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Dedication 

To Emma, Ali, and the rest of the next generation of students, with the 
hope that we can help make mathematics make sense to all students.  To my dad 
for instilling a love of math in me, and to Gram, who loves learning but never 
loved math. 



   

 

Abstract 

 A great majority of children in Canada and the United States from Grades 2-

6 fail to solve equivalence problems (e.g., 2 + 4 + 5 = 3 + __) despite having the 

requisite addition and subtraction skills. The goal of the present study was to 

determine the relative influence of two variables, instructional focus (procedural 

or conceptual) and use of manipulatives (with or without), in helping children 

learn to solve equivalence problems and develop an appropriate understanding of 

the equal sign. Instruction was provided in four conditions consisting of the 

combination of these two variables. 

 Students in Grade 2 (n = 122) and Grade 4 (n = 151) participated in four 

sessions designed to assess the effectiveness of four instructional methods for 

learning and retention.  Session 1 included a pretest of equivalence problem 

solving and three indicators of understanding of the equal sign. In Sessions 2 and 

3 instruction was provided in one of the four instructional conditions or a control 

condition. Students were tested for their skill at solving equivalence problems 

immediately following instruction and at the beginning of Session 3 to assess 

what they had retained from Session 2.  In Session 4, one month later, children 

were re-tested on all of the tasks presented in Session 1 to assess whether 

instruction had a lasting effect. 

 All four instructional groups outperformed the control group in solving 

equivalence problems, but differences among instructional groups were minimal. 

Performance on indicators of understanding, however, favoured students who 

received conceptually focused instruction. Preliminary evidence was found that 



   

 

children’s understanding of problem structure and attentional skill may be 

associated with the ability to benefit from instruction on equivalence problems.  

Children clustered into four groups based on their performance across tasks that 

are consistent with the view that children’s understanding of the equal sign 

develops gradually, beginning with learning the definition. 

 These findings suggest that a relatively simple intervention can markedly 

improve student performance in the area of mathematical equivalence, and that 

these improvements can be maintained over a period of time and show some 

limited generality to other indicators that children understand equivalence. 
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Improving Children's Understanding of Mathematical Equivalence 

Mathematics is a skill people use nearly every day of their lives, often 

without even being aware of it.  Math is used in determining which purchase is a 

better deal, working out travel distances or times, thinking about speed, 

understanding sports statistics, interpreting directions for assembling furniture, 

and reading a graph about the national budget, to name only a few examples 

(Bryant & Nuñes, 2002; DeLoache, 2002).  Math is a specialized language used to 

communicate particular kinds of ideas (Carpenter, Franke, & Levi, 2003).  A 

person needs a certain amount of fluency in this language to be able to function 

effectively in modern society and to have access to a large portion of the job 

market.  Because technologies and job requirements are rapidly changing, we 

cannot anticipate the specific skills that today’s children will need in their careers. 

Instead, we need to prepare students to be able to adapt their skills and acquire 

new knowledge as they encounter new problems (Ginsburg, Lee, & Boyd, 2008).   

The language of mathematics is more than simply a collection of ways to get 

answers (Carpenter & Lehrer, 1999), and the symbolism of math is the hardest 

form of language for children to learn (Ginsburg et al., 2008).  Mathematics 

education is also recognized as having long-term economic benefits because of its 

importance for the future work force (Ginsburg et al., 2008).   Because math is 

used so frequently in people’s personal and professional lives, the development of 

mathematical thinking is an important domain of study. The development of 

mathematical thinking can also be used as a vehicle to study cognitive 

development. 
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Competence in many areas of math is important, but algebra has been 

highlighted as an especially important area.  Many refer to algebra as the 

“gatekeeper” to higher math (Carpenter et al., 2003) and Moses and Cobb (as 

cited in Jacobs, Franke, Carpenter, Levi, & Battey, 2007) compare people today 

without algebra to people who could not read and write in the industrial age.  

Unfortunately, difficulty with algebra is extremely common (Blume & Heckman, 

1997; Schmidt, McKnight, Cogan, Jakwerth, & Houang, 1999) and most students 

never acquire any sense of the structural aspects of algebra (Kieran, 1992).  

Both teachers and researchers have known for decades that one of the 

most significant hurdles students face in learning math is the transition from 

arithmetic to algebra (Carpenter, Levi, & Farnsworth, 2000).  For many people, 

adults included, arithmetic and algebra are separate collections of meaningless 

procedures and manipulations of numbers and symbols. In fact, both are based on 

specific principles.  It is through understanding these principles that one develops 

an appropriate mathematical foundation in which both arithmetic and algebra 

make sense (Bisanz, Sherman, Rasmussen, & Ho, 2005; Carpenter et al., 2003).   

A significant difficulty that many students face in relating arithmetic and 

algebra emerges from a lack of understanding of the relations expressed by 

number sentences (Falkner, Levi, & Carpenter, 1999).   For example, “4 + 5 = 4 + 

4 + 1” represents a mathematical relation that is crucial to both arithmetic and 

algebra.  The concept of equality is an important component in developing 

algebraic reasoning in children (Falkner et al., 1999).  However, many children 

develop an operator view of the equal sign, interpreting the symbol as meaning, 



 

  4 

“put the total next” or “add up all the numbers”, instead of a relational view 

expressing the equality of both sides of an equation.  Students with an operator 

view of the equal sign generally hold two additional misconceptions: (a) that all 

operations must be performed on all of the given numbers and (b) that the 

operations must be on the left of the equal sign and the answer on the right. 

Together, these three misconceptions are called an “addition schema” (McNeil & 

Alibali, 2002) or “operational patterns” (McNeil & Alibali, 2005b).  Students with 

these misconceptions have difficulty transitioning to algebra where problems do 

not necessarily take this form (Kieran, 1981; Knuth, Stephens, McNeil, & Alibali, 

2006).  The added cognitive strain children experience when they hold these 

misconceptions may make it difficult for them to focus on other new concepts, 

such as variables, that are introduced when learning algebra. 

The equal sign is a very important component of high school algebra 

(Kieran, 1981), but it appears that some students continue to misinterpret the 

meaning of the sign well into high school and even beyond (Baroody & Ginsburg, 

1983; Byers & Herscovics, 1977).  High school algebra requires students to be 

continuously transforming equations into equivalent statements.  To perform this 

task, one must understand that if the same operations are performed on both sides 

of the equal sign, the relation between the two expressions is unaltered.  If a 

person does not have a relational interpretation of the equal sign, these 

transformations make little sense and can only be memorized as rules. 

The difficulty of the transition to algebra is well recognized by researchers 

and many school districts, who see the need to work with children from a young 
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age and over an extended period of time to develop a solid foundation for algebra 

(Carpenter et al., 2003; Falkner et al., 1999; Jacobs et al., 2007). Focusing on the 

fundamental properties builds a strong foundation for students to be able to think 

in flexible and powerful ways in the future.  If we could determine the factors 

involved in helping children develop an appropriate understanding of the equal 

sign, we could use that information to help design instructional materials for 

teachers, allowing the teachers to best prepare their students for algebra and 

higher math. 

Performance on equivalence problems encompasses many aspects of 

cognitive development such as perception, attention, memory, learning, and 

concepts.   Through studying how children solve equivalence problems, we have 

the potential to learn about each of these aspects, how they are interrelated, and 

how they are integrated in the larger context of a child’s development.  Insights 

into the development, coordination, and organization of human cognition can be 

gleaned from advancing our understanding of the knowledge and skills that 

support arithmetic performance (Bisanz et al., 2005). 

Experiments manipulating performance on equivalence problems have 

generated numerous insights into the specific abilities and limitations children 

possess and how these systems develop.  I begin this paper by reviewing the 

empirical findings related to equivalence, and then I present a study designed to 

identify factors that contribute to improving children’s understanding of 

mathematical equivalence. 
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Review of Empirical Findings 

Success rates.  The first step in developing a model of any phenomenon is 

to accurately delineate the performance observed, both the successes and failures, 

so that we have a clear picture of the performance and so that boundary conditions 

can be determined.  This process is important for making inferences about the 

mechanisms involved in development (Bisanz, Morrison, & Dunn, 1995). 

The low success rate of elementary school children in North America on 

equivalence problems has been well documented.  McNeil and Alibali (2005b) 

found that without instruction about 74% of children aged 7 to 11 years of age 

failed equivalence problems. Falkner et al. (1999) reported that all 145 Grade 6 

students in a single school answered equivalence problems with either an “add-

all” strategy (adding all of the numbers presented in the problem and putting the 

total on the blank) or an “add-to-equal” strategy (adding up the numbers to the left 

of the equal sign and putting the total on the blank).  Even in middle school 

children have difficulty with the equal sign.  Oksuz (2007) found only 8% of the 

fifth grade and 25% of the sixth grade students at an urban U.S. elementary school 

provided a relational explanation of the equal sign.  Even more surprisingly, 

100% of the students said 3 + 8 = 11 X 6 = 66 – 5 = 61 was true. 

Consistent with the poor performance across ages reported above, Falkner 

et al. (1999) and Behr, Erlwanger, and Nichol (1976) all found that performance 

on equivalence problems did not improve with age from Grades 1 through 6, nor 

did children of this age change their thinking about equality (Kieran, 1981).  

Capraro, Capraro, Ding, and Li (2007) found a similarly low success rate with 
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American Grade 6 students averaging about 28% correct. Performance among 

students of this age, however, is not necessarily consistent across different 

methods of presenting problems.  Carpenter et al. (2003) found that some students 

who responded correctly to true/false number sentence questions (e.g., Is 8 + 2 = 5 

+ 5 true or false?) subsequently failed equivalence problems on which they were 

required to produce the answer. 

Context-dependent performance is not unusual with equivalence problems.  

In fact, performance varies widely depending on whether problems are presented 

in a non-symbolic form (e.g., blocks) or symbolic form (e.g., Arabic numerals) 

(Sherman & Bisanz, 2009).  Children’s definitions of the equal sign also vary 

depending on whether the symbol is presented with coins, alone, or with numbers 

in an addition context (e.g., 4 + 3 = 7; Seo & Ginsburg, 2003). 

Vergnaud, Benhadj, and Dussouet (as cited in Kieran, 1981) observed 

errors among 13-year-olds that are consistent with the children encoding 

procedures and not equalities.  For example, the students would often record steps 

of a word problem by simply recording their procedures such as 1063 + 217 = 

1280 – 425 = 1063.  The problem here lies in the symbolic representation of their 

ideas. Even some high school students struggle with the meaning of the equal 

sign.  Byers and Herscovics (1977) found that high school students did not 

consistently use the equal sign as a symbol of equivalence, and their errors and 

notation suggested that many still interpreted the equal sign as an operator 

(Kieran, 1981). 
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International performance. One explanation that has been proposed for 

why children perform so poorly is that perhaps children are predisposed to think 

of equality in terms of calculating answers rather than relating among quantities. 

This possibility seems unlikely because children as young as six years of age can 

learn the correct use of the equal sign, and their success is not dependent on 

computational skill (Carpenter et al., 2003).  Performance in Asian countries has 

also been notably higher than in North America.  Li, Ding, Capraro, and Capraro 

(2008) found that 98% of a Chinese sample of Grade 6 students solved 

equivalence problems correctly, versus 29% of a comparable US sample.  In a 

similar study, Capraro et al. (2007) found Grade 6 Chinese students averaged 98% 

on four written problems.  Although four problems is a small set on which to base 

conclusions, previous studies have shown success rates are similar whether 

children solve three (e.g., McNeil & Alibali, 2000), four (e.g., Rittle-Johnson & 

Alibali, 1999) or more than four math equivalence problems (McNeil, 2008). 

Watchorn, Lai, and Bisanz (2009) found that Taiwanese children who had 

recently completed Grades 2-4 averaged 84-88% correct on equivalence 

problems, and even children who had only recently completed Grade 1 averaged 

51% correct.  These results suggest that the great difficulty North American 

children experience with these problems is not universal and success is possible 

even at a young age. 

Operator interpretation.  Children’s misinterpretation of the equal sign 

as an operator instead of a relational symbol is not new.  It has been studied since 

at least 1976 (Behr et al., 1976) and acknowledgement of the problem was 
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documented as early as 1932 (Renwick, 1932), yet the problem persists.  Children 

typically define the equal sign as meaning “the answer comes next”, “use all the 

numbers”, or “add up all the numbers” (Carpenter et al., 2003).  These 

interpretations reveal that they are thinking of the equal sign as a symbol that 

directs them to “do something”, similar to other operators such as the plus sign (+) 

or the minus sign (-).  A more accurate view of the equal sign would be as a 

relational symbol, similar to the greater than (>) or less than (<) signs, indicating 

an equivalent relation between two expressions.  The equal sign is also sometimes 

incorrectly used to extend a problem, where it simply indicates the result of the 

operations directly preceding it (e.g., 8 + 4 = 12 + 5 = 17).  In these examples, the 

equal sign simply separates a problem and its answer (Kieran, 1981).  

Even a relational view can lead to different strategies to determine whether 

two expressions are equivalent or to find the solution to a problem.  One strategy 

is to compute the operations in each expression and compare the results, and the 

other is to examine the relations between the expressions.  For example, with a 

problem such as 8 + 4 = __ + 5, one approach would be to add up both sides to get 

12, and another would to be to reason that 5 is one more than 4, so the blank has 

to be one less than 8. Examining the relations between the expressions is a more 

sophisticated approach and lends the most value when transitioning to algebra, but 

it requires a thorough understanding of the equal sign. 

