I*I National Library
of Cahada du Canada

Bibliothéque nationale

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microform is heavily dependent upon the
quality of the original thesis subfwitted for microfilming.
Every effort has been made to ensure the highest quality of
reproduction possible.

If pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior phoiocopy.

Réproduction in full orin part of this micrafesm is governed
by the Canadian Copyright Act, R.S.C. 1870, ¢. C-30, and
subsequent amendments.

NL-339 (r. 88/04) ¢

-~

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la thése soumise au microfilmage. Nous avons
tout fait pour assurer une qualité supérieure de reproduc-
tion.

S'il manque des pages, veuillez communiquer avec
l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser &
désirer, surtout si les pages originales ont été dactylogia
phiées & l'aide d'un ruban usé ou si l'université nous a fail
parvenir une photocopie de qualité inférieure.

La reproduction, méme partielle, de cette microforme est

soumise & la Loi canadienne sur le droit d'auteur, SRC
1870, c. C-30, et ses amendements subséquents.

Canadi

University of Alberta
MIMD Parallel Approaches to Object Labeling

by

Robert Michael Gregorish ;@

A thesis
submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree
of Master of Science

Department of Computing Science

Edmonton, Alberta,
Spring 1990

em jonal Libra
l*. gagg:gda v du Canada

Bibliof que nationale

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microform is heavily dependent upon the
quality of the original thesis submitted for microfilming.
Every effort has been made to ensure the highest quality of
reproduction possible.

i pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the

original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and
subsequent amendments.

ISBN

NL-339 (r. 80/04) ¢

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la thése soumise au microfilmage. Nous avons
tout fait pour assurer une qualité supérieure de reproduc-
tion.

S'il manque des pages, veuillez communiquer avec
funiversité qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser a
désirer, surtout si les pages originales o4 é{é dactylogra-
phides A l'aide d'un ruban usé ou si l'université nous a fait
parvenir une photocopie de qualité inférieure.

La reproduction, méme partielle, de cette microforme est
soumise & la Loi canadienne sur fe droit d'auteur, SRC
1970, c. C-30, et ses amendements subséquents.

0-315-60198-1

il

Canada

UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: Robert Michael Gregorish
TITLE OF THESIS: MIMD Parallel Approaches to Object Labeling

DEGREE: Master of Science
YEAR THIS DEGREE GRANTED: 1990

Permission is hereby granted to the UNIVERSITY OF ALBERTA LIBRARY
to reproduce single copies of this thesis and to lend or sell such copies for private,
scholarly or scientific research purposes only.

The author reserves other publication rights, and neither the thesis nor exten-
sive extracts from it may be printed or otherwise reproduced without the author’s

written permission.
(Signed) . ﬂ ///

Permanent Address:
241 Verden Place
511110 Range Road 214
Sherwood Park, Alberta,
Canada, T8E 1G7

Date: A/"‘;/ 25, /990

Honesty, courage, loyalty and duty are not only their own reward,
but the only reward a self-respecting person needs.
Robert A. Heinlein

UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of
Graduate Studies and Research, for acceptance, a thesis entitled MIMD Parallel
Approaches to Object Labeling submitted by Robert Michael Gregorish
in partial fulfillment of the requirements for the degree of Master of Science.

Date:

¢ . . .

..................

« . e 5 s e e e e 4 & e e & & + = .

Abstract

Efficient solution of the consistent (unambiguous) labeling problem has applica-
tions in fields including image processing, computer vision, graph theory, cryptog-
raphy, and other areas which can be posed as constraint satisfaction problems. It
has been shown that the labeling problem is inherently suited to implementation
on parallel architectures.

Many authors have investigated parallel approaches, but few researchers have
dooked at MIMD solutions to this problem. In particular, none have looked at
those aspects of MIMD which are unique to this class of architecture and which
can be exploited for efficient solution of the consistent labeling problem.

This thesis investigates the behavior of three parallel algorithms for object
labeling which attempt to take advantage of the strengths of MIMD architectures.
The algorithms are implemented on the Myrias SPS-2 multiprocessor architecture
using the Myrias model of parallel computation and the “pardo” programming
construct.

An analysis of the behavior of these algo: ¢iims and recommendations for their
improvement are presented. In addition, a method of ordering the search using

characteristics of the problem to eliminate inconsistent labelings early in the search

is proposed. This ordering technique has a significant effect on the behavior of

labeling algorithms by increasing the effective use of available parallel resources.

vi

Acknowledgements

Many people deserve to be recognized as contributors to this thesis. I would like
to gratefully acknowledge the assistance of my examining committee, Xiaobo Li,
Jonathan Schaeffer, Tony Marsland, and Jack Mowchenko. Jonathan Schaeffer
also provided insight into tree search strategies and advice on the interpretation
of the experimental results. I would like to thank my supervisor, Xiaobo Li, who
provided valuable counsel and who provided inspiration and direction to this thesis.

I am appreciative of the contribution made to this thesis by Myrias Research
Corporation by their generous donation of computer time on the Myrias SPS-2
parallel computer. Personal thanks are extended to Martin Walker of Myrias Re-
search Corporation for his effort in securing the time for me on the Myrias machine
and to Franco Carlacci of Myrias Research Corporation for his considerable contri-
bution of time and effort in getting my programs to run on the SPS-2. In addition,
I would like to acknowledge the contribution of the Alberta Research Council for
providing additional SPS-2 computer time.

I wish also to acknowledge the very personal contribution of my wife, Lisa
Strang, and of my parents, James and Edna Gregorish. They provided me with

their patience, support, and encouragement throughout.

vii

Conte:ts

1 Introduction
1.1 The Labeling Problem
1.1.1 Basic Definitionsand Terms
1111 AnExample
1.2 Notation
1.1.2.1 The Discrete Model
1.1.2.2 The Compatibility Model
1.1.3 Applications of the Labeling Problem
1.2 Motivation for this Research
1.3 Outlineof thisThesis

2 Research in Labeling

21 Overview.
2.2 Overview of SIMD Techniques
2.3 Overview of MIMD Techniques

'3 A MIMD Approach: Recursive Descent with Deepening

31 Imtroduction

viii

10

12
12
14
17

20

3.1.1 The Myrias Model of Parallel Computation 21

3.1.2 Choiceof Approach, 23

3.2 Recursive Descent with Deepening 25
321 Description i e e 25
3.2.2 ParallelApproach 26
3.23 ObjectOrdering 28

3.3 ExperimentalResults 30
3.3.1 Description oo 30
332 Resultsand Analysis 32
3.3.2.1 General Observations 36

Other MIMD Approaches: Split-Label-Merge and Eureka Jump 51

4.1 The Split-Label-Merge Technique 82
4.1.1 Choiceof Sub-Groups, 53
4.1.2 Practical Considerations 54
4.1.3 ExperimentalResults 54

42 TheEurekaJump 57
4.2.1 ExperimentalResults 59

Conclusion 62

5.1 Evaluation of the Algorithms 62

5.2 Contribution of thisThesis 64

53 FutureWork i e e 65

A Line Drawirgz Used in the Experiments 73

ix

B Format of the Input Files for the Line Drawings

C An Overview of Parallel Computer Architectures
Cd Imtroduction
C2 Terminology i i i it it e e
C.3 Synchronous Architectures
C.3.1 Pipelined vector processors
C.3.2 SIMD Architectures.
C.3.3 Spystolic Architectures.
C.4 MIMD Architectures,
C.4.1 Distributed Memory Architectures
C.4.2 Shared Memory Architectures
C.5 MIMD/SIMD Architectures

D Myrias PAMS/SPS-2 System Overview
D.1 Programming on the Myrias System
D.2 Myrias Supervisor
D.3 The Control Mechanism
D4 Hardware i unnune...

77

79
79
79
81
81
81
32

83
83
84

List of Figures

g O v o W N

O GO

11
12
13
14
15
16
17

An Example of a Labeling Problem

Example of a search tree for n objects and m labels
Behavior of the recursive deepening algorithm
Behavior of the unit-constraint ordering algorithm
Timing results for 9 objects as number of PE’s is varied
Timing results for 9 objects as sequential search depth is varied
Timing results for 20 objects as number of PE’s is varied
Timing results for 20 objects as sequential search depth is varied
Timing results for 33 objects as number of PE’s is varied
Timing results for 33 objects as sequential search depth is varied
Timing results for 54 objects as number of PE’s is varied
Timing results for 54 objects as sequential search depth is varied
Speedup and relative performance for the 9 object test case
Speedup and relative performance for the 20 object test case
Speedup and relative performance for the 33 object test case . .
Speedup and relative performance for the 54 object test case . . .

Speedup comparison of the three orderings

xi

18
19
20
21

22
23
24

26

Overall behavior of the Split-Label-Merge algorithm 53

Results for Split-Label-Merge technique 55
The Eureka jump finding the shortest solution 57
Elapsed time for Eureka jump—20 objects, random ordering 60
9 Object Line Drawing s e e e e e 74
20 Object Line Drawing 74
33 Object LineDrawing v uu.o. ... 75
54 Object Line Drawing 76
Taxonomy of Parallel Architectures 80

xii

Chapter 1

Introduction

Characteristics of the object labeling problem may be exploited by multiple in-
struction, multiple data (MIMD) parallel architectures to provide performance
improvement in many cases. This thesis looks at the subject of object labeling
and investigates the application of a MIMD architecture to the solution of this

problem.

Because solving consistent labeling problems is so closely allied to solv-
ing general combinational reasoning problems, parallel algorithms and
associated computer architectures for their fast solution are important
to have in our toolbox. Knowledge of them will be of definite help in
creating the parallel algorithms and associated parallel computer ar-
chitectures for efficiently solving the most general predicate calculus
types of problems. The efficient selution of this kind of problem will
be the hallmark of the next generation of smart computers. Ullmann,

Haralick, and Shapiro [29).

1.1 The Labeling Problem

1.1.1 Basic Definitions and Terms

The general labeling problem consists of assigning labels to a set of objects, such
that a set of constraints are not violated. A labeling is an assignment of a set of
labels to each object. A labeling is said to be consistent if for each pair of objects
and for every label of one of the objects, there exists a label for the other object
which does not violate any constraints. A labeling is called unambiguous if it is
consistent and assigns only a single label to each object.

In many applications, the problem of labeling is to find all unambiguous label-
ings for a given set of objects, labels, and constraints. In some applications, the
problem may be stated as finding any single unambiguous labeling.

This thesis focuses primarily on the problem of labeling line drawings (planar
projections of polyhedra), although object labeling has applications in many fields.
Line drawings occur quite frequently in image processing as the result of edge
detection or segmenta.tion'of real images. This would have applications in the
fields of scene understanding and computer vision.

The constraints which have to be satisfied in a labeling problem occur because
the objects in a given problem are related in some manner. These are often geomet-
ric or topological relations which limit the set of consisfent labelings. Objects may
‘also possess properties which are thought of as unary relations. These relationships

are used to reduce or eliminate ambiguity in the problem.

