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Abstract 

Cancer  remains  a  challenging  disease  to  tackle.  The  heterogeneity  and  evolution  of  the 

disease necessitates the development of diverse approaches to treat cancer. In this thesis, two 

different approaches have been undertaken to address this issue. The first aim was to activate 

the  master  tumor  suppressor  protein,  p53.  The  second  aim  was  to  inhibit  polynucleotide 

kinase phosphatase, a DNA repair enzyme. 

The first target, p53, has been coined the 'guardian of the genome'. It is a transcription factor 

that  orchestrates  protective  actions  in  response  to  cellular  stress.  p53  pathways  are  always 

inactivated  in  cancer  cells.  This  is  not  surprising  given  the  highly  significant  role  of  the 

protein in cells. p53 is inactivated due to mutations in the TP53 gene in about 50% of cancers. 

This makes p53 the most mutated protein in all cancer types. Mutant p53 accumulates in cells. 

Reactivation  of  mutant  p53  can, therefore,  induce  a  massive  response  leading  to  cancer  cell 

death.  This  effect  can  theoretically  be  very  selective  to  abnormal  cells  carrying  the  mutant. 

Only  a  few  small  molecules  that  restore  the  wild-type  activity  to  mutant  p53  have  been 

identified.  One  of  these  molecules,  called  APR-246,  is  currently  in  clinical  trials. The  exact 

effect  of  APR-246  on  the  structure  of  mutant  p53  is  not  fully  understood.  Four  aims  are 

discussed in this thesis: (1) understanding the interaction of known mutant p53 activators with 

the protein, (2) understanding the effect of three high frequency single-point mutations on the 

structure  and  DNA  binding  ability  of  the  protein  (3)  understanding  how  the  active  form  of 

APR-246 alters the DNA binding of mutant p53 and (4) virtually screening for novel mutant 

p53 activators. 
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Atomistic models of three p53 mutants carrying the R175H, G245S or R273H mutation were 

created. The models revealed that the flexibility of loops L1, L2 and L3 in the DNA binding 

domain  of  p53  was  correlated.  Binding  energy  calculations  also  revealed  that  the  mutations 

change the binding profile of the mutant proteins with DNA. Another striking similarity was 

that all three mutants exhibited distortions in their alignment with DNA compared to the wild-

type  protein.  These  distortions  might  further  contribute  to  alterations  in  the  transcriptional 

activity of p53 mutants. 

A previous study indicated that alkylating mutant p53 activators react with C124. We docked 

both  alkylating  and  non-alkylating  mutant  p53  activators  at  this  site.  Docking  results 

suggested  that  alkylating  activators  do  not  directly  interact  with  C124  but  their  reactive 

moieties  were  directed  towards  the  thiol  of  C124.  However,  non-alkylating  activators  were 

predicted to directly interact with C124. Poses of the non-alkylating ligands are logical given 

that  they  were  predicted  to  interact  with  the  proposed  reactivation  site.  On  the  other  hand, 

poses of the alkylating modifiers could be considered transitional state before reaction occurs. 

The  covalently  modified  R175H  and  R273H  p53  mutants  were  also  simulated.  It  was 

observed that the wild-type and drugged mutants 'sat' on the DNA via a 'base'. However, there 

was  a  loss  of  interactions  between  regions  of  this  base,  in  the  mutant  variants,  and  DNA. 

These  results  suggest  that  the  alkylation  of  mutants'  C124  anchors  the  L1  loop  of  p53  to 

DNA. Therefore, the modified proteins were aligned with DNA in a manner similar to wild-

type p53, unlike the mutants. 

The second target, polynucleotide kinase phosphatase, is involved in repairing cellular DNA. 

Inhibition of this novel target promises to have synergistic effects in combination with current 

cancer treatment modalities that act by damaging DNA. In addition, this DNA repair enzyme 
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has  been  found  to  be  synthetically  lethal  to  cells  with  phosphatase  and  tensin  homolog 

(PTEN) or Src  Homology  region  2  domain-containing  Phosphatase-1  (SHP-1)  deficiency, 

which  are  common  in  some  types  of  cancer.  Virtual  screening  of  a  3.7  million  compounds 

was  performed  in  a  multiple-technique  approach.  The  first  step  of  screening  was  based  on 

pharmacophore  modelling  followed  by  pharmacophore-assisted  docking.  Six  of  the  top  hits 

were  purchased  for  experimental  validation.  The  measured  dissociation  constants  from 

tryptophan  fluorescence  quenching  assays  ranged  from  55  to  450  nM.  Further,  one  of  the 

compounds  had  an  IC50  of  ~13 µM.  Iterations  of  structural  optimization  of  these  molecules 

could  yield  a  potent  polynucleotide  kinase  phosphatase  inhibitor  that  could  be  used  in 

combination cancer therapy. 
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Chapter 1 

Introduction 
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1.1 Background 

Cancer is a complex disease of many types [1]. An estimate of 80,800 people died of cancer 

in  2017  in  Canada  [2].  Due  to  the  lethality  and  heterogeneity  of  the  disease,  there  is  a  dire 

need to develop therapies based on diverse and strategic targets in cancer cells. Conventional 

cancer  therapy  has  largely  been  based  on  genotoxic  agents  and  ionizing  radiation  (IR)  [3]. 

These  treatment  modalities  depend  on  the  strategy  of  inducing  DNA  damage,  which 

consequently leads to cell death [3]. One problem of targeting cellular DNA is that cells have 

inherent mechanisms for repairing the damage and hence could be resistant to treatment [4-6]. 

Another issue with conventional therapy is the fact that it is non-specific as it can affect the 

DNA  of  both  normal  and  cancer  cells.  In  this  thesis,  two  proteins  were  targeted  for  the 

development of anti-cancer therapy to overcome each of these two issues. 

To  address  the  issue  of  non-specificity,  we  targeted  a  transcription  factor  called  p53.  This 

protein is very often mutated in cancer cells. Reactivation of mutant p53 (mp53) promises to 

be  an  effective  cancer  treatment  that  is  specific  to  abnormal  cells. Our  aim  was  to 

understand  the  effect  of  mutations  and  the  effect  of  current  mp53  activators  on  p53 

structures. Another aim was to find potential mp53 activators using covalent docking. 

To  address  the  issue  of  cancer  cell  resistance  to  conventional  therapy,  we  targeted  a  DNA 

repair  enzyme  called,  polynucleotide  kinase  phosphatase  (PNKP). Our  aim  was  to  use 

virtual  screening  to  find  small  molecule  PNKP  inhibitors.  This  class  of  molecules  is 

intended  to  complement  current  treatment  modalities  to  overcome  resistance.  More 

specifically, PNKP inhibitors can be used to sensitize cells to chemotherapy and IR. 



1.2! p53: Master tumor suppressor 

1.2.1! Functions of p53 

Figure 1.1. p53 responds to a variety of cellular stresses and activates protective 
mechanisms to maintain the integrity of cells. 
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There  is  an  enormous  body  of  literature  on  p53.  There  are  also  two  dedicated  websites  for 

TP53 (http://p53.fr/) and (http://p53.iarc.fr/). Below is the background on the aspects of p53 

relevant to the aims of this thesis. 

1.2.2 Structure of p53 

p53 is a 393 amino acid multi-domain protein [25]. A schematic of the p53 domains is shown 

in Figure 1.2. Briefly described, the first of these domains is a transactivation domain, which 

is  composed  of  two  transcriptional  activation  subdomains,  TAD1  (residues  1-42)  and  2 

(residues  43-83)  [26].  TAD1  and  2  bind  cofactors  to  activate  transcription  [26-28].  The 

second  domain  composed  of  residues  64  to  92  is  a  proline-rich  domain.  It  is  primarily 

involved  in  protein-protein  interactions  between  p53  and  its  partners  [29,  30].  The  biggest 

domain  in  p53  is  the  DNA  binding  domain  (DBD)  formed  by  residues  95  to  300  [31]. The 

DBD  binds  and  recognises  short  DNA  sequences  in  the  promoter  regions  of  target  genes 

called  the  p53  response  elements  (RE)  (briefly  explained  in  1.2.3).  p53  binds  to  DNA  as  a 

tetramer; this oligomerization occurs through the interaction of the tetramerization domains of 

p53 (residues 324 to 355) [32, 33]. The DBD is joined to the tetramerization domain through 

a  flexible linker (residues  301-323)  [30].  The  C-terminus  of  p53,  residues  360  to  393, form 

the regulatory domain of the protein [30]. From its name, this versatile domain is involved in 

regulating  the  function  of  p53  [34].  It  plays  a  role  in  the  initial  p53  binding  to  DNA,  p53 

stability as well as recruitment of cofactors [34-38].  
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Figure  1.2.  p53  is  composed  of  four  main  domains  and  is  mostly  mutated  in  the  DBD 
(adapted from [39]). 
The  protein  is  composed  of  four  main  domains:  transactivation,  proline-rich,  DBD  and 
tetramerization  domains.  The  plot  shows  the  relative  frequencies  of  the  DBD  residue 
mutations.  Six  mutations  are  the  most  frequent  and  are  termed  ‘hot-spot’  mutations. 
Mutations  in  R248  and  R273  are  categorized  as  contact  mutations,  whereas  the  rest  are 
classed as structural mutations since they affect the DNA binding ability of p53 although they 
do not interact directly with it. 
 

In the apo form of p53, all domains of the protein are intrinsically disordered except for the 

DBD  and  tetramerization  domain  [34].  It  is  due  to  this  reason  that  there  are  no 

experimentally-determined  structures  of  the  full-length  p53  using  Nuclear  Magnetic 

Resonance  spectroscopy  (NMR)  nor  X-ray  crystallography.  However,  there  have  been 

attempts to reconstruct the full-length protein structure using lower resolution techniques such 

as coupled chemical cross-linking and mass spectroscopy [40], small-angle X-ray scattering, 

NMR  and  electron  microscopy  (EM)  in  a  multi-technique  approach  [41]  or  EM  alone  [42]. 

More interestingly, in silico modeling was used to create the full-length protein to understand 

its dynamics and interactions with different RE using molecular dynamics (MD) simulations 

[43].  
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1.2.3 p53 RE 

Canonical p53 RE are composed of two repeats of a ‘RRRCWWGYYY’ motif separated by 0 

to 18 base-pair spacers; R = Adenine or Guanine, C = Cytosine, W = Adenine or Thymine, G 

= Guanine and Y = Cytosine or Thymine [43-45]. As mentioned before, p53 binds to its RE 

as tetramers. Generally, shorter spacers allow for the increased interactions between the p53 

monomers  [46].  However,  p53  has  different  affinities  to  different  RE  [43].  The  protein 

tetramer can also bind to non-canonical RE [45], which adds more diversity and complexity 

to the functions of p53. Some of the canonical and non-canonical p53 RE are reviewed in [45-

49]. 

1.2.4 p53 in cancer and therapeutic strategies 

As mentioned before, p53 is central in maintaining the integrity of cells. It is, therefore, not 

surprising  that  the  p53  pathway  is  inoperative  in  almost  all  types  of  cancer:  a  strategic 

advantage  that  allows  uncontrolled  cell  growth  and  metastasis  [50,  51].  In  line  with  the 

important  protective  role  of  p53  in  cells,  individuals  with  inherited  germline  mutations  in 

TP53  often  develop  Li  Fraumeni  syndrome,  which  is  characterized  by  the  development  of 

multiple  primary  tumors  as  well  as  childhood  and  early  adulthood  cancers  [52,  53].  On  the 

other  hand,  large  animals  that  live  long  would  be  expected  to  have  a  high  prevalence  of 

cancer since their large number of cells is more likely to develop and accumulate mutations. 

However, elephants, as an example, defy this theory in what is called Peto’s Paradox [54]. In 

fact,  it  was  found  that  cancer  prevalence  in  elephants  was  less  than  expected  [54,  55]. This 

has  been  attributed  to  the  presence  of  twenty  copies  of TP53  in  elephants,  compared to  one 
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copy  in  humans  [54,  55].  These  observations  reflect  the  unequivocal  role  of  p53  in  cellular 

integrity protection and tumor suppression. 

In  50%  of  human  cancers,  p53  functions  are  impaired  due  to  mutations  or  deletions  in  the 

TP53 gene [56]. While the remaining 50% of cancer cells harbor wild-type p53 (wt-p53), the 

protein’s pathways are still deregulated [57]. Several strategies have been employed to restore 

the  protective  functions  of  p53  in  cells.  This  thesis  is  focused  on  the  restoration  of  the  wt 

activity to mp53. However, an overview of wt-p53 inhibition is also given below. 

Ø Inhibition of wt-p53 by endogenous p53 inhibitors 

p53  protein  levels  in  cells  are  tightly  controlled  since  the  protein  is  involved  in  numerous 

signalling networks [58, 59]. Under normal conditions, p53 protein levels in cells are low [60-

62].  However,  under  stress  conditions,  when  the  actions  of  p53  are  required,  the  protein  is 

stabilized through post-translational modifications and regulation of its inhibitors, reviewed in 

[60-63]. Two  proteins  that  play  a  major  role in  negatively  regulating  p53  are  mouse  double 

minute 2 homolog (MDM2) and MDMX [60, 61, 64-69]. Briefly described, MDM2 is a p53-

specific E3 ubiquitin-protein ligase [70, 71]. MDM2 binds directly to p53 [68, 72] causing the 

nuclear  exportation  of  p53,  promotion  of  its  proteosomal  degradation  and  inhibition  of  its 

transcriptional activity [71]. MDMX, a homologue of MDM2, also binds to p53 and inhibits 

its  transcriptional  activity  [73,  74].  These  two  proteins  are  overexpressed  in  some  types  of 

cancer  and  hence  become  oncogenic  [74];  they  inhibit  and  promote  the  degradation  of  the 

cell’s guardian. 

One strategy to overcome the effects of MDM2 and MDMX overexpression was to find small 

molecules  or  peptides  to  inhibit  the  binding  of  these  oncogenic  proteins  to  p53.  Several 

inhibitors have been found  [57, 71, 75-82]. Indeed, several of these molecules have made it 
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to  clinical  trials including  AMG  232 [83,  84]  RG7112,  RO5503781,  MI-773  and  DS-3032b 

[75]. 

Ø Inhibition of wt-p53 activity by mutation 

As  mentioned  above,  p53  is  mutated  in  about  50%  of  all  cancers  [50,  51,  85].  More  than 

45,000  mutations  in TP53  have  been  reported  in  the  TP53  database  [86].  95%  of  these 

mutations occur in the region coding for the DBD of p53 [39]. p53 is not expressed in 10% of 

these  cases  as  they  result  in  nonsense  mutations  or  deletions  [85]  Therapeutic  strategies  in 

these cases are largely based on gene therapy to re-introduce wt-p53 back in cells using viral 

vectors [19, 87]. Alternative ways of introducing wt-p53 to cells included the direct injection 

of DNA or the use of cationic liposomes containing the transgene [19, 87]. 

Almost all remaining mutations in TP53 result in missense mutations [85]. As demonstrated 

in Figure 1.2, almost all residues in the p53 DBD are susceptible to mutation [39]. However, 

there are six high frequency missense mutations (Figure 1.2) that constitute 40% of the cases 

of DBD mutations [39, 85, 88]. These ‘hot-spot’ mutations are in codons 175, 248, 245, 249, 

273  and  282  [39,  85,  88].  Mutations  in  codons  157  and  220  are  also  highly  frequent  [85]  . 

Structurally,  p53  mutants  are  categorized  into  contact  and  structural/conformational  mutants 

[39, 89, 90]. When one of the DBD residues that directly interact with the DNA is mutated, 

such as mutations in R273 or R248, the mp53 protein is categorized as a contact mutant [51, 

90].  In  the  case  of  structural  p53-mutants,  the  mutated  residue (such  as  R175,  245,  249  and 

282) does not interact directly with DNA but causes conformational alterations or unfolding 

of the protein [51, 90].  

p53  mutants  can  also  be  functionally  categorized.  While  all  six  hot-spot  mutations 

compromise  the  wt  activity  of  the  protein,  different  mutations  can  have  different 
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consequences in cells [17]. A single mutation in one allele can alter the transcriptional ability 

of p53 despite the presence of the wt protein [17] . This phenomenon is called the dominant 

negative (DN) effect [91, 92]. While the exact DN mechanism is not fully understood, it has 

been attributed to the lower binding affinity of the mt-wt tetramers binding to the DNA or the 

sequestration  of  transcriptional  cofactors  by  mp53  [93].  In  other  cases,  when  only  the 

missense mutant is expressed in cells, a loss-of-function (LOF) mutant phenotype is produced 

whereby p53 loses its transactivation ability [17, 93, 94]. Another category of p53 mutants are 

the  separation-of-function  (SOF)  mutants  in  which  the  mutants  only  lose  some  of  their  wt 

activity  [17,  94].  The  most  aggressive  p53  functional  phenotype  are  the  gain-of-function 

(GOF) mutants, reviewed in [17, 91, 95]. GOF mutants not only lose their wt-p53 functions 

but  also  acquire  new  oncogenic  functions  [17,  91,  95,  96].  These  mutants  fully  manifest 

themselves after the loss of the wt-p53 allele, which is termed ‘loss of heterozygosity’ [97].  

Several studies have demonstrated tumor regression upon restoration of wt-p53 activity [19, 

98-100]. Reviews on mp53 activators can be found in [51, 87, 99, 101-103]. Molecules that 

have been identified to activate R273H and R175H are APR-246 and its derivatives PRIMA-1 

[104],  MIRA-1  [105],  STIMA-1  [106]  and  3-methylene-2-norbornanone  [107].  APR-246  is 

the only activator that has, so far, proven to be clinically successful; it is currently in phase-II 

clinical  trials  [108,  109].  A  more  detailed  description  of  these  activators  is  given  in  the 

introduction of Chapter 5. 

1.2.5 Aims for p53 

Restoration  of  the  wt  activity  to  mp53  promises  to  be  an  effective  approach  to  treat  cancer. 

APR-246 is a first-in-class drug that reactivates mp53 and is currently in clinical trials [108, 

109]. In this thesis, in silico modeling was used to achieve four main goals: 
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• Understand the interaction pattern of mp53 activators from the literature with R273H-

mp53 using non-covalent docking. 

• Understand the effect of mutation on the G245S hotspot structural mutant in its DNA-

bound and apo forms. 

• Understand  and  compare  the  effect  of  mutation  on  the  hotspot  structural  and  contact 

mutants,  R175H-mp53  and  R273H-mp53,  with  respect  to  their  DNA  binding.  Also, 

the  effect  of  drugging  these  mutants  with  APR-246’s  active  metabolite  was  also 

studied. 

• Find potential G245S-mp53 activators using covalent docking. 

1.3 PNKP: DNA repair enzyme 

1.3.1 Function of PNKP 

PNKP is a bifunctional DNA repair enzyme; it dephosphorylates 3’ ends and phosphorylates 

5’  ends  of  damaged  nuclear  and  mitochondrial  DNA  through  its  phosphatase  and  kinase 

functions,  respectively  (Figure  1.3)  [110,  111].  The  catalytic  actions  of  PNKP  provide  the 

correct substrate for downstream enzymes in the DNA repair pathways to complete the repair 

process. It  is  worth  mentioning  that  the  phosphatase  activity  of  PNKP  is  stronger  than  its 

kinase activity [112]. 
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Figure  1.3.  PNKP  dephosphorylates  the  3’  end  and  phosphorylates  the  5’  end  of 
damaged DNA. 
 

PNKP  is  involved  in  three  DNA  repair  pathways:  base  excision  repair  (BER),  single  strand 

break  repair  (SSBR)  and  double  strand  break  repair  (DSBR)  pathways.  Although  these 

pathways are complex and their exact mechanisms are not fully understood, there are general 

agreed upon models outlined below: 

Ø BER 

This pathway is activated to repair damage caused by IR, reactive oxygen species (ROS) and 

alkylating agents that lead to small non-distorting base modifications or abasic (AP) sites [4, 

113].  Monofunctional  DNA  glycosylases  first  remove  the  damaged  bases  then  AP 

endonuclease I (APE1) cleaves the DNA backbone at the AP site. Alternatively, bifunctional 

DNA  glycosylases,  which  possess  both  glycosylase  and  AP  endonuclease  activities  catalyze 

both  reactions  [113].  The  DNA  products  of  the  latter  type  of  glycosylases  possess  3’ 

phosphate  termini.  The  rest  of  the  repair  process  then  goes  through  the  short  or  long  patch 

SSBR pathways described below. 

Ø SSBR 

Single-strand  breaks  (SSB),  especially  those  induced  by  IR  or  as  by-products  of  the  BER 

pathway,  are  associated  with  loss  of  nucleotides  [113-116].  Poly(ADP-ribose)  polymerase 

(PARP)  recognises  this  SSB  and  initiates  the  repair  process.  X-ray  cross  complementing 

group 1 (XRCC1), PNKP, DNA ligase and DNA polymerase b (Polb) are all recruited to the 

PNKPPNKP

POH OH P
P  5’ 3’ OH P  5’ 3’ OH
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break  site.  PNKP  dephosphorylates  3’  phosphate  termini  at  the  breaks  so  the  DNA  can  be 

repaired by downstream proteins in the short or long patch repair pathways [113-116]. 

In the short patch repair, Polb, which possesses both deoxyribose phosphate lyase and DNA 

polymerase  activities,  first  removes  the  deoxyribose  phosphate  residue  then  fills  the  one 

nucleotide gap [114]. The DNA backbone is then sealed by DNA ligase. Alternatively, if the 

5’ deoxyribose phosphate residue is modified, Polb would not be able to cleave the substrate 

and hence the long patch repair is activated instead. Initially, nucleotides are added to the 3’ 

hydroxyl  terminus  by  Polb  then  continued  beyond  the  damaged  site  by  DNA  polymerase d 

and e  [113-116].  This  creates  a  DNA  flap,  which  is  then  cleaved  by  flap  endonuclease  1 

(FEN1), followed by DNA ligase sealing of the DNA backbone [113-116].. 

Ø DSBR 

Double-strand breaks (DSB) in DNA can be caused by IR or ROS [117]. One of the DSBR 

pathways in which PNKP is involved is called the non-homologous end-joining (NHEJ) [4]. 

A heterodimer composed of two proteins called Ku70 and Ku80 recognise the double strand 

break  and  recruits  DNA-dependent  protein  kinase  (DNA-PK),  which  in turn tethers  the  two 

DNA  strands  together  [118].  X-ray  cross  complementing  group  4  (XRCC4)  scaffolding 

protein then recruits PNKP to process the hydroxyl and phosphate DNA termini. DNA ligase 

then binds the DNA backbones together [118].  

 

Some excellent reviews on the DNA repair pathways described above can be found in [113, 

115, 117-120]. 
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1.3.2 Structure of PNKP 

PNKP is a 521 amino-acid protein composed of a fork-head associated (FHA) domain joined 

by  a  flexible  linker  to  a  fused  catalytic  domain  (Figure  1.4)  [4,  111].  The  FHA  domain 

interacts with phosphorylated XRCC1 and XRCC4 proteins involved in the SSBR and DSBR 

pathways. It has been suggested that this interaction increases the affinity of PNKP to DNA 

[121].  Other  studies  indicated  that  XRCC1  and  XRCC4  increase  the  turnover  of  PNKP  [4, 

122,  123].  The  DNA  phosphatase  and  kinase  activities  of  PNKP  are  carried  out  by  the 

catalytic domain of the protein (residues 146-516).  

 

 

Figure  1.4.  A  schematic  of the  PNKP domains: fork-head  associated domain  and  DNA 
phosphatase and kinase domains. 
 

X-ray resolved structures of PNKP revealed that both the phosphatase and kinase active-sites 

of PNKP have a magnesium ion, which is essential for both catalysis as well as maintaining 

the stability of the high negative charges at the active-sites [124, 125]. 

The  phosphatase  subdomain  of  PNKP  is  composed  of  residues  146  to  337.  It  has  been 

proposed that the 3’ phosphate of the damaged DNA is stabilized by Mg2+, T217 and K260 

[126]. The 3’ phosphate group transiently binds to the carboxyl side-chain of D171, in an in-

line nucleophilic attack by the latter, forming a covalent phospho-aspartate intermediate that 

is stabilized by the phosphatase active-site Mg2+ [124, 126]. D173 then protonates the DNA 
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and  a  3’  hydroxyl  DNA  is  released  from  the  active-site.  D173  then  deprotonates  a  water 

molecule, which attacks the D171 covalently bound phosphate. This leads to breaking of the 

phospho-aspartate bond and the release of a free phosphate [124, 126]. 

The kinase subdomain of PNKP is composed of residues 341 to 516. At the kinase active-site, 

Mg2+  stabilizes  the  donating  adenosine  triphosphate  (ATP)  molecule  [124-126].  It  has  been 

proposed that the anionic oxygen of D397 side-chain carboxyl group activates the 5’ hydroxyl 

of  the  damaged  DNA,  which  in  turn  attacks  the g-phosphate  of  ATP  and  becomes 

phosphorylated [126].  The products of this reaction are adenosine diphosphate (ADP) and 5’ 

phosphate DNA. 

1.3.3 Inhibition of PNKP for combination cancer therapy 

As mentioned above, IR and DNA-damaging chemotherapeutics are still two essential pillars 

of  treatment  regimens  for  many  types  of  cancer.  IR  is  primarily  utilized  to  damage  cancer 

cells  [127].  The IR-induced  damage  can  directly  affect  macromolecules  in  cells  including 

their DNA by causing SSB and DSB [127]. These strand breaks sometimes have damaged 3’ 

phosphate  and  5’  hydroxyl  ends [128].  On the  other  hand, indirect  damage  in  cells  by  IR  is 

induced  by  the  generation  of  ROS,  which  can  also  cause  oxidative  damage  to  DNA  [127]. 

Similarly, there are many classes of chemotherapeutics that act by damaging the DNA. Such 

drugs include inhibitors of topoisomerase I, an enzyme that transiently breaks phosphodiester 

bonds  in  DNA  to  relieve  DNA  supercoils  during  replication  and  transcription  [129]. 

Examples  of  such  inhibitors  are  camptothecin  and  irinotecan,  which  act  by  stabilizing  the 

topoisomerase  I-DNA  complex  forming  a  dead-end  ternary  complex  associated  with  strand 

breaks [129, 130]. 
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Ideally, these cancer regimens would lead to cell-cycle arrest and apoptosis [131]. However, a 

significant  number  of  patients  are resistant  to  these  treatments  because  their  tumors  possess 

robust  DNA  repair  capacity,  or  their  tumors  develop  this  repair  capacity  over  time  through 

upregulation  of  DNA  repair  enzymes  (Figure  1.5)  [5,  131].  For  example,  camptothecin 

stabilized complexes can be hydrolysed by tyrosyl-DNA phosphodiesterase 1, leaving behind 

DNA with 3’ phosphate and 5’ hydroxyl termini, which can be repaired by PNKP. Similarly, 

PNKP is also essential for the repair of SSB and DSB induced by IR. 

While efforts have been made to find more potent genotoxic chemotherapies, such as higher 

affinity camptothecin derivatives, those compounds did not show significant improvement in 

clinical  trials  [132].  Alternatively,  there  have  been  searches  to  find  for  novel  DNA  damage 

repair  targets  to  potentiate  IR  and  DNA-damaging  chemotherapy  [133-135].  Indeed,  it  has 

been  demonstrated  that  the  down-regulation  of  PNKP  in  the  human  lung  carcinoma  A549 

cell-line using small interfering RNA (siRNA) caused cells to be more susceptible to damage 

via IR and topoisomerase I inhibitors [136]. In a different study, HCT116 and of HeLa PNKP 

deficient cells were also sensitized to DNA damaging neocarzinostatin and radiation[137] . It 

is  theoretically  possible  to  inhibit  the  kinase  activity  or  the  binding  of  PNKP  via  its  FHA 

domain  to  PNKP  interaction  partners.  However,  inhibiting  the  phosphatase  activity  of  the 

enzyme  has  a  high  potential  as  a  strategy  for  adjunct  cancer  therapy.  This  hypothesis  is 

supported by the fact that the phosphatase activity of PNKP is higher than its kinase activity 

[112].  Also,  PNKP  is  the  major  DNA  phosphatase  enzyme  in  cells  [4,  111].  While  APE1 

possesses  the  same  ability,  its  activity  is  much  weaker  than  PNKP  [138].  Additionally,  IR, 

ROS  and  campothecin  derivatives  used  for  cancer  treatment  often  induce  strand  breaks  that 

require processing of the 3' termini of DNA by PNKP [4].  
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Figure 1.5. DNA repair enzymes can play a role in cancer cell resistance. 
Inhibition of key DNA repair enzymes such as PNKP can sensitize cells to chemotherapy and 
radiation leading to cell death and senescence. 
 

Excitingly,  A12B4C3,  a  PNKP  inhibitor,  has  been  identified  using  a  fluorescence-based 

screen [139]. A12B4C3, while non-toxic to cells, sensitized A549 cells expressing PNKP to 

camptothecin  treatment  but  did  not  have  additional  observed  effects  on  treated versus  non-

treated PNKP-deficient cells [140]. In another study, A12B4C3 sensitized radioresistant PC-3 

prostate  cancer  cells  to  radiation  [141]. Enzyme kinetic  experiments  have  demonstrated  that 

this  inhibitor  is  non-competitive [140].  However,  the  exact  binding  site  of  A12B4C3  is  still 

unknown, which is a big challenge from a rational drug design and development perspective. 

1.3.4 Synthetic lethality of PNKP inhibition 

Synthetic  lethality  is  a  phenomenon  wherein  the resultant  co-disruption  of  two  proteins,  but 

not  only  one  of  them,  leads  to  cell  death  [142].  Two  different  synthetical  lethal  partners  of 

PNKP have been discovered by genetic screening using a library of siRNA on PNKP depleted 

cells  [143,  144].  One  of  the  identified  synthetically  lethal  partners  of  PNKP  is  a  tumor 

suppressor protein called phosphatase and tensin homolog (PTEN) [143]. Although the exact 
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mechanism of this partnership is not fully understood, it has been found that PTEN depletion 

was  associated  with  increased  DNA  DSB  with  3’  phosphate  ends  [143].  This  was  also 

associated with increased cell death [143]. 

Src  homology  region  2  domain-containing  phosphatase-1  (SHP-1),  a  tyrosine  phosphatase 

enzyme,  was  also  found  to  be  a  synthetically  lethal  partner  of  PNKP  [144].  It  has  been 

hypothesized  that  SHP-1  depletion  leads  to  an  increase  in  ROS,  which  damaged  the  DNA. 

Again, it is possible that the lack of PNKP to fix this damage led to cell death [144].  

The synthetic lethality of PNKP and PTEN or SHP-1 provides another venue for the clinical 

use of PNKP inhibitors in cancer cells. Both tumor suppressor proteins, PTEN and SHP-1, are 

mutated in many types of cancer cells [143, 144]. Thus treatment of cancer cells with PNKP 

inhibitors  can  lead  to  cancer  cell  death  with  minimal  impact  on  normal  cells  that  carry  the 

functional tumor suppressor proteins [143, 144]. 