Not only does a relational view ease the transition to algebra, but an 

operator interpretation of the equal sign has negative consequences.  For example, 

students with an operator interpretation find it difficult to read arithmetic 
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sentences that do not reflect the order of their calculations (Kieran, 1981).  This 

makes it hard for these students to solve problems which would otherwise be 

easily within their reach.  

As students learn more about algebra, they tend to progress from an 

operational to a relational view of the equal sign (Alibali, Knuth, Hattikudur, 

McNeil, & Stephens, 2007), but the progression does not occur as quickly as 

teachers predict (Asquith, Stephens, Knuth, & Alibali, 2007). McNeil and Alibali 

(2005a) found that students in Grades 3-5 held an operator view of the equal sign 

in all three contexts explored: equal sign alone, in a typical addition problem, and 

in an equivalence problem.  But by Grade 7 students interpreted the sign as a 

relational symbol when presented in an equivalence problem.  The same Grade 7 

students still interpreted the equal sign as an operator when the sign was presented 

alone or in the context of an addition equation.  This finding suggests that Grade 7 

students may be in the process of transitioning from an operational to a relational 

view of the equal sign.  Similarly, Baroody and Ginsburg (1983) suggested the 

period of transition happens at about 13 years of age, and Herscovics and Kieran 

(1980) found that 12- to 14-year-olds initially held an operator view of the equal 

sign but changed to a relational view after training. 

As was mentioned above, children with an operator interpretation of the 

equal sign tend to adhere to three operational patterns: (a) the equal sign means 

the total, (b) all operations must be performed on all of the given numbers, and (c) 

all operations must be on the left side of the equal sign with the answer on the 

right.  Among 7- to 11-year olds, adherence to operational patterns predicted 
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change in strategy use following a simple (1-minute) lesson (McNeil & Alibali, 

2005b).  The lesson either involved asking the child to notice where the equal sign 

was in the problem, and/or explaining to the child that the equal sign means things 

on one side are the same amount as the things on the other side.  Children who 

were less entrenched in the operational patterns generated more new strategies, 

more correct strategies, and achieved more success on transfer problems (McNeil 

& Alibali, 2005b). 

Although undergraduate and graduate students appear to have a relational 

interpretation of the equal sign regardless of the context under which they are 

asked for a definition, their performance on equivalence problems under some 

circumstances indicates they may still occasionally view the equal sign in an 

operational way.  McNeil and Alibali (2005b) found that when operational 

patterns had been activated and the participants were presented equivalence 

problems only very briefly (1.5 s), undergraduates were more likely to use the 

add-all strategy to solve the equations than when they are given an unlimited 

amount time.  This suggests that under pressure even well-educated adults may 

revert to an operator interpretation. 

Further to this finding, McNeil, Rittle-Johnson, Hattikudur and Petersen 

(2010) found that, even when not under time pressure, undergraduates who had 

first solved addition facts were less likely to correctly solve equivalence problems 

than students who first participated in control activities. It appears that an 

operational view of the equal sign is frequently not entirely abandoned even 

among undergraduates. 
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Problem perception.  The misinterpretation of the equal sign may only be 

one indication of a larger problem.  It appears that children interpret an expression 

such as 2 + 4 as an instruction to do something, even if the equal sign is not 

present (Behr, Erlwanger, & Nichols, 1980).  They perceive problems to be in the 

form __ + __ = __ even when they are not, and will rearrange numbers or cross 

out signs to order the problem “correctly.”  One child illustratively expressed the 

problem by explaining to the experimenter, “ __ = 2 + 5” is ‘backwards’” and 

went on to ask,  “Do you read backwards?”  This example demonstrates the 

child’s expectation for equations to appear in a canonical form.  Similar to the 

operational patterns described earlier (McNeil & Alibali, 2005b), Baroody and 

Ginsburg (1983) noted that children expect written (horizontal) equations to take a 

particular form: two or more terms on the left, the result on the right, and the 

equal sign in between as a connecting symbol (Baroody & Ginsburg, 1983). 

When a person only uses one strategy to solve a problem, the person only needs to 

encode the problem features relevant to that strategy (McNeil & Alibali, 2004), 

which can optimize performance.  However, failing to encode other problem 

features can prove problematic, especially if the person encounters problems that 

cannot be solved with the strategy he has been using.   If children only perceive 

the problem features relevant to the typical addition schema on which they have 

been trained, they may be at great risk for difficulties in later years (McNeil & 

Alibali, 2002).  Subsequent learning on equivalence problems is positively related 

to knowledge of which features of problems to encode (McNeil & Alibali, 

2005b).  



 

  13 

Success and failure of interventions.  If children’s difficulty with 

equivalence problems were simply due to lack of attention to the details of the 

problem, asking children to note where the equal sign is in the equation and 

asking them to point to it should improve performance. This technique, however, 

does little to improve performance (McNeil & Alibali, 2002; 2005b).  If children 

misinterpret the meaning of the equal sign, simply drawing attention to the sign 

will not remedy the problem. One might presume that to correct the 

misconception, all that would be needed would be to explain to the children the 

correct meaning of the equal sign.  Unfortunately, it is not so straightforward.  

Children do not easily relinquish the beliefs they have developed over years, and 

explaining the correct meaning is not enough to convince them to change their 

thinking (Carpenter et al., 2003). Even in kindergarten when the children have 

presumably had the least exposure to the sign, one or two examples or a simple 

explanation is not enough to eliminate the misconception about the equal sign, 

(Falkner et al., 1999).  Explicitly telling children that the equal sign means that 

whatever is on one side has to be the same amount as whatever is on the other side 

was moderately helpful with children in Grades 4 and 5 (Perry, 1991; Watchorn & 

Bisanz, 2005), but not as helpful with younger children in Grades 2 and 3 

(McNeil, 2007; Watchorn & Bisanz, 2005) or Grades 3 and 4 (Alibali, 1999; 

McNeil & Alibali, 2005b).  McNeil (2008) found that even after several lessons 

on mathematical equivalence from the classroom teacher, children solved an 

average of only 0.73 out of 12 (SD = 0.98) problems correctly.   
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Falkner et al. (1999) reported a case in which a Grade 2 teacher had a class 

discussion and told the class she agreed with two students who gave correct 

explanations of the equal sign, but still many students did not change their 

thinking about the meaning of the sign.  Seo and Ginsburg (2003) also suggested 

that exposing children to the equal sign in contexts other than in typical addition 

problems might not be enough, but it is possible that the alternate contexts to 

which they exposed children were not of the appropriate kind for children to 

develop a relational view in arithmetic.  They presented the equal sign with coins 

or with rods, but they did not try to combine alternate presentations with Arabic 

numbers. 

Perry (1991) examined the effect of principle versus procedural 

instruction. She found that instructing students about the principle helped 

students’ performance on a variety of problems, but instruction on a specific 

procedure decreased their chance of success on problems that differed from the 

type on which they were instructed.  Performance was hindered on the transfer 

problems when procedural instruction was given, even if it was given in 

combination with principle instruction. The children tended to focus on the steps 

of the procedure and not why the procedure worked. 

Clearly, verbally explaining the meaning of the sign to children is not 

enough. Children need to be able to link this new knowledge to existing 

knowledge.  Many researchers have tried to use analogical reasoning to help 

children connect the ideas they are learning about equivalence to ideas they 

already have. Alibali (1999) used the verbal analogy of a teeter-totter with Grade 
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3 and 4 students, and the mean proportion of correct answers on a paper-and-

pencil posttest improved from 0% on the pretest to 25% on the posttest.  This 

improvement was a significantly larger improvement than a control group that 

only received feedback, but 25% correct is still very low.  Watchorn and Bisanz 

(2005) found similar results with Grade 2 students, but Grade 4 students 

performed significantly better with an average of 60% correct following 

instruction.  This improvement was maintained over a two-week interval.  In a 

separate condition Watchorn and Bisanz provided instruction with a balance scale 

and found that for Grade 2 students, this method was significantly better than the 

verbal analogy or an explanation of what the equal sign is and what the goal is of 

equivalence problems.  The balance scale approach appears to be somewhat more 

effective than some other methods with younger children, as Denmark, Barco, and 

Voran (1976) also found it to be effective even with Grade 1 students. Children 

who were exposed to different equation forms via the balance scale activities 

(e.g., 6 = 4 + 2) were more likely to accept non-canonical presentations, but the 

children still primarily interpreted the equal sign as an operator.   

These discouraging results have led some to conclude that intellectual 

development or general conceptual limitations in childhood are contributing 

factors to children viewing the equal sign as an operator (Denmark et al., 1976).  

But, as mentioned above, there are some cultures where this problem is relatively 

minor in comparison to North America, and thus it is unlikely that cognitive 

limitations prevent children of this age from achieving success on these problems.  

Fortunately, some interventions have achieved slightly better results.  For 



 

  16 

example, following a simple lesson, encouraging Grade 3-5 children to explain 

the reasoning behind their solution improved mean performance from 

approximately 5% to 79% correct, but did not affect other measures of conceptual 

knowledge about mathematical equivalence (Rittle-Johnson, 2006).  Giving 

children goals to strive for improved the performance of approximately 75% of 

students on conceptual knowledge measures, but did not affect performance on 

equivalence problem solving (McNeil & Alibali, 2000). Having teachers include 

informative gestures in their instruction led to approximately 47% of students 

adopting the strategy demonstrated by the teacher (Goldin-Meadow, Kim, & 

Singer, 1999).  Incredibly, forcing children to produce gestures corresponding to a 

correct solution also significantly improved their performance, however the mean 

score on problem solving was still only 40% (Goldin-Meadow, Wagner Cook, & 

Mitchell, 2009). 

Researchers exploring performance on mathematical word problems have 

found that children learned more efficiently and deeply when worked examples 

were interleaved with practice problems, rather than simply solving the same 

problems on their own (see Atkinson, Derry, Renkl, & Wortham, 2000, for a 

review). This approach holds promise in equivalence instruction.  Similarly, 

Rittle-Johnson and Star (2007) found that generating conceptual explanations for 

partners improved Grade 7 students’ own learning of how to solve algebraic 

equations.  Matthews and Rittle-Johnson (2009), however, found no effect for 

self-explanation prompts when instructing Grade 3-5 students about how to solve 

equivalence problems. 
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Some of the most successful techniques are centered on intensive 

professional development.   Carpenter et al. (2000) had relatively good success 

with a study that built on Carpenter and Levi’s Cognitively Guided Instruction 

(CGI) and focused on teacher professional development throughout the school 

year.  Teachers participated in summer workshops and meetings throughout the 

year to learn how to analyze the structure and basic properties of arithmetic, 

consider learning contexts, and consider how students might think about specific 

problems. Two-hundred forty elementary students participated in the study, which 

included several class discussions about true/false number sentences that 

challenged misconceptions about the equal sign.  By the end of the year, Grade 1 

and 2 students averaged 66% correct on equivalence problems, Grade 3 and 4 

students averaged 72% correct, and Grade 6 students averaged 84% correct. 

Falkner et al. (1999) report another success story where a Grade 2 class 

participated in many discussions throughout the year, and by the end of the school 

year most children held a relational view of the sign. Sáenz-Ludlow and 

Walgamuth (1998) reported similar success with a group of 14 Grade 3 students 

considered to be “at-risk.” Jacobs et al. (2007) conducted a professional 

development project with 180 teachers in one of the lowest performing school 

districts in California.  The content of their program focused on relational 

thinking.  The teachers were encouraged to help the children understand the equal 

sign as an indicator of a relation, to use number relations to simplify calculations, 

and to verbalize conjectures about why solutions were correct or incorrect.  
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Students in the participating teachers’ classrooms scored significantly better than 

students from other classrooms, but the highest group mean was still only 60%.   

Baroody and Ginsburg (1983) investigated the effect of the Wynroth 

Curriculum (Wynroth, 1975), which makes a concerted effort to encourage a 

relational rather than an operator view of “equals.”  This individualized approach 

consists of a sequence of games in which learning the rules of the game teaches 

the child mathematical concepts.  The approach was quite successful, as most of 

the 45 Grade 1-3 students in the study accepted atypical equations as correct if 

they were in a form to which they had been exposed in the games (e.g., 13 = 7 + 

6), and about 50% of the students were able to correctly judge the sensibility of 

equation forms to which they had not been exposed (e.g., 7 + 6 = 14 – 1 or 2 + 3 = 

II + III).    One drawback of these approaches is that they depend on intensive 

professional development, which is often not practical for widespread adoption, at 

least in the short-term. Widespread adoption would require a substantial 

investment of time and money in addition to significant changes to the current 

pedagogical approaches.  

Fortunately, another approach is also showing promise.  In Asia, the equal 

sign is introduced in the context of relations and teachers are more likely to 

highlight its relational meaning (Capraro et al., 2007).  Asian textbooks are also 

more likely to present the equal sign in a manner that helps children develop a 

relational view of the sign (Li et al., 2008).  In North America, comparing the 

equal sign to relational symbols and exposing children to atypical equations has 

been moderately successful as an intervention method for children who have 
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developed the operational view of the sign.  Hattikudur and Alibali (2007) found 

that Grade 3 and 4 students who compared the equal sign to inequality symbols 

performed better on a posttest of conceptual understanding than students who 

learned only about the equal sign.  Their performance on equivalence problems, 

however, did not improve significantly.  McNeil (2008) found that Grade 2 and 3 

students were more successful on equivalence problems following lessons about 

the equal sign that used atypical equations (e.g., 28 = 28) as examples than they 

were following lessons that used typical equations (e.g., 15 + 13 = 28), however 

performance was still extremely low in both groups (means scores of less than 8% 

correct).  