(S

7~
DBFWC
C
DBFWC
‘ DBFWC DBW
DBF DBw |oBW
wC
DBF _ I
T T O we T F AP Y e
BFWC . |]
EEEEE-2
a) All objects are assigned all labels b) Unary constraints applied

Ceiling

Doorl
i8I L
' r Floor =A__f~F~
21 v B
| H

c) Relational constraints applied

Figure 1: An Example of a Labeling Problem
1.1.1.1 An Example

At this point, an example may serve to illustrate these concepts. Consider the
“stylized segmented office scene” [1] recreated in Figure 1. The problem is to assign
the labels Door(D), Wall(W), Ceiling(C), Floor(F), and Bin(B) to the objects in
the scene. Object properties constrain labels with unary relations and binary
relations use pairs of objects to constrain labels. Some possible constraints for this

scene can be informally stated.

Unary Constraints:

1. The Ceiling is the single highest region in the image.

2. The Floor must be checkered.
Binary Constraints:

1. A Door is adjacent to the Floor and a Wall.
2. A Wall is adjacent to the Floor and Ceiling.
3. A Bin is smaller than a Door.

4. A Bin is adjacent to a Floor.

The set of constraints depends on the problem being considered as well as
the type and quality of information available and its value in constraining the
labeling. In this artificial example, the application of these constraints results in

the generation of a unique unambiguous labeling as indicated in Figure 1(c).

1.1.2 Notation

Unfortunately, there is no genera.ll_y‘accepted standard notation regarding the la-
beling problem. Many researchers have developed their own notation and often
where different researchers use the same notation to mean different things, this
leads to confusion. Leung [18] provides a thorough summary of the various nota-
tion schemes used by the leading researchers in this field.

The main definitions used in this thesis for the labeling problem are taken from
Rosenfeld, et al. [24], which is a major publication in the field of relaxation label-

ing, often cited by later authors. They provide a rigorous definition of the terms

unambiguous and consistent. Their definition of the discrete model for labeling is
presented in Section 1.1.2.1.

Haralick and Shapiro [8] introduce the concept of a compatibility model. This
model is used in the development of the algorithms presented later in this thesis,
so the definition of this model is presented in Section 1.1.2.2.

For a discussion of the relationship between these two models and models

proposed by other researchers refer to Leung [18].

1.1.2.1 The Discrete Model

(Rosenfeld et al. [24])

Let A = {a1,...,a,} be the set of n objects to be labeled and let A =
{AM,...,An} be the set of m possible labels. For a specific object a;, not every
label in A may be suitable. Let A; C A be the set of labels which are compatible
with object a;,1 <7 < n. The set A; depends on the properties of the object a;.

For each pair of objects {a;,a;), 7 # j, some pairs of labels may be compatible
and some others may not. Let A;; C A; X A; be the set of compatible pairs of
labels. (A,)') € A;; means that it is possible for object a; to have label A and
object a; to have label).

- The set A;,; depends on the relationship between objects a; and a; in the scene.
If a; and a; are not related to each other, then there are no restrictions on the pairs
of labels which are compatible with these two objects, so we get A;; = A; x A;.
In addition, the special cases A;; = {(A,A)|A € A} for all ¢ and A;; = A;; are
defined.

A labeling £ = (Ly,...,L,) of A is an assignment of a set of labels L; C A to

each a; € A. £ is consistent if, for all 7, 5,
({z\} X Lj) NA;; #.¢, for all A € L;

For i # j this means that for every pair of objects (a;, a;) and each label A in I;
there exists a label X’ in L; that is compatible with A.

The null labeling £o = (9, ..., @) is trivially consistent and shows that there
always exists at least one consistent labeling for a set of objects. However, if a non-
null labeling £ is consistent, then every L; of £ must have at least one label. For
instance, if there exists some L; # ¢ and L; = ¢ for some ¢, j, then the definition
of consistent is violated. There is also a special labeling, £(*), called the greatest

consistent labeling which is

1. consistent, and

2. if £ is consistent then £ C £(),

A labeling £ is unambiguous if it is consistent and assigns a single label to each
object. Note that it is possible for there to exist a non-null consistent labeling,
but for there to be no labeling which assigns a single label to each object. For

example, consider the following [24]:
A = {a,,az,a3}
A=A1=A2=A3={/\,/l}
Az = Aza = {(A,A), (1, 1)}
A1,3 = {('\: IJ')’ (l")‘)}

In this example, the labeling £(®) = (A, A,A) is consistent, but there does not

exist a consistent labeling which assigns a single label to each object.

1.1.2.2 The Compatibility Model

(Haralick and Shapiro [8])
The compatibility model introduced by Haralick and Shapiro [8] is sometimes

referred to as a world model. The basic concepts of the model are as follows:
1. A set of units U = {u,...,upn}, analogous to the set A in Section 1.1.2.1.

2. A set of labels, A = {)A,...,Ax} as in Section 1.1.2.1. This is a slight

deviation from the notation in [8], which uses L as the set of labels.

3. A set T C UN which is the set of all N-tuples of units which mutually
constrain one another. Units may constrain each other NV at a time, where

N is any number < M. T is called the unit constraint relation.

4. A set R C (U x L)V which is the set of all 2N-tuples (u1, My -y un, AN)
where (Ay,...,An) is a legal labeling of units (u;,...,un). R is called the

unit-label constraint relation.

As a simple example [8], consider the following:

U = {1,2,3,4,5)
A = {a,b}
T = {(1,2,3),(1,2,4),(1,2,5),(2,3,4),(2,3,5),(3,4,5)}
R = {(1,q,2,a,3,a),
(1,a,2,a,4,a),

(l7a7 2’ a’ 5, a)’

(1,a,2,b,3,a),
(1,a,2,b,4,b),
(1,5,2,b,5,0),
(2,a,3,a,4,a),
2,q,3,q,5,a),
(2,b6,3,a,4,b),

(3,a,4,a,5,a)}

Given this compatibility model, (U, A, T, R), only one unambiguous labeling is
possible; (a, e, a, a, a) for objects (1,2,3,4,5).

In a compatibility model, units may constrain each other N at a time, where
N is any number < M. There may be unary, binary, or N -ary constraints within a
model. This means that the set T may have tuples of various length, and for each
tuple in T, there are corresponding tuples of twice the length in set R indicating
how the units constrain each other.

Haralick and Shapiro unfortunately use the term consistent labeling to refer to
what Rosenfeld et al. [24] call an unambiguous labeling. This thesis will also adopt
this convention and refer to the consistent labeling problem as the determination

of unambiguous labelings.

1.1.3 Applications of the Labeling Problem

The labeling problem is a generalization of several problems from varying fields
of specialization. Haralick and Shapiro [8] cite several examples: the subgraph

isomorphism problem [6], the graph homomorphism problem, the automata ho-

momorphism problem, the graph coloring problem, the relational homomorphism
problem [7], the packing problem, the scene labeling problem, the shape matching
problem, the Latin square puzzle, constraint satisfaction problems [4], and the-
orem proving. Rosenfeld et al. [24] also mention the solution of cryptanalytic
problems, region merging in a scene analysis system, and a variety of scene pro-
cessing problems including curve detection, cluster detection, noise cleaning, and

template matching.

1.2 Motivation for this Research

The solution of the labeling problem has potential benefit to many areas as indi-
cated in Section 1.1.3. While the primary focus of this thesis is in the domain of
image processing, there is much interest in applications wherever the problem can
be posed as a constraint satisfaction problem.

Research efforts are motivated along several paths. Some researchers have
investigated the theoretical analysis of the labeling problem, with the hope that a
better understanding of the foundation of labeling will provide insight into better
solutions [9, 24, 12).

Others are developing various algorithms and approaches with the primar
focus being practical results. Research along this line considers such things as
strategies to reduce the search space to improve performance [8, 32, 29, 11, 27, 20,
21, 28].

Other approaches look at exploiting the parallelism inherent in the labeling

problem. Most of the research in this area has involved looking at algoritkms for

SIMD computer architectures, with the focus on reducing either the communica-
tion complexity, the memory requirement, or the computation complexity of the
solution [17, 18, 5, 14, 19]. '

There has not been much research done in the field of MIMD approaches to
the labeling problem([26, 29]. A MIMD computer architecture encourages a higher
level approach to the design of a parallel algorithm than does the SIMD class of
parallel computers. The SIMD model requires that a problem be broken up into
homogeneous pieces that can be handled identically on several processing elements.
The MIMD approach allows the problem to be broken up, perhaps unevenly, over
the set of processing elements to take advantage of non-uniform or non-symmetric
characteristics of the problem.

Since this class of parallel computer architecture is becoming more common-
place, it is important to investigate how the features unique to MIMD parallel
computers can be exploited to increase the performance of solutions to the label-
ing problem. This thesis focuses on finding unambiguous consistent labelings of

line drawings.

1.3 Outline of this Thesis

Preliminary investigation into the field of object labeling involved a review of past
and present research efforts. Chapter 2 provides an overview of research in the
field of labeling. The first MIMD approach, “Recursive Descent with Deepening”,
is presented in Chapter 3. Two alternative approaches, “Split-Label-Merge” and

“BEureka Jump” are presented in Chapter 4. Finally, the conclusions of this thesis

10

and suggestions for future work are presented in Chapter 5.

The Appendices contain some background information. The sample labeling
problems consisting of 9, 20, 33, and 54 objects are presented in Appendix A.
Appendix B contains the input format for the test line drawings. A discussion of
parallel architecturesis presented in Appendix C. An overview of the Myrias SPS-2

parallel computer and the PAMS operating system is presented in Appendix D.

11

Chapter 2

Research in Labeling

2.1 Overview

An important research area in image processing and image understanding is how to
incorporate contextual knowledge into the interpretation of objects. Labeling tech-
niques have primarily developed from Waliz’s early work in unambiguous labeling
of line drawings [32]. Waltz’s technique was discrete in nature, in that it allowed
only unambiguous interpretations of line segments.

Relaxation labeling was formalized and made popular by Rosenfeld et al. [24]
in what is considered a classic paper in relaxation labeling. Their paper presents a
formal definition of labeling and develops discrete, fuzzy, and probabilistic models
for the solution of this problem. They also show that Waltz’s filtering algorithm

- ‘nherently parallel and can be implemented on a network of processors.

The discrete model concepts of consistent and unambiguous are generalized

to include weighted “fuzzy” and probabilistic intlerpretations. They {24] prove

that assigning every possible interpretation to every object and then discarding

12

incompatible interpretations until no more can be discarded yields a greatest set
of interpretations. This set is then used as the starting point for a probabilistic
relaxation process which converges towards the most probable labeling.

This probabilistic relaxation process can be represented by a series of matrix
multiplications. Repeated iterations of this multiplication process have the effect
of updating the probability estimate. Rosenfeld et al. [24] did not demonstrate
that this will converge in all cases. Furthermore, it was observed by them that the
~onvergence can be quite slow.

The theoretical basis for relaxation labeling is discussed by Haralick and Shapiro
[8, 9]. They present a different nctation from Rosenfeld et al. and a look-ahead
operator which makes use of the set T', the unit-unit constraint relation presented
in Section 1.1.2.2. They show that the set T has consequences in terms of im-
plementation in that only units which constrain each other need to be stored and
manipulated.

Other research in labeling involves the development of different operators for
probabilistic relaxation [21, 28]. As well, researchers have looked at other im-
age processing applications which utilize relaxation labeling techniques[27, 11, 20].
Several authors have done surveys of the literature on relaxation labeling or com-
parisons of the various techniques [31, 16, 22, 12, 1].

Kittler and Illingworth [16] note that twice as many papers in the field of
labeling were published in the period 1981 to 1985 than all papers published before
that period. They also note that although relaxation has long been recognized
as highly parallel, there has been little literature regarding practical hardware

implementation.

