
The Personal Shopper’s Dilemma:
Shopping Time vs. Shopping Cost

by

Samiul Anwar

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c© Samiul Anwar, 2020

Abstract

Consider a customer who needs to fulfill a shopping list, and also a personal

shopper who is willing to buy and resell to customers the goods in their shop-

ping lists. It is in the personal shopper’s best interest to find (shopping) routes

that (i) minimize the time serving a customer, in order to be able to serve more

customers, and (ii) minimize the price paid for the goods, in order to maximize

his/her potential profit when reselling them. Those are typically competing

criteria leading to what we refer to as the Personal Shopper’s Dilemma query,

i.e., to determine where to buy each of the required goods while attempting

to optimize both criteria at the same time. Given the query’s NP-hardness we

propose a heuristic approach to determine a subset of the sub-optimal routes

under any linear combination of the aforementioned criteria, i.e., the query’s

approximate linear skyline set. In order to measure the effectiveness of our

approach we also introduce two new metrics, optimality and coverage gaps

w.r.t. an optimal, but computationally expensive, baseline solution. Our ex-

periments, using realistic city-scale datasets, show that our proposed approach

is two orders of magnitude faster than the baseline and yields low values for

the optimality and coverage gaps.

ii

Preface

This thesis is an original work by Samiul Anwar supervised by Professor Mario

Nascimento. No part of this thesis has been previously published but has been

submitted to SIGSPATIAL-2020 as a research paper.

iii

To my Parents

For giving me the gift of literacy.

iv

Acknowledgements

I am greatly indebted to Professor Mario Nascimento for his supervision and

guidance throughout the thesis. It would not be possible to complete a

graduate-level research in Spatial-Database without his help.

I would also like to thank Dr. Francesco Lettich for his continuous guidance

and immense support throughout the thesis. This thesis would not have come

together as it is without his help.

v

Contents

1 Introduction 1

2 Literature Review 6
2.1 Trip Planning Queries . 7
2.2 Skyline Queries . 10

3 Preliminaries 15
3.1 PSD query’s NP-hardness . 19

3.1.1 Linear skylines, total order, and efficient insertions . . 20

4 Computing Solution for Personal Shopper’s Dilemma Query 22
4.1 A baseline approach: BSL-PSD 23

4.1.1 BSL-PSD’s complexity 30
4.2 An approximated approach: APX-PSD 32

4.2.1 APX-PSD’s complexity 36

5 Experimental Evaluation 38
5.1 Evaluation metrics . 40

5.1.1 Effectiveness . 41
5.1.2 Efficiency . 42

5.2 Effects of store cardinality . 43
5.3 Effects of product cost distribution 44
5.4 Effects of store size spatial distribution 46
5.5 Effects of shopping list size . 46
5.6 Effects of quad-tree leaf capacity 48

6 Conclusion 50

References 51

vi

List of Tables

1.1 List of products available in the stores depicted in Figure 1.1.
Each pair represents a specific product and the associated unit
cost. 3

1.2 Set of routes from Figure 1.1 that can satisfy the shopping list
{A,B,C,D}. 4

3.1 Main notation used throughout the thesis. 19

5.1 Metadata for datasets. 39
5.2 Default Parameter Values. 39
5.3 Pre-computation run-time (in seconds) 42

vii

List of Figures

1.1 Sample network. 3
1.2 Comparison between linear skyline (continuous curve) vs con-

ventional skyline (dashed curve). Shaded area represents the
space dominated by the linear skyline. 5

5.1 Distribution of stores in each city’s road network. (Cities not
shown to scale). 38

5.2 Area coverage by the approximate and optimal linear skyline. 41
5.3 Effectiveness w.r.t. store cardinality 43
5.4 Efficiency w.r.t. store cardinality. 44
5.5 Effectiveness w.r.t. different cost distributions. 45
5.6 Efficiency w.r.t. different cost distributions. 45
5.7 Effectiveness w.r.t. different distributions of store size. 46
5.8 Efficiency w.r.t. different distributions of store size. 47
5.9 Effectiveness w.r.t. shopping list size. 47
5.10 Efficiency w.r.t. shopping list size. 48
5.11 Effectiveness w.r.t. varying quad-tree leaf capacity 49
5.12 Efficiency w.r.t. with varying quad-tree leaf size 49

viii

1
Introduction

Let us consider a customer who needs to acquire some products available in

stores within a geographical area, e.g., his/her city’s road network. To accom-

plish this goal the customer submits his/her request to a personal shopper in

the form of a shopping list of products, along with their respective quantities.

The personal shopper’s task is to serve customers by fulfilling their shopping

list. Serving a customer’s request entails two different and competing criteria.

The first criterion is the (shopping) time needed to serve the customer, i.e.,

the time needed to visit a sequence of stores in order to acquire all products in

the customer’s shopping list plus the time needed for delivering them to said

customer. The second one is the (shopping) cost of the shopping list, i.e., the

sum of the costs of all the products in the shopping list at the stores where

they were acquired. Clearly, the shopper’s main goal should be to minimize

concurrently both criteria; the faster he/she can deliver the goods the more

customers he/she can serve, and the smaller the actual cost of the goods the

higher the profit margins he/she can enjoy. The main question the shopper

needs to answer then becomes: “Which sequence of stores to visit and which

products to acquire in those stores in order to fulfill the customer’s shopping

list, while, at the same time, minimizing both the shopping time and the shop-

ping list’s cost?” Unfortunately, from a practical perspective, it is seldom

possible to find a single set of stores that satisfies both criteria. We call this

1

new and practical problem as the Personal Shopper’s Dilemma (PSD) query.

At this point one could be tempted to argue that the two considered crite-

ria could be linearly combined into a single one, thus casting PSD into a cost

function minimization problem. For instance, though not always desirable,

one could express shopping time in terms of monetary cost and then assign

appropriate weights to combine both criteria into a single one. While we use

shopping time and shopping cost as the two main criteria one could use, other

criteria that could not be expressed in terms of a common unit (e.g., max-

imize the number of organic and/not locally produced goods, and minimize

the customer’s waiting time). There is another, more subtle, limitation to be

considered here. Even if a linear combination of the criteria were to be estab-

lished, appropriate weights would need to be predetermined by the shopper a

priori. Thus, any – potentially more interesting – solution for slightly differ-

ent combinations of weights would not be returned to the shopper by design.

To overcome such limitations we let the shopper decide by him/herself how to

(linearly) combine both criteria a posteriori. That is, we aim at computing the

set of all optimal sequence of stores for any linear combination of shopping

cost and shopping time, also known as linear skyline set (discussed further

shortly). Notably, the shopper’s decisions can be made after running one sin-

gle PSD query, instead of running one query for each linear combination of

the two criteria. Thus, in hectic periods of the day the shopper may prefer to

prioritize more short trips, each with smaller profit, while calmer parts of the

day (or changes in traffic patterns) may push the shopper towards longer trips

yielding larger profits, or anything in between.

In order to illustrate the PSD query, let us introduce a simple instance. Let

us suppose that a customer wishes to buy products A,B,C and D and issues

the corresponding shopping list to the shopper1. Now, let us suppose that the

stores available are those shown in Figure 1.1 and they are embedded in a

road network not shown for the sake of simplicity. Here, stores are depicted

by orange squares (and denoted by sx), while the customer’s delivery location

1For the sake of simplicity and, in the scope of this example only, let us consider that
only one unit of each product is required in the shopping list.

2

ls

s1

10

12

20

13

15

2010
6

20
15

10

s3

s2

s4

s5

lc
18

11

12

15

22

Figure 1.1: Sample network.

is denoted by lc and the shopper’s current location is denoted by ls. Edges

between locations represent the fastest paths in the road network connecting

them, with labels denoting the associated travel time. Finally, Table 1.1 shows

the products available in each store, along with their unit prices.

Store Products

s1 (A, $7), (B, $8), (F, $10)

s2 (C, $10), (D, $8), (E, $10)

s3 (C, $5), (D, $4), (F, $6)

s4 (C, $8), (D, $7), (F, $12)

s5 (A, $6), (B, $7), (E, $8)

Table 1.1: List of products available in the stores depicted in Figure
1.1. Each pair represents a specific product and the associated unit
cost.

From the above scenario we see that there are multiple solutions that may

be of interest for the shopper (Table 1.2). On the one end of the spectrum route

R1 represents the best solution in terms of shopping time, yet its shopping cost

is the largest. On the other hand, R5 offers the lowest shopping cost, but it

requires to traverse an expensive route in terms of shopping time. Between

these extremes there are several solutions that may interest the shopper, where

the notion of “interestingness” depends on the shopper’s particular preferences

or needs at query time.

3

Route Shopping Time Shopping Cost

R1 = 〈ls, s1, s2, lc〉 28 33$

R2 = 〈ls, s1, s3, lc〉 38 23$

R3 = 〈ls, s1, s4, lc〉 41 30$

R4 = 〈ls, s5, s2, lc〉 47 31$

R5 = 〈ls, s5, s3, lc〉 48 21$

R6 = 〈ls, s5, s4, lc〉 36 28$

Table 1.2: Set of routes from Figure 1.1 that can satisfy the shopping
list {A,B,C,D}.

When dealing with multiple cost criteria and the problem of determining

a set of results that are optimal under any arbitrary combination thereof, a

well-known and extensively used tool in the literature are skyline queries [5].

In general terms, given a set of cost criteria and a pair of objects oi and oj, we

say that oj dominates oi if (i) for each cost criterion the cost of oj is smaller or

equal than that of oi and (ii) there is at least one criterion for which the cost

of oj is strictly smaller than that of oi. In turn, the set of objects that are non-

dominated by any other object defines the notion of skyline, and represents

the desired solution. If we represent a skyline on a Cartesian plane, then the

skyline represents a frontier beyond which all objects are dominated, i.e., they

are not better than those in the frontier.

Computing skyline queries is a computationally intensive task that typi-

cally returns many very similar solutions, thus possibly making the choice of a

specific solution rather difficult for users. To tackle these issues, Shekelyan et

al. [21] introduced the notion of linear skylines. In general terms, a linear sky-

line is the subset of the objects defining the convex hull of the (conventional)

skyline. Objects belonging to a linear skyline are required to be optimal under

any linear combination of the competing cost criteria. From that, it follows

that any solution that is conventionally dominated is also linearly dominated.

Thanks to this stricter, though still practical, requirement, linear skylines typ-

ically contain much less objects than conventional skylines and are thus easier

to interpret. Considering the above example, the linear skyline is represented

4

30 35 40 45 50 55
Time

22

24

26

28

30

32

34

Pr
ice

R1

R2

R3
R4

R5

R6

Linear Skyline
Conventional Skyline

Figure 1.2: Comparison between linear skyline (continuous curve)
vs conventional skyline (dashed curve). Shaded area represents the
space dominated by the linear skyline.

by the set of routes LS = {R1, R2, R5}, depicted with a solid line in Figure 1.1,

whereas the dashed line represents the conventional skyline.

Now we can easily observe the shopper’s dilemma. None of the routes

R1, R2 or R5 is strictly better than the others, in that each solution creates a

different trade-off between shopping time and shopping cost, and that each can

be interesting under different circumstances. Therefore we target the problem

of computing a set of interesting, meaningful, and diverse shopping routes.