Although they only had a very small sample of 6 participants, Herscovics 

and Kieran (as cited in Kieran, 1981) were able to extend most of their 12- to 14-

year-old students’ use of the equal sign to include equivalence equations by 

providing lessons with equations that included multiple operations on both sides 

of the equal sign.  One student, however, insisted on writing 4 + 3 = 6 + 1 as 4 + 3 

= 7 and another insisted on inserting the “answer” between both sides (5 X 3 = 15 

= 10 + 5). Thus, although promising, this technique was not completely 

successful. 

Anderson (cited in Baroody & Ginsburg, 1983) also reported that 

explicitly teaching Grade 2 children to treat the equal sign as a relational symbol 

increased their likelihood to accept atypical equation forms. Carpenter et al. 

(2003) found that it was useful to use words that express the relation more directly 

(“is the same amount as”), and to use notation that shows that the numbers on the 
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two sides of the equal sign represent the same numerical value.  They concluded 

that using the equal sign in ways that do not represent a relation between numbers 

may mislead children, and that repeated exposure to a variety of correct forms 

may help children solidify their conception of what the equal sign means.    

Varied performance depending on problem type.  When discussing 

children’s understanding of equivalence, an important consideration is how we 

define “understanding.”  Sometimes individuals appear to have knowledge of a 

concept in one context but not in another (Bisanz & LeFevre, 1992; Bisanz, 

Watchorn, Piatt, & Sherman, 2009; McNeil & Alibali, 2005a). Frequently the 

demonstration of knowledge is dependent on how we elicit the knowledge.  For 

example, a learner might be able to correctly evaluate someone else’s solution but 

have difficulty producing that solution on her own (Bisanz & LeFevre, 1992).   

Schneider and Stern (2010) also highlighted the difficulty in obtaining an accurate 

picture of ability through only one task.  For these reasons it is important to 

examine the different contexts within which a learner might exhibit competence in 

a domain.  

Although North American children’s performance on equivalence 

problems in written form is nearly universally inadequate, their performance on 

non-symbolic problems has been more successful.  The differences in 

performance on these diverse problem types might reflect important differences in 

underlying processes and/or representation (Bisanz & LeFevre, 1992).  

Understanding the concept of equality and what it means for two sets to be 

equivalent is a base skill that precedes successful performance on equivalence 
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problems.   Between the ages of 3 and 4.5 years, there is a gradual progression of 

being able to recognize equivalence for literal comparisons, then homogenous 

sets, and later heterogenous sets of objects (Mix, 1999).  Acquisition of the 

conventional counting system enhances matching of equivalent sets of objects and 

may be a prerequisite for recognizing equivalence in dissimilar sets (Mix, 1999).  

Thus, we have some evidence of competence in these domains being related to 

counting among preschoolers, but counting skill is not sufficient for success on 

symbolic equivalence problems. This relation might lead to the suspicion that 

performance on symbolic equivalence problems could be related to addition and 

subtraction skill, but this appears not to be the case.  Performance does not 

increase notably across the elementary school grades, while skill at addition and 

subtraction does (Kieran, 1981; McNeil, 2007).  

 Falkner et al. (1999) reported a kindergarten class that was unsuccessful 

with symbolic problems but successful with parallel problems modeled with 

blocks.  Case (1985) found that 5- to 7-year old children could do physical 

problems with weights, and Sherman and Bisanz (2009) found that the 

performance of Grade 2 students was significantly better on nonsymbolic 

problems (presented with blocks) than on symbolic.  Sherman and Bisanz (2009) 

also found that performance was significantly worse on part-whole (e.g., 3 + 4 = 2 

+ __) and combination (e.g. , 3 + 4 + 2 = 3 + __) than identity (e.g., 3 + 4 = 3 + 

__) and commutativity (e.g., 3 + 4 = 4 + __) problems.  These discrepancies in 

rates of success depending on the problem presentation raise the question as to 
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whether children are using the same underlying representations or if they perceive 

and represent problems differently. 

Whatever the underlying representation, these patterns support the idea 

that the children may be able to successfully invent qualitative solutions for 

equivalence problems prior to being able to invent procedures for solving 

quantitative equivalence problems (Sherman & Bisanz, 2009).  Sherman and 

Bisanz also found that experience solving problems in a nonsymbolic form 

improved performance on symbolic problems, even when the symbolic problems 

were presented a full week later and no explicit link was made between the two 

tasks.  

Children also demonstrate competence in a task that appears to require 

very similar skills as symbolic equivalence problems.  Although performance on 

symbolic equivalence problems is very low through Grade 6, already by Grades 2-

3 children are able to choose which addend pair (e.g., 1 + 6, 3 + 5, 2 + 4) is equal 

to a given addend pair (e.g., 4 + 4) (Rittle-Johnson & Alibali, 1999).  This task, 

however, does not include the equal sign, and thus this finding supports the 

hypothesis that a major source of children’s difficulty with equivalence problems 

emerges from a limited understanding of the equal sign. 

In a recent movement toward early algebra (EA), algebraic thought is 

interwoven into mathematics curricula even at the earliest grades so that children 

will engage in relational thinking throughout elementary and middle school 

(Carraher & Schliemann, 2007).  Research on the best ways to implement EA is 
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limited (Carraher & Schliemann, 2007; but see Jacobs et al., 2007), as are studies 

that compare various evidence-based interventions promoting EA. 

The Present Study 

As described above, several methods for improving children’s 

performance on equivalence problems have been tested.  Typically, however, 

these interventions are very short (a few minutes) and administered in one session, 

they are implemented one-on-one rather than in group settings, and they are 

compared to few if any other interventions.  Thus these interventions differ 

markedly from children’s experiences in classrooms.  Furthermore, maintenance 

of improvements is seldom tested beyond two weeks.  Finally, outcome measures 

vary considerably across studies, making it difficult to determine the relative 

effectiveness of different instructional methods.  As experimental studies about 

cognitive development, these studies are informative and provide strong 

justification for believing that enhanced classroom instruction could contribute to 

improved outcomes, but they provide little basis for predicting the relative 

effectiveness of various instructional methods in the complexity of real classroom 

settings.   

In this study assessments were conducted to determine the effectiveness of 

four instructional methods at improving performance on equivalence problems, 

whether improvement transfers to new problem types, and whether retention 

differs depending on instructional method. A systematic comparison of 

instructional methods was conducted using directly comparable instructions, 

procedures, and outcome measures.  Children in Grades 2 and 4 participated 
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because children in these grades typically fail equivalence problems and have 

shown some improvement with instruction (e.g., Carpenter et al., 2000; Jacobs, et 

al., 2007; McNeil, 2007; McNeil & Alibali, 2000; Perry, 1991; Rittle-Johnson & 

Alibali, 1999; Sherman & Bisanz, 2009; Watchorn & Bisanz, 2005).  

Comparisons between grades allowed for the detection of whether grade-related 

responses to instruction reflect improved learning or increased resistance to 

learning (Knuth et al., 2006; McNeil, 2007; McNeil & Alibali, 2002, 2005a,b) as 

a function of instructional method.  Instruction took place in small groups and on 

two occasions, thus approximating classroom conditions while still enabling the 

degree of experimental control necessary for this study.  

The goal of this study was to identify instructional methods that are 

pedagogically tractable and likely to optimize student performance. Instructional 

methods were designed based on an analysis of the success of the various 

components of the interventions described above, and also the practicality of 

implementation in a classroom setting.  From this analysis, it was decided to 

exclude self-explanation (e.g., Rittle-Johnson, 2006) and comparison to other 

symbols (e.g., Hattikudur & Alibali, 2007) as instructional methods due to 

relatively limited outcomes in improving performance on equivalence problems. 

All conditions included pedagogically sound practices that improved performance 

in previous studies, including gestures (e.g., Goldin-Meadow et al., 1999), 

beginning each session with explaining the goal (e.g., McNeil & Alibali, 2000), 

and working through a minimum of five examples (e.g., Matthews & Rittle-

Johnson, 2009).  It was decided to focus on conceptual and generalized procedural 
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instruction, similar to Matthews and Rittle-Johnson (2009), because of the prior 

success of interventions using similar methods. Manipulatives were included 

because of the success children have demonstrated when solving equivalence 

problems in nonsymbolic form (e.g., Sherman & Bisanz, 2009) and the increased 

success of interventions with manipulatives with younger children (e.g., Watchorn 

& Bisanz, 2005). 

The primary focus of the study was in exploring the factors related to 

improving children’s ability to solve equivalence problems, to transferring their 

learning to other types of equivalence problem, to correcting their interpretations 

of the equal sign, and to expanding the range of non-canonical equations they 

would accept as legitimate. To compare the effect of conceptual and procedural 

instruction and the effect of manipulatives on these outcomes, four instructional 

conditions were designed and the performance of students who received these 

conditions was compared to a control group.  

The four instructional conditions were orthogonal combinations of two 

variables, each with two levels.  One variable was the instructional focus 

(procedural or conceptual), and the other was manipulatives (with or without), as 

illustrated in Table 1.  Descriptions of each of the conditions are below. These 

four conditions were used to examine the effect of procedural instruction in 

comparison to conceptual instruction, the effect of including or excluding 

manipulatives, and the interaction of these variables.   
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Table 1 

Instructional Conditions  

 Instructional Focus 

Instructional Materials Procedural Conceptual 

No Manipulatives  Procedural  

without Manipulatives 

Conceptual  

without Manipulatives 

Manipulatives Procedural  

with Manipulatives 

Conceptual  

with Manipulatives 

 

If manipulatives help children to connect the instruction to their existing 

knowledge, we would expect children in the manipulatives conditions to have 

superior performance to children in conditions without manipulatives.  If, 

however, the children are only able to see the manipulatives as toys, and not as 

symbols relating to the equations (Uttal, Scudder, & DeLoache, 1997), the 

manipulatives might serve as a distraction and diminish performance among 

children in the manipulatives condition. Alternatively, the manipulatives and 

instructional focus might interact such that the manipulatives are particularly 

effective in one instructional condition and not the other. 

Previous research shows the majority of both Grade 2 and Grade 4 

students are unable to answer equivalence problems correctly (Perry, 1991; Rittle-

Johnson & Alibali, 1999; Sherman & Bisanz, 2009).  How the two groups might 

differ in their approach to the problems is unclear, as is their responsiveness to 
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instruction.  Students in Grade 4 have significantly more math skills: They have 

received more instruction in mathematics, have had more experience with the 

equal sign, and have had more opportunity to practice what they have learned.  

These differences may provide the Grade 4 students with an advantage.  On the 

other hand, the Grade 4 students may have the operator view more ingrained in 

their thinking than Grade 2 students and could find it more difficult to start 

thinking of the symbol in a new way.   

The direct comparison of these instructional methods in controlled settings 

allows conclusions about the factors involved in improving understanding about 

mathematical equivalence among elementary school children, and whether 

improvement is limited to the type of problems on which students received 

instruction or transfers to new problem types and other indicators of 

understanding. The results of this study are intended to be used in the design of 

materials for teachers and it is hoped that these efforts will eventually help lead to 

the improvement of children’s performance in algebra and higher math. 

This study was designed to address five main questions: (a) What are the 

effects of manipulatives and of procedural versus conceptual instruction in 

improving children’s understanding of mathematical equivalence, and do these 

effects vary by grade and gender? (b) Does learning from instructional sessions 

transfer to new problem types? (c) How does instruction on equivalence problem 

solving affect other indicators of understanding equivalence and the equal sign? 

(d) What skills are associated with readiness to learn how to solve equivalence 
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problems? and (e) Are there distinct groups of children who respond to 

equivalence-related tasks in qualitatively distinct ways? 

Method 

Design 

The study consisted of four sessions, as summarized in Table 2.  In all 

cases, children in Grades 2 and 4 were tested in groups during school hours. In 

Session 1, children completed tests of equivalence problem solving, problem 

reconstruction, equal sign definition rating, and equation rating.  These paper-and-

pencil tests were administered in the classroom in large groups, with each child 

working independently at his or her desk.  The test of equivalence problem 

solving was used to identify children who were able to solve these problems; 

these children did not participate in subsequent sessions.  The remaining tests in 

Session 1 served as pretests of the students’ beliefs about the equal sign.  
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Table 2 

Timeline Overview 

Session Activity 

1 Test of equivalence problem solving 

Problem Reconstruction Test 

Definition Rating Test 

Equation Rating Test 

- Two-week interval -  

2 Instruction 

Test of equivalence problem solving 

- One week interval -  

3 Abbreviated test of equivalence problem solving 

Instruction  

Test of equivalence problem solving 

- One month interval -  

4 Test of equivalence problem solving 

Problem Reconstruction Test 

Definition Rating Test 

Equation Rating Test  
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In Session 2, children who failed equivalence problems in Session 1 were 

randomly assigned to one of four instructional conditions (Table 1) or a control 

condition.  Gender and school were evenly distributed across conditions.  In 

schools with fewer than 20 students participating in a grade, only four conditions 

were administered. In these cases conditions were selected to equalize the total 

number of students in each condition across the study.  Each small-group 

instructional session was led by one of three experimenters.  Each of the 

experimenters conducted a similar number of sessions per condition.  Following 

instruction, children received another test of equivalence problem solving. 

Session 3 was conducted one week later and began with an abbreviated 

test of equivalence problem solving that consisted of the first six equivalence 

problems from the pretest administered in Session 1.  The purpose of this test was 

to quickly assess how well the students maintained their learning over one week.  

Next the children received the same instruction as in the prior session, and then 

they completed another  paper-and-pencil test of equivalence problem solving.  In 

Session 4 children were retested on all of the tasks presented in Session 1 to 

assess whether instruction had a lasting effect. 