13

Since this thesis is concerned with MIMD parallel implementations of the con-
sistent labeling problem, the next few sections will examine in more detail some
papers published recently concerning parallel architectures or algorithms for the

labeling problem.

2.2 Overview of SIMD Techniques

Gu et al. [5] describe several VLSI architectures for the Discrete Relaxation Al-
gorithm (DRA). They state that, owing to the high computational cost including
time complexity and data communication cost, a conventional hardware architec-
ture implementation is not feasible.

They reformulate DRA as a parallel computational tree and use a multiple
tree-root pipelining ccheme to reduce the time complexity of this problem. Their
architecture, DRA3, uses a dynamically re-configurable highly parallel routing
scheme. With it, they are able to claim O(nm) time complexity (n objects, m
labels).

Kamada. et al. [14] propose a parallel architecture for relaxation which can
be applied to general use. They remark that previous parallel implementations
are specialized to specific applications, such as labeling images at the pixel level.
They propose a processor with a simplified control structure to minimize data
communication between objects and their neighbors. The processor implements
this simplified control structure with a round-robin communication architecture.

McCall et al. [19] compare various parallel computer architectures and problem

solving strategies for the consistent labeling problem. They compare the various

14

approaches by simulating the various multiprocessor architectures using a Pascal
program. The simulation is set up so that the parameters affecting the problem
can be varied and the results compared.

Some factors they considered were: the type of intercommunication network

and the passing order of the objects. Architectural factors which could influence

performance were:

1. The number of processors. This is the total number of processing elements

in the system.

9. The diameter of the architecture. This is defined as the maximum distance

between any two processors in the system.

3. The average distance between the processors. This is the distance between

processing elements, on average, throughout the entire system.

4. The average distance vector. A distance vector is an n-dimensional vector,
where n is the number of processors in the system. A processor with a
distance vector (dvl, dv2, ..., dvn) has dv1 processors reachable by a path
of length 1, dv2 processors reachable by a path of length 2, and so on. The
average vector is composed of the distance vectors of all processors in the

system.

Their conclusions were that, an interrupt system is better than a polling system
in terms of overall performance. They also show that it does not matter to which
processor the problem is initially sent. Within a particular architecture class, the
diameter is a good predictor of performance, with a larger diameter giving poorer

performance.

15

When they compared different architecture classes they found that, using the
best architectures from the architecture class, few architecture classes perform
significantly worse than the class with the best performance. The architectures
which did not perform well had either a large diameter or few buses.

This implies that, for reasonable performance, the choice of parallel architec-
ture for the consistent labeling problem is not critical, providing that the chosen
architecture performs well within its class. That is to say, the consistent label-
ing problem should perform comparably on any suitably “good” MIMD parallel
architecture.

Yalamanchili and Aggarwal [33] discuss the organization of multiprocessor ar-
chitectures. Their focus is on how to interconnect multiple processing units such
that the special communication requirements of image processing are efficiently
handled. They propose a system organization centered around a class of inter-
connection networks and a global bus. Control schemes for realizing the inter-
task communication typical of image processing problems are developed which are
claimed to be simple, distributed, and efficient.

Leung et al. {17] develop a general computational model for relaxation label-
ing and uses this model to develop parallel algorithms for two SIMD computer
architectures. Also, Leung [18] has a good comparison and summary of the differ-
ent notation schemes; used by various leading researchers in the field of relaxation

labeling.

16

2.3 Overview of MIMD Techniques

Not much literature has addressed the application of MIMD techniques to the
problem of labeling. Siegel et al. [26] describe a large scale multiprocessor system
designed at Purdue University which can be dynamically reconfigured to operate
as one or more independent SIMD and/or MIMD machines. The objective of this
design was to implement a system which was a compromise between flexibility
and cost-effectiveness. The authors demonstrate how this architecture can show
significant improvement over other conventional systems. Such a system may
provide advantages in the field of object labeling by combining techniques of both
SIMD and MIMD algorithms.

Ullmann et al. [29] present a theoretical paper that shows that tree pruning
techniques can be implemented using various forms of parallelism to reduce the
elapsed time for solving the consistent labeling problem.

They state that the practical usefulness of a consistent labeling formulation
depends on the actual constraints that are employed. They cite as an example,
the subgraph isomorphism problem, where examination of graph-theoretic factors
has experimentally yielded greater efficiency than can be obtained using the sim-
plest consistent labeling formulation. Kirousis [15] demonstrates how application
dependent knowledge in the field of labeling line drawings can be used to reduce
computational complexity.

The approach that Ullmann et al. [29] use to develop their parallel formulations
is that they do not wish to deal with application-specific refinements that may
improve efficiency, but rather with introducing parallelism to reduce the elapsed

time for all consistent labeling problems.

17

This thesis also takes this approach and attempts to develop general parallel
algorithms for the consistent labeling problem. Refinements particular to a specific
application or targeted to a specific architecture are possible, but are not developed
in this thesis.

The parallel algorithms presented by Ullmann et al. [29] use a constraint prop-
agation algorithm which causes the deletion of inconsistent labelings to cause the
deletion of other inconsistent labelings, which causes the deletion of others, and
so on. They use the unit-unit constraint relation, T, and the unit-label constraint
relation, R, as described in Section 1.1.2.2 as the basis for their algorithms. The
algorithms presented in this thesis also use the sets T and R for constraint satis-
faction.

One algorithm they present requires the design of a specialized combinational
constraint network which exists outside of the CPU of the processor and performs
logic operations for constraint satisfaction in parallel, functioning as a CO-Processor.
Another solution they propose is to subdivide the labeling problem into M sub-
probiems and then solve these separately on M independent Processors.

The method of subdividing the problem in their paper is quite simple but does
not make optimal use of the M processors since not all processors take equal time
to complete their subtree search. In answer to this, they propose a computer
interconnection network which would allow idle processors to request additional
work from other processors which have not completed their subtree.

This thesis expands on these ideas by attempting to structure the tree search in
such 2 way as to reduce the elapsed time to find a solution. The task subdivision

used by this thesis is also more complex in that it attempts to use information in

18

the problem itself to determine how to partition the problem.

19

Chapter 3

A MIMD Approach: Recursive

Descent with Deepening

3.1 Introduction

One way that MIMD architectures differ from SIMD architectures is in the ap-
proach a programmer takes to develop a parallel algorithm for the specific class
of machine. A SIMD algorithm requires that the processing elements execute the
identical instruction on their piece of data and then transfer the result to the ap-
propriate processing element in a “lockstep” fashion. Designing a SIMD algorithm
involves analyzing or defining the problem to identify which aspects can be ex-
pressed in a regular, structured manner. The program then consists of the control
instructions and control mask which tell the processing elements when to execute
an instruction and when to pass data. The control program is dependent on the

target architecture.

20

MIMD algorithms, on the other hand, make use of the “multiple instruction”
nature of the architecture. What this means is that not all processing elements
must behave in an identical manner. A problem is broken up into smaller subprob-
lems, which are solved in parallel to produce a final solution. These smaller tasks
need not be similar in size or in complexity. The design of the algorithm consists

of deciding how to break up the problem domain to distribute it effectively.

3.1.1 The Myrias Model of Parallel Computation

Myrias Research Corporation has developed a high speed MIMD parallel computer
architecture called the SPS-2, which can provide supercomputer performance on
various problem domains. The underlying hardware is a “card” consisting of four
Motorola MC68020 microprocessors, each with 4 megabytes of local memory and
a MC68881 floating point co-processor. The processors communicate with each
other through a bus hierarchy. Processors on the same card communicate locally
over a bus. Cards are in turn connected together to form a cage, and cages are
connected together to expand the system to the desired number of processing
elements in multiples of 64 processors.

One design goal of the Myrias machine was to isolate the programmer from
the details of the operating system. Aspects such as task allocation, load leveling,
communication and synchronization between processing elements, and memory
management are all handled transparently in that the programmer is not aware of
how the system accomplishes these tasks.

To incorporate parallel programming, Myrias has added an extension to the

C programming language. This extension is the inclusion of a pardo instruction

which specifies that the code contained in its scope is to be executed in parailel.
This introduces the concept of parallel tasks. It is possible to request that more
things be done in parallel than there are processors available to handle it. This
permits arbitrarily large problems to be handled on a limited domain of processors.

Another aspect to the Myrias architecture is that there is no shared memory
between tasks. When a pardo is executed, the task executing the parde is called
the parent task and the sub-tasks it generates are called its children. £ach child
task inherits an identical copy of the memory space from its parent. It is then fi=e
to read or write to this memory as it pleases. When all child tasks have completed,
the memory is merged back into a single memory space in the parent and execution
continues. The merging rules are such that if only one child modified a memory
location, that is the new value of that location in the parent’s memory. If two or
more children modified a specific location, then the value of that location in the
parent is undefined, unless they both modified it with the same value.

Since the execution of a pardo involves communication between processors to
distribute the program to local memery and to merge memory images on com-
pletion, it is desirable to only do a pardo if there is sufficient work for the tasks
to justify the parallel task overhead. With these considerations in mind, the ap-
proaches presented in this thesis were developed.

Refer to Appendix D for further information on the Myrias SPS-2 and the
PAMS operating system.

)
N

Object 1
Object 2

Object 3

Object 4

Leaf Node (Complete Labeling)

Figure 2: Example of a search tree for n objects and m labels

3.1.2 Choice of Approach

In general, the labeling problem has a complexity which is exponential in nature.
A given problem with n objects and m labels has a search tree with n levels and a
branching factor of m. This means that there are potentially m" terminal nodes,
each corresponding to a specific labeling. This is illustrated in Figure 2.

This “worst case” for a problem occurs when a set of objects is not constrained
in any way, and each label is a valid label for each object. In this case it is not
possible to reduce the search tree. However, this is not meaningful in a practical
sense.

A parallel approach to this type of problem involves partitioning the search
space in some way and then using several processing elements to simultaneously

calculate a portion of the solution. If a problem would take time ¢, on a sequen-

tial machine, and it takes ¢, on a parallel machine, then the speedup is defined
as t,/t,. The speedup is ideally k, the number of processors. That is, if you
use 10 processors, you desire a 10-fold improvement in performance. This k-fold
improvement is called linear speedup. In some cases it is possible to achieve super-
linear speedup [13], where the actual performance improvement is greater than k.
Such super-linear speedups are possible because they are measured relative to the
performance of the same algorithm on one processor. This does not consider the
behavior of the best sequential algorithm. In general, k is an upper bound on the
expected speedup. Statistically, super-linear speedup is possibie, but t cannot be
the expected result.

Theoretically, linear speedup of an exponential problem is not considered inter-
esting [30] in that the resulting complexity of the problem is still exponential. In
practice, however, any speedup is beneficial. Furthermore, in real labeling prcb-
lems, the search space can be reduced. Objects mutually constrain each other and
not all labelings of a set of objects are equally valid. The problem then becomes
how to best structure the search algorithm to reduce the search tree most of the
time, given a realistic problem.

This chapter looks at an approach based on a “branch-and-bound” tree search
technique. This method searches the tree to a certain depth using a sequential
recursive descent algorithm and then recursively launches parallel tasks on the
branches which have not been eliminated. The behavior of this algorithm is illus-

trated in Figure 3.

