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Abstract

The risks associated with wind power forecast (WF) deviations are of paramount impor-
tance to many power system participants (PSPs). However, traditional sampling approaches
are computationally prohibitive to model these deviations. Additionally, setting a risk
level for satisfying different PSPs receives little attention. This paper constructs a risk-
adjustable stochastic day-ahead scheduling (RSDS) model to balance the risk requirements
of PSPs, and proposes a Sobol-augmented Latin Hypercube Sampling (SaLHS) approach
to improve sampling efficiency for scenario generation process in RSDS. At first, SaLHS
and D-vine copula are combined to generate WF error scenarios for RSDS considering cor-
relations of wind farms. Specifically, SaLHS improves the uniformity and removes the cor-
relation of random samples. Then, a Glue-VaR-based generation adequacy index (GVGAI)
is proposed to measure operational risk. By adjusting the parameters of GVGAI, a desir-
able risk level can be obtained considering requirements of different PSPs. Furthermore,
a multi-objective RSDS model is constructed considering operational cost and GVGAI.
At last, an entropy-Weighted Aggregated Sum Product Assessment method is proposed to
find the best compromise solution for RSDS model based on the Pareto front obtained by
an 𝜖-constraint method. A modified IEEE-RTS system is used to validate the effectiveness
of proposed method via numerical simulations.

1 INTRODUCTION

Day-ahead unit commitment (UC) is one of the most impor-
tant applications in power system scheduling and operation.
The solution methods for UC problems are categorized into
deterministic and stochastic approaches [1], [2]. However, as
the wind penetration rate increases, deterministic approaches
are less desirable as it neglects the significant variability of wind
energy. Stochastic UC (SUC) has been introduced as a promis-
ing tool to deal with uncertainties. The SUC considers scenario-
based uncertainties to find the optimal solution. Therefore, a
large number of stochastic scenarios should be generated to rep-
resent the randomness of wind power outputs.

The stochastic scenarios of wind power output are composed
of forecast errors and forecast values. However, the forecast
errors of wind farms with similar meteorological conditions may
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have correlations on each other. To generate wind power fore-
cast error scenarios for meteorological correlated wind farms,
generating multidimensional samples can be a prerequisite. Sim-
ple random sampling (SRS) is the most commonly employed
sampling technique, but it faces immense computational chal-
lenges. Improvements have been made by stratified techniques
such as Latin Hypercube Sampling (LHS), whereas LHS cannot
provide good uniformity properties in a n-dimensional unit
hypercube. Xie et al.[3] applied Quasi-Monte Carlo (QMC)
methods in the sampling procedure of probabilistic optimal
power flow because of their better multidimensional uniformity
property. However, it has been found that QMC shows spuri-
ous correlations when applied to high-dimensional problems.
When dealing with multivariate problems, sampling accuracy
is affected not only by sample values, but also correlations
among samples. Wang et al.[4] coupled LHS with Hammersley
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sequence to achieve uniformity in one and multi-dimensions.
However, this method has not been evaluated for large
dimensions. Nishant and Urmila[5] proposed a new sampling
technique based on LHS and Sobol sequence (SS) to circumvent
the issues of spurious correlations, and maintained the mul-
tidimensional uniformity. However, the permutation method
used in SS cannot minimize the undesired correlations between
samples. This motivates us to find a more reliable and efficient
sampling method that maintains the multidimensional unifor-
mity as well as minimizes the undesired correlations among
samples.

System operators typically have to deal with two conflict-
ing demands: management of operational costs and risks. A
thorough SUC should consider evaluating benefits and risks of
wind power integration and thus supporting trade-off decisions.
Finding a trade-off between these two demands is a challenging
task for managers to face on a daily basis. Besides, they need to
quantify risks.

For SUC problems, the objective function is generally formu-
lated as the minimization of expected cost. Some researchers
adopted a stochastic security-constrained UC (SCUC) method
to manage operational risks[6]–[8]. Risk measures for SCUC
generally adopt probabilistic indices, for example, loss of load
probability (LOLP) or expected load not served (ELNS), which
cannot tell the risk level for a specific decision. The mean-
variance (MV) model not only pays attention to the economic
cost but also attaches great importance to the economic risk. Li
et al. [2] constructed a risk constrained MV for the stochastic
economic dispatch problem. This method is based on the vari-
ance of fuel cost, which can be further improved by incorpo-
rating risk measures. Some researchers adopted VaR and CVaR
as risk measures in UC [9]. However, what constitutes a suitable
risk measure requires further investigation.

From the system operators’ perspective, controlling the oper-
ational risk is fundamental to protecting the benefit of cus-
tomers and utilities, which may have conflicting objectives.
Besides, different participants of the power industry, such as
independent system operators (ISO) and system regulators,
could have different attitudes towards risk. However, to the best
of authors’ knowledge, little attention has been paid on risk
measurement considering different participants. To this end,
this paper introduces a GlueVaR based generation adequacy
index (GVGAI) to measure the risk. GlueVaR (GVaR) [10] is
a flexible risk measure, which provides a risk assessment that
lies between VaR and CVaR under different confidence levels.

In the light of previous discussion, a multi-objective (MO)
stochastic day-ahead scheduling (SDS) model considering oper-
ational cost and risk can be formulated based on SUC. To
solve the MO model, most literature adopted weighted sum
method (WSM). However, this approach fails to coordinate con-
flicting objectives. Another method, Pareto optimization aims
to search a Pareto solution set, and one solution is extracted
as final decision[11]. Inspired by decision-making science, an
entropy-Weighted Aggregated Sum Product Assessment (WAS-
PAS) method is proposed to acquire the best compromise
solution.

