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Chapter 1 

Introduction

This thesis is about the mathematics of long-range aperiodic structure. This is a 
relatively new area which arose from the discovery of aperiodic tilings in mathematics 
and from the experimental discovery of quasicrystals in the field of materials science.

Quasicrystals were discovered in the mid 1980’s in experiments of Dan Shecht- 
mann and his colleagues [42]. Quasicrystals axe metallic solids which axe not crystals 
yet have diffraction patterns consisting of pure bright peaks without diffuse back­
ground. Before the discovery of quasicrystals it had been believed that only crystal 
structures, that is an atomic structure based on periodic repetition of a fundamen­
tal cell, could have diffraction patterns with pure bright peaks. So when these 
new materials were first discovered there was no theory to explain or support the 
phenomenon and there was a great deal of debate about their reality.

Experiments over the past 20 years have confirmed the existence of the quasicrys­
tals beyond doubt and at the same time generated a great deal of interest about 
ordered structures in various different contexts, particularly mathematics.

In mathematics, as a first approximation, we can interpret atoms as points 
(or more realistically points of various ‘colours’, representing the different types 
of atoms) and this leads to the study of structured point sets. In a broad sense we 
mean by ‘aperiodic order’ structure which is in some way beyond periodic. In the 
context of point sets we are especially interested in studying structured point sets 
whose diffraction consists entirely of pure bright diffraction peaks. This is what is 
called pure point diffraction.

Except in Chapter 8 we deal here with point sets that are Delone sets. The 
Delone property is the weakest hypothesis consistent with our intuitive notion of 
an (idealized) infinitely extended atomic material solid, namely that the point set 
is coextensive with space (that is there are not large regions of the space which are
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empty of points) and also there is minimum separation between the points.
The properties of Delone sets are well reflected in tilings. A tiling is a covering 

of space by a set of tiles in such a way that distinct tile interiors do not meet each 
other. Especially when we think about tilings with only finitely many tile types 
(prototiles) under translation, it is easy to construct corresponding Delone point 
sets. For example, the vertices of the tiles if they are polyhedral, form such a set. 
By choosing one point from each prototile and then selecting the corresponding point 
each time that tile appears in the tiling we can obtain a Delone set. On the other 
hand, given a Delone set A and then taking Voronoi cells, each of which consists of 
all points in the space which are closer to some point of A than to any other, we 
can easily move from Delone sets to tilings.

Tilings have their own long history in the form of arts, designs, and the practical 
problems of covering areas and spaces with building materials. Typically they are 
patterns with periodic structure. Since Robert Berger [6] proved the computational 
undecidability of the tiling problem - the problem of deciding whether a given finite 
set of polygonal tile shapes will or will not tile the plane - the existence of finite 
sets of prototiles that tile a plane only in aperiodic way has been confirmed. The 
Penrose tiles are the best-known example of this kind.

Just around the time of the discovery of quasicrystals strong evidence was given 
for the pure point diffractivity of the aperiodic Penrose tilings. This brought new 
attention to the theory of aperiodic tilings since they were apparently good models 
for trying to understand quasicrystals, and since that time tiling theory has had a 
great period of revival.

We usually consider both aperiodic point sets and tilings in this thesis. We have 
already suggested that there is a close connection between point sets and tilings. 
Points sets are more algebraic, tilings more geometric. Point sets are easy to create, 
describe, and manipulate algebraically, but it is hard to encode the space filling 
properties of their various patterns. On the other hand, tilings, especially in 2- 
dimensions have wonderfully visible geometrical attributes and also have spatial 
properties which make certain concepts very natural; for example, uniform patch 
frequencies (UPF)- that for any pattern consisting of a finite collection of the tiles 
there is a unique uniformly converging frequency for this pattern throughout the 
tiling. However, tilings are often very intricate and are almost beyond intuition or 
construction in higher dimensions. The study of point set structure is not far from 
the study of tiling structure and these two studies are often interrelated in the study 
of aperiodic order. In this thesis both concepts live side-by-side and we often depend 
on being able to pass between them.

2
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We start by introducing definitions and notation for point sets and tilings in 
Chapter 2. We consider point sets which have finitely many different colours and 
call them multisets. We explain in this chapter the main basic concepts such as finite 
local complexity (FLC) that there are only finite local patterns up to translations; 
repetitivity that whatever (finite) patterns you see you will see them again without 
going too far in the space; and uniform cluster frequencies (UCF) which is a similar 
analogue to UPF except now in the setting of point sets .

There is a commonly used method for generating examples of aperiodic point sets 
which is called the cut and project method. It generates the so-called model sets. 
Roughly these are projections into a space of (parts of) a lattice that lies in some 
higher dimensional or enlarged ‘super-space’. The ‘cut’ part refers to the selection 
process used in projection of the lattice. We will explain them in SubSec. 2.1.1. Much 
of the thesis is about these sets : how they connect with pure point diffractivity, 
and how they can be characterized.

In Sec. 2.2 we will define tiles and tilings precisely. Most of the basic concepts in
point sets are convertible to tilings.

One of the most historically important methods of creating tilings is by substitu­
tions. In fact the method has been used in the study of ordered alphabetic sequences 
for many years and it can also be used to create aperiodic point sets. We talk about 
substitutions in Chapter 3 from the point view of both point sets and tilings.

Just to get a brief idea about substitutions, let us first look at the so-called period- 
doubling substitution. We begin with two letters {a, b} and define the substitution 
map $  which acts so that a ab and b aa; or repeating it twice, a ab abaa 
and b aa abab. Starting from b and a and expanding b to the left and a to the 
right using <F2, we get a fixed bi-sequence

• • • b a a a b a b | a b a a a b a

Attaching a unit length interval to each letter in the sequence consecutively starting 
with the interval [0, 1] at the initial letter a and [—1, 0] at the initial letter b we can 
tile a real line R.

. . . - 7  -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 •••
b a a a b a b a b  a a a b a

Let A0 (At) be the set of left end points from a (b) type intervals. This way we get 
two infinite aperiodic substitution point sets (although together they simply make 
up Z).

3
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In keeping with the idea of that Delone sets and tilings coexist in some sort of 
coherent relation, one can think about how this works at the level of substitution 
Delone sets and substitution tilings. In fact using the additional structure coming 
from iteration rules one can get closer relation between the two which allows us to 
switch from one to the other while keeping the same iteration rules. But this is not 
trivial.

When a substitution tiling is given, one can find an associated substitution point 
set using control points ([46], [18], [33], [43]). What about the converse? Given that 
we have a substitution point set, can we find an associated substitution tiling which 
represents the original point set structure and keeps the same substitution rules? 
Lagarias and Wang [20] characterize substitution point sets and study the subclass 
of the substitution Delone sets, analysing the structure in detail. Furthermore they 
give sufficient conditions for substitution Delone sets to be represented by the corre­
sponding substitution tilings. This representation is important to our work. Using 
it we can associate to each point a corresponding tile and deal with either tiles or 
points, whichever is most convenient. In this way the theory which has been devel­
oped for substitution tilings can be used effectively for understanding substitution 
point set structure.

In Chapter 3 we define the substitution point sets and substitution tilings and 
extend the result of [20] on the relation between the two objects, finding necessary 
and sufficient conditions for substitution Delone sets to be represented by the cor­
responding substitution tilings and introducing the concept of legality. It is known 
that primitive substitution tilings (see Def. for primitive) have UPF. We show this 
property in this chapter for reader’s convenience. Moreover in more general setting 
we connect substitution Delone sets with substitution multitilings. This connection 
was first raised in [20] as a question and we answer the question here. Using the 
connection we are able to prove that primitive substitution Delone sets have UCF.

Dynamical systems originally arose in the study of systems of differential equa­
tions used to model physical phenomena. The motions of the planets, or of mechan­
ical systems, or of molecules in a gas can be modeled by such systems. Roughly 
speaking a dynamical system is a space with a group of transformations acting on 
it. Here we consider a collection of Delone multisets in Rd and define a metric on 
it. We define a dynamical hull as a closure of orbits of a Delone multiset A in the 
collection. Then Rd acts on the dynamical hull by translates and we get a dynamical 
system of the point set. A dynamical system of a tiling is defined in the same way. 
For any measure preserving system (XA,/q R d) we can consider a group of unitary 
operators on L2(X \,fx ). Every function in L2(XA, /i) defines a corresponding spec-
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tral measure and we study the spectral theory of the dynamical system. It turns 
out that the spectral theory is well connected with diffraction spectrum.

On this thesis we are interested in understanding point set structures with regard 
to their diffraction spectra. These are idealized mathematical interpretations of the 
diffraction patterns of physical experiments and are important since they encode 
information about the long-range order of the system. We explain the diffraction 
spectrum with a simple example in Sec. 4.2.

The spectral theory of dynamical systems has been studied for a long time and it 
turns out there is a way to connect this theory with the diffraction spectrum of point 
sets and tilings. One of the earliest uses of this idea appears in M. Queffelec [35] 
where she established an equivalence between pure point diffraction and dynamical 
spectra in the setting of symbolic (one dimensional) dynamics. The main step 
forward was provided by Stephen Dworkin [12] who showed how to connect the 
autocorrelation of a point set and particular spectral measures in the setting of 
its local hull. One result of this is that if a point set has pure point dynamical 
spectrum then it also has pure point diffraction spectrum. The converse (in the 
geometric setting of point sets) was first shown in [24].

We will talk about the equivalence in Chapter 5 in detail. Recently this equiva­
lence has been improved in [15] and [1] in more general cases. Certainly due to the 
rich spectral theories on dynamical systems the relation between two spectra gives 
us better access to understanding the point set structure.

In Chapter 6 we will consider the dynamical spectrum in substitution tilings 
and point sets. Due to the hierarchical structure of substitutions we can find good 
characterizations for substitution tilings to have pure point dynamical spectra. This 
chapter is largely based on [43]. The main new feature is that here the dimension 
d is arbitrary, while [43] was focused on the case d =  2. We explain overlap coinci­
dence which finds a geometric condition for substitution tilings to have pure point 
dynamical spectrum. Using the representable concept in substitution Delone sets we 
can derive the same spectral property for the dynamics of the substitution Delone 
sets.

In Chapter 7 we consider substitution point sets on lattices. Here we axe dealing 
with coloured point sets which comprise in totally a lattice. The period-doubling 
example above is of this type since together all the points involved make up the 
integers. Applying our various equivalent characterizations of pure pointedness to 
lattice substitutions, we find a checkable condition for pure pointedness. This also 
enables us to connect pure pointedness with model sets.

Theorem 7.9 shows three different aspects of development in the subject of pure

5
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point diffractive point set structure.
One aspect is that it establishes the equivalence concept between pure point­

edness and regular model sets (model sets whose windows have boundary measure 
0). It has been known that any regular model sets are pure point diffractive [41] 
but the reverse is in general not yet known. In fact it is a challenging and natural 
problem to resolve the relation between pure pointedness and model sets in more 
general setting without assuming lattice situation.

Another aspect is that it extends Dekking’s well-known ID criterion for pure 
point spectrum in terms of coincidence [10]. The criterion says that an equal length 
symbolic substitution has pure point dynamical spectrum if and only if it admits 
a coincidence. Here coincidence means that there is an n-th column whose letters 
are same in all the iterated words. For example, the period-doubling substitution 
admits a coincidence, since a is the first letter in the iterated words ab and aa 
from a and b. It shows that the period-doubling sequence has pure point dynamical 
spectrum. We generalize the coincidence from its original one-dimensional setting 
in constant-length alphabetic substitutions to lattice substitutions in arbitrary di­
mensions, introducing modular coincidence. A number of interesting tilings such as 
Robinson, sphinx, and chair tilings ([38], [22]) fall into the setting of lattice substi­
tutions.

The third aspect is that it gives condition in which model sets and substitution 
sets are connected. From the algebraic structure of cut and project schemes it 
is easy to get infinite point sets with certain properties which we would like to 
study. Especially, one can easily obtain the corresponding geometrical conditions 
for the important properties in the dynamics of infinite point sets such as FLC and 
repetitivity. Unlike substitution point sets it is not easy to configure local points 
completely in the sets coming from cut and project schemes. So the questions about 
when model sets can be viewed as substitution point sets and when substitution 
point sets become model sets are interesting problems. The studies for the former 
are on [16] and [28], and the studies for the latter are on [22] and [25] in lattice 
cases.

For the relation among coincidence and pure pointedness and model sets in 
substitution point sets, there is progressing work for more general cases in [21].

Due to their remarkable properties (which somehow capture all the essential 
features of aperiodic point sets), model sets have become a mainstay in the study 
of aperiodic order and in the building of theoretical models in the study of physical 
quasicrystals. On the other hand, it has been very hard to characterize model sets. 
Given a set of points, or a multiset, how can one know if this is a model set or model

6
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multiset?
When we have two infinite point sets, there are two different ways to determine 

the closeness of the two sets. One defines the closeness by how much the two sets 
exactly agree around origin, up to small translations. The other defines the closeness 
depending on how much they agree overall in a statistical sense, again up to small 
translations. In general these two different notions of closeness are not related each 
other. But when we look at model sets they are related concepts. Actually when 
we define two dynamical hulls with these two topologies, one defined with local 
topology and the other defined with autocorrelation topology, the existence of a 
continuous mapping between two hulls characterizes model sets. We will prove this 
characterization in Chapter 8.

This thesis is based on three papers [24], [25] and [23]. In [24] we prove the 
equivalence between pure point diffraction and dynamical spectra under UCF and 
FLC.

T heorem  5.1 Suppose that a Delone multiset A has FLC and UCF. Then the 
following are equivalent:

(i) A has pure point dynamical spectrum;

(iii) A has pure point diffraction spectrum.

In [25] we find the necessary and sufficient condition for a repetitive primitive sub­
stitution Delone multiset to be representable for a substitution tiling extending 
Lagarias and Wang’s result in [20].

T heorem  3.10 Let A be a repetitive primitive substitution Delone multiset. Then 
every A-cluster is legal if and only if A is representable.

In an extension of this work, which is not included in the three papers, I have been 
able to show that a repetitive primitive substitution Delone multiset is representable 
for a substitution multitiling, giving an answer to the question which was raised in 
the paper [20].

T heorem  3.21 If A is a repetitive primitive substitution Delone multiset, then A 
is representable for g-multitiling with some q £ Z+.

We also provide an answer in the case of lattice substitution systems to the question 
of “when is a pure point diffractive set a regular model set?” , revising the modular

7
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coincidence which was first introduced in [22]. The result completes a circle of 
equivalences of modular coincidence, the existence of a model set interpretation, the 
notion of pure point spectrum, and a condition on almost-periods.

Theorem 7.9 Let A be a Delone multiset with expansive map Q such that (A, <L) 
is a primitive substitution system, L =  Ui<m for some lattice L  in Rd, and every
A-cluster is legal. Let L' — Li -\-------1- Lm, where L* = <  A, — Aj >. The following
are equivalent:

(i) A has pure point diffraction spectrum;

(ii) A has pure point dynamical spectrum;

(iii) dens(AA(Qna  +  A)) —h? 0 for all a  € I/;

(iv) A modular coincidence relative to QML' occurs in <&M for some M;

(v) Each Aj is a regular model set for i < m , relative to the CPS (7.25).

In [23] we characterize a model multiset by a map between two dynamical hulls, 
modifying arguments of [2] and [41], which apply only to single-coloured point sets. 
This characterization is especially useful when one is working with substitution point 
sets which usually deal with finitely many different colours of point sets.

Theorem 8.1 Let A be a repetitive Meyer multiset in Rd. Then there is a contin­
uous Kd-map (3 : XA —> A(A) which is one-to-one a.e. with respect to A(A) if and 
only if A (or equivalently each element of XA) is a regular model multiset.

8
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Chapter 2 

Preliminaries

Here we present notation and basic definitions on point sets and tilings. Readers 
can come back to this chapter for the meaning of terminology.

2.1 Delone point sets
A m ultiset1 or m-multiset in Rd is a subset A =  Ai x • ■ • x Am c Rd x • • • x Rd 
(m copies) where A* C Rd. We also write A =  (A i,. . . ,  Am) =  (Aj)i<m. Although A 
is a product of sets, it is convenient to think of it as a set with types or colours, i 
being the colour of points in A*.

D efinition 2.1 We say that A C Rd is a Delone set if there exists r > 0 such that 
for any x E A, Br(x) D A =  {x} (uniformly discrete) and there exists R  > 0 such 
that for any y E Rd, Bit(y) fl A ^  0 (relatively dense). We say that A =  (Ai)i<m is a 
Delone multiset in Rd if each A* is Delone and supp(A) := |J™ x A* C Rd is Delone.

D efinition 2.2 A set A C Rd is Meyer if A is Delone and there is a finite set F  so 
that A — A C A +  F. We say that A is Meyer if each A* is Meyer.

There are many known equivalent concepts to Meyer. Another common characteri­
zation of Meyer for Delone set A is that A — A is uniformly discrete [19]. For more 
about the characterizations of Meyer sets, see [31].

Definition 2.3 A cluster of A is a family P =  (Pi)i<m where Pi C A* is finite for 
all i <  m.

1 Caution : In [20], which we occasionally cite below, the word multiset refers to a set with 
multiplicities.

9
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For example, in the period doubling sequence (1), ({—2,0}, {—1,1}) is a cluster of 
A — (A0, A&).

Many of the clusters that we consider have the form A f l A  := (A n  A 
for a bounded set A  C Rd. There is a natural translation Reaction on the set of 
Delone multisets and their clusters in Rd. The translate of a cluster P  by x G Rd is 
x + P  =  (x+Pi)i<m. We say that two clusters P  and P 7 are translationally equivalent 
if P  =  x + P ' for some x  G Rd. For any two Delone m-multisets A, T we define 
A n  r  =  (Aj n  and A A T =  (A* A ri)i<m, where A* A T* =  (A^r*) U (rfyAi). 
We write B r(u) for the closed ball of radius R  centered at y and use also B r  for 
B r(  0).

Definition 2.4 A Delone multiset A has finite local complexity (FLC) if for every 
R  > 0 there exists a finite set Y  C supp(A) =  (J™ t A* such that

\/x G supp(A), 3 y  G Y  : B R(x) D A =  (BR(y) n  A) +  (x -  y).

In plain language, for each radius R  > 0 there are only finitely many translational 
classes of clusters whose support lies in some ball of radius R.

Definition 2.5 A Delone multiset A is repetitive if for any compact set K  C Rd, 
{ t  G Rd : A D  K  — (t  +  A) fi K }  is relatively dense; i.e. there exists R  — R ( K ) >  0 
such that every open ball B r (p ) contains at least one element of { t  G Rd : A D  K  =  
(t +  A ) f l 4

For a cluster P  and a bounded set A  C Rd denote

LP(A) — (t{x G Rd : x  +  P  C A  D A},

where jj means the cardinality. In plain language, LP(A) is the number of translates
of P  contained in A, which is clearly finite. For a bounded set F c R d and r > 0,
let

F +r ■.= {x G Rd : dist(:r, F) < r },
F~r { x  G F  : dist(x, dF) > r }  D F  \  (dF)+r.

A  van Hove sequence for Rd is a sequence F  — {Fn}n>! of bounded measurable 
subsets of Rd satisfying

lim Vol((5Fn)+r)/Vol(F,n) =  0, for all r >  0 (2.1)
n—+oo '

(this term is used in statistical mechanics, see [40] and [14]).

10
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Throughout this thesis we deal with concepts that depend on some sort of aver­
aging sequence for their very definition: densities, frequencies, autocorrelation and 
diffraction measures. Even when not explicitly mentioned, we will always have in 
mind that these concepts have been defined in terms of some predetermined van 
Hove sequence {-Fn}„>i.

D efinition 2.6 Let {Fn}n>i be a van Hove sequence. A Delone multiset A has 
uniform cluster frequencies (UCF) (relative to (F„}„>i) if for any cluster P , there 
is the limit

freq(P,A) =  j i m ^ t 5 i ) > 0 ,

uniformly in x  G Rd.

For any subset A' C A, we define

J , A/N ,. tf(A'n Fn) 
dens(A ):=

if the limit exists.

2.1.1 M odel sets

We define a cut and project scheme with Rd for a physical space here, but in general 
one can define it with a locally compact Abelian group. The definition of a model 
set here is little different from conventional definition but more general. For more 
about model sets, see [30].

D efinition 2.7 A cut and project scheme (CPS) consists of a collection of spaces 
and mappings as follows;

R d  R  d x H  H
U  (2 - 2 )

L

where Md is a real Euclidean space, H  is some locally compact Abelian group, 7Ti and 
7T2 are the canonical projections, L  C x H  is a lattice, i.e. a discrete subgroup 
for which the quotient group (Rd x H ) / L  is compact, | j  is injective, and 7r2( l )  is 
dense in H.

For a subset V  C H,  we denote A(U) := {^ (x ) 6 Rd : x  E L, ^ ( x )  G V}.

11
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D efinition  2.8 A model set in is a subset T of Rd for which, up to translation in 
Rd, A(W°) C T C A(W)  where W  is compact in H  and W  =  W° ^  0. The model 
set T is regular if the boundary dW  =  W \W ° of W  is of (Haar) measure 0. We say 
that T is a model multiset (resp. regular model multiset) if each T, is a model set 
(resp. regular model set) with respect to the same CPS.

One should note here that since 7r2 need not be 1 — 1 on L, the model set T need 
not actually be of the form A(V) for any set V  C H. Nonetheless it is hemmed in 
between two such sets differing only by points on the boundary of the window W.

When we need to be more precise we explicitly mention the cut and project 
scheme from which a model set arises. This is quite important in some of the 
theorems below.

To get an idea on what the cut and project schemes and model sets are about, 
we present an example.