Unfortunately, as formally shown in Section 3.1, even a simplified version

of the PSD query, namely one where each store sells a single product and

each product is sold at the same price in every store where it is available,

is NP-hard. Therefore we propose as our main contribution (in Section 4) a

heuristic solution that relies on a provably correct pruning framework in order

to efficiently retrieve a sub-optimal linear skyline. We also develop a framework

to compare the solutions obtained w.r.t. (costly) optimal ones which we use

in our experiments using city-scale realistic datasets (Section 5. Overall we

found that our proposed heuristic is robust and able to offer solutions of good

quality much faster than the optimal approach.

5

2
Literature Review

Spatial databases have been extensively studied in the last few decades, lead-

ing to developments in query processing techniques, data structures, memory

management techniques, and real-time application services. In the early days,

researchers only considered Cartesian spaces in terms of calculating distances

between objects while processing queries, e.g., [6], [11], [16]. However, in re-

ality, objects can only move along some predefined trajectories defined by

networks. Papadias et al. [15] introduced a new data architecture where they

separate the spatial entities from the underlying network by indexing every

entity dataset using R-trees [10]. Furthermore, they provide algorithms for

four common queries in the spatial network database. The use of networks in

spatial queries revolutionised the field and led to various types of trip plan-

ning queries meant to provide solutions to the users in real-time mostly using

spatial network databases.

A typical planning query consists of a source, a destination, and some

constraints. The solution would be a route or routes depending on the query

that fulfills the constraints as well as the objectives. In recent years, there

have been numerous works on solving various types of trip planning queries,

e.g., [8], [9], [14], [19], [21].

However, in this chapter, we only discuss the ones that are relevant to the

problem we address. In the next sections, we categorize such works based on

6

their constraints and objectives as well as discuss and contrast them against

the PSD problem.

2.1 Trip Planning Queries

Li et al. [14] proposed a new type of query called Trip Planning Query (TPQ).

Given a set of categories C each having several points of interest (POIs), a

source s and destination d, TPQ finds the “best” possible trip that starts from

s then visits at least one POI from each category in C and finally reaches d.

The quality of a trip can be measured based on distance, travel time, traf-

fic, road condition, or any other quantifiable property of the trip. Moreover,

TPQ can be viewed as a generalization of the Travelling Salesman Problem

(TSP) [3], [4]. The authors show that TSP can be reduced to TPQ which

proves that TPQ is an NP-hard problem. Therefore, they propose four ap-

proximation algorithms to answer TPQ queries. Two of these algorithms have

approximations ratios based on the total number categories. The first algo-

rithm is called the Nearest Neighbor Algorithm (ANN). ANN follows a greedy

approach where it starts from s and finds the nearest POI p. It then re-

moves the category corresponding to p from C and searches for the nearest

POI from the location of p. ANN expands the trip until all of the categories

have been visited and then it adds d to the trip. The authors prove that ANN
gives a (2m+1 − 1)-approximation w.r.t the optimal solution where m is the

total number of categories. Another interesting algorithm the authors propose

is the Minimum Distance Algorithm (AMD) which gives m-approximation or

(m + 1)-approximation solution when m is odd or even respectively. AMD

chooses one representative from each category based on the minimum cost

achieved. A POI p is the representative of its category if the sum of the costs

between (s, p) and (p, d) is minimum among all other POIs from that category.

AMD then generates the trip from s to d by visiting each of the representative

POIs. It adds the nearest representative POI of the last added vertex (a POI

or s) starting with s. Next, the authors show that there is a polynomial-time

algorithm based on Integer Linear Programming for their TPQ problem. It

7

can generate 9
2
ρ−approximation solution where ρ is the maximum cardinality

of a category. They reformulate TPQ to Loop Trip Planning Query (LTPQ)

by adding a constraint that s = d. They show that a β-approximation algo-

rithm for LTPQ would imply a 3β-approximation algorithm for TPQ which

eventually leads them to the proof of the polynomial-time algorithm. Finally,

the authors introduce an approximation algorithm in terms of both m and

ρ using the Generalized Minimum Spanning Tree (GMST). Moreover, they

show that by using a β-approximation algorithm for GMST their algorithm

can generate 2β-approximation solution for the TPQ query. Subsequently, the

authors show how ANN and AMD can be implemented in both Euclidean space

as well as in road networks. We can easily observe the similarity between PSD

and TPQ in terms of the absence of a specific sequence. However, PSD does

not have any notion of categories. Besides, TPQ does not generate any linear

skyline whereas PSD’s final solution is a linear skyline. Nonetheless, we can

reduce PSD to a special case and map it to the TPQ query – we discuss this

later when we prove that PSD is an NP-hard problem.

In [17], Salgado et al. solve a variant of the TPQ query called the Cat-

egory Aware Multi-criteria route planning query (CAM). CAM provides an

optimal route where the source and the target are located in an indoor venue.

Like TPQ, CAM has a list of categories and it returns the optimal route that

visits at least one indoor point from each category. However, instead of only

minimizing the one criterion (e.g., travel distance) like TPQ, CAM minimizes

other relevant attributes. The authors show that, indeed, CAM is NP-hard like

TPQ. Therefore, they propose an approximation algorithm called the Global

Category Nearest Neighbor (GCNN) algorithm. GCNN uses a greedy tech-

nique to extend a candidate partial route and minimizes the route cost. The

route cost is a linear combination of the travel cost and static costs. Moreover,

the weights of the travel and static costs are user-defined. Similar to TPQ,

CAM is different from our PSD query. Even though CAM aims to minimize

competing criteria like the PSD query, it is missing the constraint of fulfill-

ing a shopping list. This constraint makes generating a route harder for the

PSD query. Moreover, the PSD aims to find a linear skyline where each route

8

is non-dominant under any linear combination whereas the GCNN algorithm

uses a user-defined linear combination which generates only one route. Thus,

we can not adapt our PSD to CAM and use its solution to solve the PSD

query.

Sharifzadeh et al. [19] introduce a new type of query, Optimal Sequenced

Route (OSR) query. The OSR query provides the user’s starting point and a

sequence of categories of interest (COIs) the user intends to visit. The result is

the route that, departing from the user’s starting point, (1) stops by the COIs

exactly in the order provided in the sequence (one POI per COI), and that (2)

minimizes the cost criterion being considered (e.g., travel distance). Evidently,

the OSR query represents a particular instance of the TPQ, as its solution

must stop by the COIs exactly in the order (rather than any order) dictated

by the sequence. The authors propose three efficient approaches to solve the

OSR problem. The first algorithm the authors propose is called Light Optimal

Route Discoverer (LORD). LORD is developed to work on Euclidean space.

Next, the authors propose an improvement on LORD which uses an R-tree

data structure to store the POIs and they call this algorithm R-tree based

LORD (R-LORD). Although LORD and R-LORD work well for Euclidean

space, it fails to perform in the real road network. Therefore, the authors

propose another algorithm called Progressive Neighbor Exploration (PNE).

PNE follows a top-down approach where it starts to build a partial route from

the first category of points and gradually progresses towards the final category

of POIs in the sequence. Interestingly, in the paper [20] Sharifzadeh et al. use

a different approach to solve the OSR query. They use a variant of Voronoi

diagrams called AW-Voronoi diagrams to solve the query in both vector and

metric space. Although this approach is faster in terms of real-time usage, it

requires large offline computations as a trade-off. The OSR query is different

from our PSD query as the PSD does not have any notion of a sequence.

Besides, the OSR query computes only one solution where the PSD requires

a linear skyline. Furthermore, in the OSR query a POI can not be a part

of multiple categories whereas, in the PSD query, a store can sell multiple

products. As a result, we can not map nor compare the PSD query to the

9

OSR query.

2.2 Skyline Queries

Kriegel et al. [12] propose two algorithms to compute skyline routes using

multiple attributes. They argue that in real life multiple attributes need to be

taken into account while computing an optimal path. Both their algorithms

use a multi-attributed network graph (MAG). In a MAG each edge has an

attribute vector that contains the value of each attribute. Furthermore, they

define the cost of a path as the linear sum of all the attribute vectors of the

edges from that path. The first algorithm the authors propose is called Basic

Route Skyline Computation (BRSC). BRSC uses a priority queue to hold the

partial routes. It also uses a list to contain the skyline. The priority queue uses

a preference function to determine the priority of a partial route. Furthermore,

it evaluates a partial route for early pruning using forward estimation and

domination check. Nevertheless, BRSC expands the remaining partial routes

in every direction by one hop. Later, it adds the new partial routes to the

queue. Eventually, BRSC finds a full route and adds it to the skyline if eligible.

Finally, BRSC terminates when the queue is empty. The second algorithm the

authors introduce is called Advanced Route Skyline Computation (ARSC). In

contrast to BRSC, ARSC uses a priority queue of lists. Each list corresponds

to a node and contains only routes that end with the corresponding node.

Likewise, ARSC uses a list to contain the skyline. Besides, it uses a local

pruning technique where a dominated partial route is not further extended. It

too terminates when the priority queue is empty. Other than these differences

ARSC is analogous to BRSC. Subsequently, the authors show that ARSC

performs better then BRSC in large networks. Although the authors are using

the skyline paradigm to find the optimal solution, the problems they discussed

has different constraints from the PSD query. The PSD requires to fulfill a

shopping list for a route to be considered as a full route. Besides, each store in

the PSD contains multiple products which makes it computationally expensive

to decide which product to buy from which store. Therefore, we can not adapt

10

the PSD query so that we can use either of BRSC and ARSC to solve it.

In [21] Shekelyan et al. proposed Linear Skylines as an alternative to the

conventional skyline operator [5]. A linear skyline is guaranteed to be optimal

under all linear combinations of the considered attributes, and at the same

time provides a more concise and diverse answer set. (We discuss the notion

of conventional and linear skylines in more detail in Section 4.) To compute

a linear path skyline, the authors introduce an algorithm called “BLRSC”.

It uses a priority queue based on one attribute to visit neighboring nodes

in the network starting from the source. It gradually expands its network

and generates partial paths until it exhausts every node from the priority

queue. Furthermore, the authors apply some pruning techniques to speed

up BLRSC. They check the partial paths for linear domination. They show

that if a partial path is already dominated by some other partial path or

path, then it will surely be dominated by some path in the linear skyline.

Consequently, BLRSC does not expand any partial path that is already being

dominated which reduces the total computation time. Once a full path is

generated, BLRSC tries to insert it into the linear skyline. Besides, if the

addition of the new path makes its immediate previous or next paths in the

linear skyline (sorted based on only one attribute) dominated, then there can

exist paths both to the left or right of the new path in the linear skyline that

are now dominated. Thus BLRSC removes such paths from the linear skyline.

Subsequently, the authors successfully demonstrated that the linear skyline

creates a more concise impression of the conventional skyline. Even though

PSD uses a linear skyline as the final solution, it is only a part of our problem.

We cannot directly use BLRSC since we have to fulfill a shopping list on the

top of computing the linear skyline.

Ahmadi et al. [1] introduce an interesting query called best compromise

in-route nearest neighbor queries (BC-IRNN). The BC-IRNN query provides

a linear skyline of routes containing a detour from a preferred path. The

linear skyline in this query uses the total distance and the total detour in

particular. The authors propose one efficient algorithm to solve the BC-IRNN.

It uses two upper bounds so that it can prune infeasible solutions. First,

11

it generates an upper bound on the total route distance. Interestingly, it

computes such upper bound by generating a route with the minimum detour.