FIGURE 1 Flow chart of the proposed method

Based on the above analysis, there remain research gaps
which can be summarized by the following aspects:

1. Scenario generating methods for meteorologically correlated
wind farms. A considerable part of works in this field have
studied sampling techniques of wind power forecast error
scenarios. However, there remain challenges because current
sampling methods still face immense computational bur-
dens. The sampling efficiency can be improved by improving
multidimensional uniformity and minimizing the undesired
correlations among samples.

2. Suitable risk measure for different power system partic-
ipants. Traditional risk measures may limit the efficiency
of the generation schedules, and may even lead to infea-
sible solutions in some cases. In addition, these measures
fail to consider the risk preference of decision makers.
Therefore, it is necessary to develop a flexible approach to
improve the overall efficiency of scheduling, which could not
only enable flexibility to adjust the benefits and risks, but
also consider the SO’s risk preference by adjusting the risk
level.

The main contributions of this paper are listed as follows:

1. A stochastic scenarios generation method using a Sobol-
augmented Latin Hypercube Sampling (SaLHS) and D-vine
Copula is proposed considering correlation of wind speed
forecast error.

2. A mean-risk (M-R) risk-adjustable SDS (RSDS) is proposed
based on GVaR, which provides a flexible tool to control
operational risks for different participants.

3. An entropy-WASPAS method is proposed to obtain the best
compromise solution based on 𝜖-constraint method to solve
the RSDS model.

In order to illustrate the proposed procedure, a flowchart of
the procedure is illustrated in Figure 1.

The rest of this paper is organized as follows: Section
2 describes scenario generation method based on SaLHS
and D-vine Copula. Section 3 presents theoretical founda-
tion of GVaR and proposes GVGAI. Section 4 constructs
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the RSDS model and explains the entropy-WASPAS to solve
the RSDS model. Section 5 presents case studies of the pro-
posed approach. Conclusions of this work are presented in
Section 6.

2 SOBOL-AUGUMENTED LATIN
HYPERCUBE SAMPLING AND SCENARIO
GENERATION

2.1 Scenario generation based on D-vine
copula

2.1.1 Copula and D-vine copula

In the case of multiple wind farms, wind speed forecast errors of
different wind farms are dependent. The most straightforward
way to address correlations of multiple wind farms’ forecast
errors is to obtain the joint distribution. Copula theory provides
a convenient way to model multivariate joint distribution. As
stated by the Sklar theorem, any multivariate joint distribution
can be written in terms of N univariate marginal distribution
functions and a copula function[12]. Elliptical and Archimedean
copulas are common options for copulas. Although both
classes are implemented successfully in bivariate applica-
tions, their multivariate extensions suffer from significant
deficiencies.

To cope with their drawbacks, vine copula was proposed to
construct high-dimensional dependence structures by combin-
ing different bivariate copulas. Two special types of vine copula,
namely C-vine and D-vine, have been used extensively in litera-
tures[2]. C-vine is skilled in modeling correlations between the
dominated variable and other variables, while D-vine specializes
in capturing correlations among arbitrary multi-variables[2]. As
wind farms for this paper are geographically similar, D-vine is
selected to construct vine structures.

Let D ⊂ {1, … ,N } and m, n ∈ {1, … ,N } ⧵ D, cmn|D (⋅, ⋅|xD )
is the copula density associated with the conditional distribu-
tion of (Xm,Xn ) given XD = xD . Fm|D (⋅|xD ) denoting the con-
ditional distribution of variable Xm given XD = xD . For D-vine
copula, a random vector X = {Xm},m = 1, … ,N with marginal
distribution functions F1, … ,FN , the joint density f of the ran-
dom vector X can be written as:

f (X1,X2, ...,XN ) =
N∏

k=1

fk(Xk )
N−1∏
m=1

N∏
n=m+1

cmn|m+1,…,n−1(Fm|m+1,…,n−1(xm|xm+1, … , xn−1),

Fm|m+1,…,n−1(xn|xm+1, … , xn−1)|xm+1, … , xn−1).

(1)

To intuitively illustrate the D-vine structure, decomposition
structure of D-vine copula with five variables are shown in
Figure 2. The nodes in Tree1 represent the marginal densities
of wind speeds for five wind farms. The edges in all trees are
(conditional) bivariate copula densities.

FIGURE 2 The decomposition structure of D-vine copula

2.1.2 Model selection and sampling from
D-vine copulas

The procedure for fitting a joint distribution function using the
D-vine copula can be briefly summarized in four steps.

Step 1. Model marginal distributions. Kernel density estimation
method with Gaussian kernel function is applied to esti-
mate marginal distribution of wind forecast errors.

Step 2. Select an order of variables for D-vine copula struc-
tures. The structure is determined by maximizing the
sum of absolute values of pairwise Kendall correlation
coefficients[13].

Step 3. Choose a bivariate copula for each pair-copula. Select
the sequential estimation approach with Akaike Infor-
mation Criterion as criterion[14]. Commonly adopted
bivariate copulas include Gaussian, t, Frank, Gumbel,
and Clayton copulas [12].

Step 4. Estimate all copula parameters sequentially by maxi-
mum likelihood estimation of each bivariate copula.