1.3.5 Aim for PNKP 

Previous  research  confirms  that  PNKP  is  a  suitable  and  novel  therapeutic  target  for  cancer 

treatment [137, 145]. Inhibitors of PNKP can counteract radioresistance and chemoresistance 

in  cancer  cells  making  treatment  more  effective.  Using  PNKP  inhibitors  for  combination 

cancer therapy using targeted delivery to specifically target cancer cells, to avoid damage to 

normal cells, could potentially reduce IR and camptothecin treatment dosage and hence could 

decrease  adverse  effects  caused  by  these  treatments.  Additionally,  the  synthetic  lethality 

between  PNKP  and  its  partners  can  also  be  exploited  to  selectively  increase  the  efficacy  of 

chemotherapy  and  radiation,  especially  in  cancer  cells  with  mutations  in PTEN  and SHP-1 

[143, 144]. The aim for this protein target was to: 
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• Find  potential  PNKP  phosphatase  inhibitors  using  a  combination  of  pharmacophore 

and docking techniques 
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2.1 Introduction 

In normal cells, p53 functions as a transcription factor that plays major roles in the regulation 

of the cell cycle, DNA repair, senescence and apoptosis [1-4]. The p53-signalling pathway is 

inoperative  in  almost  all  types  of  human  cancer  cells  [5].  Among  the  vast  number  of 

mechanisms exploited by cancer cells to sustain cell division, the inactivation of p53 is one of 

the  most  frequent  and  effective  strategies  [2].  This  is  done  through  different  mechanisms 

including genetic deletion [6], defective post-translational modifications and interactions with 

MDM2  [7]  and  MDM4  [8],  which  are  endogenous  inhibitors  to  p53.  To  overcome  these 

mechanisms,  such  as  MDM2/4  inhibition,  some  strategies  involved  the  disruption  of  p53-

MDM  protein  interactions  [9-11]  using  small  ligands  [12-15].  Another  effective  strategy  to 

impair p53-signalling by cancer cells is through the genetic mutation of p53 [2]; it is the most 

mutated protein found in human cancers [16,17]. In fact, p53 is mutated in more than 50% of 

all cancer cells [5,16] leading to loss of its tumor suppressor function. More that 75% of p53 

mutations  are  missense  mutations  and  over  97%  of  these  are  located  in  the  DNA  binding 

domain  (DBD)  of  p53  [18,19].  There  are  six  ‘hot-spots’  that  make  40%  of  the  DBD 

mutations;  they  are  single  amino-acid  substitutions  in  the  DBD  domain  in  the  following 

residues:  R175,  G245,  R248,  R249,  R273  and  R282  [20].  Sarcomas  and  lymphomas  have 

been  shown  to  be  less  invasive  on  restoration  of  the  wild-type  (wt)  activity  of  mutant  p53 

(mp53) in mice [18,21]. 

Several screening studies have helped identify small molecules that could restore mp53. The 

most  successful  of  these  molecules  are  PRIMA-1  and  its  methylated  derivative,  APR-246 



 34 

[22]. In fact, the latter is the only drug candidate currently in clinical trials [23]. In cells, both 

PRIMA-1  and  APR-246  decompose  to  give  an  active  metabolite  called  methylene 

quinuclidione  (MQ),  characterized  by  a  reactive  double  bond  (DB)  [24].  Evidence  suggests 

that MQ can restore the wt activity to mp53 by reacting with the protein and was, therefore 

classified as an alkylating ligand [24]. In another screening study by the same group, MIRA-1 

was  also  identified  as  an  activator  of  mp53  [25].  Interestingly,  this  latter  compound  was 

originally characterized as being structurally different from PRIMA-1 [25]. At the time, it was 

not  yet  known  that  MQ  is  the  active  metabolite  of  PRIMA-1  [24].  Both  MIRA-1  and  MQ 

share the same characteristic feature: a reactive DB. 

Other activators of mutated p53 are currently actively being identified and tested. Foster et al. 

[26]  identified  CP-31398  through  a  screening  study.  There  are  conflicting reports  regarding 

the mechanism of action of CP-31398. While it has been suggested that CP-31398 does not 

bind to p53 [27], most studies indicate that the molecule interacts with mp53, restores its wt 

conformation  [26,28]  and  induces  cell-cycle  arrest  and  apoptosis  [29].  It  has  also  been 

suggested that it can be classified as an alkylating ligand [24]. 3-Methylene-2-norbornanone 

(NB) is another ligand that was designed based on structure-activity relationship studies that 

included  CP-31398  and  PRIMA-1  [30].  STIMA-1,  also  an  alkylating  ligand,  was  designed 

based on CP-31398 [31]. 

The  active metabolite  of  WR-2721,  called  WR-1065,  has  also  been  shown  to  restore  the  wt 

function  and  conformation  of  mp53  [32,33].  The  alkaloid  ellipticine  and  its  derivatives 

including 9-hydroxyellipticine are the only naturally occurring ligands, which were found to 

activate  mp53  [34].  Studies  have  shown  that  this  class  of  compounds  exerts  an  antitumor 
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effect  through  multiple  mechanisms  including:  inhibition  of  phosphorylation  [35], 

topoisomerase enzyme inhibition [34] and by restoring DNA binding of mp53 [36,37]. 

Although  the  exact mechanism  of  restoration  of wt  function  to  the  different  p53  mutant  has 

not yet been fully characterized, there is evidence that several of these molecules, specifically 

alkylating  ligands,  bind  covalently  to  thiol  groups  in  p53  [24].  In  a  more  recent  study,  a 

transiently open pocket between loop1 and sheet S3 in p53 mutants R175H (R175H-mp53), 

G245S  (G245S-mp53)  and  R273H  (R273H-mp53)  has  been  identified  [38].  This  study  has 

demonstrated that C124 is essential for the activity of PRIMA-1 on R175H-mp53 using site-

directed mutagenesis. Docking of MQ, NB, MIRA-1 and STIMA-1 was performed and their 

potential interacting residues were identified. In addition, stictic acid was identified from the 

first virtual screening study performed on the pocket. 

In our study, we performed docking experiments on PRIMA-1, APR-246, MQ, NB, MIRA-1, 

STIMA-1, stictic acid, ellipticine, 9-hydroxy-ellipticine, CP-31398, WR-1065 and WR-2721 

to test and rank the binding of these compounds at the L1/S3 pocket of p53-R273H (one of 

the  hot-spot  mutations).  We  also  calculated  the  ADMET  properties  of  these  compounds  as 

they  provide  important  implications  regarding  the  potential  of  the  respective  compound  for 

their future clinical use. 



2.2!Results 

2.2.1!Equilibration and representative structure extraction of R273H-

mp53 

Figure 2.1. Plot of the RMSD of backbone atoms of residues 99 to 286 of p53-R273H 
model with reference to the structure at 0 ns. 
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sum of squares regression to the total sum of squares) values for cluster counts of 2 to 100 are 

shown in Figure 2.2. The cluster count of 42 was chosen as the optimum cluster count. The 

representative structures of clusters that had ≥2% of the total number of snapshots were used 

for  docking.  A  total  of  eight  clusters,  which  represent  ~87%  of  the  clustered  snapshots, 

fulfilled  this  criterion.  These  were  cluster  numbers:  1  (1270  points),  4  (53  points),  8  (66 

points), 9 (118 points), 10 (59 points), 14 (60 points), 20 (70 points) and 27 (42 points). 

 

Figure 2.2. a) Plot of DBI and b) SSR/SST values for cluster counts from 2 to 100.  
The  optimum  number  of  clusters  occurs  at  a  local  minimum  DBI  value  and  when  SSR/SST 
values have reached a plateau. Cluster count of 42 was chosen to represent R273H-mp53. 

2.2.2 Docking small ligand activators to R273H-mp53 

PHIKAN083  was  docked  to  mutant  p53-Y220C  (Y220C-mp53)  to  validate  the  parameters 

used for docking. Autodock 4.2 [40] was able to predict the correct binding pose with an 80% 

success rate. The RMSD of the binding pose with the least energy was 0.97 Å compared to 

that of the crystal structure (Figure 2.3). 
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Figure 2.3. The top predicted pose of PHIKAN083 in Y220C-mp53. 
White=  molecular  surface  of  Y220C-mp53,  red=  predicted  pose  from  docking,  blue  = 
experimentally-determined pose of PHIKAN083. 
 

The  ligands  PRIMA-1,  APR-246,  MQ,  NB,  STIMA-1,  MIRA-1,  stictic  acid,  CP-31398, 

ellipticine,  9-hydroxy-ellipticine,  WR-1065  and WR-2721  were  all  docked  in  the  eight  p53-

R273H mutant representative structures using Autodock 4.2. The pose with the lowest energy 

(highest  affinity)  in  the  most  populated  docking  cluster  was  chosen  to represent  the  binding 

position of the respective ligand to the pocket near C124.  

Docking results show that MQ, NB, STIMA-1 and MIRA-1 are all positioned within the same 

region of the binding pocket (Figure 2.4). Figure 2.5 shows that all four ligands interact with 

the backbone atoms of S116 and G117. MQ and NB have additional interactions with R282. 

On the other hand, MIRA-1 and STIMA-1 interact with the side-chain of S116 and the latter 

has  an  additional  interaction  with  L114.  While  our  simulations  did  not  reveal  a  direct 

interaction of the ligands with C124, their reactive DB was positioned towards the thiol group 

of C124. The distances between the backbone hydrogen of S116 and the side-chain sulphur of 

C124 are shown in Table 2.1. 

A
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Figure  2.4. Docked  poses  showing  MQ  (green),  NB  (orange),  MIRA-1  (blue)  and 
STIMA-1 (pink) all binding at the same position and showing common interactions with 
residues S116 and G117. 
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Figure  2.5. Ligand--interaction  schemes  of  the  alkylating  ligands  (a)  MQ  (b)  NB (c) 
MIRA--1 (d) STIMA--1 (e) CP--31398 and (f) Stictic acid with R273H-mp53. 
DB of the first five ligands is positioned towards the thiol of C124. 
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Table  2.1. A  list  of  distances  between  S116  H  and  C124  S  for  MQ,  NB,  STIMA-1  and 
MIRA-1 as well as the distance between Ser121 O and C124 S. 
The  table  also  shows  a  list  of  distances  between  the  respective  ligands  DB  and  C124 S 
distance. 

Ligand 
SerO/H - C124 

Distance (Å) 

Ligand DB - C124 

Distance (Å) 

MQ 7.98 6.98 

STIMA-1 7.82 3.58 

MIRA-1 7.82 3.2 

NB 8.22 6.83 

CP 9.05 4.16 

 

CP-31398  is  also  considered  as  an  alkylating  ligand,  although  it  is  less  reactive  [31].  The 

ligand  interaction  scheme  in  Figure  2.5  shows  that  CP-31398  likely  interacts  with  Ser121 

backbone atoms through its amine group. It also interacts with T123 through the nitrogen in 

its quinazoline ring. Although its reactive DB does not interact with C124, it is still positioned 

towards the thiol group of C124. The distance between the reactive DB of CP-31398 and the 

thiol  group  of  C124  is  also  shown  in  Table  2.1.  Docking  results  for  stictic  acid,  which  has 

also been proposed to act as an alkylating ligand [38], show that it interacts with the backbone 

of T123 and P142. In addition, it interacts with the side-chain thiol of C124. 

Since MQ is considered as the active metabolite  of PRIMA-1 and APR-246, the two parent 

compounds  were  also  docked  into  the  same  pocket.  These  compounds  are  both  generally 

considered inactive, as they do not have the reactive DB present in other alkylating ligands. 

The best docked pose for each ligand showed that they both interacted in an almost identical 

manner (Figure 2.6) with residues T123 and C124. 



Figure 2.6. Docked pose for PRIMA!1 (orange) and APR!246 (green) in R273H-mp53. 



Figure 2.7. Ligand!interactions scheme showing the interacting residues between 
R273H-mp53 and a) ellipticine, b) 9!OH ellipticine and c) WR!1065 



Figure 2.8. Plots of the distances between a) S116 (H) and C124 (S) and b) Ser121 (O) 
and C124 (S) during the last 50 ns of the simulation. 
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Table 2.2. A list of Autodock binding energies (kcal��mol-1) and ligand efficiencies in the 
order of decreasing binding energies. 
The  corresponding  experimental  IC50  for  each  ligand  is  also  shown.  NA=  not  available  and 
the dash indicates that the ligand is in the inactive form. 

COMPOUND 
Autodock 4.2 Binding 

Energy (kcal��mol-1) 

Autodock 4.2 

Ligand efficiency 

Experimental 

IC50 

(µM) 

Stictic acid -8.74 -0.31 NA 

CP-31398 -8.01 -0.3 NA 

STIMA-1 -7.63 -0.58 4.9 

Ellipticine -7.47 -0.39 NA 

9-OH Ellipticine -7.11 -0.36 NA 

MIRA-1 -6.33 -0.49 10 

NB -5.92 -0.66 NA 

MQ -5.21 -0.52 14.8 ± 3.9 

PRIMA-1 -4.88 -0.31 - 

APR-246 -4.88 -0.38 - 

WR-1065 -3.78 -0.47 NA 

WR-2721 -3.69 -0.31 - 

 

2.2.3 ADMET properties of the ligands 

ADMET Predictor™ software calculates the various physico-chemical properties of chemical 

compounds  of  importance  to  the  prediction  of  their  pharmacokinetic  profiles  including 

absorption, distribution, metabolism, excretion and toxicity (ADMET). All compounds tested 

by  us  using  this  software  package  comply  with  Lipinski’s  Rule-of-five  [42]  which  indicates 
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that  they  are  drug-like. Table 2.3  shows  that  the compounds  have  a  wide  range  of  ADMET 

scores ranging from 1 (APR-246) to about 7 (CP-31398).  A low score indicates low risk of 

toxicity  while  a  high  score  virtually  assures  the  existence  of  toxic  risks.  In  addition,  all 

compounds have a high blood-brain-barrier partition coefficient with the exception of stictic 

acid  and  the  prodrug  WR-2721.  CP-31398  is  predicted  to  inhibit  hERG  potassium  channel 

raising  concerns  of  cardiotoxicity.  Although  ellipticine  also  inhibits  these  channels,  its  9-

hydroxyl derivative is predicted to lack this effect. While PRIMA-1 is predicted to cause an 

elevation  in  alanine  transaminase  (ALT)  and  aspartate  transaminase  (AST)  enzymes,  its 

derivative APR-246, which is currently in clinical trials, is predicted not to have this effect on 

the  levels  of  ALT  and  AST  enzymes  (confidence  of  67%  and  57% respectively).  However, 

the active metabolite of both compounds, MQ, causes an elevation in both liver enzymes. All 

the  other  alkylating  ligands,  along  with  CP-31398,  cause  an  increase  in  both  AST  and  ALT 

liver enzymes, with the exception of stictic acid, which is predicted to cause an elevation of 

ALT enzyme only. 
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Table 2.3. ADMET Predictor™ estimations for the docked ligands. 
An explanation of each property can be found in the methods section. Percentages between brackets are percentages of confidence. 
Toxicity terms are explained in 2.5.5. 

Compounds S + Peff 
[cm/s*104] 

S + Sw 
[mg/mL] 

BBB_Filter Pgp_Substr Pgp_lnh TOX_hERG_Filter TOX_SGOT TOX_SGPT ADMET_Risk 

APR-246 3.16 48.000 High No (97%) 
No 

(94%) 
No (95%) 

Normal 

(67%) 

Normal 

(57%) 
1 

WR-1065 0.44 62.700 High No 
No 

(94%) 
No (95%) Normal 

Normal 

(99%) 
2.1 

Stictic acid 2.3 0.013 Low Yes (71%) 
No 

(60%) 
No (95%) 

Normal 

(73%) 

Elevated 

(55%) 
2.46 

MIRA-1 3.93 9.150 High No (97%) 
No 

(94%) 
No (95%) 

Elevated 

(94%) 

Elevated 

(93%) 
2.73 

STIMA-1 4.82 0.221 High No (97%) 
No 

(94%) 
No (95%) Elevated 

Elevated 

(98%) 
2.91 

WR-2721 0.26 5.010 Low No (97%) 
No 

(94%) 
No (95%) 

Normal 

(62%) 

Normal 

(99%) 
2.97 



 48 

NB 8.01 4.980 High No (97%) 
No 

(94%) 
No (95%) 

Elevated 

(94%) 

Elevated 

(79%) 
3 

PRIMA-1 2.16 83.900 High No (97%) 
No 

(94%) 
No (95%) 

Elevated 

(71%) 

Elevated 

(84%) 
3 

MQ 4.94 24.500 High No (97%) 
No 

(94%) 
No (95%) 

Elevated 

(94%) 

Elevated 

(79%) 
3.01 

90H-

Ellipticine 
4.28 0.008 High Yes (67%) 

No 

(94%) 
No (76%) 

Normal 

(73%) 
Elevated 4.86 

Ellipticine 6.16 0.002 High No (97%) 
No 

(94%) 
Yes (63%) 

Normal 

(67%) 
Elevated 5.6 

CP-31398 2.06 0.250 High Yes (95%) 
Yes 

(97%) 
Yes (99%) 

Elevated 

(94%) 

Elevated 

(84%) 
6.92 
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2.3 Discussion 

The transcription factor protein, p53, plays a pivotal role in cells as a tumor suppressor as it 

responds  to  different  types  of  cellular  stress  and  performs  an  important  function  to  repair 

DNA damage, cause cell-cycle arrest and induce cell senescence or apoptosis [1-4] in cases of 

severe cell damage. Several ligands were found to act as p53 activators: they restore the wild 

type activity to mp53. Hence, these compounds hold significant promise of improving clinical 

outcomes  by  being  used  in  the  future  in  a  combination  therapy  regimen  for  cancer  patients 

undergoing  chemotherapy.  A  recent  study  has  used  computational  methods  to  identify  a 

transiently open L1/S3 pocket near residue C124 of wt, R175H, G245S and R273H mt-p53 at 

which  MQ,  NB,  STIMA-1  and  MIRA-1  bind  [38].  Based  on  the  structures  of  docked 

compounds, it is clear that they can be classified as alkylating (MQ, NB, MIRA-1, STIMA-1, 

stictic  acid  and  CP-31398)  and  non-alkylating  (ellipticine,  9-hydroxy  derivative  and  WR-

1065), respectively. 

2.3.1 Creating representative structure for C124 binding pocket 

In this study, we modeled the 3D structure of one of the most common p53 mutants, namely 

R273H-mp53 and simulated it for 80 ns. A plateau in the RMSD plot (Figure 2.1) after ~30 ns 

indicates  that  the  protein  structure  has  equilibrated.  Although  it  would  be  best  to  dock  the 

ligands  to  all  structures  obtained  from  the  MD  simulation,  this  is  impractical  at  present  by 

being  very  computationally  expensive.  While  there  is  no  definitive  method  to  choose  the 

optimum number of clusters, DBI and SSR/SST metrics were used to guide the choice of the 

optimal cluster number. Although SSR/SST value does not completely plateau (Figure 2.2), it 



 50 

becomes more stable after the cluster count of 42. This coincides with a local minimum in the 

DBI  value  at  the  same  point.  To  make  the  computer  simulations  more  efficient,  eight 

representative  structures  were  extracted,  which  represent  ~87%  of  the  conformations  of  the 

pocket around C124 for the last 20 ns of the simulation. 

2.3.2 Docking p53 activators to R273H-mp53 

MQ, NB, STIMA-1 and MIRA-1 have been all previously docked into the C124 pocket [38]. 

However, this is the first study to dock the other ligand activators as discussed earlier. It must 

be noted that the calculations in this study were all based on molecular mechanics, thus it is 

impossible to predict the alkylated form of the protein using these calculations. All alkylating 

ligands  interacted  with  S116  and  G117,  with  the  exception  of  stictic  acid  and  CP-31398, 

which are much bulkier when compared to the other compounds and therefore less likely to fit 

into  that  part  of  the  pocket.  It  is  interesting  that  both  parent  compounds  of  MQ  had  direct 

interactions  with  C124  but  compounds  with  the reactive  DB  did  not.  The  only  exception  to 

this observation was stictic acid, which came from virtual screening studies that were based 

on  the  initial  assumption  that  alkylating  ligands  interact  with  C124  backbone.  It  should  be 

noted that stictic acid did not maintain its direct interaction with C124 after a 60 ns simulation 

[38].  This  suggests  that  binding  positions  at  this  pocket  are  only  initial  interactions  after 

which the ligand undergoes a reaction with the thiol group [24] of C124. This could explain 

why our simulation showed that PRIMA- and APR-246 interact with mt-p53. However, they 

would  not  be  expected  to react  since  they  are  missing  the  reactive  DB.  This  is  also  evident 

from  the  interactions  between  stictic  acid  and  R175H-mp53  after  a  60  ns  simulation;  stictic 

acid  had  direct  interactions  with  Q144  only  and  indirect  interactions  with  G112,  S116  and 

C124 through bridging water molecules [38]. In all cases, however, the DB of the alkylating 



 51 

ligands  was  always  positioned  towards  C124.  An  aliphatic  C-S  covalent  bond  length  has 

reported to be about 1.82 Å [43] while their non-bonded interactions range between 3.8-4.2 Å 

in length [44]. MOE ligand interactions [45] did not predict an interaction between the DB of 

the alkylating ligands and S of C124. While Table 2.1 shows that STIMA-1, MIRA-1 and CP-

31398 are at a distance that lies within the non-bonded interactions range of 3.8-4.2 Å, it is 

probable that the geometry between the DB and S of C124 does not favor the formation of an 

interaction.  Since  docking  was  performed  using  the  rigid  protein  structure,  the  effect  of 

ligands’  binding  on  the  complex  structure  cannot  be  observed  in  the  ligand-binding  pose. 

Note  that  the  distance  between  MQ  and  NB  is  too  large  to  form  an  interaction:  6.98  Å  and 

6.83 Å, respectively. For this reason, the distances between S116 backbone H/S121 backbone 

O and C124 side-chain S were measured over the last 50 ns of the simulation. S116 backbone 

H-C124  S  distance  in  the  predicted  MQ  and  NB  complexes  were  7.98  Å  and  8.22  Å, 

respectively. Figure 2.8 shows that these distances fluctuate significantly reaching a minimum 

of 4.5 Å, which suggests that the two ligands could actually get close enough to interact with 

C124. 

Our docking studies have shown that PRIMA-1 and APR-246 interact with T123 and C124. 

Experimental  studies  have  shown  that  PRIMA  derivatives,  such  as  PRIMA-D,  that  are 

incapable  of  breaking  down  to  form  MQ  were  inactive  [24].  This  observation  suggests  that 

these compounds do not bind in their native form and are metabolized to MQ before binding. 

It  has  not  been  confirmed  that  ellipticine  and  9-hydroxy-ellipticine  interact  directly  with 

mutant R273H-mp53 although they can restore the wt conformation to the mutant. Ellipticine 

and  its  9-hydroxy  derivative  bind  at  the  same  location  but  the  latter,  which  is  more  active 

[34], forms an additional arene-H interaction. Note that these two compounds interact directly 
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with C124, unlike alkylating agents. Ellipticine has not been found to thermally stabilize p53 

when compared to CP-31398 [37]. It was, therefore, suggested that ellipticine activated mp53 

through a different mechanism, which has not yet been exactly identified [46]. Our docking 

results  showing  the  different  interaction  properties  can  explain  these  observations.  It  is 

conceivable  that  CP-31398  can  thermally  stabilize  mp53  because  it  binds  covalently  to  the 

protein. Since ellipticine non-covalently interacts with the protein, it could lose the interaction 

with  mp53  at  higher  temperatures  and  hence  cannot  thermally  stabilize  the  protein.  On  the 

other hand, the orientation of WR-1065 in the binding pocket was flipped when compared to 

its prodrug WR-2721. It is worth mentioning that WR-1065 and WR-2721 both showed very 

poor clustering when the docked poses were clustered at 1 Å; each cluster had ≤ 10% of the 

docked  poses.  This  could  be  explained  by  their  flexibility  and  is  consistent  with  a  study  by 

North et al. [33], which found that WR-1065 only resulted in partial restoration of the mutant 

p53-V272M conformation. However, poor clustering properties could also suggest that WR-

1065 does not bind at that pocket since there was no prominent docked pose.  

It is also interesting that the predicted Autodock binding energies qualitatively correlate with 

the  experimental  IC50  values  for  MQ  [24]  (PRIMA-1),  STIMA-1  [31]  and  MIRA-1  [25]. 

Table  2.2  shows  that  STIMA-1,  which  has  the  least  binding  energy  has  the  lowest  IC50  for 

Saos R273H-mp53 cells while MQ, which has the most binding energy has the highest IC50 

value. 

It is worth mentioning that more rigorous but computationally much more expensive methods, 

such as thermodynamic integration, are likely to give more accurate binding energies. 
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2.3.3 Predicting ADMET properties of p53 activator compounds 

As  these  compounds  are  potential  chemotherapeutics,  it  is  expected  that  they  would  have 

adverse  effects  as  reflected  by  their  ADMET_Risk  score;  however,  their  benefits  should 

outweigh their adverse effects for a practical clinical use. The main task is to find a suitable 

therapeutic  window  in  a  pre-clinical  and  clinical  efficacy  and  toxicity  studies  focusing  on 

dose  escalation  and  on  finding  a  maximum  tolerated  dose.  CP-31398  has  shown  an 

exceptionally  high  score  of  6.92  while  only  10%  of  the  set  of  drugs  from  the  World  Drug 

Index used by ADMET Predictor™ have a score greater than 6.5. MQ, the active metabolite 

of  APR-246  (only  drug  in  clinical  trials  [23])  and  PRIMA-1,  has  a  score  of  3.01.  When 

compared  to  other  compounds  with  a  lower  score,  it  has  the  same  qualitative  toxicities  but 

better S+Peff or S+Sw. The only exceptions are WR-1065 and WR-2721, which have a very 

low S+Peff compared to MQ, as well as stictic acid. In fact, stictic acid was predicted to have 

low BBB permeability, and likely to have no effect on AST levels. This could be especially 

important  since  APR-246  (and  hence  its  active  metabolite  MQ)  had  dose-limiting  toxicities 

(DLT)  in  clinical  trials  related  to  elevated  AST  and  ALT  levels,  confusion,  fatigue  and 

impaired talking [23]. Although stictic acid is predicted to be superior to MQ with regards to 

these DLT, it has a very low S+Sw and could thus have low bioavailability. 

2.4 Conclusions 

Designing drugs that can restore the wt function to mp53 promises to have a huge impact in 

the  fight  against  cancer.  A  highly  optimized  drug  could  potentially  target  cancer  cells  with 

minimal impact on normal cells since the target, mp53, is highly specific to abnormal cells. 

Our results show that the alkylating ligands: MQ, MIRA-1, STIMA-1, NB and CP-31398 all 
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interact with backbone residues of S116 or S121 in R273H-mp53, while their double bonds 

are  directed  towards  C124  thiol  group.  Other  ligands  that  are  not  known  to  alkylate  the 

protein interact directly with C124.  The predicted toxicities by ADMET Predictor™ indicate 

that  stictic  acid  has  qualitatively  less  toxic  adverse  effects  when  compared  to  the  APR-246 

metabolite. Designing derivatives of stictic acid with better pharmacokinetic properties could 

potentially  lead  to  a  better  drug  with  less  adverse  effects  compared  to  the  dose-limiting 

toxicities of APR-246. 

2.5 Methods 

2.5.1 Preparation of the p53-R273H structure 

The  3D  structure  of  the  target  molecule,  R273H-mp53,  was  generated in  silico  in  a  manner 

similar  to  that  outlined  by  Barakat et  al.  [15,47]    using  Amber99SB  force-field  [48].  The 

1TSR-B  [49]  wt-p53-DNA  complex  crystal  structure  coordinates  were  obtained  from  the 

Protein  Data  Bank  [50].  Swiss-PdbViewer  [39]  application  was  used  to  virtually  mutate 

residue 273 of p53 from arginine to histidine. The protonation states of mp53 were calculated 

using the PDB2PQR [51] at pH 7 and the four Zn2+ coordinating residues were deprotonated. 

The  p53-DNA  complex  was  solvated  in  a  TIP3P  water  box  (containing  34,221  water 

molecules),  thus  providing  a  water  buffer  of  at  least  18  Å  around  the  complex  along  each 

dimension. This system was neutralized using Na+ ions, which replaced water molecules with 

the highest electrostatic energies on their oxygen atoms. The ionic concentration was adjusted 

to 0.150 M by the random addition of NaCl ions to simulate physiological conditions. 
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2.5.2 MD Simulations 

The solvated system was first minimized and then heated from 0 to 310 K (body temperature) 

using  NAMD  software  [52].  Heavy  restraints  were  placed  on  the  backbone  atoms  during 

heating.  These  restraints  were  gradually  decreased  in  an  MD  simulation  before  production 

was initiated. The fully solvated system was then simulated with no restraints at 310 K for 80 

ns.  To  ensure  that  the  system  was  fully  equilibrated,  the  mass-weighed  RMSD  of  the 

backbone residues was calculated relative to the structure at the start of the MD production. 

The three residues from each terminus were excluded as they are expected to be too flexible 

and are far from the region of interest. 

2.5.3 RMSD-based structure clustering 

To  account  for  the  protein  flexibility  using  a  manageable  number  of  representative  protein 

models,  the  last  20  ns  of  the  equilibrated  protein  were  clustered  using  the  average-linkage 

algorithm  [53]  in  PTRAJ  utility  of  AmberTools12  [41].  Before  clustering,  the  protein  was 

RMSD-fitted  to  the  minimized  structure  to  remove  differences  between  structures  that were 

due  to  rotations  or  translations.  2001  protein  structures  representing  the  last  20  ns  at  an 

interval  of  10  ps,  were  clustered  into  2  to  100,  based  on  the  mass-weighed  RMSD  of  the 

amino acids of residues 114 to 117, 121 to 126, 133 and 140 to 144. Two clustering metrics, 

Davies-Bouldin  index  (DBI)  [54]  and  the  percentage  of  variance  (SSR/SST)  [53],  were 

calculated for all the clusters. The choice of the optimum number of clusters is typically made 

to respond to a local minimum for the DBI value and when SSR/SST plateaus [53] because 

increasing  the  number  of  clusters  beyond  the  start  of  the  plateau  does  not  significantly 

improve the clustering results. Following the choice of the optimum number of clusters, the 
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centroid  structure  (representative  structure)  of  every  cluster  containing more  than  2%  of  the 

total clustered structures was used for docking. 

2.5.4 Docking 

The crystal structure of Y220C-mp53 bound to PHIKAN083 [55] (PDB ID: 2VUK [56]) was 

used  as  a  control  to  validate  our  docking  protocol.  The  ligand  was  removed  from  Y220C-

mp53  and  the  protein  structure  was  protonated  at  pH  7  using  the  PDB2PQR  server  [51]. 

AutodockTools  [57]  was  used  to  compute  the  partial  atomic  charges  of  both  the  ligand  and 

the  protein  using  the  Gasteiger-Marsili  method  [58].    The  non-polar  hydrogens  of  both  the 

ligand and the protein were merged and the identities of all atoms were assigned according to 

their Autodock 4.2 atom types. AUTOTORS utility in AutodockTools was used to assign the 

rotatable bonds in PHIKAN083. The grid box was centered at the binding pocket near C124 

of the ligand. Docking calculations were performed using the Lamarckian Genetic Algorithm 

[59] in Autodock 4.2 [40]. The default settings for the docking calculations were used for all 

parameters  with  the  exception  of  the  maximum  number  of  generations  and  the  maximum 

number  of  energy  evaluations,  which  were  set  to  28,000  and  50,000,000  respectively.  The 

docked poses were clustered based on an RMSD tolerance of 1 and 2 Å with reference to the 

pose with the lowest energy. 