Instruction 

All children participated in one of the four instructional conditions listed 

in Table 1 or in a control condition.  Initial group size in all instructional 

conditions ranged from three to six children.  Sessions took approximately 20 

minutes, including time to complete the posttest individually. If absences reduced 

the group size in Session 3 to two children, the session proceeded, but if only one 
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child was present the session was postponed.  If children asked the experimenter 

questions, the experimenter only repeated the instructions for that condition and 

explained that all questions would be fully answered at the end.  All conditions 

began with the experimenter saying, “The goal of a problem like this is to find a 

number that fits in the blank so that when you put together these on this side of 

the equal sign (point to numbers on left), you’ll have the same number as when 

you put together these on this side of the equal sign (point to number and blank 

line on right).” The experimenter then presented the five instructional equations 

described below. Following instruction, children were presented a booklet with 10 

practice combination equivalence problems, also described below. 

Instructional Equations. In each of the four instructional conditions, the 

experimenter presented children with a series of five combination equivalence 

equations (e.g., 3 + 4 + 2 = 3 + __).  Each equation was printed on a separate 

laminated page so that the experimenter could write on the page with a marker 

and erase all markings before the next instructional session. Two sets of problems 

were created and are presented in Table 3.  In each of the instructional conditions 

half of the students were instructed using Set A in Session 2 and Set B in Session 

3, and the other half were instructed first with Set B and then Set A.  

In the conceptual conditions, one of the five examples had a large circle 

between the two sides of the equation instead of an equal sign, similar to one of 

the types of equations presented by Matthews and Rittle-Johnson (2009) in their 

conceptual condition.  When this example was presented, the definition of the 

equal sign was repeated and the children were asked whether the equal sign could 
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be placed between the two sides.  The example presented in Set B displayed 

equivalent sides (i.e., the equal sign could be placed between the sides), whereas 

in Set A the two sides were not equivalent.   

 

Table 3 

Example Problems Used During Instruction 

Set A Set B 

3 + 1 + 1 = 3 + ___ 2 + 1 + 3 = 2 + ___ 

4 + 3 + 3 = 4 + ___ 5 + 1 + 3 = ___ + 3 

5 + 4 + 2 = ___ + 2 2 + 3 + 5 = ___ + 5 

3 + 4 + 6 = ___ + 61 4 + 1 + 1 = ___ + 11 

4 + 3 + 2 = 4 + ___ 3 + 4 + 2 = 3 + ___ 

1 In the conceptual conditions, this problem was presented as: 3 + 4 + 6 O 2 + 6 
(Set A), and 4 + 1 + 1 O 5 + 1 (Set B), and the children were asked whether it 
makes sense to write an equal sign in the circle.  
 

Practice problems. Following instruction, the children were provided 

with 10 practice combination equivalence problems. Multiple-choice answers 

were provided in the same way as for the equivalence problem solving test.  See 

Appendix A for an example of one set of practice problems.  The problems were 

presented in a small booklet with only one problem on each page so that children 

could not skip ahead of the group.  Students worked independently to solve the 

problems.  After all students had circled an answer, the experimenter provided the 
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correct answer to the group. If a child asked why an answer was right or wrong, 

the same instruction presented in his or her condition was repeated. 

Procedural instruction. Using appropriate gestures, students were 

instructed in the use of a particular algorithm (add the numbers on the left and get 

a sum; subtract the number on the right to get the difference; put the difference in 

the blank), following the protocol used by Matthews and Rittle-Johnson (2009).  

No further references to the concept of equality or the definition of the equal sign 

were made.   For the example problem 2 + 1 + 3 = 2 + __, the experimenter said: 

“There’s more than one way to solve this type of problem, but I’m going 

to show you one way to solve them today. This is what you can do: You 

can add the 2 and the 1 and the 3 together on the first side of the equal sign 

[using a marker to draw a circle around the 2 + 1 + 3] and then subtract the 

2 that’s over here [underlining the 2], and that amount goes in the blank. 

So, for this problem, think about how much 2 + 1 + 3 is? [Wait for 

students to think.] 2 + 1 + 3 is 6.  And 6 minus 2 [pointing to the 2 on the 

right hand side] is 4.  So our answer is 4. [Write 4 in blank.]” 

The experimenter then proceeded with the four additional examples 

presented in Table 3, describing the procedure with each example. 

Conceptual instruction. In conceptual conditions students were taught 

about the relational function of the equal sign and the experimenter did not 

discuss solution procedures, similar to Matthews and Rittle-Johnson’s (2009) 

conceptual instruction. The experimenter began by explaining that the goal of the 

problem was to find a number that fit in the blank that made both sides equal.  
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Next, the experimenter provided the solution that would make both sides equal for 

the current example. The experimenter went on to explain the meaning of equal 

sign.  For the first example in Set A, the experimenter said: 

“There are two sides to this problem: one on the left side of the equal sign 

[making a sweeping gesture over the left side] and one on the right side of 

the equal sign [making a sweeping gesture over the right side]. The first 

side is 3 + 1 + 1 [making a sweeping gesture]. The second side is 3 + __ 

[making a sweeping gesture]. What the equal sign [pointing] means is that 

when you put together everything on this side it’s the same amount as 

when you put together everything on this side [sweeping hand back and 

forth]. Think about how much we need to put in the blank to make both 

sides the same. [Pause.] In this case, this side [making a sweeping gesture 

over the left side] is 5, so this side [making a sweeping gesture over the 

right side] needs to be 5 as well.  To make both sides equal to 5, in this 

case we need to write 2 in the blank [write 2 in blank]. ” 

The experimenter then proceeded with the four additional examples 

presented in Table 3, explaining the meaning of the equal sign with each example. 

Manipulatives. Children assigned to the conditions with manipulatives 

were presented with the same problems but with the addition of concrete 

materials, similar to Sherman and Bisanz (2009).  As illustrated in Figure 1, a 

piece of blue cardboard, 6 cm high, folded to look like a tent, was placed above 

the equal sign and served to separate the two sides of the equations. On the child’s 

left side of the tent there was a piece of yellow construction paper under the 
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manipulatives and on the right there was a piece of green construction paper, to 

make the two sides distinctive. The corresponding written problem had a yellow 

background on the left and a green background on the right.  Wooden cylinder 

blocks were placed in opaque plastic bins approximately 3 cm high to represent 

each term of the arithmetic expressions. Each bin was placed directly above the 

number it represented. For each of the five example equations, and the first three 

practice problems, the experimenter also displayed the equation with the blocks in 

the bins. The experimenter started with empty bins and a pile of blocks and asked 

the students to help her fill the bins to match the problem on the paper by telling 

her how many blocks to put in each bin.  The experimenter ensured that each 

child had the opportunity to provide the answer on several occasions. None of the 

students had any difficulty with this component. Throughout the instruction an 

explicit effort was made to point to both the blocks and the numbers when 

gestures were made, to help the students make the connection between the two.  

For the example problems, the experimenter solved the problem by placing the 

appropriate number of blocks in the empty bin, and explaining to the children 

either the procedure (in the procedural condition) or concept (in the conceptual 

condition) that can be used to obtain that answer.  
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Figure 1. Materials used in manipulatives conditions. 
 

Control Condition. Students in the control condition received instruction 

on an unrelated mathematical topic that did not involve equations and that is an 

activity from which children in both Grades 2 and 4 could benefit. The activity 

consisted of a logical reasoning task where students used number knowledge, 

such as place value and odd versus even numbers, to deduce the answer (e.g., “I 

am an odd number. You do not say me when you count by fives. I am greater than 

31 but less than 36. What number am I?”).  

The experimenter first reviewed concepts that would be helpful for the 

task, such as odd and even numbers, counting by 2s, 5s, and 10s, and place value.  

The experimenter then guided the students through five example problems 

describing how to do the activity in each example.  Each child then received his or 
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her own sheet with 10 practice problems, emulating the procedures in the 

experimental conditions. 

Testing and Scoring 

Equivalence problem solving.  The test of equivalence problem solving 

consisted of 12 problems, including four examples of each of the three types 

described in Table 4.  These problem types have been used in previous studies 

(e.g., Sherman & Bisanz, 2009; Watchorn & Bisanz, 2005) and allow for 

comparison between learning on the problem type on which students received 

instruction and different problem types. Problem types were intermixed and two 

problem orders were created.  The order of presentation was counterbalanced 

across children.  Addends in all of the problems were single digits ranging from 2 

to 9, and the sum of all digits in a single problem (i.e., the “add-all solution”) 

ranged from 12 to 22. Children were instructed to complete as many problems as 

they could in a short period of time, and were asked to start at the top and go 

down each of two columns. Each column contained two examples of each 

problem type, one with the blank immediately following the equal sign and one 

with an addend between the equal sign and the blank. The Grade 2 students were 

given 8 minutes and the Grade 4 students were given 7 minutes. These time limits 

allowed nearly all of the students to complete all of the problems with time to 

spare. Scores were computed as percentage correct of the problems attempted.  

Each child received his or her own paper with the equations and multiple-choice 

answers. The multiple-choice answers were presented in an unsystematic order 

and included (a) the correct answer, (b) the answer that would be obtained using 
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the add-to-equal strategy (adding all of the numbers up to the equal sign and 

placing the result in the blank), (c) the answer that would be obtained using the 

add-all strategy (adding all of the numbers present on both sides of the equal sign 

and placing the result in the blank), and (d) an answer that is smaller than the 

correct answer (to prevent children from getting credit for answering correctly if 

they simply select the smallest number).  Children were asked to circle the answer 

they thought was correct. To minimize the likelihood that a child who used the 

add-all or add-to-equal strategy could obtain the correct answer through a minor 

addition or subtraction error, correct answers differed by at least two from the 

result that would be obtained from using either of those strategies. See Appendix 

B for an example of the equivalence test. 
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Table 4 

Equivalence Problem Types 

Problem Type Example 

Two-term Part-whole a + b = c + ___ 

 a + b = ___ + c 

  

Three-term Part-whole a + b + c = d + ___ 

 a + b + c = ___ + d 

  

Combination  a + b + c = a + ___ 

 a + b + c = ___ + a 

 

Four options were presented for each question, and thus the chance of 

obtaining the correct answer by guessing was 25% for each question.  With 12 

questions, the probability of obtaining six or more questions correct by guessing is 

less than .05.  Therefore, only students who were successful on five or fewer of 

the 12 problems (<42% correct) in Session 1 were included in the analyses.   

Indicators of understanding. It is important to consider not just how 

students perform on the problem solving task, which they could learn to do by 

rote, but also to examine whether the instruction improved students’ 

understanding of the meaning of the equal sign and how the symbol can be used. 

Understanding the meaning of the equal sign and appropriate problem structures 

was assessed with three different tasks: problem reconstruction (McNeil & 
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Alibali, 2002, 2004, 2005b; Rittle-Johnson & Alibali, 1999), definition rating 

(McNeil & Alibali, 2005a; McNeil & Alibali, 2005b; Rittle-Johnson & Alibali, 

1999), and equation rating (Baroody & Ginsburg, 1983; Matthews & Rittle-

Johnson, 2009; Rittle-Johnson, 2006; Rittle-Johnson & Alibali, 1999). Two 

versions of each task were created, with half of the students receiving Version 1 in 

Session 1 and Version 2 in Session 4.  The remaining students received the tests 

in the reverse order. 

Problem reconstruction task. Children were asked to reconstruct one 

practice and three test equations after viewing each equation for 5 seconds.  All 

three test equations were similar to those used in the equivalence problem solving 

task and had operations on both sides of the equal sign. In Session 1, the problems 

presented were: 7 + 4 + 5 = 7 + __; 3 + 6 = 5 + __; and 4 + 1 + 6 = 6 + __.  In 

Session 4, the problems presented were: 8 + 3 + 5 = 8 + __; 4 + 7 = 3 + __; and 6 

+ 2 + 5 = 5 + __.  Following a coding scheme developed by McNeil and Alibali 

(2004), one point was awarded for each equation that was reproduced with the 

plus signs and equal sign in the correct locations.  Numerical errors were not 

coded as mistakes. For example, if the equation 7 + 4 + 5 = 7 + __ was presented 

and the student reproduced 7 + 4 + 6 = 7 + __, the student was awarded a point for 

a correct reconstruction.  Possible scores ranged from 0 to 3. 

Definition ratings task. The definition rating task was designed to evoke 

participants’ opinions about a number of possible definitions of the equal sign 

(McNeil & Alibali, 2005a).  Because of time constraints, the number of 

definitions included in the task was reduced from six (McNeil & Alibali, 2005a) 
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to three, but the task retained one definition from each of the categories used by 

McNeil and Alibali.  One of the definitions corresponded to an operator view of 

the equal sign, another to a relational view of the sign, and one nonsense 

definition. Children were asked to rate the “smartness” of three fictitious students’ 

definitions by circling an unhappy face if the definition was “not so smart,” a 

straight face if the definition was “kind of smart,” or a happy face if the definition 

was “very smart.” See Appendix C for an example of the definitions rating task. 

Points were awarded for each of the three definitions depending on the 

definition type.  For the relational definition, children received 2 points for 

judging the definition as “Very Smart”; 1 point for “Kind of Smart”; and 0 points 

for “Not so Smart”. For the operational and nonsense definitions, children 

received 2 points for judging the definition as “Not so Smart”; 1 point for “Kind 

of Smart”; and 0 points for “Very Smart”.  Scores were totalled so that each child 

received a score of 0 to 6 on the task.  High scores reflect support of the relational 

definition of the equal sign.  Internal consistency of the measure, as assessed with 

Cronbach’s α, improved if the nonsense item was eliminated from the scale.  The 

pattern of means across instructional conditions was similar whether the two-item 

or three-item scale was used and all analyses led to the same conclusions.  