As the analytical formula obtained by the D-vine copula is
complex, it is difficult to achieve the distributions of aggre-
gated wind power forecast errors by multiple integrals calcu-
lation. The distributions from the D-vine copula can also be
obtained by inverse transformation sampling. For the gener-
ated d -dimensional independent identically distributed (i.i.d )
uniform distribution random vector U = (U1, … ,Ud ), the cor-
related variables V = (V1, … ,Vd ) can be obtained by:

V1 = U1

⋮

Vd = F−1
d |d−1,…,1(Ud |Vd−1, … ,V1).

(2)

2.2 SaLHS technique

For scenario generation based on sampling from the D-vine
copula, the first step is to generate i.i.d random vector which
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follows uniform distribution. However, it is almost impossi-
ble for the commonly applied random permutation method to
remove the undesired correlations among samples of different
random variables[15].

SRS is a classical method to generate random samples. How-
ever, this method has disadvantages of poor repeatability and
low efficiency[16]. As the sample size required for Monte
Carlo Simulation (MCS) is directly proportional to the sam-
ple variance, variance reduction techniques (VRT) are designed
to reduce the estimate variance without increasing the sample
size[4]. LHS is one of the most popular VRT, whose efficiency
is proved compared to SRS.

LHS process can be shown as follows: Consider the range of
input variable divided into N intervals of the equal length 1∕N .
One point is selected at random from each interval forming a
sequence of N points in 1-dimension unit hypercube H 1 {x1

i } ,
i = 1, … ,N . Similarly, we construct another sequence {x2

i }. The
two sequences can be paired to populate a bi-dimensional space,
and so on until an n-dimensional sequence is formed. This algo-
rithm can be shown as follows. Let {Rk}, k = 1, ..,K be inde-
pendent random permutations of {1, … ,N }. Then, the input
sample is generated based on the inverse transform method and
given by

xk
i = F k

i

−1
(

Rk(i ) − 1 +U k
i

N

)
, (3)

where U k
i is independent and randomly sampled points on [0,1]

interval, F k
i is the inverse transformation of input variable k,

Rk(i ) is the ith element of Rk.
As shown above, conventional methods pair input vari-

ables randomly, which brings undeserved correlation to gener-
ated samples.

In addition, stratification scheme of LHS cannot provide
good uniformity properties in a n-dimensional unit hypercube
H n. Sobol sequence has been proven to have better multi-
dimensional uniformity. Nishant et al. [5] has proposed LHS-
SOBOL method to pair samples generated from LHS using the
ranks of N × k Sobol matrix Ms. However, the sample correla-
tion matrix of input variables generated by LHS-SOBOL is not
exactly equal to identity matrix I, which reduces the efficiency
and accuracy of sampling.

To cope with above problems, a pairing process is proposed
in this paper to make the sample correlation matrix equal to I,
and also maintain the d-dimensional uniformity of samples by
taking advantage of the properties of Sobol matrix. The paring
process of SaLHS is shown as follows.

Let R stand for the sample correlation matrix associated
with Sobol matrix Ms. The generation of Sobol matrix can be
referred to [5]. R is used to find a matrix S so that

SRST = C, (4)

where C is the is the desired sample correlation matrix. Let P be
a matrix such that PPT = C. The Cholesky factorization can be

used to find a lower triangular matrix Q such that

R = QQT. (5)

Equation (4) can be rewritten as

SQQTST = PPT. (6)

Therefore, S can be given by S = PQ−1. According to [17],
the matrix M∗

s = RST has a correlation matrix exactly equal to
C. The LHS samples can be paired by M∗

s rather than Ms.
Based on the pairing process, Sobol matrix and LHS, this

paper proposes SaLHS. The procedure for SaLHS can be sum-
marized as follows:

Step 1. Generate Nsample × Nw f random matrix ZLHS by LHS,
where Nsample stands for number of sample size, Nw f

stands for the number of wind farms. Each column
comply with uniform distribution of [0,1].

Step 2. Generate Nsample × Nw f Sobol sequence Ms.
Step 3. Generate permutation matrix M∗

s by paring process.
Step 4. Pair the ZLHS with M∗

s and generate sampling matrix
USaLHS.

SaLHS proposed in this paper generates samples with
multi-dimensional uniformity and removes sample correlations.
Numerical studies shown in Section 5 present its ability in
improving sampling efficiency.

2.3 Scenario generation from SaLHS-based
D-vine copulas

The LHS samples paired by M∗
s can be used as the input vari-

ables for D-vine construction. Based on SaLHS and D-vine
copula, scenarios for wind power forecast errors considering
correlations of wind farms can be generated. The steps are as
follows:

Step 1. Obtain wind speed forecast error NWSE × Nw f matrix
EWS, and then fit a joint distribution function using the
model selecting method introduced in Section 2.1.2.

Step 2. Generate USaLHS by SaLHS process proposed in Sec-
tion 2.2.

Step 3. Take USaLHS as input matrix, and generate samples by
the sampling method introduced in Section 2.1.2.

3 GLUE VaR-BASED GENERATION
ADEQUACY INDEX

The most widely used risk measurements for SUC are VaR
and CVaR. However, VaR fails to consider tail loss, and lacks
subadditivity and convexity. On the contrary, CVaR is able
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to quantify the risk potential beyond VaR. In addition, CVaR
is a coherent risk aversion measure[18]. However, so far, lit-
tle risk measures consider the risk preference of different
participants.