The selected activators to mp53, namely: PRIMA-1, APR-246, MIRA-1, STIMA-1, MQ, NB, 

stictic  acid,  CP-31398,  ellipticine,  9-hydroxy-ellipticine,  WR-1065  and  WR-2721  were  all 

docked into the representative structures of the chosen clusters. The ligands and the different 

protein structures were prepared as described above. The grid box was also centered at C124 

pocket.    The  predicted  poses  were  clustered  based  on  their  RMSD  values,  with  tolerance 

values  of  1  and  2  Å.  The  energies  of  the  docked  poses  were  also  calculated  using  the 
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Autodock  4.2  scoring  function  [59].  The  lowest  energy  structure  in  the  biggest  cluster 

(RMSD= 1 Å, except for WR-1065 and WR-2721) was chosen as the best binding pose for 

the respective protein representative structure. 

2.5.5 ADMET Prediction 

ADMET  Predictor™  [60]  is  commercially  available  software  that  calculates  the  various 

descriptors of pharmacokinetic properties of tested compounds in order to predict absorption, 

distribution,  metabolism,  excretion  and  toxicity.  It  is  based  on  artificial  intelligence 

algorithms  that  account  for  chemical  similarity  and  a  knowledge  base  of  a  large  number  of 

compounds built into its training set. The 3D molecular structures of the ligands were input 

into  ADMET  Predictor™  [60].  Our  first  objective  was  to  determine  if  all  compounds 

followed Lipinski’s rule-of-five. The software package was also used to predict the physico-

chemical properties of the molecules such as their native solubility (S+Sw) in pure water. In 

addition, we were interested in quantifying the effective permeability of the different ligands 

across  the  intestinal  membrane  (S+Peff).  Other  predicted  properties  included  a  qualitative 

measure  of  the  blood-brain  barrier  permeability  (BBB_Filter),  its  likelihood  of  inhibiting 

glycoproteins (Pgp_Substr) or being effluxed by these proteins (Pgp_Inh). Cardiotoxicity was 

predicted  by  the  estimation  of  the  likelihood  of  inhibiting  the  human Ether-à-go-go-Related 

Gene (TOX_hERG_Filter) potassium channel. A qualitative measure of the liver toxicity was 

also  predicted  based  on  the  likelihood  of  elevation  of  several  liver  enzymes,  including  AST 

also  called  serum  glutamic-oxaloacetic  transaminase  (TOX_SGOT)  and  ALT,  also  called 

Serum  glutamate  pyruvate  transaminase  (TOX_SGPT).  In  addition,  a  global  ADMET  risk 

score  (ADMET_Risk)  is  calculated  for  each  compound;  this  is  a  Simulations  Plus 

computational  filter  developed  using  a  subset  of  the  World  Drug  Index.  All  of  the  above 
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calculations provided an overview of both the potential clinical suitability of the compounds 

tested and also their associated risks and side-effects. 
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Chapter 3 

 

Insights into the Effect of the G245S Single Point Mutation 

on  the  Structure  of  p53  and  the  Binding  of  the  Protein  to 

DNA 
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3.1 Introduction 

The transcription factor p53 is a tumor suppressor protein that responds to cellular stress such 

as genotoxic damage, hypoxia, and other chemical or physical stresses, leading to cell cycle 

arrest, DNA repair and apoptosis [1,2]. In tumors, usually an abnormal cell cycle progression 

is  observed  due  to  activation  of  oncogenes  or  absence/defects  in  tumor  suppressor  proteins 

[3]. Indeed, TP53 is mutated in more than 50% of human tumors. These mutations alter the 

function  of  the  protein,  which  subsequently  aids  cancer  progression  and  adversely  affect 

patient  survival.  It  is  for  this  reason  that  many  efforts  have  been  made  to  find  novel 

chemotherapeutics  that  target  p53.  Such  examples  include  gene  therapy,  modulating  the 

activity of p53 regulators and restoring the wild-type activity to mutant p53 (mp53) [3-5]. 

Some  97%  of  p53  mutations  occur  in  the  core  domain  of  the  protein  [6].  One  of  the  most 

frequent p53 mutants is a mutation in codon 245 of p53 from glycine to serine; G245S-mp53. 

This  mutant  is  classified  as  a  structural  mutant.  In  other  words,  the  mutation  results  in  a 

conformational  change  that  influences  the  binding  of  p53  to  DNA  and  thus  affects  the 

protein’s  transcriptional  activity.  The  transcription  factor,  p53,  binds  as  a  tetramer  to  a 

double-stranded DNA consensus  sequence containing two or more copies of the 10 bp half-

site  50-PuPuPuC(A/T)(T/A)GPyPyPy-30  [7,8].  The  mutation  in  G245S-mp53  is  located  in 

loop L3, which is involved in important interactions with the minor groove of DNA [8-10]. A 

zinc ion in the DNA binding domain (DBD) provides structural stability for the loops L2 and 

L3 and also has an impact on DNA-binding specificity [11]. 

It is difficult to pinpoint the exact effect of the G245S mutation on the process of malignant 

transformation  and  cancer  progression.  However,  a  study  by  Hanel  and  colleagues  has 

demonstrated that while mouse embryonic fibroblasts carrying R248Q and G245S mutations 



 68 

were  both  transcriptionally  inactive  for  p53  target  genes  such  as  p21,  mice  carrying 

humanized  G245S-mp53,  similar  to  p53-null  mice,  had  slower  tumor  onset  and  death 

compared  to  mice  with  the  R248Q  mutation  [12].  Also,  the  same  study  by  Halen  [12]  and 

another  by  Xu et  al.  [13]  have  showed  that  Li-Fraumeni  Syndrome  patients  with  p53  G245 

germline mutations had a later onset of cancer especially when compared to patients with p53 

mutations in R248, which is also located in the loop L3 of the protein. However, in a different 

population-based  study,  G245  hot  spot  mutations  were  found  to  be  correlated  with  poor 

prognosis  and  survival  in  colon  cancer  patients  [14].  Understanding  the  consequences  of 

mutations  on  the  p53  protein  structure  may  serve  as  the  starting  point  for  studies aimed  at 

developing novel p53 targeted cancer therapies. Currently, APR-246 is the only p53 activator 

that  is  in  clinical  trials  [4,15];  it  can  restore  the  transcriptional  activity  of  p53  mutants, 

including  G245S-mp53,  to  p53  target  genes  such  as  PUMA  and  p21.  Stictic  acid  was  also 

shown to restore the activity of G245S-mp53 to express PUMA [16]. In addition, it increased 

the thermal stability of the mutant protein in vitro [16]. 

Several studies which characterize the effects of hotspot mutations on the structure of p53 and 

its  DNA  binding  properties  have  been  reported.  Previous  studies  based  on  X-ray 

crystallography  and  NMR  spectroscopy  have  given  an  important  insight  into  the  biological 

structure  of  the  wild-type  p53  (wt-p53)  (either  complexed  with  DNA  or  free  in  solution, 

referred to as the apo form in this chapter) [8,9,17,18]. Experimental studies have shown that 

the  wt-p53  core  domain  already  has  a  relatively  low  thermodynamic  stability  (melting 

temperature of 42–44°C) while G245S-mp53 has an even lower melting temperature of 39°C 

suggesting  a  moderate  destabilization  of  the  structure  [19].  The  moderate  destabilization  of 

this structural mutant has been further confirmed by heteronuclear single quantum correlation 
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nuclear  magnetic  resonance  (HSQC  NMR)  spectroscopy  where  chemical  shift  changes 

between wt-p53 and the mutant were observed for residues in loop L2, L3 as well as terminal 

residues  of  the b-strands  4,  9  and  10,  while  the  overall  DBD  structure folded  as the  wt-p53 

[20].  As  well,  the  crystal  structure  (apo  protein)  of  the  superstable  mutant  M133L-V203A-

N239Y-G245S-N268D,  a  stabilized  variant  of  the  p53  core  domain,  suggests  small 

conformational changes with respect to the wt in the immediate environment of the mutation 

site  and  in  other  key  residues  in  the  subunit  interface  of  the  core  domain  dimer  bound  to  a 

DNA half-site [21]. However, none of the recent experimental studies have ever resolved the 

structure  of  the  DBD  G245S-mp53  in  complex  with  DNA.  Thus,  to  gain  more  information 

about this pivotal cell cycle protein, computational molecular modeling tools, such as protein 

dynamics  analysis  and/or  thermodynamic  properties  at  the  atomic  spatial  resolution  and 

microsecond temporal evolution, can be used. Demir and coworkers in 2011 and Koulgi et al. 

in  2013  computationally  analyzed  several  hotspot  mutants  including  the  G245S-mp53 

structural mutant [22,23]. In the former study, the overall protein flexibility of the apo wt-p53 

DBD was compared to R175H, G245S, R248Q, R249S, R273H and R282W hotspot mutants 

through the clustering of molecular dynamics (MD) trajectories. The metric used to evaluate 

the  protein  flexibility  was  the  number  of  clusters  obtained  by  certain  RMSD  cutoff  criteria. 

Among the several hotspot mutants considered, G245S-mp53 was also simulated. It showed a 

higher  number  of  clusters  with  respect  to  the  wt  protein  suggesting  that  the  p53  hotspot 

mutations  increase  the  flexibility  of  the  p53  core  domain,  which  indicates  thermodynamic 

instability  in  agreement  with  experimental  studies  [18].  In  the  latter  study  by  Koulgi  and 

coworkers,  the  G245S-mp53  bound  to  DNA  was  analyzed  using  quantum  and  molecular 

mechanics simulations and was compared to the wt-p53-DNA complex. Furthermore, the free 
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energy  of  binding  (EBE)  between  the  p53  DBD  and  DNA,  based  on  MD  simulations,  was 

calculated.  The  mutant  showed  a  slightly  higher  EBE  during  a  30  ns  trajectory.  Hydrogen 

bonding also decreased and was estimated to occupy only 20% of the simulation time. 

In our study, we carried out molecular dynamics simulations on both the wt-p53 and G245S-

mp53 mutant in complex with DNA and in their apo form (not bound to DNA) to understand 

the  structural  effects  of  the  G245S  mutation.  We  performed  comparative  conformational 

analysis between the wt and mutant proteins. Functional Mode Analysis (FMA) was also used 

to identify the collective atomic motions related to the fluctuations occurring in the mutated 

region.  Clustering  was  used  to  identify  representative  conformations  of  the  p53  dimer  in 

complex  with  DNA.  Furthermore,  the  binding  free  energy  of  the  dimer  with  DNA  was 

evaluated by means of the Molecular Mechanics Generalized Born Surface Area (MMGBSA) 

method.  Our  results  have  shown  agreement  with  experimental  data  and  demonstrated 

conformational change in the mutant p53 in both cases: DNA bound and apo forms. 

3.2 Results 

3.2.1 Conformational analysis: apo p53 proteins  

The  apo  p53  proteins  were  simulated  using  MD  for  1 µs.  The  root  mean  square  deviations 

(RMSD) of the proteins’ backbones were calculated during the simulation, compared to their 

starting structures, in order to assess the proteins’ equilibration. The RMSD plots of the apo 

p53 monomers (Figure 3.1) show that the RMSD values plateau after 550 ns for both proteins. 



 71 

 

Figure  3.1.  The  RMSD  plot  of  the  backbone  heavy  atoms  of  both  wt-p53  (blue)  and 
G245S-mp53 (red) apo monomers over 1 µs of MD simulations. 
 

The protein structures obtained in the last 450 ns of simulation were, therefore, used to assess 

the  dynamic  and  structural  differences  between  the  wt  and  mutant  proteins  by  means  of 

calculating  the  root  mean  square  fluctuation  (RMSF)  of  the  individual  protein residues.  For 

the  apo  protein  structures,  the  proteins’  backbones  were  aligned  and  the  RMSF  of  the 

backbone  atoms  for  all   residues  were  evaluated and  compared.  In  Figure 3.2, the  wt  (blue) 

and  mutant  (red)  monomers  show  an  overall  difference  in  terms  of  dynamic  behavior  as 

reflected  by  the  different  patterns  of  the  RMSF  of  the  different  protein  residues.  The 

differences  in  fluctuations  are  shown  in  the  critical  L1  loop  of  wt-p53  (RMSF  of  5  Å)  that 

interacts  with  the  major  groove  of  the  DNA  and  in  K120  that  makes  a  sequence-specific 

contact  with  guanine  and  interacts  with  the  phosphate  backbone  of  the  DNA  through  its 

amide (backbone) nitrogen [9]). On the other hand, loop L1 in the G245S mutant has lower 

RMSF  values  suggesting  that  this  region  becomes  less  flexible.  The  loss  of  the  loop  L1 

flexibility may affect the binding of the mutant to DNA and thus reduce the tumor suppressor 
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Figure 3.2. The RMSF plot of the backbone heavy atoms of the apo monomers of wt-p53 
(blue) and G245S-mp53 (red). The loops L1, L2 and L3 are indicated 
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Figure 3.3. R248 in monomer B of wt-p53 makes direct or water mediated contacts with 
DNA backbone thus retaining its water crystal structures is important 
 

Given  that  a  mutation  in  L3  causes  loss  of  flexibility  in  L1  and  L2,  it  may  be  of  interest  to 

evaluate  existing  correlations  among  the  above-mentioned  protein  areas.  Functional  Mode 

Analysis  (FMA)  was,  therefore,  employed,  as  explained  in  3.4.4.  In  greater  detail,  FMA 

allowed the characterization of the contribution of individual PCA vectors to RMSD of loop 

L3,  yielding  a  single  vector,  which  drives  the  loop  L3  fluctuation  mode,  referred  to  as  the 

ensemble-weighted  maximally  correlated  motion  (ewMCM).  The  analysis  of  the  MD 

trajectory  filtered  on  the  ewMCM,  enabled  the  identification  of  the  residues,  which  are 

maximally correlated with the fluctuation of L3 (Figure 3.4). The residue that contributes the 

most  to  the  whole  loop  L3  (residues  239–251)  fluctuation  is  G245  due  to  the  inherent 

flexibility of the glycine amino acid. A high level of correlation was found between loops L2 

and L3 as well as loop L3 and helix H1 (residues 163–178). A slightly lower, but significant 

correlation  was  also  found  between  loops  L3  and  L1  (residues  112–124).  These  findings 

suggest  collective  atomic  motions  among  key  residues  of  p53  located  at  the  DNA  binding 



Figure 3.4. A plot of the RMSF of apo wt-p53 backbone calculated over all the MD 
trajectory filtered on the ewMCM. The loops L1, L2, L3 are labeled 

3.2.2! Conformational analysis: p53 Dimers in Complex with the DNA 
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Figure 3.5. A plot of the RMSD of monomers B of the p53-dimer in complex with DNA; 
wt-p53 (blue), G245S-mp53 (red). 
 

 

Figure 3.6. The centroids of the two most populated clusters, (a) wt-1 and (b) wt-2 of the 
wt-p53  dimer  and  (c)  mt-1  and  (d)  mt-2  of  the  G245S-mp53  dimer.  The  rotation  of 
monomer B in the mutant is evident in mt-2 in monomer B (blue) relative to monomer A 
(green). 
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Figure 3.7. The RMSF plot for the backbone atoms of monomer B in the p53 dimer. 
Residues E224, V225 and G226 have higher fluctuations in G245S-mp53 compared to 
wt-p53. 
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Figure  3.8. The  minimized  structure  of  the  wt-p53  dimer  in  ribbon  representation. 
Monomer A is in green, monomer B in blue and the DNA is grey. The magenta spheres 
are  residues  E224,  V225  and  G226,  which  are  at  the  interface  between  the  two  p53 
monomers.  The  loop  L1  and  helix-2  in  monomer  B  interact  with  the  major  groove  of 
DNA, while in monomer A they interact with the DNA terminus. 
 

To assess the overall p53 dimer-DNA conformations sampled during the dynamic simulation, 

for  both  the  wt  and  G245S-mp53,  an  RMSD-based  clustering  was  performed  on  the 

equilibrated  trajectory  frames.  The  centroid-linkage,  average-linkage  and  complete  linkage 

algorithms  were  used  to  perform  the  RMSD-based  structural  analysis  via  clustering.  The 

Davies-Bouldin  index  (DBI),  pseudo  F-statistic  (pSF)  and  the  ratio  of  the  sum  of  squares 

regression  to  the  total  sum  of  squares  (SSR/SST)  clustering  metrics  were  calculated  for  the 

last 525 ns of simulation (Figure 3.9). They were also used to assess the clustering quality of 

the average-linkage algorithm used and to guide the choice of the best cluster [22,24]. As the 

choice of the optimum number of clusters is usually made to correspond to a local minimum 

in  the  DBI  value  and  a  plateau  in  SSR/SST  [24],  a  count  of  four  clusters  was  chosen.  The 

largest two of the four clusters contained 55% and 36% of all frames, respectively. The last 

two  clusters  contained  a  negligible  number  of  frames  as  expected  for  MD  simulations  that 
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sample  the  conformational  space  according  to  the  Boltzmann’s  distribution.  The  same 

procedure was followed for the protein residues of the G245S-mp53 dimer-DNA complex on 

the last 1.2 µs (~1200 frames). The optimal number of clusters chosen was 3. Note that 59% 

and  40%  of  all frames  were  found in  the two  most  populated  clusters. In the  case  of  the  wt 

proteins,  the  p53  monomers  had  similar  alignment  to  the  DNA  in  the  two  representative 

structures of the most populated clusters (Figure 3.6). While the representative structure of the 

most populated cluster for the mutant proteins had a similar orientation to the DNA as the wt, 

the  second  most  populated  cluster  showed  misalignment  between  the  two  p53  mutant 

monomers. 

 

 

Figure  3.9. Plots  of  the  DBI,  pSF  and  SSR/SST  clustering  metrics  for  the  equilibrated 
(A) apo and (B) DNA-bound G245S-mp53. The pSF values were normalized to fit on the 
graph. 

3.2.3 EBE Analysis 

For a more quantitative analysis of our results, the total and per-residue EBE between the p53 

dimers  and  DNA  during  the  equilibrated  portion of  the  simulations  were  evaluated.  Indeed, 

the  EBE  of  the  two  monomers,  A  and  B,  to  DNA  can  be  evaluated  independently.  This  is 

reasonable because the monomers can independently bind to the DNA [25]. 
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The  EBE  (ΔΔG0)  between  p53  and  DNA  was  evaluated  using  the  molecular  mechanics 

generalized Born surface area (MMGBSA) approach. For both the wt and mutant p53-DNA 

complexes,  single  equilibrated  MD  simulations  were  used  to  determine  the  energy  values. 

The  total  binding  energies  between  the  protein  dimers  and  the  DNA  for  both  the  wt  and 

mutant p53 are shown in Table 3.1. The calculated EBE between the wt-p53 dimers and DNA 

was -100  kcal�mol-1  (with  a  standard  deviation  (SD)  of  17  kcal�mol-1).  The  G245S-mp53 

dimers  were  calculated  to  have  a  lower  EBE  with  DNA  of  -129  kcal�mol-1  (SD  of  22 

kcal�mol-1).  The  binding  free  energies  between  the  individual  monomers  to  DNA  were  also 

evaluated (Table 3.1). For the wt-p53, monomer A had a EBE to DNA of -60 kcal�mol-1 (SD 

of  15  kcal�mol-1)  while  the  G245S-mp53  had  a  comparable  EBE  to  DNA  of  -55  kcal�mol-1 

(SD  of  13  kcal�mol-1).  For  monomer  B,  however,  the  EBE  of  the  wt-p53  to  DNA  was  -33 

kcal�mol-1 (SD of 12 kcal�mol-1), while for G245S-mp53 the EBE was -70 kcal�mol-1 (SD of 

20 kcal�mol-1). 

 

Table 3.1. A table of the EBE between the p53 dimer and the DNA, the BE between the 
p53 monomer A and B, the BE between monomer A and the DNA and the BE between 
monomer B and the DNA 

EBE of the p53 Dimer to DNA EBE of p53 Monomer A to B 

 EBE 
(kcal��mol-1) 

SD 
(kcal��mol-1) 

 EBE 
(kcal��mol-1) 

SD 
(kcal��mol-1) 

Wt-p53 −100 17 Wt-p53 −4 7 
G245S-
mp53 

−129 22 
G245S-
mp53 

−2 7 

EBE of p53 Monomer A to DNA EBE of p53 Monomer B to DNA 

 EBE 
(kcal��mol-1) 

SD 
(kcal��mol-1) 

 EBE 
(kcal��mol-1) 

SD 
(kcal��mol-1) 

Wt-p53 −60 15 Wt-p53 −33 12 
G245S-
mp53 

−55 13 
G245S-
mp53 

−70 20 
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We  also  calculated  the  EBE  decomposition  of  the  individual  contributing  residues.  When 

comparing the per-residue decomposition, the residues of the wt monomers A had BE’s very 

similar to those of the mutant. The plots in Figure 3.10 show EBE again in residues R280 (2 

kcal�mol-1) and R283 (4 kcal�mol-1), which are both involved in the interaction with the DNA 

major  groove.  In  the  case  of  monomer  B,  an  evident  redistribution  in  the  DNA  binding 

residues  can  be  seen  clearly  for  the  mutant  (red  bars)  compared  to  the  wt  (gray  bars).  The 

residues  located  in  the  loop  L3  (239–250),  which  are  near  the  mutation,  show  an  overall 

redistribution  of  binding  energies:  R248,  which  had  the  lowest  EBE  in  the  wt to  DNA (-12 

kcal�mol-1), showed a EBE increase of about 6 kcal�mol-1 in the mutant. Moreover, the mutant 

had a slight repulsion with residue C242. In addition, new interactions were formed between 

the  DNA  and  residues  C275,  A276  and  C277  of monomer  B  of  the  mutant  but  not wt-p53. 

The residues in loop L1 (114–124) of the mutant also had new DNA contacts with residues 

S121, V122.  

In  general,  for  monomer  B  of  G245S-mp53,  an  increase  in  interactions  is  observed  in  the 

proximity of the major groove of the DNA, except for the key DNA interacting residue R280. 

Near the minor groove of DNA, R248, which is also an important DNA interacting residue, 

lost some of its affinity to DNA. This demonstrates destabilization of the DNA binding in the 

region near the mutation, but an increase in the affinity of loop L1 and other residues binding 

near the major groove of the DNA. 

The  BE’s  between  the  individual  protein  monomers  were  also  calculated.  Our  results  show 

that  the  wt  monomers  bind  with  a ΔΔG0 of -3.6  kcal�mol-1 (SD  of  7 kcal�mol-1)  while  the 

mutant had a corresponding ΔΔG0 of only -2 kcal�mol-1 (SD of 7 kcal�mol-1). 

 



Figure 3.10. A histogram of the per-residue EBE decomposition for (A) monomers A 
and (B) monomers B, each in complex with DNA for both the wt-p53 (blue) and G245S-
mp53 (red). Only the residues with EBE higher or lower than 1 kcal!mol-1 are reported. 
The x-axis represents the residue numbers, the y-axis represents the EBE and the bars 
represent SD. A more pronounced redistribution of EBE is observed for monomer B. 

3.3! Discussion 
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four  identical  subunits  [27],  consisting  of  a  dimer  of  dimers  located  symmetrically  on  the 

consensus site  [8,9]. A stabilized G245S variant (quadruple mutant) of the p53 core domain 

has been resolved by Joerger and his team [28]. It is a multi-site mutant of the p53 and not a 

single  point  mutation  protein.  Moreover,  the  dynamic  behavior  of  the  mutant  cannot  be 

observed using X-ray crystallography. In fact, crystal structures are not able to capture the wt 

protein’s  inherently  unstable  dynamic  core  domain  that  is  known  to  have  a  melting 

temperature of about 42–44 °C [19]. This is even more true for oncogenic mutations that are 

thought to inactivate the native protein function by destabilizing or distorting the wt-p53 core 

domain  [29].  Thus,  computational  simulations  such  as  MD  can  be  useful  to  complete  the 

experimental  results  and  explore  new  venues  of  this  complex  protein  in  both  dynamic  and 

thermodynamic terms. 

The ultimate goal of our research is to generate, by means of in silico molecular modeling, a 

3D structure of G245S-mp53 and develop detailed insights into its behavior when it is in the 

apo form or in complex with DNA. HSQC NMR spectroscopy can be used to experimentally 

detect the structural effect of a mutation on p53 [30]. In a study to compare the structures of 

the  wt  and  G245S-mp53,  Wong  and  coworkers  used  NMR  spectroscopy  [20].  They  only 

found localized chemical shifts in the G245S-mp53, which indicates that the overall tertiary 

structure  of  the  protein  is  similar  to  the  wt-p53.  Briefly,  they  found  chemical  shifts  in  the 

residues located in loops L2 and L3 as well as the terminal residues of the β-strands 4, 9 and 

10. These differences are also reflected by the dynamic behavior shown in our study by the 

RMSF of the apo monomers backbone atoms (Figure 3.2); higher fluctuations in wt-p53 loops 

L1, L2, and L3 are evident.  
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FMA  results  identified  a  collective  motion  of  loops  L1,  L2,  helix  H1  of  wt-p53  that  are 

maximally  correlated  to  the  fluctuation  of  loop  L3,  at  which  the  G245S  lies.  FMA  can 

identify motions of the protein that are not evident in other well-established methods such as 

Principal Component Analysis (PCA) and Normal Mode Analysis (NMA) [31,32]. PCA and 

NMA extract the collective motions with the largest contribution to the variance of the atomic 

fluctuation  and  the  lowest  frequency  modes,  respectively,  whereas  FMA  accounts  for 

collective modes distributed over a number of normal or PCA modes. As different motions of 

the  protein  could  be  related  to  the  functional  quantity  (RMSD  of  loop  L3  in  our  case),  the 

generated frames of the protein are used to estimate the most probable collective motion that 

is responsible for the determined variation in the functional quantity. This is called ensemble-

weighted  maximal  correlated  motion  (ewMCM).  In  the  RMSF  plot  calculated  over  the  MD 

trajectory  filtered  on  the  ewMCM  (Figure  3.4),  the  high  peak  detected  in  G245  may  be 

explained  by  the  inherent  ability  of  glycine  to  adopt  unusual  backbone  dihedral  angles  that 

allows  for  a  higher  flexibility  in  the  wt  protein.  However,  when  the  residue  is  mutated  to 

serine, there is a restriction on the allowed dihedral angles and thus the neighboring residues 

undergo dynamic stiffening (as observed in the RMSF plot of Figure 3.2). Moreover, residue 

C242  in  the  L3-loop,  coordinates  Zn2+  along  with  residues  C176  and  C179  in  the  L2-loop. 

Our  results  suggest  that  after  the  missense  mutation  of  glycine  to  serine  and  its  resultant 

dynamic stiffening on loop L3, a “domino effect” follows which causes a decrease in the L2-

loop  dynamics  when  compared  to  the  wt-p53.  Figure  3.2  also  shows  that  the  L1-loop  of 

G245S-mp53  has  lower  fluctuations  when  compared  with  the  wt  protein.  While  it  was 

difficult to find evidence of correlation between the L1 and L3 loops by visualizing the MD 

trajectory of the proteins, FMA data highlight a collective motion involving loops L1 and L3. 
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The  dynamics  of  the  central  β-strands  scaffold  (res.  110–112;  141–146;  156–163;  195–198; 

204–207;  214–219;  230–236;  251–258;  264–273)  in  the  mutated  apo  protein  are  similar  to 

that of the wt apo protein. However, reduced flexibility is observed in loops L1, L2 and L3 

where  the  key  residues  K120  (L1),  S241  (S8–L3)  A248  (L3)  are  located  and  are  known  to 

interact  directly  with  the  DNA  molecule [9].  This  reduction  of  fluctuations  in  G245S-mp53 

key  regions  may  be  the  reason  for  defective  binding  with  DNA  and  thus  p53  inactivation. 

More specifically, R248 in wt-p53, which is close to the G245 mutation site and is the residue 

with  the  most  gain  in  EBE  with  DNA  upon  mutation,  is  able  to  protrude  into  the  minor 

groove  of  the  DNA  molecule  resulting  in  favorable  electrostatic  interactions  between  the 

positively  charged  guanidinium  group  of  R248  and  the  negatively  charged  DNA  backbone. 

Furthermore, the minor groove adjacent to R248 is compressed and its bases are buckled so 

that  the  side  chain  of  R248  makes  three  water  mediated  hydrogen  bond  contacts  with  the 

DNA molecule. 

The  evident  differences  in  the  dynamics  of  the  key  regions  in  p53,  which  are  known  to 

interact  with  DNA,  have  led  us  to  also  simulate  the  wt  and  G245S-mp53  proteins  each  in 

complex  with  DNA.  To  the  best  of  our  knowledge,  there  are  no  experimentally  resolved 

structures  of  the  G245S-mp53-DNA  complex.  To  create  this  model,  we  used  the  crystal 

structure of wt-p53-DNA complex (PDB ID: 4HJE [8]), and virtually mutated residues G245 

to serine in each monomer. We simulated the p53 dimer, both the wt and mutant proteins, in 

complex  with  DNA  for  more  than  1.5  µs  using  MD  to  reach  a  reasonable  equilibrated 

complex structure. 

For analysis, we assume monomer B is a better model for the p53-DNA interaction since loop 

L1  and  helix-2  of  monomer  A  interact  with  the  terminus  of  the  DNA  rather  than  its  major 
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groove. The RMSF plots of monomer B in the G245S and wt-p53 DNA complexes are shown 

in  Figure  3.7.  It  is  evident  that  the  high  residue  fluctuations  observed  in  the  monomers  in 

loops L1, L2 and L3 are not observed in the DNA complexed proteins. This is expected since 

the  G245S-mp53  3D-model  was  created  by  a  virtual  single  point  mutation  on  the  wt-p53-

DNA complex. The wt protein, when in complex with the DNA, is expected to be more stable 

and hence the high fluctuations that were evident in the apo-monomers would decrease in the 

p53-DNA  [33,34].  Furthermore,  the  overall  [32,33]  structure  may  assume  a  different 

conformation, even far from the DNA binding site, after DNA binding as confirmed by recent 

studies [35]. Nevertheless, our model shows that G245S-mp53 has higher fluctuations in the 

residues between β-strands 7 and 8 (residues 224, 225 and 226), which are normally located at 

the interface of the two protein monomers in the wt-p53. This relatively higher fluctuation in 

the  mutant  protein  indicates  a  possible  interruption  in  the  monomer  interaction  and  the 

exposure  of  these  residues  to  the  solvent.  To  further  investigate  this  issue,  the  trajectory 

analysis  showed  a  relative  displacement  between  monomers  A  and  B.  This  first  qualitative 

result suggests that the mutant dimers undergo rearrangement upon DNA binding resulting in 

a dimer distortion without structural unfolding in agreement with experimental studies, which 

state that there is very little unfolding in G245S-mp53 that is not as structurally destabilized 

as  other  mutants  [36].  To  confirm  the  observation  of  monomer  displacement,  RMSD  based 

clustering was performed to extract representative structures of all the conformational space 

sampled  during  the  MD  simulation.  A  comparison  between  the  centroids  of  the  most 

populated  clusters  has  confirmed  our  observation.  Indeed,  Figure  3.6  shows  symmetrical 

arrangement  of  the  two  protein  monomers  on  the  DNA  in  the  wt-p53  for  almost  the  whole 
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trajectory.  However,  there  is  distortion  in  the  alignment  of  G245S-mp53  monomers  in  its 

second representative structure, which presents about 50% of the trajectory. 