Therefore the nonsense item was eliminated, as was done in previous studies 

using a similar task. Scores on the definition rating task this ranged from 0 to 4. 

Equation rating task. The equation rating task was adapted from similar 

tasks used previously to assess children’s understanding of the structure of 

equations (Baroody & Ginsburg, 1983; Matthews & Rittle-Johnson, 2009; Rittle-
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Johnson, 2006; Rittle-Johnson & Alibali, 1999).  Students indicated whether they 

thought each of ten equations made sense, did not make sense, or they did not 

know.  Two examples of each of the following problem types were presented: 

standard (1 + 3 = 4), reverse (4 = 3 + 1), alternatives with subtraction (2 + 2 = 5 – 

1), one-term identity (4 = 4); and two-term part-whole (2 + 2 = 3 + 1).  Each type 

had one example that was correct and one example that was incorrect.  See 

Appendix D for an example of the equation rating task.  

Responses to standard problems (e.g., 1 + 3 = 4) yield no information 

about children’s interpretation of the equal sign.  These problems were included 

only to provide children with at least some problems that were familiar to them. 

Therefore responses were only analyzed for the four remaining problem types.  

For each problem type, children were categorized as having a “Relational” 

or “Not Relational” view of the equal sign, based on their responses across both 

examples of that problem type. A strict criterion was set so that a child was only 

categorized as holding a relational view of the equal sign for that problem type if 

he or she responded that the correct problem “made sense” and the incorrect 

problem “did not make sense”.  All other responses were categorized as “Not 

relational”.  In separate analyses, the “Not Relational” responses were separated 

into “Transitional”, “Operational”, and “Inconsistent”, but in analyzing the results 

the same patterns emerged as with the binary scoring.  Thus scoring based on the 

binary coding is reported.  For further details about how children were categorized 

in this more complex coding scheme, please refer to Appendix E.  Thus, children 
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received a score of 1 or 0 for each of the four problem types, and the total score 

ranged from  0 to 4. 

Participants 

Participants (156 from Grade 2 and 192 from Grade 4) were recruited 

from middle-class public schools in a suburban Canadian community.  Because 

the focus of the study was on the effects of various forms of instruction on 

equivalence, only children who could not already solve equivalence problems 

continued beyond Session 1.  Twenty-six students (7%), including 7 in Grade 2 

and 19 in Grade 4, passed the pretest and so were eliminated from the study.  Data 

from eight students were removed due to severe special needs and inability to 

complete the tasks, choosing to withdraw from the study, moving, or 

experimenter error.  Data from an additional 35 students (11%) were removed 

because the student missed one or more of the data collection sessions. Because a 

minimum group size of 2 was required for the small-group instruction in most 

cases it was impossible to collect data at a later date from children who were 

absent because no other children in their condition remained untested.  

Further reductions in sample size occurred because a small number 

children either reported that they had guessed or because the experimenter 

observed the child quickly and arbitrarily circling answers during the test phases 

of Sessions 2 or 3. The eight children in question tended to answer the practice 

questions either all correctly or all incorrectly.  Students who answered the 

majority of the practice questions correctly were removed because it appeared that 

these students knew how to solve the problems but may have guessed on the test 
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because they were tired of the activity.  It was important not to contaminate the 

results by making it appear that these students did not know what they were doing 

when in fact they were just bored. The remaining two students solved most of the 

practice problems incorrectly, suggesting that they may have guessed on the test 

because they did not know how to solve the problems.  In such cases incorrect 

answers accurately reflect the fact that they did not learn from the instruction. 

Therefore, these two students were retained in the study.  

Following these adjustments, the final sample size was 273, including 122 

Grade 2 students (70 girls) and 151 Grade 4 students (86 girls).  Fifteen of the 75 

students who were removed from the sample were never assigned to an 

instructional condition because they did not participate in Session 2.  Of the 

students who had been assigned to conditions, nine were lost from each of the 

control, conceptual without manipulatives, and procedural without manipulatives 

conditions.  For unknown reasons, slightly more students were lost from the 

conceptual with manipulatives (17) and procedural with manipulatives (16) 

conditions, but sample sizes remained similar across the five conditions, ranging 

from 52 to 56 participants.  The students typically did not know the dates on 

which testing would occur and thus these data can be considered to be missing at 

random. 

Results and Discussion 
Reliability  

 To assess test-retest reliability the correlation between performance in 

Session 1 and Session 4 among the control group was examined for each of the 
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measures. Correlations are presented in Table 5.  Because the other conditions all 

received instruction that was intended to alter performance on the measures, it 

was only appropriate to explore test-retest reliability in the control group. 

 

Table 5 

Test-retest Correlations Among Control Group Participants and Cronbach’s 

Alpha in Sessions 1 and 4 for All Participants 

 

Test-retest  

Reliability 

Internal Consistency 

(Cronbach’s Alpha) 

Measure n = 55 

Session 1 

n = 253-273 

Session 4 

n = 270-273 

Equivalence Problem Solving  .25 .67 .97 

Problem Reconstruction .55*** .67 .76 

Definition Rating -.07 .43 .52 

Equation Rating .72*** .51 .70 

*** p < .001 

 

 Test-retest reliability was low for equivalence problem solving, but in 

Session 1 only students who did not know how to solve equivalence problems 

were selected and students in the control group did not show substantial 

improvement.  Thus the scores included in this correlation are from a highly 

restricted range. It is expected that guessing would be more common among 

students who do not know how to solve the problems, and most students in the 
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control group did not know how to solve the problems in either Session 1 or 4. A 

full range of scores, including students who know how to solve equivalence 

problems, might have resulted in a higher correlation. 

 Test-retest reliability was even lower for the definition rating task.  This 

task, however, had only two items, which may have severely limited its reliability. 

Also, because test-retest reliability could only be assessed with the control group, 

it may be affected by the same limitations as described above for the equivalence 

problem solving.  This task, however, was meant to be equally valid for students 

who have operational definitions of the equal sign or relational definitions.  

Therefore, this low reliability indicates the measure should be interpreted with 

caution. The test-retest correlations for problem reconstruction and equation 

rating tasks were reasonably high. 

 The internal consistency of each of the measures in Sessions 1 and 4 was 

also explored, as is shown in Table 5.  Internal consistencies were higher in 

Session 4 than Session 1 for each of the measures, but even in Session 1 the 

internal consistencies were reasonably high except for the definition rating task.  

Again, this outcome suggests that the definition rating task should be interpreted 

with caution. 

Correlations among Measures 

To determine whether the measures were tapping the same underlying 

construct, correlations among the measures were examined.   In Session 1, 

performance on the equivalence problems was artificially restricted because only 

students who failed the task were included in the study.  For this reason, 
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equivalence problem solving was excluded from the Session 1 correlational 

analysis.  Correlations among the three indicators of understanding are presented 

in Table 6.   

 In Session 1, the correlations were low, but the correlation between 

problem reconstruction and equation rating reached statistical significance. In 

Session 4, performance on the three types of equivalence problems was highly 

correlated, ranging from .91 to .93.  The correlations among measures were also 

higher in Session 4 than in Session 1, as shown in Table 6.  By Session 4 some of 

the students had likely benefited from instruction and had a more complete 

understanding of the equal sign.  Thus, the greater reliability seen in Session 4 is 

likely due to students responding in more consistent patterns depending on their 

developing understanding of the equal sign and acceptable problem structures.  It 

is interesting to note that despite the variable test-retest reliability of the measures, 

moderate correlations were observed in Session 4, suggesting that these tasks are 

tapping related skills.  
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Table 6 

Intercorrelations Among Measures in Sessions 1 and 4  

Measure 

Problem 

Reconstruction 

Definition 

Rating 

Equation 

Rating 

Equivalence Problem 

Solving 

.33*** .20** .41*** 

Problem Reconstruction - .21*** .39*** 

Definition Rating .01 - .26*** 

Equation Rating  .17** .06 - 

Note. Ns 270-273. Session 1 below the diagonal, Session 4 above diagonal.  Data 
from equivalence problem solving, Session 1, are excluded. 
** p < .01, *** p < .001. 
 

Equivalence Problem Solving 

The first question that was explored was whether the children in each 

grade improved in their performance on equivalence problem solving as a result 

of instruction.  Mean performance on solving equivalence problems across testing 

occasions is presented in Figure 2. 
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 (a)  

 
 
(b) 

 
Figure 2. Performance of each instructional condition on equivalence problems 
across testing occasions among students in Grade 2 (Panel a) and 4 (Panel b). The 
upper bound of the 95% confidence interval for the control condition and the 
lower bound of the 95% confidence interval for the next lowest performing 
condition are displayed.  
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In Sessions 2-4 none of the 95% confidence intervals from the 

instructional conditions overlapped with the confidence intervals of control 

condition. Thus all four instructional conditions were effective. For this reason, in 

all subsequent analyses only the four instructional conditions on Sessions 2-4 

were compared.  

A primary focus of this study was identifying the factors that contributed 

to improving children’s understanding of mathematical equivalence, and whether 

these factors varied by grade and gender. To determine whether the instructional 

effects transferred, problem type was included as a within-subjects variable. 

Accuracy on equivalence problems were analyzed using a 2(Grade) x 2(Gender) x 

2(Instructional focus: Procedural versus Conceptual) x 2 (Manipulatives) x 

3(Problem type) x 4(Test Occasion) ANOVA with repeated measures on the last 

two variables.   

Grade 4 students (M = 85.8, SD = 26.2) outperformed Grade 2 students (M 

= 59.5, SD = 26.6), F(1, 200) = 51.71, p < .001, ηp
2 = .205.  No effects of gender, 

instructional focus, or manipulatives were found (Fs < 1). Because grade 

interacted with problem type and gender, F(2, 400) = 4.45, p = .01, ηp
2 = .022, and 

with occasion, instructional focus, and manipulatives, F(2.73, 545.85) =  2.79, p = 

.045, ηp
2 = .014, analyses were conducted separately for each grade. 

Grade 2. Two small effects were found in Grade 2.  First, performance 

varied by problem type, F(2, 178) = 4.07, p = .019, ηp
2 = .04.  Contrasts revealed 

that students did slightly better on combination problems (M = 61.49, SD = 

30.20), on which they received instruction, than on two-term part-whole problems 
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(M = 57.38, SD = 34.11) and three-term part-whole problems (M = 59.52, SD = 

33.09), F(1, 178) = 6.13, p = .01. However, the means only differed by a 

maximum of 4% and are not likely to be meaningful.  Performance did not differ 

between and two-term and three-term part-whole problems.  

The second effect was an interaction of problem type and gender, F(2, 

178) = 4.67, p = .011, ηp
2 = .05,  as illustrated in Figure 3. Contrasts revealed that, 

among boys, performance did not differ between combination problems and the 

two- and three-term part-whole problems, or between two-term and three-term 

part-whole problems.  Thus, the overall effect of problem type did not apply to 

boys but was driven by the difference among girls, for whom performance was 

better on combination problems than on two- and three-term part-whole problems, 

F(1, 178) = 17.20, p < .001. The latter two did not differ.  The reasons for this 

gender difference are unclear, but there is some evidence that in some 

circumstances boys may be better than girls at flexibly extending procedures to 

problem types beyond those on which they have received instruction (Fennema, 

Carpenter, Jacobs, Franke, & Levi, 1998; Gallagher, De Lisi, Holst, 

McFillicuddy-De Lisi, Morely, & Cahalan, 2000). 
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Figure 3. Mean performance of Grade 2 students as a function of problem type 
and gender. Bars indicate standard error. 
 

Grade 4. Three effects were found in Grade 4.  First, performance differed 

by problem type, F(2, 222) = 3.08, p = .048, ηp
2 = .03. Orthogonal contrasts 

revealed that simple learning, as indexed by performance on combination 

problems (M = 86.58, SD = 21.97), did not differ from transfer, as indexed by the 

combined performance on the other two types. But a statistically significant 

difference existed between two-term part-whole problems (M = 84.55, SD = 

22.96) and three-term part-whole problems (M = 86.31, SD = 24.20), F(1, 178) = 

4.13, p = .04.   It is important to note, however, that the means differed by a 

maximum of only 2%. 

Mauchly’s test of sphericity indicated that the assumption of sphericity 

had been violated for test occasion (χ2 = 40.09, p < .001), and therefore the 

Greenhouse-Geisser correction was used for the next two tests. 
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The second effect in Grade 4 was that performance varied across the 

posttest occasions, F(2.48, 274.95) = 9.27, p < .001, ηp
2 = .08.  Performance was 

highest immediately following instruction (Sessions 2 and 3 posttests) and 

somewhat lower following delays (Session 3 pretest and Session 4). Performance 

on the Session 3 posttest (M = 92.55, SD = 16.74) was higher than on the other 

three occasions, F(1, 274.95) = 16.26, p < .001.  Performance in Session 2 (M = 

87.82, SD = 23.05), which immediately followed the first instructional session, 

was higher than in Session 4 (M = 81.72, SD = 34.19), which was one month after 

the last instruction, F(1, 274.95) = 4.99, p = .03.  Performance also improved 

between the Session 3 pretest (M = 81.16, SD = 33.88) and the Session 3 posttest, 

F(1, 274.95) = 17.43, p < .001.  