Example 2.9 We consider the point sets Aa and Ab from the period doubling se­
quence (1). We define the 4-adic completion

Z4 := lim Z/4fcZ
*—k

of Z. When Z4 is supplied with the usual topology of a profinite group, the cosets 
a +  4fcZ4, a € Z, k € Z>0 form a basis of open sets of Z4 and each of these cosets 
is both open and closed. We note here that Z4 is a compact Abelian group. Since 
Z is embedded in Z4, we can identify Z with its image in Z4. We can construct a
following cut and project scheme taking Z4 as an internal space :

R R x Z4 -%■
u

Z  <—  z  —
x <—  (x, x) ---

where Z =  {(a:, x) € R x Z4\x € Z}. It is well described in [4] that we get

A0 =  Un>0(2 • 4"Z +  (4n — 1)),

A =  Un>i(4nZ +  (2 • 4ra_1 -  1)) U {-1} .

We can describe Aa =  A(Wa) and Ab =  A(Wb) where Wa = M { - 1} and Wb = ~Ab
in Z4. We will be able to easily see after Theorem 7.9 that Aa and Ab are regular 
model sets.

12
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2.2 Tilings
This section briefly reviews the basic definitions of tilings. We begin with a set of 
types (or colours) {1 ,... , m}, which we fix once and for all. A tile in Rd is defined 
as a pair T  =  (A, i ) where A  =  supp(T) (the support of T) is a compact set in 
Rd which is the closure of its interior, and i — l(T ) £ {1 ,... ,m} is the type of T. 
We let g + T  =  (g + A, i) for g £ Rd. We say that a set P  of tiles is a patch if 
the number of tiles in P  is finite and the tiles of P  have mutually disjoint interiors 
(strictly speaking, we have to say “supports of tiles,” but this abuse of language 
should not lead to confusion). The support of a patch is the union of the supports 
of the tiles that are in it. Note that the support of a patch need not be connected. 
The diameter of a patch is the diameter of its support. The translate of a patch P  
by g £ Rd is g +  P {g + T  : T  e  P}. We say that two patches Pi and P2 are 
translationally equivalent if P2 =  g + Pi for some g £ Rd. A tiling of Rd is a set T  of 
tiles such that Rd =  U{supp(T) : T  £ T }  and distinct tiles have disjoint interiors. 
Given a tiling T, finite sets of tiles of T  are called T-patches.

We define FLC, repetitivity, and uniform patch frequencies (UPF), which is the 
analog of UCF, on tilings in the same way as the corresponding properties on Delone 
multisets.

We always assume that any two T-tiles with the same colour axe translationally 
equivalent (hence there are finitely many T-tiles up to translation).

13
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Chapter 3 

Substitutions

Substitutions have proven to be a powerful way of constructing aperiodic tilings and, 
in fact, all of the famous aperiodic tilings (Penrose, Ammann-Beenker, octagonal, 
chair and sphinx) can be constructed by this means. The idea is simple. A finite 
set A  of prototiles are given and also an expansion map Q (most often just a scaling 
map). The tiles are such that when they are inflated by Q they can be decomposed 
into some non-overlapping translates of the prototiles (see Def. 3.4). Iteration of this 
process can be arranged to fill out larger and larger patches of space, and ultimately 
leads to a tiling of space. Most often we are interested in a “fixed point” of this 
process, that is to say, a tiling which is fixed under the inflation/decomposition rule.

Substitutions that create Delone multisets are, by contrast, more recent. The 
idea is similar but there is a significant difference. One is looking at a multiset A 
and an expansion map Q. But now Q spreads out the points of A and disjoint 
translates of the inflated colour sets QA/s reconstruct A (see Def. 3.1).

In both cases there are substitution equations which consist of affine maps with 
the expansion Q and the translations, and it is natural to look for a connection 
between the two. In particular, given a substitution Delone multiset is there a 
corresponding substitution tiling with the same substitution rules whose tiles are 
“centred” on the points of the multiset, or as we say it, is the substitution Delone 
multiset representable for a substitution tiling? As it turns out, there is a natural 
candidate set of tiles for the job -  namely the solution (consisting of compact subsets 
in R d) to an adjoint system of equations (associated iterated function system). Even 
so the answer is not always “yes”. In Sec. 3.2 we provide a necessary and sufficient 
condition for the representability of substitution Delone multisets based on the work 
of Lagarias and Wang and legality which is a new concept we introduce.

An important property of primitive substitution tilings is that given any finite

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



patch of tiles from the tiling, this patch has a well-defined frequency of occurrence. 
We give a proof of this fact in Sec. 3.3, partly for convenience of the reader and partly 
because it does not appear in the literature in quite the form we want. Of importance 
to us, though, is that we can use this result to prove a corresponding property in 
the setting of multisets : the existence of uniform cluster frequencies for repetitive 
primitive substitution Delone multisets with finite local complexity (see Cor. 3.24). 
We have mentioned that a substitution Delone multiset cannot always represent for 
a tiling with tiles coming from the associated iterated function system. What goes 
wrong is that when we use the tiles and place them on the points of the substitution 
Delone multiset, they may actually overlap. However, this overlapping happens in 
a nice way for the case of repetitive primitive substitution Delone multiset -  it is 
almost everywhere q to 1 for some positive integer q. In Sec. 3.4 we prove this and 
show that we can use it to create a new tiling for a modified substitution, and it is 
to this new tiling substitution system that we apply the theorem of uniform patch 
frequencies to finally get the existence of the desired uniform cluster frequencies of 
the substitution Delone multiset.

3.1 Substitutions on point sets and tilings
We say that a linear map Q : Rd —> Rd is expansive if there is a c > 1 with

d(Qx , Qy) >c-d(x , y)  (3.1)

for all x, y € Rd and some metric d on Rd compatible with the standard topology. 
This is equivalent to saying that all the eigenvalues of Q lie outside the closed unit 
disk in C.

Definition 3.1 A =  (Ai)i<m is called a substitution Delone multiset if A is a Delone 
multiset and there exist an expansive map Q : Rd —> Rd and finite sets X>y for 
i, j  < m  such that

m
A* =  lJ(Q A j +  T>ij), i < m, (3.2)

j-1
where the unions on the right-hand side are disjoint.

Example 3.2 The Delone multiset A =  (Aa, Ab) from the periodic-doubling se­
quence (1) is a substitution Delone multiset. In fact, A satisfies the following equa­
tions

A0 =  4A„U(4A0 +  2)U(4A0 +  3)U4AbU(4Afc +  2)
Ab =  (4Aa +  1) U (4A;, +  1) U (4At +  3).

15
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To the substitution Delone multiset A we associate its m  x m  substitution matrix 
S, with Sij := tJ(Dy). We say that A is primitive if the corresponding substitution 
matrix S  is primitive, i.e. there is an I > 0 for which S l has no zero entries.

Let Y  be a nonempty set in Md. For m G Z+, an m x m matrix function system 
(MFS) on Y  is an m  x m  matrix $  =  ($y), where each is a finite set (possibly 
empty) of mappings Y  to Y .

Any MFS on Y  induces a mapping on Delone multiset A =  (A,)j<m, where 
Aj C Y , i < m, by

‘  A: ' U j < m  U / e $ 1:)- / ( A j )

A m .  U j< to U / 6 $ mj / ( A / )  .

which we call the substitution determined by <h. We often write ^ ( F j )  for U / e $ 4 / ( T j ) ,  

$ ( r j) for (r a n d  $(r) for ( U , < m $ij(Tj))i<m for any subset T = (Tj)j<m C 
A. In particular, we often write (x) for $y({x}), where x  G Aj . We associate 
to 4> its substitution matrix £'($), with (S,(<h))y =  ][($#).

Let $ , f  b e m x m  MFS’s on Y.  Then we can compose them :

^  o $  =  ((tf o <%•), (3.4)

where (V .  =  l £ , » .  o and .  * *  := { < « ° ( f ^

Evidently, S{V o $) < S(tf) S($).
For any given substitution Delone multiset A =  (A<)j<m , we can always find 

the corresponding MFS $  such that <F(A) =  A. Indeed, by Def. 3.1 we can take 
%  =  { /  : /  : x  i-f Qx +  a, a G V tj}. So $(Aj) = (QAj +  )<<m, j  < m.

T heorem  3.3 [20, Theorem 2.3] I f  A  is a primitive substitution Delone multiset
with expansive map Q, then the Perron-Frobenius (PF) eigenvalue of its substitution
matrix S  equals |det(Q)|.

D efinition 3.4 Let A  = {Ti,. . .  ,Tm} be a finite set of tiles in ]Rd such that T) =  
(Ai,i)-, we will call them prototiles. Denote by VA the set of patches made of tiles 
each of which is a translate of one of Tfs.  We say that u> : A  —► Va  is a tile- 
substitution (or simply substitution) with expansive map Q if there exist finite sets 
Dij c for i, j  < m, such that

w(Xj') — {u + Ti : u G Dij, i — 1 ,...  , m} for j  < m, (3.5)

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



with m
Q(Aj ) = \J (V ij + Ai).

i= 1
Here all sets in the right-hand side must have disjoint interiors; it is possible for 
some of the to be empty.

The substitution (3.5) is extended to all translates of prototiles by u>(x +  Tf) = 
Qx + u(Tj),  and to patches and tilings by w(P) =  U{cj(T) : T  G P}.  The substitu­
tion oj can be iterated, producing larger and larger patches u k(Tj). The substitution 
u) is called primitive if the substitution matrix S, with Sij := fl(2?y)» primitive.

Definition 3.5 A patch will be called legal if it is a translate of a subpatch of wk{Tj) 
for some i < m  and k > 1.

A tiling T  with FLC is said to be self-affine with the prototile set A , expansive 
map Q and primitive substitution u), if every T-patch is legal. The set of self-affine 
tilings associated with (A,ui) will be denoted by X ^ u. A tiling T  is called a fixed 
point of the substitution u> if u(T)  = T.  It turns out that a tiling which is a fixed 
point need not be repetitive, even though the substitution is primitive, see [44]. It 
is well-known (and easy to see) that one can always find a periodic point for u  in the 
space i.e. there is T  G X ^  such that u>N(T) — T  for some A  >  1. In this 
case we can always use ujn  in place of ui to obtain a tiling which is a fixed point.

Proposition 3.6 L e tT  be a fixed point of a primitive substitution u> with expansive 
map Q and prototiles A . Then T  is repetitive if and only if every T-patch is legal, 
i.e. T  G X^w-

Proof. Suppose T  is repetitive. Then for any patch P  of T  there exists R  > 0 
such that every open ball Bpfy)  contains a patch translationally equivalent to P.  
Since each tile of T  has non-empty interior and u> is with expansive map Q, there 
is M  > 1 such that for any i < m, QM(Ai) contains B r {v) for some y G Md. This 
means that uiM{Ti) contains a patch translationally equivalent to P  for any i < m. 
Thus every T-patch is legal.

Conversely, suppose every T-patch is legal. Then for every T-patch P  there 
is K  > 1 such that for any i < m, P  is a translate of a subpatch of u K(Ti) by 
the primitivity of oj. Choose r  > max{diam(T) : i < m}. Every open ball
Br(y) contains at least one tile. So every open ball B\\Q\\Kr { y ) ,  where ||Q|| is the 
operator norm, contains at least one supertile uik (T), which contains a translate of 
P. Therefore T  is repetitive. □

17
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3.2 Substitution Delone multisets to tilings
For each primitive substitution Delone multiset (3.1) one can set up an adjoint 
system of equations

m
QAj = ( J (Vij + Ai), j  < m. (3.6)

%— 1

From Hutchinson’s Theory (or rather, its generalization to the “graph-directed” 
setting), it follows that (3.6) always has a unique solution for which (Aj),<m is a 
family of non-empty compact sets of Rd (see for example [3], Prop. 1.3). It is proved 
in [20, Theorem 2.4 and Theorem 5.5] that if A is a primitive substitution Delone 
multiset, then all the sets Aj from (3.6) have non-empty interiors and, moreover, 
each Ai is the closure of its interior.

Definition 3.7 A Delone multiset A =  (Aj)j<m is called representable (by tiles) for 
a tiling if there exists a set of prototiles A  = {Tj : i < m} so that

A +  A  := {x  +  Tj : x E Aj, i  <  m }  is a tiling of Rd, (3.7)

that is, R d = where Tj =  (Aj, i) for i < m, and the sets in
this union have disjoint interiors. In the case that A is a primitive substitution
Delone multiset we will understand the term representable to mean relative to the 
tiles Tj =  (Aj, i), for i < m, arising from the solution to the adjoint system (3.6).

Definition 3.8 A cluster P will be called legal if it is a translate of a subcluster of 
$ k(xj) for some Xj E Aj, j  < m  and k E Z+.

Not every Delone multiset is representable (see Ex.3.22 below). In [20] Lagarias 
and Wang give a condition, namely existence of a fundamental cycle of period 1, 
which ensures representability. Legality generalizes this and in fact our Theorem 
3.9 is based on [20, Theorem 7.1].

In the same paper [20, Lemma 3.2] it is shown that if A is a substitution Delone 
multiset, then there is a finite multiset (cluster) P  c A for which <f>n-1(P) c <f>n(P) 
for n > 1 and A =  limra_̂ 00 4>n(P). We call such a multiset P  a generating multiset.

Theorem 3.9 Let A  be a primitive substitution Delone multiset such that every 
A-cluster is legal. Then A is representable.

18
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Proof. Let $  be the MFS satisfying $(A) =  A and suppose A  = {Ti , . . .  ,Tm} arises 
from the solution to the adjoint system (3.6). So for any M e  Z+,

m

QM(Aj) =  U ((Z > %  +  Ai), j  < m, (3.8)
t=1

where Ai — supp(Tj) and

(» * %  =  U  +<2P h h  +  +

On the other hand, for any M  G Z+ and i < m ,

($ M)ij(xj) =  QMXj +  (V M)ij, for any Zj e Aj, j  <  m. (3.9)

So putting (3.8) and (3.9) together, we get
m

e M(*j + .4,) = U N ' S  + (®*%+ * >
1= 1

171

Z=1
m

-  u u (y +  Aj), for any Xj e  Aj, j  < m.  (3.10)
i= l  y e ffc ^ jy fo )

From [20, Theorem 2.4 and Theorem 5.5], /i(Aj) > 0 and Aj  is the closure of its 
interior for any j  < m. Let fx := (n{A{),. . . ,  /i{Am)) > 0. Taking measures in 
(3.10),

| det Q |M/t <  < fyS($)M, (3.11)

where 5 ($ ) is the substitution matrix of <f>. From 3.3, we know that | det Q\ — PF 
eigenvalue of 5($). So we can derive

| det Q\Mjx =

from (3.11), see [22, Lemma 1]. Thus for any Xj 6 A j , j  < m,

jx{QM{xj +  Aj)) =  M^U((*M)«(*J) + ^ ) )
m

1 = 1

19
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and this shows that the unions on the right-hand side of (3.10) are measure-wise 
disjoint. So we get a (tile)-substitution uj : .4 —> Va  associated with A  and A.

Next, let P be a generating multiset. Prom the assumption that every cluster 
in A is legal, there is a; G A* for some I < m  such that 2 +  P  =  (2 +  Pj)j<m C 
(($ K)ji(ai))j<m for some K  € Z+ and some 2 € Rd. So

{x  +  Tj : x  G ($ K)ji(ai),j < m }  D {x + Tj : x  G (z +  P j ) , j  < m}.  (3.13)

By (3.12), all the tiles in the left-hand side of (3.13) are measure-wise disjoint. So 
then are the tiles in the right-hand side of (3.13). This implies that all the tiles in 
the set {pj +  Tj : pj G P j , j  < m }  are measure-wise disjoint. Thus for any n G Z+, 
all the super tiles in the set {usn(pj+Tj)  : pj G P j , j  < m}  are measure-wise disjoint. 
Noting that

ojn(pj +  Tj) = {x + Tt : x  € ($n)ij(j>j), i < m,} for each pj G Pj, j  < m,  

we get that

$"(P) +  A  := {x  +  Ti : x  G ( $ n ) i j ( P j ) , P j  G Pj, i , j  < m }

also consists of tiles which are measure-wise disjoint. Since <3>n_1(P) C d>n(P) for 
n >  1 and A =  lim ^oo d>"(P), A +  A  =  {xj  +  Tj  : Xj G Aj, j  <  ni}  consists of tiles 
which are measure-wise disjoint. Thus distinct tiles in A +  *4 have disjoint interiors.

Now we need prove that A +  A  is a tiling. Let us define supp(A +  A)  
U{xj +  Aj : Xj G Aj, j  < m }. Then

Q(supp(A -I- A)) =  U{Qxj  +  QAj  : Xj G Ajyj  < m }

— U{Qxj  + T>ij +  Ai : Xj g Aj, i ,  j  <  m }

=  U{§i j (xj )  +  Ai : Xj G Aj, i, j  <  m }

— U{xi  +  Ai : Xi G Au i <  m }

=  supp(A +  .4). (3.14)

Suppose Rd\supp(A + A ) A $ -  Then there is 2 G Rd\supp(A +  A)  and a ball B r(z) 
with radius r  centered at 2 such that B r(z) c  Rd\supp(A +  A), since supp(A +  A) 
is a closed set. So for any N  G Z+,

QN(Br(z)) n supp(A +  A)  =  QN{Br(z)) n QiV(supp(A +  A)) by (3.14)
=  QN(Br(z) D supp(A +  A)) =  0.

But this is a contradiction, since A is Delone. Therefore A +  A  is a tiling and so A 
is representable. □
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Theorem 3.10 Let A  be a repetitive primitive substitution Delone multiset. Then 
every A-cluster is legal if  and only if  A is representable.

Proof. We only need to prove the sufficiency direction. Suppose A is representable. 
Then we have a tiling A +  A  =  {xj +  T) : Xi e  A*, i <  m} with a unique solution 
A  =  {Ti,. . . ,  Tm} of the adjoint system of equations such that lo{A +  .4) =  A +  A, 
where u  : A  —► Vj, is a (tile)-substitution. So A +  A  is a fixed point of a primitive 
substitution w with expansive map Q. By Prop. 3.6, every (A +  ^4)-patch is legal, 
since A +  A  is repetitive. Recall that for any M e  Z+,

uiM(xj +  Tj) = {x + Ti : x e  ($M)ij(xj),i < m } for any Xj e  Aj, j  < m,

where $  is the MFS satisfying $(A) =  A. So the legality in the tiling A +  A  shows 
the legality in A. Therefore every A-cluster is legal. □

R em ark  3.11 Note that, in order to check that every A-cluster is legal, we only 
need to see if some cluster that contains a finite generating multiset for A is legal.

Example 3.12 (A substitution Delone multiset in R2  with gasket tiles.)
Consider the substitution on R2 with the following MFS <3>;

f  i h  , / 4} { / 1} { / 1} 0  ^

{ / 2} { / 2, / 3 } 0 { / 2 }

{ / s } 0 { / 2 , / 3 } { / 3 }

^ 0 ( M { / 4 } { / l , / 4 >  )

where fi(x) = 2x, / 2(x) =  2x + ( l ,0), f 3(x) = 2x + (0, 1), and / 4(z) =  2z + ( - l ,  —1).
The Delone multiset A =  (Ai, A2, A3, A4) generated from ({(0,0), (1,1)}, {(0, — 1)}, 

{(—1,0)}, 0) is fixed under <f>. We observe that [J -<4 A* =  Z2. The generating multi­
set ({(0,0), (1,1)}, {(0, —1)}, {(—1,0)}, 0) is legal, indicating representability. The 
solution from the adjoint system consists of four copies of the gasket tile(T) [47]. 
Thus {x + T  : £ € A;, i < 4} is a tiling of R2 by gaskets pinned down on the stan­
dard lattice Z2, see Fig. 3.1. Note that the tiles are triangular gaskets in 4 colours, 
indicated by 3 shades of grey and black. The largest solid triangle of one colour (e.g. 
black) are caused by the meshing of two gaskets of the same colour.

3.3 UPF on substitutions
In this section we show that if T  is a fixed point of a primitive substitution, then T  
has uniform patch frequencies (UPF), the analog of UCF, see Def. 2.6. This is a bit
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Figure 3.1: Gasket Tiling

more general than [43, Theorem 3.1] where it was also assumed that T  is repetitive. 
We present complete details here, in part because the proof of UPF was omitted in 
[43], but we should note that in a similar but slightly different setting the existence 
of UPF was established in [14, Prop. 1] (see also [14, p. 182] for references to earlier 
results of this kind).

Throughout this section, we fix T  — a tiling satisfying u (T )  =  T  for a primitive 
tile-substitution o j .

Lem m a 3.13 (see, e.g., [34, Prop. 1.1]) Every prototile in a primitive tile-substitution 
has the boundary of zero Lebesgue measure.

Lem m a 3.14 Let T  be a fixed point of a substitution with expansive map Q. Then 
for any tile T  G T  with T  =  (A , i) for some i < m, {QnA }n>i is a van Hove 
sequence.

Proof. This is pretty straightforward from Lemma 3.13. □

The following is proved in [43]. Note that it does not require repetitivity. Below 
PF is an abbreviation for “Perron-Frobenius.”

C orollary  3.15 Let to be a primitive tile-substitution with prototiles 7) =  (Ai,i), 
fo r i  < m, and expansive map Q. Then the PF eigenvalue of the substitution matrix 
S  is | det(Q)| and the vector (Vol(Ai))i<m is a left PF eigenvector. Thus,

I det(<2 ) r n('S'T%- =  riV ol(^),

where (ri)f<m is the right PF eigenvector of S  such that Y h=i uVol(^4j) =  1.
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N otation . For a patch P  and a bounded set F  C Rd denote

Lp (F) =  f{<7 € Rd : g + P  d T ,  (g + supp (P)) C F}

and
iVp(F) =  |j{g e  Rd : g + P  C T ,  (g + supp (P)) n  F  ^  0}.

Let ymin and Kn„Y be the minimal and maximal volumes of T-tiles respectively, 
let IIQH be the operator norm, and let fmax be the maximal diameter of T-tiles. 
Inflated  T ilings. Given a tiling T  and an expansive map Q' on Rd we let

Q 'T = { { Q \su W {T)),l{T))-. T  G T}.