Interestingly, a previous study has shown evidence that mutations in the p53 tetramerization 

domain  can  inactivate  the  wt  protein  in  a  manner  similar  to  that  seen  in  the  mutated  DBD 

[37].  It is  possible  that  the  distortion  in  the  dimer  structure  observed  in  G245S-mp53  might 

not  allow  the  proper  protein  tetramerization  and  hence  decreases  or  disables  the  tumor 

suppressor activity of the p53 [38]. 

To  further  understand  the  relationship  between  the  G245S  mutation  and  its  evident 

consequence of monomer reorientation, a quantitative evaluation of the binding free energies 

between the individual monomers as well as between the dimers to the DNA was obtained by 

means  of  MMGBSA.  This  method  combines  the  molecular  mechanical  energies  with  the 

continuum solvent approach where the electrostatic contribution to the solvent free energy is 

evaluated  by  the  generalized  Born  method.  Koulgi  and  his  team  previously  employed  a 

similar  evaluation  on  a  30  ns  trajectory  [23];  the  evaluated  EBE  of  G245S-mp53  to  DNA 

ranged from -65 to -40 kcal�mol-1. In our work, longer equilibrated trajectories (the last 1 µs) 

were  used  to  identify  the  residues  with  lost  or  new  interactions  with  DNA.  However,  we 

assume that the results for monomer B are more reliable as it is better centered on the DNA as 

explained  earlier  (Figure  3.8).  Surprisingly,  the  binding  energy  of    monomer  B  of  G245S-

mp53 to DNA was lower than that of the wt. This is not expected since G245S mp53 does not 

experimentally bind to p53 response elements [39]. Perhaps adding the entropic contributions 

to  the  EBE  could  give  a  more  accurate  binding  energy.  Also,  the  G245S-mp53  monomers 

could  be  stuck  in  a  local  minimum,  especially  that  they  were  changing  orientation  with 

respect to DNA in our simulations. 
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The  plots  of  the  per-residue  EBE  decomposition  of  monomer  B  to  DNA  showed  complete 

reorganization of the residues interacting with DNA. As shown in Figure 3.10, residues close 

to the G245S mutation such as R248 and C242 have a EBE increase of about 6 kcal�mol-1 and 

2.5  kcal�mol-1,  respectively,  when  compared  to  wt-p53.  These  results  suggest  a 

conformational  rearrangement  in  the  region  close  to  G245S  mutation.  Consequently,  the 

conformational  rearrangement  near  the  G245S  mutation  results  in  disorientation  of  the  p53 

monomers  bound  to  DNA  with  a  consequent  increase  in  the  EBE  of  the  key  DNA  binding 

residue  R280  of  about  4.5  kcal�mol-1  and  gain  of  EBE  of  other  residues  such  as  R280  and 

R283  to  the  DNA  along  with  the  formation  of  non-canonical  DNA  interactions  such  as 

residues 122, 123 and 139. 

The overall effect of EBE redistribution results in misalignment between the monomers that 

probably leads to destabilization of the dimer formation and hence an expected destabilization 

in the tetramer, which would lead to the decrease or loss of the transcriptional activity of p53. 

The binding energies between the protein monomers on the same site of the DNA are high. 

This  is  expected  because  the  tetramerization  domain  has  not  been  simulated,  however  a 

stronger interaction may be found between opposite DBD monomers bound on the same half 

site DNA [40]. 

Finally,  from  the  outcome  of  our  work  emerges  the  suggestion  that  the  L3-loop  stiffening, 

which  also  affects  the  dynamics  of  L1  and  L2,  may  be  responsible  for  the reduction  of  p53 

affinity  to  DNA  in  the  mutated  protein.  Despite  the  fact  that  we  simulated  the  protein  for 

about 1.5 µs, classical MD may still not be able to capture the whole protein dynamics due to 

the  method’s  limited  sampling  capability.  Nonetheless,  our  MD  results  clearly  highlight  the 

G245S mutation as responsible for a dimer reorganization and distortion not observed in the 



 88 

wt-p53. Starting from our findings, enhanced sampling techniques, able to better sample the 

phase  space  in  simulations  of  protein-protein  and  protein-nucleic  acid  molecular  systems, 

together  with  dimensionality  reduction  [41-46]  might  provide  further  insights  into  the  p53-

DNA complex dynamics [47]. 

 

3.4 Materials and Methods 

3.4.1 3D structure preparation 

For the DNA bound proteins, the initial atomic coordinates of the wt-p53 DBD-DNA tetramer 

complex were obtained from the x-ray crystallographic structure with PDB ID: 4HJE [8]. In 

this  structure,  the  DBD  binds  to  DNA  response  elements  composed  of  two  decameric  half-

sites separated by 1bp (5′-TCACAAGTTAGAGDCAAGCCT-3′) [48]. The crystal waters that 

mediated  interactions  between  p53  and  the  DNA  were  retained.  Only  two  of  the  four  p53 

monomers, which bind to DNA on the same side, as well as the bound DNA were included so 

our  simulations  could  be  carried  out  within  a  reasonable  time.  The  starting  structure  of  the 

G245S-mp53  dimer  in  complex  with  DNA  was  obtained  from  the  wt  p53  dimer-DNA 

complex by virtually mutating glycine 245 to serine using PyMol [49]. The protein structures 

were  corrected  using  Molecular  Operating  Environment  (MOE)  software  [50].  The 

protonation  states  of  both  the  mutant  and  the  wt  were  calculated  using  3Dprotonate  [51] in 

MOE  at  pH  7,  with  0.1  M  sodium  chloride  concentration  at  310  K.  Moreover,  the  Zn2+ 

coordinating residues (C176, H179, C238, C242) were deprotonated. Each system, comprised 

of a p53 dimer in complex with DNA and its co-crystallized water molecules, was solvated in 
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a  TIP3P  octahedral  water  box.  The  boundaries  of  the  box  were  chosen  to  provide  a  water 

buffer  of  12  Å  around  the  complex  along  each  dimension  (a  total  of  26,178  explicit  water 

molecules).  Furthermore,  chloride  and  sodium  ions  were  added  to  simulate  a  physiological 

ionic concentration of 0.1 M. The ions were positioned to replace water molecules having the 

highest  electrostatic  energies  on  their  oxygen  atoms.  For  the  apo  p53  monomers,  the  initial 

atomic  coordinates  for  the  apo  wt-p53  monomer  were  obtained  from  the  NMR-resolved 

structure with PDB ID: 2FEJ [18]. The wt and G245S-mutant apo p53 monomers were both 

prepared in the same manner described for the dimers above. All the systems were solvated 

and prepared using AmberTools14 [52]. 

3.4.2 Molecular Dynamics Simulation 

Similar  to  our  previous  study  [53],  the  water  molecules  were  minimized  for  3000  steps  of 

steepest descent followed by 2000 steps of conjugate gradient minimization; heavy restraints 

of  100  kcal/mol·Å2  were  placed  on  the  proteins  and  DNA  [52].  The  restraints  were  then 

removed  and  a  minimization  of  the  whole  system  was  performed  through  a  series  of  2500 

steepest descent followed by 2500 conjugate gradient steps. Further, the system was gradually 

heated  up  to  310  K  in  200  ps  and  maintained  at  310  K  for  another  100  ps  under  constant 

volume conditions (NVT). The particle-mesh Ewald procedure was used to handle long-range 

electrostatic interactions with a 10 Å cut-off. The Langevin thermostat was used with a time 

collision frequency of 2 ps [54]. Hydrogen atoms were constrained by the SHAKE algorithm 

and  the  heavy  atoms  of  the  proteins  backbone  and  DNA  were  heated  using  2  kcal/mol·Å2 

restraints  [55].  These  restrains  were  then  gradually  reduced  and  the  p53  dimers-DNA 

complexes were simulated for 1.5 µs while the p53 monomers were simulated for 1 µs. Before 
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running  the  production  in  the  MD  simulation,  the  systems  were  assessed  by  means  of  their 

potential, kinetic and total energies, the temperature, pressure and the density of the systems 

over the simulation times. All simulations were performed using the Amberff14SB force-field 

[56]. 

3.4.3 Conformational Change Analysis: RMSD and RMSF 

The  system’s  equilibrium  and  the  dynamic  fluctuation  of  p53  residues  were  analyzed  by 

means  of  calculating  mass-weighed  root  mean  square  deviation  (RMSD)  of  the  backbone 

atoms and the residues root mean square fluctuation (RMSF), respectively. These two metrics 

are  measures  of  distance  variation  of  the  protein  atoms  during  the  simulation  and  were 

evaluated using AmberTools14 [52].  

3.4.4 Conformational analysis: FMA  

An  ensemble  of  structures  obtained  from  the  MD  simulations  was  used  to  underline  the 

collective motions directly related to loop L3 fluctuation (functional quantity). We used a set 

of  protein  structures  to  find  the  collective  protein  motion  that  is  maximally  related  to  the 

“functional quantity” e.g., the RMSD of the L3 loop. In other words, we performed FMA on 

the  whole  simulated  MD  trajectory  of  the  apo  p53  monomers  to  highlight  the  collective 

motions directly correlated to the fluctuation of the region involved in DBD mutation as done 

in previous literature studies [44,45,57]. More specifically, considering the variable of interest 

as a linear function of principal components, the maximally correlated vector was obtained by 

maximizing  the  Pearson  coefficient  to  quantify  the  contributions  of  the  individual  PCA 

vectors to the fluctuation of the variable of interest [57].  
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3.4.5 Clustering  

RMSD-based clustering was used to extract protein structures to represent the overall protein 

flexibility  and  thus  provide means  of  examining the  sampled  conformations  during  the  MD 

simulation. RMSD based clustering was obtained with bottom up algorithms such as average-

linkage,  single  linkage  and  centroid-linkage  methods,  all  implemented  in  the  utility  of 

AMBER14.  We  used  the  equilibrated  portions  of  the  MD  trajectories  for  RMSD  based 

clustering  using  the  average-linkage  algorithm in AmberTools14 [52]).  Several  studies  have 

discussed and validated the use of hierarchical algorithms in MD simulations [22,24]. Before 

clustering,  a  mass-weighted  RMSD  fit  of  the  heavy  atoms  of  the  backbone  to  the  protein 

starting  structure  was  performed.  To  assess  the  clustering  quality  and  find  the  optimum 

number of clusters, three clustering metrics: the Davies-Bouldin index (DBI) [58], the pseudo 

F-statistic [59], and the sum of square regression-sum of total sum of square ratio (SSR/SST), 

were  plotted  for  each  cluster  count. The  optimum  number  of  clusters  occurs  at  a  local  DBI 

value minimum, a local pSF value maximum and when the SSR/SST ratios plateau [24]. The 

centroid structures (the structures having the smallest RMSD relative to all the other members 

of the same cluster) of each cluster were extracted and used for comparative analyses. 

3.4.6 Binding Energy Calculation 

The binding free energies of p53 to DNA and the p53 dimers to each other, for both the wt 

and  the  G245S-mp53  mutant  were  calculated  using  the  Molecular  Mechanics  Generalized 

Born  Surface  Area  (MMGBSA)  [60,61].  The  free  energy  was  thus  calculated  with  the 

software  AMBER14  [52].  The  EBE’s  between  p53  (receptor)  and  DNA  (ligand)  were 

calculated for the p53-DNA complexes for the equilibrated structures as: 



Equation 3.1 

Equation 3.2   

Equation 3.3   

Equation3.4
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Chapter 4 

Virtual  screening  using  covalent  docking  to  find  activators 

for G245S mutant p53 
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Note: This  chapter  has  been  modified  for  consistency  with  the  rest  of  the 

thesis;  the  methods  section  has  been  moved  to  the  end  of  the  chapter  and 

some  abbreviations  have  been  changed.  Additional  information  has  been 

added to the introduction and discussion for clarification. 
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4.1 Introduction 

The  transcription  factor,  p53,  binds  to  its  response  elements  to  activate  the  transcription  of 

canonical p53 target genes [1]. It controls various processes in cells such as DNA repair, cell 

proliferation,  metabolism,  senescence  and  apoptosis [1-3].  Since  p53  is  a  master  tumor 

suppressor  protein,  it  is  not  surprising  that  it  is  the  most mutated  protein  in  all  cancer  types 

[4].  Mutations  in  the TP53  gene  often  result  in  a  p53  mutant  protein  that  loses  its  specific 

DNA  binding  ability,  which  consequently  compromises  or  abolishes  the  protein’s  tumor 

suppression function [5, 6]. The great importance of p53 in the context of cancer has made it a 

logical target for anti-cancer treatment [2]. Indeed, the reconstitution of the wild type (wt) p53 

activity  in  mice  induced  rapid  tumor  regression  [7,  8]  although  in  some  cases  it  led  to  the 

emergence of p53-resistant tumors [8] . 

A  synthetic  nine  amino  acid  peptide  CDB3  (REDEDEIEW)  has  been  found  in  a  peptide 

screen to stabilize the p53 core domain [9]. Additionally, it was found to restore the sequence-

specific binding of the I195T (isoleucine to threonine mutation in codon 195) mp53 to DNA 

[9]. CDB3 was derived from the p53 binding protein, apoptosis-stimulating of p53 protein 2 

(ASPP2),  which  enhances  the  DNA  binding  and  transactivation  ability  of  p53  and 

consequently  enhances  the  apoptotic  function  of  the  latter  protein  [10].  It  has  been 

hypothesized  that  CDB3  and its  derivatives  act  as  chaperones  that  bind  to  p53  and  shift  the 

equilibrium of the protein folding towards its native state [11]. CDB3 is then displaced by the 

specific DNA sequence [9, 11]. Such chaperone peptides have some obvious limitations due 

to their large size and poor bioavailability. In addition, they are unlikely to restore the DNA 

binding ability of contact mutants of p53. 
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Small  molecule  p53  activators,  rather  than  peptides,  have  more  advantages  as  therapeutic 

agents in terms of bioavailability, drug administration and compound synthesis. Attempts to 

develop  small  molecules  aimed  at  restoring  the  wt  activity  to  mutant  p53  (mp53)  have 

progressed  in  the  past  years.  In  1999,  Foster  and  colleagues  [12]  reported  the  discovery  of 

CP-31398,  obtained  by  a  library  screen  based  on an in  vitro  biochemical  assay,  in  which 

antibodies  were  used  to  distinguish  between  the  wt  and  mutant  conformations  of  p53.  CP-

31398 was also  shown  to  have  a  stabilizing  effect  on  the  p53  DNA  binding  domain (DBD) 

and enhance the transcriptional activity of wt-p53 in tumor xenografts expressing the mutant 

protein [12, 13]. However, determination of a detailed mechanism of action of CP-31398 still 

remains elusive [14]. A study has shown that the molecule binds tightly to the DNA [15] and 

another  suggested  that  the  molecule  acts  on  other  targets  since  CP-31398  altered  gene 

expression in both p53 dependent and independent manners [15]. 

Other  successful  attempts  at  finding  mp53  rescuers  have  identified  PRIMA-1  (‘p53 

reactivation and induction of massive apoptosis’) and MIRA-1 by means of an in vitro screen 

[17,  18].  The  methylated  derivative  of PRIMA-1,  called APR-246  [19],  is  the  only  small 

molecule  mp53  activator  that  has  reached  clinical  trials  [20].  Both  PRIMA-1  and  APR-246 

are  prodrugs  that  decompose  to  methylene  quinuclidinone  (MQ)  [19].  The  active  MQ, 

characterized by a reactive double bond, was found to react with the cysteine residues of p53 

through  a  Michael  addition reaction,  which restores  the  wt  conformation  and  transcriptional 

activity  of  the  protein  [19]. In silico  analysis  using  molecular  dynamics  (MD)  identified  a 

transiently  open  pocket  in  the  DBD  of  p53  formed  between  loop  L1  and  the  S3  beta-sheet, 

which  contains  three  cysteines  at  residues  124,  141  and  135  [21].  In  that  study,  the  wt, 

R175H, R273H and G245S mp53 proteins were simulated. The calculated solvent-accessible 
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surface area of the three different cysteines revealed that C124 was the most solvent exposed 

cysteine residue at that pocket. Hence, C124 was concluded to be the most likely residue at 

which MQ reacts with mp53 to restore its wt transcriptional activity [21]. This conclusion was 

further  confirmed  by  the  results  from  the  site-directed  mutagenesis  of  C124  to  alanine  [21]. 

MQ  treatment  could  not  inhibit  the  growth  of  Saos-2  cells  in  C124A-R175H-mp53  vs. 

R175H-mp53 transfected cells. Wassman et al. further performed virtual screening using non-

covalent  docking  of  the  NCI  diversity  set  II  and  identified  stictic  acid  as  a  novel  mp53 

activator.  Indeed,  stictic  acid  was  found  to  elicit  the  activation  of  p21,  a  p53  target  gene 

product,  in  a  dose-dependent  manner  in  Saos-2  cells  transfected  with  R175H-mp53. 

Additionally, stictic acid and MQ increased the thermal stability of R175H and G245S mp53. 

We  have  previously  non-covalently  docked  small  molecule  activators  of  mp53  to  R273H-

mp53 [22].  The  docked  covalent  p53  activators  included  MQ,  NB,  STIMA-1,  MIRA-1  and 

CP-31398 [22]. While the five compounds were not predicted to interact directly with C124, 

they  were  within  a  short  distance  that  would  allow  the  reaction  of  the  double  bonds  of  the 

molecules  with  the  thiol  group  of  C124.  On  the other  hand,  our  docking  results  of  the  non-

covalent p53 activators suggest that the activator molecules interact directly with C124. In the 

same study, we also used ADMET Predictor to predict the pharmacokinetics and toxicity of 

the  docked  compounds. Although in silico  toxicity  predictions  indicated  that  stictic  acid is 

less  toxic  than MQ, the  former  compound  was  predicted  to  have  poor  pharmacokinetic 

properties. 

The highest frequency, hotspot, mutations in p53 are categorized based on how the mutations 

alter the protein’s binding to the DNA. p53 variants with a mutation in a residue that natively 

interacts with the DNA in the wt protein are classified  as contact mutants. Other mutations in 
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the  DNA  binding  domain  of  p53  are  classified  as  structural  mutants,  since  they  alter  the 

protein’s  structure  and  therefore  affect  its  binding  to  the  DNA  [23].  G245S-mp53  is  one  of 

the  p53  hotspot  structural  mutants,  which  carries  a  single-point  mutation  in  codon  245  that 

changes the wild-type glycine residue to serine [23]. 

As explained above, previous efforts at finding p53 activators were mainly based on in vitro 

and in vivo studies [9, 14, 19]. In silico screening at C124 has been used to find stictic acid 

[21].  Docking  at  a  cleft  near  loop  L6  was  also  used  to  screen  a  library  of  two  million 

compounds to find activators of Y220C-mp53, which successfully yielded PhiKan083 using 

non-covalent  docking  [24].  In  this  study,  we  used  DOCKTITE  [25],  a  covalent  docking 

protocol,  to  screen  a  subset  of  the  ZINC  database  at  the  C124  pocket  to  find  potential 

activators  of  G245S-mp53.  To  refine  our  predictions,  we  also  used  a  consensus  scoring 

approach  by  combining  two  scoring  functions  to  improve  the  pose  and  binding  energy 

predictions.  Here,  we  report  potential  G245S-mp53  activators  and  some  of  their  predicted 

ADMET properties in this work. 

4.2 Results and Discussion 

4.2.1 G245S-mp53 protein models 

We  performed  MD  simulations  of  the  apo  G245S-mp53  as  well  as  the  DNA  bound  protein 

obtained  from  the  virtual  mutation  of  G245  of  wt-p53  to  serine  in  the  experimentally 

determined structures with PDB ID: 2FEJ and 4HJE, respectively. This was to account for the 

different possible conformations of G245S-mp53. We also used the representative structures 

from  the  MD  simulations  to  account  for  the  protein’s  flexibility  specifically  at  the  binding 
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site. These representative structures were obtained by clustering the equilibrated protein [26] 

based on the RMSD of residues 113-124 and 141-146, which constitute the pocket around the 

reactive C124 residue. Clustering was performed based on the average-linkage algorithm [27] 

using  the  cpptraj  utility  in  Ambertools  [28]. The  choice  of  the  optimum  number  of  clusters 

was guided by the calculated DBI, pSF and SSR/SST clustering metrics for each cluster count 

from 2 to 20. 

 

Figure 4.1:  Plots  of the  DBI,  pSF  and  SSR/SST  clustering  metrics  for  the  equilibrated 
(A) apo and (B) DNA-bound G245S-mp53. 
The pSF values were normalized to fit on the graph. 
 

The choice of the optimum cluster number is not trivial. Ideally, the best number of clusters 

falls at a local minimum DBI value, local maximum pSF value and where the SSR/SST ratio 

starts  to  plateau  [27].  Our  clustering  metrics  did  not  all  fulfill  these  criteria  at  a  particular 

cluster  count,  as  shown  in  Figure  4.1.  As  partial  fulfilment  of  these  criteria,  however,  we 

chose cluster counts of 4 and 2 to represent the last 460 ns and 1 µs of the equilibrated apo 

and  DNA-bound  G245S-mp53.  The  centroids  of  these  clusters  were  used  to  represent  the 

G245S-mp53  for  covalent  docking.  We  used  monomer  B  in  the  DNA-bound  G245S-mp53 

models and removed the bound DNA for docking. 
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4.2.2 Covalent docking of the filtered ZINC library 

While non-covalent docking is a vastly used virtual screening tool, covalent docking has been 

used  less  frequently  in  computational  drug  design.  Nonetheless,  covalent  docking  has  been 

used  successfully  [29-31].  A  previous  study  employing  virtual  screening  using  covalent 

docking  on  the  vaccinia  virus  I7L  ubiquitin-like  proteinase  homology  model  has  reported a 

21% successful hit rate [32].  

In  this  study,  we  used  a  versatile  covalent  docking  protocol  in  the  Molecular  Operating 

Environment  (MOE)  [33]  called  DOCKTITE  [25].  We  assigned  the  thiol  of  C124  as  the 

reaction site for the screened library. We filtered the ZINC library to only include compounds 

that  were  in  stock  and  had  a  molecular  weight  between  300  and  500  daltons,  which  falls 

within  the  weight  range  suggested  by  the  Lipinski’s  rule  of  five  [34].  We  also  filtered  for 

compounds  that  had  moderate  to  standard  reactivity.  This  criterion  was  specified  since  we 

aimed to find covalent activators of p53 that could permanently restore the mutant protein’s 

wild type activity. The final filtered library size was about 130,000 molecules. 

Each of the screened ligands was then tagged at its reaction site and additional stereoisomers 

were  created  for  ligands  with  prochiral  centers.  A  conformational  search  was  performed  in 

MOE until a maximum of 5,000 conformers were generated for each ligand and each isomer. 

A pharmacophore model was automatically generated by MOE to guide the placement of the 

generated conformers at the active site. The docked poses were then evaluated by the Affinity 

dG scoring function in MOE. The top 100 poses of each docked ligand were further refined. 

There  are  two  possible  refinement  methods  in  MOE:  energy  and  grid  minimization.  ROC 

curves  of  the  two  methods  have  demonstrated  that  the  former  is  only  marginally  more 

accurate with an area under the curve of 0.81 vs. 0.79 [25]. This slight increase in accuracy 
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comes  at  the  expense  of  forty  times  the  computational  cost  [25].  For  our  virtual  screening 

purposes we, therefore, used grid minimization for refinement and rescored the refined poses 

using the Affinity dG scoring function. 

We used a consensus-based strategy to rank the top hits. To do this, the highest ranked pose 

for  each  compound  was  then  detached  and rescored  by  the  DSX  scoring  function  as  a  non-

covalently  bound  ligand  since  it  gives  more  accurate  results  [25].  While  the  Affinity  dG 

scoring  function  predicts  the  binding  energy  of  the  ligand,  the  DSX  is  a  knowledge-based 

function  that  scores  ligands  on  how  close  they  are  to  near-native poses  i.e.  experimentally 

resolved complex structures [25]. The screened compounds were ranked based on both scores. 

Table  4.1  shows  a  list  of  the  top  10  potential  activators  based  on  their  DSX  scores  and 

favorable predicted Affinity dG scores. 

 

Table 4.1: The top ten hits from our covalent docking virtual screening. 
The hits are ranked based on their DSX score. The reactive moiety of molecules is tagged by 
‘Ta’,  which  marks  the  thiol  group  of  C124  of  G245S-mp53  in  case  of  a  true  hit.  Mwt= 
molecular weight of the compound. 
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3 
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10 

 
 

 
Thiosemicarbazone 

-8 -2.66 
328 

 

Unlike  all  the  previous  covalent  p53  activators  such  as  MQ,  STIMA-1  and  MIRA-1,  which 

are all Michael acceptors, five of our potential hits were thiosemicarbazones, four were halo-

carbonyls and only one was a Michael acceptor molecule (Table 4.1). The DSX scores, which 

rank near-native binding modes, ranged from -17.5 to -8. The Affinity dG binding energies of 

the compounds ranged from -3.8 to -2.2 kcal�mol-1. 

In conventional non-covalent docking, especially when screening for competitive inhibitors, a 

higher  binding  affinity  is  an  indication  of  better  potential  inhibition.  This  is  due  to  the  fact 

that  a  ligand  that  can  bind  strongly  at  the  active-site  will  likely  decrease  the  chance  of  the 

native substrate from binding. However, analysing the results of covalent molecules aimed at 

activating a protein, like our case, is less trivial. A good p53 mutant activator is a compound 

that  not  only  interacts  with  C124,  like  MQ,  but  also  alters  the  structure  of  the  protein  to 

restore its wild type activity. Nonetheless, a higher DSX score, being an indication of the pose 

being near-native, is an indication that the conformation is likely to exist. Indeed, a 21% hit 

rate  was  achieved  in  a  previous  study  where  virtual  screening  using  covalent  docking  was 

used. 
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4.2.3 ADMET property predictions 

The toxicities of the top 10 compounds were predicted using ADMET PredictorÔ and were 

compared to those of APR-246’s active metabolite called MQ. The prodrug APR-246 is the 

only mp53 activator that is currently in clinical trials [20]. Some of the predicted properties 

are listed in Table 4.2. 

 

Table 4.2: The predicted ADMET properties of MQ and the top 10 potential hits from 
our covalent docking screen.  
Values between brackets indicate confidence levels. 

Compound 
ADMET 

risk score 

BBB 

filter 

hERG 

filter 
Pgp Inh 

Pgp 

substr 
Ser ALT Ser AST 

1 3.8 High 
Yes 

(85%) 

No 

(94%) 

No 

(95%) 

Elevated 

(98%) 

Elevated 

(94%) 

2 1.0 High 
No 

(95%) 

No 

(63%) 

No 

(59%) 

Normal 

(78%) 

Normal 

(62%) 

3 2.9 High 
No 

(95%) 

Yes 

(83%) 

No 

(95%) 

Normal 

(73%) 

Elevated 

(94%) 

4 3.7 High 
No 

(95%) 

Yes 

(69%) 

Yes 

(97%) 

Normal 

(52%) 

Normal 

(70%) 

5 6.0 High 
No 

(59%) 

No 

(65%) 

No 

(58%) 

Elevated 

(84%) 

Elevated 

(94%) 

6 2.8 High 
No 

(95%) 

No 

(94%) 

No 

(85%) 

Normal 

(95%) 

Normal 

(65%) 

7 0.4 High 
No 

(95%) 

No 

(65%) 

No 

(95%) 

Normal 

(60%) 

Elevated 

(69%) 

8 4.4 High 
No 

(82%) 

Yes 

(70%) 

No 

(95%) 

Elevated 

(66%) 

Elevated 

(94%) 

9 1.0 High 
No 

(76%) 

No 

(62%) 

No 

(79%) 

Normal 

(99%) 

Normal 

(89%) 
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10 4.2 Low 
No 

(95%) 

No 

(94%) 

No 

(59%) 

Elevated 

(70%) 

Elevated 

(59%) 

MQ 3.0 High 
No 

(95%) 

No 

(94%) 

No 

(75%) 

Elevated 

(79%) 

Elevated 

(94%) 

 

ADMET PredictorÔ assigns an ADMET risk score to each compound based on its calculated 

pharmacokinetic (PK) and pharmacodynamics (PD) properties; higher scores are assigned to 

less  favorable  properties.  This  parameter  has  been  developed  using  drugs  from  the  World 

Drug Index as a training set. Only 10% of the focused subset of the World Drug Index have 

an ADMET risk score of more than 6.5. MQ had a predicted risk score of 3. Only compounds 

2, 6, 7 and 9 had lower risk scores than MQ (Table 4.2). Interestingly, all the top hits as well 

as MQ, are predicted to cross the blood brain barrier, except compound 10. While compound 

1  was  predicted  to  be  cardiotoxic,  the  remaining  compounds,  including  MQ,  were  not 

predicted  to  inhibit  the  hERG  channel.  Additionally,  most  compounds  were  predicted  to  be 

non-inhibitory  to  p-glycoproteins,  nor  were  substrates  to  these  protein  pumps  that  export 

drugs out of cells. The only exceptions to this were compounds 3 and 8, which were predicted 

to  inhibit  p-glycoproteins.  Compound  4  was  predicted  to  be  both  a  p-glycoprotein  substrate 

and inhibitor. Like MQ, compounds 1, 5, 8 and 10 were predicted to be hepatotoxic and likely 

to cause an elevation in serum levels of both ALT and AST. None of the other compounds are 

expected to elevate serum levels of the two enzymes, except compounds 3 and 7, which were 

predicted  to  elevate  serum  AST  levels.  It  is  worth  noting  that  none  of  our  potential  hits 

violates Lipinski’s rule of five [34]. 
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4.2.4 Compound 2: The best potential hit 

From the results above, compound 1 had a DSX score of -17.5, an Affinity dG score of -2.5 

kcal�mol-1 and an ADMET risk score of 3.8. Compound 2, which had the second highest DSX 

score  of  -16.5,  had  the  highest  Affinity  dG  score  of  -3.5  kcal�mol-1  and  the  second  best 

ADMET  score  of  1.  The  compound  with  the  best  ADMET  risk  score  of  0.4,  had  DSX  and 

Affinity  dG  scores  of  -9.5  and  -2.4  kcal�mol-1,  respectively.  Collectively,  these  predictions 

indicate that compound 2 has the best potential as a G245S-mp53 activator. 

Figure  4.2  shows  the  minimized  G245S-mp53  bound  to  compound  2  at  C124.  Our  model 

shows  that  compound  2  becomes  buried  in  the  core  of  the  protein  (Figure  4.2A).  This  is 

especially true for the fused ring system of compound 2, which becomes surrounded by F109, 

L111,  F113,  V143,  L145,  A159,  I195,  Y234,  Y236,  I255  and  F270  (Figure  4.2B). 