The third effect was an interaction of manipulatives, gender, and occasion, 

F(2.48, 274.95) = 3.44, p = .024, ηp
2 = .03, as illustrated in Figure 4. The striking 

difference between genders was on the Session 3 pretest. Contrasts comparing the 

performance of students who received instruction with and without manipulatives 

revealed that among girls (Figure 4, panel a), there were no differences in 

Sessions 2, 3 Posttest, or 4.  The same pattern was found among boys (Fs < 1.2, 

ps > .28).  On the Session 3 pretest, however, the pattern was different among 

boys than among girls. Among boys, the students who had received instruction 

without manipulatives had lower performance than the students who had received 

instruction with manipulatives, F(1, 274.95) = 5.48, p = .02.  Among girls, the 

reverse was true, F(1, 274.95) = 8.90, p < .01. Specifically, the drop in 

performance on the Session 3 pretest was observed among girls who received 
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instruction with manipulatives, whereas among boys, the drop was observed in the 

group that did not receive instruction with manipulatives. The effect size for this 

interaction was small and there is no theoretical reasoning for the observed 

pattern, and so this interaction was not interpreted further. 
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(a) 

 

 
(b) 

 
 
Figure 4. Effect of manipulatives on the mean percent correct on equivalence 
problems for Grade 4 girls (Panel a) and boys (Panel b) across occasions. 
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Summary. Grade 4 students outperformed Grade 2 students, but all four 

instructional conditions were effective at improving performance on equivalence 

problems in both grades. Small effects were found within each grade, but none 

involved instructional focus.  

Indicators of Understanding 

 For ease of comparison between tasks, the same types of analysis are 

reported for the three indicators of understanding. Analyses could be done in 

several ways, and each option presented advantages and disadvantages. 

Parametric testing (e.g., ANOVA) is typically powerful, provides interpretable 

results, allows controls for multiple comparisons, and allows for tests of 

interactions. However, there were obstacles to using ANOVA, for example, 

scores on the problem reconstruction task were not normally distributed, violating 

one of the assumptions of ANOVA. To solve this problem one option is to 

compute difference scores between performance on Session 4 and Session 1, but 

the reliability of difference scores is low, especially when using measures with 

low reliability.  

 An alternative is nonparametric testing.  Nonparametric tests can be used 

with data that are not normally distributed and for counts in categories as opposed 

to scores, but are typically less powerful and do not allow for testing interactions 

involving repeated measures. 

 With these considerations in mind, a variety of parametric and 

nonparametric analyses were conducted.  The results of the parametric analyses 
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are presented below, but were generally confirmed with nonparametric analyses.  

For each indicator, a one-way ANOVA with condition as the between subject 

variable was conducted on Session 1 scores to check for pre-existing differences 

between groups. Next, to test for improvement between Session 1 and Session 4 a 

similar ANOVA was conducted on the difference scores with condition as a 

between subjects variable. The intercept was examined to assess overall 

improvement, and 95% confidence intervals were inspected for each condition. 

Finally, to explore the improvements, a Grade x Gender x Instructional Focus x 

Manipulatives ANCOVA on Session 4 scores was conducted, with the 

corresponding Session 1 score as the covariate. 

Problem reconstruction. Performance on the problem reconstruction task 

was low across both sessions, as illustrated in Figure 5.  

 

 
Figure 5. Mean points (maximum of 3) on problem reconstruction task in 
Sessions 1 and 4 by instructional condition. 
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In Session 1, none of the conditions differed from each other. An overall 

improvement on problem reconstruction scores was observed between Sessions 1 

and 4, F(1, 267) = 34.61, p < .001, ηp
2 = .12. The 95% confidence intervals of the 

mean difference scores overlapped with zero for the group that received 

procedural instruction without manipulatives, indicating that this group did not 

improve. All other groups improved. 

To explore these improvements observed in Session 4, a 2(Grade) x 

2(Gender) x 2(Instructional focus: procedural versus conceptual) x 

2(Manipulatives) ANCOVA on the Session 4 problem reconstruction scores was 

conducted, with the Session 1 problem reconstruction score as the covariate.  

Grade 4 students (adjusted M = 1.95, SD = 1.10) outperformed Grade 2 students 

(adjusted M = 1.57, SD = 1.13), F(1, 200) = 5.72, p = .018, ηp
2 = .03, and the 

students who received conceptual instruction (adjusted M = 1.90, SD = 1.07) 

outperformed students who received procedural instruction (adjusted M = 1.62, 

SD = 1.04) F(1, 200) = 3.91, p = .049, ηp
2 = .02.  Gender and manipulatives did 

not affect scores, and no significant interactions were found. 

Because a primary interest in this study was the effect of instructional 

focus, it was important to compare the procedural and conceptual groups to the 

control group.  In the 4-way ANCOVA described above, the control group was 

excluded to test the effect of the instructional focus and manipulatives variables.  

To compare the conceptual and procedural groups to the control group, contrasts 

were conducted using the adjusted means from a 2(Grade) x 2(Gender) x 
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5(Condition) ANCOVA on the Session 4 problem reconstruction scores, with the 

Session 1 problem reconstruction score as the covariate.  

The advantage of conceptual instruction over the control group was not 

statistically significant, p = .08, but the difference was in the expected direction, 

as illustrated in Figure 6. Students who received procedural instruction did not 

differ from the control group. The ability to reconstruct equivalence equations 

accurately is associated with a relational view of the equal sign.  Thus, it appears 

that the relation between conceptual instruction and a relational understanding of 

the equal sign is worthy of future investigation. 

 

Figure 6. Mean score (maximum of 3) on problem reconstruction task for each 
instructional focus group in Session 4. Bars indicate standard error. 
 
 

 Definition rating. Performance on the definition rating task is illustrated 

in Figure 7. 
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Figure 7. Mean score (maximum of 4) on definition rating task in Sessions 1 and 
4 for each instructional condition. 
 

In Session 1, none of the conditions differed. An overall improvement 

between Sessions 1 and 4 was observed, F(1, 261) = 15.95, p < .001, ηp
2 = .06. 

The 95% confidence intervals of the mean difference scores for the control 

condition and the procedural with manipulatives condition overlapped with zero, 

indicating these two groups did not improve between Sessions 1 and 4.  The 

remaining three groups all improved.  

To explore these improvements a 2(Grade) x 2(Gender) x 2(Instructional 

focus: procedural versus conceptual) x 2(Manipulatives) ANCOVA on the 

Session 4 definition rating scores was conducted, with the Session 1 definition 

rating score as the covariate.  Grade 4 students (adjusted M = 2.36, SD = 1.25) 

outperformed Grade 2 students (adjusted M = 1.57, SD = 1.25), F(1, 194) = 20.74, 

p < .001, ηp
2 = .10, and the students who received conceptual instruction (adjusted 

M = 2.32, SD = 1.27) outperformed students who received procedural instruction 
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(adjusted M = 1.62, SD = 1.25), F(1, 194) = 16.21, p < .001, ηp
2 = .08.  Gender 

and manipulatives did not affect scores, but the effect of instructional focus was 

not consistent across grade and gender, F(1, 194) = 4.06, p = .045, ηp
2 = .02, as 

illustrated in Figure 8. 

 

 

Figure 8. Effect of instructional focus on definition rating total score (out of 4) for 
each grade and gender. Bars indicate standard error. 
 
 

 To explore this interaction, separate ANCOVAs were conducted for each 

grade. In Grade 4, students in the conceptual condition outperformed those in the 

procedural condition, F(1, 109) = 7.58, p = .007, ηp
2 = .07, but in Grade 2 the 

effect varied by gender. Grade 2 boys who received conceptual instruction 

outperformed those with procedural instruction, F(1, 36) = 13.69, p = .001, ηp
2 = 

.28, but the two groups did not differ among the girls. 

To further explore the effect of instructional focus, contrasts were 

conducted using the adjusted means from a 2(Grade) x 2(Gender) x 5(Condition) 
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ANCOVA on the Session 4 definition rating score, with the Session 1 definition 

rating score as the covariate. Children in the conceptual group outperformed 

students in the control group, p = .003, as illustrated in Figure 9, but there was no 

difference between the procedural group and the control group. This result 

suggests that conceptual instruction may help students recognize a more accurate 

interpretation of the meaning of the equal sign.  It is interesting to note that the 

expected pattern was found despite the low reliability of this measure. 

 

 

Figure 9. Mean score (maximum of 4) on definition rating task for each 
instructional focus group in Session 4. Bars indicate standard error. 
 

Equation rating. For each problem type on the equation rating task 

children were categorized as have responded in a way consistent with a relational 
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understanding of the equal sign or not. Scores of 1 or 0 for each of the four 

problem types were added to compute an equation rating total score out of 4.  

In Session 1, none of the groups differed. An overall improvement 

between Sessions 1 and 4 was observed, F(1, 268) = 53.05, p < .001, ηp
2 = .17. 

The 95% confidence intervals of the mean difference scores for the control 

condition overlapped with zero, indicating that the control group did not improve 

between Session 1 and 4.  All four instructional conditions improved. 

Performance on the equation rating task was generally low in that the 

mean score was below 2 (out of a possible maximum of 4) for all of the 

instructional conditions, even in Session 4, as illustrated in Figure 10. 

 

 
Figure 10. Mean equation rating score (maximum of 4) for each instructional 
condition in Sessions 1 and 4. 
 

 To explore the instructional groups’ improvements a 2(Grade) x 2(Gender) 

x 2(Instructional focus: procedural versus conceptual) x 2(Manipulatives) 

ANCOVA on the Session 4 total scores was conducted, with the Session 1 total 
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score as the covariate.  

Grade 4 students (adjusted M = 1.47, SD = 1.22) outperformed Grade 2 

students (adjusted M = 0.94, SD = 1.22; F(1, 200) = 9.89, p = .002, ηp
2 = .05) and 

boys (adjusted M = 1.42, SD = 1.22) outperformed girls (adjusted M = 0.99, SD = 

1.21; F(1, 200) = 6.64, p = .01, ηp
2 = .03).  Consistent with the other two 

indicators of understanding, students who received conceptual instruction 

(adjusted M = 1.46, SD = 1.24) outperformed those who received procedural 

instruction, (adjusted M = 0.96, SD = 1.21; F(1, 200) = 8.98, p =.003, ηp
2 = .04). 

The use of manipulatives did not affect scores. 

Next, the conceptual and procedural groups were compared to the control 

group. Contrasts were conducted using the adjusted means from a 2(Grade) x 

2(Gender) x 5(Condition) ANCOVA on the Session 4 equation rating score, with 

the Session 1 equation rating score as the covariate. The conceptual group 

exceeded the control group, p < .001, as illustrated in Figure 11, and the 

procedural and control groups did not differ, p = .48. This result suggests that the 

conceptual instruction helped students accept non-canonical equations. 
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Figure 11. Performance on equation rating task (out of 4) for each instructional 
focus group in Session 4. Bars indicate standard error. 
 

Equation rating by problem type. Performances for each condition on 

each equation rating problem type in Sessions 1 and 4 are presented in Figure 12.  

To explore whether the patterns found overall on the equation rating task differed 

by problem type, a 2(Grade) x 2(Gender) x 2(Instructional focus: procedural 

versus conceptual) x 2(Manipulatives) ANCOVA on the Session 4 equation rating 

score for each problem type was conducted with the Session 1 equation rating 

score as the covariate. Because of the interest in the effect of instructional focus, 

for each significant instructional focus effect the conceptual and procedural 

groups were compared to the control group.  To compute the appropriate adjusted 

means for each contrast, a 2(Grade) x 2(Gender) X 5(Condition) ANCOVA was 
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conducted on the Session 4 equation rating score for that problem type, with the 

Session 1equation rating score for that problem type as the covariate.   

 

a) 

 
 
b) 
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c) 

 
 
d) 

 
 
Figure 12. Means (maximum of 1) for each instructional condition on the 
equation rating task on part-whole (Panel a), alternatives with subtraction (Panel 
b), one-term identity (Panel c), and reverse problems (Panel d). 

 

Part-whole problem type.  Grade 4 students (adjusted M = .43, SD = 0.47) 

outperformed Grade 2 students (adjusted M = .22, SD = 0.47), F(1, 200) = 10.73, 
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p = .001, ηp
2 = .05. The difference between students who received conceptual 

instruction (adjusted M = 0.39, SD = 0.48) and students who received procedural 

instruction (adjusted M = 0.27, SD = 0.47) did not reach statistical significance 

but was suggestive, F(1, 200) = 3.66, p = .057, ηp
2 = .02.  Contrasts revealed that 

the conceptual group outperformed the control group, p < .001, but the procedural 

group did not, as illustrated in Figure 13.  

Alternatives with subtraction problem type. Students who received 

conceptual instruction (adjusted M = 0.35, SD = 0.44) outperformed students who 

received procedural instruction (adjusted M = 0.15, SD = 0.43), F(1, 200) = 12.08, 

p = .001, ηp
2 = .06. Contrasts confirmed that the conceptual group outperformed 

the control group, p < .001, but the procedural group did not (see Figure 13). 

One-term identity problem type. Students who received conceptual 

instruction (adjusted M = 0.31, SD = 0.39) outperformed students who received 

procedural instruction (adjusted M = 0.18, SD = 0.39), F(1, 200) = 6.72, p = .010, 

ηp
2 = .03. Boys (adjusted M = 0.34, SD = 0.39) also outperformed girls (adjusted 

M = 0.15, SD = 0.39), F(1, 200) = 13.19, p < .001, ηp
2 = .06. Contrasts comparing 

the conceptual and procedural groups to the control group did not reveal any 

differences (see Figure 13). 

