜇𝑛, 𝜎𝑛) =
1

𝜎𝑛√2𝜋
𝑒𝑥𝑝 (−

(𝑥𝑛 − 𝜇𝑛)
2
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where n=number of measurements used in the analysis, f=the probability density function that 𝑥𝑛 is the 

same value as 𝜇𝑛 (where 𝑥𝑛=the measurement value of the known photograph and 𝜇𝑛=the 

measurement value of the unknown photograph), given a Gaussian distribution with SD=𝜎𝑛, and 𝜔𝑛=the 

weight of each measurement. 

To conduct an analysis, the user compiles a database of measurement values, of which at least 1 must 

be specified as known.  From this database, the program calculates the similarity scores and compares 

the unknown photograph to each known photograph in a pairwise manner.  The user is presented with 

the unknown photograph and the closest potential matches and their similarity scores (up to 5), and 

must choose the correct match or specify otherwise.   

Sets of photographs were analysed with the program using the 10 measurements developed for bison 

(Merkle & Fortin, 2013) for each bovid species (muskox, goats, and sheep).  Datasets were chosen from 

https://r-forge.r-project.org/R/?group_id=1628
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the database of photographs captured, based on quality and representation such that each individual 

animal was represented from 1-6 times in a set and the quality was such that identification could 

feasibly be achieved.  Photographs in which the head was turned >20 degrees from head-on 

(determined by estimation from photographs) were excluded, as were those that were blurry or 

obscured.  For deer, the above method could not be used due to a lack of horns, therefore novel 

measurements were used from the outset.  The chosen set of 20 measurements were also used on 

subsequent analyses of goats and sheep: for goats as an attempt to lower misidentification rates and for 

sheep to determine whether horns are necessary for the method to work.  Subsequent analyses were 

also conducted using different sets of photographs, in some cases by increasing the sample size for a 

more representative analysis, and in other cases by reducing it to determine a more accurate 

misidentification rate.  To improve misidentification rates for deer, obscured, blurry, or badly-angled 

photos were removed from the databases and a re-analysis was conducted.  In some cases, they were 

also segregated by season (i.e., sheep and deer). 

2.4 Misidentification Rates 
To evaluate the performance of each analysis, a false rejection rate (FRR) and false acceptance rate 

(FAR) were calculated.  Two kinds of false rejections occurred: program false rejections (pFR) occurred 

when the program failed to produce a match in the top 5 potential matches, and human false rejections 

(hFR) occurred when a match was produced in the top 5 but was deemed by the user to be a non-match.  

These were combined into a total FR (tFR).  False acceptance (FA) occurred when a match was falsely 

specified by the user to be a match.  If a match was deemed to be a FA, a FR was not also considered for 

that possible match.  False rejections result in an overestimation of population, while false acceptances 

result in an underestimation of population.  The FRR was calculated by dividing the number of tFRs by 

the number of photographs in the database.  The FAR was calculated by dividing the number of FAs by 

the number of photographs in the database.  To determine whether a match was true or false, manual 

identifications were conducted on each photograph in each dataset and they were assigned a unique 

identification.  The manual identifications were obtained by rigorously analysing each photograph 

manually, using data available from when the photographs were taken, and by analyzing additional 

photographs available from the database taken during the same session (i.e., side and full body 

photographs of the same individual).  Photographs that could not be confidently identified in this 

manner were rejected from the dataset.  This meta-data was not included in the datasets used for 

analysis to ensure it did not bias results. 
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2.5 Matching Success  
The matching success obtained for each analysis was calculated by subtracting the total number of false 

rejections and false acceptances from the total number of potential matches (i.e., the number of 

unknown individuals in each dataset) and then dividing by the total number of potential matches.  The 

total number of potential matches are a function of the number of photographs in the database minus 

the number of known individuals specified for each dataset.   

2.6 Automated Matching Success 
To determine the effect of the final subjective step of the method, an automated matching success was 

calculated for each analysis (i.e., what the matching success would have been had the program’s top-

ranked match been chosen automatically).  The automated matching success was calculated by counting 

the number of true matches in the top-ranked spot and dividing it by the total number of potential 

matches.  The matching success was then compared to the automated matching success rate and a t-

test for paired two sample means was calculated to determine whether the difference between the 2 

values was significant.   

2.7 Observer Bias 
To determine the effect of observer bias on the method (i.e., the last step in the process), an experiment 

was conducted to determine agreement among and between observers.  Eight biologists identified deer 

and sheep from top-ranked images.  They were given a brief explanation of the method and how to 

distinguish between individuals of each species and they were presented with the same datasets and 

photographs as those previously tested.  The session was conducted with the top-ranked matches 

displayed on a screen at the front of the room.  The observers were given brief instructions on how to 

identify each species.  While the observers were all trained biologists, they had no prior experience 

matching photos of deer or sheep.  The accuracy rate of each observer was calculated and an average 

accuracy rate for each species was calculated.  The among-observer agreement was then calculated 

using an intra-class correlation coefficient (ICC).  The ICC is calculated by dividing the variance among 

individuals (sa
2) by the total variance (s2; Hayes and Jenkins, 1997; Bell et al., 2009).   

ICC = (sa
2) / (sa

2 + s2). 

In general, ICC values less than 0.5 indicate poor agreement and values between 0.5-0.75 indicate 

moderate agreement (Koo & Li, 2016).  The ICC analysis was completed using package irr in R (R Core 

Team 2017).   
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3.0 Results  
The results for all analyses conducted are summarized in Table 17.  The misidentification rates ranged 

from a FRR and FAR of 0% and 2% for muskox and 4% and 2% for sheep, respectively, to a FRR and FAR 

of 28% and 9% for goats.  Matching success rates similarly ranged from 96% for muskox to 48% for deer.   

3.1 Muskox 
The results of the muskox analysis were the most successful of all the analyses conducted.  An analysis 

of muskox photographs obtained at both the YWP and the LARS was conducted on 31 high-quality 

photographs of 16 individuals.  The 10 measurements used were analogous to those used for bison 

(Merkle and Fortin, 2013) and the ratios calculated are outlined in Table 4.  Fifteen individuals were 

identified of an actual 16 and the FRR and FAR was 0% and 3% (due to one false identification), 

respectively.  The matching success rate was 96%, while the automated matching success was 46%. 

3.2 Sheep 
For the sheep analyses, high success rates were achieved when the databases were segregated based on 

seasons, and an analysis conducted that did not use horn measurements had lower success rates.  The 

first sheep analysis was conducted on a set of 76 photographs of 32 individuals collected on 3 days in 

September and October of 2016 and 1 day in May 2017.  The 10 measurements used were analogous to 

those used by Merkle and Fortin (2013) and the calculated ratios, SDs and weights are listed in Table 8.  

The number of individuals was overestimated: identifying 41 individuals when there were 32. The FRR 

and FAR was 11% and 1%, respectively.  The matching success rate was 80%, while the automated 

matching success rate was 52%.  

A second sheep analysis was conducted using the same set of measurements on a subset of the 

photographs used for the first analysis, but included only the photographs from May 2017 and were 

thus segregated by season.   It was conducted on 45 photographs of 19 individuals of which 21 were 

identified with a FRR and FAR of 4% and 2%, respectively.  The matching success rate was 88%, while the 

automated matching success rate was 77%. 

To determine the potential utility of the 20 measurements used on deer that do not rely on horn 

measurements, a third sheep analysis was conducted.  These measurements did not include the horns 

as landmarks. From a set of 110 photographs of 26 individuals taken on seven separate days over a 

period between September 2016 and May 2017, the program identified 62 individuals and had a FRR of 

25% and a FAR of 5%. The matching success rate was 62%, while the automated matching success rate 

was 28%. 
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3.3 Goats 
Moderate results were achieved for goats when the highest quality photos were used and the highest 

number of measurements including horn measurements were used. The first goat analysis conducted 

used 67 photographs of 19 individuals from photographs taken on 4 separate days between September 

and November of 2016.  The 10 measurements used were analogous to those used by Merkle and Fortin 

(2013) on bison and the calculated ratios, SDs and weights are listed in Table 13.  Forty individuals were 

identified of an actual 19 and the FRR and FAR was 24% and 6%, respectively.  The matching success rate 

was 59%, while the automated matching success rate was 37%. 