For this purpose, it uses the group nearest neighbor query (GNN). Likewise,

the second upper bound the algorithm uses is the upper bound on the total

detour. In contrast, it computes this upper bound by generating a route with

the minimum network distance. It generates such a route by using the centroid

between the source and the destination. Once it computes both the upper

bounds, it starts generating routes for the query. For instance, it generates

routes by using a priority queue based on the optimistic traveling distance

of a partial route. It computes the optimistic traveling distance of a partial

route using an A*-search that uses an admissible heuristic function. Besides,

it checks every dequeued partial route against the upper bounds for early

pruning. Subsequently, it expands any remaining routes in every direction

avoiding any cycle. Moreover, the algorithm updates the linear skyline when

it generates a valid complete route. Finally, it terminates when the queue is

empty or the optimistic traveling distance of a partial route exceeds the upper

bound of the total route distance. Furthermore, the authors provide a baseline

approach to solve the BC-IRNN query. The baseline approach uses TPQ [14]

query between every pair of vertices in the preferred path. Subsequently, it

generates a linear skyline using the routes with minimum travel distance from

every pair of vertices. Although both BC-IRNN and PSD queries produce

linear skylines as a solution, both of the problems are fundamentally different.

The constraint of completing a shopping list to create a full route makes PSD

a harder problem to solve. Thus we can not use the solution of BC-IRNN to

solve the PSD query.

Costa et al. [7] introduce a heuristic approach that provides a solution to

“In-route task selection in crowdsourcing” (IRTS) problem in real-time. First

of all, IRTS tries to minimize detour from a preferred path and maximize the

reward for a worker. For instance, a worker will have a preferred path and a

budget for traveling maximum distance. Meanwhile, there will be tasks that

are available and need someone’s presence at the site. Each task will have a

reward associated with it. Given the layout, the IRTS problem requires a set of

12

non dominated paths where each path will contain at least one task. Besides,

along with the heuristic approach, the authors also propose an approach to

compute the exact solution. The exact approach uses a queue to store paths.

Each time a path is dequeued, it updates the linear skyline if an update is

required. Otherwise, if the path is not eligible for early pruning, it extends

the path in increasing order of detour distance. Besides, if an extended path

is eligible for early pruning it will not be stored in the queue will be discarded.

Once it exhausts all the combination, it provides the exact linear skyline for the

IRTS problem. Nevertheless, the exact approach can not provide the solution

in real-time since the problem is NP-hard. Therefore, the authors propose a

heuristic approach that would provide a solution in real-time. It approximates

the exact linear skyline by prioritizing the paths with lower detour distance for

a given sequence of tasks. First of all, it uses a task graph TG that includes

the source, destination, and a subset of the tasks available that are feasible.

Furthermore, it uses the heuristic called detour oriented heuristic (DOH) to

find non-dominated paths in increasing order of detour. Meanwhile, the non-

dominated paths are included in the linear skyline which in the end is the

solution. The IRTS problem is different from the PSD problem since PSD

requires routes that fulfill a given shopping list. However, the NP-hardness

of both problems makes them similar in the sense that both of them require

a heuristic approach to find a solution in real-time. Nevertheless, we can not

use the proposed heuristic approach by the authors to solve the PSD due to

the difference in the objectives of both problems.

Lettich et al. [13] introduce a new variant of the OSR query called Trade-

Off Aware Sequenced Routing (TASeR). TASeR query adds two new con-

straints on the OSR query such as (1) each POI will have a non-null cost and

(2) the user aims to minimize both the travel distance as well as total travel

cost. Since the total travel distance and the travel cost can be two compet-

ing criteria, the authors use the linear skyline paradigm to find every optimal

solution under any linear combination. Their proposed algorithm LS-TASeR

uses two upper bounds on the travel distance and the travel cost to prune out

infeasible partial routes. It computes the upper bound of the total distance

13

by finding the route with the minimum travel cost. Conversely, it computes

the upper bound of the travel cost by finding the route with the minimum

travel distance. Moreover, LS-TASeR uses a priority queue to store partial

routes based on the travel distance. Also, it prunes out any partial route that

is infeasible considering on the upper bounds. In case it dequeues a complete

route, it updates the linear skyline accordingly. Otherwise, it extends the par-

tial route maintaining the sequence as well as the ascending order of travel

distance. Finally, LS-TASeR terminates if it generates any complete route

that has the travel cost equal to the minimum travel cost possible. As we can

see, the TASeR query is fairly similar to the PSD query. However, the absence

of a sequence makes the PSD a harder problem to solve. As a result, we can

not use LS-TASeR to solve the PSD query.

In conclusion, even though the above discussions show that much work has

been done w.r.t. routing queries in road networks and the use of the skyline

paradigm in those, PSD is unique mainly due to the notion of a shopping list

and of stores as POIs that are no distinct in nature from each other, i.e., all

can be considered in the same COI, but are distinct in the sense that they can

contribute differently to the solution.”

14

3
Preliminaries

We assume as underlying framework for the PSD query a city’s road network

modeled by an undirected graph G(V,E,W), where V is a set of vertices that

represent road intersections and end-points, E is the set of edges containing

all road segments, and W indicates the weight of edges in E. The weight of

an edge connecting two vertices vi and vj, denoted by w(vi, vj) ∈ W , is given

by the time needed to traverse the associated road network segment.

There are four main entities within the PSD’s model: stores, customers,

shopping lists, and personal shoppers.

• A store τj is located at a vertex vτj ∈ V , and the set of all stores forms a

set T . Each store sells a specific selection of products. A product has a

positive cost, which may differ between stores, and we denote by c(i, τj)

the cost of a product i at a store τj. For simplicity we assume that all

stores have an arbitrarily large inventory of all products it sells.

• A customer σ wants to buy a set of products. To this end it issues a

request to a personal shopper in the form of a shopping list (described

next). We assume the products need to be delivered at the customer’s

location, which is a vertex in V denoted by vσ.

• λ denotes the shopping list issued by σ and we represent it as a set

15

of pairs 〈i, q〉 where each i is a product identifier and q represents the

number of required units of such product.

• Finally, the personal shopper ω is in charge of satisfying a customer’s

request, i.e., fulfil and deliver the shopping list, and we denote the shop-

per’s location by a vertex vω in V .

The answer of a PSD query is a set of “shopping routes”, each represent-

ing a sequence of stores to be visited and yielding a shopping cost (i.e., the

monetary cost of acquiring all required products in the visited stores) as well

as shopping time (i.e., the time needed to do all needed shopping and deliver

the products to the customer). Next, we define such concepts formally.

Definition 1 (Shopping route and its feasibility). A shopping route θi over

G is a sequence of stores 〈τ i1, . . . , τ in〉. Furthermore, given a shopping list λ we

say that θi is feasible w.r.t. λ if all products in λ are sold in at least one store

in θi.

Definition 2 (Shopping time). Let θi represent a feasible shopping route w.r.t.

a customer’s shopping list λ. We define the shopping time associated with θi,

denoted as ST (θi), as the time needed by the shopper to traverse the path that

departs from vω, visits the stores according to the order defined by θi, and

finally ends at vσ, i.e.:

ST (θi) = mTT (vω, τ1) +
n−1∑
i=1

mTT (τi, τi+1) +mTT (τn, vσ)

where mTT (vi, vj) is the time required by the fastest path connecting vertices

vi and vj (though other notions of travel cost could also be used).

Definition 3 (Shopping cost). Let λ be the shopping list issued by a customer

σ and let θi be a feasible shopping route w.r.t. λ. Then, we define the shopping

cost of θi as follows:

SC(θi) =
∑
〈j,q〉∈λ

(c(j, ss(θi, j))× q)

16

where ss(θi, j) is a function that returns the store in θi from which the product

j in λ is to be bought 1.

Note that due to the assumption of arbitrarily large inventories at each

store, it is safe to assume that all units of a given product can be acquired at a

single store. The case where stores’ inventories are limited, and more than one

store may be required to fulfil the need for a given product, is left as future

work for the time being.

Clearly, there may be different combinations of stores that could interest

the shopper, each with its own trade-off between shopping cost and shopping

time. Thus, we propose an approach where the shopper can do his/her own

evaluation to choose the one combination that best fits his/her immediate

needs/goals. We model such notion of “interestingness” by leveraging the

concept of linear skyline, discussed next.

A linear skyline always represents the subset of some conventional skyline;

to distinguish between the two, we start by providing their definitions. Let θi

be a feasible shopping route. The two criteria that are being optimized are

SC(θi) and ST (θi), i.e., the cost vector that is being optimized is CV (θi) =

〈SC(θi), ST (θi)〉.

Definition 4 (Conventional domination). Let θi and θj be two shopping routes.

Then, we say that θi conventionally dominates θj, denoting by θi ≺ θj, if:

((
SC(θi) < SC(θj)

)
∧
(
ST (θi) ≤ ST (θj)

))
∨((

SC(θi) ≤ SC(θj)
)
∧
(
ST (θi) < ST (θj)

))
From this, it follows the definition of conventional skyline.

Definition 5 (Conventional skyline). Let Θ be a set of shopping routes. Then,

we define the conventional skyline of Θ to be the set of shopping routes that

are not conventionally dominated, i.e., {θi ∈ Θ| 6 ∃θj ∈ Θ : θj ≺ θi}.
1As discussed in the following Section, such store-product assignment is determined as

the solution is obtained.

17

A linear skyline consists of the subset of a conventional skyline that is op-

timal under all linear combinations of the competing cost criteria [21]. Hence,

in the scenario considered in this work a linear skyline is composed of combina-

tions of stores that minimize the linear combination F = δ1SC(θi)+ δ2ST (θi),

with δ = (δ1, δ2) being a weight vector in R2
>0. Note that we find the optimal

solution for all such δ, i.e., we do not require any weight vector to be provided

beforehand. In the following, we remind the definition of δ-dominance [21],

which determines when a combination of stores linearly dominates another one

provided a particular δ.

Definition 6 (Linear dominance). A shopping route θi is said to δ-dominate

another θj if and only if δTCV (θi) < δTCV (θj).

From the definition of linear dominance follows the definition of linear

skyline [21].

Definition 7 (Linear skyline). Let Θ be a set of shopping routes. Let also

Θ′ = {θ1, . . . , θK} ⊆ Θ. Then, we say that Θ′ linearly dominates a shopping

route θ ∈ Θ if and only if:

(
∃θ′ ∈ Θ′ : θ′ ≺ θ

)
∨
(
∀δ ∈ R2

>0 ∃θ′ ∈ Θ′ : δTCV (θ′) < δTCV (θ)
)

The maximal set of linearly non-dominated combinations of stores is referred

to as linear skyline and it can be seen as an ordered set w.r.t. the first cost

criteria.

Testing the condition on the right hand side of Definition 7 would require

to try out every possible vector δ ∈ R2
>0, which would be computationally

impractical. As such, in [21] the authors consider the problem from a different

perspective, giving it an intuitive geometrical interpretation. More precisely,

the authors observe that a route θ is linearly dominated only if it lies above

the segment connecting any pair of shopping routes {θq, θj} belonging to the

linear skyline – this fact is formally denoted by {θq, θj} ≺L Θ. Then they show

that it is possible to quickly test whether a route is linearly dominated or not

(and thus determine if it can be added to the linear skyline).