In other words, we blow up the tiles and retain their labels. Usually we will take 
Q' =  Qk. If T  is a fixed point of u, then the tilings QkT, k = 1 ,2 ,... , form an 
hierarchical family of order k super-tilings in the sense that every tile of a higher- 
order tiling can be decomposed into tiles of a lower order tiling.

Lem m a 3.16 Let T  be a fixed point of a primitive substitution. Let F  C Rd be an 
arbitrary bounded set and let {T„}n>i be a van Hove sequence in Rd. Then for any 
T-patch P  and any h G Rd we have

(i) Lp(F) < c{Vo\(F), where c\ depends only on T;
(ii) I f  P  is a legal patch, then there are c<i, no > 0 (depending on P  and {Tn}n>i, 

but not on h) so that Lp(h +  Fn) > C2Vol(Fn), for all n > no;
(iii) I f  P  is a legalpatch, then \imn^ 00Np(d{h + Fn))jLp(h + Fn) = 0 uniformly 

in h.

Proof, (i) Select any tile from the patch P. Then distinct T-patches equivalent to 
P  will have distinct selected tiles. Therefore,

Vol(F) > L P(F)Vmin,

so we can take c\ — UTil-
(ii) If P  is a legal patch, then its translate occurs in some patch u>k(Ti). Let 

I  6 N be such that oje(Tj) contains tiles of all types, for all j  < m. (This exists by 
the primitivity of the substitution.) Then every patch u k+e(T), T  € T , contains 
a translate of P. We consider the super-tiling Qk+tT.  It follows that for any set 
F, Lp{F) is at least the number of Qk+eT - tiles whose supports are contained in F. 
Therefore, for r =  ||Q||fc+< • tmax,

LP(h + Fn)-\det(Q)\k+eVmax 
> Vol(h + F~r) -  Vol(T-r) >  Vol(Fn) -  Vol((dFn)+r).
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This implies the desired statement in view of (2.1).
(iii) Let t  =  diam(P). Then

NP(h + dFn) < LP(h + dFn+t) <  ClVol(h + 9Fn+t) 
Lp(h  +  Fn) Lp(h  +  Fn) cfVofih +  Fn)

0 , from (i) and (ii).

□

P ro p o sitio n  3.17 Let T  be a fixed point of a primitive substitution with expansive 
map Q. Let P  be a T-patch. Then

exists uniformly in A, a support of a T-tile.

Proof. If P  is non-legal, then Lp(QnA) = 0 for every n  and every tile support A, so
cp =  0 .

Assume now P  is a legal patch. Let { 7 \,. . .  , Tm} be representatives of all T-tile 
types, having supports A u i < m .  Fix e > 0. By Lemma 3.16(iii) and Lemma 3.14, 
we can find fco 6 N so that for any k > ko and any tile support A on T,

Choose a tile T  G T. Then T  = (A , j ) for some j  < m , where A =  supp(T). 
Consider the subdivision of QnA  = supp(QnT), n > k > k0, into the tiles of QkT.  
By the definition of the substitution matrix S,  there are (S n~ k)ij  tiles equivalent to 
QkTi in the subdivision of QnT. Therefore, in view of (3.15),

LP(QkAi)(Sn- k)ij < LP{QnA) < (1 +  e) £  LP(QkA i)(Sn- % .  (3.16)

Lr>(QnA i
Cp

NP(dQkA) < eLP(QkA ). (3.15)

m m

i= l

By Cor. 3.15,

r,i |det(<5 )| k, for any I < m.

Thus, dividing (3.16) by Vol(Q"A) and letting n —» oo we obtain

lim inf
71—►OO
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By Lemma 3.16(i), the right-hand side does not exceed c \ £ riVol(Aj) =  c1e. 
Since e > 0 is arbitrary, this proves the existence of the limit. Moreover,

7Ti m
£  det(Q )|-fc < c p < (  1 +  e) £  LP(QfeAi)ri | det(Q )|-fc
i=  1 i=l

and it does not depend on the choice of the tile T  on T .  Since Lp(QkA{) > 0 for k 
sufficiently large, we have cp > 0. □

T heorem  3.18 Let T  be a fixed point of a primitive substitution. For any T-patch 
P  and for any van Hove sequence {Tn}n>i> there exists

freq (P ,T ):=  y ; m M ^ y = c p ,  (3.17)

uniformly in h G Rd.

Proof. Consider the decomposition of the space Rd into the tiles of QkT  for k 
large. Then Lp(h + Fn) is roughly the sum of Lp(QkA ) where QkA  ranges over 
the supports of those T-tiles which intersect h + Fn. For large n the “boundary 
effects” from dFn become small by the definition of van Hove sequence. Note also 
that the “boundary effects” from dQkA  become small. This is the idea; now let us 
give the details.

Let Gk,n =  {A : QkA  D (h +  Fn) ^  0, A  = supp(T) for T € T} and Hk,n -  {A : 
QkA  C (h + Fn), A  =  supp(T) for T  € T} for k, n >  1. We have

£  LP(QkA) < LP(h + Fn) <  £  [LP(QkA) +  NP(d(QkA))]. (3.18)
A€Hk,n

Fix e > 0. Using Prop. 3.17 and Lemma 3.16(iii) choose k so that for any tile support 
A,

\LP(QkA)/Vol(QkA) - c P\ < e  and NP{d(QkA)) < eLP(QkA). (3.19) 

Combining (3.18) and (3.19) we obtain

0cP -  e) E  Vol{QkA ) < L p ( h  + Fn) < ( l  + e){cP + e) £  Vol(Qfê ).
n A£Gk,n

Let tk := max{diam(Qfcj4) : A  = supp(T),T G T}. Observe that

£  Vol(QfcA) >  Vol(F~tk) and £  Vol(QfcA) < Vol(F+t'=).
A€Hh>n Â Gk,n
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Since k is fixed, by the van Hove property we have for n sufficiently large: 

Vol(F~tk) > (1 -  e)Vol(Fn) and Vol(Fn+t*) <  (1 +  e)Vol(Fn).

Combining everything, we obtain for n sufficiently large:

(cp -  e)(l -  e) < y ol^  ^  ^  (cp +  e)(! +  e)2-

Since e was arbitrary, this implies (3.17) as desired. □

3.4 M ultitilings
Let A =  (Aj)i<m be a primitive substitution Delone multiset. We have seen in the 
previous section that there exists a unique solution A  = {T),. . . ,  Tm} of the adjoint 
system of equations to A consisting of a set of compact subsets Ai = supp(Tj) of Rd. 
In this section we define a multitiling and show that a repetitive primitive substitu­
tion Delone multiset can be representable for a multitiling. Erom the representability 
for a multitiling we are able to prove that a repetitive primitive substitution Delone 
multiset has UCF.

D efinition 3.19 A q-multitiling of Rd is a set T  of tiles for which every point of 
Rd is covered by at least q tiles of T  and the interior of each tile meets with the 
interiors of q tiles of T  including itself.

We say that a set II of tiles is a packing of Rd if the tiles of II have mutually disjoint 
interiors.

D efinition 3.20 A Delone multiset A is representable for a q-multitiling if A + A  = 
{x  +  Ti : x  e  Ai: i < m} is a g-multitiling for some prototile set A  — {Ti,. . . ,  Tm}.

We say that A is irreducible under $  if $(A) =  A and it cannot be partitioned as 
the disjoint union of two nonempty multiset A 1 and A2 in Rd for which $(A i) =  
A4, i = 1,2.

Theorem 3.21 I f  A  is a repetitive primitive substitution Delone multiset, then A 
is representable for q-multitiling with some q G Z+ .

Proof. Let $  be the MFS such that <h(A) =  A. By [20, Th 2.1], we can uniquely 
partition A into a finite number of irreducible discrete multisets each of which is fixed
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by <fr. Let A =  A1 U • • ■ U Afc, where A£ is irreducible under $  for 1 < s < k. By [20, 
Th 3.3], each As contains exactly one directed generating cycle Y  =  (xs, i , . . . ,  xSiPs) 
with multiplicity one, that is to say, x Stt+i € ${xStt) for 1 < f < ps, xSti £ $(aja>pJ ,  
and lim^^oo $ n(Y) =  A®, where Y  =  {xS)i , . . . ,  xs,Ps}. Note that xSjt £ <LPs(xSit), for 
all 1 < s < k and 1 < t < ps. We replace $  by <LP1'"P'C (Q by Qpl"'Pk, V  by T>P l 'Pk, 
and uj by uipl'"Vk). This replacement of $  remains throughout the proof. Now we 
define

Sia,t bm <hre(xs t), for 1 < s < k and 1 < t < ps.
71—> 0 0  ’

We can write £2fljt = ((fig,t)i)i<m, with C A *. By the definition of substitution
Delone multiset, no element in A can have two different preimages. So S \ t, 1 < 
s < k, 1 < t  < ps, are all disjoint as multisets of which colours are also a factor for 
distinguishing points in Rd and

a  =  u 5=1 u ^ 1 a , t .

Let

.=  {Xi T  Ti . Xi £  ^ ^  771 )■.

Then A +  A  = U*=1 n«,t> where all the sets in the union on the right-hand side
are distinct from each other.

Firstly, we claim that each n Sit is a packing of Rd, for 1 < s < k and 1 < t < ps. 
In fact, the unique solution {A i , . . . ,  A m} of the adjoint system of equations of A 
satisfies

m

Q(a j) = U (P i j+  Ai^  i  -  m ’
7=1

where A, =  supp(T,), i < m .  So for Xj £ Aj, M  G Z+, j  < m,
m

QM(xj +  AJ) =  [ j { Q ^ Xj + {VM)ii + Ai)
i—\
m

=  < 3 - 2 0 >

7=1

By the same argument as in Theorem 3.9, the unions on the right side of (3.20) are 
measure-wise disjoint. Taking the limit as M  —> 00 in (3.20),

m
lim QM{xj +  Aj) =  lim ( |J ($ j!f{xj) A Ai)) (3.21)

M —>oo M —»oo J
7=1
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and the unions on the right side of (3.21) are measure-wise disjoint. Since

=  lim $ n(xs,t) =  lim (($n)ij(xs,t))i<m
n—► oo n—> 0 0

with some j  for which xs,t £ Aj, IIS)t is a packing of Rd.
Secondly, each IIs>t is invariant under uj, for 1 <  s < k and 1 < t <  ps. Recall 

that

u>(Tj)  =  {u +  Ti  : u E T>ij, i <  m}

with
m

Q ( A j )  =  [ J ( V i j  +  A i )  for j  < m .
i= 1

So

w(n,,t) =  d" T j ) : Xj  E ^ m}
— ~F d~ Ti  . Xj  E ^  ?7l, 2 ^  777.)"

=  { $ y  (X j )  + T i \  Xj  E (Q,Sit ) j , j  < m , i < m }

=  {Xi  + Ti : Xi E (Os,t)i, i <  m } since $ ( f i s,t) = f l s,t

=  n S)t. (3.22)

It implies additionally that

cu(A +  .4.) =  A +  A. (3.23)

Let

supp(ns,t) =  +  Ai : Xi E (fis>t)i, Ai  =  supp(Tj), 2 <  m }.

Observe also here that

QAr(supp(nSit)) =  supp(wiV(n S)t)) =  supp(ns>t) for any N  E Z+. (3.24)

Finally, we now prove that A +  A  is a g-multitiling for some q > 1. Note first 
that since A is a Delone, A +  A  covers Rd by the same argument as in Theorem 
3.9. Next we prove that every point of Rd is covered by at least q tiles of T  and the 
interior of each tile in T  meets with the interiors of q tiles of T  including itself for 
some q E Z+. For

k ps to

X , y e  Rd\ ( |J  +  d A i ) ) )
s=lt=l i=l 
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we will show that x and y intersect with the same number of the interiors of tiles in 
A +  A. Suppose that x  is covered by q tiles and y is by Z tiles. Then we can find 
the covering tiles R 1, . . . ,  R q of x  and S 1, . . . ,  S l of y in A +  A. For each tile T  in 
A +  A  there exists a unique II G {IIS)t : 1 < s < k , l  < t < ps} which contains the 
tile T, since all n ^ t’s are disjoint. So we can find {II(a;, 1 ), . . . ,  II(x, g)} for which 
R  G n o ,  i) G {nSit : 1 < s <  A;, I < t < ps} , I < i < q. Since x 6  n L i ( suPP(-^i))°> 
there is an open ball Be(x) around x with radius £ > 0 such that

9 9

B e0 )  C P|(supp(iT))° C p |su p p (n 0 0 ))-
i = 1 i = 1

So
9

Qn(Be 0 )) C P | supp(n(a;, i)) for any n G Z+.
i—1

Since A is repetitive, E  := {T  G A + A  : supp(T) c  QM(Be(x))} with some M  G Z+ 
contains { t+ S 1, . . .  , t+ S 1} of which interiors contain t+ y  for some t  G Rd. However 
t  + y G QM(Be0 ) )  should be covered by the interiors of q tiles, since Be(x) was 
covered by q tiles, by (3.24). Thus q = I. Then for

k pe m

s=l t= 1 i = 1

there are at least q tiles which contain x. Therefore A +  A  is a g-multitiling for some
q G Z+.

Exam ple 3.22 (A substitution Delone multiset representable for a 2-multitiling.) 
Consider the MFS $

q  _  f  {5^ 15* +  2 ,5x +  4} {5x +  1,5x + 3} \
\  {5x +  1, 5x +  3} {5x, 5x +  2, 5x +  4} J

which generates the bi-infinite sequence shown below with the a and b point sets 
starting from the generating set ({0}, {—\ , —1}). This leads to the Delone multiset 
A =  (Att, At) which is fixed under <3>.

• •• -3 -2 - |  -1 -1 0 I  1 j  2 |  3 j  4
•• • b b a a b b a a b b a a b b a

Note that the generating set ({0}, {—| ,  —1}) is not legal, even though A is
periodic and so repetitive. Thus A is not representable for a tiling by tiles arising
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from the solution to the adjoint system. In fact the solution to the adjoint system 
is A  — {[0,1], [0, 1]} so that A +  A  double tiles the line.

P ro p o sitio n  3.23 I f  A +  A  is a q-multitiling which is repetitive and a fixed point
of a primitive substitution u, then A +  A  can be associated with a tiling T '  which is
repetitive and a fixed point of a primitive substitution to'.

Proof. Now we define new tiles from the overlaps in A +  A  as follows;
Let T 1, . . . ,  T q be overlapping tiles in A +  A  for which n?=i(^0° 7̂  where A 1 =
supp(Ti) for 1 < I < q. Define B  := fjL i(^)°-  Notice

g g g

b ° c ( n w r H f > zr = n ^ ) ° c  B°-
i=i i=i i=i

Thus B  = B° . Note here that

/ i ( a ( r |A ,)) =  0. (3.25)
i=i

We define the colour of B  depending on the cluster of all the points of which 
corresponding tile interiors contribute to form B. Then we can define new tile 
S  (B , the colour of B) in Rd.

We claim that these new tiles form a tiling of Rd, which means that all the new 
tiles have mutually disjoint interiors and cover Rd. In fact, for any tile T  with A = 
supp(T) in A +  A,  let { B 1, . . . ,  B e} be the set of supports of all new tiles which are 
contained in A. This set is at most finite by FLC. Then A° C B 1 U- • -UJ5e. Otherwise 
there is support of other new tile which is contained in A, since A ° \ ( 5 1 U • • • U B e) 
is an open set, but this contradicts the choice of { 5 1, . . . ,  B e}. Thus

A = A° = B 1U -- -U B e. (3.26)

Since A +  A  covers Rd, all the new tiles cover Rd also. The disjointness of the new 
tile interiors comes naturally from the definition of the new tiles. So we have a new 
tiling and denote it by T .

Since A has FLC, there are only finite new prototiles for T'. Let {Si, . . . ,  S'n} 
be the set of all the new prototiles. From B° =  n^=1(A;)°,

(Q(B))° =  Q(B°) =  f ]  Q((A')°) =  ( f |  Q (A ')r,
1= 1 1= 1
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since Q is a homeomorphism. Each Q(Al) is subdivided by the supports of tiles in 
A +  A  So f)1=i Q{Al) can be subdivided by new tile supports in T7, in other words,

q
P |Q (A () =  E 1 U---U E ' / ,
1=1

where E l =  ^  ® an{  ̂ (El)°’s are disjoint for 1 < i < J. Claim that

(E 1 U • • • U E J)° = ( W f  U • • • U {EJ)°.

It is easy to see “D” containment. Suppose x E (E 1 U • • • U E J)°, then for any open 
neighbourhood V  around x

v  n (E1 u • • • u e j )° y  0.

Since ji{dlE1 U • • • U dE J ) =  0 from (3.25), V  D ((E1)0 U • • • U (E J )°) ^  0. So there is 
a converging sequence {xn}£Li t°  x  such that C (El)° for some 1 <  i < J.
This shows that x  G (E 1)0 U • • • U (E J)°.

Note that each (E*)° is the support of some new tile, 1 < i < J. Thus we can
get

Q(B) = (Q(E))° — E 1 U • • • U B J,

where B i = (E*)° =  (nJ=1(A*-())°, 1 < i < J. Therefore Q(B) can be subdivided by 
the supports of new tiles in T' .

We can define a new substitution u/ with the new prototiles and the subdividing 
shown above. Since w(A +  A) = A +  A,

u'(T')  =  T .

Since A +  A  is repetitive, there is M  € Z+ such that uj,m(S) contains all types of 
new tiles for any S  E T ' .  Thus the substitution u/ is primitive. Therefore the tiling 
T  which A +  A  is associated with is repetitive and a fixed point of a primitive 
substitution a/.

C orollary  3.24 I f  A  is a repetitive primitive substitution Delone multiset with 
FLC, then A has UCF.

PROOF. From Prop. 3.21 and 3.23, we know that there is a fixed point T '  of a 
primitive substitution which A +  A  is associated with. Note that by Theorem 3.18, 
T '  has uniform patch frequency. We need to prove that A has UCF. Let P  =  (Pi)i<m
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be a cluster of A and let x  € Md be any point so that i + P c A .  Then there exists 
a unique patch R  in T '  for which supp(i?) =  supp((2; +  P) +  .4.) from (3.26), where 
(x + P) +  A  =  {(x  +  Pi) +  Ti : i < m}. Note that T '  has FLC, since A has 
FLC. So there are only finite types of patches in T7, say {i?i, . . . ,  Rr}, such that 
supp(/?j) =  supp((2; +  P) +  A)  for some translate patch x  +  P C A of the patch P. 
Thus

T

freq(P, A) =  ^ P f r e q ^ T ') .
i— 1

Therefore A has UCF.
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Chapter 4 

Dynamical Systems and 
Diffraction

4.1 Dynamical systems
Basically a dynamical system is a space X  together with a group of transformations 
{Tx}x€G : X  —► X  acting on it. The most familiar example is that of the phase 
space of some physical system with the action of a single parameter, time, acting on 
it.

In our study, the system consists of a collection of related point sets (so each 
point of X  represents a point set in Rd) and G is Rd which acts on this space by 
translation, so that if A € X  then Tx{A) =  x + A. It is implicit that in speaking 
of a dynamical system one is interested in orbits of the motion, so in our case this 
means subsets of X  of the form { i +  A : i G  Rd}.

If X  is a compact metric space and Tx is a continuous map for all x G Rd, we 
call (X, Rrf) a topological dynamical system. If X  is endowed with a cr-algebra B  of 
subsets of X  and a probability measure // on B, and each Tx is a //-invariant map, we 
call (X, Rd) a measure theoretical dynamical system. We will find that our systems 
have both these types of structures.

Here we start with a collection of all Delone multisets in Rd and define a metric 
on it so that we get a topological space. Then the collection is a complete space 
with respect to this metric (see [41]). For each Delone multiset A of Rd we define 
its dynamical hull X \  as a closure of Rd-orbit of A. It is known that if A has finite 
local complexity (FLC) then the metric space X a is compact. So from the action 
of Rd on X a by translates we get a topological dynamical system (Xa, Md).

In SubSec. 4.1.1, we define cylinder sets, which are sets of elements in X a  de-
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termined by clusters in A along with translations from Borel sets in Rd. We show 
that X \  can be decomposed into a finite number of cylinder sets with any given 
size clusters and Borel sets. We will make use of this property especially in proving 
Theorem 5.1 when we approximate continuous functions in X \  by step functions.

When a topological dynamical system has a unique invariant probability mea­
sure, we say that the system is uniquely ergodic. Ergodic measures play an impor­
tant role in the theory of dynamical systems such as the Birkhoff ergodic theorem. 
Especially the existence of a unique ergodic measure of a system provides a good 
deal of information about the system as we will see in Chapter 5. We will show in 
SubSec. 4.1.2 that in our situation the corresponding equivalent geometrical prop­
erty of unique ergodicity is uniform cluster frequencies. As a consequence we get an 
equation between frequencies of clusters and measure of cylinders.

With any measure theoretical dynamical system one has a corresponding unitary 
representation of the group on L2(Xa,ju). The resulting spectral theory turns out 
to be fundamentally connected with the problem of diffraction. We introduce these 
concepts here in preparation for the next chapter which deals with the connection 
between dynamical and diffraction spectra.

4.1.1 Dynam ical system s w ith local topology

Let A be a Delone multiset and let X  be the collection of all Delone multisets. We 
introduce a metric on Delone multisets in a simple variation of the standard way: 
for Delone multisets Ai, A2 € X ,

q(Ai, A2) := min{p(Ai, A2), 2-1/2} , (4.1)

where

£(Ai, A2) =  inf{e > 0 : 3 x, y € Be(0),

Bi/e(0) fl (—x +  Ai) =  B\/e(0) n  (—y +  A2)} .