A second analysis on goats using the 20 measurements that were used for deer, and also including 2 

horn measurements, was conducted as an attempt to reduce the misidentification rates.  The calculated 

ratios, SDs and weights are listed in Table 14.  The second goat analysis used 47 photographs of 19 

individual goats and the program identified 26 individuals: the FRR was 11% and the FAR was 6%.  The 

matching success rate was 80%, while the automated matching success rate was 22%. 

A third goat analysis used the same set of 47 photographs as for the second goat analysis, however only 

18 measurements were included: the 2 horn length measurements were not used.   As a result the 

program identified 31 individuals of an actual 19 and the FRR was 28% and the FAR was 9%.  The 

matching success rate was 59%, while the automated matching success rate was 15%. 

3.4 Deer 
Results from the deer analyses were poor except in an analysis using a very small number of the highest 

quality photographs, in which case, moderate results were achieved.  The first analysis of deer 

photographs was conducted using 60 photographs of 30 individuals taken on 4 separate days between 

October and November of 2016.  Twenty measurements were taken of the faces of the deer: the 

calculated ratios, SDs and weights are listed in Table 5.  Thirty-six individuals were identified of an actual 

30: the FRR was 13% and the FAR was 22%.  The matching success rate was 48%, while the automated 

matching success rate was 25%. 

A second deer analysis was conducted on the same group of photographs in which poor quality 

photographs were removed including any partially occluded images, and any in which the deer had 

turned ears.  The second deer analysis used 50 of the photographs from the first analysis and the same 

set of 20 measurements.  Thirty-five individuals were identified by the program of an actual 30 

individuals with a 22% FRR and a 12% FAR.  The program matching success rate was 58%, while the 

automated matching success rate was 13%. 
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A third analysis of deer was conducted using a smaller dataset of 18 photographs of 8 individuals, 

representing the largest number of known individuals with high quality photographs that was captured 

in one photographic session (taken on October 19, 2016).  The analysis identified 10 individuals of an 

actual 8 individuals and the FRR was 11% and the FAR was 0%.  The program matching success rate was 

80%, while the automated matching success rate was 20%. 

3.5 Photo Error 
Average photo error was calculated for each analysis conducted and is a measure of the calculated 

photo error SD as a percentage of the population SD.  The calculated photo error SD was divided by the 

SD of each measurement for the total population.  This was calculated for each measurement taken and 

then an average was calculated for each analysis.  Average photo error ranged from 18% for sheep to 

89% for goats (Figure 7).  In general, as photo error increases FRR/FAR also increase.   

3.6 Automated Matching Success 
The automated matching success rates were calculated for each analysis conducted and were compared 

to the program matching success rates.  The results from all analyses are plotted in Figure 8.  A t-test for 

paired two-sample means was calculated to determine whether the difference between the 2 values 

was significant.  The program-estimated accuracy rate was significantly higher than the automated 

matching success rate for all analyses (t9=7.2, p<0.05). 

4.7 Observer Bias 
The observer bias session included 8 untrained observers who achieved matching success rates ranging 

from 23-42% with a mean of 32% ± 6% (SD) for deer.  The matching success rate for sheep ranged from 

73-96% with mean of 85% ± 7% (SD).  The ICC or the inter-rater agreement was 0.142 (95% CI=0.033-

0.339) for deer and 0.544 (95% CI=0.392-0.71) for sheep, indicating poor agreement between observers 

for deer and moderate agreement between observers for sheep (Koo & Li, 2016). 

5.0 Discussion 

5.1 Species differences in accuracy of facial recognition 
The matching success obtained for muskox and sheep was 96% and 88%, respectively.  In combination 

with the relatively low misidentification rates (FRR=0% and FAR=3% for muskox and FRR=4% and 

FAR=2% for sheep), a photogrammetric approach shows promise for use in PMR studies of these 

species.  The matching success and FRR/FAR fall within the upper range of success rates obtained using 

other methods on other species (Table 1).  For example, with a similar sample size of 42 individuals, 

humpback whales (Megaptera novaeangliae) were identified by their fluke patches with a FRR of 17% 
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(Ranguelova et al., 2004), and a population of 50 common wall lizards (Podarcis muralis) were identified 

by their ventral scales with a FRR of 2% (Sacchi et al., 2010).   Many studies assume that FAR=0% (Bolger 

et al., 2012), and while this assumption held true for the analysis of muskox, it did not for sheep.  This 

assumption may, however, be met if only the highest quality photographs are used, as the false 

acceptance in this case occurred on a slightly blurred photograph in which the distinctive horn rings 

were not as visible.  The small population, high quality photographs and distinctive horns of muskox 

resulted in a very high accuracy rate of the method on muskox.  In the case of sheep, the captive 

population also has very distinctive horns and were easily photo-captured (they spend time near the 

fence resting) so that I had a large database of high quality photographs to work with.   

The moderate accuracy obtained for goats was somewhat surprising given the fact that they have horns 

and that the analysis was conducted on a small, captive population.  The best result was obtained for 

the analysis using the 20 facial measurements, which also included horn length.  The ten measurements 

used for goats in the first analysis differed from those used by Merkle and Fortin (2013) on bison 

because they did not have the requisite horn curvature to allow several horn measurements to be taken 

where horns were widest.  Thus a different set of measurements was used for goats that relied less on 

horn measurements and instead used other morphological features such as the width and length of the 

nose (Figure 5).  Despite having a small population and having horns, only moderate success was 

achieved, and the lowest FRR and FAR were 11% and 6%, respectively.  The matching success rate was 

80% which is in the low- to mid-range of published misidentification/matching success rates (Table 1).  

For example, for the matching of elephant ear-edge nick patterns, 83% true positives were achieved in 

highly cluttered and noisy images (Ardovini et al., 2008).  Using images of grey seals in a software called 

ExtractCompare, an FRR of up to 33% was incorporated into a PMR study which produced relatively 

accurate population estimates (Hiby et al., 2013).  The identification of individual chimpanzees was 

considered successful when a FRR of 12.5-17.7% and a FAR of 3.5-13.5% was achieved.  It should be 

noted, however, that in all of these cases much larger sample sizes were used which would likely also 

affect the results achieved here.  For a larger dataset, higher misidentification rates would be expected 

(Merkle &Fortin, 2013).  

The database of goat photographs was also of a lower quality than the photographs of the other species 

due to the distance from which many were taken (resulting in blurriness) and badly-angled photographs, 

also caused by the difficulty of photographing the goats from behind a fence at a distance.  Some 

examples of the poorer quality photographs are depicted in Figure 12.  Approximately 15% were at a 
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bad angle (either looking downward or at > 20 degree angle from head-on) and 40% were blurred such 

that their horn rings were not visible.  The low to moderate success rates achieved on goats may also be 

partly due to the high degree of morphological similarity between goats’ horns, as well as the relative 

smoothness of their horns, as compared to sheep, muskox and bison.  Mountain goats achieve >95% of 

their total horn growth by the time they are 4 years old (Cote et al., 1998), and thus variability in horn 

length beyond this age may be negligible.  It is expected that with higher quality photographs, better 

results could be achieved.  The low degree of variability between individuals’ faces and horns meant 

that the program often failed to produce a correct match in the top 5 matches (4 out of 5 false 

rejections were program false rejections).  In addition, they do not possess the differences in colouration 

of the face that deer and sheep have, as well as the highly visible horn patterns (often despite 

blurriness) that the sheep have, which often aid in successful matching during the final subjective step 

(there were 3 false acceptances and 1 false rejection due to human error).   