18

Table 3.1 summarizes the main notation used throughout the rest of the

thesis.

Symbol Semantics

τ ∈ T A store in the set of stores T
θi = 〈τ i1, . . . , τ in〉 Shopping route
τ ij ∈ Ri The j-th store visited by θi
vω Shopper’s location
vσ Customer’s delivery location
λ Shopping list
ST (θi) Shopping time of route θi
SC(θi) Shopping cost of route θi
θi ≺ θj θi conventionally dominates θi
{θi, θj} ≺L θq θq linearly dominated by {θi, θj}
θSC Comb. of stores with minimum shopping cost
STU = ST (θSC) Shopping time upper bound

Table 3.1: Main notation used throughout the thesis.

3.1 PSD query’s NP-hardness

The PSD query can be demonstrated to be NP-hard by showing that any

instance of a Trip Planning Query (TPQ), a problem known to be NP-hard

[14], can be reduced to a PSD one.

Let us suppose to have a road network G, a set C of categories of interest

(COIs), and a set of points of interest (POIs) P (also vertices in G), each

belonging to some COI c ∈ C. Given a starting location vs, an ending location

vd, and a subset of COIs C ′ ⊆ C provided by the user, a TPQ requires to

compute the route with minimum cost (e.g., travel time) from vs to vd that

visits exactly one POI from each COI in C ′.

In the following we show how we can reduce any TPQ instance to a PSD

one. vs can be trivially mapped to the shopper’s location vω, while vd can be

trivially mapped to the customer’s location vσ. Next, we map the notion of

subset of COIs to visit C ′ ⊆ C with that of shopping list λ. Each COI c ∈ C in

TPQ can be mapped to the notion of a product in PSD, with the POIs within

that category representing the stores selling that product. Then, any subset

19

C ′ ⊆ C of COIs to visit can be expressed as a shopping list λ, where we require

to buy exactly one unit of each such fictitious products in λ. Finally, recall that

TPQ requires to compute the route minimizing the considered cost criterion

(e.g., travel time), while the PSD query requires to find the set of linearly

non-dominated routes w.r.t. shopping cost and shopping time. Considering

that in TPQ there are no costs associated to POIs, we are free to impose that

all the products have the same cost across all the stores in which they are

sold, hence all the shopping routes satisfying λ will have the same shopping

cost. Therefore, the linear skyline will be a singleton containing the route with

minimum shopping time, i.e., the optimal solution required by TPQ.

3.1.1 Linear skylines, total order, and efficient inser-
tions

Let ST be the cost criterion used to order the evaluation of shopping routes,

let θST be the route yielding minimum shopping time, let LS be the skyline

under construction – initially LS = {θST} –, and let θ be a shopping route

considered for insertion. Shekelyan et al. [21] demonstrate that it suffices to

verify whether θ’s left neighbor in the skyline, LSK , i.e., the shopping route

being the closest to θ w.r.t. to ST , with ST (LSK) ≤ ST (θ)2, conventionally

dominates θ. In other words, it suffices to verify whether ST (LSK) ≤ ST (θ).

If ST (LSK) > ST (θ) then θ qualifies for insertion and it is necessary to ver-

ify if any route in the skyline becomes dominated due to the insertion of

θ. First, it is necessary to verify whether ST (LSK) = ST (θ): if that’s the

case, LSK is removed from the skyline as it is conventionally dominated by

θ. Subsequently, thanks to the order in which linearly non-dominated shop-

ping routes are discovered, it is sufficient to verify whether θ’s left neighbor,

LSK , is linearly dominated by LSK−1 (LSK ’s left neighbor) and θ, i.e., ver-

ify if {LSK−1, θ} ≺L LSK is true, and remove LSK if this is the case. The

procedure is iterated until θ’s current left neighbor cannot be removed from

the skyline or it represents the first route in the skyline, i.e., the shopping

2This corresponds to the last shopping route inserted into the skyline, or θST in case no
route was previously inserted.

20

route with shopping time. Considering that linear skylines typically contain

few elements, the overall cost of an insertion check can be assumed to be, on

average, constant.

21

4
Computing Solution for
Personal Shopper’s Dilemma
Query

In this chapter, we propose two approaches to solve the PSD query. The

first one, BSL-PSD, is a baseline capable of computing optimal linear sky-

lines. Given some shopping list, the strategy employed by BSL-PSD evaluates

in strict increasing order of shopping time shopping routes that fulfill the

list, and orchestrate the construction of the skyline accordingly. As shown

in Section 3.1, computing PSD queries is NP-hard, and thus computing op-

timal linear skylines becomes unfeasible when the number of stores in a road

network or the shopping list size becomes large. We thus propose a second

approach, APX-PSD (Section 4.2). The idea behind APX-PSD is to cluster

stores spatially and then generate and combine shopping routes from such clus-

ters, rather than from the entire set of stores, to reduce the number of shopping

routes to possibly evaluate. To this end APX-PSD first superimposes a quad-

tree over the stores within the considered geographical area. Then, given a

PSD query APX-PSD performs a depth-first search (DFS) of the quad-tree

that is driven by a scoring function. Such function directs the search towards

the tree leaves that are deemed the most “promising” in terms of shopping

time and shopping cost. The generation and expansion of shopping routes are

22

thus conducted within single partitions, rather than on the entire set of stores,

to considerably reduce the candidates’ search space.

4.1 A baseline approach: BSL-PSD

The first approach we propose to solve the PSD query is BSL-PSD, a baseline

capable of computing optimal linear skylines. Before delving into its presenta-

tion, two important points of discussion concerning the strategy employed by

BSL-PSD to compute the linear skyline are: (i) our choice of imposing a total

order over the evaluation of shopping routes – from here on shopping routes

under evaluation will be called candidate routes – and, (ii) the cost criterion

used to define such order. For what concerns (i), [21] shows that having a total

order over the candidates allows efficient insertions while constructing a linear

skyline. Indeed, in order to determine if the candidate qualifies for insertion it

suffices to verify whether a candidate is conventionally dominated by the last

shopping route inserted into the skyline.

Observation 1. Let us choose one of the two cost criteria as the primary cost.

Let us also suppose that it is possible to compute the shopping route yielding the

minimum possible value for the primary cost, which in turn establishes an up-

per bound for the second cost criterion, i.e., shopping routes having the second

cost criterion larger than the upper bound are surely dominated by the associ-

ated route. Let us finally assume that linearly non-dominated shopping routes

are evaluated in increasing order w.r.t. the primary cost criterion. Then, it is

sufficient to perform a single conventional domination check to determine if a

route qualifies for insertion into the linear skyline.

For instance, Let ST be the cost criterion used to order the evaluation of

shopping routes, let θST be the route yielding minimum shopping time, let LS

be the skyline under construction – initially LS = {θST} – and let θ be a shop-

ping route considered for insertion. Shekelyan et al. [21] demonstrate that it

suffices to verify whether θ’s left neighbor in the skyline, LSK , i.e., the shop-

ping route being the closest to θ w.r.t. to ST , with ST (LSK) ≤ ST (θ)1,

1This corresponds to the last shopping route inserted into the skyline, or θST in case no

23

conventionally dominates θ. In other words, it suffices to verify whether

ST (LSK) ≤ ST (θ). If ST (LSK) > ST (θ) then θ qualifies for insertion and it

is necessary to verify if any route in the skyline becomes dominated due to the

insertion of θ. First, it is necessary to verify whether ST (LSK) = ST (θ): if

that’s the case, LSK is removed from the skyline as it is conventionally domi-

nated by θ. Subsequently, thanks to the order in which linearly non-dominated

shopping routes are discovered, it is sufficient to verify whether θ’s left neigh-

bor, LSK , is linearly dominated by LSK−1 (LSK ’s left neighbor) and θ, i.e.,

verify if {LSK−1, θ} ≺L LSK is true, and remove LSK if this is the case. The

procedure is iterated until θ’s current left neighbor cannot be removed from

the skyline or it represents the first route in the skyline, i.e., the shopping

route with shopping time. Considering that linear skylines typically contain

few elements, the overall cost of an insertion check can be assumed to be, on

average, constant.

For the moment we assume said total order to be enforced by means of

a min-priority queue Q, combined with some suitable generation scheme that

progressively extends shopping routes according to the chosen cost criterion,

and focuses on which criterion should be used to define the evaluation order.

Consider an evaluation strategy that evaluates candidates according to their

increasing shopping cost. As it will be shown later on, computing the cost of a

shopping route w.r.t. a shopping list can be done in constant time with the use

of appropriate data structures. On the other hand, computing a candidate’s

shopping time always requires to compute the fastest path visiting its stores,

i.e., it is necessary to solve an instance of the trip planning query, which is

NP-hard. Thus, using shopping time rather than shopping cost allows for an

evaluation strategy with greater pruning potential and thus smaller computa-

tional costs. Now, note that evaluating in increasing order of shopping cost

does not take into account the spatial information provided by a PSD query

(i.e., shopper’s and customer’s delivery locations), hence this strategy may

end up evaluating shopping routes where the associated fastest paths are long

and thus likely being dominated by faster routes. Overall, evaluating in in-

route was previously inserted.

24

creasing order of shopping time is less penalizing when incurring in dominated

candidates, as the cost of computing their shopping cost is negligible.

At this point we can start focusing on the baseline’s presentation. First,

we briefly describe three pre-computed lookup tables BSL-PSD uses to speed

up key computations. Subsequently, we introduce the notion of skyline upper

bounds, and specify how they are computed and used within the baseline. We

then proceed to introduce the set of pruning criteria and the generation scheme

the baseline uses to evaluate candidates. Finally, we conclude by formally

introducing BSL-PSD.

We pre-compute three lookup tables. The first table keeps track of the stores

where each product is sold, with the list of stores each product is associated

with being ordered in increasing order of cost. This is similar to a typical

text-based inverted list and allows us to determine in constant time a subset

of stores yielding minimum shopping cost for any shopping list λ. The second

table stores pairs (product, store), with each pair being associated with the

cost of the product at that store. Thus, for any shopping list λ it is possible

to compute in constant time if a combination of stores can fulfill it, as well as

its shopping cost. The third table stores the travel time of the fastest path

connecting any pair of stores.

There are two important shopping routes BSL-PSD uses to delimit the

candidates’ search space, i.e., the one yielding minimum shopping time, θST ,

and the other yielding minimum shopping cost, θSC . The former provides the

shopping cost upper bound, SCU , while the latter provides the shopping time

upper bound, STU .

Computing θSC. Finding out a shopping route with minimum shopping

cost requires to find out a subset of stores in T where each product in λ can

be bought at minimum cost – this can be done in constant time by using the

first pre-computed lookup table. Later on we show that during the candidates’

evaluation it suffices to find the first shopping route with shopping cost equal

to that of θSC to terminate the baseline’s execution, as subsequent candidates

are ensured to be longer (and thus dominated by such route).

25

Computing θST . To find out the shopping route with minimum shopping

time requires to compute a variant of the trip planning query, i.e., it requires

to find out the combination of stores that (i) yields the fastest path connecting

the shopper’s location, the stores, and the customer’s delivery location, and

(ii) that satisfies λ. BSL-PSD generates (and thus evaluates) a combination of

stores in increasing order of shopping time. Consequently, the first candidate

that fulfills λ always corresponds to θST . We elaborate more on this shortly.