Additionally,  the  amine  group  of  compound  2  is  predicted  to  be  protonated  while  the 

neighboring C141 thiol of G245S-mp53 becomes deprotonated. These moieties are predicted 

to form a salt bridge. The amine group of compound 2 also forms a hydrogen bond with the 

backbone  of  C141  of  the  protein.  Also,  R110  backbone  forms  a  hydrogen  bond  with  the 

hydroxyl  of  compound  2. These  interactions  could  likely  confer  a  conformational  change  in 

G245S-mp53  that  could  lead  to  better  binding  of  the  protein  to  its  response  elements  and 

hence restore the wild activity to this mutant. 
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Figure 4.2: Compound 2 covalently bound to G245S-mp53. 
(A)  The  protein’s  molecular  surface  is  shown  in  grey.  Loop  L1,  where  compound  2  is 
covalently bound, is colored as an orange ribbon. Helix H2 and loop L3, which interact with 
the DNA are colored red and green, respectively. The mutated S245 in loop L3 is shown as 
green spheres. Compound 2 is represented by its molecular surface and is colored based on its 
electrostatic potential. (B) The ligand interaction scheme of compound 2 with the minimized 
G245S-mp53. 
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4.3 Conclusions 

Restoring the wt activity to mp53 is a promising strategy to treat cancer. APR-246 is the only 

mp53 activator that is currently in clinical trials. Our aim was to find potential G245S-mp53 

activators. We created atomistic in silico models of the mutant protein and virtually screened 

the ZINC database library using DOCKTITE’s covalent docking protocol. The filtered library 

was assigned to bind at C124 of G245S-mp53. The ligands were ranked based on consensus 

scoring.  We  used  both  the  knowledge-based  DSX  and  Affinity  dG  empirical  scoring 

functions. We also used ADMET PredictorÔ to predict possible toxicities of the compounds. 

Our  results  show  that  compound  2  has  the  best  potential  as  a  G245S-mp53  activator.  The 

minimized  structure  of  the  complex  composed  of  Compound  2  and  G245S-mp53  protein 

shows  that  the  compound  becomes  buried  in  the  protein  and  its  hydrophobic  portion  forms 

van der Waals interactions with the hydrophobic core of the protein. In vitro testing will be 

required to validate our predictions and, provided this is successful, further select a subset of 

the predicted hits for preclinical development. It is hoped that the work reported here opens 

new avenues for targeting this important cancer biomarker. 

4.4 Methods and Models 

4.4.1 Ligand library preparation  

We  screened  the  ZINC15  database,  which  originally  contains  about  13  million  compounds 

[35].  We  applied  three  criteria  to  filter  the  compounds  and  reduce  the  size  of  the  docked 

database. Our filtered sub-library contained compounds with molecular weights between 300 
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and 500 Daltons and had an octanol-water partition coefficient (logP) between -1 and 5. We 

also  limited  our  search  to  compounds  that  were  in  stock  and  were  categorized  as  mild  to 

reactive. Our final library size was about 130,000 drug-like compounds. We downloaded the 

3D representations of the ligands including their different protomer and tautomers. 

4.4.2 G245S-mp53 preparation  

We created the G245S-mp53 models as described in our previous work [26]. Briefly, we used 

the NMR resolved apo wt-p53 with PDB ID: 2FEJ [36] as well as the X-ray resolved wt p53-

DNA complex (PDB ID: 4HJE [37]) as the starting structures for our models. We used PyMol 

to  virtually  mutate  residue  245  from  glycine  to  serine  [38]. We  MD-simulated  the  mutated 

models for 1 and 1.5 µs, respectively as described in [26]. 

4.4.3 RMSD-based Clustering 

To  account  for  the  flexibility  of  the  protein’s  binding  site  using  a  manageable  number  of 

representative protein models, the structure of the last 460 ns of the equilibrated apo G245S-

mp53 monomer (from 2FEJ) and the last 1µs of the G245S-mp53 monomer B (from 4HJE) 

were  clustered  using  the  cpptraj  utility  in  Ambertools  [28].  Clustering  using  the  average-

linkage bottom-up algorithm was based on the root-mean-squared deviation of residues 113-

124 and 141-146, constituting the pocket around the C124 site. We used the Davies-Bouldin 

index (DBI), the pseudo F-statistic (pSF) and the sum of square regression-sum of total sum 

of  square  ratio  (SSR/SST)  clustering  metrics  to  determine  the  clustering  quality  and  the 

optimum number of representative clusters [27]. Generally, lower DBI and higher pSF values 

signal better clustering. The SSR/SST ratio was used following the "elbow criterion" for the 
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choice of the number of clusters [27]. The centroid structures, which have the lowest RMSD 

to all the other conformations in the cluster, were used to represent the flexibility of the active 

site during docking. 

4.4.4 Covalent docking using DOCKTITE 

We  employed  the  DOCKTITE  protocol  to  virtually  screen  the  filtered  sub-library  using 

covalent  docking  [25].  The  first  step  of  the  protocol  is  to  screen  the  molecules  for  reactive 

electrophilic  warheads.  For  each  compound  in  the  filtered  sub-library,  the  ligands  are  each 

attached to the nucleophilic thiol of C124. Additionally, stereoisomers were also created for 

prochiral  compounds.  A  pharmacophore  model  of  the  active  site  is  also  automatically 

generated. The active site was defined by residues 113-124 and 141-146 as well as all atoms 

within  9  Å  from  the  center  of  the  selected  residues.  As  part  of  the  DOCKTITE  protocol, 

stochastic  sampling  was  used  to  generate  5,000  possible  conformations  of  the  ligands. 

Docking  of  the  5,000  conformers  was  then  performed  and  was  guided  by  the  previously 

generated  pharmacophore  model.  The  docked  conformers  were  first  evaluated  by  the 

empirical  Affinity  dG  scoring  function.  Based  on  their  scores,  the  top  100  poses  are  further 

refined  using  the  grid  minimization  method  then  rescored  using  the  Affinity  dG  scoring 

function.  For  better  estimation  of  the  results,  the  ligands  were  then  cleaved  from  the 

nucleophilic side-chains and rescored. Identification of the top hits at this stage was based on 

consensus  scoring.  The  external  knowledge-based  scoring  function,  DSX  [39],  was  used  to 

rank the different poses of a compound based on their similarities to near-native poses. The 

binding energy of the pose that ranked first with the DSX function was then recalculated with 

MOE’s Affinity dG empirical scoring function. 



 117 

4.4.5 ADMET PredictorÔÔ 

We  used  ADMET  PredictorÔ  of  SimulationsPlus  [40]  to  predict  compound  toxicities. 

ADMET predictor  is  a  machine  learning  algorithm  that  calculates  various  properties  and 

toxicities  of  compounds  and  assigns  an  ADMET  risk  score  to  them  called  ‘ADMET  risk’; 

higher  scores  indicate  less  favorable  pharmacokinetic  and  pharmacodynamic  properties.  We 

calculated  the  ligands’  blood  brain  barrier  penetration  ‘BBB  filter’,  their  inhibition  of  the 

hERG  potassium  channel  of  the  heart  ‘hERG  filter’,  the  likelihood  of  the  compounds  to 

inhibit or be substrates of p-glycoproteins ‘Pgp Inh’ and ‘Pgp substr’, respectively. We also 

calculated  the  hepatotoxic  potential  of  the  compounds  by  predicting  their  effect  on  serum 

alanine transaminase ‘Ser ALT’ and aspartate transaminase ‘Ser AST’ liver enzymes. 
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Chapter 5 

The  molecular  mechanism  of  action  of  methylene 

quinuclidinone  and  its  effects  on  the  structure  of  p53 

mutants 
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Note: This  chapter  has  been  modified  for  consistency  with  the  rest  of  the 

thesis.  Some  abbreviations  have  been  changed  and  supplementary  material 

in  the  original  publication  has  been  moved  to  the  body  of  the  chapter. 

Additional information has been added to the discussion for clarification. 
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5.1 Introduction 

p53  is  the  master  tumor  suppressor  protein [1-3].  It  regulates  diverse  cellular  processes 

including cell proliferation, apoptosis, senescence, metabolism and DNA repair [1-3]. While 

p53  is  involved  in  several  transcription-independent  protein-protein  interactions [4],  it 

primarily mediates its activities by acting as a transcription factor that binds to p53 response 

elements  to  activate  the  transcription  of  canonical  p53  target  genes  [3].  Given  the  vital 

importance of p53 in eukaryotic cells, especially its unequivocal tumor suppressor activity, it 

is not surprising that the p53 pathways are almost always disrupted in all types of cancers [5]. 

With a mutation rate of more than 50%, TP53 is the most mutated gene in cancer [6]. These 

mutations  often  result  in  the  loss  of  the  tumor  suppressor  activity  of  p53  [7,  8].  The  great 

importance of p53 in the context of cancer has made it an obvious but elusive target for anti-

cancer treatment. Many strategies have been undertaken to reactivate the p53 pathways; one 

of these strategies is the restoration of the wild-type (wt) activity to mutant p53 (mp53) [1]. A 

few  compounds  have  been  identified  to  restore  the  wt  activity  to  mp53  including  PRIMA-1 

(short  for  ‘p53  reactivation  and  induction  of  massive  apoptosis’)  [9], mutant  p53-dependent 

induction of rapid apoptosis-1 (MIRA-1) [10], CP-31398 [11], 3-Methylene-2-norbornanone 

(NB)  [12], SH  group  Targeting  and  Induction  of  Massive  Apoptosis  (STIMA-1)  [13]  and 

stictic acid [14]. 

APR-246, the methylated derivative of PRIMA-1, is the only mp53 activator that is currently 

in clinical trials [1, 15, 16] . A study by Lambert et al. [9] showed that PRIMA-1 and APR-

246 are both prodrugs whose active product is methylene quinuclidinone (MQ). While it has 

been  well-established  that  MQ  restores  the  wt  activity  to  mp53,  additional  mechanisms  of 
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MQ action, reviewed in [17], have been proposed. Nevertheless, MQ was primarily found to 

restore  the  transcriptional  activity  of  mp53.  This  is  supported  by  the  fact  that  PRIMA-1-

treated-mp53,  transferred  to  p53  null  cells  using  the  Chariot  protein  transfer  reagent.,  led  to 

the activation of p53 target genes transcription and the induction of apoptosis [9]. Moreover, 

PRIMA-1 restores the correct folding of mp53 as evidenced by the binding of mp53 to wild-

type  p53  (wt-p53)  conformation-specific  PAb  1620  antibodies [9,  17,  18].  Also,  differential 

scanning fluorimetry assays demonstrate that MQ increases the thermal stabilization of both 

G245S and R175H [14]. 

As  mentioned  above,  MQ  is  the  active  product  that  reactivates  mp53.  MQ  is  a  Michael 

acceptor,  an  α,β-unsaturated  carbonyl  compound,  that  reacts  with  and  binds  covalently  to 

thiol groups in p53 increasing the mass of the protein and decreasing the percentage of its free 

thiols [9]. In silico modeling has shown that C124 is the most solvent accessible cysteine in 

p53  [14].  Furthermore,  a  pocket  formed  by  loop  L1  (residues  113-123)  and  beta-sheet  S3 

(residues  141-146),  near  C124,  was  found  to  transiently  open  during  molecular  dynamics 

(MD)  simulations  of  the  protein.  Site-directed  mutagenesis  of  C124  to  alanine  further 

confirmed the importance of this cysteine for the reactivation of mp53 by MQ [14]. The same 

study has also identified stictic acid as a p53 reactivator by virtually screening the NCI library 

at the C124 pocket [14]. 

We have previously docked MQ, NB, MIRA-1, STIMA-1, CP-31398, ellipticine, 9-hydroxy-

ellipticine,  WR-1065  and  WR-2721  at  the  L1/S3  site  near  C124  [19].  As  a  result  of  this 

research, we have found that the reactive double bonds of the alkylating molecules MQ, NB, 

MIRA-1, STIMA-1 and CP-31398, are all directed towards the C124 thiol group in their best 
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binding  poses.  However,  ellipticine,  9-hydroxy-ellipticine,  WR-1065  and  WR-2721,  which 

are non-alkylating p53 activators, were predicted to interact directly with C124. 

Two of the highest frequency p53 mutant proteins, are R175H and R273H mp53, which differ 

from  the  wt  protein  sequence  by  a  single  missense  mutation  of  the  DNA  binding  domain 

arginine  residues  at  positions  175  and  273  to  histidine,  respectively [7,  8].  The  former  p53 

variant belongs to a class called structural mutants [20]. These proteins have a mutation in the 

DNA  binding  domain  (DBD)  residues,  which  do  not  directly  interact  with  DNA  yet  cause 

structural  unfolding,  which  prevents  p53  from  binding  to  its  response  elements  [20].  The 

latter  protein  is  classified  under  contact  mutants,  in  which  the  mutation  is  in  one  of  the 

residues  that  directly  interact  with  DNA  [20].  Although  R175H  and  R273H  mp53  are 

different  types  of  mutants,  which  are  structurally  distinct  [20],  these  two  p53  variants  are 

reactivated by MQ [9, 14].  

Considering the unquestionable importance of p53 in maintaining and protecting the integrity 

of cells, it is disappointing that only one mp53 reactivator is currently in clinical trials. This 

fact has been attributed to the general perception that p53 is undruggable [1]. In this study, in 

order  to  challenge  this  perception  we  aim  to  understand  the  structural  effect  of  the  covalent 

binding  of  MQ  to  C124  of  the  two  mp53  proteins.  Moreover,  we  aim  to  understand  if  MQ 

alters structural (R175H-mp53) and contact (R273H-mp53) mutants differently. To this end, 

we have created equilibrated in silico atomistic models of the wt protein, the two mutants, as 

well  as  their  ‘drugged’ forms  in  which  MQ  is  covalently  bound  to  residue  C124  in the  two 

mutants. The protein-DNA complexes were simulated for 750 ns to help achieve these goals. 

We analyzed the structures of these p53-DNA complex variants and compared them to the wt-

p53-DNA complex. Important consequences emerged, which are discussed below. 
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5.2 Results 

5.2.1 p53-DNA complex structures 

Mutant  proteins:  We  used  chain  B  of  the  p53-DNA  complex  1TSR  [21]  PDB  structure  to 

create our models. R175H and R273H mp53 proteins were created by virtually mutating the 

arginine residues, at positions 175 and 273, to histidine using Pymol [22], respectively. 

 

Drugged  mutant  proteins:  We  extracted  the  representative  structures  of  R175H  and  R273H 

mp53 for the MD simulation times from 60 to 80 ns. We covalently docked MQ to C124 of 

the  representative  structures  of  the  most  populated  clusters  of  each  mutant.  The  covalent 

docking results for both R175H-mp53 and R273H-mp53 are described in Table 5.1. The fact 

that MQ binds better to the less-populated clusters of mp53 can be attributed to the fact that 

the L1/S3 pocket (around C124) opens transiently [14]. The reaction of MQ’s methylene with 

the  sulphide  of  cysteine  renders  the  reactive  carbon  of  MQ  chiral. Therefore,  there  are  two 

possible  modified-C124  epimers  from  this  reaction,  which  we  refer  to  as  ‘CmQA’  and 

‘CmQB’  in  this  chapter.  The  chosen  poses  from covalent  docking  were  the  drugged  protein 

starting structures for our MD simulations. 

Following this, the wt-p53, R175H-mp53, R175H-CmQA-p53, R175H-CmQB-p53, R273H-

mp53,  R273H-CmQA-p53  and  R273H-CmQB-p53  each  complexed  with  DNA were 

simulated  in  explicit  solvent  using  MD  for  750  ns.  These  simulations  are  referred  to  as  the 

original simulations in this chapter. We calculated the root-mean-square deviation (RMSD) of 

all  the  p53  variants’  non-hydrogen  atoms  over  the  course  of  the  simulations  to  assess  the 

proteins’ equilibration. Figure 5.1 shows that all the p53 variants have equilibrated after 300 



 128 

ns of the simulation. This is evident by the plateauing in the RMSD values after 300 ns. All 

further analysis and comparisons reported in this chapter were performed on the last 450 ns of 

the MD simulations (from 300 to 750 ns). 

Additionally, we ran 500 ns simulations of R175H-CmQB-p53 and R273H-CmQB-p53 DNA 

complexes as controls to assess the reproducibility of our results. 

 

Table  5.1. Covalent  docking  results  of  MQ  to  C124  of  the  representative  structures  of 
the two p53 mutants. 
CovalentDock  webserver  runs  the  docking  calculation  ten times.  We  chose  the  best  binding 
pose to start our MD simulations based on the predicted binding energy and number of poses 
in  the  cluster.  The  docking results  of  the  third representative  structure  of  R175H-mp53  had 
the  best-predicted  binding  energies  for  both  epimers  A  and  B  and  all  the  predicted  poses 
belonged to the same docking bin. For R273H-mp53, the second representative structure from 
MD  simulations  had  better  docking  cluster  sizes  than  the  first  and  their  predicted  binding 
energies were almost the same. 

Epimer 
Lowest binding 
energy 

(kcal��mol-1) 

Cluster size to which the best 
pose belongs 

Number of clusters 
from docking 

R175H-mp53 representative structure 1 
A -7.22 6 5 
B -7.76 5 3 

R175H-mp53 representative structure 2 
A -7.48 10 1 
B -8.12 2 3 

R175H-mp53 representative structure 3 
A -9.74 10 1 
B -10.03 10 1 

R273H-mp53 representative structure 1 
A -9.73 8 2 
B -9.99 10 1 

R273H-mp53 representative structure 2 
A -9.18 10 1 
B -9.50 10 1 
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Figure 5.1. RMSD of the p53 variants non-hydrogen atoms over 750 ns. 
The plot shows that all the p53 variants have equilibrated after 300 ns. Color scheme: wt-p53 
(black),  R175H-mp53  (red),  R175H-CmQA-p53  (yellow),  R175H-CmQB-p53  (blue), 
R273H-mp53 (cyan), R273H-CmQA-p53 (purple) and R273H-CmQB-p53 (green). 
 

5.2.2 Binding energy of p53 to DNA 

Total binding energy 

We  used  MMPBSA.py  [23]  in  Ambertools  to  evaluate  the  binding  energies  of  the  p53 

variants  to  DNA  over  the  last  450  ns  of  the  MD  simulations  (Figure  5.2).  The  calculated 

binding energies constituted the enthalpic and solvation energy contributions due to binding. 

Similar to our previous study [24], the change in conformational entropy due to binding was 

not  included  in  our  calculations;  we  refer  to  this calculated  binding  energy  as  the  estimated 

binding  energy  (EBE).  For  the  wt-p53,  the  EBE  of  the  protein  to  DNA  was  -58  kcal�mol-1 

with a standard deviation (SD) of 17 kcal�mol-1. The structural mutant R175H-mp53 had an 

EBE  of  -39  kcal�mol-1 (SD=11  kcal�mol-1),  which  is  almost  20  kcal�mol-1  more than  the  wt. 
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For  R175H-CmQA-p53  and  R175H-CmQB-p53,  however,  the  EBE was -95  (SD=14 

kcal�mol-1) and -110 kcal�mol-1 (SD=19 kcal�mol-1), respectively. This shows that there was a 

marked  increase  in  the  affinity  of  the  drugged versus undrugged  structural  mutants  to  the 

DNA.  

The contact mutant, R273H-mp53, on the other hand, had an EBE of -49 kcal�mol-1 (SD=15 

kcal�mol-1) and its drugged variants, with the CmQA124 and CmQB124 residues, had EBEs 

of -49 kcal�mol-1 (SD=15 kcal�mol-1) and -36 kcal�mol-1 (SD=12 kcal�mol-1), respectively. It 

is  expected  that  R273H-mp53  would  have  a  lower  affinity  to    DNA  than  wt-p53  since  the 

native  R273,  which  normally  forms  an  electrostatic  interaction  with  the  DNA  backbone,  is 

mutated  to  the  uncharged  histidine  residue.  The  EBEs  of  R273H-CmQA-p53  and  R273H-

CmQB-p53  indicate  that  the  binding  of  MQ  to  R273H-mp53  does  not  increase  the  binding 

affinity  of  the  modified  protein  to  the  p53  response  elements.  This  is  an  indication  that  the 

gain in binding energy due to the mutation of arginine is not restored by the reaction of MQ 

with R273H-mp53. In fact, the mutant with epimer B has an even lower affinity to the DNA, -

36 kcal�mol-1 (SD=12 kcal�mol-1) compared to -49 kcal�mol-1 (SD=15 kcal�mol-1) even when 

taking the standard deviation of the EBE into account. 
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Figure 5.2. A bar graph of the EBEs of the p53 variants to DNA. 
The  binding  energies  of  wt-p53,  R175H-mp53,  R175H-CmQA-p53,  R175H-CmQB-p53, 
R273H-mp53,  R273H-CmQA-p53  and  R273H-CmQB-p53  to  DNA  were  estimated  using 
MMGBSA  calculations  from  time  300  to  750  ns  of  the  MD  simulations.  The  error  bars 
represent  the  standard  deviation  of  the  estimated  binding  energies  during  the  simulation. 
Color  scheme:  wt-p53  (black),  R175H-mp53  (red),  R175H-CmQA-p53  (yellow),  R175H-
CmQB-p53  (blue),  R273H-mp53  (cyan),  R273H-CmQA-p53  (purple)  and  R273H-CmQB-
p53 (green). 
 

Per-residue EBE 

We further calculated the decomposition of the EBE per each residue of the complex to better 

understand the change in the interaction between the different p53 models and  DNA. Figure 

5.3 shows the contributions of the residues that had a lower EBE than -1 kcal�mol-1 or higher 

than 1 kcal�mol-1, for any of the p53 variants. Additionally, we also calculated the differences 

of  these  contributions  between  each  residue  of  the  p53  variants  (DGp53  variant  res)  and  the 

residues of wt-p53 (DGwt-p53 res) (Equation 5.1). These differences (ΔΔGres diff) were depicted 

on the p53 variants-DNA complex structures; the residues were colored as heat maps, ranging 

from blue (largest gain in EBE) to red (largest loss in EBE). 



Equation 5.1    

 

! !
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K139,  H178,  L137,  H115,  R181,  V274,  M243,  E287,  D281,  C176  and  C242.  R273  had  the 

highest  affinity  to  DNA  in  the  wt  and  R175H-mp53  models,  with  an  EBE  of  about  -10 

kcal�mol-1 (Figure 5.3A). However, this interaction was completely lost in R273H-mp53 since 

the  positively  charged  arginine  residue  is  mutated  to  the  neutral  histidine,  which  also  has  a 

shorter side-chain. Figure 5.3A shows that the interactions with K120, S121 and V122 of loop 

L1 as well as N247 and R249 were diminished in R273H-mp53 compared to the wt protein. 

On  the  contrary,  there  were  new  interactions  formed  between  the  DNA  and  H115,  Q136, 

L137,  K139,  H178,  R181  and  A276  of  R273H-mp53  (Figure  5.3A). Like  R175H-mp53, 

almost  all  the  other  interactions  in  wt-p53  were  also  present  in  R273H-mp53,  within  their 

standard  deviation  ranges,  with  the  exception  of  C275,  which  is  much  stronger  in  R273H-

mp53. 

The  interaction  profiles of R175H-mp53  and  R273H-mp53  with  DNA  suggest  that  these 

mutants have different binding poses to DNA compared to the wt-p53. 
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Figure 5.3. A bar graph of the decomposition of the EBE per-residue of p53 to the DNA. 
Only  the  residues  contributing  more  or  less  than  1  kcal�mol-1  to  the  EBE  are  shown.  (A) 
Comparison  between  wt-p53  and  the  mutants:  R175H-mp53  and  R273H-mp53.  (B) 
Comparison between wt-p53, R175H-mp53 and its drugged variants R175H-CmQA-p53 and 
R175H-CmQB-p53. (C) Comparison between wt-p53, R273H-mp53 and its drugged variants 
R273H-CmQA-p53  and  R273H-CmQB-p53.  The error  bars represent  the  standard  deviation 
of  the  EBE  for  each  residue.  Color  scheme:  wt-p53  (black),  R175H-mp53  (red),  R175H-
CmQA-p53  (yellow),  R175H-CmQB-p53  (blue),  R273H-mp53  (cyan),  R273H-CmQA-p53 
(purple) and R273H-CmQB-p53 (green). 
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Figure 5.4. The difference in the EBE contribution of the mutant protein residues vs. wt-
p53. 
A  heat  map  representation  of  the  difference  between  the  EBE  contributions  of  the  residues 

(ΔΔGres diff) in the (A) R175H-mp53 and (B) R273H-mp53 vs. wt-p53 residues. The mutation 
sites are shown by their vdW representation. DNA interacting residues are shown by their line 

representation and color-coded according to their ΔΔGres diff, shown on the scale. 
 

Drugged  R175H-mp53 versus wt-p53:  R175H-CmQA-p53  and  R175H-CmQB-p53  had  an 

EBE of  -95 and -110 kcal�mol-1, respectively, which was lower than the EBE of the wt-p53 

to  DNA (-58  kcal�mol-1).  On  further  analysis  of  the  interactions  between  the  individual  p53 
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residues  and  the  DNA,  Figure  5.3B  and  Figure  5.5  revealed  that  both  drugged  mutant 

epimers, not only restored most of the lost interactions due to mutation, but also formed new 

interactions with the DNA. 

Compared to R175H-mp53, the interactions of K120, S121 and V122 in loop L1, where the 

C124 MQ reaction site is also located, were restored in both drugged variants (Figure 5.3B). 

In addition, the strong interactions of R249 and R283, which had the second highest affinity 

to  DNA  in  the  wt-p53,  were  also  restored.  The  interaction  of  Q165  in  loop  L2  was  only 

present in wt-p53 and both drugged forms of the mutant protein. The relatively weaker N247 

interaction  present  in  the  wt  protein  was  also  recovered  in  R175H-CmQA-p53.  Also,  the 

weak interaction of H168 with the DNA and wt-p53 was also present in R175H-CmQB-p53. 

It  is  most  intriguing  that  both  R175H-CmQA-p53  and  R175H-CmQB-p53  also  formed  new 

interactions  with  DNA  via  K132,  P250  as  well  as  K164  in  loop  L2.  Moreover,  R175H-

CmQB-p53 formed an additional new interaction through Q167.  

However, the only residue whose interaction was not restored by either drugged form was a 

weak interaction of -1 kcal�mol-1 formed by A119 in the wt-p53-DNA complex. Interestingly, 

the interactions with DNA via residues C275 and A276, which were formed in R175H-mp53, 

were almost absent in the drugged structural mutants, like the wt protein. 
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Figure 5.5.  The  difference  in the  EBE  contribution  of  R175H-CmQA-p53  and  R175H-
CmQB-p53 vs. wt-p53. 

A heat map representation of the difference between the EBE residue contributions (ΔΔGres 

diff)  of  the  (A)  R175H-CmQA-p53  and  (B)  R175H-CmQB-p53  vs.  wt-p53.  The  H175  and 
CmQ124  are  shown  by  their  vdW  representation.  DNA  interacting  residues  are  shown  by 
their line representation and color-coded according to the EBE difference from wt-p53, shown 
on the scale. 
 

Drugged  R273H-mp53  vs.  wt-p53:  The  decomposition  of  the  EBE  for  these  variants  are 

shown  in  Figure 5.3C  and  the  heat maps  of  the  complexes  in  Figure 5.6.  Our  models  show 

that in both R273H-CmQA-p53 and R273H-CmQB-p53, the favorable interactions of R283, 



 138 

R280, R248, N239, A119 and M243 with the DNA were maintained, like the wt and the non-

drugged contact mutant form. Figure 5.3C suggests that MQ binding restored the interaction 

of R249 and N247, like wt-p53, but not R273H-mp53, with the DNA. Also, R273H-CmQA-

p53, like the wt, formed interactions with the DNA via K120 and S121 in loop L1. R273H-

CmQB-p53, on the other hand, formed weak interactions with the DNA via residues T118. It 

is  worth  mentioning  that  R273H-CmQB-p53  also  formed  an  interaction  with  K132,  like  the 

R175H-mp53  drugged  forms,  although  it  was  stronger  in  the  latter  models.  R273H-CmQA-

p53, like  R175H-CmQB-p53, also interacted with the DNA via Q167. 

While  our  R273H-mp53  model  interacted  with  the  DNA  via  residues  H115,  Q136,  L137, 

K139,  H178,  R181  and  V274,  none  of  these  interactions  existed  in  the  drugged form  of the 

mutant  nor  wt-p53.  The  drugged  protein  variants,  however,  unlike  the  wt  protein,  did  not 

interact with the DNA via V122, C277 nor with the mutated H273 residue. 
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Figure 5.6. The  difference  in the  EBE  contribution  of  R273H-CmQA-p53  and  R273H-
CmQB-p53 vs. wt-p53. 
A heat map representation of the difference between the EBE contributions of the (A) R273H-
CmQA-p53  and  (B)  R273H-CmQB-p53  residues  vs.  wt-p53.  The  H273  and  CmQ124  are 
shown by their van der Waals (vdW) representation. DNA interacting residues are shown by 
their line representation and color-coded according to the EBE difference from wt-p53, shown 
on the scale. 
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5.2.3 Placement of the DNA 

Alignment  of  the  DNA  to  p53:  We  used Ambertools  [25] to  create  the  average  structure  of 

each p53-variant-DNA complex over the equilibrated part of the MD simulations (from 300 

to 750 ns). We fitted the p53 variants’ backbone to the wt-p53 to compare the relative DNA 

positions of the different complexes. In Figure 5.7, the DNA of wt-p53 was horizontally on 

the  plane,  marked  by  its  DA5’  end.  However,  the  DA5’  ends  of  the  DNA  of  R175H-mp53 

and  R273H-mp53  were  projected  in  and  out  of  the  plane,  respectively  (Figure  5.7A). 

However,  the  superimposition  of  the  drugged  p53  variants  average  structures  on  the  wt 

protein revealed that their complexed DNA stayed in the plane in a manner similar to that of 

the wt-p53-DNA (Figure 5.7B). 

 

 

Figure 5.7.  Superimposition  of  the  p53  variants  shows  the displacement  of  the  DNA  in 
the mutants’ complexes. 
(A)  The  DNA  in  the  R175H-mp53-DNA  and  R273H-mp53-DNA  complexes  are  displaced 
compared  to  the  wt-p53-DNA  complex.  (B)  The  DNA  molecules  of  the  drugged  mutants 
complexes were better overlaid with the DNA of the wt-p53. Color scheme: wt-p53 (black), 
R175H-mp53  (red),  R175H-CmQA-p53  (yellow),  R175H-CmQB-p53  (blue),  R273H-mp53 
(cyan), R273H-CmQA-p53 (purple) and R273H-CmQB-p53 (green). 
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RMSD  of  the  DNA:  We  also  calculated  the  RMSD  of  the  DNA  in  the  different  complexes 

relative to the DNA in the average wt-p53 complex structure to assess the DNA alignment in 

a  more  quantitative  manner.  Figure  5.8  shows  that  the  RMSD  of  the  wt-p53  DNA  had  an 

average value of about 3.6 Å and reaches 9.6 Å during the simulation, relative to the wt-p53 

average  structure.  The  DNA  of  the  structural  mutant  had  average  and  maximum  RMSD 

values  of  12.8  and  21.9  Å,  respectively,  compared  to  the  average  wt-p53  DNA. Its  drugged 

forms,  on  the  other  hand,  had  much  lower  RMSD  compared  to  the  mutants  with  average 

values of 7.2 Å and 5.5 Å for the ‘A’ and ‘B’ forms, respectively.  

