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Abstract

Gear systems, which are one of the most widely adopted mechanical parts, receive

lots of research attention. The dynamic modeling of gear systems under determin-

istic excitations has been widely investigated in existing studies. However, due

to the diversity in both manufacturing processes and working environments, gear

systems face stochastic internal and external excitations in reality, which result in

the gear modeling to be complicated. In practical situations, the stochastic internal

and external excitations should be considered when modeling gear systems.

Besides the modeling complexity, stochastic excitations also lead to a large increase

of time complexity when obtaining the statistic features of gear responses by

numerical methods. Therefore, this thesis focuses on two aspects, including the

modeling and the solving of gear dynamic models under stochastic excitations.

The objective of this thesis is to investigate the dynamics of a spur gear pair,

including analyzing the effects on dynamic characteristics from the stochastic

excitations and investigating the solving techniques to stochastic dynamic mod-

els. First, a spur gear dynamic model considering one more internal stochastic

excitation, friction, is proposed. The effects of friction are investigated in gear

dynamic models under stochastic load for the first time. Then, one more external

excitation factor (i.e., driving speed) is taken into account in gear models and its

effects on the dynamic characteristics are also studied. The results of our work

show that some excitations that have not yet been modeled cannot be ignored

when modeling gear systems. After that, considering the large time complexity

of numerical methods for solving gear models under stochastic excitations, an

efficient method is proposed to obtain an approximate analytical solution of a
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spur gear pair model under stochastic load with one additional stochastic internal

factor. Compared to the numerical methods, the proposed method can achieve

similar accuracy responses but with much smaller time complexity.

In summary, this thesis helps us understand the mechanism of a spur gear

pair and gives insights into developing more realistic gear models for gear design

and condition monitoring. Future works will explore other possible internal and

external excitations in gear modeling. The gear models under different working

conditions are also worthy to study.
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1
Introduction

This chapter is divided into three sections. The background of this thesis is
introduced in Section 1.1. Section 1.2 provides a detailed literature review of
the research challenges around gear dynamics considering stochastic internal
and external excitations. Section 1.3 provides the research objectives and the
organizational structure of this whole thesis.

1.1 Background

Geared systems are widely used in modern power transmission systems. Geared
systems can change the speed, torque, and direction of a power source and create a
mechanical advantage. They play an important role in wind turbines, helicopters,
milling machines, and other equipment. A real gearbox with the casing removed
is shown in Fig. 1.1, which is an example of geared systems. In this figure, a
group of components are combined to form a gearbox, such as bearing, shaft,
and clutch. A bearing is a component that constrains the relative motion to the
desired motion only, and reduces friction between moving parts. A shaft is used to
hold the other components and transmit power. A clutch engages and disengages
power transmission from different shafts. Since gears are the key components in
a geared system, this study focuses on the gear system. Gear system refers to the
system considering gears only, which means the effects of bearings, shafts, and
other components are ignored.

1



Chapter 1. Introduction 2

Fig. 1.1: An example of geared systems

In Section 1.1.1, the fundamentals of gear systems are introduced. Section 1.1.2
includes basic concepts of gear dynamics and generation of dynamic responses.
Section 1.1.3 and Section 1.1.4 discuss different kinds of dynamic characteristics
and how factors affect them, respectively. In Section 1.1.5, modelling of deter-
ministic and stochastic excitations is explained. Section 1.1.6 and Section 1.1.7
introduce basic ideas and give examples of numerical and analytical approaches,
respectively.

1.1.1 Fundamentals of Gear systems

This section introduces the fundamental concepts of gear systems, including
classification of gear system and involute profile basic theory.