BSL-PSD evaluates candidate shopping routes in increasing order of shop-

ping time and constructs the linear skyline accordingly. To do so, it generates

shopping routes according to the chosen order, coupled with a set of pruning

criteria used to reduce the search space. We start by presenting the first prun-

ing criterion, a lemma that allows to update the shopping cost upper bound

SCU as non-dominated routes are progressively inserted into the linear skyline.

Lemma 1. Let Q be the min-priority queue used to order the evaluation of

shopping routes in strict increasing order of shopping time. Let λ be a shopping

list. Let then θ be the last candidate popped from Q: if θ fulfills λ and qualifies

for insertion into the linear skyline, then it is possible to set SCU = SC(θ).

Proof. The mechanism used to generate shopping routes in strict increasing

order of shopping time ensures that any route θ′ popped from Q after θ yields

ST (θ′) ≥ ST (θ). Then, by virtue of the notion of linear skyline (Definition 7)

θ′ may qualify for insertion only if SC(θ′) < SC(θ) = SCU .

The above lemma allows to progressively enforce stricter upper bounds on

shopping cost, and thus limit the candidates’ space as linearly non-dominated

solutions are found out. Let us now introduce a lemma that allows to early

terminate BSL-PSD.

Lemma 2. Let θ be the last linearly non-dominated shopping route added to

the linear skyline. If SC(θ) = SC(θSC) we are guaranteed to have found out all

the linearly non-dominated shopping routes and the evaluation can terminate.

26

Proof. We know that shopping routes are popped from Q in increasing order

of shopping time. We also know that θ yields the minimum possible shopping

cost. Consequently, any sequence θ′ that fulfills λ popped from Q after θ nec-

essarily has ST (θ′) ≥ ST (θ) and SC(θ′) ≥ SC(θ) = SC(θSC), i.e., Definition

7 ensures that θ′ is dominated.

In other words, the above lemma guarantees that once a shopping route

with minimum shopping cost SC(θSC) and that satisfies λ is found, the base-

line can terminate as it is not possible to find further non-dominated routes.

Let us now introduce a slightly modified notation for shopping routes that

serves to relate them to the notion of ranked minimum detours. Such notation

will be used later on to illustrate the route generation scheme used by the

baseline to evaluate candidates in increasing order of shopping time.

Definition 8 (Shopping routes and minimum detours). We define a shopping

route Θ = 〈τk1 , τk2 , . . . , τk|θ|〉 to be the route where τki ∈ ST represents the i-th

store visited by Θ and that yields the ki-th minimum detour when added to the

fastest path between the store that precedes it in Θ (or the shopper’s location

vω, if i = 1) and the customer’s delivery location vσ.

Algorithm 1 presents BSL-PSD, along with the generation scheme used to

evaluate shopping routes in strict increasing order of shopping time. First,

BSL-PSD prunes from T those stores that do not offer any of the products

required in λ (line 1, function PruneStores). This immediately reduces the

candidates’ search space. Next, BSL-PSD executes two single-source shortest

path searches (lines 2 and 3): the first one originates from the shopper’s loca-

tion vω and targets the set of stores T as well as the delivery location vσ. The

second one originates from the delivery location vσ and targets the set of stores

T . These searches return the travel times between vω and vσ, and between any

pair (vω, τ) and (τ, vσ), with τ ∈ T . Such travel times are then appropriately

combined with those in the lookup table holding the travel times between any

pair of stores to support efficient implementations of the functions MinDe-

tour and NextMinDetour (discussed shortly). More specifically, for every

store τ ∈ T we sum the travel time with any other store τ ′ ∈ T with that

27

Algorithm 1: BSL-PSD

Input : Road network G, set of stores T ⊆ V , shopper’s current
location vω, customer’s delivery location vσ, shopping list λ,
shopping route yielding minimum shopping cost θSC .

Output: Linear skyline LS.
1 T ← PruneStores(T, λ)
2 T ← DijkstraMultipleTarget(vω, T ∪ {vσ})
3 T ← DijkstraMultipleTarget(vσ, T)
4 LS ← ∅
5 SCU ← +∞
6 Q← {〈τk1=1 = MinDetour(vω, vσ, ∅, T)〉}
7 while Q 6= ∅ do
8 θ = 〈τk1 , · · · , τk|θ|〉, Q← Pop(Q)

9 if SatisfyList(λ, θ) then
10 if SC(θ) < SCU then
11 LS ←UpdateLS(LS, θ) // (Observation 1)

12 SCU ← SC(θ)

13 if SCU = SC(θSC) then return LS

14 θs = 〈τk1 , · · · , τk|θ|〉 ⊕MinDetour(τk|θ| , vσ, θ, T)

15 θp = 〈τk1 , · · · , τk|θ|−1
〉 ⊕NextMinDetour(τk|θ|−1

, vσ, θ, T)

16 Q← Push({θs, θp}, Q)

17 return LS

between τ ′ and vσ. This yields a list of travel times which, once sorted, allows

finding quickly the store yielding the k-th minimum detour when added to the

fastest path connecting τ and vσ.

BSL-PSD then goes on to set the initial state of several entities, namely,

that of the linear skyline LS, the shopping time upper bound STU , and the

priority queue Q, which initially holds the partial shopping route containing

the store minimizing the detour w.r.t. the fastest path connecting vω and vσ.

Note that such store is found via the function MinDetour, which uses the

information computed previously. Subsequently (while cycle, line 7), BSL-

PSD starts generating and evaluating shopping routes in increasing order of

shopping time. For each candidate θ popped from Q (line 8), BSL-PSD first

verifies whether θ fulfills λ (line 9). If such condition holds, the baseline goes

on to verify whether SC(θ) < SCU (line 10): if this condition does not hold,

then θ is conventionally dominated (lemma 1) and can be discarded. Other-

28

wise, θ can be inserted into the skyline according to the procedure outlined in

observation 3.1.1 (function UpdateLS, line 11), and SCU can be tightened

(line 12, by virtue of lemma 1). If SCU = SC(θSC) the algorithm immediately

terminates (line 13), as it is not possible to find further linearly non-dominated

shopping routes (by virtue of lemma 2).

Lines 14–16 represent the generation scheme used by BSL-PSD to evaluate

shopping routes in increasing order of shopping time, with ⊕ symbolizing the

append operation. For each shopping route θ popped from Q the baseline

generates two new shopping routes, namely, θs and θp. θs is the shopping

route generated by adding a store at the end of θ that (1) does not already

appear in θ and that (2) minimizes the detour distance when added to the

fastest path between τk|θ| and the delivery location vσ – such store is found out

via the function MinDetour. θp is the shopping route generated by replacing

the last store visited by θ, i.e., τk|θ| , with the store yielding the (k|θ| + 1)-th

minimum detour when added to the fastest path connecting τk|θ|−1
and vσ –

such store is found out via the function NextMinDetour. Similarly to θs,

note that we require the store found by NextMinDetour to not already

appear in θ. Observe that both θs and θp have shopping time greater or equal

than θ.

Finally, we can state two important features regarding BSL-PSD:

Theorem 1. BSL-PSD evaluates all possible shopping routes.

Proof. We prove it by induction on the size of shopping routes. First we

show that the baseline examines every shopping route with |θ| = 1. During

the initialization phase BSL-PSD initializes the min-priority queue with the

shopping route yielding the minimum detour distance between vω and vσ, i.e.,

θ = 〈τk1=1〉 (line 6). Then, every time some shopping route θ = 〈τk1〉 is popped

from Q, BSL-PSD generates a shopping route θp (line 15) where τk1 is replaced

with τk1+1, i.e., the shop that yields the k1-th minimum detour between vω and

vσ is replaced with the one that yields the (k1 + 1)-th minimum detour between

vω and vσ. Let us now assume that BSL-PSD generates all the shopping routes

of length n. Then, for any route θ = 〈τk1 , . . . , τkn〉 we know that the generation

29

scheme generates a route θs = 〈τk1 , . . . , τkn , τkn+1=1〉 (line 14), where the store

τkn+1=1 yields the minimum detour distance when added to the fastest path

connecting τkn and vσ. Then, during subsequent iterations line 15 guarantees

that θs allows to generate a whole set of shopping routes of length n+ 1 where

the shop yielding the kn+1-th minimum detour between kn and vσ is replaced

with that yielding the (kn+1 + 1)-th minimum detour.

Theorem 2. BSL-PSD evaluates shopping routes in strict increasing order of

shopping time.

Proof. We prove it by contradiction. First, observe that the min-priority queue

Q ranks the shopping routes it holds in increasing order of shopping time.

Hence, the only event that may violate the theorem’s thesis is if a route popped

from Q has shopping time smaller than those popped (and thus evaluated)

previously. Note, however, that such event is impossible, as the generation

scheme used between lines 14–16 ensures that the shopping routes θs and θp

have shopping time always greater or equal than that of the popped route θ

from which they are generated.

4.1.1 BSL-PSD’s complexity

BSL-PSD first filters out from T stores that do not offer any product in λ.

Thanks to the use of pre-computed lookup tables, the cost of such operation

is O(|λ| · |T |). Let us now denote by T ′ ⊆ T the subset of stores that offer

at least one product in λ. Let us also denote by N = O
(
|T ′|!) the overall

number of candidate shopping routes to possibly evaluate, by S the number

of candidate routes θs generated at line 14, and by P the number of candidate

routes θp generated at line 15, with 1 + S + P = N .

The first major operations conducted by BSL-PSD are the two single-

source shortest path searches at lines 2 and 3. Both searches have a common

component cost of O
(
(|E|+|V |)·log|V |

)
, i.e., the cost inherent to conducting a

Dijkstra search. Recall then that the second search is followed by the creation

30

of a set of sorted lists, one per every store τ ∈ |T ′|, each holding the travel times

that result from adding any other store in |T ′| in the fastest path connecting

τ and vω (an information already available in the appropriate lookup table).

Thus, creating and sorting such lists has cost O(|T ′| · OC), where OC is the

sorting algorithm cost.

Such operations are then followed by the baseline’s time-dominant compo-

nent, represented by the while loop (lines 7–16). The cost of executing such

component can be expressed as O
(
Nlog2N+N2|T ′|+S|λ|+|λ|

∑P
j=1 |θ

p
j |+N

)
.

The first term represents the cost associated with the use of a min-priority

queue to order the evaluation of candidates. The second term represents the

cost of generating two candidate routes from each candidate popped from

the queue (i.e., the cost of executing MinDetour and NextMinDetour).

By using the aforementioned sorted lists, finding the k-th minimum detour

from any store to the delivery location has cost O(|T ′|), which in turn yields

O(N2|T ′|). The third term represents the cost of computing the shopping

cost of candidates θs generated at line 14 from some candidate θ. Recall that

each product in λ shall be bought at the store selling it for the lowest price

among those in θ. Hence, computing the shopping cost of a candidate θs can

be done in O(|λ|) by (1) using the lookup table providing the selling price of

any product in any store and (2) by keeping track of the minimum price each

product in λ is bought among θ’s stores. The fourth term represents the cost

of computing the shopping cost of candidates θp generated at line 15. Recall

that such operation requires to replace the last store in some θ with the one

yielding the next minimum detour. Now, observe that some of the products

in λ may be bought at the store being replaced, hence in the worst case its re-

placement requires to find out for each product in λ which store among those

in θp sells it at minimum price. Finally, the fifth term represents the cost

needed to check if candidate routes qualify for insertion into the linear skyline.