Sequential
Depth

Parallel Launch

Parallel Launch

°
Part of search Stfa"iNQ Dcll‘int
tree done or a tas

sequentially

Figure 3: Behavior of the recursive deepening algorithm

3.2 Recursive Descent with Deepening

3.2.1 Description

One standard method of traversing a tree is known as recursive descent or depth-

first search. As applied to the labeling problem the algorithm for this method

descend(L,u)
labeling L;

object u;

for (each label for object u) {

assign label to object u in labeling L;
if (label violates any constraints)
continue; /* next label */
else if (u is the last object)
print labeling L;
else
descend(L,u+1);

return;

The deepening technique searches only to a fixed depth, which is determined
beforehand. At that point, in a sequential implementation, a decision is made as

to the order in which to search the branches which were not eliminated.

3.2.2 Parallel Approach

A straightforward parallel implementation of the recursive-descent with deepening
approach is to search the tree using a sequential depth-first algorithm to a specified
depth and then launch parallel tasks on the branches which were not eliminated.
Each of these tasks then recursively searches its piece of the tree to a specified
depth and launches more parallel tasks on the remaining branches. The number
of parallel tasks this can generate is unknown prior to execution. At the terminal

nodes, any remaining labelings are printed out. The algorithm for this follows:

descend(prime_task, partiallabeling, u, depth)
boolean prime_task;

labeling partial_ labeling;

object u;

integer depth;

if (u is deeper than the sequential search depth) {
add partial.labeling to list L;
return;

}

for (each label for object u) {
assign label to object u in partial labeling;
if (label violates any constraints)

continue; /* next label */
else if (u is the last object) {

print labeling;

return;

}

else
descend (FALSE,partial labeling,u+1,depth);

}

if (not prime_task)
return;
/* At this point we have a list of partial labelings, L */
pardo (i = 1 : number of partial labelings in L) {
/* apply ‘‘descend’’ to each labeling in L */
descend (TRUE,L(i) ,u+depth,depth) ;

}

return;

There is a performance penalty when launching parallel tasks due to the over-
head necessary to start and stop the processing elements. This approach only
launches parallel tasks on those branches of the tree which have not been elimi-
nated in the sequential recursive descent phase. By avoiding the startup of un-
necessary tasks, this penalty is reduced. Also, it is not desirable to have each
processor do too small a task. In this case, the parallel overhead outweighs the
computation and it would be faster to use a sequential machine. Therefore, it is
desirable to determine the proper “granularity” for the problem.

It is not clear how to best choose the depth to search sequentially. This would
depend on the specific architecture and the overhead to launch a parallel task
versus the speed of its processing elements. At one extreme, if the sequential search
depth is n where n is the number of objects, then the execution of the program is

totally sequential (coarse granularity). That is, there is no parallel launch phase.

v

At the other extreme is a sequential search depth of 1 (fine granularity). This
means that at each node of the tree, a parallel task is launched on any labeling
which has not been eliminated. This has the potential to generate many parallel
tasks and so the startup overhead becomes more significant.

The Myrias architecture permits the multi-tasking of several parallel tasks on
a single processing element. A task must wait for its children to complete before
it can continue. This means that it is in an idle state until it can proceed. This
idle time can be used by other tasks and efficient use of the processors can be
realized. Fortunately, this “load leveling” is performed by the operating system.

The programmer has no direct control over how tasks are allocated to processors.

3.2.3 Object Ordering

Another consideration for this approach is the order in which labels are assigned
to objects. Since the objects mutually constrain each other, the set of possible
labels for an object depends on the labels already assigned to objects higher in the
search tree. That is, the assignment of a specific label to an object affects those
objects which are constrained by it and which have not yet been assigned labels.

One approach is to use a random or arbitrary ordering without consideration
of how the objects constrain each other. This has the advantage of being simp?e,
but also has the potential to generate large search trees.

A second approach is to look at which objects constrain each other and - -
this information to attempt to order the objects such that the highly constr#in .
objects are labeled first. These “highly constrained” objects affect the grel:- ™

number of other objects and thus labeling them early should result in a reducec

SetofObjects{ 1 |23 }|415]|6]|718]9 lq

Less than
215 | 68 [10|maximaity
constrained

maximally
constrained

Objects cannot be
further

| 9]
1 9
subdivided

@ e
Order of Objects

71 1314

Figure 4: Behavior of the unit-constraint ordering algorithm

seart;h tree. The information about which objects constrain each other is already
given in the unit-constraint relation T', described in Section 1.1.2.2. This set is
used as the basis for the Unit Constraint Ordering Algorithm.

This approach looks at how many other objects each object constrains. The
objects are split into two groups: those objects which constrain the most other
objects (maximally constrained) and those which are less than maximally con-
strained. Then, recursively, these two groups are broken down by looking at which
objects in the set constrain the most other objects in the set, again producing two
groups. The recursion stops when the set cannot be broken down farther. Figure 4
illustrates the behavior of this technique.

The third approach is to use application dependent knowledge to order the
objects in a way that will reduce the search tree. For the domain of labeling line
drawings, Rich [23] provides a simple algorithm which orders the objects (lines)

based on the spatial relationship of objects in the scene.

1. Start with the line segments found by moving clockwise around the boundary

of the scene, starting at any vertex.
2. Add line segments which share a common vertex with any boundary edge.

3. Working towards the centre of the scene, keep adding objects. Ensure that

each line segment is connected to one that has been previously labeled.

By always labeling a line which is connected to one which has already been labeled,
this algorithm makes good use of mutual constraints. This technique is referred
to in this thesis as the Spatial Relation Ordering Heuristic. For the purposes of
this experiment, the ordering was done manually. This ordering technique could
be automated, but the development of the program to do this was not considered

within the scope of this thesis.

3.3 Experimental Results

3.3.1 Description

To investigate the effect of the three object orderings (random, unit-constraint
heuristic, and spatial-relation heuristic) on the recursive descent with deepening

algorithm, the following experiment was devised:

1. Use four test cases of increasing complexity—9, 20, 33, and 54 objects. This
would show the behavior of the algorithm on problems of different sizes.
The 9, 20, and 33 object cases are combinations of a simple cube. The 54

object test case is an attempt to demonstrate a possible “real” scene after

processing to extract edges. Refer to Appendix A for an illustration of these

test cases.

. For each test case, vary the depth of the sequential search phase and the
number of processors available. The depth was varied from 1 to 7. Runs

were done on a domain size of 1, 2, 4, 8, 16, 32, 48, and 64 processors.

. Ensure that the same program is run in all cases. The only difference between

runs is in the ordering of the objects.

. The performance measure of interest is elapsed execution time. This is some-
times referred to as “wall clock time”. Efficient use of the parallel resources
is not measured. This takes the view that processors are a resource to be
used, similar in principle to memory. There should not be a penalty associ-

ated with not using a resource. Here, the interesting measure is “how fast is

it”.

. The results are to be compared to each other, not to a benchmark or similar
program on another machine. There was no data available in the literature
regarding labeling benchmarks. Also, it was decided to investigate the rela-
tive performance of the various orderings within a MIMD framework. It was
not considered impor:ant exactly which architecture was used. The Myrias
SPS-2 met the criteria of being available and providing an environment for

general purpose MIMD parallel computing.

31

3.3.2 Results and Analysis

The graphs starting on page 38 contain the results for the 4 test cases. Note that
the graphs do not all use the same scale for the “y” (elapsed time) axis. Figures 5,
7,9, and 11 show the elapsed execution time as the number of PE’s is varied. These
graphs illustrate the behavior of the algorithms as more processors are added to
the problem. Figures 6, 8, 10, and 12 show the elapsed time for the 4 cases as the
sequential search depth is varied. The effect of increasing the task granularity by

increasing the depth can be studied from these graphs.

The elapsed time results for the 9 object case (Figures 5 and 6) show that for a

problem this small, it is best to do the processing with a straight sequential algo-
rithm (depth=9, number of PE’s=1). This is evident from the unit constraint and
spatial relation cases where the performance is made worse if parallelism is intro-
duced. Thus in these cases, the parallel task overhead adds a significant amount
to the overall execution time. It is interesting to note that in these two cases, the
performance actually decreases for more than two processors (Figure 6(b,c)).

The random case does benefit by the addition of up to about 16 processors,
with some slight improvement as more are added. This illustrates that the rapid
exponential growth of the search tree is already evident for cases as small as 9
objects. The improvement in this case is due to the “bushiness” of the search tree
providing sufficient work for the processors.

The results for the 20 object case (Figures 7 and 8), show the dramatic dif-
ference between the random and heuristic orderings. All three orderings benefit
initially from the addition of more processors, as is evidenced by the steep initial

slope in Figure 7 for all three cases.

32

From Figure 8, a general conclusion seems apparent from the greater depth
required before any decrease in performance is observed. As the quality of the
sequential search algorithm improves, it is desirable to search deeper into the
tree sequentially. This is expected since the better ordering algorithms produce
a reduced search tree, so it is possible to search deeper with the same amount of
work. The implication of this is that fewer tasks are generated resulting in better
performance on a smaller processor domain size and reduced parallel overhead.

As the problem size is increased to 33 and 54 objects, it becomes difficult to
gather results for the random ordering case. For example, with 33 objects and
random ordering, each run was taking approximately 44 (!) hours to complete.
The 54 object case required even more time. This demonstrates the importance
of ordering the objects. It was not possible to gather sufficient data points to
produce performance graphs for these cases. Figures 9 and 10 show results for the
unit constraint and spatial relation heuristics.

From Figure 9 it is interesting to note that even with a small amount of
parallelism (e.g. depth=28) there is an improvement over the sequential case
(depth=33). It is apparent that a smaller depth is desirable, but it is worth
noting that for larger problem sizes any parallelism is useful.

Figure 10 shows that the choice of sequential search depth is becoming less
important. In both cases, performance is similar for depths up to about 5 for the
unit constraint heuristic (a) and up to approximately 10 for the spatial relatioﬁ
heuristic (b). This figure also demonstrates the earlier observation that as the
quality of the ordering algorithm is improved, the sequential search depth can be

increased.

33

The 54 object case (Figures 11 and 12) behaves much like the 33 object case,
with the main difference being total execution time. The shape of the graphs
is similar between the two test cases, indicating that the algorithm’s behavior
is becoming stable. This means that it is reasonable to expect larger problems
to exhibit similar performance characteristics, but with increased elapsed time
results.

For 54 objects the same observation about the choice of depth can be made.
It would appear that the key factor in the choice of search depth is that there be
enough tasks generated to utilize the available parallel resources. As the prob-
lem size increases, so does the size of the search tree. The available processors
“saturate” much earlier since it is not possible to eliminate many branches of the
tree early in the search. Once this saturation has been reached, performance is
not greatly affected by slight changes in depth until the tasks begin to become
sufficiently large. At this point, not enough tasks are generated to utilize the
processors effectively.

Figures 13, 14, 15, and 16 show a speedup graph and a relative performance
graph for each of the test cases.

The “quality” or relative performance is measured by comparing the execution
time for a test case (2,) to the “best” execution time (f o). This is the run
with the lowest elapsed time over all runs for that test case. For example, if
the best execution time was 1.4 seconds, a point on the graph with a value of
0.5 would be half as fast as the best case and so would have taken 2.8 seconds.
This sequence of graphs is meant to compare the algorithms using elapsed time as

the metric. The speedup curves show impressive results for the randomly ordered

34

cases. When absolute performance is compared, a better indication of the behavior
of the random ordering is obtained.