There are many different classification methods of gear systems. This section
introduces three classification methods of gear systems based on positions of axis,
transmission train, and tooth type, respectively. Gear systems can be broadly
classified by looking at the positions of axis such as parallel shafts, intersecting
shafts, and non-intersecting shafts. Fig. 1.2 (a) gives an example of parallel shaft
gear systems and Fig. 1.2 (b) shows an example of intersecting shaft gear systems.
A case of non-intersecting shaft gear systems is described in Fig. 1.2 (c).
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Fig. 1.2: Three types of gear systems: (a) parallel, (b) intersecting, (c) non-
intersecting

Fig. 1.3: Four types of gear systems: (a) simple gear systems, (b) compound gear
systems, (c) reverted gear systems, and (d) planetary gear systems [3]

Parallel shaft gear systems are most commonly used and can be classified into
four categories based on the transmission train: simple gear systems, compound
gear systems, reverted gear systems, and planetary gear systems [3]. Fig. 1.3 gives
examples for each type of parallel shaft gear systems. This classification method
focuses on the relationship between gears and shafts, and the number of shafts is
not restrained. For example, a simple gear system has only one gear mounted on
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each shaft while the number of shafts in the system can be more than two. For
a compound gear system, there is more than one gear mounted on a shaft. For a
reverted gear system, the axis of the driving gear shaft and the driven gear shaft
are coaxial. If one gear rotates on its own axis and also revolves around the axis
of another gear, this gear system is termed as a planetary gear system. A basic
planetary gear system contains one sun gear, one internal gear (ring gear), one
carrier, and several planet gears that mesh with the sun gear and the ring gear
simultaneously.

The first three categories shown in Fig. 1.3 are collectively called fixed-axis gear
systems since all gears only rotate on their own axis and all their axis are fixed. This
thesis focuses on the fixed-axis gear system because it still has room to improve the
understanding in the dynamics of the fixed-axis gear system. The development of
fixed-axis gear dynamics will also give us a better understanding of planetary gear
systems in the future.

Fig. 1.4: Gear tooth comparison a) spur gear b) helical gear

According to the tooth type, there are mainly spur gears and helical gears. Fig.
1.4 shows the difference between the spur gear and the helical gear. Spur gears
consist of a cylinder or disk with teeth projecting radially. The edges of each spur
gear’s tooth are straight and aligned parallel to the axis of rotation. The edges of
helical gear’s teeth are not parallel to the axis of rotation, but are set at an angle.
Spur gears are used in low-speed applications while helical gears are used in high-
speed applications or large power transmission systems [9].
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Fig. 1.5: An involute curve

Fig. 1.6: An involute gear pair meshing

The involute gear profile is the most commonly used system for gearing today
(e.g. spur involute gear and helical involute gear), such as clocks [10]. In an
involute gear, the profiles of the teeth are involutes of a circle. Fig. 1.5 shows a
string with one end fixed on a tack of a circular rod while the other end has a ball.
The involute of a circle is the spiraling curve traced by the end of an imaginary
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taut string unwinding itself from that stationary circle (called the base circle). In a
word, the path of the ball is called involute curve.

Spur gears and parallel-axis helical gears are involute gears. The contact point
of the two involutes, as shown in Fig. 1.6, changes along the common tangent of
the two base circles as rotation occurs. The common tangent is called the line of
contact or the line of action. A pair of gears can only mesh correctly if the pressure
angles are the same. Fig. 1.6 shows a pair of involute gear teeth meshing together.
Base circles, tip circles, and pitch circles are shown in this figure. In addition, C1

and C2 are the center of two gears, I1 and I2 are tangent points on the line of action;
α (pressure angle) is the complementary angle of C1C2 and line of action, point O
is the current pitch point (or contact point), and P is also a pitch point in the line
of connecting centers.

Fig. 1.7: An example of a spur gear pair

Fig. 1.7 gives an example of a spur gear pair which contains two spur gears
marked as “pinion” and “gear”. “Pinion” (also called driving gear) usually means
the smaller gear in a gear system while “gear” (also called driven gear) is the bigger
one (see Fig. 1.7). Please note that the word “gear” has the specific meaning when
it is mentioned with “pinion”. In other cases ( e.g. “gear system” ), the word “gear”
holds a broader meaning.
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1.1.2 Gear response generation

This section focuses on the basics of gear dynamics. The generation of gear
responses will be introduced.