The  DNA  of  R273H-mp53  had  the  highest  RMSD  from  that  of  the  wt  with  average  and 

maximum  RMSD  values  reaching  22.3  Å  and  28.5  Å,  respectively.  Although  both  R273H-

CmQA-p53  and  R273H-CmQB-p53  had  lower  average  RMSD  of  9.7  and  12.4  Å, 

respectively, only the former lied within the RMSD ranges of the wt. 

 

 

Figure  5.8.  DNA  RMSD  in  the  p53  variant  complexes  compared  to  the  wt-p53  DNA 
from 300 to 750 ns. 
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Wt-p53 has an RMSD of about 3 Å compared to its average structure. The drugged mutants 
have  average  RMSD  values  ranging  from  9-15  Å.  R175H-mp53  and  R273H-mp53  on  the 
other hand have average RMSD values of 18 and 20 Å, respectively. Color scheme: wt-p53 
(black),  R175H-mp53  (red),  R175H-CmQA-p53  (yellow),  R175H-CmQB-p53  (blue), 
R273H-mp53 (cyan), R273H-CmQA-p53 (purple) and R273H-CmQB-p53 (green). 

5.2.4 RMSF of p53 residues 

We  calculated  the  root-mean-squared-fluctuation  (RMSF)  of  the  protein  residues  in  all  the 

p53  variants  over  the  equilibrated  part  of  the  MD  simulations,  from  300  to  750  ns  (Figure 

5.9). The coordinated zinc ions were assigned residue number 290 in each model. 

 

Wt-p53: Most residues in the wt protein complex had low RMSF values reaching about 2 Å. 

The N-terminus residues had the highest RMSF, reaching more than 5.5 Å. However, the L1 

loop,  of  which  residues  A119,  K120,  S121  and  V122  are  involved  in  DNA  binding,  had 

RMSF  values  reaching  about  4  Å.  On  visually  assessing  this  loop,  our  MD  simulations 

showed  that  the  L1  loop  of  wt-p53  visited  two  states  known  as  the  extended  and  recessed 

states.  These  states  have  previously  been  experimentally  observed  [26,  27]  .  In  the  former 

state, K120 side chain is buried in the DNA major groove, while in the latter, the residue is 

out of the groove and interacts with the backbone phosphate of the DNA [28]. Another region 

with high fluctuations was loop L6, reaching more than 4.5 Å. This region is usually involved 

in the interface contact between the monomers of DNA-bound p53 dimers.  

 

R175H-mp53 and its drugged variants: The R175H-mp53 structural mutant generally had the 

highest  RMSF (see Figure  5.9A).  This  was  specially  observed  for  the  L2  loop,  where  the 

R175H mutation lies. In addition, helix H2 had an RMSF that reaches about 5.5 Å compared 

to the wt, which had a maximum RMSF of about 3 Å for this region. Figure 5.9B shows that 
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there were two distinct patterns for the fluctuations in R175H-CmQA-p53 vs. R175H-CmQB-

p53. The latter was generally less fluctuating than its undrugged mutant, epimer A variant and 

the wt protein, especially near loop L2 close to the R175H mutation. 

 

R273H-mp53  and  its  drugged  variants:  The  p53  contact  mutant  had  an  RMSF  pattern  very 

similar to that of wt-p53 with only slightly lower RMSF, especially for the L1 loop residues 

(Figure  5.9A).  Interestingly,  there  were  also  two  distinct  fluctuation  patterns  for  the  two 

drugged R273H-mp53 variants (Figure 5.9C). The RMSF pattern of R273H-CmQB-p53 was 

the  same  as  that  of  R273H-mp53.  However,  the  RMSF  of  R273H-CmQA-p53  closely 

resembled that of the wt-p53 except in residues 208 to 212. 

 

A  closer  look  at  the  fluctuations  of  epimers  A versus  B  of  both  mutants  revealed  that  p53 

variants with the same epimers had similar RMSF patterns. This was shown in Figure 5.10A; 

the L1 loop of the drugged R175H-mp53 and R273H-mp53 with epimer A both had RMSF 

values reaching 4 Å as the wt-p53.  However, R175H-CmQA-p53 had a higher RMSF than 

both  the  wt-p53  and  R273H-CmQA-p53  in  loop  L2,  where  the  R175H  mutation  lies.  The 

resemblance between the RMSF patterns of R175H-CmQB-p53 and R273H-CmQB-p53 was 

more evident (see Figure 5.10), especially in loops L1 and L2, which had lower RMSF values 

than the wt protein. 
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Figure 5.9. RMSF of the p53 variants DBD from 300 to 750 ns of the MD simulation. 
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(A)  Comparison  between  R175H-mp53  and  R273H-mp53  vs.  wt-p53.  (B)  Comparison 
between R175H-mp53 and its drugged variants vs. wt-p53. (C) Comparison between R273H-
mp53 and its drugged variants vs. wt-p53. Residue 290 is the Zn2+ ion. Marked are loops L1 
(114-123),  L2  (164-176,  182-194),  L3  (237-250)  and  L6  (220-229)  as  well  as  helices  H1 
(177-181)  and  H2  (278-287).  Color  scheme:  wt-p53  (black),  R175H-mp53  (red),  R175H-
CmQA-p53  (yellow),  R175H-CmQB-p53  (blue),  R273H-mp53  (cyan),  R273H-CmQA-p53 
(purple) and R273H-CmQB-p53 (green). 
 

 

Figure  5.10. RMSF  of  the  p53  drugged  mutants’  DBD  from  300  to  750  ns  of  the  MD 
simulation. 
(A) Comparison between the RMSF of the DBD residues of R175H-CmQA-p53 and R273H-
CmQA-p53 vs. wt-p53. (B) Comparison between the RMSF of the DBD residues of R175H-
CmQB-p53  and  R273H-CmQB-p53  vs.  wt-p53.  Residue  290  is  Zn2+.  Marked  are  loops  L1 
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(114-123),  L2  (164-176,  182-194),  L3  (237-250)  and  L6  (220-229)  as  well  as  helices  H1 
(177-181)  and  H2  (278-287).  Color  scheme:  wt-p53  (black),  R175H-mp53  (red),  R175H-
CmQA-p53  (yellow),  R175H-CmQB-p53  (blue),  R273H-mp53  (cyan),  R273H-CmQA-p53 
(purple) and R273H-CmQB-p53 (green). 
 

5.2.5 Control R175H-CmQB-p53 and R273H-CmQB-p53 simulations 

We also ran shorter 500 ns simulations of epimers B of the drugged variants. For these control 

simulations, analysis was performed on the last 100 ns. The EBE of R175H-CmQB-p53 and 

R273H-CmQB-p53  to  DNA  were  -106  and  -57  kcal�mol-1,  respectively.  The  EBE 

decomposition per each residue of the control complexes versus the wt, mutants and epimers 

B of the drugged p53 variants from the longer simulations are shown in Figure 5.11. 



Figure 5.11. A bar graph of the EBE per-residue decomposition of p53 to DNA in the 
control simulations. 

!



Figure 5.12. Superimposition of the p53 variants shows the displacement of the DNA in 
the mutants’ complexes and R273H-CmQB-p53 from the control simulations. 
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wt-p53-DNA  complex.  Color  scheme:  wt-p53  (black),  R175H-mp53  (red),  R175H-CmQB-
p53  (blue),  R175H-CmQB-p53  from  control  simulations  (light  blue),  R273H-mp53  (cyan), 
R273H-CmQB-p53 (green) and R273H-CmQB-p53 from control simulations (light green). 

5.3 Discussion 

5.3.1 Binding and alignment of p53 to DNA 

We  calculated  the  EBE  of  the  p53  variants  to  DNA  for  the  equilibrated  portion  of  the  MD 

simulation from 300 to 750 ns using the Molecular Mechanics Generalized Born Surface Area 

(MMGBSA)  approach.  Wt-p53  had  an  EBE  of  -58  kcal�mol-1  to  DNA.  Our  calculations 

showed that both mutants, R175H-mp53 and R273H-mp53, had lower affinities to DNA with 

EBE  of  -39  and  -49  kcal�mol-1,  respectively. The  R175H  mutation  is  known  to  cause 

unfolding of the protein and a loss in its tumor suppressor ability [20] and hence the increase 

in EBE of this structural mutant is expected. Similarly, the increase in the EBE of the contact 

mutant is also expected but for a different reason: the native positively charged R273, which 

interacts with the backbone phosphate groups of the DNA in the wt protein, is mutated to the 

neutral histidine. 

 

Our  results  showed  that  the  reaction  of  MQ  with  C124  of  the  mutant  proteins  had  different 

effects on their binding energies (Figure 5.2). The EBE of the drugged structural mutants to 

DNA  were -95  and  -110  kcal�mol-1  while  those  of  the  contact  mutant  were  -49  and  -36 

kcal�mol-1. Collectively, these results indicate that the binding of MQ to the mutants induced 

a  conformational  change  in  the  protein,  especially  that  C124,  the  reaction  site  of  MQ  with 

p53,  is  not  one  of  the  DNA  binding  residues  of  p53.  While  the  results  for  the  drugged 

structural  mutant  indicate  that  MQ  could  be  restoring  the  inactivity  of  mutated  proteins  by 
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increasing  their  affinity,  the  drugged  R273H-mp53  results  showed  that  this  was  not  always 

the  case.  In  fact,  the  R273H-CmQB-p53  had  an  even  lower  affinity  to  DNA,  namely  36 

kcal�mol-1 (15 kcal�mol-1 SD) compared to the undrugged mutant, 50 kcal�mol-1 (12 kcal�mol-

1 SD),  even  when  taking  the  standard  deviation  of  the  EBE  into  account.  It  has  previously 

been  shown  that  the  binding  affinity  of  the  wt-p53  was  less  than  ten  times  stronger  to  its 

specific versus  non-specific  sequences  [26,  29].  This  small  difference  in  affinities  has  shed 

light on the fact that the protein’s affinity is not the only driving force for the recognition of 

p53 to its specific DNA sequences but rather its binding kinetics [26]. In fact, in a previous 

study,  a  designed  S121F-V122G  p53  double  mutant-DNA  complex  had  a  half-life  that  was 

five-fold  shorter  than  the  wt-p53-DNA  complex  despite  the  fact  that  the  designed  double 

mutant had a binding affinity four times higher than that of wt-p53 [26]. This had lead us to 

examine  other  effects  of  MQ  binding  on  the  mutant  p53  structure  including  assessing  the 

individual residues that contribute to the binding energy. 

 

Wt-p53:  Our  wt-p53  model  showed  that  the  protein  interacted  with the  DNA  through  loops 

L1,  helix  H2  (see  Figure 5.3).  A  visual  illustration  of  these  p53  regions  is  shown  in  Figure 

5.13. Residue R273, loops L1 and L3 as well as helix H2 can be seen as a ‘base’, by which 

the  p53  sits  on  the  DNA.  Loop  L1  can  be  considered  the  left  side  of  this  base.  During  our 

simulation, L1 loop of wt-p53 was mostly in its recessed form but also visited the extended 

state (Figure 5.13). This flexibility was reflected in the relatively higher RMSF of the L1 loop 

residues  (Figure 5.9).  Loop  L3  can  be  considered  the right  side  of  the  base,  which  interacts 

with the minor groove of the DNA (Figure 5.13). R273 and helix H2 form the center of the 

base (Figure 5.13); the latter interacted with the major groove of the DNA. It is through these 
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interactions that the wt-p53 maintained its alignment with the DNA (Figure 5.7). Our models 

only constitute the DBD of the p53 variants. However, the fully functional p53-DNA complex 

is  composed  of  a  p53  tetramer.  This  tetramer  is  formed  by  both  the  interactions  of  the  p53 

tetramerization  domains  (not  included  in  our  models)  as  well  as  the  interactions  of  the 

individual DBD with each other through residues in loop L6. It has been shown that p53 with 

a deleted tetramerization domain can both bind to DNA and possesses transcriptional activity 

[30-32]. Nevertheless, wt-p53 has a 100 times higher affinity to DNA as a tetramer than as a 

monomer [31, 33]. When binding to DNA, the symmetric alignment of p53 with the DNA is 

important to enable both the tetramerization of the protein and the cooperative binding of the 

DBD [34, 35].  

 

 

Figure 5.13. The wt-p53-DNA complex structure. 
The L1 and L3 loops, helix H2 and R273, which form the main interactions with the DNA, 
are colored in black. They form a ‘base’, which sits on the DNA. Loop L2 is shown in orange. 
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R175H-mp53:  This  structural  mutant  is  known  to  have  a  distorted  conformational  stability. 

The relatively higher RMSF values of the individual residues of R175H-mp53 agree with this 

property (Figure 5.9). This was especially more pronounced in residue D184 in the L2 loop 

where the mutation site lies. On examination of the pairwise binding energy decomposition of 

R175  in  wt-p53  vs.  H175  in  R175H-mp53,  our  results  show  that  R175  formed  electrostatic 

interactions  with  E180  and  D184  during  the  simulation  in  wt-p53.  In  addition,  R175  also 

formed electrostatic interactions with the Zn2+ coordinating H179. All these interactions were 

completely  lost  in  R175H-mp53.  Additionally,  the  mutation  induced  flexibility  also  caused 

the loss of coordination of Zn2+ by H179. Together, these local effects destabilized the mutant 

protein, especially at loop L2 as reflected in its high RMSF (Figure 5.9A). Visual inspection 

of  the  H2  helix  during  the  simulation  also  revealed  that  the  helix  was  partially  unfolded 

towards its C-terminus and hence its high residue fluctuation.  

Figure 5.3A shows that the increase in the EBE of R175H-mp53 was due to the decrease in 

the number of residues that would normally interact with the DNA in the wt protein. Overall, 

it is evident that R175H-mp53 lost all its L1 loop interactions (the left side of the base) and 

three of eight loop L3 interactions (right side of the base) with the minor groove of the DNA 

(Figure  5.4A).  We  have  previously  used  functional  mode  analysis  to  identify  residues  that 

correlate  with  the  fluctuations  in  loop  L3 [24].  Indeed,  a  correlation  was found  between  the 

fluctuations in loops L2 and L3 as well as loops L3 and L1. This correlation can explain how 

a  mutation  in  H175  (loop  L2)  can  affect  residues  in  loop  L3,  which  subsequently  affects 

residues in the L1 loop. Further, Figure 5.7 illustrates that R175H-mp53 did not maintain the 

same alignment pattern with DNA as the wt-p53. A more qualitative assessment of the DNA 

alignment is shown in Figure 5.8. The DNA of the mutant had an RMSD that exceeds 21 Å 
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from  the  wt-p53.  Additionally,  the  relative  RMSD  of  the  DNA  in  the  structural  mutant 

complex had the highest variation range from about 12.8 to over 21 Å. 

Together, these results suggest that the R175H mutation caused a conformational change that 

altered  the  specific  binding  of  p53  to  the  DNA  response  element.  This  could  consequently 

contribute to the loss of the wt transcriptional activity of the mutant as well as its dominant 

negative  effect  since  the  mutant  would  not  be  able  to  form  the  symmetric  tetramers  around 

DNA. 

 

R175H-CmQA-p53  and  R175H-CmQB-p53:  Both  R175H-CmQA-p53  and  R175H-CmQB-

p53,  not  only  restored  most  of  the  wt  interactions  with  DNA  lost  due  to  mutation,  but  also 

formed  new  interactions  with  it.  These  interactions  were  reproduced  in  our  control 

simulations  for  R175H-CmQB-p53  (Figure  5.11). As  mentioned  before,  the  wt  protein 

interacted with DNA primarily through residues in loops L1 and L3 as well as through helix 

H2.  Similarly,  its  drugged  variants  also  maintained  the  same  interactions  except  for  A119. 

R175H-CmQB-p53 also lost the N247 interaction with the DNA. 

Our models suggest that MQ binding to R175H-mp53 restored the L1 loop interactions (left 

side of the base) that were completely lost in the mutant protein. During our MD simulations, 

the L1 loops of both variants were in the recessed conformation but did not visit the extended 

conformation.  This  can  explain  the  slightly  lower  RMSF  of  the  L1  loop  in  both  variants. 

Further  on,  the  RMSF  of  the  drugged  variants,  H175  of  R175H-CmQA-p53  formed 

electrostatic  interactions  with  D184  but  not  E180.  There  was,  therefore,  a  slightly  different 

RMSF  pattern  for  that  variant  with E180  having the  highest  fluctuation  in  that region. Zn2+ 

was also not coordinated by H179 in R175H-CmQA-p53 probably due to the high fluctuation 
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of  its  neighboring  E180  residue.  For  R175H-CmQB-p53,  on  the  other  hand,  H175  formed 

electrostatic interactions with E180, but not D184, which allowed the coordination of Zn2+ by 

H179. Hence the L2 loop in R175H-CmQB-p53 had a lower RMSF. Although the binding of 

MQ to R175H-mp53 seemed to at least partially restore the conformational stability of loop 

L2,  the  shorter  mutated  histidine  residue  side  chain  was  still  too  short  to  interact  with  both 

E180 and D184. 

The  drugged  structural  mutants  also  formed  additional  interactions  with  DNA  through  their 

loop L2 residues, which do not usually do so in the native protein. These interactions seemed 

to have strengthened the right side of the base (Figure 5.5). Moreover, interactions in the L3 

loop  and  H2  helix,  which  represent  the right  and  center  of  the  base, respectively,  were  also 

restored  by  MQ  binding.  It  is  worth  mentioning  that  the  unfolding  of  the  H2  helix  was  not 

observed  in the  drugged  variants,  unlike  R175H-mp53,  as  reflected  in  their  RMSF.  Overall, 

Figure 5.5  illustrates  that  both  R175H-CmQA-p53  and  R175H-CmQB-p53  lost  some  of  the 

interactions in the wt-p53 with the DNA, yet maintained the base interactions with the DNA 

(red and white residues) that allowed it to align with the DNA in a manner similar to the wt 

(Figure 5.7B). 

The RMSD of the DNA in both the R175H-CmQA-p53 and R175H-CmQB-p53 was higher 

than  that  of  the  wt  protein’s  DNA  to  its  average  structure  (Figure 5.8),  yet  still  mostly  lied 

below its maximum range. Nonetheless, the drugged variants had a much lower RMSD than 

their  mutant  form.  Collectively,  our  findings  indicate  that  MQ  binding  to  R175H-mp53  did 

not restore the drugged mutant complex to become exactly like the wt-p53, yet the drugged 

complexes are structurally more similar to the wt protein than the mutant. The alignment of 

the  proteins  with  the  DNA  also  indicates  that  they  would  be  more likely  to form tetramers. 
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The same alignment pattern was also observed in the R175H-CmQB-p53 control simulation 

(Figure 5.12) 

 

R273H-mp53: In R273H-mp53, there was an expected loss in the interaction between H273 

and  DNA  –  the  center  of  base.  Further  analysis  indicated  that  this  mutant  had  a  different 

binding pattern to the DNA (Figure 5.3A). R273H-mp53 did not interact with DNA via loop 

L1 – left side of the base (Figure 5.3 and Figure 5.4A). In fact, the L1 loop remained buried in 

the major groove of the DNA albeit at a different angle than the wt-p53. This had not allowed 

the  same  extended  flexibility  range  for  the  loop  and  hence  its  lower  RMSF  (Figure  5.9A). 

Actually, R273H-mp53 generally had a similar or lower RMSF pattern to wt-p53 consistent 

with the fact that the R273H mutation is a contact one, which does not cause the unfolding of 

the  protein.  R273H-mp53  also  formed  weaker  interactions  with  the  DNA  via  its  loop  L3 

representing  the  right  side  of  the  base,  especially  through  residues  N247  and  R249  (Figure 

5.4B). 

Figure 5.7A shows that the loss in the base interactions of R273H-mp53 with DNA led to the 

loss of the protein’s alignment with DNA, which was confirmed by the RMSD of the R273H-

mp53  DNA  relative  to  the  wt-p53  DNA  average  structure  (Figure  5.8).  These  findings  can 

explain why this mutant loses its transcription ability in cells, since the misalignment of the 

protein with the DNA can hinder cooperative binding and tetramerization of the mutant. 

 

R273H-CmQA-p53 and R273H-CmQB-p53: The reaction of MQ with R273H-mp53 did not 

improve  the  binding  affinity  of  the  protein.  However,  it  changed  the  binding  profile  of  the 

protein to the DNA. R273H-CmQA-p53 formed very similar interactions with the DNA like 
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the wt-p53 especially in loops L1 and L3 as well as helix H2. This is evident in Figure 5.6A 

representing a heat map: the protein was mostly white (ΔΔGdiff=0). The L1 loop interactions, 

which make the left side of the base were all restored except V122, which greatly deviated in 

the wt. Interactions via Q167 and H168 in the loop L2 were introduced, which made the right 

side of the base stronger. Additionally, the R249 interaction with the DNA minor groove, also 

making the right side of the base, was restored and even became stronger. It is evident from 

Figure 5.7B that R273H-CmQA-p53 had a similar alignment to the DNA like wt-p53 despite 

the fact that the interaction with residue 273 was not restored. This indicates that the right and 

left  components  of  the  base  were  enough  to  maintain  the  protein  in  the  correct  position 

relative  to  DNA.  The  RMSD  of  the  DNA  in  this  complex  was  closer  to  the  wt  than  the 

mutant,  although  it  was  still  higher  than  the  latter.  In  addition,  it  was  also  similar  to  the 

R175H-mp53 drugged mutants, which have a higher affinity to DNA. 

For R273H-CmQB-p53, several important interactions remained diminished, especially at the 

left of the base. However, this drugged p53 variant still formed interactions through A119 and 

a  new  interaction  through  T118  in  the  L1  loop.  In  addition,  our  models  showed  that  MQ 

binding  to  R273H-mp53  also  restored  the  S240,  S241,  N247  and  R249  interaction,  which 

were lost in the mutant and constitute the center of the base. Although the binding pattern of  

R273H-CmQB-p53  did  not  show  a  strong  binding  profile  like  the  other  drugged  variants, 

especially in the loop L1, it still seemed to form enough interactions for R273H-CmQB-p53 

to  maintain  its  alignment  with  DNA  (Figure  5.7B).  As  mentioned  above,  R273H-mp53  did 

not align with DNA like the wt protein. It, therefore, formed unexpected interactions of beta-

sheet  sandwich  residues  with  the  DNA  via  Q136,  L137  and  K139.  This  was  not  the  case  in 

the  drugged  mutant  variants.  The  qualitative  assessment  of  the  DNA  RMSD  in  R273H-
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CmQB-p53 vs. wt-p53 showed that the RMSD of the former was closer to the DNA of the wt 

than  R273H-mp53.  Nonetheless,  the  deviation  of  the  R273H-CmQB-p53  complex  from  the 

typical ‘base’ interactions was reflected in its DNA RMSD, which was the highest among all 

the drugged mutants (Figure 5.8).  

Control simulations of R273H-CmQB-p53 further revealed a discrepancy in the interactions 

formed between R273H-CmQB-p53 in the control versus original simulations indicating that 

at  least  this  drugged  variant  might  not  be  activated  by  MQ,  especially  that  the  DNA  in  the 

control simulations did not well align with the DNA in the wt-p53. 

 As  mentioned  above,  MQ  has  been  previously  shown  to  have  other  anti-cancer  effects  in 

cells [17]. It is possible that other mechanisms of MQ on other cellular targets cause the anti-

cancer effect of MQ in treated cells carrying R273H-CmQB-p53. 

 

On a general note, loop L6 of all the p53 variants was another region with high RMSF (Figure 

5.9).  Normally,  the  L6  loop  residues  are  involved  in  p53  monomer-monomer  interactions. 

Since our models represent a single p53 monomer bound to the DNA, it is expected that loop 

L6 would be more flexible and hence its high RMSF values in all the p53 variants. We have 

previously  modeled  wt-p53  apo  monomers  as  well  as  a  p53  dimer  bound  to  the  DNA. 

Evidently, the RMSF of loop L6 was indeed high in the apo monomers, however, it decreased 

in the p53 dimer bound to the DNA for the wt protein [24]. 

5.4 Additional commentary 

DNA Structures: To assess any distortions in the DNA structures bound to the p53 variants, 

we  measured  the  distance  between  the  sixth  thymidine    of  one  strand  and  the  twelfth 
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thymidine in the other DNA strand as a representation for the DNA major groove length. The 

measured  distances  in  the  wt,  R175H-mp53  and  R273H-mp53  DNA  average  complex 

structures  were  18.98  Å,  24.89  Å  and  22.10  Å,  respectively.  The  distances  in  DNA  for 

R175H-CmQA-p53  and  R175H-CmQB-p53  were  20.00  Å  and  20.88  Å,  respectively.  For 

R273H-CmQA-p53 and R273H-CmQB-p53, the measured distances were 17.56 Å and 24.90 

Å,  respectively.  The  DNA  distances  for  the  R175H-CmQA-p53,  R175H-CmQB-p53  and 

R273H-CmQA-p53  complexes  were  all  within  the  2  Å  range  to  the  wt  DNA.  On  the  other 

hand, the distances in R175H-mp53, R273H-mp53 and R273H-CmQB-p53 were the longest, 

indicating  a  distortion  in  the  DNA  structure.  Combined  with  the  DNA  RMSD  patterns  in 

Figure  5.8,  these  findings  suggest  that  the  p53  variants  altered  the  structure  of  their  bound 

DNA,  especially  the  mutants.  Alterations  in  the  bound  DNA  structures  have  been 

experimentally  observed  in  previous  studies  on  different  rescued  p53  mutants,  including  the 

R273H-T284R rescued double mutant [36]. 

 

Comparison  to  reported  thermostability:  It  has  previously  been  reported  that  the  R175H 

structural  mutation  globally  denatures  p53  and  destabilizes  the  apo  protein  structure  by  3.0 

kcal�mol-1 [37, 38] . On the other hand, R273H-mp53 maintains the native protein fold and is 

stabilized  by 0.4 kcal�mol-1  relative  to  the  wt  protein  [37,  38].  The  higher  calculated  RMSF 

values  for  the  p53  residues  in  R175H-mp53 versus wt-p53  in  our  models  (Figure  5.9) 

qualitatively reflect this destabilization. Similarly, the relatively low calculated RMSF values 

of R273H-mp53 residues agree with these experimental findings. It should be noted, however, 

that our models are of the DNA bound protein structures rather than the apo proteins.  
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Relevant  experimentally-resolved  p53  mutants:  There  are  no  experimentally  resolved 

structures  of  neither  R175H-mp53  nor  R273H-mp53  bound  to  DNA.  However,  X-ray 

resolved  crystal  structures  of  stabilized  R273H  mutants  have  been  reported  [36,  39].  In  a 

structural study, the R273H mutant was found to be rescued by a T284R second site mutation 

[36]. X-ray resolved structures showed that the R273H-T284R double-mutant formed a new 

interaction  with  DNA  through  the  mutated  R284  residue,  which  made  up  for  the  lost 

interaction  due  to  the  R273H  mutation  [36].  This  rescue  mechanism  is  different  from  the 

potential activation due to MQ binding since our models suggest that MQ is not involved in a 

direct interaction with DNA but rather alters the conformation of the protein. 

5.5 Conclusions 

p53  is  an  architecturally  fascinating  molecule.  Our  models  have  shown  that  single  point 

mutations  at  different  sites  of  the  protein  can  have  profoundly  different  effects  on  the 

structure  of  the  protein.  Interestingly,  the  reaction  of  MQ  at  C124  with  R175H-mp53  and 

R273H-mp53, which are essentially two different proteins especially in the way they interact 

with DNA, have one specific effect: they introduce interactions with DNA via loop L1. Since 

CmQ124 is not involved in direct interactions with DNA, this indicates that MQ could restore 

the  transcriptional  activity  of  the  two  mutants  by  inducing  a  conformational  change  in  the 

protein. This conformational change seems to have led to the anchoring of p53 on the DNA, 

via loop L1, in a way that maintains the base interactions in the complex. This L1 anchoring 

was less pronounced in the original R273H-CmQB-p53 simulations, which indicates that that 

protein  variant  could  be  less  active,  especially  that  it  had  a  much  lower  binding  energy  to 

DNA.  However,  control  simulations  of  the  same  variant  indicate  that  non-specific  L1  loop 



 160 

interactions  are  also  non-favorable  since  control  R273H-CmQB-p53  interacted  via  G117, 

T118 with the DNA, yet did not well align with it like wt-p53. 

The  p53  mutants  have  been  shown  to  have  a  lower  binding  energy  to  DNA,  to  form  fewer 

interactions with it, especially the key base interactions and consequently are not aligned with 

DNA like the wt protein. The latter property is very important for the proper formation of p53 

tetramers – the most transcriptionally active form of the complex. Site-directed mutagenesis 

studies  have  provided  evidence  that  MQ  covalently  binds  to  p53  mutants  at  C124  [14]. 

However,  a  very  recent  study  suggested  that  C277  was  also  key  for  reactivation  of  the 

mutants [40]. Our models provided evidence that MQ binding to C124 does indeed alter the 

binding  of  the  drugged  p53  mutants  to  the  DNA.  This  is  reflected  in  the  restoration  of  key 

interactions with the DNA as well as the alignment of the proteins with the DNA in a manner 

more  similar  to  wt-p53  than  their  mutants,  from which  the in  silico  models  were  built.  Our 

results provide an understanding of the mechanism of action of MQ in the restoration of wt 

activity to mutant p53. This approach also provides a method of screening for potential p53 

mutant activators that alter the protein structure, which is a very challenging task compared to 

screening for agonists or antagonists of a protein. 

Since we do not observe a direct interaction pattern of MQ with p53, it is difficult to suggest 

specific  recommendations  for  drug  development  of  mp53  activators  based  on  our  models. 

Nonetheless,  the  work  protocol  used  in  this  chapter  could  be  used  to  assess  the  effect  of 

potential  activators  on  the  interaction  and  alignment  of  p53  with  DNA.  Our  study  suggests 

that a successful mp53 activator would form the base interactions with DNA and align with 

DNA in a manner similar to wt-p53. 
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5.6 Methods and Models 

5.6.1 Creating the p53-DNA complex models 

Wild type p53-DNA complex:  We used chain B of the 1TSR [21] X-ray determined structure 

of the wt-p53-DNA. We simulated this complex for 750 ns, using MD simulations (outlined 

below),  to  study  the  wt  complex  structure  and  compare  it  as  a  control  to  the  mutant  and 

drugged-mutant variants of the protein. 

Mutant p53-DNA complexes: We virtually mutated the arginine residues at positions 175 and 

273, in the chain B of the 1TSR wt-p53 structure, to histidines using Pymol [22] to create the 

starting complex structures of R175H mp53-DNA and R273H mp53-DNA, respectively. The 

chosen histidine rotamers were those that had the best fit to the structure, as scored by Pymol. 

Using the MD simulation protocol outlined below, the mutant complexes were simulated for 

750 ns. 