31

4.2 An approximated approach: APX-PSD

The baseline’s major drawback lies in its necessity to possibly evaluate a num-

ber of shopping routes that is factorial in the number of stores, thus limiting

its scalability and applicability to real-world scenarios. In order to overcome

that, we propose APX-PSD, an approach that trades the optimality of linear

skylines for a greatly reduced number of candidates to evaluate. The key idea

behind APX-PSD is to consider stores at a coarser granularity, i.e., partitions

of stores rather than individual stores to generate – and thus evaluate – shop-

ping routes from those partitions, rather than the whole set of stores, that

look the most “promising.”

To partition the stores of a road network APX-PSD superimposes a point-

region (PR) quad-tree [18] over the minimum bounding rectangle (MBR) en-

closing the stores. This corresponds to the root quadrant of the quad-tree.

The PR quad-tree is then constructed by recursively splitting each quadrant

having a number of elements (stores) larger than a given capacity threshold in

four sub-quadrants. Quadrants that are split during the construction process

are the quad-tree intermediate nodes, while unsplit ones make up the leaves.

Given that it relies only on the spatial location of the stores, APX-PSD can

pre-compute a quad-tree over the stores of a road-network, along with informa-

tion concerning travel time between partitions and statistics on the products

each quadrant (at any level of the tree) holds. Such statistics are subsequently

used to drive the generation and evaluation of candidate routes, i.e., to decide

which quadrants are the most promising w.r.t. shopping time and shopping

cost.

We first define the notions of travel time between quadrants and travel

time between a vertex and some quadrant, as they are key to the evaluation

strategy employed by APX-PSD.

Definition 9 (Travel time between quadrants). Let Q be a PR quad-tree su-

perimposed over the stores T ⊆ V . Let Pi and Pj be two quadrants of Q.

Then, the travel time between Pi and Pj, denoted by mTT (Pi, Pj), is defined

by mTT (τ ik, τ
j
l), with τ ik ∈ Pi, τ

j
l ∈ Pj, and @(τ im, τ

j
n), with τ im ∈ Pi, τ jn ∈ Pj,

32

such that mTT (τ im, τ
j
n) < mTT (τ ik, τ

j
l).

Definition 10 (Travel time between a vertex and a quadrant). Let Q be a PR

quad-tree superimposed over the stores T ⊆ V . Let v ∈ V be some vertex and

P ∈ Q be some quadrant. Then, the travel time between v and Pj, denoted by

mTT (v, P), is defined by mTT (v, τ j), with τ j ∈ P , and @(v, τ jn), with τ jn ∈ Pj,

such that mTT (v, τ jn) < mTT (v, τ jl).

Observe that Definition 9 requires to find out the pair of stores, each be-

longing to one of the considered quadrants, yielding minimum travel time,

while Definition 10 requires to find out the store within a quadrant that min-

imizes travel time w.r.t. some given vertex. Finally note that travel times

between partitions can be pre-computed. Both definitions allow APX-PSD to

enforce upper bounds on shopping time when generating shopping routes from

different partitions – to be discussed further shortly.

With a PR quad-tree in place, APX-PSD can then proceed to process

PSD queries. Its evaluation strategy relies on a depth-first search (DFS) of

the quad-tree driven by a scoring function we introduce below. Given the set of

shopping routes under construction (initially empty), such function estimates

how “good” each quad-tree quadrant, be it an intermediate node or a leaf, is in

terms of shopping time and shopping cost w.r.t. the characteristics of a PSD

query and the shopping routes generated so far, thus driving the generation

and evaluation of shopping routes towards quadrants that are deemed the

“most promising”.

Definition 11 (Quad-tree quadrant scoring function). Let us consider a shop-

ping list λ, a PR quad-tree Q superimposed over T ⊆ V , and a quadrant Pi ∈ Q

(either intermediate node or leaf) that needs to be scored w.r.t. λ. Let us as-

sume that Pi must be reached from either the shopper’s location vω or some

other quadrant P ∈ Q. Let us further consider that Pi contains m of the prod-

ucts specified in λ; let us denote by λPi the subset of such products, and by λPik

the average cost of the k-th product within λPi among Pi’s stores.

Let us finally denote the minimum travel time needed to depart from vω,

visit one or more stores in Pi, and finally reach the customer’s delivery location

33

vσ by ST vωPi = mTT (vω, Pi) + mTT (vσ, Pi). Analogously, departing from any

P ∈ Q yields ST PPi = mTT (P, Pi)+mTT (vσ, Pi). For the sake of simplicity, in

this context we denote either vω or P by x. Let us finally denote by maxPrice

the price of the most expensive product in any store from λ. Then, we define

the score of Pi w.r.t. x and λ as follows:

F (x, λ, Pi) =

STxPi
STU

+
∑|λPi |
k=1

(
λ
Pi
k /maxPrice

)
m

m > 0

+∞ m = 0
(4.1)

We normalize each of the two terms on the right hand side of the equation

to give the same importance to shopping time and shopping cost. Specifi-

cally, ST xPi is normalized w.r.t. the shopping time upper bound STU , while

the average cost of each product is normalized w.r.t. the cost of the most

expensive product available. Consequently, assuming that m > 0 we have

∀(x, λ, Pi), F (v, λ, Pi) ∈ [0, 2].

Algorithm 2: APX-PSD

Input : road network G = (V,E), set of stores T ⊆ V , quad-tree Q
superimposed over the MBR enclosing the elements in T ,
shopper’s location vω, delivery location vσ, shopping list λ,
shopping time upper bound STU .

Output: approximated linear skyline LS.

1 Q, T ← PruneStores(T, λ)
2 T ← DijkstraMultipleTarget(vω, T ∪ {vσ})
3 T ← DijkstraMultipleTarget(vσ, T)
4 P ← GetRoot(Q)
5 LS ← Explore(P,Q, λ, vσ, ∅, ∅, STU)
6 return LS

Intuitively, the lower the score, the more “promising” a quadrant is. Ob-

serve also that the scoring function attempts to balance the importance given

to shopping time and shopping cost. We thus expect APX-PSD to generate

shopping routes with shopping time and cost having the tendency to distribute

more toward the centers of the intervals in the corresponding optimal skyline.

In fact, the experimental results shown in Section 5 confirm that a scoring

function with such a feature makes APX-PSD robust to variations in store

and products’ price distributions.

34

Algorithm 3: Explore
Input : current partition P , quad-tree superimposed over G, Q,

shopping list λ, customer’s delivery location vσ, linear
skyline LS, set of partial shopping routes PR, shopping
time upper bound STU .

Output: set of partial shopping routes PR (updated), linear skyline
LS (updated), shopping list λ (propagated).

1 λ′ ← GetMissingProducts(λ, PR)
2 if λ′ = ∅ then return PR,LS, λ
3 if IsLeaf(P,Q) then
4 PR,LS ← ComputePartitionRoutes(λ′, P, PR,LS)

5 else
6 src← GetStart(PR)
7 Z = {P1, P2, P3, P4} ← Score (Q,P, λ, src, vσ, PR, ST

U)
8 while Z 6= ∅ do
9 z ← GetTopScore(Z)

10 PR,LS, λ← Explore(z,Q, λ, LS, PR, STU)
11 Z ← Z \ {z}, src← GetStart(PR)
12 Z ← ReScore (Q,Z, λ, src, vσ, PR, ST

U)

13 return PR,LS, λ

At this point we are ready to introduce APX-PSD. Algorithms 2 and 3

present the pseudo-code behind our approach. Algorithm 2 starts by perform-

ing several preliminary operations. First, it removes from T stores that do not

offer any of the products in λ, and updates T and Q accordingly (line 1). Next,

it performs two single-source shortest path searches at lines 2–3 that, analo-

gously to those in BSL-PSD, compute the fastest paths between the shopper’s

and customer’s delivery locations and the stores in T . The algorithm then

initiates to recursively perform a depth-first visit of the quad-tree, with the

goal of constructing shopping routes from the tree’s leaves that look the “most

promising” and update the linear skyline accordingly. Such operations are im-

plemented by the function Explore, invoked at line 5. Algorithm 3 provide

the details.

Explore first determines the set of products that cannot be bought from

the routes currently stored in PR and stores such set in λ′ (line 1, function

GetMissingProducts). Note that if λ′ = ∅ then Explore can terminate,

35

as this implies that the depth first search conducted within Q already found

out shopping routes that can satisfy λ and inserted them into LS. Explore

then verifies if the currently considered quadrant P (initially the quad-tree

root) is a leaf or not (line 3). If P is a leaf, then the function ComputePar-

titionRoutes is executed (line 4). Such function first counts the number

of products in λ′ that can be bought from P ’s stores – let us suppose m

products. Subsequently, the function generates the set of (partial) shopping

routes from P ’s stores, where each such route allows to buy exactly those

m products (stores that do not offer any of the products in λ′ are ignored).

ComputePartitionRoutes then goes on to compute the Cartesian product

between the set of routes currently stored in PR and that computed from P .

The result then becomes the new PR’s content. Each route in PR is subse-

quently checked to verify if its shopping time is above STU – in such case the

route is removed from PR. Finally, ComputePartitionRoutes verifies if

the surviving routes buy all the products in λ (i.e., when λ′ = ∅) and, if so,

attempts to insert them into LS.

If P is an intermediate node of Q then Explore first proceeds to determine

in which partition the routes currently stored in PR terminate and set src

accordingly (line 6, function GetStart). Then, Explore scores P ’s four

sub-quadrants (line 5, function Score) and finally recursively invokes itself

by considering such sub-quadrants in ascending order of score (line 10). Note

that the function ReScore (line 12) takes advantage of any update in PR

to update the scores of partitions still within Z, and thus better direct the

evaluation of candidate routes.

4.2.1 APX-PSD’s complexity

APX-PSD first requires to pre-compute a quadtree, an operation that has

cost O(|T |). The two single-source shortest searches (lines 2 and 3) operate

on G = (V,E) and have cost O
(
(|E|+ |V |) · log|V |

)
each. Let us now focus on

the recursive execution of Explore. The cost of such execution is O
(
(|V Q|+

|EQ|) +N ′ +N +N |T ′||λ|+NlogN).

The first term is due to the DFS being conducted over Q: if V Q and EQ

36

denote, respectively, the nodes and edges in Q, then performing a DFS has cost

O(|V Q|+ |EQ|). The second term, N ′, represents the cost of generating shop-

ping routes from Q’s leaves by ComputePartitionRoutes: if L denotes

the set of Q’s leaves, then N ′ =
∑|L|

i=1 |Li|!. The third term represents the

cost of generating (partial) shopping routes by means of the Cartesian prod-

ucts conducted within ComputePartitionRoutes, with N =
∏|L|

i=1 |Li|!.

The fourth term represents the cost of finding the store, within each of the N

shopping routes, from which a product in λ can be bought at minimum price.

Finally, the fifth term represents the cost of generating the final linear skyline,

i.e., O
(
NlogN).

Overall, APX-PSD has to evaluate much less candidate routes (if L denotes

the set of Q’s leaves, then O(
∏|L|

i=1 |Li|!)) than BSL-PSD (O(|T |!)), thanks to

the spatial partitioning imposed over the stores and how such partitioning is

used to generate and evaluate candidate shopping routes. On the other hand,

this limits the evaluation to a restricted subset of candidate routes, which

explains APX-PSD’s expected sub-optimality.