Reverse problem type. Grade 4 students (adjusted M = .54, SD = 0.47) 

outperformed Grade 2 students (adjusted M = .23, SD = 0.48), F(1, 200) = 22.40, 

p < .001, ηp
2 = .10, and boys (adjusted M = 0.45, SD = 0.46) also outperformed 

girls (adjusted M = 0.32, SD = 0.46), F(1, 200) = 4.33, p = .039, ηp
2 = .02. No 

other effects were found. 
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 The conceptual group’s performance was still the highest of the groups on 

the reverse problems, but the control and procedural groups also performed 

relatively well on this problem type, as illustrated in Figure 13.  Thus, for three of 

the four problem types, students who received conceptual instruction were more 

likely to rate equations in a pattern consistent with a relational view of the equal 

sign. 

 

Figure 13. Means (maximum of 1) in Session 4 reflecting the percent of students 
responding in a pattern consistent with a relational understanding of the equal sign 
on each problem type, by instructional focus on the equation rating task. Bars 
indicate standard error. 
 

Summary of indicators of understanding.  The influence of instruction 

was generally consistent across the indicators of understanding.  Students who 

received conceptual instruction generally outperformed students who received 

procedural instruction on problem reconstruction, definition rating, and equation 

rating. The use of manipulatives during instruction did not affect performance. 
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Individual Differences 

 The Effect of Pre-existing Skill on Learning.  This study also afforded 

the opportunity to address the question of how children’s pre-existing skill, as 

measured by the indicators of understanding in Session 1, might facilitate 

learning, as demonstrated by performance on equivalence problems in Session 4. 

A regression was conducted with grade, gender, problem reconstruction score, 

definition rating score, and equation rating scores from Session 1 as independent 

variables, and total percent correct on the equivalence problems in Session 4 as 

the dependent variable. Students in the control condition were excluded because 

they did not receive instruction on equivalence problems.  

Problem reconstruction and equation rating in Session 1 uniquely 

accounted for a significant amount of the variability in equivalence problem 

scores in Session 4, as indicated in Table 7.  In separate regressions for Grades 2 

and 4, the same pattern occurred but equation rating failed to reach significance in 

Grade 4.  Thus skills associated with performance on the problem reconstruction 

task, which may include mental models of equation structures and attentional 

skill, are associated with learning to solve equivalence problems when provided 

with instruction.  The children who are initially better at problem reconstruction 

may have the cognitive structures in place that allow them to take advantage of 

the instruction. 

 



 

  71 

Table 7 

Squared Semi-partial Correlation Coefficients of Session 1 Measures Associated 

with Performance on Session 4 Equivalence Problems 

Predictor Overall Grade 2 Grade 4 

Grade  .03*   /   / 

Gender .00 .01 .01 

Problem Reconstruction score .06*** .10** .05* 

Definition Rating score .00 .00 .01 

Equation Rating .03** .04* .02 

R2 .211*** .175*** .098** 

* p < .05, ** p < .01, *** p < .001  

 

Profiles of Performance.  If groups of individuals are identified by 

characteristic skill profiles, we may see relations between these skills that are not 

captured in correlational analyses.  A cluster analysis was used to explore how 

performance on equivalence problem solving, problem reconstruction, definition 

rating, and equation rating clustered in Session 4.  Children from all five 

instructional conditions were included in the analysis, but because of missing data 

the sample size was reduced to 270. 

Ward’s (1963) hierarchical agglomerative method was first employed to 

investigate potential solutions. A large increase in fusion coefficients indicates 

that the clusters being merged are dissimilar.  All increases in fusion coefficients 
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were quite small until four clusters were merged into three (583.37 to 771.11).  A 

second reasonably large increase in fusion coefficients occurred when three 

clusters were merged into two (771.11 to 1045.26).  When two clusters were 

merged into one a much larger jump (from 1045.26 to 1492.90) occurred, 

reflecting in a substantial loss of information and resulting in a single cluster that 

would be uninformative. The one-cluster solution was therefore discounted.  Thus 

examination of two-, three-, and four-cluster solutions was warranted.   

Using squared Euclidean distance seed values from Ward’s (1963) 

method, a k-means cluster analysis was conducted based on each of the possible 

cluster solutions (k = 4, 3, and 2 means).  K-means cluster analysis is an iterative 

partitioning method where seed values estimate the initial centroids of the k 

clusters, but as each member is assigned to a cluster the centroid is recalculated.  

Iterations through the dataset continue re-assigning each case to its nearest cluster 

centroid until no further iterations can provide a more optimal assignment of cases 

to clusters (Aldenderfer & Blashfield, 1984). 

For ease of interpretation, all scores were converted into percentages of 

the total possible score for that measure. Recall that equivalence problem solving 

was a multiple-choice test and thus only scores equal to or greater than 50% were 

interpreted as reflecting an ability to solve equivalence problems. In Figure 14 the 

four-cluster solution is displayed. One group of children performed poorly on all 

measures.  Because the tasks are meant to tap whether the children have an 

operational or relational definition of the equal sign and low scores reflect an 

operational understanding of the equal sign, the first group can be called 
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“Operational Thinkers” (n = 59).  The next group had high scores on the 

definition rating task, but low scores on the three other tasks. This group was 

entitled the “Good Definers” (n = 62).  A third group had moderate performance 

on equivalence problem solving, high performance on problem reconstruction and 

definition rating, but low performance on the equation rating task. This group was 

entitled the “Poor Equation Raters” (n = 85). A final group, the “Relational 

Thinkers,” had high performance on all four tasks (n = 64).    

 

Figure 14. Four cluster solution. 
 

 Next, the three-cluster solution was examined, as illustrated in Figure 15. 
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Figure 15. Three cluster solution. 
 

 The three-cluster solution essentially collapsed the two middle groups 

from the four-cluster solution and created an intermediate group, entitled the 

“Students in Transition” (n = 117) for the purposes of this study.  The 

“Operational Thinkers” (n = 85) remained on the low end and the “Relational 

Thinkers” (n = 68) on the high end.  

 The two-cluster solution simply divided the students into high (n = 103) 

and low (n = 167) performance groups, as illustrated in Figure 16. 
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Figure 16. Two cluster solution. 
 

 Because each of the clusters in the four-cluster solution were substantial in 

size and potentially important information was lost in the collapsing into fewer 

clusters, the four-cluster solution was retained.  

The strengths in the four clusters appear to be additive, in that the clusters 

could be arranged in an order such that once a strength appeared, other strengths 

were only added to it; no strengths disappeared. For example, the students in the 

“Operational Thinkers” cluster do not perform well on the definition rating task.  

High scores on this task first appear in the “Good Definers” cluster, and are also 

found in the next two clusters (i.e., “Poor Equation Raters” and “Relational 

Thinkers”).  Similarly, high scores on the problem reconstruction task first appear 

in the “Poor Equation Raters” cluster and are maintained in the “Relational 

Thinkers” cluster.  This observation led to a hypothesis about the progression of 

developing a relational understanding of the equal sign.  Children may first 
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acquire a relational definition of the equal sign, but only in a limited or superficial 

way. They are unable to apply this definition to understand non-canonical 

equations.  Next, children start to build a mental structure that accommodates 

non-canonical equations, which facilitates performance on reconstructing non-

canonical equations. The new mental structure, however, is still limited in that it 

does not accommodate all types of non-canonical equations, and performance 

remains low on equation rating. Lastly, children are able to truly generalize their 

new definition of the equal sign and performance is high on all tasks. 

If the proposed progression exists and children in Grade 4 benefited from 

instruction more than children in Grade 2, we would expect to see more children 

in Grade 2 at the lower end of the progression and more children in Grade 4 at the 

upper end.  Table 8 displays the percentage of students within each Grade in each 

of the four clusters.  

Table 8 

Percentage of Students in Each Cluster by Grade 

Grade 

Operational 

Thinkers 

Good 

Definers 

Poor 

Equation 

Raters 

Relational 

Thinkers Total 

2  33.6% 29.4% 23.5% 13.4% 100% 

4 12.6% 17.9% 37.7% 31.8% 100% 

 

In Grade 2, the percentage of students in each cluster declines through the 

proposed progression.  In Grade 4, the percentage increases across the first three, 
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followed by a slight decline in the percentage of students in the fourth and final 

cluster.  This pattern is consistent with the proposed progression, where Grade 2 

students are typically less advanced along the progression than Grade 4 students.  

This progression is speculative and may be an artifact of the specific instruction 

that was provided, but it serves as a hypothesis that can be tested further in 

longitudinal studies. 

Lastly, the effect of instructional focus on cluster placement was explored.  

As is demonstrated in Figure 17, approximately one-third of the children were 

classified as Operational Thinkers, regardless of instructional focus. The 

percentage of students from each instructional focus in the other clusters varied, 

but the conceptual group had the highest percentage in the Relational Thinkers 

cluster.  

 

Figure 17.  Percentage of students within each instructional focus condition who 
were in each of the four clusters. 
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Summary.  Pre-existing skill at problem reconstruction and equation 

rating was associated with post-instruction performance on the equivalence 

problem-solving task. This finding suggests that understanding problem structure 

and attentional skill may be associated with the ability to benefit from instruction 

on equivalence problems.   

Individual differences in performance profiles were found such that 

children clustered into four groups based on their performance across tasks 

relating to mathematical equivalence.  Examination of these clusters led to a 

hypothesis about the development of children’s understanding of the equal sign.  

The pattern suggests that when children first acquire a relational definition of the 

equal sign, it is only in a limited or superficial way. Children gradually learn to 

apply this new definition to understand non-canonical equations, however not all 

non-canonical equation types are accepted at the same time.  Lastly, conceptual 

instruction appears to facilitate progression to a more advanced understanding of 

the equal sign, as the group that received conceptual instruction had the highest 

percentage of students in the Relational Thinkers cluster.  

General Discussion 

For generations children have struggled to overcome an operator 

interpretation of the equal sign (e.g., Behr et al., 1976; Goldin-Meadow et al., 

1999; Renwick, 1932).  The problem is so pervasive in Canada and the United 

States that some have even hypothesized that intellectual development or general 

conceptual limitations may be hindering students ability to view the equal sign in 
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a relational way (Denmark et al. 1976).  Performance in other countries, however, 

has provided evidence that children in Grades 2 through 6 are capable of 

succeeding on equivalence problems (e.g., Watchorn et al., 2009).  

Correcting children’s misconceptions is not an easy task. Most 

interventions, although often producing improvements that are  statistically 

significant, have had only limited success, putting into question the 

meaningfulness of the improvements in the classroom setting (e.g., Alibali, 1999; 

McNeil, 2008). Moreover, it is difficult to directly compare the interventions’ 

relative effectiveness because the outcome measures varied considerably across 

studies. The instructional methods that appear to have been most successful 

involve extensive teacher training (Carpenter et al., 2000), which requires 

investments of time and resources beyond the capacities of many schools. 

A review of the existing literature led to the question of whether it is 

possible to improve student learning about equivalence in a meaningful way using 

a teacher-directed approach.  Because of the importance of procedural and 

conceptual instruction in mathematics, both were compared to explore which is 

most effective at improving student performance. Several additional variables 

were also of interest. Children have had more success on problems in 

nonsymbolic form (Sherman & Bisanz, 2009), so manipulatives were included in 

instruction to determine whether they affect improvements. In previous research 

9-year-olds demonstrated increased resistance to learning in comparison to 7-

year-olds (McNeil, 2007), and thus the effect of instruction was compared 

between these two age groups.   
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The importance of examining the different contexts within which a learner 

might exhibit competence in a domain has recently been highlighted by Schneider 

and Stern (2010).  Children’s ability to transfer their learning varies between 

children and depending on the instruction they received.  To conclude that the 

instruction led to meaningful improvements, it was important to examine how 

children performed on new problem types that differed from the ones on which 

they were instructed and on other indicators of understanding. Procedural 

instruction has been detrimental in transfer tasks in at least one study (Perry, 

1991), and even with the most successful interventions the difficulty of changing 

students definitions of the equal sign has been noted (Carpenter et al., 2003). 

Few researchers have examined the relation between children’s pre-

existing skills and subsequent performance on equivalence problems.  McNeil and 

Alibali (2005b) noted the relation between knowledge of which feature of 

problems to encode and subsequent learning on equivalence problems, and this 

study afforded the opportunity to confirm this relation and search for other 

relations.  Further, no one has examined post-instruction patterns of performance 

profiles across equivalence tasks through a cluster analysis. 

The purpose of this study was to compare pedagogically tractable 

instructional methods designed to optimize student performance on equivalence 

measures. Two variables were explored—procedural or conceptual instructional 

focus, and the use of manipulatives—and four instructional conditions were 

created representing the orthogonal combinations of these two variables.  A 

systematic comparison of the instructional conditions was conducted using 
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directly comparable instructions, procedures, and outcome measures among 

students in Grades 2 and 4. This approach was used to investigate improvements 

in solving equivalence problems, whether improvements transferred to new 

problem types, whether their retention differed depending on instructional 

method, and whether improvements were seen on other indicators of 

understanding. 

Five main questions were addressed.  First, what are the effects of 

manipulatives, procedural instruction, and conceptual instruction in improving 

children’s performance on solving equivalence problems, and do these effects 

vary by grade and gender? A systematic comparison of instructional methods was 

conducted using directly comparable instructions, procedures, and outcome 

measures. All instructional conditions improved problem solving, and the 

improvements were substantial. Students in Grade 2 approached and students in 

Grade 4 matched the high level of performance previously observed in Asian 

countries (e.g., Watchorn et al. 2009). These significant improvements are also 

similar to the improvements seen with approaches that involve intense teacher 

training such as Cognitively Guided Instruction (CGI). The improvements were 

also maintained at a reasonably high level for one month after instruction, longer 

than any retention period to be tested with equivalence problems in the past.   