This paper proposed a GVGAI. GVaR can be defined
based on a distortion function[10] and acts as a bridge
between VaR and CVaR. GVaR can be expressed as linear
combinations of standard risk measures. Each combination
of risk scenarios reflects a specific risk attitude of deci-
sion maker. Therefore, GVaR is a flexible and simple risk
measure.

Definition 1. Let g ∶ [0, 1] → [0, 1] be a function such that g(0) =
0, g(1) = 1, and g is nondecreasing. Then g is called a distortion function.

Definition 2. Let g be a distortion function. Consider a random variable

X and its survival function SX (x ) = P (X > x ). Function 𝜌g defined

by 𝜌g(X ) = ∫
0

−∞
[g(SX (x )) − 1]dx + ∫

+∞

0
[g(SX (x ))]dx is called a

distortion risk measure.

Any GVaR risk measure can be described by means of its
distortion function. Given two confidence levels 𝛼 and 𝛽, the
distortion function for GVaR is

𝜅
h1,h2
𝛽,𝛼

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

h1

1 − 𝛽
× u, 0 ≤ u < 1 − 𝛽

h1 +
h2 − h1

𝛽 − 𝛼
× [u − (1 − 𝛽)], 1 − 𝛽 ≤ u < 1 − 𝛼

1, 1 − 𝛼 ≤ u ≤ 1,

(7)

where 𝛼, 𝛽 ∈ [0, 1] and 𝛼 ≤ 𝛽, h1 ∈ [0, 1] and h2 ∈ [h1, 1].
Parameters h1 and h2 are called the heights of distortion func-
tion.

If the following notation is used,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜔1 = 1 − h2,

𝜔2 = h1 −
(h2 − h1) × (1 − 𝛽)

𝛽 − 𝛼
,

𝜔3 =
h2 − h1

𝛽 − 𝛼
× (1 − 𝛼).

(8)

Then, GVaR can be expressed as a linear combination of
three risk measures: CVaR at confidence level 𝛽 and 𝛼 and VaR
at confidence level 𝛼.

GlueVaR
h1,h2
𝛽,𝛼

(X ) = 𝜔1 ×VaR𝛼 (X ) + 𝜔2×

CVaR𝛽 (X ) + 𝜔3 ×CVaR𝛼 (X ).
(9)

In addition, when dealing with fat tail losses (i.e. low-
frequency and large-loss events), risk managers are especially
interested in the tail region. GVaR has been proven to be
subadditive in the tail region, which is a desirable property for
risk measures. The property of GVaR inspires us to measure
the risk of generating capacity shortfall over a certain threshold.

The power that load demand excesses available capacity is
defined as the shortage of available capacity (SAC). That is,

PSAC
t =

∑
bt∈B

Lbl ,t
−

(∑
i∈I

Pmax
i ui,t +

∑
iw∈Iw

Pw
iw ,t ,s

)
, (10)

where PSAC
t is the SAC for time t . SAC is a shortfall between

required operational capacity and real operating capacity of the
system. Based on the definition of GVaR and SAC, GVGAI is
defined as follows:

GVGAI
h1,h2
𝛽,𝛼

(
PSAC

t

)
= (h1 −

(h2 − h1)(1 − 𝛽)

𝛽 − 𝛼
)×

CVaR𝛽
(
PSAC

t

)
+ (

(h2 − h1)(1 − 𝛼)

𝛽 − 𝛼
)×

CVaR𝛼
(
PSAC

t

)
+ (1 − h2)VaR𝛼

(
PSAC

t

)
.

(11)

GVGAI can be seen as the weighted sum of VaR and CVaR
for different participants under threshold 𝛼 and 𝛽, respectively.
In addition, as GVGAI is a coherent risk measure in the tail
region, the convexity of GVGAI is kept in the tail region.

Weights and the parameters of GVGAI can be adjusted
according to the risk preference of different power system par-
ticipants. Therefore, weights and the confidence level can be
seen as controlling parameters in GVGAI.

For the weights in GVGAI, as the weights are determined by
the distortion function, one possible way to select weights is to
determine the parameters of distortion function, that is, h1 and
h2. Once the confidence levels are determined, h1 and h2 can be
used to determine the weights. The determination of h1 and h2
indicates how the decision makers distort the survival function.
The determination of h1 and h2 could amplify or diminish the
value of survival function, therefore increasing or decreasing the
risk value. h1 and h2 control the shape of distortion function.
Higher h1 and h2 means the higher gradient in the first part and
second part of distortion function, respectively. The other way
is to directly determine the weights 𝜔1 , 𝜔2 and 𝜔3. Higher 𝜔1
indicates the decision maker puts more emphasis on risk level
VaR𝛼 . Similarly, higher 𝜔2 and 𝜔3 indicates the decision maker
puts more emphasis on CVaR𝛼 and CVaR𝛽 , respectively.