37

5
Experimental Evaluation

In order to evaluate the APX-PSD approach, we used datasets containing the

road networks and POI locations for Amsterdam, Oslo and Berlin [2]. Since

those POIs do not include actual stores we used the locations of gas stations

and pharmacies (which are typically scattered throughout a city) as proxies

for the locations of stores.

Figure 5.1 illustrates the store locations in Berlin, Oslo and Amsterdam as

used in our experiments. Recall that pharmacies and gas stations were used

as proxy for stores, due to (1) the absence of information about real stores in

these cities, and (2) it is realistic to assume that pharmacies and gas stations

are scattered over a city just like stores would be. The total number of vertices,

edges and stores for all of the three maps are shown in Table 5.1.

Figure 5.1: Distribution of stores in each city’s road network. (Cities
not shown to scale).

38

Amsterdam Oslo Berlin

Vertices 106600 305175 428769

Edges 130091 330633 504229

Stores 100 207 768

Table 5.1: Metadata for datasets.

The parameters considered for the experimental evaluation are: (1) store

cardinality (i.e., number of stores in a network), (2) distribution of a products’

cost in the stores, (3) spatial distribution of differently sized stores (4) size of

shopping lists, and (5) capacity of the quad-tree leaves.

Given that the networks are fixed, varying the store cardinality models the

density of stores in a city. We also looked into the case when prices increase

or decrease w.r.t. the distance of the store to the city’s center. We considered

three different sizes of stores, i.e., small, medium and large, according to the

percentage of the total number of products they hold, i.e., 25%, 50% and 75%,

respectively, out of a total of 1,000 products. Note that we chose to not have

any store selling all the products to avoid a possibly trivial solution involving a

single store. Even though stores are by default distributed randomly through-

out the network, regardless of their sizes, we also investigated the effect of

increasing or decreasing the size of stores according to their proximity to the

city’s center. The values used for each parameter are shown in Table 5.2.

Parameter Default Value

Store Cardinality 10, 25, 50

Product Cost Distribution Rising, Normal, Declining

Store Size Spatial Distribution Increasing, Random, Decreasing

Shopping list size 5, 10, 15

quad-tree leaf capacity 4, 8, 16

Table 5.2: Default Parameter Values.

39

We attempted to emulate a realistic scenario in terms of the distribution of

the cost of products as well as of placement of differently sized stores. We thus

divide the maps into three concentric rings w.r.t. the city center. The inner,

middle and outer rings will host small, medium and large stores, respectively,

when the spatial distribution of stores is set to “Increasing”. Conversely,

when that parameter is set to “Decreasing” the inner, middle and outer rings

segment will host large, medium and small stores, respectively. Similarly, when

the product cost distribution parameter is set to “Rising” (Declining) products

in stores farther (closer) from the city’s center are more expensive. The store

closest (farther) to the city centre will sell it at minimum (maximum) price and

the one farthest will sell it at the maximum (minimum) price. All the stores in

between will sell the product at a price proportional to the distance between

those two stores. For “Normal” distribution we first find a mean price for each

product following a U(5,15) distribution. Once we have the mean price for a

product, we assign prices of that product to different stores following a normal

distribution with its mean price and a standard deviation of 2. As discussed

in Section 4.2, APX-PSD’s evaluation strategy relies on partitions of stores.

Thus we observe the effects of the leaf capacity on the APX-PSD by varying

the leaf capacity to 4, 8 and 16.

Finally, we test each value each considered parameter can assume by con-

ducting 100 individual experiments, and report the average optimality gap,

coverage gap and processing time. In each experiment we randomly select the

shopper’s and customer’s delivery locations, as well as randomly generate a

shopping list of the required size. Furthermore, we randomly select the re-

quired number of stores (25 stores in default setting) from those available in

the networks. All the experiments were conducted on a virtual machine with

an Intel(R)-Xeon(R) CPUs running at 2.30GHz and with 264GB of RAM.

5.1 Evaluation metrics

We evaluate our APX-PSD by measuring the quality of the results (effective-

ness) as well as the efficiency of it. In this section, we discuss the metrics we

40

use to measure such effectiveness and efficiency.

5.1.1 Effectiveness

Comparing an optimal linear skyline (opt-LS) to an approximated one (apx-

LS) requires comparing two aspects of skylines: optimality and coverage. For

that we propose the two measures presented next.

Consider Figure 5.2 where opt-LS = {A,B,C,D} and apx-LS = {A′, B′, C ′}.

The area given by the polygon OY ABCDXO (shaded in green plus orange)

represents the area Aopt not dominated by opt-LS, and similarly the polygon

OY ′A′B′C ′X ′O (shaded in blue plus the one shaded in green) denotes the area

Aapx not dominated by apx-LS. The smaller the difference between Aapx and

Aopt the better, but in order to make the right comparison we need to consider

only the portion of Aapx that intersects with Aopt, which in the case of this

example is given by the polygon OY ABCGX ′O, which we denote by Acover.

Finally, the ratio (Aapx−Acover)/Aapx represents the normalized “room for im-

provement” of the approximated solution. We call this measure the Optimality

Gap.

AY

B

C

D
XCOST

TI
M
E

A'

B'

C'

X'

Y'

G

O

Figure 5.2: Area coverage by the approximate and optimal linear
skyline.

The optimality gap does not consider part of Aopt that is not “covered” by

Aapx, e..g, the orange shaded polygon X ′GDXX ′ in the example and which we

denote as Amiss. This, which we name Coverage Gap, is a consequence of the

skyline approximation, i.e., the more points it is missing, the larger such gap.

41

In what follows we compute this (normalized) coverage gap as (Amiss/Aopt)

and, like the optimality gap, the smaller it is, the better.

Finally, note that in all the experiments we conducted the optimality and

coverage gaps were below 50% and 15% respectively, quantifying that the ap-

proximated linear skylines were of good quality. As well, the processing time

of APX-PSD was always smaller than 1 second and around two orders of

magnitude smaller than BSL-PSD’s.

5.1.2 Efficiency

We evaluate the efficiency of our PSD-PSD by comparing its processing time to

the processing time of BSLPSD. The experiments are designed to test whether

APX-PSD can provide a good solution in real-time. Even though we can not

compare the BSL-PSD and APX-PSD in terms of effectiveness and efficiency

for large store cardinality and shopping list size, we can confirm the scalability

of APX-PSD reporting the processing time for these extreme cases.

From Sections 4.1 and 4.2 recall that we assume some information – namely

the shortest path between stores and the stores partitioning – is pre-computed

offline. We argue that such assumption is reasonable, since stores are seldom

added to or removed from networks. Moreover such pre-computation repre-

sents a not overly expensive one-time cost.

City Shortest Path Partitioning Total

Amsterdam 31.40 1.56 32.96

Oslo 202.78 2.32 205.10

Berlin 1072.31 4.76 1077.07

Table 5.3: Pre-computation run-time (in seconds)

Table 5.3 shows the time required to pre-compute the shortest path between

every pair of stores and also perform the store partitioning. Note that while

we have used a typical implementation of Dijkstra’s algorithm for shortest

42

paths computation, more efficient alternatives could be used as this is a step

completely independent of the approaches being proposed in our work.

5.2 Effects of store cardinality

Figure 5.3 shows that the optimality gap increases when increasing the store

cardinality, while the coverage gap decreases. We explain such behaviour by

observing how quad-trees as well as the scoring function react to changes in

store cardinality. When store cardinality increases, the number of stores in

each quad-tree leaf increases accordingly. Since product costs are distributed

uniformly in the default case, adding more stores smooths the average cost

of each product in different partitions, which in turn reduces the impact of

product costs in APX-PSD’s scoring function. Therefore, the linear skyline

will include routes with higher costs, which will decrease the coverage gap.

Consequently, APX-PSD has to visit more leaves to complete the shopping

list. Furthermore, with larger store cardinality BSL-PSD generates shopping

routes with lower shopping time that APX-PSD fails to find, thus increasing

the optimality gap.

10 25 50

Store Cardinality

0.0

0.2

0.4

0.6

0.8

Op
tim

al
ity

 G
ap

Amsterdam
Oslo
Berlin

10 25 50

Store Cardinality

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Co
ve

ra
ge

 G
ap

Amsterdam
Oslo
Berlin

Figure 5.3: Effectiveness w.r.t. store cardinality

Figure 5.4 shows that BSL-PSD’s processing time increases when store

cardinality increases, mainly due to an increased number of stores (and thus

potential candidates) to consider. On the other hand, APX-PSD’s processing

time exhibits small changes. Recall that the leaves’ capacity in a quad-tree is

fixed, thus increasing the store cardinality increases the tree’s depth. Notice

that, we varied the parameter upto 500 stores for Berlin but only up to 200

stores and 100 stores for Oslo and Amsterdam respectively. We could not test

43

10 25 50 100

Store Cardinality

100

101

102

 R
un

tim
e

(s
)

Amsterdam
APX-PSD BSL-PSD

10 25 50 100 200

Store Cardinality

100

101

102

 R
un

tim
e

(s
)

Oslo
APX-PSD BSL-PSD

10 25 50 100 200 500

Store Cardinality

100

101

102

 R
un

tim
e

(s
)

Berlin
APX-PSD BSL-PSD

Figure 5.4: Efficiency w.r.t. store cardinality.

Amsterdam or Oslo with larger store cardinality due to the limitation of the

datasets respectively, Recall that APX-PSD’s time-dominant component deals

with shopping routes generation and evaluation, rather than tree traversal,

which explains the small impact on performance.

5.3 Effects of product cost distribution

In Figure 5.5 we can see that the “Declining” and “Rising” cases have compa-

rable optimality gaps and higher coverage gaps to the “Normal” one. We argue

that these results are due to the characteristics of the scoring function used

by APX-PSD which, we recall, attempts to balance the importance given to

shopping time and shopping cost. Since the product cost gradually decreases

towards one direction for both “Declining” and “Rising”, the scoring function

manages to minimize cost better than “Normal” distribution. However, the

optimality gap created due to creating partial routes from a leaf at a time

remains comparable to the “Normal” distribution. Interestingly, both the op-

timality gap and coverage gap are the highest for Oslo in all of the cases, which

we attribute to the skewed distribution of stores compared to the other cities

(Figure 5.1).

44

Normal Declining Rising

Product Cost Distribution

0.0

0.2

0.4

0.6

0.8

Op
tim

al
ity

 G
ap

Amsterdam
Oslo
Berlin

Normal Declining Rising

Product Cost Distribution

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Co
ve

ra
ge

 G
ap

Amsterdam
Oslo
Berlin

Figure 5.5: Effectiveness w.r.t. different cost distributions.

Normal Declining Rising

Product Cost Distribution

100

101

102

 R
un

tim
e

(s
)

Amsterdam
APX-PSD BSL-PSD

Normal Declining Rising

Product Cost Distribution

100

101

102

 R
un

tim
e

(s
)

Oslo
APX-PSD BSL-PSD

Normal Declining Rising

Product Cost Distribution

100

101

102

 R
un

tim
e

(s
)

Berlin
APX-PSD BSL-PSD

Figure 5.6: Efficiency w.r.t. different cost distributions.

Figure 5.6 shows that BSL-PSD’s processing time using Berlin’s network

is larger for the “Declining” and “Rising” cases than for the “Uniform” one.