The 9 object case (Figure 13) shows that the random case benefits by up to
16 processors after which the speedup begins to decrease. Even so, the speedup
for 16 processors is poor (1.8). The relative performance graph (b) shows that the
random case performs worse than the other two orderings.

Figure 14(a) shows that the speedup for the random 20 object case is quite
impressive. The other two orderings show some slight speedup initially, but then
do not improve as more processors are added. The relative performance graph (b)
shows that in terms of total execution time, the random case is only about 0.15
times as good as the best time. The unit constraint ordering performs almost half
as good, or requires approximately twice as long as the spatial relation heuristic.

As the problem size is increased to 33 and 54 objects (Figures 15 and 16),
the speedup graph for the two heuristic orderings improves. This indicates that
larger problems are able to utilize the parallel resources more effectively. Again,
random ordering gives the best speedup, but when elapsed time is compared, the
random case does not perform well. This is seen by either comparing the relative
performance graphs (part (b) of Figures 13, 14, 15, and 16) or by noting the
difference in the elapsed time axis of the results graphs (Figures 5, 6, 7, 8, 9, 10,
11, and 12).

Figure 17 is a comparison of speedup for all three orderings on each of the test
cases. This demonstrates how the orderings behave as problem size and number
of processors is increased. Here it is evident that increasing the problem size with

any of the orderings will result in an improved speedup response. The significance

35

of this figure is that it demonstrates that the algorithms are able to use more
parallel resources as the problem size is increased. The speedup curves for the 33
and 54 object cases do not appear to be leveling off, which indicates that those
cases could benefit from the addition of more processors. This shows the viability
of this approach and demonstrates a potential for its application to larger problem

sizes.

3.3.2.1 General Observations

In general, it is possible to conclude that for sufficiently large problems, the choice
of sequential search depth is not critical. It is only necessary to ensure that the
parallel tasks have enough work (suitable granularity) and that there are enough
tasks generated to use the processors available. The determination of this depends
on the specific problem and MIMD architecture being used.

The ordering of objects is important with this approach. Random ordering is
poor. However, in some cases, random ordering may be all that is possible. This
occurs if the objects either constrain each other equally or if the set of constraints is
of limited value in reducing the search tree, perhaps due to the difficulty of defining
the constraint set for a particular problem. In this case, it is significant that the
random case makes good use of parallelism, which is evident in the speedup curves
for this case (Figure 17(a)). Any speedup of a real problem is useful.

The unit constraint set T is available as part of the problem specification and
it can be used in instances where speciﬁc;, knowledge about the problem is not
available to help order the objects. In general, however, application dependent

knowledge is required to further improve the algorithm'’s performance.

36

The results demonstrate that object labeling is possible using recursive descent
with deepening. Significant speedup is possible for sufficiently large problems. As
the problem size increases, it becomes necessary to improve the quality of the
techniques used to reduce the search tree for the algorithms. This is important
to reduce the effects of the exponential growth of the search tree which drasti-
cally affects performance and parallel speedup. This experiment varied the object
ordering, but results indicate that this approach could also benefit from other

techniques to prune the search tree [8, 29].

37

) Depth
§ g
2 -2
2 -~ 5
E -3
3 *+ g
&
]

0 vo—ey v 1 § v g v L) . L) v] e

0 10 20 30 40 50 60
Number of PE's
(a) Random Ordering

10
T osd Depth
5 iy
L -2
g 061 o -+ 5
B >—b - 8
3 * 9
§ 04
i} —— —te

0-2 T v ¥ L) v ¥ L] L]

O 10 20 30 40 50 60
Number of PE's
(b) Unit Constraint Heuristic Ordering

08
& 07 Depth
i w .
s -2
ﬁ - 5
F o5 - 38
3 “* 9
F y
b 04

03

] 10 20 30 40 50 60
Number of PE's

(c) Spatial Relation Heuristic Ordering

Figure 5: Tiing results for 9 objects as number of PE’s is varied

5
T Number of PE's
i . -
. ; 2
£ ~+ 8
= 2 - 32
3 ~u
AR
o M ¥ L) v L L M
0 2 4 6 8 10
Depth
(a) Random Ordering
10
T o8- Number of PE's
5 ~
E 064 -~ g
= - 32
3 -
g 04
a
02 WL] L] hd | v L
0 2 4 6 8 10
Depth
(b) Unit Constraint Heuristic Ordering
0.8+
4
3 0.7+ Number of PE's
§ 0.6 o1
g 1 -~ 8
P 051 - 32
3 My
& o4
ﬁ
0.3] M L) L) h L
0 2 4 6 8 10

Depth
(c) Spatial Relation Heuristic Ordering

Figure 6: Timing results for 9 objects as sequential search depth is varied

39

300
2
=
i
("]
1] v T) v T T v
0 10 20 30 40 50
Number of PE’s
(a) Random Ordering
3
=
3
s
7]

Number of PE's
(b) Unit Constraint Heuristic Ordering

5 =
§)
- "
g 27
=
§ 2 \
7] " T
1 T
o 10 20 30 40 50 60

Number of PE's
(c) Spatial Relation Heuristic Ordering

§

Kkttt e

Figure 7: Timing results for 20 objects as number of PE’s is varied

40

300
3 Number of PE’s
§ 200 - -
K] -2
g -+ 8
= - 32
'g 100 < 48
8
7]
0 —y——— v T sy v
0 5 10 15 20
Depth
(a) Random Ordering
12
) 10 4 Number of PE's
§ 8 . 1
3 - 2
g] -+~ 8
= 6 - 32
3] * 64
S e
2 - T v T v T M
0 5 10 15 20
Depth
{b) Unit Constraint Heuristic Ordering
‘i‘ Number of PE's
i .
S -2
g -~ 8
[- 32
3 % 64
&
W
1 v L] hd [) v ¥ v
0 5 10 15 20
Depth

(c) Spatial Relation Heuristic Ordering

Figure 8: Timing results for 20 objects as sequential search depth is varied

42

700

m..
300 -
200

Elapsed Time (seconds)

100 ~

g

pth

O

15

k¢t éd

33

S —

0 —
0 10

LI L}
20 30 40 50 60
Number of PE's

(a) Unit Constraint Heuristic Ordering

150

100

Elapsed Time (seconds)

0 r—t

L] L 4 v L} v

v N e
0 10 20 30 40 50 60

Number of PE's

(b) Spatial Relation Heuristic Ordering

Figure 9: Timing results for 33 objects as number of PE’s is varied

43

800
g 600 - Number of PE's
; -
= - 2
g 400+ -+ 8
= - 32
% Mg
g 200 -
i
0 LB B A T T v 1
0 5 10 15 20 25 30 35
Depth
(a) Unit Constraint Heuristic Crdering
150
% Number of PE's
§ 100 - i
L - 2
g + 8
= - 32
g 50 * 64
a
[}
i} 4
L S
o — L] v L] v L] A] v L) v LI hd
] - 10 15 20 25 30 35

_ Depth
(b) Spatial Relation Heuristic Ordering

Figure 10: Timing results for 33 objects as sequential search depth is varied

3000 -

2000 ¢ ¢

Elspsed Time (seconds)

1000 4 °

o - -I A ﬁ R
¢ 10 20 30 40 50 60
Numbasr of PE's

(a) Unit Constraint Heuristic Ordering

400
- Depth
e —— |
§ -2
= - 10
k- > -+ 25
= - 48
3 54
&
[} . ﬂ
0 vy L | LI SRk e pam
0 19 26 30 40 50 60
Number of PE's

(b) Spatial Relation Heuristic Ordering

Figure 11: Timing results for 54 objects as number of PE’s is varied

44

3000

2000 <

1000 +

Elapsed Time (seconds)

0 Y

0 10

(a) Unit Constraint Heuristic Ordering

400

20

Ty v

30
Depth

40

50

300 -

Elapsed Time (seconds)

0 +—— 7

0 10

e

20

30
Depth

40

50

45

Numberof PE's

TEEY
sgon-

Number of PE's

TRXY
ggen-

(b) Spatial Relation Heuristic Ordering

Figure 12: Timing results for 54 objects as sequential search depth is varied

46

<% Spatial Relation
&= Unit Constraint

Speedup (ts/tp)

- Randem
o'a L] v L} I L v v 1 v LI Ll
(1] 10 20 30 40 50 60
Number of PE's
(a) Speedup
1.1
1.0&7 e o i
B 094 ° *
g oo —
i 0.8
;r 0.7+ <= Spatial Relation
& 06- == Unit Consiraint
& - Random
£ o5
= 4
3 04-
03
0.2 7 v ¥ v ¥ LA | | B L}
0 10 20 30 40 50 60
Number of PE's

(b) Relative performance

Figure 13: Speedup and relative performance for the 9 object test case

30

0 Spatial Relation
=+ Unit Constraint
<8 Random

10 +

Speedup (ts/tp)

- . —
6 10 20 30 40 50 60
Number of PE's
(a) Speedup

<% Spalial Relation
-8~ Unit Constraint
<= Random

Quality Ratio (tbesttp)

L R v L ‘“l M) L)
0 10 20 30 40 50 &0
Number of PE's
(b) Relative performance

Figure 14: Speedup and relative performance for the 20 object test case

& Spatial Relation
-0~ Unit Constraint
< Random

Speedup {is/tp)

0 Pl ey o T =

—
0 10 20 30 40 50 60
Number of PE's

(a) Speedup

§
E < Spatial Relation
1 - Unit Constraint
(-4 Random
g
-
3
r. v
0 10 20 3o 40 50 60
Number of PE's

(b) Relative performance

Figure 15: Speedup and relative performance for the 33 object test case

48

Speedup (ts/tp)

QGuality Ratio (tbest/tp)

49

<& Spatial Relaticn
o~ Uri Constraint

o N R
10 20 3¢ 40
Number of PE's

(a) Speedup

50

60

L] hd]

P

v T
10 20 30 40 50

Number of PE's

™

60

(b) Relative performance

- Spatial Relation
-6~ Unit Constraint

Figure 16: Speedup and relative performance for the 54 object test case

< 9 Cbjuir
&~ 20 Objecis
& 33 Objects

Speedup (ts1p)

Number of PE’s
(a) Random Ordering

9 Objects

20 Objects
33 Objects
54 Objects

teée

Speedup (tsAp)

1] 10 20 30 40 50 60
Number of PE's

(b) Unit Constraint Heuristic Ordering

9 Objects

20 Objects
33 Objects
54 Objects

tede

Spesdup (tsftp)

0 10 20 30 40 50 60
Number of PE's

(c) Spatial Relation Heuristic Ordering

Figure 17: Speedup comparison of the three orderings

50

Chapter 4

Other MIMD Approaches:
Split-Label-Merge and Eureka

Jump

The two techniques presented in this chapter are provided as alternative parallel
approaches to the consistent labeling; problem. Both approaches are potentially
good methods for object labeling on suitable MIMD architectures. Due to practical
implementation limitations, neither approach proved practical on the Myrias SPS-
2 architecture. The following sections discuss these algorithms and their behavior.
Experimental results are presented to illustrate the viability of the approaches,

but are not meant to be a rigorous treatment.