Let us indicate why this is a metric. Clearly, the only issue is the triangle 
inequality. Suppose that p(Ai,A2) < £>(A2, A3) <  e2; we want to show that
e(Ai, A3) <  £1 +  s2. We can assume that e1?£2 < otherwise the claim is
obvious. Then

( - xi  +  Ax) n  B x/ei(0) =  (—x2 +  A2) n  # i/£l(0) for some x i ,x2 € Bei(0),

(~x'2 +  A2) n  B 1/e2(0) = (-£3  +  A3) n  5 i /£2(0) for some x'2, x'3 e  BE2{0).
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It follows that

( - x i  -  4  +  Ai) n B 1/ei(-x '2) =  (~ x2 -  4  +  a 2) n 5 1/ei( - 4 )-

Since x'2) D B(i/£l)_£2(0), this implies

(—xi — Xg +  Ai) Pi (0) =  (—x2 — x2 +  A2) D 5 (1/£1)_£2(0). (4.2)

Similarly,

( - x 2 -  4  +  a 2 ) n 5 (i/ea)_ei(o) =  ( - x 2 -  4  +  a 3 ) n 5 {1/£2)_£1(o). (4.3)

A simple computation shows that A — e2 > £i4 2 and A -  £i >  when sq, e2 < 
2-1/2, so by (4.2) and (4.3),

(—x \  — 4  +  Aj) n 5 i/(ei+£2)(o) =  (—x2 — 4  4 - A3 ) n -Bi/(£1+e2)(o),

hence g{Ai, A3) < £1 +  e2.

We define A a := {—h + A  : h £ Rd} with the metric q. In spite of the special
role played by 0 in the definition of g, any other point of Md may be used as a
reference point, leading to an equivalent metric and more importantly the same 
topology on Av- The following lemma is standard.

Theorem  4.1 ([36], [41]) I f  a Delone multiset A has FLC, then the metric space 
X \  is compact.

The group Rd acts on X \  by translations which are obviously homeomorphisms, 
and we get a topological dynamical system (A\.,Kd). The dynamical system is 
minimal if the orbit of every element of X a is dense in Xa-

Theorem  4.2 ([13]) Let A  is a Delone multiset with FLC. The minimality of dy­
namical system (Xa, Rd) is equivalent to the repetitivity of A.

D efinition 4.3 Let P  be a non-empty cluster of a Delone multiset A  or some trans­
late of A, and let V  C Rd be a Borel set. Define the cylinder set X p^ C Xa by

X p,v  {A/ € Xa : — g +  P  C A' for some g € V}.

Let 77(A) > 0 be chosen so that every ball of radius 4 ^  contains at most one 
point of supp (A), and let 6(A) > 0 be such that every ball of radius 4 ^  contains 
at least a point in supp (A). These exist by the Delone set property.

The following technical result will be quite useful.
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Lem m a 4.4 Let A  be a Delone multiset with FLC. For any R > and 0 < 6 <
r)(A), there exist Delone multisets Tj E X A and Borel sets Vj with diam(V)) < <5, 
Vol(dVj) =  0, 1 < j  < N, such that

is a disjoint union, where P j = S r ( 0) D i y

Proof. For any R  > consider the clusters {5r(0) flT  : T € X A}. They are 
non-empty, by the definition of 6(A). By FLC, there are finitely many such clusters 
up to translations. This means that there exist T j , . . . ,  T r  E X A such that for any 
T E X A there are unique n  =  n (r )  <  K  and u — u(T) E Rd satisfying

b r(o) nr = -M + (b r(o) n r„).

For j  = 1 , . . .  , K  let

Wj — {«(r) : r  e  X A such that n ( r )  — j} .

By construction, X A =  UjLi-^P3,Wj > and this is a disjoint union.
Next we show that the sets Wj are sufficiently “nice,” so that they can be ob­

tained from a finite number of closed balls using operations of complementation, 
intersection, and union.

Let b =  6(A) and fix j .  Since every ball of radius 6/2 contains a point in supp (A), 
we have that Wj C £6,(0). Indeed, shifting a cluster of points in B r (0) by more than 
6 would move at least one point out of B r(0). Let P j := B r (0) D Tj. The set Wj 
consists of vectors u such that —u +  P j is a B^(0)-cluster for some Delone multiset 
in X A. Thus u E Wj if and only if the following two conditions are met. The first 
condition is that for each x E supp(Pj), we have —u +  x E B r (0). The second 
condition is that no points of Vj outside of Br(0) move inside after the translation 
by - u .  Since Wj C Bb(0), only the points in B R+b(0) have a chance of moving 
into Pij(0). Thus we need to consider the BR+b(0) extensions of Pj. By FLC, in 
the space X A there are finitely many 5R+h(0)-clusters that extend the cluster P^. 
Denote these clusters by Qx, . . .  , Q L . Summarizing this discussion we obtain

N

W j =  f ) ( -^ (0 )  + x) n (J P) {-(m.d \ B R(0)) + x) .
xesupp(Pj) i< L  [a;€supp(Qi) \B fi(0)

This implies that Wj is a Borel set, with Vol(0W)) =  0.
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It remains to partition each Wj such that Wj — UfcLi where diam(y^) < 5,
0 < 6 < 77(A). To this end, consider, for example, a decomposition of the cube 
[~b, b]d into a disjoint union of (half-open and closed) grid boxes of diameter less 
than 6 < 77(A). Let Q denote the (finite) collection of all these grid boxes. Then

Ttj
w t = \ J ( w j rtD) = { J v il, 1

D € Q  k = 1

where V^’s are disjoint and Yol(dVjk) =  0. Note that the union Xp^vy, =  UfeLi Xp^v** 
is disjoint, from the definition of Wj and diam(Ljfc) < 77(A) for all k < rij. So the 
lemma is proved. □

4.1.2 Unique ergodicity and UCF

A topological dynamical system is uniquely ergodic if there is a unique invariant 
probability measure.

Theorem 4.5 Let A  be a Delone multiset with FLC and {Fn}n> 1 be a van Hove 
sequence. The system ( X a ,  R d) is uniquely ergodic if and only if for all continuous 
functions f  : Xa —> C  ( /  G C(Xa)),

{In)(T, f)  := J [  f ( - g  + T)dg -► const, n  00, (4.4)
Vol(Fn) JFn

uniformly in T  G X a , with the constant depending on f .

We include a proof of the needed direction for the reader’s convenience (both 
directions, see e.g. [48, Theorem 6.19],[11, (5.15)], or [35, Theorem IV.13] for the 
case of Z-actions).
Proof of sufficiency in Theorem f.5. For any invariant measure p, exchanging the 
order of integration yields

/  In( T , f ) dp ( T) = f  f dp ,
JXA JXA

so by the Dominated Convergence Theorem, the constant in (4.4) is f x  f  dp. If 
there is another invariant measure v, then JXa f  dp = f x ^ f  du for all /  G C ( X a ) ,  

hence p — v. □

Now we prove that FLC and UCF imply unique ergodicity of the system 
(Xa, Md) (see e.g. [35, Cor. IV.14(a)] for the case of Z-actions).
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T heorem  4.6 Let A  be a Delone multiset with FLC. Then the dynamical system 
(X\,M.d) is uniquely ergodic i f  and only if  A  has UCF.

Proof. Let X p tv  be a cylinder set with diam(F) < rj(A) and /  be the characteristic 
function of Xpy.  Then we have by the definition of the cylinder set:

Jn(h,f)  == /  f { ~ x - h  + A).
JFn

I dx
>Fn '  '

Vol{x G Fn : —x — h +  A G .Xpy}
Vol{a: G h +  Fn : — y +  P  C — x  +  A for some y G.V}

= Vol l̂ J((h +  Fn) n (xv +  v))

where x„ are all the vectors such that i „ | P c A .  Note that the distance between 
any two vectors xv is at least 7 7(A), so the sets x„ + V  are disjoint. Let

r — max{|y| : y G V}  +  max{|:r| : x  G supp(P)}.

Then

Vol(Y)Lp(h + F~r) < Jn(h, / )  < Vo\(V)LP(h + F+r). (4.5)

Note that

Lp(h + F*') -  Lv {h +  F~r) < Lr(h  + 3F„+2r) <
2

So

v ( J n % f )  Vol(V)-Lp(h + Fn) \  .
i s .  (  v o p y  V oifn) )  =  0 mitorml5' in h  6 R • <4-6>

If (XA, R d) is uniquely ergodic,

lim exists uniformly in h G Rdn-*oo Vol(F„)

for continuous functions f  approximating the characteristic function /  of the cylin­
der set. Thus for any cluster P ,

v LpLh -f Fn\ . .
lim — - —■ — exists uniformly in h G M ,—  Vol(F„)71—+00
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i.e. A has UCF.
On the other hand, we assume that A has UCF. By Lemma 4.4, /  G C(XA) can 

be approximated in the supremum norm by linear combinations of characteristic 
functions of cylinder sets X p y .  Thus, it is enough to check (4.4) for /  the charac­
teristic function of X p ty  with diam(U) < 7 7 (A). We can see in the above (4.6) that 
(4.4) holds for all —h + A uniformly in h G Rd under the assumption that A has 
UCF. Then we can approximate the orbit of T G X A on Fn by —hn +  A as closely as 
we want, since the orbit {—h +  A : h G Rd} is dense in X A by the definition of X A. 
So we compute all those integrals (4.4) of —hn + A over Fn and use the fact that 
independent of hn they are going to a constant. Since each of these is uniformly 
close to (/„)(T, / )  in (4.4), we get that (Jn)(r , / )  too goes to a constant. Therefore 
(XA, Rd) is uniquely ergodic. □

Denote by p  the unique invariant probability measure on X A. As already men­
tioned, the constant in (4.4) must be f x  f  dp. Thus, the proof of unique ergodicity 
yields the following result.

C orollary  4.7 Let A be a Delone multiset with FLC and UCF. Then for any A- 
cluster P  and any Borel set V  with diam(U) < 77(A), we have

p (X PiV)=Vol(V)-freq(P,A).

Let A be a Delone multiset with FLC. From the theory of group actions on a com­
pact space we know that there is an invariant measure, that is, a Borel probability 
measure on X A. So we have the measure-preserving system (X A,p,  Rd) associated 
with A. Consider the associated group of unitary operators {Ux}xe^d on L 2(X A,p):

Uxf ( A ,) = f ( - x  + A').

Every /  G L2(X \, / i )  defines a function on Rd by x  1—► (Uxf , f ). This function is 
positive definite on R d, so its Fourier transform is a positive measure 07 on R d called 
the spectral measure corresponding to /

< 7 / = ( % T / ) .  (4.7)

We say that the Delone multiset A has pure point dynamical spectrum if af  is pure 
point for every /  G L2(XA,p). We say that /  G L2(XA,p) is an eigenfunction for 
the Reaction if for some a — ( a i , . . .  , af) G Kd,

Uxf  = e2irix'af ,  for all x  G Kd, 

where • is the standard inner product on Rd.
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T heorem  4.8 Let A  be a Delone multiset with FLC. Then Of is pure point for 
every f  G L 2(X \ ,  p) if  and only if the eigenfunctions for the Rd-action span a dense 
subspace of L2(X \ ,  p).

This is a consequence of the spectral theorem, see e.g. Theorem 7.27 and §7.6 in 
[49] for the case d =  1. The spectral theorem for unitary representations of arbitrary 
locally compact Abelian groups, including Rd, is discussed in [27, §6].

4.2 Diffraction
When we say diffraction, we are actually talking about diffraction measure and it is 
the Fourier transform of volume averaged autocorrelation of point set measure.

For an idea on what diffraction is about let us look at a simple point set Z in real 
line. Define v =  Yhx&  where 5X is the delta function such that 5x(f)  =  f ( x )  for 
any continuous C-valued function /  with compact support. Let Fn = {x e  M||x| < 
n} and v\Fn =  Y lxeFnnz$*- The autocorrelation of v\Fn is v\Fn * v\Fn, where

(I/k * * /k ) ( / ) =  [  f  f ( x  + y)du\Fn(x)du\Fn(y).
•Jm.

From several steps of calculation we get

W F „ * ^ k ) ( / ) =  5 3  /)■
x,yeFn  nz

Then the volume averaged autocorrelation of v is

7  =  ™  Vol(Fn) ^ Fn * = Vol(F„) 5 3  S*-v(f)-
' K n j  x,y€Fnn Z

Since /  has a compact support, there exists n0 E R such that

53 ^ x - y ( f )  =  53 ^z(/)-
X . y e F n P i Z  x , x - z € F n  n z

S o

E  w / )  =  E  < E  w m -
x,:y€FnnZ zeF„0 x ,x -2 € F nnZ
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Since z  is fixed and n —» oo, n can be assumed to be very large with respect to z. 
Thus

lim * , ( Y  1) =  1.n—>oo Vo\(Fn)
'  '  x , x —z€ F nn Z

Therefore

7==n ^ o  Vol7F ) ( Z / k * ^ ) ( / ) =  E  f(*) = E S*W>
V n> z e F n 0 z €  Z

since /  has a compact support contained in Fno. The diffraction measure

7 = £ > ) - £ &

by Poisson summation formula [5]. Thus the point set Z on the real line has pure 
point diffraction measure.

Now we define diffraction on general point sets. Suppose that A =  (Ai)i<m is a
Delone multiset. Given a translation-bounded measure v on Rd, let 7 (1/) denote its
autocorrelation (assuming it is unique), that is, the vague limit

7(l/) =  J i s t  v o ip y  ■ (4-8>

where {Fn}n>i is a van Hove sequence. 1 In particular, for the Delone multiset A
with UCF we see that the autocorrelation is unique for any measure of the form

v = y^a,i5a4, where 8^ = ^  5X and a* G C . (4.9)
i<m x € A  i

Indeed, a simple computation shows
m

TM  =  y  a&i y  freq((y, z), A)8y- Z. (4.10)
*J=1 y€Ai,zeAj

Here (y, z) stands for a cluster consisting of two points y e A*, z G Aj. The measure 
■y(u) is positive definite, so by Bochner’s Theorem [39] the Fourier transform ^(v) 
is a positive measure on Rd, called the diffraction measure for v. We say that the 
measure v has pure point diffraction spectrum if 7 (1/) is a pure point or discrete 
measure. 2

1 Recall that if /  is a function in Rd, then /  is defined by f ( x )  =  f ( —x).  If y is a measure, y  is 
defined by y ( / )  =  y ( /)  for all /  € Co(Rd). In particular for v  in (4.9), v  =  YL%<m •

2We also say that A, (resp. A) has pure point diffraction spectrum if 7 ((JaJ (resp. each 
7(<5Ai ), i  =  1) • • • > m)  is a pure point measure.
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Chapter 5

Pure Point Dynamical and 
Diffraction Spectra

We have defined two notions of pure pointedness, one in dynamical spectrum and the 
other in diffraction spectrum. Although they are defined very differently, they are 
in fact equivalent. We will show in Sec. 5.1 after a sequence of auxiliary lemmas that 
under the assumption of FLC and UCF, A has pure point dynamical spectrum if 
and only if A has pure point diffraction spectrum. In Sec. 5.2 we drop the condition 
of UCF and get the equivalent relation for almost every point set in X&.

5.1 Equivalence of two notions of pure pointed­
ness

In this section we prove the following theorem.

T heorem  5.1 Suppose that a Delone multiset A has FLC and UCF. Then the 
following are equivalent:

(i) A has pure point dynamical spectrum;

(ii) The measure v =  ^2i<m has pure point diffraction spectrum, for any 
choice of complex numbers (ai)i<m;

(iii) The measures S^i have pure point diffraction spectrum, for i < m .

R em ark  : This result is strictly about the situation of pure pointedness. There is 
no simple relationship known between the spectra in the case that they are not pure 
point.
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The theorem is proved after a sequence of auxiliary lemmas. Fix complex numbers 
(oi)i<m and let v =  U kv For A' =  (A-)i<m 6  X A let

VK> A',
i<m

so that v =  uA. To relate the autocorrelation of v to spectral measures we need to 
do some “smoothing.” Let u  G Co(Kd) (that is, u  is continuous and has compact 
support). Denote

Pa,,V :=u;* uA,
and let

UA!)  := pu>A,(0) for A' G X K.

Lem m a 5.2 G C(XA)- 

Proof. We have

UA ')  = Ju>(-x) duA,(x) =  w ( - x ) .
i<m x € —supp(o,)nAj

The continuity of follows from the continuity of lo and the definition of topology 
on X A. □

Denote by 7W)A the autocorrelation of pw>A. Since under our assumptions there 
is a unique autocorrelation measure 7  =  7 (1/), see (4.8) and (4.9), we have

7a,,A =  (W * D) * 7 .

Lem m a 5.3 ([12], see also [17])

°7w =  7a,, A •

Proof. We provide a proof for completeness, following [17]. By definition,

U ~ x  +  A) =  Po,.a(®)-

Therefore,

7a,, a  ( z )  =  l i m  ■ * f  p U x  +  V ) P » A V )  d Vn-*oo Vol(Fn) JFn

= lim ) j U ~ x - y  + A ) U - y  + A)dy
n—00 VoI(Pn) JFn

= f  U - x  + A')UA)dii(A')
J X A

=  (Uxfu,fu) , (5.1)

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where (P n}n>i is a van Hove sequence. Here the third equality is the main step; it 
follows from unique ergodicity and the continuity of f u, see Theorem 4.5. Thus,

Tij.A — (£/(.)/*, fuj) 0 /uil

and the proof is finished. □
The introduction of the function f u and the series of equations (5.1) is often 

called Dworkin’s argument.

Recall that 6(A) > 0 satisfies that every ball of radius contains at least a 
point in supp(A). Fix e with 0 < e < ^ y .  Consider all the non-empty clusters of
diameter < 1/e in T G X \ .  There are finitely many such clusters up to translation,
by FLC. Thus, there exists 0 < 0i = 0i(e) < 1 such that if P , P ' are two such 
clusters, then

Ph(P , P 7) < 0i => P  =  — x +  P ' for some x  G Rd. (5.2)

Here a variation of the Hausdorff metric

Ph (P ,P ')  =  max{pH(Pi,Pl) : i < m},

where

max{dist(x, P/), dist(y, Pj) \ x  G Pi, y G P/}, if Pj, P! ±  0; 
pH (Pi, Pj) — < 1, if Pj =  0 and P/ ^  0 (or vice versa);

.0 ,  if Pi =  0 =  P)',

with P  =  (P j ) i < m  and P ' =  (P/)i<m •
Let

9 =  0(e) := min{e, 6fi, 77(A)} (5.3)

and
fi,u>(A ) = (ui * $a')(0) for A =  (A()i<m G X \ .

Denote by Ei the cluster consisting of a single point of type i at the origin; formally,

E i  =  ( 0 , . . .  , 0 ,  j O } ,  0 , . . .  , 0 ) .
i

Let, x Ei,v the characteristic function for the cylinder set XEiiV-
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Lemma 5.4 Let V  C Rd be a bounded set with diam(F) <  9, where 9 is defined by 
(5.3), and 0 < £ < 9/2. Let u  E Co(Kd) be such that

u(x) =  1, x E V-1*;
< w(x) — 0,
k 0 < u(x) < 1 , x E V  \  V~ l>.

Then
ll/i*. -  x«„vlll < freq(E(, A) • Vol((SF)«).

Proof. We have by the definition of E* and Def. 4.3:

r 1, if A ^ n ( - v ) ^ 0; , . ,  v
* - (A > =  { o ,  otherwise, where A e  XA.

On the other hand, since ui is supported in V  and there is at most one point of A' 
in V,

if 3x € A 'n (-F ) ;
otherwise.

A U A') = J  u ( -x )  dd^x)  = | ^
It follows that

/ ^ ( A ') - X Ei,v(A') =  0 if A jn ( - V - « ) ^ 0 .

Thus,

\ \ k . - X ^ y \ \ l  < /  |/i,u>(A') — 1|2 dfJ,(A')

<  K X tsu v \ v -<)

= freq(Ej, A) • Vol(V \  V~^)
< freq(Ei,A )-V ol((ai/)+c),

as desired. □

Lem m a 5.5 Let P  =  {Pi)i<m =  S i/e(0) DT with T E Xa, and diam(F) < 0, where 
9 is defined by (5.3). Then the characteristic function x Py of X c a n  be expressed 
as

Xp,V =  J |  U  Xi+Ej,V .
i<m x€Pi

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Proof. We just have to prove that

-Xp.v =  P) P | X x+Eiy .
i<m x€Pi

A Delone multiset T  is in the left-hand side whenever —v  +  P  C  T  for some v  G 

V. A Delone multiset T is in the right-hand side whenever for each i < m  and 
each x G Pi there is a vector u(x) G V  such that — i>(x) +  x  C  T, where x  =  
(0 ,. . . ,  0, {x} , 0 , . . . ,  0) stands for a single element cluster. Thus, “c ” is trivial.

i
The inclusion “d ” follows from the fact that diam(V) < 0, see (5.3) and (5.2). □

Denote by Hpp the closed linear span in L2(X \ ,p )  of the eigenfunctions for the 
dynamical system (X&, p ,  Rd). The following lemma is certainly standard, but since 
we do not know a ready reference, a short proof is provided.

Lem m a 5.6 I f  4> and ijj are both in L °°(X \,p ) D H PP, then their product 4>ip is in 
L ° ° ( X p )  fi Hvp as well.

Proof. Fix arbitrary e > 0. Since <j> G Hpp, we can find a finite linear combination 
of eigenfunctions 4> = J 2 aifi such that

| | (j) ^ j 1 2  ^  i| I | |  •

I m l o o

Since the dynamical system is ergodic, the eigenfunctions have constant modulus, 
hence </> G L°°. Thus, we can find another finite linear combination of eigenfunctions 
?p = fy fj such that

l l ^ l l o o

Then

\\W~W>h  <  \\Hi’ - ^ ) h  + \\{<f> -  fyipWi
<  I H I o o l l V ’ —  i ’h  +  l l ^ l l o o l l ^  -  < ? | | 2

< 2e.