In those two cases the low-cost products are distributed in certain areas of

the map, and thus it is more likely to take longer to find routes with lower

shopping costs if the shopper’s and customer’s delivery locations are far from

those regions. Note that such differences are further amplified by Berlin’s

large network size. However, APX-PSD’s processing time is not affected since

it takes great advantage of pre-computed aggregated paths as it traverses the

quad-tree hosting the store partitions.

45

Random Decreasing Increasing

Store Size Spatial Distribution

0.0

0.2

0.4

0.6

0.8

Op
tim

al
ity

 G
ap

Amsterdam
Oslo
Berlin

Random Decreasing Increasing

Store Size Spatial Distribution

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Co
ve

ra
ge

 G
ap

Amsterdam
Oslo
Berlin

Figure 5.7: Effectiveness w.r.t. different distributions of store size.

5.4 Effects of store size spatial distribution

In Figure 5.7 we can see that the “Decreasing” and “Increasing” cases have

comparable coverage and optimality gaps to the “Random” one. These results

can be explained by taking into account the characteristics of APX-PSD’s

scoring function, which makes it insensitive to different distributions of store

sizes (apart from the effects that can be observed on the shape of both optimal

and approximated skylines).

BSL-PSD’s processing time (Figure 5.8) is higher when dealing with the

“Decreasing” and“Increasing” cases. Since the locations of larger stores are

concentrated in certain areas, BSL-PSD takes longer to generate routes with

minimum cost and terminate (depending on the shopper’s and customer’s de-

livery locations), an effect that is further compounded by the city’s network

size. As usual, Berlin exhibits the largest processing time for the same rea-

son observed with varying cost distributions. Finally note that APX-PSD’s

processing time remains unaffected.

5.5 Effects of shopping list size

The optimality (coverage) gap increases (decreases) with the shopping list

size as evidenced in Figure 5.9. Larger shopping lists require more traversals

of the network. Recall that by construction, shopping routes are appended

to existing partial routes. Such appending means that previous not-so-good

choices remain and their effect are further compounded by new potentially not-

so-good choices as the algorithm evolves, worsening the approximation. As a

46

Random Decreasing Increasing

Store Size Spatial Distribution

100

101

102

103

 R
un

tim
e

(s
)

Amsterdam
APX-PSD BSL-PSD

Random Decreasing Increasing

Store Size Spatial Distribution

100

101

102

 R
un

tim
e

(s
)

Oslo
APX-PSD BSL-PSD

Random Decreasing Increasing

Store Size Spatial Distribution

100

101

102

 R
un

tim
e

(s
)

Berlin
APX-PSD BSL-PSD

Figure 5.8: Efficiency w.r.t. different distributions of store size.

result both the shopping time and cost increase which increases the optimality

gap and decreases the coverage gap.

BSL-PSD’s processing time (Figure 5.10) increases when increasing the

shopping list size. This can be explained by observing that, on average, large

shopping lists require more stores per route to be satisfied, and thus likely

require to evaluate more candidate routes. On the other hand APX-PSD is

mildly affected by such increase, thanks to the noticeably smaller number of

candidates it generates and evaluates by design.

5 10 15

Shopping List Size

0.0

0.2

0.4

0.6

0.8

Op
tim

al
ity

 G
ap

Amsterdam
Oslo
Berlin

5 10 15

Shopping List Size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Co
ve

ra
ge

 G
ap

Amsterdam
Oslo
Berlin

Figure 5.9: Effectiveness w.r.t. shopping list size.

47

5 10 15 30 60

Shopping List Size

100

101

102

 R
un

tim
e

(s
)

Amsterdam
APX-PSD BSL-PSD

5 10 15 30 60

Shopping List Size

100

101

102

 R
un

tim
e

(s
)

Oslo
APX-PSD BSL-PSD

5 10 15 30 60

Shopping List Size

100

101

102

 R
un

tim
e

(s
)

Berlin
APX-PSD BSL-PSD

Figure 5.10: Efficiency w.r.t. shopping list size.

5.6 Effects of quad-tree leaf capacity

From the results shown in Figure 5.11 we see that the optimality and coverage

gaps decrease (i.e., the overall result quality increases) as the leaf capacity

increases. This can be explained by observing that leaves containing more

stores allow APX-PSD to generate and evaluate more partial shopping routes,

thus allowing to discover shopping routes with increasingly lower costs (and

thus closer to the ones computed by the baseline). Finally, Figure 5.12 shows

that APX-PSD’s efficiency decreases as the leaf capacity increases, due to

the increased number of partial shopping routes that APX-PSD generates

and evaluates from the leaves it visits – indeed, from APX-PSD’s complexity

analysis (Sec. 4.2.1) recall that this represents the time-dominant component

of this approach.

48

4 8 16

Leaf Capacity

0.0

0.2

0.4

0.6

0.8

Op
tim

al
ity

 G
ap

Amsterdam
Oslo
Berlin

4 8 16

Leaf Capacity

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Co
ve

ra
ge

 G
ap

Amsterdam
Oslo
Berlin

Figure 5.11: Effectiveness w.r.t. varying quad-tree leaf capacity

4 8 16

Leaf Capacity

100

101

102

 R
un

tim
e

(s
)

Amsterdam
APX-PSD BSL-PSD

4 8 16

Leaf Capacity

100

101

102

 R
un

tim
e

(s
)

Oslo
APX-PSD BSL-PSD

4 8 16

Leaf Capacity

100

101

102

 R
un

tim
e

(s
)

Berlin
APX-PSD BSL-PSD

Figure 5.12: Efficiency w.r.t. with varying quad-tree leaf size

49

6
Conclusion

In this thesis we proposed a solution to what we called the “Personal Shopper’s

Dilemma” query, which is to decide on how to fulfil a customer’s shopping list

while minimizing travel time as well as shopping cost. The idea is to leave

the shopper to decide, “on the fly” how to prioritize these two criteria. Given

the query’s NP-hardness we proposed a heuristic solution that leverages on

the concept of linear skyline queries. In order to measure the effectiveness

of the proposed heuristic we also proposed a metric to evaluate its loss w.r.t.

an optimal solution. Using real city-scale datasets we show that our proposal

is able to deliver good linear skylines yielding optimality and coverage gaps

below 50% and 15% respectively two orders of magnitude faster than the

optimal solution.

A direction for future work w.r.t. the PSD query itself would be allowing a

shopper to find routes to serve multiple customers, possibly in different loca-

tions, and/or have multiple shoppers that could, for instance, bid on shopping

lists of different customers after considering their perspective on those two

criteria.

50

References

[1] E. Ahmadi, C. Costa, and M. Nascimento, “Best-compromise in-route
nearest neighbor queries,” in ACM SIGSPATIAL, 2017, 41:1–41:10.

[2] E. Ahmadi and M. Nascimento, Datasets of roads, public transportation
and points-of-interest in Amsterdam, Berlin and Oslo, In: https://

sites.google.com/ualberta.ca/nascimentodatasets/, 2017.

[3] S. Arora, “Polynomial time approximation schemes for euclidean tsp
and other geometric problems,” in Proceedings of 37th Conference on
Foundations of Computer Science, IEEE, 1996, pp. 2–11.

[4] ——, “Approximation schemes for np-hard geometric optimization prob-
lems: A survey,” Mathematical Programming, vol. 97, no. 1-2, pp. 43–69,
2003.

[5] S. Borzsony, D. Kossmann, and K. Stocker, “The skyline operator,” in
IEEE ICDE, 2001, pp. 421–430.

[6] A. Corral, Y. Manolopoulos, Y. Theodoridis, and M. Vassilakopoulos,
“Closest pair queries in spatial databases,” ACM SIGMOD Record, vol. 29,
no. 2, pp. 189–200, 2000.

[7] C. F. Costa and M. A. Nascimento, “In-route task selection in crowd-
sourcing,” in Proceedings of the 26th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, 2018, pp. 524–
527.

[8] C. F. Costa, M. A. Nascimento, J. A. Macêdo, Y. Theodoridis, N. Pelekis,
and J. Machado, “Optimal time-dependent sequenced route queries in
road networks,” in Proceedings of the 23rd SIGSPATIAL International
Conference on Advances in Geographic Information Systems, 2015, pp. 1–
4.

[9] C. F. Costa, M. A. Nascimento, and M. Schubert, “Diverse nearest
neighbors queries using linear skylines,” GeoInformatica, vol. 22, no. 4,
pp. 815–844, 2018.

[10] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
in Proceedings of the 1984 ACM SIGMOD international conference on
Management of data, 1984, pp. 47–57.

51

https://sites.google.com/ualberta.ca/nascimentodatasets/
https://sites.google.com/ualberta.ca/nascimentodatasets/

[11] G. R. Hjaltason and H. Samet, “Distance browsing in spatial databases,”
ACM Transactions on Database Systems (TODS), vol. 24, no. 2, pp. 265–
318, 1999.

[12] H. Kriegel, M. Renz, and M. Schubert, “Route skyline queries: A multi-
preference path planning approach,” in IEEE ICDE, 2010, pp. 261–272.

[13] F. Lettich, M. A. Nascimento, and S. Anwar, “Trade-off aware sequenced
routing queries (or osr queries when pois are not free),” Submitted, 2020.

[14] F. Li, D. Cheng, M. Hadjieleftheriou, G. Kollios, and S. Teng, “On trip
planning queries in spatial databases,” in SSTD, 2005, pp. 273–290.

[15] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao, “Query processing in
spatial network databases,” in VLDB, 2003, pp. 802–813.

[16] N. Roussopoulos, S. Kelley, and F. Vincent, “Nearest neighbor queries,”
in Proceedings of the 1995 ACM SIGMOD international conference on
Management of data, 1995, pp. 71–79.

[17] C. Salgado, M. Cheema, and D. Taniar, “An efficient approximation algo-
rithm for multi-criteria indoor route planning queries,” in ACM SIGSPA-
TIAL, 2018, pp. 448–451.

[18] H. Samet, “The quadtree and related hierarchical data structures,” ACM
Computing Surveys (CSUR), vol. 16, no. 2, pp. 187–260, 1984.

[19] M. Sharifzadeh, M. Kolahdouzan, and C. Shahabi, “The optimal se-
quenced route query,” The VLDB Journal, vol. 17, no. 4, pp. 765–787,
2008.

[20] M. Sharifzadeh and C. Shahabi, “Processing optimal sequenced route
queries using voronoi diagrams,” GeoInformatica, vol. 12, no. 4, pp. 411–
433, 2008.

[21] M. Shekelyan, G. Jossé, M. Schubert, and H. Kriegel, “Linear path sky-
line computation in bicriteria networks,” in DASFAA, 2014, pp. 173–
187.

52

	Introduction
	Literature Review
	Trip Planning Queries
	Skyline Queries

	Preliminaries
	PSD query's NP-hardness
	Linear skylines, total order, and efficient insertions

	Computing Solution for Personal Shopper's Dilemma Query
	A baseline approach: BSL-PSD
	BSL-PSD's complexity

	An approximated approach: APX-PSD
	APX-PSD's complexity

	Experimental Evaluation
	Evaluation metrics
	Effectiveness
	Efficiency

	Effects of store cardinality
	Effects of product cost distribution
	Effects of store size spatial distribution
	Effects of shopping list size
	Effects of quad-tree leaf capacity

	Conclusion
	References