Grade 4 students outperformed Grade 2 students, reflecting improved 

learning in the older students as opposed to the increased resistance to learning 

that has been observed in some other studies (e.g.,  McNeil, 2007; McNeil & 

Alibali, 2002, 2005a,b).  This finding implies that students who have had more 
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experience with canonical addition and subtraction are not necessarily more 

entrenched in their operational view of the equal sign.  

The second question was whether learning from the instructional sessions 

transferred to new problem types.  If benefits were only seen on the same types of 

problems as those on which students received instruction, it would indicate a 

severe limitation on the intervention.  Instruction was provided only on 

combination equivalence problems, and proficiency was later tested on both 

combination and part-whole problems.  Learning transferred to the part-whole 

problem types, but boys were able to transfer their learning somewhat better than 

girls.  The effect size for this gender difference was small, but the pattern is 

consistent with the findings in previous studies that boys may be better than girls 

at flexibly extending procedures to problem types beyond those on which they 

have received instruction (e.g., Fennema, Carpenter, Jacobs, Franke, & Levi, 

1998; Gallagher, De Lisi, Holst, McFillicuddy-De Lisi, Morely, & Cahalan, 

2000). 

In contrast to Perry (1991), students who received procedural instruction 

did not suffer in their performance on problems that differed from the problem 

type on which they received instruction.  It is important to note, however, that 

some of the transfer problems used in Perry’s study were multiplication problems, 

which were not assessed in this study.  

The third question addressed was how instruction on equivalence problem 

solving affects other indicators of understanding.  If children have improved in 

their ability to solve only equivalence problems after instruction, we must 
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question whether they understand what they are doing.  Students who have 

memorized how to solve equivalence problems but maintain an operational 

interpretation of the equal sign may have difficulty transitioning to algebra, as a 

relational view of the equal sign is an important component to this transition (e.g., 

McNeil & Alibali, 2006).  If one style of instruction is superior at improving 

performance on other indicators of understanding, that instructional style has clear 

benefits. Across the three indicators of understanding that were examined, the 

pattern was consistent: Conceptual instruction led to greater performance than 

procedural instruction, and manipulatives did not have an effect. Therefore, 

although performance on equivalence problem solving was similar across 

conditions following instruction, conceptual instruction carried the advantage of 

increased generalization of learning. 

In general, students improved in their ability to reconstruct problems 

following a brief presentation, and students in the conceptual conditions did 

particularly well.  This improvement suggests that students began to encode 

problem features that they might have previously ignored (McNeil & Alibali, 

2002).  Encoding relevant problem features may indicate that a student is 

considering new, more appropriate strategies rather than simply applying the 

addition schema (McNeil & Alibali, 2004), and it is positively related to 

subsequent learning on equivalence problems. 

Although only modest improvements were observed in the definition 

rating task, the improvements are notable given the difficulty researchers have 

had convincing children to relinquish their previously held belief about the 
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operator meaning of the equal sign (e.g., Carpenter et al., 2003). Carpenter 

previously observed that explaining the meaning of the equal sign is not enough to 

change children’s thinking. In this study the repeated lessons may have helped to 

convince students to modify their belief.  It is impossible to determine the effect 

of the repeated instruction, however, because the indicators of understanding were 

not tested between Sessions 1 and 4 due to time constraints. 

As previously discussed, a limitation of this study is the reliability of the 

measures used as indicators of understanding.  A person’s understanding of a 

concept is multi-dimensional and can be measured in many different ways.  Even 

with perfect measures, each method of tapping “understanding” can point to 

different conclusions because it is tapping a different aspect or mode of 

demonstrating understanding (Bisanz et al., 2009).  It is often impossible to 

simply conclude that a person “understands” or “does not understand,” but the 

similar pattern across measures allow us to draw conclusions about the general 

effect of procedural versus conceptual instruction.  

The lack of effect of manipulatives in any of the indicators of 

understanding or problem solving was somewhat surprising because in previous 

studies young children have been found to succeed on problems presented in 

blocks at younger ages than problems presented as Arabic numbers (e.g. Falkner 

et al., 1999; Sherman & Bisanz, 2009), and manipulatives have been found to be 

particularly successful at improving performance among Grade 2 students 

(Watchorn & Bisanz, 2005).  Others, however, have found that blocks can be 

distracting for students (e.g., Uttal, Scudder, & DeLoache, 1997), so perhaps any 



 

  85 

benefits that some students gained from the use of the manipulatives was 

countered by a detrimental effect in others.  Alternatively, the specific verbal and 

gestural instruction used in this study may have been elaborate enough to help 

students make the connections that the students in other studies were only able to 

make with the use of blocks.  It is impossible to say with certainty why the 

manipulatives did not have an effect in this study, but this finding has important 

educational implications as many teachers go out of their way to include 

manipulatives with every math lesson.  

Despite the overall superiority of the conceptual instructional focus and 

the lack of effect of manipulatives, it is difficult to determine whether procedural 

instruction or the inclusion of manipulatives might be key components to the 

success of certain individuals. Some of the students who did not improve in the 

conceptual conditions might have improved had they been given procedural 

instruction and vice versa.  Similarly, the use of manipulatives may have helped 

some students but hindered others’ performance, resulting in a lack of effect 

overall. It would be advantageous for educational purposes if teachers could 

identify which students would benefit from which method of instruction, but a 

different kind of design would be necessary to obtain this information. 

The fourth question was whether any pre-existing skills are associated 

with readiness to learn how to solve equivalence problems.  Indicators of 

readiness to learn can be informative for educators and for our understanding of 

cognitive development. A regression revealed that performance on the problem 

reconstruction and equation rating tasks in Session 1 was associated with post-
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instruction performance on the equivalence problem-solving task in Session 4.  

Thus, the results confirmed McNeil and Alibali’s (2005b) finding that knowledge 

of which features of problems to encode is associated with readiness to learn, and 

further demonstrated that acceptance of non-canonical equations is associated to a 

limited extent with readiness to learn. 

The fifth question was whether groups of children respond to equivalence-

related tasks in qualitatively distinct ways. If we can identify characteristic 

profiles of performance, we might better be able to understand children’s 

strengths and weaknesses and tailor instruction to their needs. Four clusters were 

found and, based on these clusters, a possible developmental progression was 

suggested.  In this hypothesized progression children begin with an operational 

interpretation of the equal sign, then learn the relational definition of the equal 

sign, but only gradually learn to apply this new definition to understand non-

canonical equations.  An examination of the cluster composition based on 

instructional focus was consistent with the view that conceptual instruction may 

facilitate progression to a more advanced understanding of the equal sign, as the 

students who received conceptual instruction were the most likely to be in the 

cluster with the most advanced relational understanding of the equal sign.  This 

proposed sequence is speculative, of course, and a longitudinal study would be 

required to test its validity. 

The findings presented here have implications both for understanding 

cognitive development and for optimizing instruction.  The debate about the most 

effective instructional approaches to enhance student performance in mathematics 
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is of particular importance to those creating policy, designing, and selecting 

curricula for schools. At the fore of the debate is the question of whether student-

centered approaches, such as CGI, or more teacher-directed approaches, such as 

the instruction provided in this study, are superior (Agodini, Harris, Thomas, 

Murphy, Gallagher, & Pendleton, 2010).  The success observed here implies that 

more didactic instruction, which is likely easier for teachers to learn, may also be 

effective at improving student performance on equivalence problems.  The 

concern remains that students’ success may simply reflect rote learning, but rote 

learning may be an important first step in learning about mathematical 

equivalence. 

The majority of interventions previously tested on equivalence problems 

involved only a short lesson, were administered in one session, and were 

implemented one-on-one rather than in a group setting.  The instruction in this 

study more closely approximated classroom conditions by implementing the 

instruction in small groups and on two occasions.  Granted, a certain degree of 

experimental control was necessary for this study, such as limiting the group sizes 

to smaller than is typical in classroom instruction. An important next step is to 

determine whether the instructional methods that were successful in this study 

would be equally successful outside of the controlled experimental environment.  

In future studies researches could partner with teachers to develop modules for 

practical implementation in the classroom based on the findings from this study.  

If algebra is the “gatekeeper” to higher math, students must be well 

prepared to learn algebra so that future educational and employment opportunities 
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are not constrained unnecessarily. The transition from arithmetic to algebra is one 

of the most significant hurdles students face in learning mathematics, but through 

an appropriate understanding of the principles that underlie both arithmetic and 

algebra, the transition need not be so dramatic and difficult. Equivalence is one 

such principle, and an appropriate understanding of the equal sign is crucial.  By 

addressing this critical issue that has plagued Canadian and American children for 

so long, we can best prepare the next generation to face the challenges that lie 

ahead. 
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Appendix A 

Practice Problems 

 

4 + 5 + 3 = ___ + 6 

6 + 4 + 3 = 6 + ___ 

4 + 3 + 6 = 3 + ___ 

3 + 4 + 5 = ___ + 3 

5 + 3 + 7 = 5 + ___ 

6 + 4 + 5 = ___ + 6 

4 + 5 + 6 = ___ + 4 

3 + 7 + 5 = 7 + ___ 

1 + 3 + 2 = ___ + 2 

9 + 1 + 1 = 9 + ___ 
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Appendix B 

Sample Equivalence Test 

Mathematics – Version 1 
(Please circle the correct answer) 

 

7 + 5 + 3 = ___ + 7 

6 22 8 15 

 

3 + 4 + 5 = 2 + ___ 

14 12 8 10 

 

4 + 5 = 3 + ___ 

6 4 9 12 

 

5 + 6 = ___ + 4 

3 15 7 11 

 

4 + 5 + 6 = ___ + 2 

15 13 17 9 

 

3 + 6 + 4 = 4 + ___ 

9 5 13 17 

 

6 + 7 = ___ + 5 

18 13 4 8 

 

5 + 6 + 4 = ___+ 4 

15 11 19 9 

 

6 + 4 + 3 = 5 + ___ 

18 13 4 8 

 

5 + 3 + 7 = ___ + 4 

15 11 19 6 

 

5 + 3 + 4 = 5 + ___ 

2 17 7 12 

 

7 + 8 = 6 + ___ 

21 15 5 9 
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Appendix C 

 Definition Rating Task 

 

5 + 3 + 3 = 2 + __ 
        

  Not so 
smart 

Kind 
of 
smart 

Very 
smart 

     

A. Ken said “=” means “both sides of the sign should have 
the same amount”:    

     

B. Wendy said “=” means “the answer goes next”:    
     

C. Peter said “=” means “all the numbers after it are 
small”:    
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Appendix D 

Equation Rating Task 

 

Equations 
Please circle one face on each row to tell us if you think the equation makes 
sense: 
 

 
No  - this 

doesn’t make 
sense 

Maybe yes, 
maybe no 

– I don’t know 

Yes – this 
makes sense 

     

A. 5 + 1 = 4 + 2    
     

B. 1 + 3 = 4    
     

C. 2 + 2 = 4 – 1    
     

D. 7 = 7    
     

E. 9 = 9 + 6    
     

F. 5 + 4 = 9 + 6    
     

G. 7 = 5 + 2    
     

H. 4 = 5    
     

I. 2 + 5 = 9    
     

J. 3 + 3 = 9 - 3    
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Appendix E 

Scoring for the Equation Rating Task 

For each problem type, children were categorized as Relational, Transitional, 

Operational, or Inconsistent based on the pattern of their responses across both the correct 

and incorrect problem of that type. It was impossible to determine in children guessed on 

any of the items, so the patterns were determined based on the logic a child would use to 

respond assuming she was not guessing.  

For all “correct” equations, other than the Standard problems which are not 

included in the analysis, the likely explanation for children who judged a problem as 

“making sense” was that they had a relational view of the equal sign.  If a child judged 

the equation as “not making sense,” then the likely explanation for that decision is that he 

or she holds an operational view of the equal sign.  If a child chose “I don’t know,” it 

indicates some flexibility in thinking about occasions in which the equal sign might be 

used, and we might consider this child’s view of the equal sign to be “in transition.” 

For the “incorrect” equations, whenever possible the number following the 

equal sign corresponded to the answer one would obtain by adding up all of the numbers 

before the equal sign, a common strategy among children with an operator interpretation 

of the equal sign.  This pattern was not possible for the One-term Identity problems.  If a 

child judged an incorrect equation as “making sense,” the likely explanation is that she 

holds an operator interpretation of the equal sign.  If a child chose “I don’t know”, again 

it indicates some flexibility in thinking about occasions in which the equal sign might be 

used, and we might consider this child’s view of the equal sign to be “in transition”.  For 

an incorrect problem that a child judges as “not making sense” it is more difficult to 
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determine which view of the equal sign the child holds.   Two possibilities exist: (a) she 

holds a relational view of the equal sign and correctly identifies that the two sides are not 

equal, or (b) she holds an operational view of the equal sign, but thinks the format is 

incorrect. Thus, it was necessary to examine the child’s pattern of responses across both 

the correct and incorrect problems to determine which view she holds of the equal sign, 

or if she responded inconsistently. 

A child was only categorized as holding a relational view of the equal sign for 

that problem type if he responded that the correct problem “made sense” and the incorrect 

problem “did not make sense”.  A child was categorized as “transitional” if he responded 

in way consistent with a transitional view on both problems of that type (i.e., selected “I 

don’t know” for both), or in a way consistent with a relational view on one problem and 

transitional on the other.  A child was categorized as “operational” if he responded in way 

consistent with an operational view on both problems of that type, or in a way consistent 

with a operational view on one problem and transitional on the other.  Lastly, a child was 

categorized as “inconsistent” if he responded in a way consistent with an operational 

view on one problem and relational on the other. The inconsistent responses were coded 

as missing data as it is difficult to determine how the children were interpreting the task.

 

 

 