For the confidence level in GVGAI, 95% and 99% are
selected because these two confidence level are commonly
adopted and compared in literatures[21]. The decision mak-
ers can select proper confidence level according to their risk
preference.
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4 MEAN-RISK STOCHASTIC
DAY-AHEAD SCHEDULING MODEL
BASED ON GLUE-VaR

4.1 Objective function formulation

For SUC, the objective function is generally formulated as min-
imization of expected operational cost. However, with increas-
ing penetration of wind power, the uncertainty of wind farms’
power outputs has a great impact on the economical and reliable
operation. Considering the risk brought by wind power uncer-
tainty to generation capacity adequacy of power systems, we
propose a M-R MO RSDS. The risk is measured by the GVGAI.
By adjusting the weights, GVGAI is able to reflect the risk atti-
tudes of decision makers. The objectives of RSDS model is for-
mulated as follows:

f1 =
∑
t∈T

∑
i∈I

C u
i,t +

∑
s∈S

𝜋s

(∑
t∈T

(
∑
i∈I

C
p

i,t ,s + RCt ,s )

)
, (12)

f2 =
∑
t∈T

GVGAI
h1,h2
𝛽,𝛼

(
PSAC

t

)
(13)

C u
i,t = SUCi × yi,t + SDCi × zi,t , (14)

C
p

i,t ,s = agi (Pi,t ,s )2 + bgi (Pi,t ,s ) + cgi , (15)

RCt ,s =
∑
bl ∈B

LC × Plc
bl ,t ,s

+
∑

iw∈Iw

WC × Pwc
iw ,t ,s

, (16)

where C u
i,t stands for the start-up/shutdown cost of generator i

at time t , 𝜋s is the probability of scenario s, C
p

i,t ,s is the fuel cost
of generators, RCt ,s is the reliability cost, which consists of loss
of load and wind curtailment cost, 𝛼 and 𝛽 are confidence levels
which can be specified by decision makers.

4.2 Constraints formulation

Given the previous modeling assumptions, the constraints for
RSDS model are presented as follows:∑

i∈I

Pi,t ,s +
∑

iw∈Iw

(
Pw

iw ,t ,s
− Pwc

iw ,t ,s

)
=

∑
bl ∈B

(
Lbl ,t

− Plc
bl ,t ,s

)
,

(17)

yi,t − zi,t = ui,t−i,t−1, (18)

yi,t + zi,t ≤ 1, (19)

Pmin
i

ui,t ≤ Pi,t ,s ≤ Pmax
i

ui,t , (20)

− RDiui,t ≤ Pi,t ,s − Pi,t−1,s ,≤ RUiui,t , ∀t = 2, … T (21)

1 − (ui,t−1 − ui,t ) ≤ ui,tR
,

tR = t , … ,min{t +UTi − 1, T }, ∀t = 2, … T (22)

ui,tR
≤ 1 − (ui,t−1 − ui,t ),

tR = t , … ,min{t + DTi − 1, T }, ∀t = 2, … T (23)

0 ≤ Plc
bl ,t ,s

≤ Lbl ,t
(24)

0 ≤ Pwc
iw ,t ,s

≤ Pw
iw ,t ,s

(25)

Pb,t ,s =
∑
i∈Ib

Pi,t ,s , (26)

Pwb
b,t ,s

=
∑

iw∈Iwb

Piw ,t ,s
, (27)

Pwcb
b,t ,s

=
∑

iw∈Iwb

Pwc
iwb,t ,s

, (28)

∣ PL
ib,tb

∣≤ P
L,max

ib,tb
, (29)

PL
ib,tb

= −bib,tb(𝛿ib − 𝛿tb) (30)

− 𝜋 ≤ 𝛿ib, 𝛿tb ≤ 𝜋 (31)

Pb,t ,s + Pwb
b,t ,s

− Pwcb
b,t ,s

− Plc
bl ,t ,s

=
∑

tb ∈ ib

tb ≠ ib

−bib,tb(𝛿ib − 𝛿tb) (32)

(∑
bl ∈B

Lbl ,t
−

∑
iw∈Iw

Pw
iw ,t ,s

)
−

(∑
bl ∈B

Lbl ,t−1 −
∑

iw∈Iw

Pw
iw ,t−1,s

)

−
∑
i∈I

RUiui,t−1 ≤
∑
bl ∈B

Plc
bl ,t ,s

, (33)

(∑
bl ∈B

Lbl ,t−1 −
∑

iw∈Iw

Pw
iw ,t−1,s

)
−

(∑
bl ∈B

Lbl ,t
−

∑
iw∈Iw

Pw
iw ,t ,s

)

−
∑
i∈I

RDiui,t−1 ≤
∑
iw∈I

Pwc
iw ,t ,s

. (34)

Constraint (17) is the demand-supply balance constraint.
Constraints (18) and (19) guarantee that units on/off binary
variables and the start-up/shutdown variables get proper values
at the start-up and shutdown time. Constraint (20) is capacity
limit of generators. Constraint (21) is the ramping capacity limits
of generators. Constraints (22) and (23) are constraints for min-
imum start-up/shut-down time. Constraints (24) and (25) are
the limits of load shedding and wind curtailment. Constraints
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TABLE 1 Payoff table of multi-objective functions

f1 f2

Min f1 f1,1 f1,2

Min f2 f2,1 f2,2

(26)–(32) are network power flow limits on transmission lines
based on DC power flow. Constraints (33) and (34) prevent the
load shedding and wind curtailment caused by inadequate ramp-
ing capacity.

4.3 Solution algorithm based
on entropy-WASPAS

MO problems are difficult to solve because there is a set of
acceptable solutions within a range of values, which is called a
Pareto front. Traditionally, the WSM is adopted to convert MO
problem into a single-objective problem. However, the solu-
tion of WSM strongly depends on the weight coefficients. The
weight coefficients of WSM are easily influenced by the sub-
jectivity. In addition, WSM is not necessarily equivalent to the
original MO problem.
𝜖-constraint method is efficient in obtaining Pareto front[19].