Extending the method to a species of cervid (deer) without being able to rely on horn or antler 

measurements proved more challenging and resulted in high misidentification rates.  The analysis of 

deer photographs had high misidentification rates for the first two analyses: FRR=13% and FAR=22% for 

the first analysis, and FRR =22% and FAR 12% for the second.  The first analysis was conducted on 60 

photographs of 30 individuals across seasons and the second analysis was conducted on the same set of 

photographs, but obscured and turned ear photographs were removed (Figure 10).  This resulted in the 

FAR dropping from 22% to 12%, but had an opposite effect on the FRR which went from 13% to 22%.  

Additionally, the photo error rates were very high for both of these analyses: 77% and 74%.  The 

matching success for both analyses was 48% and 58%, respectively, so while a slight improvement was 

seen, the results are poor and highly variable.  These results demonstrate the difficulty in identifying 

deer using this method.  While some individual deer possess highly distinctive face patterns and 

colouration, most in this population are hard to distinguish, either subjectively or based on their 

morphological measurements.  The best results were achieved on the third analysis when the 

population was restricted to a small known sample size and the photographs were restricted to the 

highest quality and were taken on the same day (FRR=11%, FAR=0% and matching success=80%).  This 

eliminated any seasonal and lighting differences and also reduced the photo error rate to 32%.  The 

photographs used for this dataset were also taken concurrently such that the angles and background in 

the pictures do not differ by much, making matching much easier, particularly at the final subjective 

step.   
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Small populations are generally better suited to individual identification, as there is less chance of a 

duplication of measurements (Osterreider et al., 2015), particularly with methods that relies on 

photogrammetry.  This is in contrast to pattern recognition algorithms that rely on unique ‘fingerprints’ 

such as spots and stripes, where duplication of patterns is much less likely, and large databases of 

photographs of large populations can be successfully analyzed (Bolger et al., 2012).  While reasonable 

FRR/FAR rates were achieved for deer in the third analysis, the dataset may be too idealized to have 

produced misidentification rates that could be useful in real world applications.  A truly successful 

individual identification method for deer may need to incorporate other morphological measurements 

(i.e., from additional photographs of the body and the side and/or the rear and tail patch).  Identification 

of bobcats (Lynx rufus) and lynx (Lynx canadensis) often require full-body side views to accurately 

distinguish between these species: these are often available from camera trap data (Thornton, 2019).  

Pumas have been successfully identified from whole-body side view photographs from camera traps, by 

using scars, marks, colouration and spot patterns (Kelly et al., 2008); and coyotes have been 

distinguished based on side body views of their pelage patterns from camera trap photographs 

(Larrucea et al., 2007).  Deer may possess these same identifying characteristics, either in combination 

with facial features or on their own.  It should also be noted that the identification of deer using multiple 

photographs from different views may not require use of the program and may be achieved simply 

through subjective matching as was done with the above-noted methods and other facial recognition 

such as that of bottlenose dolphins (Genov et al., 2017). 

Facial recognition software has advanced significantly in the last decade and even over the course of this 

study such that it is now been applied to several new species including lions, salmon and northern right 

whales (Kerr, 2015; Brueck, 2016; Daley, 2018). These methods use deep learning artificial intelligence, 

and in some cases crowd-sourcing, to achieve their results.  They may prove applicable to deer; 

however, they are as-yet unpublished and may be unattainable for the average biologist due to the large 

computational requirements and high cost.  In the case of salmon, the method was developed by a 

private company for use by fish farms, and in the case of right whales the program was developed by a 

private data science company.  The development of the lion facial recognition initiative was projected to 

cost $65,000 (LINC, 2014).  In the published literature, facial recognition has been used on other species 

such as elephant seals, tigers, and chimpanzees (Caiafa et al., 2005; Mason, 2016; Schofield et al., 2019).  

The high degree of accuracy (100%) achieved by the Eigenfaces method that was applied to elephant 

seals makes it a compelling method, but, it is highly sensitive to differences in the conditions in which 

the photographs are taken and thus often requires extensive pre-processing of the images and exclusion 
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of poorer quality images (Caiafa et al., 2005).  In the case of lemurs and turtles, facial recognition is 

achieved using their hair or scale patterns (Schofield et al., 2008; Crouse et al., 2017).  Deer have unique 

fur colours and patterns on their faces, but, they are not as overt as lemurs and therefore it is unclear 

whether they can be identified using the same type of feature extraction method.  

A test of this photogrammetric method on male deer with antlers may also prove to be a feasible 

application, although year-to-year differences in antler size and shape would prohibit comparisons using 

photographs from sessions separated by >1 week or so.  Merkle and Fortin (2013), however, suggest 

that changing traits could be accounted for by modifying the method using measurement-based 

transformations; antlers may be able to be incorporated in this way. Age and antler size of deer has 

been successfully estimated using morphometric ratios measured from photographs (Flinn, 2010) and 

could be similarly incorporated into this method to achieve individual identification.  

A data simulation conducted by Merkle and Fortin (2013) demonstrated the impact of photo error on 

FRRs: a higher degree of photo error resulted in a higher FRR.  A greater than 50% average photo error 

was considered high in the simulation.  The impact of photo error on all of the analyses conducted is 

depicted in Figure 7.  In general, as photo error increases, FRR/FAR also increase.   The muskox analysis 

had a higher photo error (37%) compared to the low rates of FRR/FAR (0% and 3%) which was likely due 

to a high proportion of bad-angle photographs (~30%) in a small dataset (Figure 11).  The badly-angled 

photographs were those in which the muskox was feeding and looking down, or at an angle of ~20 

degrees.  This increased the average photo error but because the dataset was small and the horn 

measurements were variable enough, they did not impede matching.   Photo quality, lighting and 

camera angle have been shown to have a large impact on the accuracy of photo-identification methods 

across a wide range of studies (Kelly, 2001; Beekmans et al., 2005; Speed et al., 2007; Sherley at el, 

2010).  While the capture of high-quality photographs is the goal, broader application of this method for 

use with camera trap and real-world data may necessitate the use (or exclusion) of poor quality 

photographs, thus understanding misidentification rates is vital.  Figure 10 depicts some of the 

photographs removed from the first deer analysis in an attempt to improve matching success.  Ten 

photographs were removed from the first analysis to improve accuracy which resulted in the photo 

error dropping from 77% to 74% but did not significantly improve matching success, likely due to the 

inherent difficulty in identifying deer with this method.     
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5.2 Horns as a diagnostic trait 
Attempting to use only facial measurements and not relying on horn measurements for sheep and goats 

resulted in lower success rates.  The importance of the horn measurements was further emphasized by 

the results of the third goat analysis in which the horn length measurements were removed: the FRR 

rose from 11% to 28% and the FAR rose from 6% to 9% for the same set of photographs.  The majority of 

the misidentifications from this analysis were program false rejections (11 of 17), therefore the horn 

length measurements were a crucial variable for successful program matching.  Despite the apparent 

lack of variability in goat horns, they were an important morphological identifier for this species.  The 

success of the muskox and sheep analyses, which relied most heavily on horn measurements, as 

compared to the deer analysis, also supports the conclusion that horns are a key characteristic for the 

identification of bovids with this method.  Horns have been found to be effective identifiers of other 

bovid species such as long tailed gorals (Nemorhaedus caudatus; Zaumyslova & Bondarchuk, 2015).  