51

4.1 The Split-Label-Merge Technique

The approach described in Chapter 3 examines partial “paths” in the search tree
and then launches parallel tasks on paths which remain viable. Conceptually, this
corresponds to partitioning the search tree vertically.

One alternative approach is to subdivide the problem horizontally. This corre-
sponds to dividing the set of objects to be labeled into smaller groups. Each group
is then labeled in parallel to produce a set of partial labelings which are consistent
for objects in that group. Then, in parallel, the groups are merged to produce a
set of consistent labelings for all objects.

The desired behavior of this approach is to reduce the number of possible
labelings by eliminating many labelings for the small groups. The potential size
of a search tree is exponentially related to the number of objects. This relation is
given by ", where [is the number of labels (branching factor) and n is the number
of objects in the tree.

In the worst case where objects do not constrain each other, this technique
will not have any advantage. However, in real applications, objects constrain each
Gther ind {t #¢ reasonable to expect that the number of partial labelings produced
for each smaller gfoup will be considerably less than the total number possible
for all objects. Merglng together these smaller sets of partial labelings is then a
much smaller task. Many impossible labelings have been eliminated in the initial
labeling phase. Referito Figure 18 for an illustration of the overall behavior of this

technique.

1 Group2 p3 Groupd4 Group S p6

Sequential T~

Labeling
-y LT3 Set of Partial Labelings

Figure 18: Overall behavior of the Split—La.bel-Merge algorithm

4.1.1 Choice of Sub-Groups

One important consideration for this algorithm is how to divide the initial set of
objects into smaller groups. At one extreme is to have one object in each group,
produce the valid labelings for those objects in parallel, and then merge the results
to form the final solution. At the other extreme is to put all objects in one group,
which corresponds to doing the labeling sequentially.

It would appear that the one object per group approach would be desirable.
There are few partial labelings possibie for each object and the merging phase will
yield only consistent labelings for the objects in the group at each step. However,
due to the overhead of launching parallel tasks, it is necessary to do enough work
in each task to outweigh this cost. This is the same problem of choosing the proper
task granularity as encountered in Chapter 3.

To eliminate as many labelings as possible at each step, it is important to
group objects together which locally constrain each other. For the purpose of this

investigation, the objects were grouped manually using their spatial relationship.

53

That is, objects which were adjacent in the line drawing were grouped together.
This is similar to the way that objects in a real scene interact. Objects in an
image constrain other objects which are physically adjacent. Some discussion of

this clustering and possible automated approaches to it are discussed in Chapter 5.

4.1.2 Practical Considerations

The decision of how to split up the set of objects is fundamental to this technique.
The memory model used by the Myrias architecture requires that children tasks
each write to a different part of its address space if the resultant memory image in
the parent is to behave in a predictable fashion. Therefore, enough memory must
be allocated by the parent task to provide each child with enough space for its
own use.

This consideration affects the choice of how many objects to place in each group.
Recall that the number of possible partial labelings is exponentially related to the
number of objects in a group. If there are too many in each group, the amount of
memory which the parent reeds io allocate for each child to store the set of partial
labelings is more than that which is available. Also, if there are too few objects in

each group the parallel task overhead becomes the dominant factor.

4.1.3 Experimental Results

The results presented in Figure 19 represent the elapsed time for the 20 and 54
object test cases described in Appendix A. The experiment was run on a domain
size of 16 processors. These results illustrate that this technique is sensitive to the

number of objects in each group.

Elapsed Time (seconds)

Elapsed Time (seconds)

55

50

40 -

30 4

20 -

10 4

Y ' I ' '

0 5 10 15 20
Groups

(a) 20 Objects

140
120-.
100
80
60 -

40 -

20 b ! v T v T -y] v T
0 10 20 30 40 50
Groups

(b) 54 Objects

Figure 19: Results for Split-Label-Merge technique

Figure 19(a) shows that the 20 object case appears to give the best performance
if divided into 2 groups. Further subdivision causes a decrease in performance. The
missing data for 1 group is due to the fact that there was not enough memory to
provide room for storage of all possible labelings of 20 objects (4%° ~ 1.1 x10'2?). In
reality, it is not necessary to provide storage for all labelings because the constraints
limit the number possible. However, it is not possible to know in advance how
many there will be and so the “worst case” must be accounted for. Reducing the
memory requirements of this algorithm, perhaps by estimating the space needed,
would be one modification necessary to make this approach practical.

Figure 19(b) shows that for the 54 object case, 8 groups provide the best resuits.
Again, the missing data points for fewer than 6 groups indicates that memory re-
quirements were excessive. Here we also see the trade-off between parallel overhead
and granularity. The fact that 6 and 7 groupé perform worse than 8 indicates that
the task granularity is too coarse—too much work is being done sequentially. For
more than 8 groups, the task granularity is too small. The overhead to launch
parallel tasks becomes increasingly dominant.

These results indicate that this technique is a possible approach to object
labeling. Further research with this technique to overcome practical limitations
would be necessary to make it viable and to obtain more information on the
predicted behavior over a more comprehensive range of problem and processor

domain sizes.

56

Sequential
Depth

Solidons

Figure 20: The Eureka jump finding the shortest solution

4.2 The Eureka Jump

In a situation where it is known that only one solution exists or where only one
solution is needed, it is desirable to stop the search when that solution is found.
This introduces the idea of an Fureka Jump. As soon as one solution is found, the
program terminates without searching the rest of the tree for other solutions.

The advantage of this technique is that given enough processors, it is possible
to guarantee that the fastest solution will be found. To illustrate this, consider
Figure 20.

In this example, there are four tasks indicated by the four triangles. The first
task launches parallel tasks on three possible labeiings after it searches part of the
tree to a certain depth using a depth first search. Each of these three tasks will
eventually search its part of the tree until it finds a solution, indicated in the figure

by the leaf nodes.

A recursive descent algorithm searches the “leftmost” branches of the tree first.
In this case, we will assume that the solutions exist at the second leaf node of the
first task, the fifth leaf node of the second task, and the fifteerth leaf node of +kw
third task. Using a Eureka jump, the program will terminate when it discovers
the solution in the first task at the second leaf node. The time to find a solution
is

min(t(2), ¢(5), ¢(15)) = ¢(2)
where #(z) is a function relating the position of the leaf node to the time it takes
to search to that point.

In a sequential implementation, the time it would take to find a solution de-
pends on the order the three sub-trees are searched. If the first sub-tree is searched
first, the time to find a solution is £(2). If the third tree is searched first, the time
would be ¢(15).

For the sake of comparison, assume that the function ¢(z) is linear. This is a
conservative assumption. In fact the function ¢(z) has an exponential component
related to the exporential growth of a subtree. Further, assume that the values
can be normalized such that #(2) = 2,#(5) = 5,#(15) = 15. On average, the time

required to find a solution in the sequential case would be:

H(2) +(5) +#(15) _ 245415 _

3 3 7.3

which is longer than the Eureka jump case, (2) = 2. This shows that the Eureka
jump is guaranteed to locate the fastest solution.

The Myrias computation model allows for a Eureka jump. It is expressed
simply as a break statement within the parallel extension to the C programming

language, pardo:

58

pardo(i=1:n) {

if (soluticn)
break;
}

This causes the children tasks of the pardo to terminate and execution to
continue after the pardo.

At the time of developing this algorithm, the Eureka jump had not been imple-
mented on the Myrias machine. Therefore, in order to investigate this technique,
the Eureka jump was implemented by having child tasks periodically check for the
existence of a file. This file was created by the first task to discover a solution.
Any other tasks noticing the existence of this file would then terminate.

However, while the behavior is similar to a real Eureka jump, the repeated
checks for the existence of the file drastically reduce program performance since it
requires repeated calls to I/O instructions.

The advantage to this approach is especially evident in the case where there are
more children tasks than there are available processors. In this case, the children
tasks must wait for the availability of a free processor. If a solution is found by a
task currently executing, then the program can terminate sooner than if all child

tasks had to execute.

4.2.1 Experimental Results

The actual implementation of this technique is inefficient. The repeated calls to
I/O instructions to attempt to simulate the Eureka jump cause a severe perfor-

mance penalty. To compensate, an attempt was made to measure and subtract

60

1200
— 1000
.§ | Number of PE's
g 800 ~ < 1pe
- A - 2p°
g €001 -+~ &pe
- y -~ 32pe
'g 400 - < 64pe
[- % o
K]
w 200 +
o+ 1
o 5 10 15 20

Depth

Figure 21: Elapsed time for Eureka jump—20 objects, random ordering

off the time spent in I/O operations. The results presented in Figure 21 have
been “adjusted” to remove time spent doing I/O. The experiment was run on the
randomly ordered 20 object test case described in Appendix A.

Little can be said regarding the performance of this technique. The shape of
the graphs gives some indication of the expected behavior of the Eureka jump.
Cautiously, one can observe that tk:: behavior is similar to the normal recursive
descent with deepening technique in that the overall shape of the curves is roughly
similar. However, speculation beyond that would be inappropriate.

The results serve to indicate that this approach is possible. However, simulation
of this technique is disappointing. The usefulness of the Eureka jump is in the quick
termination of the algorithm if the solution is found. If the overhead introduced
by the Eureka jump is large, then this technique is not viable.

Further investigation on a later version of the Myrias architecture after a real

Eureka jump is implemented would be in order. This approach has the potential
to improve the performance of the consistent labeling algorithm if it behaves as
promised when it is delivered.

The effectiveness of the Eureka jump is a function of granularity. A coarser
granularity implies that there will be greater savings. A fine granularity means
that the Eureka jump will provide less savings.

The overhead introduced by the use of the Eureka jump could be made negligi-
ble if interrupts are used. This is not possible on the SPS-2, however. Theoretically,

Eureka jump should provide an advantage and promises better speedup.

61

Chapter 5

Conclusion

5.1 Evaluation of the Algorithms

Three MIMD techniques for the solution of the consistent labeling problem have
been implemented and tested. The recursive descent with deepening algorithm
is fairly easy to program and is suitable for implementation on the Myrias SPS-2
MIMD architecture. Results indicate that this algorithm benefits from parallelism.
For larger problem sizes, good speedup is possible indicating that the parallel
resources are being used well.

The effect of object ordering to reduce the size of the search tree was also in-
vestigated for this technique. Random ordering is the worst case and produces the
largest search tree. However, the random case also benefits the most from parallel
implementation in that it can use the resources the most effectively. Ordering the
objects based on the Unit Constraint relation provides significant improvement
over the random case and should be possible in most cases. The best ordering

is produced by considering application dependent criteria for the specific prob-

62

lem domain under consideration. If this information is available, then a practical
implementation should utilize it for better performance.

Another result is that while “better” sequential search algorithms benefit less
from parallelism, if the problem size is increased, the performance speedup im-
proves. For some problems it is sometimes desirable to use a “dumb” algorithm
and many processors to obtain better speedup. However, in the case of consis-
tent labeling problems it is indicated that the parallel approach does benefit from
smarter sequential techniques.

The split-label-merge algorithm and the Eureka jump technique provide inter-
esting alternative approaches, but do not lend themselves to efficient implementa-
tion on the Myrias machine. The split-label-merge algorithm has harsh memory
requirements under the Myrias memory mode! and the Eureka jump technique
must be implemented at an operating system level using interrupts for efficient
performance.