It remains to note that G Hpp since the product of eigenfunctions for a dynamical 
system is an eigenfunction. Since e is arbitrarily small, <pijj G Hpp, and the lemma is 
proved. □

Proof of Theorem 5.1. (i) =7 (ii) This is essentially proved by Dworkin in [12], see 
also [17] and [4]. By Lemma 5.3, pure point dynamical spectrum implies that 
is pure point for any u  G C0(Rd). Note that

- P |27- (5.4)
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Choosing a sequence ion G Co(Rd) converging to the delta measure 5q in the vague 
topology, we can conclude that 7  is pure point as well, as desired. (This approxi­
mation step requires some care; it is explained in detail in [4].)

(ii) (iii) obvious.
(iii) =4> (i) This is relatively new, although it is largely a generalization of Quef- 

felec [35, Prop. IV.21].
We are given that 5Ai has pure point diffraction spectrum, that is, 7I := 7(<5aJ 

is pure point, for all i < m . In view of (5.4) and Lemma 5.3, we obtain that Ufiu 
is pure point for alH  < m  and all u> G C0(Rd). So f i>w G Hpp for alH  <  m and all 
u> G Co(Rd). Fix e > 0 and let V  be a bounded set with diam(U) < 9 = 9(e), where 
9 is defined by (5.3), and Vol(0V) =  0. Find u  G Co(Rd) 35 in Lemma 5.4. Since 
Vol((3V)+<) Vol(dU) =  0 in Lemma 5.4, as (  —■> 0, we obtain that y E v G Hpp. 
Therefore, also Uxx E.iV = Xx+Ei,v £ Hpp. Then it follows from Lemma 5.5 and 
Lemma 5.6 that y p v  G Hpp where P  =  5 i /£(0) Pi T for any T  G X a ,  diam(F) < 9, 
and Vol(5V) =  0.

Our goal is to show that Hpp = L2(XA, /i). Since (JfA, jj) is a regular measure 
space, C(XA) is dense in L2(XA,//). Thus, it is enough to show that all contin­
uous functions on X A belong to Hpp. Fix /  G C(XA). Using the decomposition 
X \  =  from Lemma 4.4 we can approximate /  by linear combinations
of characteristic functions of cylinder sets X pjtyr  So it suffices to show that these 
characteristic functions are in Hpp, which was proved above. This concludes the 
proof of Theorem 5.1. □

5.2 Equivalence of two notions of pure pointed­
ness when the UCF fails

Here we present a version of the main theorem for Delone multisets which do not 
necessarily have uniform cluster frequencies. For this we must assume that in ad­
dition to the van Hove property (2.1) our averaging sequence {Fn} is a sequence of 
compact neighbourhoods of 0 satisfying the Tempel’man condition:

(i)U Fn =  Rd ,
(ii) 3 K  > 1 so that Vol(F„ -  Fn) < K  ■ Vol(Fn) for all n. y )

Let A be a Delone multiset with FLC in Rd. Consider the topological dynamical sys­
tem (XA,R d) and an ergodic invariant Borel probability measure fi (such measures 
always exist). The ergodic measure fj, will be fixed throughout the section.
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T heorem  5.7 Suppose that a Delone multiset A has FLC. Then the following are 
equivalent:

(i) The measure-preserving dynamical system {XA, p, Rd) has pure point spectrum;

(ii) For p-a.e. T € X A, the measure v — Yhi<ma$Ti has pure point diffraction 
spectrum, for any choice of complex numbers

(iii) For p-a.e. T G X A, the measures 5rf have pure point diffraction spectrum, for 
i < m.

In fact, this formulation is closer to the work of Dworkin [12] who did not assume 
unique ergodicity. The proof is similar to that of Theorem 5.1, except that we have 
to use the Pointwise Ergodic Theorem instead of the uniform convergence of averages 
in the uniquely ergodic case (4.4).

T heorem  5.8 (Pointwise Ergodic Theorem for M.d-actions (see, e.g. [45], [8]) l) 
Suppose that a Delone multiset A has FLC and {Fn} is a van Hove sequence satis­
fying (5.5). Then for any f  e  L l (X K,p),

Vol(F ) JF f ( - x + T ) d x ^  f  /(A ') dp(A'), as n —> oo, (5.6)

for p-a.e. T e  XA.

For a cluster P  C A, a bounded set A  C Rd, and a Delone multiset T e  X A, 
denote

TP(A,r) = #{a;GRd: x + PcAnT}.

Lem m a 5.9 For p-a.e. T  e  X \  and for any cluster P  C A,

freq'(P.r) := lim (5.7)n—00 Vol(r„)

exists for p-a.e. T e  X A. Moreover, i/d iam (y) < 77(A), then the cylinder set X PiV 
satisfies, for p-a.e. T € X A:

p (X PtV) = Vol(P) • freq'(P, T). (5.8)

Tor recent developments of this theorem in the direction of general locally compact amenable 
groups, see [26].
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Note that we no longer can claim uniformity of the convergence with respect to 
translation of I \
Sketch of the proof. Fix a cluster P  C A and let X p ;y  be a cylinder set, with 
diam(V) < rj(A). Applying (5.6) to the characteristic function of Xp,y and arguing 
as in the proof of Theorem 4.6 (with —h +  A replaced by T), we obtain (5.7) and 
(5.8) for p-a.e. T. Since there are countably many clusters P  C A, we can find a set 
of full /i-measure on which (5.7) and (5.8) hold for all P . □

For a Delone multiset T =  (Fj)j<m, let v — ]££Li°*^iV Then, for p-a.e. T, the 
autocorrelation exists as the vague limit of measures vol(i^) (^ 1̂  * u\Fn), and

m

7(»/) =  5 3 a i3 i W ( ( y » 2) ,r )V -„
i j = i yeri.zerj

for p-a.e. T, which is the analogue of (4.10). Again, y(v) is a positive measure, called 
the diffraction measure, giving the meaning to the words “pure point diffraction 
spectrum” in Theorem 5.7.

Sketch of the proof of Theorem 5.7. For p-a.e. T € X \ ,  the Pointwise Ergodic The­
orem 5.8 holds for all functions /  € C{Xa) (since the space of continuous functions 
on X \  is separable).

The i v , Poj.a' , and f u are defined the same way as in Sec. 5.1. Lemma 5.2 applies 
to our situation. Next we can show that

<rfu = TL? (5-9)

for p-a.e. I \  This is proved by the same chain of equalities as in (5.1), except that 
we average over Fn defined in (5.5) and use Theorem 5.8 instead of Theorem 4.6. 
Lemma 5.4 goes through, after we replace freq(Ej, A) by freq '(E i,r), for p-a.e. T. 
There are no changes in Lemmas 5.5 and 5.6, since we did not use UCF or unique 
ergodicity in them. The proof of Theorem 5.7 now follows the scheme of the proof of 
Theorem 5.1. We only need to replace A by p-a.e. T, for which hold all the “typical” 
properties discussed above. □
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Chapter 6 

Pure Pointedness for Substitutions

In this chapter we study pure point spectrum on dynamical systems generated by 
substitution Delone multisets and tilings. In Sec. 6.1 we briefly talk about the basic 
concepts and properties in tiling dynamical systems which are similar as in point 
set dynamical systems. We deduce a necessary condition on the density of overlaps 
between the tiling and its translate from pure point spectrum of the tiling dynamical 
system. The argument of Theorem 6.2 in [43] is quite based on substitution tilings. 
So when we start from substitution Delone multisets, we make use of the connection 
to associated substitution tilings in order to induce the same property. In Sec. 6.2 
we present the concept of overlap coincidence. We make an assumption that the set 
of translation vectors forms a Meyer set. Under the assumption we get the finite 
number of equivalence classes of overlaps of tiles for the tiling. So we can show that 
the density condition in the previous section is not only necessary for pure point 
dynamical spectrum but also sufficient.

There are many different concepts of coincidence in the literature of substitutions 
and the coincidence turns out to be a crucial factor with regard to pure point spec­
trum. In this thesis we will see another coincidence called “modular coincidence” in 
the next chapter. Overlap coincidence and modular coincidence are defined quite dif­
ferently but they are relevant and actually equivalent concepts (see [21]). In Sec. 6.3 
we consider substitution Delone multisets. Using the concept of representability 
(see Def.3.7) which links between substitution tilings and substitution Delone mul­
tisets, we derive the corresponding properties on substitution Delone multisets from 
substitution tilings.
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6.1 Pure pointedness for substitution tilings
Let T  be a tiling. We define the tiling space X r  as the set of all tilings S  of Rd 
with the property that every <S-patch is equivalent to some T-patch. We equip the 
space with a metric analogous to (4.1) for X&. Note that X r  = {—g + T  : g e  Rd} 
and X j  is compact if T  has FLC. So we have a natural action of Rd on X r  which 
makes it a topological dynamical system. The set {—g +  T  : g G Rd} is the orbit of 
T. As for Delone multiset dynamical systems, the minimality of dynamical system 
(X r, Rd) is equivalent to the repetitivity of T. We define the cylinder set X P<W by

Xp,w  (5  £ X r  : —g + P  is an <S-patch for some g G W }.

where P  is a patch of T  or some translate of T  and W  C Rd is a Borel set.
In Theorem 3.18 we established the existence of uniform patch frequencies in 

primitive substitution tilings and in Theorem 4.6 we proved that UPF implies unique 
ergodicity in the setting of arbitrary Delone multisets with FLC. So we get the 
following corollary.

Corollary 6.1 Let T  be a fixed point of a primitive substitution with FLC.1 The 
dynamical system ( X r ,  Rd) is uniquely ergodic, i.e. ergodic with respect to the unique 
invariant probability measure on X r -

We will denote the unique invariant probability measure on X r  by p.
Let r)(T) > 0 be chosen such that every tile support contains a ball of diameter 

rj(T). Note also from Cor. 4.7 that for any T-patch P  and any Borel set V  with 
diam(F) < rj(T), we have

p (X P,v) = Vol(V) • freq(P, T). (6.1)

We consider the associated group of unitary operators {Ug} g€Rd on L 2( X r , p )  :

U9f(S )  = f ( - g  + S).

We recall that /  G L 2( X r ,  g) is an eigenfunction for the Reaction if for some 
a — ( a i , . . .  , af) G Rd,

Uxf  = e2™ af ,  for all x G Rd,
1 Ludwig Danzer [9] has given an example of a primitive substitution tiling which does not 

satisfy FLC.
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where • is the standard inner product on Rd. The dynamical system (X r, n, Rd) is 
said to have pure point spectrum if the linear span of the eigenfunctions is dense in 
L2(X r,fj).

Let S (T) be the set of translation vectors between T-tiles of the same type:

S(T) =  {x e R d : 3 T ,T  € T, T  = x  +  T}. (6.2)

Since T  has the inflation symmetry with the expansive map Q, we have that 
QE(T) C H(T). Note also that S(T) =  —E(T). If T  = T ( A) is a tiling for a 
representable Delone multiset A, then E(T) =  UIli(Ai — K)- The following is

proved in [43, §4].

T heorem  6.2  Suppose that T  is a repetitive fixed point of a primitive substitution 
with expansive map Q and FLC. I f  a  € Rd is an eigenvalue for (X r, p, Rd), then 
for any x  € S(T) we have

lim e2wi(Qnx>a = 1.
n—► oo

This theorem yields necessary conditions on the expansive map Q for the dynam­
ical system to have non-trivial eigenfunctions. The simplest is that if Q is a diagonal 
matrix with diagonal entries A > 1, then A has to be a Pisot number. This follows 
from the algebraicity of A and the classical theorem of Pisot. Other conditions can 
be found in [43].

Let T  be a repetitive fixed point of a primitive substitution. For x  € S(T) 
consider the infinite subset

Dx := T  D (x +  T).

It is non-empty by (6.2), and supp(Dx) is relatively dense by repetitivity. Observe 
that Dx has a well-defined density given by

, / n  x Vol(.Dx n.Fn)dens(Dx) =  lim \
n-KX> Vol(rn)
m

= ^ 2  frecl({Ti> (x +  Ti)}, T ) ■ Vol(Ai) > 0 (6.3)
i—l

where DxCFn =  {T  e  Dx : supp(T) C Fn}, {Fn} n>i is a van Hove sequence, T fs  are 
representatives of all tile types in T  and A f  s are their supports. For this reason we 
may call the elements of ^(7~) the almost-periods of T . Of course an almost-period 
only really “looks like” a period if the corresponding density dens(_Dx) is close to 1.

Below we consider the cylinder set X {T},v for a T-tile T  and a Borel set V, which 
we denote X Ty  to simplify the notation.
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Lem m a 6.3 Suppose that T  is a repetitive fixed point of a primitive substitution 
with expansive map Q such that 2 (T) is uniformly discrete. Then there is r > 0 
and %  > 0 such that for any Borel set V  with diam(F) < r, all x  € 2 (T), and 
every T-tile T,

X t,v H XQnx+Ty  — X{T,(Qnx+T)},v, for all n > no- (6.4)

Proof. Note that for any x  € 2(7') there is no > 0 such that {7, (Qnx  +  T)}  is 
a T-patch for all n > no, from the primitivity. We only need to check “c” since 
the other inclusion is obvious in all cases. A tiling S  6 X t  is in the left-hand side 
of (6.4) if and only if there are two, possibly distinct, vectors V\,V2 € V  such that 
—Vi +  T S 5  and —1>2 +  Qnx + T  G S . Hence v\ — V2 +  Qnx  € 2(<S) =  2(T ). But 
Qnx <£ 2(7”) since QE{T) c 2(T). Since 2(7”) is uniformly discrete, v\ — =  0 if
diam(F) is sufficiently small. Then {T, (Qnx  +  T)} C v\ + S, and hence <S is in the 
right-hand side of (6.4). The lemma is proved. □

P ro position  6.4 Suppose that T  is a repetitive fixed point of a primitive substitu­
tion with expansive map Q such that 2 (T) is uniformly discrete and T  has FLC. I f  
{Xr, At, Rd) has pure point dynamical spectrum, then

lim dens(Donx) =  1, for all x € 2 (T). (6.5)n~+ o o

Proof. Fix x  € 2(7”). By Theorem 6.2, for every eigenvalue a  € Md we have
e 2m(Qn x)-a  j  T h ig  im p l i e s

(UQnx I) fa   ̂0, (6.6)

in the norm of L2(X r, fi), for the corresponding eigenfunction f a. Since \\UQnx—7|| < 
2, the sequence of operators {UQnx — I} n>0 is uniformly bounded, so by (6.6) we have 
UQnxf  —*■ f  for any /  in the closed linear span of the eigenfunctions. Let T  be a T- 
tile and let V  be a Borel set satisfying (6.4). Denote by /  the characteristic function 
of the cylinder set Xr,v, which is in the closed linear span of the eigenfunctions by 
assumption. We can write

H E W - / I I !  =  f  \ f ( - Q nx + s ) - f { s ) i 2dp(s)
JxT

— AfiX r,v  A Xqnx+ry)
— 2[ai{Xt ,v ) — Al{X ry  H Xqnx+Ty)\-
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The last equality uses the fact that p is translation-invariant. It follows that

p(Xr,v  H XQnx+Ty )  —► p(X Ty )  (6.7)

for each T-tile T.
Now, combining the Lemma 6.3, (6.7), and (6.1), we obtain that

freq({T, (Qnx  +  T )},T ) —»• freq(T, T), as n —► oo,

for any tile T  G T . In view of (6.3) this implies that limn_,0odens(r>Qna.) =  1, and 
the proposition is proved. □

R em ark  6.5 In this subsection we have been assuming that the fixed point T  of our 
primitive substitution is repetitive. We note that this assumption is not restrictive if 
we are interested in the measure-theoretic dynamical system (X r, p, Rd). Indeed, if 
T  is non-repetitive, then the inclusion mapping from the set of self-afline tilings X ^ w 
associated with (A, u) to X r  induces an isomorphism of measure-preserving systems 
(this follows from the proofs of Prop. 3.17 and Theorem 3.18 which show that non- 
legal patches have frequency 0 and then from (6.1) the measure of the corresponding 
cylinder set in X r  is 0). All the tilings in X y ^  are repetitive; further, we can find 
a periodic point in X y ^  for some power of u> and work with it.

6.2 Overlap coincidence
Here we use the notion of overlaps and the subdivision graph of overlaps from [43, 
p.721], with some modifications.

Definition 6.6 Let T  be a tiling. A triple (T, y, S ), with T , S e T  and y G H(T), 
is called an overlap if the intersection supp (y + T) fl supp (S') has non-empty interior. 
We say that two overlaps (T, y, S) and (T', y', S') are equivalent if for some g G R d 
we have y + T  = g + y' + T ': S  =  g + S'. Denote by [(T, y, 5)] the equivalence class 
of an overlap. An overlap (T, y, S ) is a coincidence if y + T  = S. The support of an 
overlap (T, y, S) is supp(T, y, S ) =  supp(y +  T) n supp(S).

Lem m a 6.7 Let T  be a tiling such that 2(7*) is a Meyer set. Then the number of 
equivalence classes of overlaps for T  is finite.

Proof. Let Tu i < m, be the representatives of all tile types for T . Let Af be the 
Delone set such that + T) is the collection of all tiles of type i. Thus we have
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T  =  Ui<m(^ i+ ^ )-  Let (T, y, S ) be an overlap. We have T  =  Ui+Ti and S  = Uj+Tj 
for some i , j  < m  (possibly equal) and some Ui e  Au Uj E Aj. The equivalence class 
of the overlap is completely determined by i , j ,  and the vector Ui + y — Uj. Since the 
interiors of the supports of y + T  and S  must intersect, we have

\ui + y - U j \  < C, (6.8)

where C = 2max{diam(T) : T E T}. Note that Ui,y,Uj E H. By the definition of 
E := S(T) we have E =  — E. By the definition of Meyer set, S — E C  E +  F  for some 
finite set F. This implies H + H-HcH + (F + F), which is a discrete set, so there 
axe finitely many possible vectors Uj + y — Uj in (6.8). This proves the lemma. □

Next we define the subdivision graph Qo{T) for overlaps. Its vertices are equiv­
alence classes of overlaps. Let O =  (T, y, S ) be an overlap. We will specify directed 
edges leading from the equivalence class [<D\. Recall that we have the tile-substitution 
ut, see Def. 3.4. Then u>(y + T) — Qy + oj{T) is a patch of Qy +  T , and u(S) is a 
T-patch, and moreover,

supp (Qy +  u{T)) n supp(w(S)) =  Q(supp(T, y, S )).

For each pair of tiles T ' E lo(T) and S' G w(S') such that O' := (T , Qy, S') is an 
overlap, we draw a directed edge from [O] to [O'].

P ro p osition  6.8 Let T  be a repetitive fixed point of a primitive substitution with 
expansive map Q such that S(T) is a Meyer set. Let x  G S(T). The following are 
equivalent:

(i) limn_>00 dens(DQnx) = 1;
(ii) 1 — dens(D qux) < Crn, n > 1, for some C > 0 and r E (0,1);
(iii) From each vertex of the graph Qo(T) there is a path leading to a coincidence.

Proof. We have for each n > 0:

(J \ J ^ M T , Q nx ,S ),
t e t  s e t

where the support is considered empty if (T, Qnx, S) is not an overlap. Notice that 
supp(I>Qnx) is exactly the union of supports of coincidences in this formula. It is 
clear that all edges from the overlaps-coincidences lead to other coincidences. Thus

Q(supp(T>Qna,)) c  supp(Dq n+lx)
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and

dens(DQnx) <  dens(I?gn+ix). (6.9)

Now, if (iii) holds, then there exists £ E N such that for each overlap O the inflation
Q^(supp(C>)) contains a coincidence. The volume of the support of a coincidence is 
at least Kni„. Thus

1 -  dens(De„ « J  <  ( l  -  (1 “  dens(C « - »  ■

For any n >  0, n — k£ +  s for some k  E N and 0 <  s < I .  So

1 — dens(Dgnx) =  1 — dens(Z?gw+sx)

<  i,‘ ( l  -  d e n s  ( A , . , ) ) ,  w h e r e  6 = 1 -

bs/t
< rnC, for some r  E (0,1) and C > 0. (6.10)

Then (ii) follows.
It is straightforward that (ii) implies (i).
It remains to prove that (i) implies (iii). Suppose to the contrary, that there is 

an overlap O from which there is no path to a coincidence. Then Qn(supp(0)) C  

Rd \  supp(Z?gna.) for all n. By the repetitivity of T, the overlaps equivalent to O 
occur relatively dense in Rd. Therefore,

1 -  deus(DQnx) > dens(Q"(supp(0)) =  dens(supp(£>)) > 0,

which contradicts (i). This completes the proof of the lemma. □

As the next theorem shows, under the additional assumption that E(T) is a 
Meyer set, the converse of Prop. 6.4 is also true. This theorem extends [43, Theorem 
6.2] to the case of d > 3. Notice that we do not add FLC to the assumption, since 
S(T) being a Meyer set implies it.

T heorem  6.9 Suppose that T  is a repetitive fixed point of a primitive substitution 
with expansive map Q such that E(T) is a Meyer set. Then (Xr ,/x,Rd) has pure 
point dynamical spectrum if and only if

lim dens(DQnx) = 1, for all x  E ’B.iT).
71—► OO v 7
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Proof. The assumption gives us through Prop. 6.8 that there exists a basis B  for 
such that for all x  G B,

E d  — dens(DQnx)) < oo. (6.11)
n=0

Then [43, Theorem 6.1] implies that the dynamical system (A t, p, Md) has pure 
point spectrum. □

6.3 Pure pointedness on substitution Delone mul­
tisets

Any tiling T  can be converted into a Delone multiset by simply choosing a point 
X(A,i) for each tile (A, i) so that the chosen points for tiles of the same type are 
in the same relative position in the tile: X(5+a,i) =  g +  We define A, :=
{^(^,0 : (A, i) G T }  and A := (Ai ) i<m . Clearly T  can be reconstructed from 
A given the information about how the points lie in their respective tiles. This 
bijection establishes a topological conjugacy of ( A a , Rd) and ( A t , Rd). Concepts 
and theorems can clearly be interpreted in either language (FLC, UCF, unique 
ergodicity, pure point dynamical spectrum, etc.).