Horn morphology can also be used as a predictor of survival and reproductive success (Bergeron, 2012); 

thus the morphological measurements of horns used here may also be useful in understanding 

population and behavioural ecology.  As mentioned above, antlers may also provide a useful and 

variable phenotypic trait for measurement.  A standardized method of measurement that can be 

broadly applied to photographs of antlered species may allow for identification of individual male deer 

using photogrammetry.  Another key component in developing this methodology for deer would be the 

development of a transformation to account for year-to-year changes in antler growth.  A 

measurement-based transformation may also be required for species with horns, and would be 

particularly important in the identification of male sheep which can have much larger annual changes in 

horn growth than females. This presents an important next avenue of investigation for this method. 

Yoshikazi et al. (2009) have attempted to develop a method to incorporate evolving natural marks into 

closed population PMR models using simulations from a study on mark migration in larvae of northern 

two-lined salamanders (Eurycea bislineata).  They found that misidentification errors due to evolving 

natural marks can cause population estimates to be significantly overestimated. However, 

misidentification errors are species and study specific and thus must be developed and applied in each 

case individually. 

5.3 The impact of seasonality 
One particularly interesting outcome of this study is the impact of seasonality on the performance of the 

matching program.  When photographs of the same population of sheep were taken in the spring and in 

the fall and were combined into one dataset for the first analysis, the FRR was 11% and the FAR was 1%; 
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when the spring photographs were segregated in the second, the FRR was 4% and the FAR was 2%.  In 

the case of sheep, this was likely due to the growth of fur around the base of their horns which affected 

where the horn base diameter measurement was taken.  Additionally, the subjective choice made 

during the final step of the program was more difficult when comparing across seasons due to the 

change in colouration of the sheep’s faces from winter fur growth.  This difference can be seen in the 

photographs in Figure 9.  Seasonal effects were also seen in the deer analyses.  The first two deer 

analyses both contained photographs from October to November and a distinct difference can be seen 

between those taken in October and those taken in late November when the deer have grown, or 

started to grow, their winter coats.  In the third deer analysis, the photographs are from one day in 

October and the FRR and FAR were much lower (11% and 0% vs. 22% and 12%).  As noted above, the 

success of this analysis is likely due mostly to a small sample size and database as well as the 

photographs being highly idealized; however, some of the success may also be due to a lack of seasonal 

differences.  The impact of seasonal differences on photo-identification has not been addressed in the 

literature and presents an important area for future investigation. 

5.3 Observer Bias 

Another avenue of investigation that has been addressed in the literature is the impact of observer bias 

on photo-identification.  In the observer bias session that I conducted, there were significant differences 

between observers in matching choices.  For deer, inter-rater agreement (or ICC) was 0.142 (95% 

CI=0.033-0.339) and for sheep it was 0.544 (95% CI=0.392-0.71).  In general, ICC values less than 0.5 

indicate poor agreement and values between 0.5-0.75 indicate moderate agreement (Koo & Li, 2016).  

Due to the large confidence interval (0.392-0.71) for sheep, this measure is less reliable so it can be said 

that there was significant observer bias for both deer and sheep, and poor inter-rater agreement for 

deer.   

Additionally, the matching success rate for sheep averaged 85% while the matching success rate for deer 

was 26%.  For a group of untrained observers, 85% success for sheep is a good result (compared to 96% 

matching success for an experienced observer on the same analysis), particularly considering the non-

ideal conditions: the observers were not able to zoom into the pictures or individually examine them 

due to the nature of the session.  The low rate of matching success for deer is also understandable 

considering the difficulty in identifying deer: 35% matching success was achieved for the same analysis 

by an experienced observer.  Observer bias in photo-identification studies has been previously 

addressed in the literature.  In a camera trap study on lowland tapirs (Tapirus terrestris), 14 observers 
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were tested on their ability to correctly identify 8 known tapirs from 55 photographs and were found to 

range from over-estimating the population by 75% to underestimating it by 50% (Oliviera-Santos et al., 

2009).  In a similar camera trap study on pumas (Puma concolor), however, average agreement between 

pairs of observers was found to be 79% (Kelly et al., 2008).  Rates of agreement between observers is 

largely dependent on the species and method.  Mendoza et al. (2011) designed an online classification 

tool to improve individual identification of animals from camera trap data.  Application of their method 

resulted in improved agreement from 0.28 to 0.84 (where perfect agreement=1) between 2 observers 

on the identification of bobcats (Lynx rufus; Mendoza et al., 2011).  In a facial recognition study of 

loggerhead sea turtles, an expert observer obtained matching success of 99% while naïve observers 

obtained a matching success rate of 71%, but with training and repetition this was improved to 87% 

(Schofield et al., 2008).   

In addition, the use of photographic matching software appears to reduce observer error rates 

considerably when compared to unaided visual matching (Cruikshank & Schmidt, 2017).  For a relatively 

easy to identify species like yellow-bellied toads (Bombina variegata), bobcats, and sheep, observer bias 

can be low and can be managed if it is understood and acknowledged (Cruikshank & Schmidt, 2017; 

Mendoza et al., 2011; whereas with difficult to distinguish species like deer, pumas, and tapirs, observer 

bias may be quite high and difficult to overcome (Oliviera-Santos et al., 2009; Kelly et al., 2008).  Training 

and experience should be emphasized in the use of this method. 

5.8 User choice 
The final subjective stage of the method, in which the observer chooses the correct match, was a crucial 

step in this method.  While observer bias may affect the outcome of the program and should be taken 

into consideration, the calculated automated matching success rates point to the importance of 

subjective user choice in the final step of the program.  A significant improvement in the matching 

success of the program was found when comparing the automated matching success with the program 

matching success.  For certain species, there is potential for calculating a correction factor that could be 

used to adjust population size estimates.  A correction factor could be determined by running repeated 

analyses or data simulations to determine whether a consistent difference exists between the program 

and automated matching success.  This would make it possible to eliminate the final subjective choice 

step which can be both time consuming and potentially biased. This is particularly true for species for 

which the method works well (i.e., for muskox and sheep), in which the correct match appears in the top 

ranked spot more frequently.  Additionally, these results point to the inverse possibility that for such 
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small population sizes and datasets, the use of the program may not be necessary when user choice is 

required and also more accurate.  Due to the time-consuming nature of pre-processing the photographs 

and running the program that may be true for this data, however, when assessing larger populations 

with larger datasets the program retains its utility.  

6.0 Conclusions 
I tested Merkle and Fortin’s (2013) photogrammetric approach to facial recognition on 4 species of 

ungulates which included muskox, sheep, goats and deer.  The main finding of this study was that the 

success of this approach to individual recognition of ungulates was species specific. While the method I 

used was accurate for sheep and muskox, moderate results were achieved for goats and generally poor 

results were achieved for deer.  In addition, seasonal effects were found when photographs captured in 

spring and fall were combined in the same dataset.  Increasing the number of measurements taken 

increased success rates, however, the horns proved to be the most important predictor of success: they 

provide a highly variable, unique and easily measureable phenotypic trait for identification.  

Consideration of potential observer bias is important in the use of the program and training should be 

provided for naïve observers.  Subjective user choice was also an important component of the method 

despite the fact that it is time-consuming and introduces bias.   

The photographic identification method tested and expanded here provides a novel and non-invasive 

tool for population monitoring.  The technique is applicable to the identification of unique individuals of 

the three bovid species tested and may prove useful in mark-recapture studies.  Non-invasive 

population monitoring is an important tool in sensitive and inaccessible areas: this method may allow 

for expanded monitoring of species that have been previously difficult or expensive to monitor.  Further 

investigation is required to determine the limits of the method, particularly for sheep and muskox, 

particularly on the effects of seasonality on the success of the method, and also on the applicability of 

the method from year-to-year. 