The first step of 𝜖-constraint method is to establish the pay-
off table. An example of payoff table is shown in Table 1. Take
objective function fi as the objective to solve RSDS model. At
this time, the optimal value of fi is fi,i and the other objective
functions under this solution are fi, j .

Next, consider one of the objective, such as f1, as the main
function. Range of f2 values is divided into q ranges, varying the
value of 𝜖k

2 . The 𝜖-constraint method is formulated as:

min f1(x)

s.t . f2 ≤ 𝜖k
2 , s2 ∈ R+,

𝜖k
2 = f12 −

( f12 − f22)
q2

× k, k = 0, 1, … , q2,

(35)

where 𝜖k
2 is the kth range of f2, r2 and q2 are the range of f2,

and the number of the equal parts, respectively. Therefore, the
Pareto solution psip

can be obtained.
The selection of the best compromise solution is done by

evaluating the relative significance for each solution. WASPAS
technique, suggested initially by Zavadskas et al.[20], is con-
sidered as a more accurate approach than WSM. However,
the weight coefficients of WASPAS are selected by subjective
empowerment methods. To avoid subjectivity, this paper intro-
duces entropy weighting method into WASPAS and formulate
a entropy-WASPAS method to evaluate the relative significance
for each solution so as to select the best compromise solution.
The entropy weight method uses the information entropy to
calculate the entropy weight of each index according to the vari-
ation degree of the objective function. The steps of entropy-
WASPAS technique are illustrated as follows:

FIGURE 3 Bivariate joint distribution of wind speed for multiple wind
farms.

Step 1. Calculate the entropy Ei of the objective function f j :

E j = −
1

ln(n)

∑n

i=1 ri j ln(ri j ), where ri j =
fi j∑n

i=1 fi j

.

Step 2. Calculate the weight w j of the objective function f j :

w j =
1−E j∑n

j=1(1−E j )
.

Step 3. Normalize objective functions of the minimum opera-

tional cost and operation risk by xi, j = (min
i

fi, j )∕ fi, j .

Step 4. Determine the total relative importance of the
psi according to WSM: WSM = Q1

i =
∑n

j=1 fi, j × w j ,
where w j is the weight of j th objective.

Step 5. Determine the total relative importance of the psi

according to WPM: WPM = Q2
i =

∏n

j=1 f
w j

i, j .
Step 6. To determine the relative significance, apply a

joint weighted aggregation criterion: Qi = 𝜆Q1
i + (1 −

𝜆)Q2
i . The weight 𝜆 generally equals to 0.5.

Step 7. Select the optimal compromise solution by the rank of
Qi .

5 NUMERICAL SIMULATIONS

5.1 Verification of SaLHS-based D-vine
copula scenario generation model

The hourly wind speed data from 8 geographically closely
related wind farms were collected. The data spans 6 years from
1st January 2007 to 31st December 2012. Denote marginal dis-
tribution of wind speed forecast errors by u1∼u8. The fre-
quency histograms for bivariate joint distribution of u1∼u8 are
shown in Figure 3, which are ordered by the method illustrated
in Section 2.1.2. As shown in Figure 3, the histograms show
asymmetric tail distribution. In addition, there is no general
method to describe the correlation of all variables. Therefore,
it is crucial to consider the tail information so as to capture the
dependence structure.

To improve the sampling efficiency for D-vine copula,
SaLHS is applied in the sampling procedure.

SaLHS reduces the computational burden, and keeps the
accuracy of sampling results. The superiority of SaLHS results
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FIGURE 4 One-dimensional uniformity of different sampling techniques

from improving the uniformity and reduce the undesired cor-
relation of samples. Comparative results about uniformity, cor-
relation, and accuracy of SaLHS samples are illustrated to verify
the superiority of SaLHS. Besides, the computational time is also
compared to verify the efficiency of SaLHS. In order to compare
the performance of sampling techniques, simulations are imple-
mented by utilizing the Matlab R2017a software on a personal
laptop with an Intel Core i5 at 2.50 GHz and 8 GB memory.

Sampling results of 6 different sampling techniques, that
is, MCS, LHS, Halton Sequence, Sobol Sequence, LHS-
SOBOL[5], and SaLHS, are compared. Figure 4 compares 1-
dimensional uniformity of different sampling techniques. Bet-
ter 1-dimensional uniformity is demonstrated by the proximity
to the 45◦ line with a uniform distance among the neighbor-
ing sample points. As shown in Figure 4, SaLHS shows better
one-dimensional uniformity.

Figure 5 shows generated 2-dimensional samples. It is clear
that Halton and Sobol have better uniformity than MCS and
LHS for multi-dimensional approximation. However, with the
dimension increasing, these methods show spurious correla-
tions. SaLHS is shown to break these correlations. This can be
quantified by Variance Inflation Factor (VIF), which is calcu-
lated to identify the pairing correlations[4].

The VIFs of each sampling technique are compared in
Figure 6. The VIFs of dimensions 1, 2, 74, and 75 of each
sampling method are intuitively shown in Table 2. As shown in
Figure 6 and Table 2, the VIF of SaLHS is the lowest, which
shows its superiority in overcoming undesired correlations.

In order to compare sampling methods, accuracy of the sam-
pling results is estimated by the relative errors of the expecta-
tion 𝜖𝜇 = |𝜇a−𝜇s

𝜇a

|, where 𝜇a and 𝜇s stand for the expectation

of actual and sampling results, respectively. Three commonly
applied techniques are compared based on �̄�V

𝜇 , which is the
mean 𝜖𝜇 from 8 wind farms. Results are shown in Figure 7.