In the case that A is a representable primitive substitution Delone multiset, we 
make use of the following bijection. We consider Tt = (A*, i), i < m, as prototiles, 
where Aj’s are defined by (3.6). Let T  — T (A) be the tiling in (3.7), with the colours 
added, that is, T  — {xt +  T* : x* G A*, i <  m}, and let A  = {T i,. . .  , Tm}. By (3.6) 
and the definition of representable primitive substitution Delone multiset, we have 
a tile-substitution u  : A  —»• Va- For any Delone multiset T =  G X \  we let
4>(r )  =  {xi + Ti : Xi G Tj, i < m}. Then <f>(T) G X r  and (j) is a homeomorphism 
commuting with the translation action. So the dynamical systems (Aa,®^) and 
(A t, Rd) are topologically conjugate.

Transferring the results of the previous subsections about tilings to Delone mul­
tisets, we obtain three quick corollaries.

Proposition 6.10 I f  A  is a primitive substitution Delone multiset with FLC such 
that every A-cluster is legal, then the dynamical system ( A a , K d) is uniquely ergodic.

Proof. From Cor. 3.24 we note that A has UCF. Thus the dynamical system 
(A a , Rd) is uniquely ergodic by Theorem 4.6. □
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P ro p o sitio n  6.11 Suppose that A =  (Ai)i<m is a primitive substitution Delone 
multiset with expansive map Q such that 5(A) := Uj<m(Ai — A*) is a Meyer set 
and every A-cluster is legal. Then the dynamical system (X \,p,M .d) has pure point 
spectrum if and only if

lim dens(A n  (Qnx  +  A)) =  dens(A), for all x  G 5(A).
n—► oo

Proof. By Theorem 3.9 A is representable by a tiling T . The legality of A implies 
that of T  and Prop. 3.6 shows that T  is repetitive. The result is now a direct 
consequence of Theorem 6.9, in view of the fact that H(T) =  5(A). □

P ro position  6.12 Suppose that A =  (Ai)i<m is a primitive substitution Delone 
multiset with expansive map Q such that (J™ 1 A, lies in a lattice L in Rd and every 
A-cluster is legal. Then the dynamical system (X&,/i,Md) has pure point spectrum 
if  and only if

lim dens(AA(Qn:r +  A)) =  0, for all x  G L1, (6.12)
7 1 -+ CO

where L' — L\ +  • • • +  Lm, and Li is the Abelian group generated by Af — A, for 
i < m .

Proof. The Meyer set condition is obvious, since all the sets Ai lie in the lattice L. 
We have 5(A) =  U,<m(Aj — A*) C I/, so the necessity follows from Prop. 6.11. The 
condition (6.12) for x G A* -  A* follows from Prop. 6.11. In order to prove it for all 
x G L' we note that A A (y +  z  +  A) C (AA (y + A)) U ((y +  A )A (y +  z  +  A)) for 
any y, z G Rd, hence

dens(AA(y +  z +  A)) < dens(AA(y +  A)) +  dens(AA(^ +  A)), 

and the statement follows. □

R em ark  6.13 Note that the density in (6.12) does not depend on the choice of the 
van Hove sequence, since this is true for the density dens(£>Qnx) of the associated 
tiling by (6.1) and (6.3).
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Chapter 7 

Substitutions on Lattices

We assume here that substitution Delone multisets are on a lattice. Due to the 
additional lattice structure we can find an equivalent relation between pure point­
edness and regular model sets. It is still a conjecture to find the equivalence in 
general Delone multisets without assuming lattice substitutions. The main bridge 
which connects these two is modular coincidence (see Def. 7.2). We first introduce a 
Q-adic like profinite group and define the Q-adic completion in Sec. 7.1. It enables 
us to construct a cut and project scheme using the completion. In Sec. 7.2 we show 
that the density property which is derived from pure pointedness in the previous 
chapter ensures a substitution to admit modular coincidence. Then the modular 
coincidence separates all window interiors of original sets and it proves that each 
point set is a model set. Using Perron-Frobenius theorems we prove that the bound­
ary of the window from each point set has measure 0. Thus actually each point set 
becomes a regular model set. Applying Schlottmann’s theorem, we conclude that 
each point set is pure point diffractive. Prom all these results we show a cycle of 
equivalent conditions to pure point spectrum. Example 7.11 demonstrates how to 
check the modular coincidence.

7.1 Lattice substitutions
In this chapter, L will be a lattice in Rd and the mappings of $  will always be 
affine linear mappings of the form x  t-> Q x +  a, where Q G Endz(L) is the same for 
all the maps and a G L. Such maps are restrictions of uniquely determined affine 
linear mappings on Rd and we will not distinguish them notationally. A mapping 
Q G Endz(L) is called an inflation for L  if det Q ^  0 and f)%L0QkL = {0}. So an 
expansive map Q for L  is an inflation.
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D efinition  7.1 A substitution system on L  with inflation Q is a pair (A, <L) con­
sisting of

•  a Delone multiset A =  (A,)j<m, for which each A, is a subset of L  and all A* 
are mutually disjoint, and

• an m  x m  MFS 3> on L, for which

Ai= U U C7-1)
j<m

where the maps of $  are affine linear mappings of the form x  i-> Qx + a, a E L, 
and the unions in (7.1) are disjoint.

The substitution system (A, <F) is primitive if S{§) is primitive. For any affine 
linear mapping f  : x  i-> Qx + b on L  we denote the translational part, b, of /  by i( /) .

Let (A, <3>) be a primitive substitution system on L with inflation Q. Then (A, <E>̂) is 
a primitive substitution system on L  with inflation Qe, so without loss of generality
we can assume that 5,(<F) is a positive matrix. Let II  := Li +  H b Lm, where
Li :=< Ai — Aj >, i.e. the Abelian group generated by Aj — Ai.

Since Q is an inflation for L, Q is an inflation for L' also. In fact,
Uj<m U/e<&y (Q(Aj) +  t( f) )  = Ai implies Uj£m Q iA j-A j)  C (A—A f o r  any i < m, 
and thus

Q(Li H h Lm) c  L,, for any i < m .  (7.2)

So QL' C L', hence Q e  Endz{L'). Note also f ] ^ 0QkL' C f)™=0QkL = {0}.
Note that L jL ' is finite, since A is a Delone multiset. Let q := | det Q | =  [L1 : 

QL'] > 1. We define the Q-adic completion

L = ( I ) Q =  lim L /Q kL' = lim( . L /Q kL’ ------. L/Q L ' -+ L /U )

of L and

I 7 =  ( I / ) q  = lim L '/Q kL' = lim( ► L'/Q kL' -►------ . L'/QL')
■*— k  <— /c

of L'. Each of L and U  will be supplied with the usual topology of a profinite 
group. We canidentify L and (L /L ') x TJ as topological spaces. In particular, the 
cosets a +  QkL', a E L ,k  = 1 ,2 ,. . . ,  form a basis of open sets of L  and each of 
these cosets is open and closed. When we use the word coset in this paper, we mean
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either a coset of the form a + QkL' in L or a +  QkL' in L according to the context. 
An important observation is that any two cosets in L  are either disjoint or one is 
contained in the other. The same applies to cosets of L.

We let /JL denote the Haar measure on L, normalized so that n{L) — 1. Thus for 
cosets, /i(a +  QkV )  =  |detQ|i.|L/L,| =  , k = 1 ,2 ,. . . .  R:om Q£lo QkL' = {°}>
we conclude that the mapping x  —> {x  mod QkL '}*, embeds L  in L. We identify L 
with its image in L  and note that L is then the closure of L. With this identification, 
L  is a dense subgroup of L, so we have a unique extension of $  to a MFS on L. 
Thus if /  G &ij and f  : x Qx +  a, this formula defines a mapping on L, to which 
we give the same name. Furthermore defining the compact subsets in L

Wi := Ai, i <  m ,

and using the relations (7.1) and the continuity of mappings, we have

Wi =  u u f(W j), i < m .  (7.3)
j<m febij

We call (W, <f>) the associated Q-adic system.
Suppose L  =  Uj<to For any i  < m ,  since < Aj — Aj > C L', we have

Aj C x +  L' for any x  G Aj C L.

For a E L, let

<M<*] =  { / € ( $ ) « : /(A ,) C a  +  QL'}. (7.4)

Then

U  U  /(A j) =  a +  <3£'.
i,j<m fe$ij  [a]

Let $[a] := Ujj<m$jj [a]. This partitions $  into congruence classes induced by 
L /Q L1.

D efinition 7.2 Let (A, <£) be a primitive substitution system on L  with inflation 
Q and L =  [ji<m Aj. We say that (A, $) admits a modular coincidence relative to
QL' if <3?[a] is contained entirely in one row of <f> for some a E L.

It is easy to see that (A, $) admits a modular coincidence relative to QL' if and 
only if (a +  QL') C Aj for some a E  L  and i < m .
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7.2 Pure pointedness, modular coincidence, and 
model sets

This subsection contains a new result, namely, that in the setting of lattice substi­
tution systems, pure point diffraction spectrum implies that there is a model set 
realization. Precise conditions are given in Theorem 7.9, which incorporates ear­
lier results and completes the circle of equivalences started in [22]. The key new 
ingredient of the proof is Theorem 7.4. Some of the arguments in this subsection 
are similar to the corresponding parts of [22]. However, there is an important dis­
tinction: here we have to do everything modulo the sublattice V . For instance, the 
notion of modular coincidence is not the same as in [22], L is different, etc.

Consider (A, <3>) a primitive substitution system on L with an expansive map Q. 
Since Q is expansive (see (3.1)), for any bounded subset S  of M.d containing 0 as an 
interior point and A > 1, there is a large enough ko G Z+ so that QkS  D AS  for 
k > k0.

Recall that for any set F  C R d we have a cluster F  fl A =  (F  fl Aj)j<m C  A. 
Suppose 0 G A. Let I =  (Ii)i<m ■— $(0) =  (4>,j(0))i<m where 0 G Aj, and let 

t($) := { t( f)  : f  G /  : x  i-> Qx +  t ( f ) , i , j  < m}. For a cluster P  =  (Pi)i<m 
we write supp(P) =  Uj<mPj. Let {/?, : i =  1 , . . . ,  d} be a basis of L '. Let D0 be the 
parallelepiped in Rd of the form

D0 = {xifii  b Xifc -I 1- xd(3d : - 1  < Xi < 1,1 < i < d }. (7.5)

We can always find p G Z+ so that 5 ($ p) is positive and QPD0 D XD0 for some 
A > 1, and then a > 0 so that D aD0 D (supp($p(0)) U i($ p)). Replacing $  
by $ p, QD0 by QPD0 etc., we may, for the purposes of Theorem 7.4, assume at the 
outset that S,(4>) is positive, Q(D) D XD, and D D (supp(I) U t(<f>)) for some A > 1 
and convex D.

Lem m a 7.3 Let (A, 4?) be a primitive substitution system on L with expansive map 
Q and 0 G A. Let D be a convex set for which Q(D) D XD for some A > 1 and 
D D (supp(I) U £($)). Then there is r > 0 such that supp($n(I)) C  Qn(rD) for all 
n G Z+.

Proof. Choose p G Z+ so that Ap > p + 1. Since XD c  Q(D), we have (p + l)D  C  
ApD C QP{D). So

(p +  1)D C QP(D). (7.6)
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Note that Q(D) D D and kD = D H b D for any k G Z+, since D is convex.
 , *V “  "  1,11

k
Since we have supp(I) C D, which means I C D fi A, for any n G Z+

supp($n(I))
C supp($n(£>nA))
C f($) +  Q(supp($n- 1(£» n A)))
C t($) +  --- +  Qn- 1(t($)) +  g n(L>)
C £> +  ••• + Qn~1(D) + Qn(D). (7.7)

Since Q(D ) D XD D D, we have Ql(D) D Qi(D) for i > j .  Thus, writing n — Ip+s,
where 1 <  s < p and I G Z>0, we obtain

£ < ? * ( £ > )  =  ' £ q , ( d ) +  ' £ q ''-> *  £ q ‘ ( d )

i=0 <=0 fc=l \i= l /
I

C (p +  l ) g n- 'p(T») +  J ]  Qn~kp{pQp{D))
k=1

= ( (p +!)£> + P 53 <5('_fc+1)p(T>) j

So

\  fc=i /

C Qn~lp (Q p(D )+ p J 2 Q ^ p(D)^j from (7.6).

n /  I- 1 '

YLQ^d ) c (p + i ) o + p E W )
i=0 \  i=l /

c  ^g^(D) +  P 53 QJP(£>)^

C Qn~lpQp ---Q p((p +  1 )D) =  gn((p +  1)T>).

In view of (7.7) this implies that r := p +  1 satisfies the assertion of the lemma. □

T heorem  7.4 Let (A, $) be a repetitive primitive substitution system on L with 
expansive map Q and L =  (Ji<m A*- I f  dens(A A (Qna  +  A)) n—¥  0 for all a  G L1, 
then a modular coincidence relative to QML' occurs in 4>M for some M  G Z+.
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Proof. Suppose that for all n  £ N, f  does not admit any modular coincidence 
relative to QnL'. We assume that S{fb) is a positive matrix without loss of the
generality. Then the cluster I =  (Ii)i<m — (&ij(ty)z<m, with 0 G Aj, has at least
one element from each point set in A =  ( A W e  claim that for all n G Z+, 
supp(4>"(I)) intersects every coset x +  QnL' of QnL' in L  non-trivially. Indeed, 
L = {Ji<m Ai and each A* C h  + L' for i < m . So

l  =  u  U  (*")><«+ i ')

j<mi<m
=  supp($n(I)) +  QnU .

So the claim follows.
To test modular coincidence we need only know about the translation parts of 
and to which coset of II  each A* belongs (see Def. 7.2 and (7.4)). Since I has 

at least one element of each colour type i =  1, . . . ,  m, modular coincidence can be 
tested on 4>n(I): if (a +  QnL') fl supp(4>n(I)) C A * for some i, then it means all the 
mappings in $ n which contribute to produce points in a +  QnL' lie on the i-row of 
<h". So 4>n has modular coincidence relative to QnL '.

Since Q is an expansive map, there is a parallelepiped D =  aDo for which
Q(D) D XD and D D (supp(I) U f(<&)) for some A > 1. Then by Lemma 7.3 there 
is r > 0 such that supp($n(I)) c  Qn(rD) for all n G Z+.

We have assumed that there is no modular coincidence. Thus, for any a G L  and 
any n >  1, there exists i < m  and

x ,y £  supp($n(I)) D (a +  QnL') such that x  G Aj, y g  A*. (7.8)

Let f3-j =  —j3j for j  =  1, . . .  , d. We can write y — x  as a non-negative integer linear 
combination of the vectors Qnj5j , j  G (± 1 , . . .  , ±d}.  Now Qn(rD) is a parallelepiped 
generated by Qnf3j, 1 < j  < d, which contains supp($n(I)). Then there exists a 
path x  =  x 1,x 2, . . . , x s =  y entirely in Qn(rD) whose steps are each of the form 
%i+i ~  xi =  Qn(3j, |j | < d and we see that there is a x' G Qn(rD ) n  (a +  QnL') n  
Ai such that x' + Qnf3j 6 ((Qn(rD ) n  {a + QnL '))\A l for some j ,  \j\ < d. It follows 
that

ii [Ubl<d(A A (grâ  +  A)) n  Qn(rD )] > | det Qn\ ■ \L/L%  (7.9)

since there are | det Qn \ • \LjL!\ cosets of QnL' in L and each of the cosets contributes 
at least one point to our count.
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Furthermore for a parallelepiped c +  Qn(rD) containing supp(c +  <f>n(I)), for 
which c +  $ ra(I) is a translate of <f>n(I), the argument goes in the same way. For x, y 
in (7.8) we have

(x + c) E supp(c +  $"(I)) f l  Ai, (y + c) G supp(c +  $"(I))\A i, y - x e Q nL'.

As above, this implies that for some x" e  (c +  Qn(rD )) n  (c +  a +  QnU) f l  Aj we 
have x" +  Qnf3j G ((c +  Qn(rD )) f l  (c +  a +  QnL '))\A i for some j, |j | < d. Thus, 
similarly to (7.9),

fl [U\j \<d(A A(Q nf3j +  A)) n (c + Qn(rD))} > | det Q” | • \L/L'\. (7.10)

Let

Hk — {x  G L : x  +  (rD  f l  A) C Fk f l  A}, where {F*,} is a van Hove sequence.

and let Hk be a maximal set of x  G Hk such that (x +  rD) are mutually disjoint. 
Since Q is invertible, Qn(x +  rD ) and Qn(y +  rD) are disjoint if and only if x  +  rD  
and y +  rD  are disjoint. So {Qn(x +  rD) f l  A : x G Hk} is a set of disjoint
A-clusters, which need not be translates of each other. We claim that each of the
clusters Qn(x+ rD )n A , for x  G Hk, contains a translate of <&n(I). Indeed, if x  G Hk, 
then x  +  I C  Fk f l  A since I C rD  f l  A. It follows that <f>"(a; +  I) C <E>n(A) =  A, 
<&n{x + 1) =  Qnx  +  $"(1) since x  + 1 is a translate of the cluster I, and

supp($n(a; + 1)) =  Qnx  +  supp($n(I))
C Qnx + Qn(rD) 
= Qn(x +  rD).

This claim, together with (7.10), yields

fl [Ub1<d(AA (Q 'ft  + A)) n  Qn{Fk)\
> fl ilfc • | det Qn\ ■ \L/L'\. (7.11)

Recall that
freq(rl) f l  A, A) =  lim ^

fc-oo Vol(Ffe) ’
see Def. 2.6. Let e := diam(rU). The set x + rD, for x  G L, can intersect at most 
fl ((rD )+e f l  L) translates y + rD, y G L. Thus,

fl Hk > iH k((rD)+e fl L) ‘ 
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Combining this with (7.11) we obtain

tt [Um<d(AA(Qn(3j +  A)) n  Qn(Fk)} ft Hk • \L/L'\
Vol(Qn(Fk)) ~  Vol(Ffc) • 8 ((rD Y  n  L) ‘

Letting k —► oo, we conclude that

£  deas(A A +  A)) > ' I W ■

Note that when passing to the limit in the left-hand side we used a van Hove se­
quence {Qn(Fk)}k>i. This is legitimate in view of Remark 6.13. By assumption, 
dens (A A (Qna  +  A ) ) ? 0 for all a  € L', and in particular

J 2  dens(AA(Qn^  +  A)) n-= ^  0.
Ul<<*

But freq(rZ) n  A, A) > 0 by the repetitive property. This is a contradiction. □

T heorem  7.5 Let (A, <fr) be a primitive substitution system on L with inflation Q. 
Let (W ,<&) be the corresponding associated Q-adic system. Suppose L = \Ji<rnWi. 
Then

(i) S ($ r) =  (S($))r , for all r > 1;

(ii) p(Wi) = T  Ej<m (5 ($ r ))y/i (Wj)> f° r all i< m ,  r >  1;

(iii) W f  7̂  0 and p(dW i) =  0, for a lii < m .

Proof For every measurable set E  C L and any /  e  where f  : x Qx +  a, 
m (/(F)) =  p(a + Q(E)) = In particular, p{f{W j)) =  J wjt where Wj :=
p(Wj) and q = | det Q |. We obtain

m  ^

(£($%■) Wj, for any r > 1
j=i q

from (7.3).
Let w =  (wi)i<m. Since L =  Ui<mW»> Baire category theorem assures that 

for at least one i,

W f  0 (7.12)
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and then the primitivity gives this for all i. So w > 0 and

w < — S ($ r)w < ~^S(^)rw, for any r  >  1. (7-13)

Since S(<F)r is primitive and the PF eigenvalue of S'($)r is qr — \ det Q\r by 3.3, we 
have from [22, Lemma 1] that

1 1
w =  — S ($ r)w =  — S($ )rw, for any r > 1. (7-14)

The positivity of w together with 5(<f>r) < 5(4>)r shows that £'($’’) =  £'(<L)r . This 
proves (i) and (ii).

Fix any i < m, let Wi° contain a basis open set a + QrL' with some r € Z>0 
by (7.12). Since (A,<Lr) is a substitution system, a + QrL' C W °  C Wi — 

In particular, (a +  QrL') fl g(Wk) ^  0 for some k < m  and some 
9 e  ($ r)ife. However g(z + L ') =  Qr(z +  L') + t(g), where Ak C z + L '. So 
(a + QrL') fl (t(g) +  Qrz +  QrL') ^  0. This means a +  QrL' = t(g) +  Qrz  +  QrL'. 
Thus

g(Wk) C g ( z  + V )  = a + QrU c W i° . (7.15)

For all /  e  ($% •, j  < m , f  is clearly an open map, so Uj<m($ r )u(Wt°) c  W*° ■ 
Thus

sWi =  w, \w,° =  ( U ( * r) « W ) )  W
\ j < m  /

C |J ((-F),,^) \ (*r)«W))
j<m

C U ( S r)y(0WO). (7.16)
3<m

Note that due to (7.15) at least one g in (4>r)y does not contribute to the relation 
(7.16).

Let Vi := fi(dWi), i < m, and v := (vi)i<m- So v < j^S{$r)v. Actually, by what 
we just said,

0 < v < ^ :S'v < ^ S ( $ T)v = ^ S { $ ) rv, (7.17)

where S' < S,(4>)r , S' ^  S(&)r. Now applying [22, Lemma 1] again we obtain 
equality throughout (7.17). But by [22, Lemma 2] the eigenvalues of A;S' are strictly 
less in absolute value than the PF eigenvalue of A £($)r , which is 1. This forces 
v = 0, and hence g(dWi) =  0, i < m. □
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T heorem  7.6 Let (A, <3>) be a primitive substitution system on L with inflation Q 
and L — (Ji<m Ai- 7/ there is a modular coincidence relative to QML' in <LM, then 
Ws° l~l Wt° =  0, where s ,t  < m , s ^ t .