Drugged mutant p53-DNA complexes: We used CovalentDock [41] webserver to covalently 

dock MQ to C124 of both R175H-mp53 and R273H-mp53 (further explained below). Since 

the non-standard cysteine bound to MQ residue (CmQ) formed is a central peptide fragment, 

we  created  a  dimethyl  dipeptide  of  the  non-standard  cysteine  fragment  (Figure  5.14)  for 

parameterization.  We  used  Gaussian  [42]  to  optimize  the  geometry  of  the  molecule  and  to 

derive its restrained electrostatic potential (RESP) charges with the HF 6-31G* basis set. We 

then  used  the  PyRED  webserver  [43-46]  to  build  the  force-field  libraries  and  parameters 

based  on  Amberff10,  which  is  compatible with  the  more  recent  Amberff14SB.  The 

parameterized drugged-mp53-DNA complexes were also simulated for 750 ns. 



Figure 5.14. Structure of the capped CmQ residue. 

5.6.2! MD simulations of p53 
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5.6.3 Covalent docking 

We used the CovalentDock [41] webserver to perform Michael addition covalent docking. To 

obtain  the receptor  structures,  we  clustered  R175H  and  R273H mp53 from  60  to  80  ns  in  a 

manner similar to our previous work [19, 24]. We fit and clustered the p53 variants based on 

residues 114-117, 121-126, 133, 140-144, which surround C124. We used the representative 

structures of the most populated clusters for covalent docking. The DNA was removed from 

these  structures  and  the  mutant  proteins  were  protonated  in  MOE  [47].  C124  was  set  as  the 

Michael addition site. 

5.6.4 Root-mean-square deviation and residue fluctuations 

We  calculated  the  root-mean-square-deviation  (RMSD)  of  each  complex  during  the 

simulation  relative  to  its  starting  structure  to  assess  the  equilibration  of  the  system  using 

Ambertools’  cpptraj. We  also  calculated  the  RMSD  values  of  the  DNA  in  each  complex 

relative  to  the  wt-p53  DNA  average  structure  by  fitting  the  p53  variant  structures  to  the 

backbone of wt-p53 average structure (from 300 to 750 ns). Since the N-terminal residues of 

the  p53  DBD  are  flexible  loops,  we  excluded  the  first  4 residues  from  the  RMSD  selection 

masks.  We  also  calculated  the  root-mean-square-fluctuations  (RMSF)  of  the  p53  variants 

during the MD simulations.  

5.6.5 Binding energy calculations 

The binding free energies of the equilibrated p53 variants to DNA were calculated using the 

Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) in Ambertools [25]: 

 



Equation 5.2    

$

$

Equation 5.3  



 165 

 

5.7 References 

1.  Sabapathy  K,  Lane  DP.  Therapeutic  targeting  of  p53:  all  mutants  are  equal,  but  some 
mutants are more equal than others. Nature Reviews Clinical Oncology. 2018; 15: 13. 

2. Kruiswijk F, Labuschagne CF, Vousden KH. p53 in survival, death and metabolic health: a 
lifeguard with a licence to kill. Nature Reviews Molecular Cell Biology. 2015; 16: 393. 

3.  Levine  AJ,  Oren  M.  The  first  30  years  of  p53:  growing  ever  more  complex.  Nature 
Reviews Cancer. 2009; 9: 749-758. 

4.  Comel  A,  Sorrentino  G,  Capaci  V,  Del  Sal  G.  The  cytoplasmic  side  of  p53’s 
oncosuppressive activities. FEBS Letters. 2014; 588: 2600-2609. 

5. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature. 2000; 408: 307-310. 

6.  Duffy  MJ,  Synnott  NC,  Crown  J.  Mutant  p53  as  a  target  for  cancer  treatment.  European 
Journal of Cancer. 2017; 83: 258-265. 

7.  Brosh  R,  Rotter  V.  When  mutants  gain  new  powers:  news  from  the  mutant  p53  field. 
Nature reviews.Cancer. 2009; 9: 701-713. 

8.  Petitjean  A,  Mathe E,  Kato  S,  Ishioka  C, Tavtigian  SV,  Hainaut  P,  Olivier  M. Impact  of 
mutant  p53  functional  properties  on  TP53  mutation  patterns  and  tumor  phenotype:  lessons 
from recent developments in the IARC TP53 database. Human mutation. 2007; 28: 622-629. 

9. Lambert JMR, Gorzov P, Veprintsev DB, Soderqvist M, Segerback D, Bergman J, Fersht 
AR,  Hainaut  P,  Wiman  KG,  Bykov  VJN.  PRIMA-1  Reactivates  Mutant  p53  by  Covalent 
Binding to the Core Domain. Cancer Cell. 2009; 15: 376-388. 

10.  Bykov  VJN,  Issaeva  N,  Zache  N,  Shilov  A,  Hultcrantz  M,  Bergman  J,  Selivanova  G, 
Wiman KG. Reactivation of mutant p53 and induction of apoptosis in human tumor cells by 
maleimide analogs. The Journal of Biological Chemistry. 2005; 280: 30384-30391. 

11.  Demma  MJ,  Wong  S,  Maxwell  E,  Dasmahapatra  B.  CP-31398  restores  DNA-binding 
activity to mutant p53 in vitro but does not affect p53 homologs p63 and p73. The Journal of 
Biological Chemistry. 2004; 279: 45887-45896. 

12.  Reddy  NL,  Hill  J,  Ye  L,  Fernandes  PB,  Stout  DM.  Identification  and  structure-activity 
relationship  studies  of  3-methylene-2-norbornanone  as  potent  anti-proliferative  agents 
presumably  working  through  p53  mediated  apoptosis.  Bioorganic  &  medicinal  chemistry 
letters. 2004; 14: 5645-5649. 



 166 

13. Zache N, Lambert JMR, Rokaeus N, Shen J, Hainaut P, Bergman J, Wiman KG, Bykou 
VN.  Mutant  p53  targeting  by  the  low  molecular  weight  compound  STIMA-1.  Molecular 
Oncology. 2008; 2: 70-80. 

14. Wassman CD, Baronio R, Demir O, Wallentine BD, Chen C, Hall LV, Salehi F, Lin D, 
Chung  BP,  Hatfield  GW,  Chamberlin  AR,  Luecke  H,  Lathrop  RH,  et  al.  Computational 
identification  of  a  transiently  open  L1/S3  pocket  for  reactivation  of  mutant  p53.  Nature 
Communications. 2013; 4: 1407. 

15. APR-246 Clinical Trials 
(https://www.clinicaltrials.gov/ct2/results?cond=&amp;term=APR-
246&amp;cntry=&amp;state=&amp;city=&amp;dist=). 2018. 

16.  Lehmann  S,  Bykov  VJN,  Ali  D,  Andren  O,  Cherif  H,  Tidefelt  U,  Uggla  B,  Yachnin  J, 
Juliusson G, Moshfegh A, Paul C, Wiman KG, Andersson P. Targeting p53 in Vivo: A First-
in-Human  Study  With  p53-Targeting  Compound  APR-246  in  Refractory  Hematologic 
Malignancies and Prostate Cancer. Journal of Clinical Oncology. 2012; 30: 3633-3639. 

17.  Anne  Perdrix,  Ahmad  Najem,  Sven  Saussez,  Ahmad  Awada,  Fabrice  Journe,  Ghanem 
Ghanem, Mohammad Krayem. PRIMA-1 and PRIMA-1Met (APR-246): From Mutant/Wild 
Type  p53  Reactivation  to  Unexpected  Mechanisms  Underlying  Their  Potent  Anti-Tumor 
Effect in Combinatorial Therapies. Cancers. 2017; 9: 172. 

18. Bykov VJN, Issaeva N, Shilov A, Hultcrantz M, Pugacheva E, Chumakov P, Bergman J, 
Wiman KG, Selivanova G. Restoration of the tumor suppressor function to mutant p53 by a 
low-molecular-weight compound. Nature medicine. 2002; 8: 282-288. 

19. Omar SI, Tuszynski J. Ranking the Binding Energies of p53 Mutant Activators and Their 
ADMET Properties. Chemical Biology & Drug Design. 2014. 

20. Bullock AN, Fersht AR. Rescuing the function of mutant p53. Nature Revisions Cancer. 
2001; 1: 68-76. 

21. Cho Y, Gorina S, Jeffrey PD, Pavletich NP. Crystal structure of a p53 tumor suppressor-
DNA complex: understanding tumorigenic mutations. Science. 1994; 265: 346-355. 

22. The PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC. 

23. Miller BR, McGee TD, Swails JM, Homeyer N, Gohlke H, Roitberg AE. MMPBSA.py: 
An  Efficient  Program  for  End-State  Free  Energy  Calculations.  Journal  of  Chemical  Theory 
and Computation. 2012; 8: 3314-3321. 

24. Lepre MG, Omar SI, Grasso G, Morbiducci U, Deriu MA, Tuszynski JA. Insights into the 
Effect  of  the  G245S  Single  Point  Mutation  on  the  Structure  of  p53  and  the  Binding  of  the 
Protein to DNA. Molecules (Basel, Switzerland). 2017; 22. 



 167 

25.  Case  DA,  Babin  V,  Berryman  JT,  Betz  RM, Cai  Q,  Cerutti  DS,  Cheatham  DSI,  Darden 
TA, Duke RE, Gohlke H, Goetz AW, Gusarov S, Homeyer N, et al. Amber 14. 2014. 

26.  Petty  TJ,  Emamzadah  S,  Costantino  L,  Petkova  I,  Stavridi  ES,  Saven  JG,  Vauthey  E, 
Halazonetis  TD.  An  induced  fit  mechanism  regulates  p53  DNA  binding  kinetics  to  confer 
sequence specificity. The EMBO journal. 2011; 30: 2167-2176. 

27. Emamzadah S, Tropia L, Halazonetis TD. Crystal Structure of a Multidomain Human p53 
Tetramer  Bound  to  the  Natural  CDKN1A  (p21)  p53-Response  Element.  Molecular  Cancer 
Research. 2011; 9: 1493-1499. 

28.  Lukman  S,  Lane  DP,  Verma  CS.  Mapping  the  Structural  and  Dynamical  Features  of 
Multiple p53 DNA Binding Domains: Insights into Loop 1 Intrinsic Dynamics. PLoS ONE. 
2013; 8. 

29.  Weinberg  RL,  Veprintsev  DB,  Fersht  AR.  Cooperative  Binding  of  Tetrameric  p53  to 
DNA. Journal of Molecular Biology. 2004; 341: 1145-1159. 

30. Balagurumoorthy P, Sakamoto H, Lewis MS, Zambrano N, Clore GM, Gronenborn AM, 
Appella  E,  Harrington  RE.  Four  p53  DNA-binding  domain  peptides  bind  natural  p53-
response  elements  and  bend  the  DNA.  Proceedings  of  the  National  Academy  of  Sciences. 
1995; 92: 8591-8595. 

31. Chène P. The role of tetramerization in p53 function. Oncogene. 2001; 20: 2611. 

32.  Shaulian  E,  Zauberman  A,  Milner  J,  Davies  EA,  Oren  M.  Tight  DNA  binding  and 
oligomerization  are  dispensable  for  the  ability  of  p53  to  transactivate  target  genes  and 
suppress transformation. The EMBO journal. 1993; 12: 2789-2797. 

33.  Kamada  R,  Toguchi  Y,  Nomura  T,  Imagawa  T,  Sakaguchi  K.  Tetramer  formation  of 
tumor  suppressor  protein  p53:  Structure,  function,  and  applications.  Peptide  Science.  2016; 
106: 598-612. 

34. Chen Y, Zhang X, Dantas Machado A,Carolina, Ding Y, Chen Z, Qin P,Z., Rohs R, Chen 
L.  Structure  of  p53  binding  to  the  BAX  response  element  reveals  DNA  unwinding  and 
compression  to  accommodate  base-pair  insertion.  Nucleic  Acids  Research.  2013;  41:  8368-
8376. 

35.  Demir  Ö,  Ieong  PU,  Amaro  RE.  Full-length  p53  tetramer  bound  to  DNA  and  its 
quaternary dynamics. Oncogene. 2016; 36: 1451. 

36.  Eldar  A,  Rozenberg  H,  Diskin-Posner  Y,  Rohs  R,  Shakked  Z.  Structural  studies  of  p53 
inactivation by DNA-contact mutations and its rescue by suppressor mutations via alternative 
protein-DNA interactions. Nucleic acids research. 2013; 41: 8748-8759. 



 168 

37. Bullock AN, Henckel J, DeDecker BS, Johnson CM, Nikolova PV, Proctor MR, Lane DP, 
Fersht AR. Thermodynamic stability of wild-type and mutant p53 core domain. Proceedings 
of  the  National  Academy  of  Sciences  of  the  United  States  of  America.  1997;  94:  14338-
14342. 

38.  Bullock  AN,  Henckel  J,  Fersht  AR.  Quantitative  analysis  of  residual  folding  and  DNA 
binding in mutant p53 core domain: definition of mutant states for rescue in cancer therapy. 
Oncogene. 2000; 19: 1245-1256. 

39.  Joerger  AC,  Ang  HC,  Veprintsev  DB,  Blair  CM,  Fersht  AR.  Structures  of  p53  cancer 
mutants  and  mechanism  of  rescue  by  second-site  suppressor  mutations.  The  Journal  of 
Biological Chemistry. 2005; 280: 16030-16037. 

40. Zhang Q, Bykov VJN, Wiman KG, Zawacka-Pankau J. APR-246 reactivates mutant p53 
by targeting cysteines 124 and 277. Cell Death & Disease. 2018; 9: 439. 

41. Ouyang X, Zhou S, Su CTT, Ge Z, Li R, Kwoh CK. CovalentDock: automated covalent 
docking  with  parameterized  covalent  linkage  energy  estimation  and  molecular  geometry 
constraints. Journal of Computational Chemistry. 2013; 34: 326-336. 

42. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani 
G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, et al. Gaussian 09, 
Revision E.01&nbsp;. 2009. 

43. Wang F, Becker J, Cieplak P, Dupradeau F. RED Python: Object oriented programming 
for Amber force fields. Abstracts of Papers of the American Chemical Society. 2014; 247. 

44. Dupradeau F, Pigache A, Zaffran T, Savineau C, Lelong R, Grivel N, Lelong D, Rosanski 
W, Cieplak P. The R.E.D. tools: advances in RESP and ESP charge derivation and force field 
library building. Physical chemistry chemical physics: PCCP. 2010; 12: 7821-7839. 

45.  Vanquelef  E,  Simon  S,  Marquant  G,  Garcia  E,  Klimerak  G,  Delepine  JC,  Cieplak  P, 
Dupradeau F. R.E.D. Server: a web service for deriving RESP and ESP charges and building 
force  field  libraries  for  new  molecules  and  molecular  fragments.  Nucleic  Acids  Research. 
2011; 39: 511. 

46.  Bayly  CI,  Cieplak  P,  Cornell  W,  Kollman  PA.  A  well-behaved  electrostatic  potential 
based  method  using  charge  restraints  for  deriving  atomic  charges:  the  RESP  model.  The 
Journal of Physical Chemistry. 1993; 97: 10269-10280. 

47.  Molecular  Operating  Environment  (MOE),  2016.08;  Chemical  Computing  Group  Inc., 
1010 Sherbrooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2016. 

48.  Hoops  SC,  Anderson  KW,  Merz  KM.  Force field  design  for metalloproteins.  Journal  of 
the American Chemical Society. 1991; 113: 8262-8270. 



 169 

49.  Case  DA,  Darden  TA,  Cheatham  I,T.E.,  Simmerling  CL,  Wang  J,  Duke  RE,  Luo  R, 
Walker RC, Zhang W, Merz KM, Roberts B, Hayik S, Roitberg A, et al. AMBER 12. 2012. 

 



 170 

Chapter 6 

Finding  novel  PNKP  inhibitors  using  multiple-technique 

virtual screening 
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Preface 

 

Contributions: 

All in silico modeling in this chapter was performed by Sara Ibrahim Omar. 

In  vitro  experiments  for  measuring  the  dissociation  constants  of  the 

predicted  top  hits  were  performed  by  Rajam  S.  Mani  (Weinfeld  lab).  The 

IC50 values were obtained by in vitro experiments performed by Zahra Shire 

and Xiaoyan Yang (Weinfeld lab). The electrophoretic mobility shift assay 

was performed by Cameron Murray (Glover lab). 
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6.1 Introduction 

The  second  protein  target  discussed  in  this  thesis  is  a  DNA  repair  enzyme  called 

polynucleotide  phosphatase  kinase  (PNKP).  Our  aim  was  to  virtually  screen  for  molecules 

that  could  potentially  inhibit  the  phosphatase  activity  of  the  protein.  These  inhibitors  are 

designed  for  use  in  combination  cancer  therapy.  There  are  no  experimentally-resolved 

structures  of  PNKP  inhibitors  bound  to  the  protein.  Moreover,  the  human  PNKP  (hPNKP) 

structure  has  not  been  experimentally-resolved.  In  this  chapter,  we  describe  our  work  of 

creating  the  hPNKP  homology  model  and  screening  the  Commercial  Compound  Collection 

(CoCoCo)  database  [1]  against  the  phosphatase  active-site  of  the  DNA  repair  inhibitor. The 

ligand  interaction  patterns,  dissociation  constants  and  the  half  maximal  inhibitory 

concentrations of six of the predicted top hits are reported. 

6.2 Results 

6.2.1 hPNKP homology model 

There  are  no  experimentally-resolved  structures  of  hPNKP.  The  Molecular  Operating 

Environment  (MOE)  software  [2]  was  used  to  create  the  homology  model  of  hPNKP  using 

the X-ray determined crystal structure of mouse PNKP, PDB ID: 3U7G [3] as a template. The 

3U7G model constitutes residues 144 to 522 of mouse PNKP. 

The generated hPNKP homology model was simulated for 250 ns using AMBER molecular 

dynamics  (MD)  software [4].  We  calculated the  root-mean-square-deviation  (RMSD)  of  the 

backbone of the entire protein, except for the first three residues at both termini. The RMSD 
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of the non-hydrogen atoms of residues constituting the phosphatase active-site: residues 171, 

173, 184, 185, 218, 220, 221, 224, 226, 289, 290, 306, 307 and 310 were also calculated. The 

RMSD  was  calculated  to  assess  the  equilibration  of  the  protein.  Figure  6.1  shows  that  the 

RMSD of the PNKP backbone and active-site residues plateau after about 20 ns. We extracted 

the PNKP-DNA complex structures every 0.5 ns for the simulation time from 20 to 250 ns for 

a  total  of  460  representative  structures.  These  structures  were  used  as  a  representative 

ensemble of the conformations visited during the simulation. 

 

 

Figure 6.1. The RMSD of PNKP during 250 ns of MD simulations. 
The RMSD of PNKP backbone is in black and that of the phosphatase active site is in blue. 
 

6.2.2 Stage I: Pharmacophore screening 

The  Commercial  Compound  Collection  (CoCoCo)  database  [1]  constitutes  over  3.7  million 

unique compounds and we used the multiconformer version of the database, which included 

tautomers,  stereoisomers  as  well  as  multiple  low  energy  conformations  of  each  compound. 
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The multiconformer database consisted of more than 144 million conformers. A schematic of 

the workflow is shown in Figure 6.2. 

LigandScout  [5]  was  utilized  to  automatically  generate  pharmacophore  models  for  the  460 

representative structures. The multiconformer database was screened against each of the 460 

pharmacophore  models.  A  total  of  460  filtered  databases  were  obtained  after  this  step  of 

screening.  Filtered  databases  with  more  than  200,000  unique  compounds  were  excluded. 

Based on this criterion, 144 filtered databases were carried forward to stage II of screening. 

 



Figure 6.2. A schematic of the screening workflow to find potential PNKP phosphatase 
inhibitors. 
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6.2.3 Stage II: Pharmacophore-assisted docking 

Pharmacophore-assisted  docking  of  the  144  filtered  databases  at  the  phosphatase  domain  of 

ten  PNKP  conformers  was  performed  using  MOE.  We  also  used  MOE  to  create  a 

pharmacophore  model  for  each  PNKP  structure  at  this  step,  instead  of  the  automatically 

created  pharmacophore  models  from  the  previous  stage.  The  choice  of  the  pharmacophore 

features was based on the atoms in the DNA that had the lowest binding energy to PNKP in 

the complex. In most cases, the anionic oxygens of the 3’ phosphate had the lowest energy to 

the  DNA  followed  by  the  anionic  oxygen  of  the 5’  phosphate  of  the  same  nucleotide.  Also, 

the  aromatic  rings  of  the  two  nucleotides  had  low  binding  energies  to  PNKP.  The 

pharmacophore  models  were  set  such  that  they  would  contain  3  to  7  features  and  that  the 

feature  representing  the  anionic  oxygen  at  the  3’  phosphate  end  was  always  essential.  An 

example  of  a  pharmacophore  model  is  shown  in  Figure  6.3  below.  In  that  model,  a  ligand 

would have to have an anion/hydrogen bond acceptor at position F1 and an aromatic ring at 

position F4 shown in Figure 6.3. Also, a ligand would need to have at least an anion/hydrogen 

bond acceptor at positions F2, F3, F5 or F6 or an aromatic ring at position F7. 
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Figure 6.3. An example of a pharmacophore model for the PNKP complex structure. 
In  this  model,  seven  pharmacophore  features  have  been  set,  of  which  at least  three  features 
have  to  be  met  by  a  potential  ligand.  Features  F1:Ani&Acc  and  F4:Aro  were  also  set  as 
essential features. Ani&Acc = anion or H-bond acceptor, Aro = aromatic. 
 
To account for the flexibility of the protein, we used ten PNKP structures for pharmacophore-

assisted  docking:  9  structures  obtained  from  the  MD  simulation  and  the  hPNKP  homology 

model structure. The choice of the nine structures was based on three criteria: (a) the binding 

energy of the bound DNA to PNKP was at a local minimum in the complex structure, (b) the 

structures  were  spread-out  over  the  230  ns  of  the  equilibrated  simulation  time  and  (c)  the 

pharmacophore-assisted docking of DNA could replicate the DNA-PNKP complex structure 

from the MD simulation. The nine PNKP structures used in docking are marked by asterisks 

in  Figure  6.4.  The  docked  DNA  in  hPNKP  had  the  least  binding  energy  to  the  homology 

model out of the ten structures. The interactions of the docked DNA in this protein model are 

shown in Figure 6.5. The least binding energy of the DNA from docking was -38 kcal�mol-1 

and its ligand efficiency (LE) was -0.81 kcal�mol-1/heavy atom. 
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Figure 6.4. The MMGBSA calculated binding energy (kcal��mol-1) of the DNA to PNKP 
from 20 to 250 ns. 
Structures  at  local  minima  were  considered for  use  in  pharmacophore-assisted  docking.  The 
final  nine  structures  marked  by  asterisks,  along  with  the  hPNKP  homology  model  created, 
were used for stage II of screening. 
 

 

−200

−180

−160

−140

−120

−100

−80

−60

−40

−20

 0

 0  25  50  75  100  125  150  175  200  225  250

M
M
G
B
S
A 
ca
lc
ul
at
ed
 
B
E 
of
 
D
N
A 
to
 
P
N
K
P 
(k
ca
l/
mo
l)

Time (ns)

*

* *

*

*

*

* *

*



 179 

 

Figure 6.5. The interaction scheme of the docked DNA with PNKP in its lowest binding 
energy conformation. 
The ligand interactions legend describing the interaction annotations are shown at the bottom. 
 

6.2.4 Stage III: Compound assessment 

The  pharmacophore-assisted  docking  results  were  further  analyzed.  At  this  stage  we  only 

included compounds with a maximum binding energy of -30 kcal�mol-1. Only compounds that 

scored as a hit (also referred to as ‘frequency as hit’) more that 300 times were included. This 

narrowed  down  our  hits  to  67  potential  PNKP  phosphatase  inhibitors.  Several  of  those 

compounds  had  terminal  phosphate  groups;  these  molecules  were  also  excluded  since  they 

could  be  substrates  of  the  protein  and  thus  would  be  dephosphorylated,  which  could  make 

them weaker inhibitors. We also visually assessed the molecules and excluded the ones that 

did not occupy the binding pocket in a manner similar to DNA. Tautomers and stereoisomers 

of the compounds top hits were also excluded so that only unique molecules would remain. 

Following  these  elimination  criteria,  20  compounds  remained  (Appendix  II).  Since  all  these 

hits had an LE of less than -0.3 kcal�mol-1/heavy atom, none of them was excluded based on 

this criterion. Appendix II shows the structures of the top hits, their binding energies and LE 

as well as their frequencies as hits. 

We chose seven of these compounds for experimental testing based on their binding energy, 

the number of times they scored as hits, LE, structural diversity and price. One of the seven 

purchased  compounds  was  insoluble  and  was,  therefore,  not  tested  experimentally.  The 

dissociation constants (Kd) of the six remaining compounds were calculated as a function of 
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the intrinsic fluorescence quenching of PNKP [6]. The compounds concentrations that cause 

half maximal inhibition (IC50) were also determined in vitro using two different fluorescence-

based assays (Appendix III). These results are shown in Table 6.1 along with the compound 

structures,  binding  energies  and  LE.  Figure  6.6  shows  the  interactions  of  each  of  the  six 

compounds with PNKP in its lowest binding energy pose. Interestingly, the protein structure 

to  which  the  DNA  and  the  six  compounds  had  the  least  binding  energies  was  the  hPNKP 

homology  model.  Figure  6.5  and  Figure  6.6  show  that  the  DNA  and  the  six  compounds 

formed  similar  interactions  with  PNKP;  they  all  had  the  following  interactions:  T217  side-

chain  H-bond  donor,  N218  backbone  H-bond  donor,  M220  backbone  H-bond  donor,  R259 

side-chain H-bond donor and K260 side-chain H-bond donor. However, compounds B and D 

also formed R259 ionic interactions with the sulphonic groups of the molecules. Compounds 

B , D and F also formed additional K260 ionic interactions with the second sulphonic groups 

of  the  compounds.  D173  was  also  a  backbone  H-bond  donor  to  the  DNA  and  all  the 

compounds  except  C.  On  visual  inspection  of  the  latter  compound  in  complex  with  PNKP, 

however, we found the H-bond acceptor in compound C is less than 0.3 Å away from forming 

that interaction, which indicates that this interaction was also formed by compound C. 



Table 6.1. Results of the six compounds that were purchased for experimental 
validation. 

# Structure 

Binding 

energy 

!  

LE 

!

 

Freq 
Kd†† 

 

IC50 

µ  

D
N
A
 

A ±

B ±

C ±
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D -31 -0.74 309 165±10 88.6* 

E -30 -0.80 533 110±10 NT 

F -30 -0.80 328 55±5 
Too 

high† 

††Kd values were determined using a tryptophan fluorescence quenching assay performed by 
Rajam S. Mani (Weinfeld lab) 
* IC50 values were determined using a Universal Molecular Beacon (U-MB) assay performed
by Xiaoyan Yang (Weinfeld lab) (Appendix III). Control experiments using 3’ hydroxyl DNA
instead of 3’ phosphate are still pending.
† IC50  values  were  determined  using  a  2-aminopurine  assay  performed  by  Zahra  Shire
(Weinfeld lab) (Appendix III).
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Figure 6.6. The ligand interactions between the six tested compounds (A-F) and hPNKP 
homology model. 
The interaction annotations are the same as in Figure 6.5. 
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Our  collaborators  also  performed  electrophoretic mobility  shift  assay  (EMSA)  [7]  using  the 

purified  D170A  mouse  protein  (Figure  6.7).  The  results  from  this  assay  showed  that 

compounds  A  and  D  displaced  the  bound  DNA,  which  indicated  that  they  inhibit  PNKP 

competitively.  Compounds  E  and  F  were  too  fluorescent  and  interfered  with  the  assay 

measurements. Although no conclusions could be made for those two compounds, they were 

visually  seen  to  localize  with  the  protein,  which  indicates  that  they  bind  to  the  protein. 

Compounds  B  and  C,  on  the  other  hand,  localized  with  both  PNKP  and  DNA  in  the  same 

band,  which  indicated  that  they  both  bind  to  PNKP  but  do  not  inhibit  DNA  binding  to  the 

protein. 

 

 

Figure  6.7. The  EMSA  results  for  compounds  A-F  obtained  from  Cameron  Murray 
(Glover lab) who performed the experiments and interpreted the results. 
Lanes  A-F  contained  the  indicated  compound, mouse  (mPNKP)  and  DNA.  Each  compound 
was  tested  twice.  The  last  two  panels  were  the  negative  (mouse  PNKP  +  DNA  only)  and 
positive  (DNA  only)  controls,  respectively.  Compounds  E  and  F  were  too  fluorescent  and 
maxed out the detector, hence the other bands look weak. The EMSA results for molecules A 
and  D  indicate  that  the  compounds  could  be  competitively  inhibiting  the  protein  as 
demonstrated by the separate DNA band at the bottom on the gel. The EMSA was performed 
in a similar manner to [7]. 
 

Compound

mPNKP

Fluorescent DNA

A

+

+

E

+

+

F

+

+

B

+

+

C

+

+

D

+

+

- -

+ -

+        +

Free DNA

DNA bound to PNKP



 185 

6.3 Discussion 

6.3.1 hPNKP protein model 

The  DNA  repair  enzyme,  PNKP,  is  composed  of  a  forkhead  associated  domain  joined  by  a 

flexible  linker  to  a  fused  phosphatase-kinase  domain  [8].  Since  the  latter  domain  is  active 

independently,  we  only  simulated  the  fused  phosphatase-kinase  domain  of  the  protein.  The 

3U7G structure used as a template for homology modeling is a D170A mutant mouse PNKP 

model composed of the phosphatase and kinase domains of the protein. The 3U7G sequence 

is  90%  similar  and  83%  identical  to  that  of  hPNKP.  This  gives  high  confidence  in  the 

homology model generated. 

Although the crystallized protein was bound to a single-stranded DNA pentanucleotide, only 

the positions of the first two nucleotides have been resolved experimentally. We included this 

dinucleotide,  the  bound  magnesium  ion  at  the  phosphatase  active-site  and  its  neighbouring 

crystal water molecule in our model. We simulated the complex for 250 ns of MD simulations 

to  obtain  different  conformations  of  the  protein  and  thus  account  for  its  flexibility  during 

screening. The fluctuation pattern of the PNKP backbone as well as its phosphatase active-site 

non-hydrogen atoms indicated that the protein structure equilibrated after about 20 ns of MD 

simulations,  as  reflected  in  the  plateauing  of  its  RMSD  (Figure  6.1).  The  three  residues  at 

each  terminus,  which  form  loops,  were  excluded  from  the  protein  backbone  RMSD 

calculation  since  they  were  expected  to  be  flexible.  We  also  calculated  the  binding  free 

energy of the DNA to PNKP using MMGBSA in Ambertools [4]. Figure 6.4 shows that the 

binding energy of DNA to PNKP increases during the simulation. On visual examination of 

the  bound  dinucleotide  in  our  model,  it  was  observed  that  the  terminal  5’  phosphate  was 
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fluctuating during the simulation and was not always interacting with the protein, which led to 

the  increase  in  binding  energy.  While  the  crystal structure  used  as  a  template  for  homology 

modelling  was  of  a  pentapeptide  bound  to  PNKP,  only  the  first  two  3’  nucleotides  were 

actually resolved. Since our model was of PNKP bound to a dinucleotide, it is likely that the 

absence of the third nucleotide led to the loss of stabilizing interactions of the 5’ phosphate, 

which  could  explain  the  observed  increase  binding  energy  in  our  simulations.  This  is  not 

unexpected especially that it has been experimentally shown that trinucleotides have a higher 

affinity to the protein than dinucleotides [9]. 