As shown in Figure 7, SaLHS exhibits obvious superiority
with respect to �̄�V

𝜇 , whereas MCS performs worst among
sampling techniques. Although LHS performs better than
SaLHS when sample size is less than 200, the sample size could

TABLE 2 VIF for different sampling techniques

Sampling technique MCS LHS Halton

VIF(d=1) 1.0707 1.0619 1.0028

VIF(d=2) 1.0683 1.0924 1.0030

VIF(d=74) 1.0848 1.0719 11.4945

VIF(d=75) 1.0715 1.0969 8.7115

Sampling technique Sobol LHS-Sobol SaLHS

VIF(d=1) 1.0028 1.1021 1.0000

VIF(d=2) 1.0054 1.0830 1.0001

VIF(d=74) 1.0026 1.0042 1.0000

VIF(d=75) 1.0030 1.0035 1.0010

TABLE 3 Comparision of simulation time

Sampling Technique SaLHS LHS MCS

Simulation Time (s) 11.51 57.65 274.81

be over 1500 for LHS to get a stable result. On the contrary,
when the sample size grows over 200, SaLHS performs obvi-
ously better than LHS. For SaLHS, �̄�V

𝜇 becomes stable when
the sample size is equal or over 500.

The simulation time of the three sampling methods is shown
to further compare the computation cost. The terminal criterion
is set as �̄�V

𝜇 ≤ 0.005. The simulation time of the three sampling
techniques is shown in Table 3. As shown in Table 3, the SaLHS
has the lowest computational cost, while the computation cost
of MCS is the highest among the three sampling techniques.

In conclusion, comparative results verify SaLHS improves
multi-dimensional uniformity and removes sample correlations.
Therefore, SaLHS can obtain accurate sampling results with a
smaller sample size, which helps reduce the computation bur-
den. The comparison of simulation time proves the effective-
ness of SaLHS over MCS and LHS. In the following study,
the sample size is selected as 500 to generate wind power out-
put scenarios.

5.2 MO-RSDS results

5.2.1 Test systems

This paper selects the modified RTS system as the simulation
system. The scheduling period is considered the first day of the
year with 24 equal time slots, whose maximum and minimum
loads are 2284.73 and 1347.99 MW, respectively. The start-
up/shutdown cost, wind curtailment cost and load shedding
cost are $1500, 80 $/MWh and 3500 $/MWh, respectively. The
wind farms are linked to buses 1, 2, 7, 13, 15, 16, 18, 23, respec-
tively 10, 40, 50, 35, 10, 5, 45, and 55 MW of installed capacity.
The wind turbines are same for all wind farms with the rated
power of 3 MW. Meanwhile, three generators with installed
capacity of 100 MW linked to bus 7 are omitted. In addition,
the weights of GVaR are assumed to be 𝜔1 = 𝜔2 = 𝜔3 = 1∕3.
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FIGURE 5 1000 sample points for different dimensions using different sampling techniques

FIGURE 6 VIF for different sampling techniques.

The confidence level is assumed to be 𝛼 = 0.95, 𝛽 = 0.99. In
addition, CPLEX is called by Yalmip to solve the problem based
on Matlab coding performed on the aforementioned personal
laptop.

5.2.2 Simulation and results

Based on the formulation of dependence among multiple wind
farms, 500 wind power output samples for each wind farm at

each hour are generated. To improve the efficiency of comput-
ing, the fast forward selection method based on Kantorovich
distance is applied in RSDS model to reduce 500 wind out-
put scenarios into 10 scenarios for each hour. For the conve-
nience of visualization, the reduced scenarios are illustrated in
Figure 8.

Based on the reduced scenarios, RSDS model can be con-
structed. To solve the RSDS model, the payoff table is firstly
obtained, as shown in Table 4. The Pareto front of the model
obtained by 𝜖-constraint method is shown in Figure 9.
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FIGURE 7 Comparison of sampling techniques with respect to �̄�V
𝜇

FIGURE 8 Wind power output scenarios

To select the best compromise solution based on Pareto opti-
mal set, the method illustrated in Section 4.3 is used. The opti-
mal compromise solution is marked red in Figure 9. The optimal
compromise solution is f1 = 603485.66, f2 = −928.52, and the
corresponding relative significance Q is 0.5963.

5.3 Comparative studies

This paper proposes a GVGAI, which provides a flexible
approach that enables decision makers to consider risk prefer-
ence by adjusting the risk level and weights. To verify the effec-
tiveness of the GVGAI in day-ahead scheduling, we have pro-

TABLE 4 Payoff table of the SUC model

f1 f2

Min f1 528132.28 489.68

Min f2 738998.20 -2217.79

FIGURE 9 Pareto front of SUC model

TABLE 5 Comparative results of the RSDS model

Operational cost GVGAI0.95,0.99

Proposed method 603485.66 -928.52

Case 1 528132.28 489.68

Case 2 608518.09 -986.48

Case 3 567013.29 -496.79

vided comparative studies on operational cost, traditional risk
measure CVaR at different confidence levels, and GVGAI.

Table 5 compares the performance of RSDS with 3 cases in
terms of the operational cost and risk.