The split-level-merge approach has potential applications in object labeling
problems where the objects constrain each other locally in “clusters”. An example
would be scene analysis, where objects in an image are clustered together physically
in the scene.

The Eureka jump approach has potential for speeding up branch and bound
tree search labeling algorithms, such as recursive descent with deepening. It
is in the class of branch and bound tree search problems that the apparently
anomalous behavior of super-linear speedup is possible [13]. This occurs because
a solution may be found more than k times faster in parallel than sequentially

(k = number of processors). The behavior is not really anomalous in that the

63

speedup is not calculated relative to an “optimal” sequential algorithm but in-
stead relative to the same algorithm on one processor. In practice, however, the
optimal sequential solution is not known in advance and so effective super-linear

speedup is possible when calculated this way.

5.2 Contribution of this Thesis

This thesis builds largely on the work of Ullmann et al. [29]. They examine theo-
retically the implementation of the consistent labeling problem on parallel archi-
tectures. Their proposal is a fairly simple method of partitioning the consistent
labeling problem into sub-problems to be solved in parallel on a number of inter-
connected processing elements.

The solution offered by them to overcome the inefficient utilization of parallel
resources is to have idle processors request additional work from processors with
too much. This is similar to the dynamic load leveling provided by the Myrias
architecture and is provided transparently to the programmer.

This thesis makes the contribution of examining the effect of object ordering
on the efficiency of the labeling algorithm. A method is developed which orders
objects based on the relationship of objects as indicated in the unit constraint
relation, which is provided as part of the problem specification. This ordering
method performs significantly better than a random ordering and so is of benefit
in instances where application specific information is not available.

In addition, the deepening modification to the recursive descent technique

allows some control over task granularity which can be tuned for a particular

64

architecture in a practical implementation. Experimental results were gathered
which illustrate the behavior of the recursive descent with deepening algorithm
and demonstrate that sig:.ificant speedup is possible.

Two alternative approaches were proposed and implemented to demonstrate

their feasibility. Both alternative techniques have potential in some cases or on

other MIMD architectures.

5.3 Future Work

The split-label-merge algorithm and the Eureka jump technique were not fully
investigated due to practical limitations. The first area for future work would be
to investigate methods of reducing the memory requirements for the split-label-
merge algorithm. Second, after the Eureka jump has been implemented, more
comprehensive experiments could be run to investigate its potential for object
labeling.

The split-label-merge algorithm required the manual specification of how to
group objects. Further research would be useful to develop some sort of clustering
technique which would group objects together which are highly constrained. This
would involve the design of a distance metric which would characterize the con-
straints between objects. Objects could then be grouped using standard clustering
techniques from the field of pattern recognition.

Some thought has been made to the development of this distance metric. One
idea was to represent the problem as a connected graph with the nodes represent-

ing the objects and the edges representing the constraints between objects. The

65

length of the shortest path between two objects could then be used as the distance
measure.

Another factor which could be examined is the choice of sequential search
depth in the recursive descent with deepening techni¢:2. This experiment used
a fixed sequential depth. That is, the depth the tree was searched was constant
at each node in the tree where parallel tasks were launched. It may be desirable
to use different values of depth, depending on the current location in the tree.
For instance, using the ordering schemes presented by this thesis, the assignment
of labels early in the search tree will have a large effect in terms of reducing the
number of consistent labelings possible further down in the tree. Perhaps then, it
is desirable to ust: a small value of depth initially, while eliminating inconsistent
paths and use a lusger value farther down in the tree where fewer paths remain.

One possibility is to have the depth calculated based on the current position
in the tree. For exuu:ple

d(u) = ayu + a,

is a simple polynomial which is monotonically increasing if a;,a; > 0 for u =
0,1,...,n where a; are arbitrary constants which depend on the particular appli-
cation and u is the current position in the search tree.

Another area for future work is in the development of better ordering heuristics
for the consistent labeling problem for sequential algorithms. One constraint im-
posed by the parallel programming model on the Myrias SPS-2 is that tasks must
be independent and cannot communicate. However, in a sequential algorithm,
it may be possible to use information obtained in searching part of the tree to

help order the search in later parts. Schaeffer [25] discusses a technique called the

66

“History Heuristic” which may have applicability to the labeling problem.
The Eureka jump technique may be influenced by the order in which labels are
assigned to objects. This thesis has only looked at object ordering, but further

work could be done to investigate how to order the labels.

67

Bibliography

(1] Dana H. Ballard and Christopher M. Brown. Scene labeling and constraint
relaxation. In Computer Vision, section 12.4, pages 408-430. Prentice-Hall,

Inc., New Jersey, 1982.

[2] M. Beltrametti, K. Bobey, R. Manson, M. Walker, and D. Wilson.
PAMS/SPS-2 system overview. In Proceedings Supercomputing Symposium,

pages 63-71, Toronto, 1989.

(3] Ralph Duncan. A survey of parallel computer architectures. Computer,

23(2):5-16, February 1990.

[4] R. E. Fikes. REF-ARF: A system for solving problems stated as procedures.
Artificial Intelligence, 1:27-120, 1970.

(5] Jun Gu, Wei Wang, and Thomas C. Henderson. A parallel architecture for
discrete relaxation algorithm. IEEE Transactions on Pattern Analysis and

Machine Intelligence, PAMI-9(6):816-831, November 1987.

[6] R. M. Haralick, L. Davis, A. Rosenfeld, and D. Milgram. Reduction opera-

tions for constraint satisfaction. Information Science, 14:199-219, 1978.

68

[

(8]

(9

[10]

[11]

[12]

[13]

[14]

R. M. Haralick and J. Kartus. Arrangements, homomorphisms, and discrete
relaxation. IEEE Transactions on Systems, Man, and Cybernetics, SMC-
8:600-612, August 1978.

Robert M. Haralick and Linda G. Shapiro. The consistent labeling problem:
Part 1. IEEFE Transactions on Pattern Analysis and Machine Intelligence,
PAMI-1(2):173-184, April 1979.

Robert M. Haralick and Linda G. Shapiro. The consistent labeling problem:
Part II. IEEE Transactions on Pattern Analysis and Machine Intelligence,
PAMI-2(3):193-203, May 1180

Thomas C. Henderson. A rat: ou <ucrete relaxation. Computer Vision,

Graphics, and Image Processi..;, :56:384-388, 1984.

Tom Henderson and Ashok Samal. Multiconstraint shape analysis. Image

and Vision Computing, 4(2):84-96, May 1986.

Robert A. Hummel and Steven W. Zucker. On the foundations of relaxation
labeling processes. IEEE Transactions on Pattern Analysis and Machine In-

telligence, PAMI-5(3):267-287, May 1983.

Ten hwang Lai and Sartaj Sahni. Anomalies in parallel branch-and-bound

algorithms. Communications of the ACM, 27(6):594-602, June 1984,

Masaru Kamada, Kazuo Toraichi, Ryoichi Mori, Kazuhiko Yamamoto, and
Hiromitsu Yamada. A parallel architecture for relaxation operations. Pattern

Recognition, 21(2):175-181, 1988.

69

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Lefteris M. Kirousis. Effectively labeling planar projections of polyhedra.
IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-
12(2):123-130, February 1990.

J. Kittler and J. Illingworth. Relaxation labelling algorithms — a review.

Image and Vision Computing, 3(4):206-216, November 1985.

Eva Leung and X. Li. Generalized parallel algorithms for relaxation label-
ing. In Proceedings International Symposium on Computer Architecture and

Dagital Signal Processing, pages 320-325, Hong Kong, October 1989.

Eva Kwan-sheung Leung. Parallel algorithms for relaxation labelings. Mas-

ter’s thesis, University of Alberta, Fall 1989.

Jeanette Tyler McCall, Joseph G. Tront, ¥. Gail Gray, Robert M. Haralick,
and William M. McCormack. Parallel computer architectures and problem
solving strategies for the consistent labeling problem. IEEE Transactions on

Computers, C-34(11):973-980, November 1985.

Fernando A. Mota and Flavio Roberto D. Velasco. A method for the anal-
ysis of ambiguous segmentations of images. IEEE Transactions on Pattern

Analysis and Machine Intelligence, PAMI-8(6):755-760, November 1986.

Shmuel Peleg. A new probabilistic relaxation scheme. IEEE Transactions on

Pattern Analysis and Machine Intelligence, PAMI-2(4):362-369, July 1980.

Keith E. Price. Relaxation matching techniques - a comparison. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, PAMI-7(5):617-623,
September 1985.

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Elaine Rich. Artificial Intelligence, pages 351-358. McGraw Hill, 1983.

Azriel Rosenfeld, Robert A. Hummel, and Steven W. Zucker. Scene labeling
by relaxation operations. IEEE Transactions on Systems, Man, and Cyber-

netics, SMC-6(6):420-434, June 1976.

Jonathan Schaeffer. The history heuristic and alpha-beta search enhance-
ments in practice. IEEE Transactions on Pattern Analysis and Machine In-

telligence, PAMI-11(11):1203-1212, November 1989.

Howard Jay Siegel, Leah J. Siegel, Frederick C. Kemmerer, Philip T. Mueller,
Jr., Harold E. Smalley, Jr., and S. Diane Smith. PASM: A partitionable
SIMD/MIMD system for image processing and pattern recognition. [EEE

Transactions on Computers, C-30(12):934-946, December 1981.

Demetri Terzopoulos. Image analysis using multigrid relaxation methods.
IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-
8(2):129-139, March 1986.

S. Ullman. Relaxation and constrained optimization by local processes. Com-

puter Graphics and Image Processing, 10:115-125, 1979.

Julian R. Ullmann, Robert M. Haralick, and Linda G. Shapiro. Computer

architecture for solving consistent labelling problems. The Computer Journal,

28(2):105-111, 1985.

Benjamin W. Wah, Guo jie Li, and Chee Fen Yu. Multiprocessing of combi-

natorial search problems. Computer, 18(6):93-108, June 1985.

[31] Andrew M. Wallace. A comparison of approaches to high-level image inter-

pretation. Pattern Recognition, 21(3):241-259, 1988.

[32] David Waltz. Understanding line drawings of scenes with shadows. In P. Win-
ston, editor, The Psychology of Computer Vision, chapter 2, pages 19-91.
McGraw Hill, New York, 1975.

[33] S. Yalamanchili and J. K. Aggarwal. A system organization for parallel image

processing. Pattern Recognition, 18(1):17-29, 1985.

Appendix A

Line Drawings Used in the

Experiments

There were four test drawings de: i@ 13- 4 :-»xperiments which were run on the
Myrias SPS-2 parallel computer. Figures 24, 23, 24, and 25 illustrate these cases.
The first three (9, 20, and 33 objects) are increasingly complex combinations of
simple cubes. The fourth (54 objects) is an attempt to demonstrate what a “real”

scene would look like after pre-processing to extract the line segments.

73

Figure 22: 9 Object Line Drawing

Figure 23: 20 Cbject Line Drawing

7
25 |22
24
23
20 21
18
17
16

Figure 24: 33 Object Line Drawing

32

10

26

31

11

28

30

19

12
13

29

14

15

8
7
49 59 o 37
6 10
4 Nz 23 3% 11
42 48
5| 45 4
35
0 41 3 34
51 18 12
32
29 a1 33
y7 l/
/ 29 = A 27
25 < 30
18 17 16
19
53 26 13
52 22
20 15
24
21 23 14

Figure 25: 54 Object Line Drawing

Appendix B

Format of the Input Files for the

Line Drawings

The format of the input file used by the programs in this thesis is:

e D: followed by the iterative depth. In the case of the m:=rge algorithm, this
number indicates the number of sets to partition the objects into. For this
experiment, the text string DEPTH was substituted with the desired value

of iterative depth using the Unix atility “sed”.
¢ U: followed by the number of units (objects) in the problem.