Next steps include testing the method on a larger and wild population of sheep and muskox, and 

attempting to use camera trap data for the purposes of identification.  Application of the method on a 

known wild population in a mark-recapture study would allow real-world misidentification rates to be 

determined and incorporated.  The assumptions of mark-recapture would be upheld in a short-term 

study, but for longer-term studies quantification of the stability of the traits (i.e., horns) would be 

required.  
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Determining whether camera traps can capture useful and high quality photographs of sheep and 

muskox for use in individual identification would also be important for the further expansion of the 

applicability of the method.  The application of this method to deer and goats may require more 

creativity, but with the advent of facial recognition software for humans and its expansion to some 

species of primates (Loos & Ernst, 2013), the development of facial recognition software for other 

mammal species is the next logical step.  This study provides a basis for the development of such 

software by establishing the facial measurements for which there is adequate variability on which to 

build such an algorithm.  It also provides a basis for applying PMR to northern ungulate species by 

establishing misidentification rates for 4 species, as well as some of the key factors to consider in its 

application, including observer bias and seasonal effects. 
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Appendix 1: Tables and Figures 

Table 1: Summary of photographic identification studies 

 

Species Identification Characteristic Method Sample Size Reliability Image Processing Program Citation

African Penguins (Spheniscus demersus ) Ventral spots Computer-assisted 

photograph matching

114 (1000 images) >90% genuine 

acceptance rate; 

FAR=0.03%

AnimalID Sherley et al . (2010)

Asian elephant (Elephus maximus ) Tusks, scars and other 

morphological characteristics

Photographic CR 78 (135 sightings) FAR=0.007 n/a Goswami et al . (2007)

Asiatic black bear (Ursus thibetanus ) Chest marks Image analysis 52 (735 images) FAR=0.00075 ImageJ Higashide et al . (2012)

Australian sea lions (Neophoca cinerea ) Whisker spot patterns Pattern recognition algorithm 

using Chamfer distance 

transform

53 (608 images) 99%-88% accurate for 

simulated population 

of 50-1000

n/a Osterreider et al . (2015)

Cheetah (Acinonyx jubatus ) Spot patterns 3D computer-aided matching 10,000 images FRR=6.5%; FAR=2.5% see Hiby & Lovell (1990) Kelly (2001)

Dolphins (Tursiops truncatus ) Dorsal fin notch patterns String matching 164 (624 images) n/a n/a Araabi et al . (2000)

Dusky dolphins (Lagenorhynchus obscurus ), 

spinner

dolphins (Stenella longirostris ), long-fiŽnned pilot 

whales (Globicephala

melas ), white sharks (Carcharodon carcharias ) and 

sperm whale (Physeter macrocephalus )

Fin shape (and fluke shape in 

the case of sperm whales)

Computer assisted 

photograph matching via 

curve matching and string 

matching

30-44 (23-127 additional 

images)

Correct identification 

on first suggested 

match in 50% of the 

images; 75% of the 

time in the first 3-4 

images

FinScan Hillman et al . (2003)

Elephants (Loxodonta  spp.) Ear edge nick patterns Multi-curve matching 60 (111) tested; 268 (332 

images) total

83% true positives n/a Ardovini et al . (2008)

Giraffes (Giraffa camelopardalis ), jaguars 

(Panthera onca ), lionfish (Pterois sp.), plains 

zebras (Equus quagga ) and Grevy’s zebras (Equus 

grevyi )

Stripe and spot patterns Computer assisted 

photograph matching via one-

vs-one and one-vs-many 

matching

86 (824) plains zebras; 592 

(1047) Grevy's zebras; 21 

(45) jaguar; 15 (45) 

giraffes; 5 (13) lionfish

100% for giraffes, 

lionfish and jaguar; 95-

98% for Grevy's 

zebras; 99% for plains 

zebras

HotSpotter Crall et al . (2013)

Great crested newt (Triturus cristatus ) Ventral spot patterns Pattern extraction using an 

automated cross-correlation 

algorithm

100 images for FRR; 1648 

images total with 206 

recaptures

78% of recaptures 

ID'd; FRR=2%; FAR=0%

AMPHIDENT Drechsler et al. (2015)

Grey seal (Halichoerus grypus ) Pelage pattern Multi-biometric ID and PMR 156 (155 pairs of images) 33% FRR; 14% FRR 

with only 'good' 

images

ExtractCompare Hiby et al . (2013)

Harbor seals (Phoca vitulina richardii ) Pelage, scars and flipper tags Computer-assisted 

photograph matching

182 (772 images) 1.8% 

misidentification 

error rate

ExtractCompare Hastings at al . (2008)

Marbled salamander (Ambystoma opacum ) Dorsal patterns Pattern matching algorithm 101 (1008 images); 447 

total

95% success rate n/a Gamble et al . (2008)

Masai giraffe (Giraffa camelopardalis tippelskirchi ) Flank pattern (reticulated 

polygons)

Pattern extraction and 

comparison using Scale 

Invariant Feature Transform 

(SIFT) 

50 (100 images) to test 

method; 568 (1026 

images) to estimate 

population

FRR=0.007, FAR=0.000 Wild-ID Bolger et al . (2012)
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Table 1 (cont.): Summary of photographic identification studies 

 

 

 

 

 

 

 

Species Identification Characteristic Method Sample Size Reliability Image Processing Program Citation

Mediterranean monk seals (Monachus monachus ) Marks, scars and pelage 

patterns

Observer matching 14 (42 images) for 

validation; 228 total

FAR=0.043 Forcada et al . (2000)

Octopus (Wunderpus photogenicus ) Dorsal mantle markings Untrained observer matching 15 (30 images) FRR=4.5%; FAR=18%; Adobe Illustrator Huffard et al . (2008)

Polar bears (Ursus arctos ) Whisker spot patterns Computer-aided pattern 

matching algorithm (Chamfer 

distance)

57 (>1000 images) 80% true positives, 

10% false positives

n/a Anderson et al . (2010)

Puma (Puma concolor ) Marks, scars, coloring, etc Observer matching 26-30 (214 images) 79.3% agreement 

between 

investigators across 

all sites

n/a Kelly et al . (2008)

Sea lion (Eumetopias jubatus ), grey whale 

(Eschrichtius robustus ), dolphin

Fin, flipper and fluke edges Affine invariant curve 

matching

37 (92 images); 37 (95 

images); 164 (624 images)

Error rate~0.25 CurveMatch Gope et al . (2005)

Whale shark (Rhincodon typus ) Spot patterns Astronomical pattern 

matching algorithm

27 (~450 images) (from 

ECOOCEAN database)

90% success rate n/a Arzoumanian et al.  (2005)

Whale shark (Rhincodon typus ) Spot patterns, scars and 

marks

Observer matching 159 (221 images) 95% confidence 

interval for 

population estimate

n/a Meekan et al . (2006)

Whale sharks (Rhincodon typus ) Spot patterns Computer-assisted 

photograph matching

50 (100 images) 93% match rate I3S Speed et al . (2007)

White tailed deer (Odocoileus virginianus ) Fur (scars and spots), neck 

size, antler or fawn presence 

or absence

Observer matching 4-11 (94 images) 97% agreement 

between 

independent experts

n/a Soria-Diaz & Monroy-

Vilchis (2015)

Wildebeest (Connochaetes taurinus ) Shoulder stripe patterns Computer-assisted 

photograph matching

198 (matching pairs of 

images)

FAR= 0.00081; 

FRR=0.06-0.08

Wild-ID (for females) and 

ExtractCompare (for 

males)

Morrison & Bolger (2012)

Wolverine (Gulo gulo ) Ventral patterns Observer matching 18-21 100% agreement 

between photo ID 

and DNA 

n/a Magoun et al . (2011)

Zebra (Equus burchelli ) Stripe patterns Image processing and 

fingerprint ID

6 out of 50 images for 

validation

79.8% ± 12.5% 

matching success

ImageJ plugin Foster et al . (2006)
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Table 2: Summary of facial recognition-based photographic identification studies 