Proof. By assumption, there is Aj such that

a +  QmU  =  [J /(A?) c  Aj for some a G L. (7.18)
j<™ f€($M)ij[a]

Assume (<3>M)jfc[a| ^  0 for some k. Pick /  G ($M)ik[a], where f  : x QMx  +  t( f ) .  
Then QMy +  t ( f )  =  a mod QML \  where A*, c y  +  I/, and / ( A&) C a t  QMU .

Take any s < m  and suppose As C z +  L '. Pick g G &ks i 1 0, where g : x  i-> 
Qx + t(g). Then

fo g ( A s) -  Qm (Q(As) + t(g)) + t( f)

=  Q M + 1 ( A s )  +  Q M ( t ( 5 ) )  +  i ( / )

C QM+1(^) +  QM(t(p)) +  t ( / )  +  g M+1T/.

Let c := QM+1(z) +  QM(t(g)) + t( f) .  So

fo g ( A s) c c  + QM+1L’.

Let p f  o g E ($ M+1)jS. Since /  o g(As) C a + QML' C Aj,

(a -4- Qm L') n  (c +  Qm+1L') 0.

Thus

c + QM+1L’ c a  + QML’ C Aj.

Let

:= {h G ($ M+%  : h(Aj) C c +  QM+1L’}, where j  <  m.

So

c +  Qm+1L '=  (J |J  h (A j) . (7.19)
j<m h&Hj

Note that for any j  < m  and h G Hj, QM+1x  +  t(h) = c mod QM+1V , where 
Aj C x + L’. So we can write (7.19) more explicitly as follows;

c + QM+1L' = \ J { c  + QM+1a h + QM+1A j :
j<m

h €Hj

c + Q + ah = t(h), where a h G L  } . (7.20)
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So

£ ' = 1 1  U ( “* + aj>-
j<m h€Hj

Note ap +  As C L '. Separating off As, we get

- a p +  L’ =  ASU(|J (J (-ap + afc + A,-), (7.21)
j<m heH'j

where Hj Hj if j  ^  s, and H's := i7s\{p}. Note that the decompositions of 
(7.21) are disjoint. But we also know that As and (J{Aj : Aj C —ap + L ',j  s} are 
disjoint. So it follows that

|^J{Aj : Aj C — OLp + L , j  ^  s} C |^J (—otp +  +  Aj). (7.22)
}<mh€H'j

Taking closures to both sides of (7.22),

U w : c  ~ av + j  ±  5> c  U  U  (~ap + a h + w i)' (7-23)

On the other hand, if we apply Theorem 7.5 to <frM+1 and look at (7.20), we get

li(c +  Qm+vU) =  K Q M+1(a h +  Wj) +  c ) .
j<m h^Hj

Hence

So

Thus

"(£') = E  E  / * ( « » + •
j< m  heHj

n ( — a p  +  I / )  — ^  ^  n ( — a p +  +  I T , ) .
j<m  Ziei/j

/r(-ap + Z/) = /i(Ws) + E E - “> + a/j + /r(TT,)

'yj<mheH’j

which, after taking closures in (7.21), gives us

U + <*h + Wj) =  0 . (7.24)
\ j < m  hzH'j
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Finally from (7.23) and (7.24) we obtain

P ( W S n ( { J i W j  : A j  C -op + L ', j  ?  s})) = 0.

It shows that Ws° D Wj° =  0 for any j  with Aj C —a p +  L’, j  ^  s. It is easy to
see that Ws° fl Wk° =  0, where Ak <£ - a p + L'. Since s is arbitrary in { 1 ,... ,  m},
Ws° n Wt° — 0 for all s ,t  < m ,s  ^  t. □

Taking the compact Abelian group L as an internal space, we consider the fol­
lowing cut and project scheme;

R d R d x j ;  ———* I

L  *—  L — * L  (?-25>
t *---  (t , t)  > t

where L { (t, t) : t G L} C M.d x L.
In fact, L  is a compact Abelian group and L  C Rd x L  is a lattice, i.e. a discrete 

subgroup for which the quotient group (Rd x L )/L  is compact. Furthermore, tti\i 
is injective and ^ (L )  is dense in L.

P ro p osition  7.7 Let Aj, * < m, be disjoint point sets of the lattice L in Rd for 
which L  -  Ui<m Ai- V w i n  w 3° = 0 f° r al1 i ±  h  then A(Wj°) C Aj c  A(Wj) for 
all i < m. Furthermore if each Aj is repetitive, then Wi =  W ° . In other words, Aj 
is a model set for all i < m.

Proof. For i < m, let x G A(Wj°). From the assumption that W °  Pi Wj° =  0 for all 
j  ^  i, we can find a neighbourhood U of x  in L such that U fl Wj° =  0 for all j  i. 
So x £ Wj for all j  ±  i, which means x  (Jj& Aj  =  L\A,. Thus x e  Aj. Therefore 
A(Wj°) C Aj C A(Wj) for all i < m. If each Aj is repetitive, by [41, Cor. 4.4] we get
Wt = W -  □

T heorem  7.8 (Schlottmann [41]) I f  T C R d is a regular model set, then P has 
pure point diffraction spectrum, i.e. the Fourier transform of its volume averaged 
autocorrelation measure is a pure point measure.

This theorem was established for real internal spaces by [17] and in full generality, 
as stated here, in [41]. For a new simpler proof of this result see [4]. □

Gathering all the results, we can state the following theorem, which says, in par­
ticular, that A has pure point diffraction spectrum if and only if each Aj is a regular
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model set with respect to a certain cut-and-project scheme, and that generalizes 
Dekking’s well-known criterion for pure point diffractivity to lattice substitutions in 
Rd.

T heorem  7.9 Let A  be a Delone multiset with expansive map Q such that (A, <E>) 
is a primitive substitution system, L — \Ji<m A» for some lattice L in Rd, and every
A-cluster is legal. Let L' = Lj H 1- Lm, where Li —< A» — A* >. The following
are equivalent:

(i) A has pure point diffraction spectrum;
(ii) A has pure point dynamical spectrum;
(iii) dens(AA(Qna: +  A)) 0 for all a  € L';
(iv) A modular coincidence relative to QML' occurs in <hM for some M;
(v) Each Ai is a regular model set for i < m, relative to the CPS (7.25).

Proof. It is easy to see that A has FLC since A lies in a lattice L in Rd, that A is 
repetitive since every A-cluster is legal, and that A has UCF. Thus the proof goes 
as follows:

(i) (ii) Theorem 5.1.
(ii) o  (iii) Prop. 6.12.
(iii) => (iv) Theorem 7.4.
(iv) => (v) Theorem 7.5 and 7.6, Prop. 7.7.
(v) =>■ (i) Theorem 7.8. □

R em ark  7.10 If A is representable but not repetitive, then it still may be possible 
to use the criteria of Theorem 7.9 to check for pure point diffractivity, using the 
argument in Remark 6.5. One only has to find another T E X& which does satisfy 
the conditions in Theorem 7.9, since A is pure point diffractive if and only if T is 
pure point diffractive (see Theorem 5.1).

Exam ple 7.11 (Substitution Delone multiset with modular coincidence) Consider 
a substitution defined by a —> abc, b —> deb, c —► cda, and d —> dab. We can consider 
a corresponding MFS $  as follows;

 ̂ {3a;} 0 {3x +  2} {3x +  1} ^
{3a;+  1} {3a; +  2} 0 {3x +  2}
{3a; +  2} {3a: +  1} {3a;} 0

 ̂ 0 {3x} {3a; + 1}  {3a;} y

A Delone multiset A =  (A„, A&, Ac, A^) generated from ({0}, {-1}, 0, 0) is fixed 
under $ . On the real line, A looks like
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-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
c d a d c b a b c d c b c d a

Note that < Aa — Aa : a € {a,  b, c, d} >= 2Z and that Aa C 2Z, A& C 1 +  2Z, 
Ac C 2Z, and Ad c  1 +  2Z.

$

( K \
Ah
A c 

\  A  d )

c

(  6Z U 0 U (6Z +  2) U (6Z +  4) ^
(6Z +  1) U (6Z +  5) U 0 U (6Z +  5)
(6Z -(- 2) U (6Z +  4) U 6Z U 0

\  0 U (6Z +  3) U (6Z +  1) U (6Z +  3)

Since each of $[3] and $[5] lies in one row of <f>, the modular coincidence is confirmed. 
By Theorem 7.9 the sets Aa, A A c, Ad are pure point diffractive and regular model 
sets.
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Chapter 8

Model M ultisets and Two 
Dynamical Hulls

We have defined model multisets in SubSec. 2.1.1 and introduced a dynamical hull 
X \  with a topology based on local structure in the SubSec. 4.1.1. We now introduce 
another dynamical hull A(A) with a topology based on the average overall structure. 
Although the two dynamical hulls are quite different from each other in general, 
when the generating point set is a regular model multiset, there is a continuous 
map between the two dynamical hulls. Furthermore, under certain assumptions the 
existence of such a map ensures that the point set is a regular model multiset. Thus 
we can characterize regular model multisets using this mappings.

This characterization was first given in [2] but only in the context of single 
coloured point sets and with an analysis on dynamical systems. However a lot of 
physical samples and mathematical examples can be idealized and represented by 
multisets, and there is no direct way to obtain the similar properties on multisets 
from the properties on single coloured point sets. So we here extend the characteri­
zation in multiset cases.

A nice aspect of the characterization is that when we try to check if a multiset is 
a regular model multiset, instead of directly using the set, we can choose an easier 
set in the local hull X A and work with it and then deduce information we need for 
the original set.

In Sec. 8.1 we define A(A) the completion of Rd with the topology based on 
the average overall structure. When A(A) is compact, we can construct a cut and 
project scheme. We prove several properties here which we are going to use in later 
subsections.

In Sec. 8.2 we show that the existence of a continuous surjective Rd-map (3 :
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X \  —► A(A) (so called ‘torus parametrizatio'ri) which is one-to-one a.e. ensures 
that A is a regular model multiset.

In Sec. 8.3 we show the converse. That is, if A is a regular model multiset then 
the continuous surjective Rd-map which is one-to-one a.e. exists.

Briefly we prove the following theorem in this chapter

T heorem  8.1 Let A  be a repetitive Meyer multiset in Rd. Then there is a contin­
uous Rd-map (3 : X \  —> A(A) which is one-to-one a.e. with respect to A(A) i f  and 
only if A  (or equivalently each element of X \ )  is a regular model multiset.

8.1 Dynamical system  with autocorrelation topol­
ogy

In this chapter we consider an averaging sequence A  =  {An}n€N satisfying (i) each 
A n is a compact set of Rd, (ii) for all n, An c  A°+1, (iii) UneN ~  and (iv) 
(the van Hove property) for all r > 0, l im ^ ^  Vol(<9(An))+r/Vol(A„) =  0, as in [32].

We say that A is locally finite if for any compact set K  in Rd, K  n  A is finite 
(equivalently each A* is discrete and closed). For the rest of this chapter we consider 
A a locally finite multiset in which each colour set Aj is relatively dense.

Now we construct the autocorrelation group A(A). Let A', A" be locally finite 
multisets in Rd. We define

n->oo VOl(An)

For each open neighbourhood V  of 0 in Rd and each e > 0, define

U(V, e) := {(x, y) G Rd x Rd : d (-v  +  x + A, y +  A) < e for some v e  V}.

Let U  — {U(V, e) C Rd x Rd : V  is an open neighbourhood of 0 in Rd and e > 0}. 
Then U  forms a fundamental set of entourages for a uniformity on Rd. Since each 
U(V, e) is Rd-invariant, we obtain a topological group structure on Rd. We will call 
it the autocorrelation topology. Let A(A) be the Hausdorff completion of Rd in this 
topology, which is a new topological group (see [7, Chapter III, §3.4]).

On the other hand, we define T> as a collection of all locally finite multisets in 
Kd. We obtain a metric by defining the equivalence relation

A' =  A" d(A \ A") = 0
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and factoring d through it. Then T>/= is a complete space with the metric (this uses 
the property of the averaging sequence A) [32]. So the closure of the orbit Rd +  [A] 
in the autocorrelation topology, where [A] is an equivalence class of A, is isomorphic 
to A(A) (see [7, Chapter II, §3.6, Cor.]).

Although A(A) is the completion of Rd under the autocorrelation topology, it 
may be more enlightening to think of A (A) as the hull (completion) of A under 
translation action by Rd when the topology is supplied by mixing that of pseudo­
metric d and the given topology of Rd. For y G Rd and U G U ,  define U[y\ =  { i £  
Rd : (x , y) € U}. Let Pe = {x G Rd : d(x +  A, A) < e} for each e > 0. Then 
U(V, e)[0] — Pe + V. Note that for any e > 2d(A, 0), P€ = Rd.

P roposition  8.2 Let A  be a locally finite multiset in Rd. Then A(A) is compact if 
and only if for all e > 0, Pf is relatively dense in Rd.

P ro o f . Suppose that A(A) is compact. Since A(A) is the completion of Rd, Rd is 
precompact. So for any e > 0 and open neighbourhood V  of 0 in Rd whose closure 
is compact, there are tj G Rd with 1 < j  < M  such that

M  M

Rd C (Jfo +  U(V, e)[0]) C  (J (tj + Pe + V ) c P e + K,
3=1 3=1

where K  := IJ jii  ifj +  V) is compact. Therefore P e is relatively dense for all e > 0.
Conversely, we assume that Pe is relatively dense for all e > 0. Let e > 0 and 

V' be an open neighbourhood of 0 in Rd. From the assumption, Rd C P€ +  K ' for 
some compact set K'. We can cover K ' with finite translations of V' i.e. there are 
t i , . . .  , t i  £ Rd such that K ' C U^=i {tj +  V')- Thus

L  L

R d c P e + K ' c  U fe- + Pe + V') = \ J  U(V', 
j=i j=i

Hence Rd is precompact and A(A) is compact. □

Let us assume that Pe is relatively dense for all e > 0. We define

L := (Aj -  Af, Aj : i , j  < m ).

Then Pe C L for any e < 2d(A, 0). We can define a uniformity on L  using the pseudo 
metric d. Then the P f  s are a basis for a fundamental system of neighbourhoods of 
0 in the corresponding topology. We define H  to be a (Hausdorff) completion of L
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in this uniformity. Then the completion H  is a locally compact Abelian group (see
[4]). By definition of H  there exists a uniformly continuous mapping f  : L —> H  
such that cp(L) is dense in H. Now we can construct a cut and project scheme:

E1* A  A  H
U

L <—  L — ► <j){L) (8.2)

x <—  {x,H x)) — ► 4>(x),

where L  =  {(x, <f>(x)) : x G L}. Here L  is relatively dense and a discrete subgroup 
in Rd x H, and so the factor group T(A) := (Rd x H )/L  is compact (see [4]). The
pseudo-metric d on L determines a corresponding metric dH on H. Let denote
the corresponding open ball of radius e in H. Then 4>(Pe) — <f>(L) D B f ,  We define

i : Rd —>• (Rd x (f>(L))/L by t(a;) =  (x, 0) +  L.

Proposition 8.3 Let A  be a locally finite multiset in Rd. Suppose that Pe is rela­
tively dense for all e > 0. Then A(A) =  T(A).

P r o o f .  T(A) may be viewed as the completion of Rd under the uniform topology 
which is the coarsest topology on Rd for which the map i : Rd — ► (Rd x <f>(L))/L 
is continuous. For an open neighbourhood (V x <f>(Pe) + L) of 0 in (Rd x <j>(L))/L 
with e < 2d(A, 0),

V  x f ( P e) + L  -  (V  -  P €) x {0} + L  
=  (V + P €) X {0} +  L == i(V  + Pe) = i(U(V, e)[0]).

This is the same topology on Rd as the autocorrelation topology on Rd. Thus 
A(A) “  T(A). □

Corollary 8.4 Let A  be a locally finite multiset with FLC. Suppose that there exists 
a continuous R d-map (3 : X \  —> A(A). Then P£ is relatively dense in Rd for a l l o t )  
and A(A) =  T(A).

P r o o f . Since A has FLC, X A is compact. Note that fd(XA) is dense in A(A) 
because f3 is a Rd-map. The continuity of (3 gives us that A(A) is compact. Thus P e is 
relatively dense in Rd for all e > 0. By Prop. 8.3 we can conclude that A(A) =  T(A).
□

Thus we may identify A(A) with T(A) when it is convenient.
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Proposition 8.5 Let A be a Meyer multiset in Rd and set A* := Aj — A* for each 
i < m . I f  Pe is relatively dense for all e > 0 then, for each i < m, A* is precompact 
in L with the pseudo-metric topology and </>(Ai) is compact in H  .

P r o o f .  Choose any e > 0. Since each Aj is a Meyer set, A  is locally finite and there 
exist finite sets Jj with Aj — Aj C  Aj +  Jj. It is easy to see that Aj — Aj C  Aj +  F  for 
some finite set F  and A< +  F  C Aj +  «/* + F  for each i < m .  Note that Aj +  Jj +  F  is 
locally finite. Prom the assumption, for any given P e we can find a compact set K e 
such that Rd C P £ +  K e. So A; C  P£ +  K c for each i < m .  Since each Aj is relatively 
dense, for small enough e > 0, P e C n g :1A j. Then by the assumption

(Aj -  p e) n K e c  (Aj -  Aj) n l f e c  (Aj +  F ) n K e =  n u

where iVj is a finite subset of L. Thus Aj C Pe + Ni for each i < m. So Aj is 
precompact (totally bounded) in L with the pseudo-metric topology and ^>(Aj) is 
compact in H  for each i < m . □

8.2 Torus parameterizations for model m ultisets
We say that T is non-singular in X \  if /3- 1(/?({r})) =  {T}. The set of non-singular 
elements of X& consists of full Rd-orbits.

Proposition 8.6 Let A  be a multiset in Rd with FLC. Suppose that there exists a 
continuous R d-map f3 : X A —> A (A). I f  T is non-singular in X A, then given any 
M  & Z+, there is e =  e(M) > 0 such that for any t £ Pe, (t +  T) fl Am — T fl Am-

P r o o f . Suppose that there is a positive integer M  such that for any n > 0 there 
exists tn £ P (i/2n) for which

{tn +  r )  n  A m T ^ r n A m -

Since X r  C X A is compact from FLC of A, {£„ +  T}n has a convergent subsequence 
{tnk + r}*. such that tnk -f-T —»• T'. On the other hand, identifying A(A) with T(A),

p { t nk + r )  = (t„k,o) + m  = (o, —<f>(tnk)) + m -

Since <f>(tnk) 0, lim/^oo (3(tnk +  T) =  (3(T). And by the continuity of (3,

lim p(tnk +  T) =  p(T').
AC—►OO

Then (3(T) = /3(T'), and by the assumption that T is non-singular in X A we get 
r  =  r ' .  It follows that tnk +  r  r .  This contradicts the choice of {tnk}. □

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Proposition 8.7 Let A  be a multiset in Rd with FLC. Suppose that there exists a 
continuous M.d-map (3 : X A —* A(A). I f  T is non-singular in A a then there exist 
s G R d and non-empty open sets Ui C H  so that

Tj =  —s +  A (Ui) for each i < m

with respect to CPS (8.2). Furthermore each Ui is compact if  and only i fT  is Meyer.

P r o o f .  Since T G Aa, we can choose a compact set K  for which T fl K  contains all 
colours of points in T. Then we can find s G Rd such that r  fl K  = (—s +  A) D K. 
For all i < m, s +  Fj C Aj +  L C L. Furthermore, since (3 is a Rd-map and T 
is non-singular, s +  T is also non-singular. So we can translate and assume at the 
outset that supp(r) C L.

Let i < m  and x  G T*. For any M  > 0 with x  G R  fl Am, there is ex = e(M) > 0 
so that for any y G P£x, (y +  r») n  Am  =  r» fl Am by Prop. 8 .6 . This implies that 
x  — y G Tj for any y G P£x, and thus x -  P£x C T*. Since P€x = - P ex, x  +  P£x C Tj. 
Therefore

r ,=  (J (x + p „ ) .
xeTi

Recall that 4>(P£x) =  4>{L) fl Bfx where Bfx is an open ball of radius ex in H. So 

T* =  A (Ui) where Ui — + B^x) is open in H.
x£Ti

From Prop. 8.2, Pe is relatively dense for all e > 0. If T is Meyer, Ui is compact 
from Prop. 8.5. On the other hand, if each Ui is compact then Tj — T* C A (Ui — Uf) 
which is uniformly discrete. So each T* is a Meyer set. □

Proposition 8.8 Let A  be a multiset in Rd with FLC. Suppose that there exists a 
continuous Rd-map (3 : X A -> A(A). / /T  G X A is non-singular and for each i < m  
Tj =  A(Ui) with an open set Ui C H  with respect to CPS (8.2), then for each i < m  
4>{L) O dUi = 0 with respect to CPS (8.2).

P r o o f .  Suppose that <p(x) e  4>(L)ndUi for some x G L. So x £ T* =  A (Ui). There 
is a sequence {yn) n in r 4 such that <j>(yn) G <f(L)C\Ui and l im ^ ^  <j>(yn) = cj)(x). Since 
X r  C A a is compact, we can assume that {a; — yn +  is a converging sequence 
in Ap. Let T' := lim„_oo(x — yn + T). Note that F' contains x and f3(T') = (3(T). 
Since T is non-singular in Aa , T1 = T. However x (f R . This contradiction shows 
that the boundary of Ui cannot contribute to T and so <j>{L) fl dUt =  0. □
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R em ark: In this last proposition it is possible to make the sets Ui a little nicer, 
replacing them by W f  where Wi Ut, since these differ only from the Ut by
boundary points, and these additional points do not affect the multiset V. This 
set Wi has the nice property that Wi is the closure of its interior, a property often 
assumed in defining model sets.