¢ L: followed by the number of labels in the problem and a number of text
strings indicating the names of the labels. The line drawings used in this
thesis had a label set consisting of four possible labels: convex (+), concave

(-), occluding right (—), occluding left («—).

77

e T: followed by a number of digits separated by commas. This indicates the
unit-unit constraint relation 7. Each line indicates a number of units which

constrain each other.

e R: followed by a number of digits separated by commas. This is the unit-
label constraint relation R. Each line indicates a number of unit-label pairs

which are permissible for the objects constrained in set T'. The format is:
unit,label,unit,label,. . ..

This unit-label constraint set was determined by considering the type of
intersection at which the line segments meet. The intersection types are: L,

Fork, Arrow, and T.

Appendix C

An Overview of Parallel

Computer Architectures

C.1 Introduction

There are a wide variety of parallel processing technologies. Recent developments
have seen advances in parallel hardware architectures, interconnection technolo-
gies, and programming paradigms. This appendix attempts to summarize the
types of parallel architectures which exist and their relationship to one another.
Duncan (3] provides a good survey of parallel computer architectures from which

the following is abstracted.

C.2 Terminology

The following discussion will exclude architectures which contain only low level

parallelism. This includes such features as instruction pipelining, multiple CPU

79

Vector
l- r— Processor Array
Synchronous LS IMD

L— Associative Memory
Systolic

Distributed Memory
MIMD [

Shared Memory

Figure 26: Taxonomy of Parallel Architectures

functional units, and separate I/O and CPU processors. The reason these are not
considered is that, although these contribute to overall performance improvement,
their presence does not make a computer a parallel architecture.

Duncan [3] offers the following definition:

.. .a parallel architecture provides an explicit, high-level framework for
the development of parallel programming solutions by providing mul-
tiple processors, whether simple or complex, that cooperate to solve

problems through concurrent execution.

Pigure 26 illustrates an informal taxonomy based on this proposed definition.

This serves to demonstrate the principal approaches to parallel computer archi-

tectures.

80

.3 Synchronous Architectures

The key feature of synchronous parallel architectures is the concurrent operation
of instructions which are coordinated globally by a central control unit under the

direction of a global clock.

C.3.1 Pipelined vector processors

Vector processors are distinguished isy the presence of multiple, pipelined func-
tional units. These implement arithr=tic and Boolean operations on both vec-
tors and scalars and can operate concurrently. This architecture provides parallel
processing by sequentially streaming vector elements through a functional unit
pipeline and chaining the output of one pipeline to the input of another.

After an initial delay to fill the pipeline, the architecture can provide a result
every cycle. Due to this initial delay, performance of pipelined architectures is

sensitive to the startup overhead of the algorithm.

C.3.2 SIMD Architectures

SIMD architectures generally consist of a central control unit, multiple processors,
and an interconnection network for communication between processors or between
processors and memory. The control unit broadcasts a single instruction to all
processors. Every processor then executes the instruction in a “lockstep” fashion
on data local to the processor. The interconnection network allows processors to
communicate results to each other for use in subsequent calculations.

Individual processors may be able to ignore the current instruction from the

81

central control unit. SIMD algorithms consist of the set of instructions to be issued

by the central control unit and a mask indicating which processors will participate.

C.3.3 Systolic Architectures

Systolic architectures are generally proposed to solve special-purpose problems
which must balance intensive computations with severe I/O bandwidth demands.
Systolic arrays are pipelined multiprocessors in which data is pulsed rythmically
through a network of processors before returning to memory. This pipelined data
flow is synchronized by explicit timing delays and a global clock. During each time
interval, the processing elements execute a short sequence of instructions.

This class of architecture can address the requirements of special purpose sys-
tems by providing significant parallel computation and decreasing memory and
I/O bottlenecks. Systolic architectures maximize the computations performed on
a datum by passing it to whichever processors need it without having to store it

to memory. Only the processors on the edge of the array need to perform I/0.

C.4 MIMD Architectures

The processors in a MIMD architecture can execute independent instruction streams
using local data. Therefore problems which require processors to behave in an
autonomous manner are well suited to MIMD machines. Software processes ex-
ecuting on MIMD architectures synchronize by either passing messages through
an interconnection network or by accessing shared memory. This class of parallel

architecture is asynchronous, demonstrating decentralized hardware control.

The driving force behind the development of MIMD architectures is that higher
level parallelism can be exploited (subprogram and task level). One type of al-
gorithm which is well suited to this technique is known as “divide and conquer”,
where a problem is broken down into smaller subproblems which are largely inde-

pendent.

C.4.1 Distributed Memory Architectures

Distributed memory architectures connect processing nodes (an autonomous pro-
cessor and local memory) with an interconnection network. Data is shared explic-
itly by passing messages between processors since there is no shared meﬁory. The
benefit - « architecture is the ability to “scale” a system. It is well

suits: = applications which make use of local data references.

mory Architectures

&, ...e¢iures provide a global, shared memory that each processor

can s..w.e. Lhis type of architecture does not have some of the problems associ-
ated with message passing architectures such as latency caused by queueing and
forwarding messages.

Other problems must be resolved. Data access requires atomic synchronizing
mechanisms to prevent a processor reading a memory location before another has
finished updating it. Each processor in this type of system also typically has a
memory used as a cache. Multiple copies of the same data may exist in several
processors’ caches at the same time. Ensuring that a consistent version of the data

resides at each cache is known as the cache coherency problem.

83

C.5 MIMD/SIMD Architectures

There are also a variety of experimental hybrid architectures which allow selected
pieces of a MIMD architecture to behave in a SIMD fashion. The main benefit
of such hybrid systems is their flexibility. The details of such systems are quite
diverse and include such things as dataflow architectures, reduction architectures,

and wavefront array architectures.

34

Appendix D

Myrias PAMS/SPS-2 System

Overview

The Myrias multi-layered architecture allows code to function across new devel-
opments in technology without change. All user software is targeted for a virtual
machine computer called the “G” machine.

Each layer has an associated language. On the top layer are user applications
written in Myrias Parallel Fortran or Myrias Parallel C. Next, we find the com-
pilers, standard libraries, and associated tools. The output of the compilers is the
G instruction set. Below this layer is the operating system layer. Myrias supports
a standard UNIX environment. Below this is the G line. System software below
this point is transparent to the user. The G translator accepts G object code and
translates it into the native machine code of the underlying hardware.

The system control mechanism implements the pardo construct. Tasks are

mapped onto physical processors and the address spaces of tasks are mapped

85

onto reai memory. This control mechanism operates without user intervention.
The hardware layer consists of the processing elements including memory and a
communication subsystem.

To incorporate a new underlying hardware implementation, only the G trans-
lator and the interface control mechanism to the communication subsystem have

to be re-implemented.

D.1 Programming on the Myrias System

User programs are written for the Myrias system using either FORTRAN or C. A
language extension, pardo, is the only modification to standard FORTRAN or C.
The pardo (parallel do) construct has the same syntax as the do loop in FORTRAN.
In loops where the iterations are independent, their execution can be made parallel
by replacing the do statement by a paerdo. Each “iteration” of a pardo is a distinct
task with its own memory image. Each task references only its own address space,
so no task synchronization is required.

Parallel tasks are created when the pardo instruction is executed. The parent
which executed the pardo is suspended while the child tasks execute in parallel in
any order. Each child inherits an identical copy of the parent’s address space, with
only the iteration variable varying. The child tasks’ address spaces are merged to
form a new memory image on completion. Merging rules specify that if exactly one
child modifies a memory location or if several children modify the same location
in exactly the same way, that is the new value in the parent’s address space. if

two children modify the same location differently, the new value is undefined and

86

its contents are unpredicable.
The system control software handles the assignment of tasks to processing ele-
ments, dynamic load balancing by migration of tasks among processing elements,

and all copying, storage, and merging of memory images.

D.2 Myrias Supervisor

The Myrias Supervisor provides access to the system and provides a UNIX envi-
ronment for user programs. The supervisor software allows programs to be run
from any machine networked to the system. The mrun command is used to run a
program on the system. Mrun allocates the processing elements specified by the
user, loads the program and transfers control to the Control Mechanism.

I/0 is done through the master controller. Sustained I/O rates are 500 KB/sec.
Myrias promises that future implementations will use Input/Output Processors
(IOP’s) directly attached to the system. Graphics, networking, and tape systems
will directly interface with the IOP’s.

D.3 The Control Mechanism

The Control Mechanism manages the execution of user programs. There are three

main functions of the Control mechanism:

1. Task Control. The Control Mechanism suspends the parent process when a
pardo is executed and distributes the newly formed child tasks to processors

for concurrent execution. On completion, the parent task is resumed.

87

2. Dynamic Load Balancing. The Control Mechanism ensures a balanced work
load across all processing elements. Tasks are moved from processors with

excess work to processors which are idle.

3. Memory Management. The Myrias system is a virtual memory system with
demand paging among processing elements. A hierarchical caching scheme

is used to minimize the overhead of managing task address spaces.

D.4 Hardware

The Myrias SPS-2 hardware is built up of a number of modular building blocks.
At the highest level, a SPS-2 system is composed of a number of interconnected
processor frames called cages and a Master Controller (MC). The computation is
carried out in the cages and I/O is carried out in both the cages and the MC.

A cage is composed of sixteen multiprocessor card assemblies and a communi-
cations card assembly. In addition each cage contains a backplane, a clock card
assembly, power supplies, cooling fans, and cabinets.

The processors and communications card in a cage communicate with each
other via a portion of the backplane called the Inter Family Link. This provides two
completely separate communication channels which may operate simultaneously.

Each processor board consists of four processing elements, a bus interconnect-
ing the processors and a link to the Inter Family Link. The execution of user
programs is carried out entirely by the processor elements. Each element consists
of a Motorola MC68020 microprocessor with a MC68882 floating point coproces-

sor, a MC68851 paged memory management unit with four megabytes of dynamic

88

random access memory (DRAM), a controller, additional memory for the detection
and correction of bit errors, 8192 bytes of ROM, and controi circuitry. The com-
munications subsystem is composed of a proprietary application specific integrated
circuit (DMA ASIC) that handles communication between processing elements.
The communication card assembly is responsible for providing communications
with other cages and overseeing the use of the Inter Family Link within its own

cage. Also, system initialization and environmental monitoring are provided.

D.5 Intercommunication

Communication between components of a Myrias system takes the form of double-
ended messages. Each message is sent from a sender’s memory space to a target’s
memory space. A message is essentially an address followed by a variable length
stream of bytes representing the contents of the message. Any component in the
system can communicate with any other.

A target component has complete control over where the message goes. It can
reject a message if it decides it does not want it. This protocol is implemented
in hardware and ensures that the communications system is reliable. If a message
cannot be correctly transmitted, the sender of the message is advised. The sender
is told why the transmission failed and the target is forced to abort it on receipt.

Refer to Beltrametti et al. for a more complete description of the PAMS/SP53-2

System.

89