6.3.2 Virtual screening of the CoCoCo database 

In  the  screen  for  PNKP  phosphatase  inhibitors,  a  consensus-based  approach  was  used  to 

enrich  the  results  and  therefore  the  results  were  filtered  using  multiple  techniques.  We 

followed the Common Hits Approach (CHA) [10] in stage I of screening. CHA is based on 

virtual screening using multiple pharmacophore models obtained from hundreds of complex 

structures. This approach has been found to enrich screening results up to more than five-fold 

compared to screening based on the experimentally-determined complex structure alone [10]. 

In  the  screen,  460  complex  structures  obtained  every  0.5  ns  from  20  ns  to  250  ns  of  MD 

simulations were used. It is worth mentioning that the pharmacophore models were based on 

the  bound  DNA,  the  native  PNKP  substrate,  rather  than  a  PNKP  inhibitor  as  there  are  no 

experimentally-determined structures of PNKP bound to a phosphatase inhibitor. 

LigandScout was used to automatically generate an ensemble of steric and electronic features 

that define the interaction features of DNA with PNKP. MOE was used to search for ligands 

in  the  CoCoCo  database  that  fulfill  these  pharmacophore  models  i.e.  have  the  required 
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features  at the  same relative  positions.  It  is  for  this  reason  that  the multiconformer  database 

was  used  so  that  different  features  of  the  ligands  would  be  represented  in  the  different 

orientations that they could likely take. Pharmacophore screening using MOE resulted in 460 

different filtered libraries, each based on a pharmacophore model at a certain simulation time 

point. We excluded filtered libraries that included zero or more than 200,000 unique ligands 

to make the docking step more feasible. This decreased the filtered libraries to 144 instead of 

460.  The  biggest  and  smallest  filtered  databases  of  these  144  contained  193566  and  3 

compounds, respectively. 

 

In stage II of screening, pharmacophore-assisted docking was utilized to further narrow down 

the  screening  results.  While  docking  alone  is  a  powerful  screening  tool,  yet  the  high 

flexibility  of  the  DNA  limits  the  power  of  this  technique  due  to  the  molecule’s  consequent 

large  conformational  space  search.  Using  pharmacophore  modeling  to  assist  docking  helps 

overcome  this  limitation.  We  manually  created  pharmacophore  models  based  on  the  DNA 

atoms that had the lowest binding energy to PNKP, with the expectation that those would be 

the  most  important  interactions  for  binding.  The  pharmacophore  models  constituted  3  to  7 

features, which is generally optimum so the model would not be too general nor too specific 

[11]. Besides being the highest affinity interaction with the DNA, at least one of the anionic 

oxygens  of  the  3’  phosphate  was  always  set  as  an  essential  pharmacophore  feature  in  our 

models since it plays an important role in catalysis [3] . 

To  account  for  the  backbone  flexibility  of  the  protein  during  docking,  ten  representative 

structures of the protein were used: the hPNKP homology model as well as the nine structures 

from  the  MD  simulation.  We  selected  all  the  complex  structures  with  local  DNA  binding 
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energy  minima  to  PNKP  over  the  simulation  time  then  ranked  them  based  on  their  DNA 

affinity.  For  each  structure,  we  tweaked  the  manually  created  pharmacophore  models  and 

redocked the DNA in PNKP as control for assessment of the created pharmacophore features. 

The  PNKP  structures  in  which  the  docked  DNA  had  an  RMSD  <  2  Å  compared  to  the 

original  structure  from  MD  were  used  for  pharmacophore-assisted  docking.  Also,  the 

structures were chosen so they would be spread-out over the equilibrated simulation time so 

they would be better representative of the protein flexibility. The final nine hPNKP structures, 

marked  in  Figure  6.4,  along  with  the  protein’s  homology  model  were  all  used  for 

pharmacophore-assisted docking. 

Since  we  docked  144  databases  to  ten  protein  structures,  then  a  compound  that  would 

successfully  pass  the  criteria  in  both  screening  stages  would  rank  as  a  hit  1440  times. 

Analysis of our results show that 87 of our compounds had more than 20% success rate i.e. 

scored  as  a  hit  more  than  300  times,  only  67  of  those  had  binding  energies  lower  than  -30 

kcal�mol-1.  Several  molecules  from  the  top  hits  had  terminal  phosphate  groups.  This  is 

expected  since  such  compounds  would  greatly  fit  the  screening  criteria  due  to  their  high 

similarity  to  the  native  DNA  structure.  However,  we  excluded  those  compounds  since  they 

could be substrates rather than inhibitors of PNKP. It is worth mentioning that all our top hits 

had an LE of less than -0.3 kcal�mol-1/heavy atom, which is generally the ideal range for high 

throughput screening and drug optimization [12].  

Figure 6.5 and Figure 6.6 show the interacting residues of hPNKP with DNA and six of the 

top hits, respectively. Most interactions between the DNA and PNKP were also present in the 

six compounds. R224 and K226, which interact with DNA, are not predicted to interact with 
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any of the six compounds. This is expected since these residues interact with the terminal 5’ 

phosphate of DNA, the equivalent of which is absent in our compounds. 

As explained  above,  the  binding  energy  values,  LE  and  frequencies  of  the  compounds  were 

used  to  choose  the  top  hits  since  these  are  all  factors  that  can  contribute to the  success  of  a 

compound as a binder. We primarily ranked compounds based on their binding energies then 

their  LE.  It  is  important  to  understand  that  the  calculated  binding  energy  values  should  be 

used  to  rank  the  compounds  rather  than  provide  exact  binding  energy  values.  Although  Kd 

values  are  a  better  indication  of  ligand  binding  than  IC50  values,  there  was  no  correlation 

between  the  measured  Kd  and  calculated  binding  energies  (Table  6.1).  This  could  be 

attributed  to  the  fact  that  the  fluorescence  quenching  assay  used  is  an  indirect  way  of 

measuring  the  dissociation  constants  especially  that  the  intrinsic  fluorescence  of  PNPK  is 

attributed to W402 in the kinase domain of the protein. Also, the calculated binding energies 

were calculated for PNKP structures based on the DNA-protein complex. It could be that the 

compounds  have  higher  affinities  to  other  conformations  of  the  protein  and  hence  their 

ranking  would  be  different.  Another  explanation  for  the  lack  of  correlation  between  the 

calculated binding energies and the measured Kd values could be the difficulty in estimating 

the  entropic  contribution  to  binding  especially  that  the  potential  hits  have  flexible  alkyl 

chains. 

A closer look at the compounds’ measured IC50 values, however, shows that their calculated 

rank is identical to their ranking based on their IC50 values. It could be that the IC50 values are 

a  better  measure  of  the  compounds’  activity.  In  that  case,  our  compounds  show  good 

inhibition for first generation compounds especially inhibitor A, which had an IC50 value of 

3.7 µM. However, it should be mentioned that compounds A, C and D still need to be tested 
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for  activity  against  the  polymerase  enzyme,  which  was  used  in  the  U-MB  assay.  While  the 

instrinsic  fluorescence  assays  and  EMSA  indicate  that  our  compounds  do  bind  to  PNKP, 

nonetheless, the control experiments for the U-MB need to be performed. It is noteworthy to 

explain  that  the  fluorescence  of  our  compounds  interfered  with  the  IC50  assays.  Therefore, 

two different assays with different excitation and emission frequencies were used. 

6.4 Conclusions 

Inhibition of PNKP for combination cancer therapy can provide synergistic effects to enhance 

some  of  the  current  cancer  treatment  regimens.  Rational  drug  design  based  on  the 

understanding the ligand interaction with the biological target is one of the best and effective 

ways  for  drug  discovery  and  development.  Our  aim  in  this  chapter  was  to  find  potential 

PNKP inhibitors. 

We  used  pharmacophore  modeling,  a  fast  screening  technique,  as  well  as  pharmacophore-

assisted  docking  to  screen  a  library  of  3.7  million  compounds.  The  idea  of  using  multiple 

technique  screening  was  to  enrich  the  screening  results  by  combining  the  strengths  of 

different methodologies. Our collaborators measured the Kd and IC50 values of six of the top 

hits. Compound A showed the highest potential as a competitive PNKP inhibitor as confirmed 

by the fluorescent based assays as well as the EMSA. Knowing the inhibitor-PNKP structure 

allows for insightful optimization of the lead compounds to develop more potent hits that can 

reach clinical trials. 
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6.5 Methods and Models 

6.5.1 Creating the hPNKP models 

We  used  the  mouse  PNKP  model  with  PDB  ID  3U7G  as  a  template  to  create  the  hPNKP 

homology model in MOE [2]. The co-crystallized DNA fragment and the magnesium ion at 

the phosphatase active-site along with its neighbouring water molecule were also incorporated 

in the model. The hPNKP homology model created was then solvated in a 12 Å TIP3P water 

box using Ambertools [4]. Sodium ions were added to neutralize the system. Sodium chloride 

ions  were  then  added  randomly  to  adjust  the  salinity  of  the  solvated  system  to  0.15  M  to 

simulate physiological conditions. The system was then MD simulated using Amber [4]; the 

system  was  first  minimized  then  gradually  heated  from  0  to  310  K  with  heavy  restraints 

placed  on  the  DNA  and  hPNKP  atoms. The restraints  were  then  gradually  removed  and  the 

non-restrained system was simulated for 250 ns at 310 K (body temperature). We calculated 

the RMSD of the protein backbone atoms, using Ambertools [4], for residues 147 to 528 to 

evaluate the equilibration of the protein and for residues 171, 173, 184, 185, 218, 220, 221, 

224, 226, 289, 290, 306, 307 and 310, which constitute the PNKP phosphatase active-site. 

6.5.2 DNA binding energy calculations 

We  used  Ambertools’  Molecular  Mechanics-Generalized  Born  Surface  Area  (MMGBSA) 

(described in Chapter 3) to calculate the binding free energy of the DNA dinucleotide to the 

equilibrated hPNKP. 



6.5.3! Virtual screening using pharmacophore modeling and docking 

Equation 6.1    
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Chapter 7 

Conclusions and Future Directions 
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7.1 Mutant p53 

7.1.1 Summary 

Our choice of mutant p53 (mp53) as a target was motivated by its high mutational frequency, 

confirming the high importance of the protein as a master tumor suppressor. In addition, p53 

mutations  are  common  in  various  types  of  cancer,  which  increases  the  applicability  of 

potential drugs to a wide population of cancer patients [1]. Also, mp53 accumulates in cancer 

cells  [2].  Therefore,  the  reactivation  of  mp53  should  induce  a  strong  apoptotic  response  as 

demonstrated  by  PRIMA-1  (p53-reactivation  and  induction  of  massive  apoptosis)  [2,  3]. 

Moreover,  the  choice  of  mp53  is  highly  specific  to  abnormal  cells,  which  increases  the 

potential  of  mp53  reactivators  to  have  minimal  side  effects.  Four  main  goals  on  p53  were 

discussed in this thesis: 

• The  first  was  to  understand  the  interaction  of  known  mutant  protein  activators  from 

the literature with p53 at the C124 site. 

• The  second  was  to  understand  the  effect  of  the  G245S  single  point  mutation  on  the 

protein structure both in its apo and DNA-bound forms. 

• The  third  aim  was  to  screen  for  potential  G245S-mp53  activators  using  covalent 

docking. 

• The  last  aim  was  to  compare  the  R175H-mp53  and  R273H-mp53  DNA  complex 

structures both in their methylene quinuclidinone (MQ) drugged and undrugged forms 

with respect to the wild-type (wt) p53 complex. 
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In  Chapter  2,  our  aim  was  to  evaluate  the  binding  and  ADMET  properties  of  known  mp53 

activators. This chapter was published in [4]. A study by Wassman et al. proposed that C124 

is  the  site  at  which  alkylating  mp53  activators  bind  to  restore  the  wt  activity  to  the  mutant 

protein  [5].  An  equilibrated  atomistic  model  of  the  hotspot  R273H-mp53  was  created.  We 

docked  the  alkylating  mp53  activators  MQ,  NB,  STIMA-1,  CP-31398,  MIRA-1  and  stictic 

acid,  which  all  have  a  reactive  double-bond  (DB),  at  the  C124  pocket.  We  also  docked  the 

non-alkylating  activators  WR-1065,  ellipticine  and  9-hydroxy  ellipticine  at  the  same  site. 

Docking  results  showed  that  the  DB  of  all  alkylating  ligands  were  positioned  towards  the 

thiol of C124. While alkylating ligands were not predicted to directly interact with C124, our 

molecular  dynamics  (MD)  simulations  suggested  that  the  compounds  could  come  within  a 

close distance for reaction, owing to the flexibility of the protein. The only exception for this 

observation  was  stictic  acid  which  was  predicted  to  interact  with  C124.  However,  this 

molecule was the only mp53 reactivator discovered by in silico screening using non-covalent 

docking specifically at the C124 site [5] . 

On the other hand, non-alkylating mp53 reactivators were predicted to directly interact with 

C124. These results suggested that alkylating ligands formed transient interactions with mp53 

before  reacting  with  C124  while  non-alkylating  directly  interacted  with  the  site.  This  is 

logical given that non-alkylating molecules were not expected to react with the protein – the 

predicted pose could be the final reactivation destination. 

There  was  also  a  qualitative  correlation  between  the  relative  ranking  of  STIMA-1,  NB  and 

MQ  from  our  docking  calculations  and  the  reported  experimental  half  maximal  inhibition 

concentrations  (IC50)  of  the  compounds  on Saos  cells  carrying  R273H-mp53  [3,  6,  7].  MQ, 

the  active  metabolite  of  APR-246,  which  is  currently  in  clinical  trials  has  been  reported  to 
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have  dose-limiting  toxicities  resulting  from  increased  liver  enzymes,  confusion,  fatigue  and 

impaired  speech  [8].  We,  therefore,  used  ADMET  PredictorTM  [9] to  compare  the  predicted 

toxicities and solubilities of the compounds. While stictic acid was the only compound with a 

better  predicted  toxicity  profile,  especially  in  terms  of  its  low  blood-brain-barrier 

permeability, it had low predicted solubility, which would likely result in low bioavailability 

of the molecule as a drug. We, therefore, performed a virtual screen using covalent docking to 

find new potential mp53 activators (discussed in Chapter 4). 

 

In Chapter 3, we modelled G245S-mp53 both as a dimer bound to DNA and in its apo form 

and compared the models to the wt protein. This chapter was published in [10]. A decrease in 

residue  fluctuations  of  loop  L3,  where  the  G245S  mutation  lies,  was  expected  since  the 

possible dihedral angles that can be adopted by serine are more restricted than the wt’s native 

glycine. However, a decrease in residue fluctuations of loops L1 and L2 was also observed. 

Functional  mode  analysis  revealed  a  correlation  between  loops  L3  and  loops  L1  and  L2, 

which explains the observed fluctuation pattern. 

Moreover, high residue fluctuations were calculated for residues 224, 225 and 226 of G245S-

mp53,  which  are  at  the interaction  interface  between  the  two  monomers  in  the  DNA  bound 

complex in the wt complex. This suggested a possible interruption of the monomer-monomer 

interaction.  This  was  further  confirmed  by  the  distortion  of  the  dimer  arrangement  on  the 

DNA  compared  to  the  wt  dimer  when  bound  to  DNA.  These  results  are  in  agreement  with 

experimental  findings,  which  demonstrated  that  G245S  structural  mutant  does  not  undergo 

structural  destabilization  as  the  other  structural  mutants  [11].  Indeed,  a  redistribution  of 

binding  energy  of  G245S-mp53  residues  to  DNA  was  also  observed,  especially  in  residues 
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close to the mutation site. It has been reported that wt-p53 had a hundred times its affinity to 

DNA as a tetramer than as a monomer [12, 13]. It is likely that the dimer distortion observed 

in our models leads to loss of the tumor suppressor activity of this structural mutant. 

 

In Chapter 4, a virtual screen to find potential G245S-mp53 activators using covalent docking 

was  performed.  This  chapter  has  been  accepted  for  publication  in  PLoS  One.  Six 

representative  structures  obtained  from  clustering  G245S-mp53  structures  from  MD 

simulations  (in  Chapter  3)  were  used  to  represent  the  mutant protein  conformations.  We  set 

screening  criteria  to  filter  the  ZINC  library  (13  million  compounds)  to  about  130,000 

molecules. DOCKTITE, a docking protocol in the Molecular Operating Environment (MOE) 

software was used to covalently dock different low energy conformations of the molecules at 

C124  of  G245S-mp53. To  enrich  our  results,  a  consensus-based  scoring  approach  was  used 

based  on  both  Affinity  dG  and  DSX  scoring  functions.  MQ,  NB,  STIMA-1  and  MIRA-1 

alkylating  mp53  activators  are  all  Michael  acceptors.  For  the  top  hits  from  our  covalent 

docking  screening,  however,  new  classes  of  covalent  binders  were  found  including:  five 

thiosemicarbazones,  four  halo-carbonyls  and  only  one  Michael  acceptor  molecule.  Based 

solely  on in  silico  results,  compound  2  seems  to  be  the  best  mp53  activator  in  terms  of 

binding energy to G245S-mp53 and predicted toxicity. However, since covalent docking does 

not  give  enough  insight  into  the  effect  of  the  covalently  bound  molecule  on  the  protein 

structure, further validation is required to confirm the covalent docking results. 

 

In  Chapter  5,  our  aim  was  to  understand  the  effect  of  MQ  binding  on  R175H-mp53  and 

R273H-mp53  structures  when  the  modified  proteins  were  bound  to  DNA.  This  chapter  has 
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been submitted to Oncotarget. In silico atomistic models of R175H-mp53 and R273H-mp53 

each  in  complex  with  DNA  were  created  by  virtual  mutation  of  the  wt-p53  DNA  complex 

structure obtained from PDB: 1TSR. To generate the drugged variants of the mutant proteins, 

covalent docking was used to find the best fit starting structure of MQ bound to each of the 

mutants. PyRED [14-16] was used to parameterize CmQ, the MQ bound C124 residue. These 

proteins  each  in  complex  with  the  DNA  were  simulated  using  MD  for  750  ns  to  obtain  the 

equilibrated complex structures as assessed by the root-mean-square deviation (RMSD) of the 

proteins backbones. Analysis was performed on the last 450 ns of the simulations. 

The  p53-DNA  complex  models  suggested  that  the  binding  of  MQ  at  C124  induced  a 

conformational change in the drugged protein variants, which resulted in the introduction of 

new  interactions  between  loop  L1  of  the  drugged  protein  variants  and  DNA.  Visual 

assessment  of  the  superposed  p53  variants  revealed  a  misalignment  of  the  mutant  proteins 

with DNA compared to wt-p53. This finding was further supported by the high DNA RMSD 

values  of  the  undrugged  mutants  from  the  average  DNA  structure  in  the  wt-p53  complex. 

Contrary to the mutants, the drugged protein variants had a similar alignment with the DNA 

like  wt-p53.  Also,  their  DNA  RMSD  values  from  the  wt-p53  DNA  average  structure  were 

lower than their respective mutants. It has previously been found that MQ can restore the wt 

activity to mp53 including the restoration of p53 target genes transcription [3]. Collectively, 

our results indicated that the conformational change induced in the mutants allowed loop L1 

to  anchor  p53  to  DNA.  It  is  possible  that  this  anchoring  allows  for  the  drugged  mutants  to 

bind in a manner that enables the transcription of p53 target genes, especially that the proper 

alignment  of  p53  with  the  DNA  would likely  allow  for  the  tetramerization  of  p53,  which  is 

essential for proper and efficient transcriptional activity [12, 13]. 
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Additionally,  it  was  found  that  the  binding  energy  (EBE)  of  the  mutants  to  the  DNA, 

calculated  using  Molecular  Mechanics  Generalized  Born  Surface  Area  (MMGBSA)  in 

Ambertools,  increased  compared  to  wt-p53,  with  this  increase  being  slightly  more 

pronounced for the R175H structural mutant. The binding of MQ to R175H-mp53 increased 

the affinity of the drugged mutant protein to DNA. In the case of the contact mutant, however, 

MQ  could  not  restore  the  binding  affinity  lost  due  to  the  R273H  mutation.  However,  it 

changed  the  binding  profile  of  the  modified  proteins  with  DNA  as  reflected  in  the 

contributions of the p53 residues to the EBE to DNA. 

In general, it was observed that the interacting residues of wt-p53 in loops L1, L3 and helix 

H2  as  well  as  R273  formed  a  base,  with  which  the  protein  ‘sat’  on  DNA.  R175H-mp53, 

which was misaligned with the DNA compared to wt-p53, lost the right and left sides of the 

base interactions, while R273H-mp53 lost the right, center and some of the interactions with 

the left side of the base as well. On the contrary, R175H-CmQA-p53, R175H-CmQB-p53 and 

R273H-CmQA-p53 all maintained their base interactions with the DNA. The only exception 

was  R273H-CmQB-p53,  which  formed  weaker  interactions  on  the  left  side  of  the  base, 

suggesting that this epimer could be less active. 

7.1.2 Future directions 

Putting  the  main  objective  of  finding  novel  mp53  activators  in  perspective,  future  work 

should focus on experimentally validating the drugged mutant variants-DNA complex models 

created using methods such as X-ray crystallography, NMR or even electron microscopy in a 

manner similar to [17]. Alternatively, site-directed mutagenesis of the new key residues that 

were  predicted  to  anchor  drugged  p53  proteins  to  DNA  could  be  performed.  Disruption  of 
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these  interactions  would  be  expected  to  negatively  impact  the  reactivation  effect  of  MQ. In 

silico alanine scanning could be used to choose the residues for the site-directed mutagenesis 

experiments. 

A  recent  study  has  shown  that  C277  was  also  important  for  mp53  reactivation  by  MQ.  It 

would be worth studying the effect of MQ binding on the structure of mp53 when bound to 

C277 and when bound to both C124 and C277. This comparison would provide the required 

detailed  insight  to  identify  the  exact  requirements  for  mp53  reactivation  with  respect  to  its 

DNA  binding  behaviour.  While  it  is  still  possible  that  in  cells  the  reactive  MQ  would  still 

sometimes  bind  to  C124,  C277  or  both,  it  is  possible  that  not  all  these  modified  variants 

would be active. Knowing the exact required protein modifications would help design better 

mp53 activators that would bind specifically as required. Consequently, the optimized mp53 

activators  would  enhance  the  protein’s  transcriptional  activity  and  have  improved  efficacy 

and potency. 

The  next  step  for  the  potential  hits  identified  in  Chapter  4  would  be  to  test  the  compounds 

both in silico and in vitro. Similar to our protocol in Chapter 5, the effect of these potential 

hits on the mutant protein structures and binding profile with DNA would be examined. An 

alternative to classical MD simulations used in Chapter 5 would be using enhanced sampling 

methods  such  as  accelerated  MD  to  ensure  that  the  conformational  change,  induced  by  the 

binding of the candidate molecule, is complete. The equilibrated model would be examined in 

terms  of  the  modified  protein’s  alignment  and  base  interactions  with  DNA.  To  validate  the 

effect  of  a  hit in  vitro,  cell  viability  and  functional  assays  would  also  be  performed  on  p53 

null  cells  transfected  with  constructs  carrying  wt-p53  or  the  respective  mp53.  Additionally, 
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differential scanning fluorimetry can be used to confirm the thermal stabilization of the mp53 

structures by the potential hits [5].  

The top compounds would then be tested in vivo on xenograft animal models. Cycles of drug 

optimizations would follow to enhance the pharmacodynamic and pharmacokinetic profiles of 

the  lead  drugs.  ADMET  PredictorTM  [9]  can  also  be  utilized  as  a  useful  tool  to  prioritize 

compounds with the best predicted properties. 

It  is  important  to  keep  in  mind  that  the  architecture  of  p53  makes  it  sensitive  to  structural 

alterations as demonstrated by the effects of single-point mutations or alkylation of the mutant 

proteins.  Therefore,  the  most  successful  drug  would  restore  all  wt-p53  interactions  in  cells 

without introducing new malicious ones. However, it is possible that a lead compound would 

restore only some of these interactions. Moreover, it is even possible that a compound would 

restore some of the wt-p53 functions, such as the transcription of apoptotic p53 target genes, 

but also acquire gain-of-function (GOF) activities. Such compounds would be addressed on a 

case-by-case basis; theoretically, as an example,  a compound that leads to the expression of 

apoptotic genes but also a few oncogenic genes might still be successful if the net result was 

the death of cancer cells without adverse effects on normal surviving cells. 

7.2 Polynucleotide kinase phosphatase (PNKP) 

7.2.1 Summary 

PNKP  is  a  novel  anti-cancer  target  that  can  sensitize  cells  to  traditional  cancer  regimens 

including ionizing radiation (IR) and the DNA-damaging irinotecan [18-20]. PNKP inhibitors 

will likely decrease cancer cell resistance caused by the overexpression of PNKP in cells. The 
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idea behind inhibiting PNKP is to exploit resistance mechanisms on which cancer cells rely 

for  survival.  The  combination  use  of  PNKP  inhibitors  can  also  decrease  the  required  IR  or 

DNA-damaging agents’ dose required and hence decrease their side-effects. 

 In  Chapter  6,  the  aim  was  to  find  potential  PNKP  inhibitors  by  virtually  screening  the 

Commercial Compound Collection (CoCoCo) over two stages in a consensus-based approach. 

The Common Hits Approach (CHA) pharmacophore screening was utilized in the first stage. 

More  specifically,  the  database  was  filtered  against  460  automatically  generated 

pharmacophore models based on structures obtained from the equilibrated MD simulations of 

the human PNKP (hPNKP) homology model. 144 sub-libraries were obtained after this step. 

Ten representative hPNKP structures were then chosen and used for pharmacophore-assisted 

docking. Several  of  the  predicted  top  hits  were  compounds  with  terminal  phosphate  groups. 

These  were  excluded  from  our  results.  Six  of  the  potential  hits  were  purchased  and  their 

dissociations  constants  were  measured  using  a  tryptophan  fluorescence  quenching  assay. 

Also,  the  half  maximal  inhibition  concentrations (IC50)  were  also  measured  by fluorescence 

quenching assays. There was a qualitative correlation between the in silico calculated binding 

energies  and  the  measured  IC50  values.  However,  some  control  experiments  for  the  two 

enzyme Universal Molecular Beacon assay are still to be carried out. 

7.2.2 Future directions 

To  further  validate  the  top  hits,  the  Lineweaver-Burk  plot  of the  Michaelis-Menten  enzyme 

kinetics could be used to confirm that the potential hits are indeed competitive inhibitors [21]. 

Also,  a  more  thorough  electrophoretic  mobility  shift  assay  could  be  performed  [22].  The 

potential hits would also be tested on cells treated with ionizing radiation or irinotecan to test 
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the sensitizing effect of the compounds. Additionally, the compounds would also be tested on 

PTEN  or  SHP-1  deficient  cells  to  test  their  synthetic  lethality.  The  best  PNKP  inhibitors 

would then be tested in vivo on xenograft mouse models. Again, iterations of modifications to 

optimize  the  structures  of  the  lead  compounds  would  likely  follow  till  a  suitable  potent 

compound is produced. 
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Appendix I.  

 

 

Appendix  Figure.  i. Cross-validation  of  the  maximally  correlated  motion  by  FMA 
employing  as  functional  quantity  the  RMSD  of  loop  L3  throughout  the  whole  MD 
simulation. 
a) Loop L3 RMSD along the MD simulation (black); model in the model building set (red); 
model in the validation set (green). b) scatter plot (data-model) of the model building with its 
Rm value , that is the correlation between data and model in the model building set. c) Scatter 
plot (data-model) of the cross-validation set along with the correlation Rc. 
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Appendix II. 

Appendix  Table  i. The  predicted  top  twenty  potential  PNKP  phosphatase  inhibitors 
from our in silico screen. 
LE = ligand efficiency, Freq = Number of times scored as a hit 

# Structure 
Binding 
energy 
(kcal�mol-1) 

LE 
(kcal�mol-1 

/heavy atom) 
Freq 

A -34 -0.82 339 

B -32 -0.81 373 

C -31 -0.86 471 

D -31 -0.74 309 



E 

F 
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Appendix III.  
 

Below  is  a  brief  explanation  of  concepts  of  the  two  fluorescence-based  assays  used  for  the 

determination of the potential PNKP inhibitors IC50 values: 

 

Universal Molecular Beacon (U-MB) assay**: 

In  this  assay,  an  oligonucleotide  (U-MB)  with  a  5’  fluorescent  fluorescein  and  a  3’  dabcyl 

quencher is used along with a complementary nucleotide template. These are annealed together 

at  95°C.  Consequently,  the  template  binds  to  the  complementary  loop  portion  of  the  U-MB, 

which  is  unfolded  by  the  high  temperature  causing  the  generated  oligonucleotide  to  be 

fluorescent.  Addition  of  deoxynucleotides,  polymerase  and  hPNKP  allow  for  the 

dephosphorylation  of  the  3’  phosphate  by  hPNKP  and  the  elongation  of  the  template  by  the 

polymerase enzyme until the template is complete. This causes the release of the U-MB, which 

folds forming a stable hairpin structure in which the fluorescein signal is quenched by the dabcyl 

group.  The  phosphatase  activity  of  hPNKP  can,  therefore,  be  monitored  by  measuring  the 

fluorescence over time. The same procedure is repeated with the inactivated hPNKP and U-MB 

only  as  positive  and  negative  controls.  To  ensure  that  the  compound  activity  is  of  hPNKP 

inhibition rather than polymerase enzyme inhibition, the experiment is also repeated using a 3’ 

hydroxyl template. 

 

(** Adapted from the Protocol of hPNKP inhibitor IC50 assay, Weinfeld lab) 
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2-Aminopurine (2-AP) fluorescence assay: 

This is a rapid fluorescence-based assay developed by the Weinfeld lab to assess the inhibition of 

the  phosphatase  activity  of  hPNKP.  It  is  conceptually  similar  to  the  assay  used  to  measure  the 

inhibition  of  the  kinase  activity  of T4-PNKP  [1],  the  prokaryotic  homologue  of  PNKP. In  this 

assay,  the  adenine  analogue,  2-AP,  is  incorporated  in  a  hairpin  probe  that  has  a  3'-phosphate 

terminus. While intrinsically fluorescent in its free form, the fluorescence of 2-AP is quenched 

when  it  is  incorporated  in  the  probe  due  to  the  stacking  interactions  of  its  neighboring 

nucleotides  [1].  Addition  of  hPNKP  and  T4  DNA  polymerase  (3'  to  5'  exonuclease  enzyme) 

leads to the dephosphorylation of the 3’ phosphate by PNKP and the digestion of the hairpin by 

T4 DNA polymerase. The fluorescence of the free 2-AP is detected and the activity of hPNKP is 

determined as a function of this fluorescence. A hairpin probe with a 3'-hydroxyl end is used as a 

positive  control  to  exclude  the  possibility  of  ligand  off-target  interactions  with  T4  DNA 

polymerase.  
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