Case 1: The objective is modeled as the minimization of cost.
Case 2: The objective function is modeled as the minimization

of cost and CVaR at confidence level of 95%.
Case 3: The objective function is modeled as the minimization

of cost and CVaR at confidence level of 99%.

Observed from Table 5, Case 1 has the lowest operational
cost and highest GVGAI because of its ignorance of opera-
tional risk. In addition, the optimal compromise solution is also
affected by the risk preference of decision makers. Compared
with Case 3, Case 2 is more conservative in terms of the opera-
tional risk, which leads to a higher operational cost.

The adjustable weights of GVGAI (𝜔1, 𝜔2, and 𝜔3) represent
the preference of system operators. Figure 10 illustrates the vari-
ation in operational cost and risk with regards to the different
values of weights, separately.

As observed in Figure 10, the operational cost decreases with
w1 and w2 increasing. That is, with the increase of w3, system
is considered to have a higher operation risk level. Schedul-
ing strategies are taken to reduce the cost associated with risk.
Therefore, the operational cost decreases.

In conclusion, GVGAI is more flexible than traditional risk
measures such as VaR and CVaR. This results from that weights
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FIGURE 10 Comparative analysis of cost and risk by adjusting weights of GVGAI

TABLE 6 Comparison for different sampling techniques

Operational cost($) GVGAI0.95,0.99

MCS 2362950.93 -73708.95

LHS 2363526.65 -73707.66

SaLHS 2362590.57 -73708.90

Model solution time(s) Total computational time(s)

MCS 61.50 342.31

LHS 40.49 97.18

SaLHS 51.19 61.73

and confidence level of GVGAI can be tuned to consider
risk preference in the decision-making process. Comparative
studies provide an illustrative example of how the schedul-
ing result changes with the variation of GVGAI parameters.
Results can provide support for decision makers of power
systems.

5.4 Numerical simulation with IEEE
118-bus system

In order to illustrate the scalability and applicability of the pro-
posed method with a large number of buses and generators, a
numerical study is implemented on a modified IEEE 118-bus
test system. Eight wind farms with the same capacity of 55 MW
are connected to buses 1, 6, 32, 36, 62, 70, 73, and 104.

Table 6 compares the operational cost, risk, and compu-
tational time of IEEE 118-bus system with three sampling
methods. As shown in Table 6, the scheduling result of the pro-
posed method is as accurate as traditional sampling methods.
The superiority of SaLHS lies in its high efficiency in sampling.
As observed in Table 6, the model solution time is not sensitive
to the sampling techniques, but the total computational time
of the proposed method is the lowest. Therefore, the proposed

method reaches the same accuracy as traditional sampling
techniques with a less computational burden. The proposed
method can be effectively scaled up to larger and more complex
power systems.
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6 CONCLUSION

This paper focuses on SDS problem considering correlation of
wind farms. The contribution of this paper is three-fold. First,
to improve scenario generation efficiency, a SaLHS sampling
method is proposed. SaLHS is introduced in D-vine copula
to generate scenarios considering correlations of wind farms.
Second, to improve decision-making flexibility, GVGAI is pro-
posed. This makes operational risk adjustable according to risk
preference of power system participants. Third, an entropy-
WASPAS method is proposed to avoid subjectivity in compro-
mise solution selection. Numerical results show that SaLHS has
superiority in improving sampling efficiency. RSDS is a flexible
tool for system operators to balance the operational cost and
risk. Results compared the influence of decision makers’ risk
preference on the operational cost and risk.

However, there still exist some limitations that require fur-
ther discussion. The first one is the proposed method requires
generating a lot of stochastic scenarios. The scenario generation
and reduction are commonly adopted in stochastic optimiza-
tion methods. This paper focuses on the scenario generation
methods to improve sampling efficiency. Scenario reduction
method is still necessary and important in reducing the compu-
tational burden. Therefore, the scenario reduction method can
be further improved for computation efficiency. The second is
the proposed method is limited to generation adequacy indices.
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How to extend the proposed method in the reliability analysis
and operational optimization in bulk power system is another
interesting topic in future researches.

The proposed method gives a day-ahead scheduling strategy
for system operators. Future work is planned for extending the
application of RSDS model considering correlations of genera-
tors and transmission line failures.

LIST OF ACRONYMS

Indices
bl Index of load buses
i Index of conventional generation units

ib, tb Indices of buses
iw Index of wind farms
s Index of Scenarios
t Index of time

Sets
B Set of buses
I Set of conventional generators
Ib Set of conventional generators linked to bus b

Iw Set of wind farms
Iwb Set of wind farms linked to bus b

S Set of scenarios
T Set of time

Parameters
SCi Start-up cost of i

𝜋s Scenario probability of s

agi , bgi , cgi Cost coefficients of unit i

LC ,WC Cost for load shedding and wind curtailment
RDi ,RUi Down/up ramping rate of i

DTi ,UTi Minimum off/on time intervals of i

Lbl ,t
Power load on bl during t

bib,tb Admittance of line from ib to tb

Variables
Pi,t ,s Power output of conventional units

ui,t , yi,t , zi,t on/off, startup, shutdown state of unit i during t

Plc
bl ,t ,s

Load curtailment on bl for s during t

Pw
iw ,t ,s

Wind power output of iwfor s during t

Pwc
iw ,t ,s

Wind power curtailment of iwfor s during t

Pmin
i , Pmax

i Minimum/maximum generation limit of i

PL
ib,tb

Power flow limit of lines from ib to tb

𝛿ib Phase angle of bus ib
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