P roposition  8.9 Let A  be a multiset in Rd for which A (Vj°) C A, C A (Vi) where 
Vi is compact and V f  7̂  0 for i < m, with respect to some CPS (see (2.7)). Then 
A has FLC, and for any T  G X \  there exists (—s, —h) e R d x H  $0 that

—s +  A(h +  Vi°) C Tj C — s +  A(h +  Vi) for each i < m .

I f  |J™ j Fj c  L, then we can take s =  0. Furthermore, if there exists a continuous 
Rd-map (3 : X \  —> A(A) such that /3(A) =  (0,0) +  L, then @(T) — (—s, —h) +  L.

P r o o f .  For each T  G X \  we can choose s G Rd such that s +  U r=i C L. We first 
claim that A has FLC. Since A(Vj°) c  Aj C A(Vj) for each i < m,

A( U  w  c  U  A<c  A<U
i< m  i< m  i< m

Note that W  (Ji<m Vi is compact. So for any compact set K  C Rd, (A(W) — 
A(W)) fl K  has finite elements. It implies that for any x € supp(A) there are, 
up to translation, only finitely many different subsets of the form (K  +  x) fl A. 
Therefore A has FLC. Then X \  is compact and we can find {fn}„ C L  such that 
{tn +  A} converges to s +  T in X \ .  There exists no € Z+ such that for any 
k, I > no, (tk +  A) fl (ti + A) ^  0 and so tk — L G Aj — Aj for some i < m. Thus 
<t>{tk)—<t>{ti) G V ~  V^ Since V", — Vt is compact, we can find a convergent subsequence 
of {<f(tn)}n- Without loss of generality, we can assume that

lim 4>{tn) =: h G H.
71—>O0

For each i < m, if z G A (h+ V°), then there is n*, 1 G Z + such that (f>{z) — 4>{tn) G V° 
for any n > niy 1. So z — tn A(Vi°) C Ai i.e. z £ tn + Aj. Thus 2  G s +  Tj. This 
implies

A(h +  Vj°) C s +  Fj for each i < m.

On the other hand, if z  G s +  Tj, then 2  G i„  +  Aj for large n. So 4>(z) G 4>{tn) +  Vj
for large n and (p(z) G h + Vj. Thus z  G A(h +  Vj). Therefore

A(h +  Vj°) C s + Tj C A(h +  Vi) for each i< m .
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Note that f3(tn +  A) =  i(tn) + /3(A) and c(tn) =  (tn, 0) + L = (0, -<j)(tn)) +  L. Thus 

f3(T) = fc(-s) +  f3(s +  T) =  fc(-s) +  lim /?(tn +  A)n—*oo
=  i( - s )  +  lim i(tn) + /3(A) = ( - s ,  0) +  (0, - h )  +  Lrc—►<»
=  (—3, —/l) +  L.

□

C orollary  8.10 Let A  be a multiset with FLC. Suppose that there exists a contin­
uous Rd-map (3 : X \  —> A(A), and Aj =  A(Wf) with respect to CPS (8.2) where 
Wi C  H  is compact and Wi =  Wj° ^  0 /o r each i < m . IJT  is non-singular in X \ ,  
then there is (—s, —h ) 6  Rd x H  so that

Tj =  — s +  A(h + Wi°) for each i < m .

P r o o f .  If r  is non-singular in X \ ,  from Prop. 8 .7  and 8 .8  there exists s € R d such 
that r f =  — s +  A(Ui) where Ui C  H  is open and <j>(L) fl dUi — 0 for each i < m. 
Then from Prop. 8.9 there exists (—s, —h) € Rd x  H  such that — s + A(h -I- W °)  C  

Tj C  — s +  A(h +  Wi) for each i < m . Thus for each i < m ,

A (h +  Wi°) C  A(Ui) C A(h +  Wi).

Since Ui\(h +  Wf) is open and 4>(L) is dense in H, Ui C (h +  Wf). Replacing Ui by 
(h + W °)  U Ui, we can assume that h + W f  C Ui C h + Wi. Since Ui is an open set, 
Ui C  h + W f.  Therefore Ui = h + W f  and Tj =  —s +  A(/i +  W f).  □

P ro p o sitio n  8.11 Let A  be a multiset in Rd with FLC and repetitivity. Suppose 
that there exists a continuous Rd-map f3 : X \  —> A(A) and that A(Vj°) C Aj C A(Vj) 
where Vi is compact, V° ^  0, and dVi has empty interior for each i < m , with respect 
to CPS (8.2). Then there exists a non-singular element A' in X \  such that for each 
i < m, =  A(Wj) where Wt is compact and Wi =  W f with respect to the same 
CPS (8.2), and so for each T e  X A there exists ( - s ,  - h )  G Rd x  H so that

—s +  A(h +  W f)  C  Tj C  — s +  A(h +  Wf) for each i < m .

PROOF. Prom Prop. 8.9, for any T G X A there exists (—s, —h) G Rd x H  so that

—s +  A (h +  V f) C Tj C — s + A (h -I- Vj) for each i < m .
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By Baire category theorem, there exists h! G H  such that

<f>(L) n  {h! + U  dVi) = 0.
i<m

So we can find A' G X A such that f3(A!) =  (0, —h!) +  L and A- =  A(h1 + V f)  for 
i < m. For each i < m, let Wi — h! + V f. Then Wi — W f , Wi is compact, and 
AJ =  A(Wi). Note that X A = X A> by the repetitivity of A. Therefore applying 
Prop. 8.9 again, we can conclude the theorem. □

P roposition  8.12  Let A  be a multiset with FLC. Suppose that there exists a con­
tinuous Rd-map (3 : X A —*■ A(A) which is one-to-one a.e. A(A), and Ai — A(Wf) 
with respect to CPS (8.2) where Wi is compact and Wi = W f  ^  0 for each i < m. 
Then

9j{(dWi) =  0 for each i < m, 

where Oh is a Haar measure in H.

PROOF. From Cor. 8.10, for any non-singular element T G X A, Tj =  — s+ A (h+ W f). 
By Prop. 8 .8, we get 4>(L) fl (h +  dWf) = 0. So by the assumption on /?, —s +  A(h +  
dWf) = 0 a.e. (—s, —h) +  L  G A(A). By [29], dens(—s +  A(h +  dWf}) — 0H{dWi) 
a.e. A(A). Thus OnfdWi) = 0 for each i < m . □

We note that if A is a Meyer multiset then A had FLC.

T heorem  8.13 Let A  be a Meyer multiset with repetitivity: Suppose that there 
exists a continuous Rd-map (3 : X A —> A(A) which is one-to-one a.e. A(A). Then 
there exists A ' G X A such that AJ =  A (Wf) with respect to CPS (8.2) where Wi =  
W f  7  ̂ 0 and Wi is compact for each i < m, and so for each T G X A there exists 
(—s, —h) G Rd x  H  so that

—s + A(h +  W f)  C Tj C — s +  A(h + Wf) for each i < m .

Furthermore

0n(dWi) = 0 for each i < m .

In other words, for each T G X A, T is a regular model multiset.

PROOF. Since (3 is one-to-one a.e. A(A), there exists a non-singular element A' G 
X A. So from Prop. 8.7 and 8.8 AJ =  A (W f, W{ = W f  ^  0, and Wi is compact 
for each i < m. Note that X Ai =  X A by the repetitivity of A (see [13, 41]). Thus 
applying Prop. 8.9 and Prop. 8.12 we can conclude that for each T  G X A, T is a 
regular model multiset. □
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8.3 Torus parameterizations from model multi­
sets

We consider a cut and project scheme :

Rd R d x H  ^  H

U (8.3)
L

where 77 is a locally compact Abelian group, L  is a lattice in Rd x 77, 7Ti|j is 
one-to-one, and ^ (L )  is dense in 77. Let L =  7ri(L). We define </> : L —> 77 by
4>{X) =  ^ ( T T f 1 ^ ) ) .

Suppose that A is a multiset in Rd and that for each i < m, A(Wj°) C Aj C 
A(Wj), Wi is compact in 77, and Wi = Wi ^  0 with respect to CPS (8.3).

Let I  — {t G 77 : t + Wi = W{ for all i < m}. Translations t in H  of this 
form indicate a certain redundancy in H  which we can remove by factoring out 
the subgroup I. We define H' := H /I , ip : L —* H ' by rf(x) = 4>{x) +  7, and 
U {(x,ij)(x)) G Rd x H' : x  G L}. Then L1 is a lattice in Rd x 77', i.e. U  is a 
discrete subgroup for which (Rd x H ')/U  is compact. Note that Wi +  7 =  W* and 
W °  +  7 =  W °  for all i < m . Thus for all i < m

A(c +  Wi +  7) =  A(c +  Wi) and A(c +  +  7) =  A(c +  Wi°) for any c G 77.

We denote W( for Wi + 1 in H'. Then we can construct a new cut and project 
scheme :

Rd R d x # /  J X  77'
U

L <—  L' — » ^{L) (8.4)

X  <-----  (x,1p(x)) ---->

and we get A(W/°) C Aj C A(W/), W[ is compact in 77', W[ =  W!° 7̂  0 for i < m, 
{t E H f : t + W! = W ! for all i < m} = {0}, with respect to CPS (8.4). Furthermore 
since 7 is a closed subgroup of 77, if 0H(dWi) -  0 where 6H is a Haar measure in 77, 
then 0H>(dW[) = 0 where QH< is a Haar measure in 77' (see [37, Theorem 3.3.28]). 

Thus without loss of generality we will assume

{t G 77 : t  +  Wi = Wi for all i < m} — {0} ,
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a condition that we will refer to as irredundancy. All subsequent CPS will be 
assumed reduced into this form.

In this section we establish the existence of the torus parameterization from reg­
ular model multisets. The following theorem is proved after a sequence of auxiliary 
propositions.

Theorem  8.14 Let A  be a multiset in Rd. Suppose that for each i < m , A(Wj°) C 
A, C A(Wi) where Wi is compact, Wi = W ° ^  0, and OnidWfl = 0 with respect to 
some irredundant CPS (see (8.3)). Then there is a continuous Rd-map fl : X \  —> 
A(A) which is one-to-one a.e. A(A).

P roposition  8.15 Let A  be a multiset in Rd. Suppose that for each i < m, 
A (Wfl) C Aj C A (Wi) where Wi is compact, and Wi = W f  0 with respect to 
some irredundant CPS. Then for any T G A a with Ti C L,

("]{<£(£) -  Wi : t G Ti, i < m}

contains exactly one element cr in H  and 4>(Tfl =  cr +  W, for each i < m. Further­
more, cA — 0 .

P ro o f . Let T G A a with c  L. We claim that

d m  € F h i < m }  7̂  0.

Suppose that ~  Wi : t G Ti,i < m} — 0. Since each <p(t) — Wi is compact,
there exists a compact K  C Rrf such that Q{</»(£) — Wi : t G Tj f l  K, i < m} = 0 
and T f l  K  -=f 0. Since T € A a and (J™ x P< C L, we can find to G L such that 
T f l  K  = (to + A) f l  K. Then for any i < m  and any t € T* f l  K , t 6  to +  Aj and 
4>(t0) G fl(t) — Wi. This is a contradiction.

For any c G — Wi : f G Tj, i < m}, ^(Ti) C c +  Wi for all i < m.
Since Wi = (Wfl0, there is h G H  such that <j>(Tfl — h +  Wi for all i < m  by 
Prop. 8.9. So h +  Wi C c +  Wi. We claim that h +  Wj =  c +  W,. In fact, Wi C  

(c — h) + Wi. Let x — c — h. Since Wi — Wi is compact, [nx : n  G Z+} is compact. 
For any neighbourhood V  of 0 in H, {V  +  nx : n G Z+} is an open cover of 
{nx : n  G Z+}. So there are n \ , . . .  ,n)~ 6 Z+ such that {V  +  UjX : 1 < j  < k} 
covers {nx : n G Z+}. If {njx : 1 <  j  < k} = {nx : n G Z+}, m ix  =  0 for some 
mi G Z+. So Wi C x + Wi C m\X +  Wj =  Wi. Thus Wi = x + Wi — c — h + Wi- 
If {njX : 1 < j  < k} 7̂  {nx : n G Z+}, V  contains m^x for some m2 G Z+. So 
Wi C x  +  Wi C Wi +  V. Since V  is arbitrary, Wi =  x +  Wj =  c — h +  W, for i <  m.
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Thus c =  h, since 0 = {t £ H  : t + Wi = Wi, i < m}. So there is a unique cr G H  
such that

{cr} =  m * )  r i5 i < m}. (8.5)

Since 0 G f'K'KO — W i'.tE  Aj, i < m}, cx — 0. □

We define T(A) := (Rd x H )/L  in an irredundant CPS (see (8.3)).

C orollary  8.16 Let A  be a multiset in Rd. Suppose that for each i < m ,  A(Wj°) C 
Aj c  A(W)) where W, is compact and Wi =  W °  ^  0 with respect to some irredundant 
CPS. Then the map 7 : X \  —► T(A) given byT  i-y 7 (r )  =  (—s, —cs+r) +  L, where 
s is any element of M.d for which s +  (J^Li Tj C L and cs+T is given by (8.5), is a 
well-defined Rd-map. Furthermore, for any T G X&,

4>(Ti) = -<t>(s) +  cs+r +  Wi for all i < m

and 7 (A) =  (0,0) +  L.

P r o o f .  Suppose that s ^  si where s +  (J™i P  C L and Si +  (J™ x Tj C L. Note 
that s — si G L  and

(—si, —cSl+r) +  L = (—(s +  I), — cs+i+r) +  L  for some I G L 
- (~ S — I, ~(j>{l) — C s + r )  +  L 

— (~ s> —Cs+r) +  L. (8-6)

For any g G Rd,

7 {g +  T) -  ( - s  +  g, - c s+r) + L = i(g) + ^(T).

The rest follows directly from the Prop. 8.15. □

P ro position  8.17 Let A  be a multiset in Rd. Suppose that for each i < m, 
A(Wj°) C Aj c  A(Wj) where Wi is compact, and Wi — W °  ^  0 with respect to 
some irredundant CPS. The mapping 7 : X A -» T(A) defined in Cor. 8.16 is con­
tinuous and swrjective.

P r o o f .  Let T  g X a and 7 (1?) =  ( - s ,  - c s+r) +  L for some s G Rd, cs+r G H. Let 
U be an open neighbourhood of 0 and U' be an open neighbourhood of - c s+r. Let 
U0 = U n  (-17). Since cs+r =  f|{0(*) ~  W i: t G s +  Tu i < to},

P i t t - # * )  +  Wi)\U' : t E s  + T i,i<  m} = 0.
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Each of (—(pit) + Wi)\U' is closed and so there exists a compact K  in Rd such that 

f |{ ( - ^ ( t )  +  Wi)\U' : t e ( s  + T i ) n K , i < m }  = <t) 

i.e. p){—(p(t) +  Wi : t G (s +  Tj) f~l K , i < 7 7 1} C U'. Let

U-s+k ,Uo[T] — { r ' G X A ■ ( r '  +  r) n  ( - s  +  K ) — r  n  ( - s  +  K ) for some r G Uo}. 

For any T' e  U-S+K,i/0 [F],

( r ' +  r) fl (—s + K) =  r  fl (—s +  K ) for some r G Lfo.

So ( r 1 + r + s) D K  = (T + s) n K . Then

0 { —^ ( 0  "F • t G (H T  r +  s) PI K , i < m} C U' .

It shows

7 ( r ')  G ( - r  - S , u ' )  + L c  ( s  +  U0, U') + L C ( - s  +  U, U') + I .

Note that there exists e > 0 such that an open set {T' G X A : g(T', T) <  e} around 
r  is a subset of U-s+k ,u0 [T]. Therefore 7  is continuous. Furthermore,

7 (Rd +  A) =  (Rd, 0) +  Z =  (Rd, <p(L)) + I

is dense in T(A). So 7  is surjective. □

The proofs of the existence of the torus parameterization shown here are essen­
tially due to Schlottmann [41]. However here we assume the condition on that 
each window Wi is the closure of its interior instead of the repetitivity on Ai in [41] 
and we place his results into multiset setting.

Let X g := { r  G X A : <P(L) n  (cr +  U ^ i dWi) =  0}. Note that X g ±  0 by Baire 
category theorem.

P ro position  8.18 Let A  be a multiset in Rd. Suppose that for each i < m,
A(Wi°) C Aj C A(Wi) where Wt is compact and Wi =  W f  0 with respect to
some irredundant CPS. Then ^ \xg is one-to-one.

PROOF. From Prop. 8.9 we know that for any r  G X g there exists (—s, —cr ) G G x H  
such that

—s + A (cr +  W f)  C Ti C — s +  A(cr +  Wf) for all i < m .

Here <f>(L) D (cr +  U ili ^Wf) = 0. So Tj =  - s  +  A(cr +  W f)  for all i < m. Thus 
7 |x9 is one-to-one. □

We define Tg := l ( X g).

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



P ro p o sitio n  8.19 Let A  be a multiset in Rd. Suppose that for each i < m, 
A{Wf)  C Aj C A(Wj) where Wt is compact and W{ = W f j f  0 with respect to 
some irredundant CPS. Then Tff =  T(A)\((Rd x U2=i +  A)/L).

P r o o f . Note that
m

( - s , - c r ) +  Z  € T, ^  {cr + \JdWi)C<j>(L) =  0
1

m

^  cr ^ ( L ) ~ l J c W j
i = l

m
&  ( -a , -Cr) g Rd X (—(f>(L) +  ( J  aw i)

i=  1

m
&  (-5 , -Cr) +  Z  £ (Rd x ( J  aw i +  Z)/Z. (8.7)

2—1

Thus Tff =  T(A )\((Rd x U™ i  aWj +  Z ) / Z ) .  □

P ro p o sitio n  8.20 Let A  be a multiset in Rd. Suppose that for each i <  m, 
A(Wj°) C Aj C A(Wj) where Wi is compact and W) =  W °  ^  0 with respect to 
some irredundant CPS. Suppose that On(dWi) — 0 for all i < m, where Oh is a 
Haar measure in H . Then A(Tg) =  1, where X is a Haar measure in T(A).

P r o o f . We will show that A((Rd x (J™ x <9Wj + L ) /L ) =  0. By [37, Theorem 3.3.28], 
we only need to show that u(Rd x USu dWi + L) = 0, where v is a Haar measure in 
Rd x H. Since Rd is compactly generated, there exists a sequence of compact sets 
{Kn} such that Rd =  (J£ i K n. Each v(K n x (J™ x dWi) =  0 from the assumption 
that dnidWi) = 0 for all i < m. Since L is countable, i/(Rd x (J™: dWt + L) =  0. 
Thus the assertion follows. □

P ro p o sitio n  8.21 Let A  be a multiset in Rd. Suppose that for each i <  m, 
A(Wf°) C Aj C A(Wj) where Wt is compact and Wi = W f  ^  0 with respect to 
some irredundant CPS. Suppose that 0H(dWi) =  0 for all i < m, where 0H is a 
Haar measure in H . Then A(A) =  T(A).

PROOF. A(A) is the completion of Rd under the autocorrelation topology. T(A) 
may be considered as the completion of Rd when it is given the coarsest topology 
for which the mapping x  (x,  0) +  L of Rd into T( A) is continuous. It will suffice 
to show that these two topologies on Rd are the same. If x  e  Rd is close to 0 in
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T-topology, then for small open neighbourhoods V  of 0 in Rd and V\ of 0 in H  there 
exists (t, <fi(t)) £ L  such that x  — t e V  and <j>(t) £ V\. On the other hand if x £ Rd 
is close to 0 in A-topology, then for a small open neighbourhood U of 0 in Rd and 
some e > 0 there exists t £ L such that x — t & U and d(t +  A, A) < e. So we need 
to show that for t £ L, <j>{t) is close to 0 in H  if and only if d(t +  A, A) is close to 0.

For t  £ L,

i a w ET=M(t + ̂ i) A A i ) n A „ )d(t +  A, A) =  lim sup — ■ ■ ---- -------- -
vol(An)n—>-oo 

m
= V  lim B(((t +  Aj) A A j ) n A n)

n-> oo Vol(An)i—1 
m

=  +  Wi)) + 9H(Wi\(-ct>(t) + Wi))), (8 .8)
i=l

since each point set is a regular model set by the assumption (see [29]).
Note that

MWA(* + w )̂ = eH(Wi) -  iWt * i wt(s)
is uniformly continuous in s. So if cj)(t) converges to 0 in H, then d(t +  A, A)
converges to 0 in R.

On the other hand, suppose that {fn} is a sequence such that d(tn +  A, A) —► 0 
as n —► oo. Then for each i < m

{eH{ W i \ m n) +  Wi))}n -» 0 as n oo.

Note that for large enough n, Wi fl {<j>(tn) +  Wi) ^  0 and so <f>(tn) £ Wi — W) for all 
i < m. Since Wi — Wi is compact, {<f>(tn)}n has a converging subsequence {4>{tnk)}k- 
For any such sequence define to* limfc^oo 4>(tnk). Then

0H(Wi\(to* + W J) = 0

and so 0 H ( W i ° \ ( t 0* +  W i ) )  =  0 for each i < m .  Thus W i  C to* +  W i  and it implies 
W i  C t0* +  W i .  On the other hand, limfc_oo —cf>(tnk) — —to* and #ff(W j0\ ( —to* +  

Wi)) =  0. So W i  C - t o *  +  W i .  Hence W{ C t0* + Wt C t0* -  to* +  Wt and

Wi =  t0* +  Wi.

This equality is for each i < m. Thus to* =  0. So all converging subsequences 
{<t>{tnk)}k converges to 0 and

{4>{tn)}n -*■ o as n -+ 00.

This establishes the equivalence of the two topologies. By [7, Prop 5, III §3.3], 
there exists an isomorphism of A(A) onto T(A). □
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