Species Identification Characteristic Method Sample Size Reliability Image Processing Program Citation

Bison (Bison bison ) Facial and horn 

measurements

Computer-assisted 

photograph matching

33 (91 images) FRR=0.055 MatchImage Merkle & Fortin (2013)

Bottlenose Dolphins (Tursiops truncatus ) Facial features Observer matching 20 (40 images) 87.5% matching 

success

n/a Genov et al. (2017)

Chimpanzees (Pan troglodytes ) Facial features Facial identification 24-71 (2617-3905 images) FRR=12.5-17.7%; FAR= 

3.5-13.5%

n/a Loos & Ernst (2013)

Elephant seals (Mirounga leonina ) Faces Eigenfaces method 56 (96 images) 100% Eigenfaces; IDL5.5 Caiafa et al.  (2005)

Loggerhead sea turtles (Caretta caretta ) Facial scales Identification Tree 50 (200 images) 99% matching success n/a Schofield et al.  (2008)

Red-bellied Lemurs (Eulemur rubriventer ) Facial features Feature extraction 80 (462 images) 98.7%±1.8% accuracy LemurFaceID Crouse et al. (2017)
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Figure 1: Nine measurements (M1-M9) used for muskox analysis.  Measurements were chosen based on those used by Merkle & 
Fortin (2013). See Table 3 for descriptions.
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Table 3: Descriptions of nine measurements (M1-M9) taken in the program ImageJ and used for the muskox analysis.  
Measurements were modelled on those used by Merkle & Fortin (2013) for bison. 

 

 

 

 

 

 

 

 

Table 4: Standard deviations and weights used to calculate similarity scores for muskox analysis in MatchImage.  Standard 
deviations (photograph error) were calculated by measuring 4-5 photographs each of 5 different animals and then a mean 
standard deviation (SD) of each of the ratios was calculated.  Weights (measurer error) were calculated by measuring the same 
photograph 5 times and repeating this for 10 individuals.  The mean SD was then taken for each ratio and used to calculate the 
weights.   The weights are multiplicative such that the smallest mean SD was weighted as 1 with the rest less than 1, based on 
their respective sizes.    

Ratio Measurement SD Weight 

r1 M1/M9 0.101936 0.9695283 

r2 M2/M9 0.066821 0.9625129 

r3 M3/M9 0.010979 0.9935613 

r4 M4/M9 0.015368 0.9925231 

r5 M5/M9 0.019418 0.9917574 

r6 M6/M9 0.017314 0.9878246 

r7 M7/M9 0.049721 0.96089 

r8 M8/M9 0.063294 0.9562241 

r9 (M2-M1)/M1 0.017212 1 

 

 

 

 

 

 

 

 

M1 Right horn tip to left horn tip 

M2 Outermost point of right horn to outermost point of left horn 

M3 Diameter of right horn at M2 

M4 Diameter of left horn at M2 

M5 Diameter of right horn where horn meets face 

M6 Diameter of left horn where horn meets face 

M7 Length of right horn from M2 to M5 

M8 Length of left horn from M2 to M6 

M9 Inner corner of right eye to inner corner of left eye 
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Figure 2: Twenty deer measurements (M1-M20) used for all 3 deer analyses (set 1, 2 & 3).  Measurements were chosen based on 
those used in human facial recognition software, the traits available for measure in front facing photographs and those used by 
Merkle & Fortin (2013). See Table 5 for descriptions. 
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Table 5: Descriptions of 20 measurements (M1-M20) taken in the program ImageJ and used for all 3 deer analyses (Deer set 1, 2, 
& 3).  Measurements were chosen based on those used in human facial recognition software, the traits available for measure in 
front facing photographs and those used by Merkle & Fortin (2013). 

 
M1 Inner corner of right eye to inner corner of left eye 

 M2 Outermost point of right eye to outermost point of left eye 

M3 Outside of right nostril to outside of left nostril at widest point 

M4 Width of septum at narrowest point 

M5 Width of base of right ear at narrowest point 

M6 Width of base of left ear at narrowest point 

M7 Length of right ear from tip to midpoint of M5  

M8 Length of left ear from tip to midpoint of M6 

M9 Left end of M5 to right end of M6 

M10 Midpoint of M1 to midpoint M3 

M11 Midpoint of M9 to midpoint of M2 

M12 Bottom of M5 to bottom of M6 

M13 Left end of M2 to left end of M3 

M14 Right end of M2 to right end of M3 

M15 Left end of M12 to left of M2 

M16 Right end of M12 to right end of M2 

M17 Left end of M1 to left end of M4 

M18 Right end of M1 to right of M4 

M19 Left end of M12 to right end of M1 

M20 Right end of M12 to left end M1 
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Table 6: Standard deviations and weights used to calculate similarity scores for all 3 deer analyses in MatchImage.  Standard 
deviations (photograph error) were calculated by measuring 4-5 photographs each of 5 different animals and then a mean 
standard deviation (SD) of each of the ratios was calculated.  Weights (measurer error) were calculated by measuring the same 
photograph 5 times and repeating this for 10 individuals.  The mean SD was then taken for each ratio and used to calculate the 
weights.   The weights are multiplicative such that the smallest mean SD was weighted as 1 with the rest less than 1, based on 
their respective sizes.    

Ratio 
Measurement SD Weight 

r1 M3-M4/M4 0.198 0.068 

r2 M2/M1 0.024 1.000 

r3 M3/M1 0.020 0.368 

r4 M4/M1 0.019 0.200 

r5 M5/M1 0.030 0.423 

r6 M6/M1 0.025 0.516 

r7 M7/M1 0.035 0.870 

r8 M8/M1 0.038 0.836 

r9 M9/M1 0.029 0.666 

r10 M10/M1 0.028 0.413 

r11 M11/M1 0.023 0.620 

r12 M12/M1 0.054 0.629 

r13 M13/M1 0.027 0.602 

r14 M14/M1 0.026 0.591 

r15 M15/M1 0.025 0.284 

r16 M16/M1 0.030 0.215 

r17 M17/M1 0.032 0.477 

r18 M18/M1 0.028 0.509 

r19 M19/M1 0.037 0.664 

r20 M20/M1 0.036 0.725 
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Figure 3: Ten measurements (M1-M10) used for the sheep analysis 1 &2.  The 10 measurements were 
modelled on those used by Merkle & Fortin (2013) for bison.  See Table 7 for descriptions. 
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Table 7: Descriptions of 10 measurements (M1-M10) taken in the program ImageJ and used for sheep analysis 1 & 2.  
Measurements were modelled on those used by Merkle & Fortin (2013) for bison. 

 

 

 

 

 

 

 

 

 

Table 8: Standard deviations and weights used to calculate similarity scores for sheep analysis 1 & 2 in MatchImage.  Standard 
deviations (photograph error) were calculated by measuring 4-5 photographs each of 5 different animals and then a mean 
standard deviation (SD) of each of the ratios was calculated.  Weights (measurer error) were calculated by measuring the same 
photograph 5 times and repeating this for 10 individuals.  The mean SD was then taken for each ratio and used to calculate the 
weights.   The weights are multiplicative such that the smallest mean SD was weighted as 1 with the rest less than 1, based on 
their respective sizes.    

Ratio Measurement SD Weight 

r1 M1/M8 0.035 0.964 

r2 M2/M8 0.073 0.584 

r3 M3/M8 0.013 0.363 

r4 M4/M8 0.011 0.444 

r5 M5/M8 0.013 0.462 

r6 M6/M8 0.019 0.568 

r7 M7/M8 0.016 0.803 

r8 (M1-M2)/M2 0.045 0.343 

r9 M9/M8 0.116 1.000 

r10 M10/M8 0.117 0.895 

 

 

 

 

M1 Right horn tip to left horn tip 

M2 Apex of right horn to apex of left horn 

M3 Diameter of right horn at apex 

M4 Diameter of left horn at apex 

M5 Diameter of right horn at base 

M6 Diameter of left horn at base 

M7 Outside of horn bases 

M8 Inner right eye to inner left eye 

M9 Length of outside of right horn 

M10 Length of outside of left horn 
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Figure 4: Twenty measurements (M1-M20) used for the sheep analysis 3.  The 20 measurements were modelled on those used 
for deer.  See Table 9 for descriptions. 
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Table 9: Descriptions of 20 measurements (M1-M20) taken in the program ImageJ and used for sheep analysis 3.  
Measurements were modelled on those used for deer. 

M1 Midpoint of M8 to midpoint of M3 

M2 Outermost point of right eye to outermost point of left eye 

M3 Outside of right nostril to outside of left nostril at widest point 

M4 Width of septum at narrowest point 

M5 Width of base of right horn at narrowest point 

M6 Width of base of left horn at narrowest point 

M7 Outside of horn bases  

M8 Inner corner of right eye to inner corner of left eye  

M9 Midpoint of M10 to midpoint of M2 

M10 Inside of horn bases 

M11 Left end of M5 to left end of M2 

M12 Right end of M5 to right end of M2 

M13 Left end of M2 to left end of M3 

M14 Right end of M2 to right end of M3 

M15 Left end of M8 to left of M4 

M16 Right end of M8 to right end of M4 

M17 Left end of M7 to right of M8 

M18 Right end of M7 to left end of M8 

M19 Left end of M8 to right end of M3 

M20 Right end of M8 to left end M3 
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Table 10: Standard deviations and weights used to calculate similarity scores for sheep analysis 3 in MatchImage.  Standard 
deviations (photograph error) were calculated by measuring 4-5 photographs each of 5 different animals and then a mean 
standard deviation (SD) of each of the ratios was calculated.  Weights (measurer error) were calculated by measuring the same 
photograph 5 times and repeating this for 10 individuals.  The mean SD was then taken for each ratio and used to calculate the 
weights.   The weights are multiplicative such that the smallest mean SD was weighted as 1 with the rest less than 1, based on 
their respective sizes.   

Ratio Measurement SD Weight 

r1 (M10-M7)/M7 0.131 0.157 

r2 M2/M1 0.023 0.987 

r3 M3/M1 0.020 0.372 

r4 M4/M1 0.010 0.119 

r5 M5/M1 0.022 0.432 

r6 M6/M1 0.013 0.353 

r7 M7/M1 0.014 0.302 

r8 M8/M1 0.082 0.762 

r9 M9/M1 0.032 0.509 

r10 M10/M1 0.026 0.754 

r11 M11/M1 0.031 0.444 

r12 M12/M1 0.041 0.411 

r13 M13/M1 0.105 0.821 

r14 M14/M1 0.106 0.695 

r15 M15/M1 0.111 1.000 

r16 M16/M1 0.105 0.898 

r17 M17/M1 0.057 0.886 

r18 M18/M1 0.066 0.729 

r19 M19/M1 0.104 0.547 

r20 M20/M1 0.107 0.674 
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Table 11: Descriptions of 10 measurements (M1-M10) taken in the program ImageJ and used for goat analysis 1. Measurements 

were modelled on those used by Merkle & Fortin (2013) for bison. 

 

 

 

 

 

 

 

 

 

M1 Right horn tip to left horn tip 

M2 Inside of horn bases 

M3 Right horn base width 

M4 Left horn base width 

M5 Inner corner of right eye to inner corner of left eye 

M6 Outermost point of right nostril to outermost point of left nostril  

M7 Midpoint of M5 to midpoint of M6 

M8 Outside of horn bases 

M9 Length of right outer horn 

M10 Length of left outer horn 

Figure 5: Ten measurements (M1-M10) used for goat analysis 1 (on the left).  Measurements were modelled on those used by 
Merkle & Fortin (2013) for bison.  Twenty measurements (M1-M20) used for goat analysis 2 (on the right).  Measurements were 
chosen based on those used for deer.  See Table 11 & 12 for descriptions. 
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Table 12: Descriptions of 20 measurements (M1-M20) taken in the program ImageJ and used for goat analysis 2.  
Measurements were modelled on those used for deer. 

M1 Outermost point of right eye to outermost point of left eye 

M2 Inside of horn bases 

M3 Right horn base width 

M4 Left horn base width 

M5 Inner corner of right eye to inner corner of left eye 

M6 Outermost point of right nostril to outermost point of left nostril 

M7 Midpoint of M5 to midpoint of M6 

M8 Outside of horn bases 

M9 Length of right outer horn 

M10 Length of left outer horn 

M11 Midpoint of M9 to midpoint of M2 

M12 Width of septum at narrowest point 

M13 Right end of M1 to right end of M6 

M14 Left end of M1 to left end of M6 

M15 Right end of M5 to right end M12 

M16 Left end of M5 to left end of M12 

M17 Right end of M8 to right end of M1 

M18 Left end of M8 to left end of M1 

M19 Right end of M8 to left end of M5 

M20 Left end M8 to right end of M5 
 

Table 13: Standard deviations and weights used to calculate similarity scores for goat analysis 1 in MatchImage.  Standard 
deviations (photograph error) were calculated by measuring 4-5 photographs each of 5 different animals and then a mean 
standard deviation (SD) of each of the ratios was calculated.  Weights (measurer error) were calculated by measuring the same 
photograph 5 times and repeating this for 10 individuals.  The mean SD was then taken for each ratio and used to calculate the 
weights.   The weights are multiplicative such that the smallest mean SD was weighted as 1 with the rest less than 1, based on 
their respective sizes.    

Ratio Measurement SD Weight 

r1 M1/M5 0.035 0.819 

r2 M2/M5 0.015 0.376 

r3 M3/M5 0.019 0.418 

r4 M4/M5 0.022 0.506 

r5 M8-M2/M2 0.150 0.228 

r6 M6/M5 0.018 0.857 

r7 M7/M5 0.051 0.994 

r8 M8/M5 0.026 0.702 

r9 M9/M5 0.083 1.000 

r10 M10/M5 0.064 0.734 
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Table 14: Standard deviations and weights used to calculate similarity scores for goat analysis 2 in MatchImage.  Standard 
deviations (photograph error) were calculated by measuring 4-5 photographs each of 5 different animals and then a mean 
standard deviation (SD) of each of the ratios was calculated.  Weights (measurer error) were calculated by measuring the same 
photograph 5 times and repeating this for 10 individuals.  The mean SD was then taken for each ratio and used to calculate the 
weights.   The weights are multiplicative such that the smallest mean SD was weighted as 1 with the rest less than 1, based on 
their respective sizes.    

Ratio Measurement SD Weight 

r1 M8-M2/M2 0.247 0.148 

r2 M2/M5 0.030 0.996 

r3 M3/M5 0.021 0.544 

r4 M4/M5 0.012 0.093 

r5 M5/M5 0.023 0.399 

r6 M6/M5 0.019 0.446 

r7 M7/M5 0.103 0.863 

r8 M8/M5 0.097 0.817 

r9 M9/M5 0.025 0.221 

r10 M10/M5 0.102 1.000 

r11 M11/M5 0.019 0.447 

r12 M12/M5 0.035 0.790 

r13 M13/M5 0.117 0.920 

r14 M14/M5 0.108 0.911 

r15 M15/M5 0.118 0.783 

r16 M16/M5 0.103 0.688 

r17 M17/M5 0.032 0.340 

r18 M18/M5 0.030 0.287 

r19 M19/M5 0.037 0.650 

r20 M20/M5 0.045 0.704 
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Figure 6:  Eighteen measurements (M1-M18) used for goat analysis 3.  Measurements are analogous to those used for goat 
analysis 2, however, the horn length measurements M19 & M20 have been removed. See Table 15 for descriptions. 
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Table 15: Descriptions of 18 measurements (M1-M18) taken in the program ImageJ and used for goat analysis 3.  
Measurements are analogous to those used for goat analysis 2, however, the horn length measurements M19 & M20 have been 
removed. 

M1 Outermost point of right eye to outermost point of left eye 

M2 Inside of horn bases 

M3 Right horn base width 

M4 Left horn base width 

M5 Inner corner of right eye to inner corner of left eye 

M6 Outermost point of right nostril to outermost point of left nostril 

M7 Midpoint of M5 to midpoint of M6 

M8 Outside of horn bases 

M9 Midpoint of M2 to midpoint of M1 

M10 Width of septum at narrowest point 

M11 Left end of M1 to left end of M6 

M12 Right end of M1 to right end of M6 

M13 Left end of M5 to left end M10 

M14 Right end of M5 to right end of M10 

M15 Left end of M8 to left end of M1 

M16 Right end of M8 to right end of M1 

M17 Left end of M8 to right end of M5 

M18 Right end M8 to left end of M5 
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Table 16: Standard deviations and weights used to calculate similarity scores for goat analysis 3 in MatchImage.  Standard 
deviations (photograph error) were calculated by measuring 4-5 photographs each of 5 different animals and then a mean 
standard deviation (SD) of each of the ratios was calculated.  Weights (measurer error) were calculated by measuring the same 
photograph 5 times and repeating this for 10 individuals.  The mean SD was then taken for each ratio and used to calculate the 
weights.   The weights are multiplicative such that the smallest mean SD was weighted as 1 with the rest less than 1, based on 
their respective sizes.    

Ratio Measurement SD Weight 

r1 M8-M2/M2 0.247 0.148 

r2 M2/M5 0.030 0.996 

r3 M3/M5 0.021 0.544 

r4 M4/M5 0.012 0.093 

r5 M5/M5 0.023 0.399 

r6 M6/M5 0.019 0.446 

r7 M7/M5 0.103 0.863 

r8 M8/M5 0.097 0.817 

r9 M9/M5 0.025 0.221 

r10 M10/M5 0.102 1.000 

r11 M11/M5 0.019 0.447 

r12 M12/M5 0.035 0.790 

r13 M13/M5 0.117 0.920 

r14 M14/M5 0.108 0.911 

r15 M15/M5 0.118 0.783 

r16 M16/M5 0.103 0.688 

r17 M17/M5 0.032 0.340 

r18 M18/M5 0.030 0.287 
 

Figure 7: Flow chart depicting the methodological process
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Table 17: Terms, definitions and equations 

Terms Definitions Equation 

Total false rejections 
(tFR) 

The total number of correct matches 
missed by the program. 

hFR+pFR 

Human false rejections 
(hFR) 

The number of correct matches that 
appeared in the top-ranked spots but 
were rejected by the user. 

n/a 

Program false rejections 
(pFR) 

The number of correct matches that did 
not appear in the top-ranked spots. 

n/a 

False acceptances (FA) The number of incorrect matches made 
by the user. 

n/a 

False rejection rate The total number of correct matches 
missed by the program expressed as a 
rate. 

(hFR+pFR)/Total number of 
photographs in the dataset 

False acceptance rate The total number of incorrect matches 
made by the user expressed as a rate. 

FA/ Total number of 
photographs in the dataset 

Average photo error A measure of both the photo error and 
population variability for each 
measurement. 

Photo error SD/Population SD 

Program matching 
success 

A measure of the accuracy of the 
program (including the final subjective 
user choice step) at achieving correct 
results. 

{Total number of potential 
matches-(False rejections+False 
acceptances)}/Total number of 
potential matches 

Automated matching 
success 

A measure of the accuracy of the 
program had it chosen the top-ranked 
match in each case (without subjective 
user choice). 

Correct matches in top-ranked 
spot/Total number of potential 
matches 
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Table 18: Summary of results of all analyses conducted where: tFR= total false rejections, hFR= human false rejections, pFR=program false rejections, FA=false acceptances, 
FRR=false rejection rate (tFR/Number of Photos), FAR=false acceptance rate (FA/Number of Photos), Actual sample size=number of individuals in the dataset, Estimated Sample 
Size=number of individuals identified by the program, Number of Photos=number of photographs in the dataset, Total Mis-ID=total misidentifications (tFR+FA), Number of 
Matches=(Number of Photos- the number of known individuals identified in the dataset), Matching Success=(Number of Matches-Total Mis-ID)/Number of Matches, Auto 
Matching Success=number of correct matches in the top-ranked position/Number of Matches 

Analysis tFR hFR pFR FA FRR FAR 
Actual 
Sample 

Size 

Estimated 
Sample Size 

Number 
of Photos 

Total 
Mis-

ID 

Number 
of 

Matches 

Matching 
Success 

Auto 
Matching 
Success 

Muskox 1 0 0 0 1 0.00 0.03 16 15 31 1 26 0.96 0.46 

Sheep 1 8 0 8 1 0.11 0.01 32 41 76 9 44 0.80 0.52 

Sheep 2 2 0 2 1 0.04 0.02 19 21 45 3 26 0.88 0.77 

Sheep 3 28 2 26 6 0.25 0.05 35 62 110 34 89 0.62 0.28 

Goat 1 16 1 15 4 0.24 0.06 19 37 67 20 49 0.59 0.37 

Goat 2 5 1 4 3 0.11 0.06 19 26 47 8 41 0.80 0.22 

Goat 3 13 2 11 4 0.28 0.09 19 31 47 17 41 0.59 0.15 

Deer 1 8 1 7 13 0.13 0.22 30 36 60 21 40 0.48 0.25 

Deer 2 11 7 4 6 0.22 0.12 30 35 50 17 40 0.58 0.13 

Deer 3 2 0 2 0 0.11 0.00 8 10 18 2 10 0.80 0.20 
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Figure 8: Average photo error and FRR/FAR for all analyses. For each analysis, the population SD of each ratio was calculated 
and compared to the photo error SD of each ratio.  To calculate average photo error, the photo error SD for each ratio was 
divided by the population SD to determine the percent photo error of each ratio.  These were then averaged to calculate the 
average photo error for each analysis.  The degree of photo error was categorized in Merkle and Fortin (2013) as low=10%, 
medium=30% and high=50%, expressed as a percent of the population SD.  To calculate the FRR, the tFR was divided by the 
number of photographs in the database.  The FAR was calculated by dividing the number of FA’s by the number of photographs 
in the database. An increase in photo error correlates with an increase in FRR/FAR. 
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Figure 9:  Comparison between automated matching success and program matching success.  The automated matching success 
was calculated for each analysis by counting the number of correct matches in the top-ranked spot and dividing that by the 
number of matches (number of matches=number of photos in database minus the number of known individuals).  The program 
matching success was determined by subtracting the tFR and the FA’s from the number of matches and then dividing that by the 
number of matches.  Program matching success rates were significantly higher than automated matching success rates (t9=7.2, 
p<0.05). 
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Figure 10:  Examples of photographs of the same sheep taken in the fall (November) and the spring (May) from sheep analysis 1.  
Photo A & B: individual 1, photo C & D: individual 2, photo E & F: individual 3, photo G & H: individual 4. 
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Figure 11: Deer photographs removed from the first set of photographs due to turned ears and obscured shots.  These 
photographs were subsequently removed from the first analysis and not included in the set of photographs for second analysis. 
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Figure 12: Muskox photographs included in the analysis that are not head-on or at bad angles.  These photographs contributed 
to a relatively high degree of average photo error (0.37) for the muskox analysis. 
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Figure 13: Goat photographs from the datasets used that were at poor angles, a) and c), too blurry to see horn rings, b), d), e) or 
obscured f). 

 