Spur gears are the most widely used type of gears in engineering applications.
The dynamics of a spur gear pair has been explored. The gear dynamic modelling
includes six aspects [11]:

1. Study the real motion of the gear system under given external forces.

2. Analyze the interaction forces between the gears.

3. Study the energy balance and load sharing during the operation of the gear
system.

4. Investigate mechanical vibration.

5. Study the theory and mechanisms of motion.

6. Other comprehensive analysis.

Gear dynamic modelling provides several benefits in engineering correspond-
ing to the above listed six aspects [11]:

1. Predict and analyze the behaviour of the gear system.

2. Find out the weakness of the gear system.

3. Reasonably arrange the load in the gear system.

4. Obtain the influences of different factors that cause vibration, noise and
failure.

5. Help improve the control system.

6. A better design of gear systems which helps extend its life.

Thus, it is necessary to study the dynamics of a gear system. This thesis
is limited to the dynamic model of a pair of fixed-axis spur gears as shown in
Fig. 1.7. Many studies have been conducted on dynamic modelling of spur gear
transmission systems. Dynamic modelling utilizes physical laws to simulate gear
system responses, e.g. equilibrium, Conservation of Energy, and Newton’s laws
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Fig. 1.8: An example of gear systems by FEM [4]

of motion [12]. Equilibrium refers to the net force on each component of a gear
system being zero. The law of Conservation of Energy states that the total energy
of an isolated gear system remains constant, it is said to be conserved over time.
Newton’s laws of motion describe the relationship between a gear, the forces acting
upon it, and its motion in response to those forces. Dynamic response or response
refers to the motion (including displacement, velocity, and acceleration) of a gear
excited by forces or torques.

Lumped parameter modelling (LPM) and finite element modelling (FEM) are
two commonly used techniques to model gear systems [13]. FEM discretizes
a physical model into disjoint components of simple geometry (called finite
elements). It obtains its system response by the summation of the responses of
all elements [14]. Fig. 1.8 gives an example of gear systems’ dynamic analysis
using FEM. The gears in this figure are divided into a large number of disjoint
simple geometries which are called finite elements. This figure utilizes colours to
represent the amplitude level of the element stress simulated by FEM. Red element
means the greatest stress while blue refers to the smallest stress. It is noted that the
contact region elements have the greatest stress. There are a number of commercial
FEM softwares, including ABAQUS [15], ANSYS [16], and so on.

A classic dynamic model of a gear pair is shown in Fig. 1.9. In this figure,
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Fig. 1.9: Model of a gear system [5]

Ti (Nm), θi (rad), and ri (m) are the torque applied to gear i, rotation angle of
gear i, and base radius of gear i, where subscript i (i = 1, 2) refers to the driving
and driven gears. In involute gears, the tooth profile is generated by the involute
of the base circle. Note that k (N/m), c (Nm/s), and b (m) are time-varying mesh
stiffness (TVMS), damping coefficient, and backlash, to be defined next.

TVMS is the rigidity of the mesh between two gears, which resists deformation
in response to an applied force [17]. TVMS is usually time varying according to
the status of meshing. Fig. 1.10 shows that TVMS is time-variant with two mesh
statuses: single tooth contact and double tooth contact. Please note that the mesh
stiffness is different from the concept of material stiffness. Material stiffness means
inherent material property to resist deformation, which is usually a constant for a
given material. Damping refers to the gradually decreasing vibration amplitude
characteristics of a gear system, due to external effects (such as fluid resistance,
friction, etc.) and the inherent nature of the system [18]. When two elastic bodies
interact, most of the elastic strain energy is restored. However, a portion of it will
be dissipated in heat due to random molecular vibration. The phenomenon can
be considered as an internal damping effect during the impact. Fig. 1.11 gives an
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Fig. 1.10: An example of time-varying mesh stiffness (TVMS)

Fig. 1.11: An example of damping effects

example of damping effect on the value of relative angular displacement which is
to be defined in Section 1.2. Backlash (see Fig. 1.12) is the amount of clearance
between mated gear teeth. It can be seen when the direction of movement is
reversed and the slack or lost motion is taken up before the reversal of motion
is completed.

Lumped parameter modelling (LPM) considers the components to be solid
with the masses concentrated at a set of points [19]. Ignoring the shape of gears,
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Fig. 1.12: Backlash [6]

LPM focuses on the dynamics of mesh point (see point O in Fig. 1.6) only. All the
parameters (e.g. mass and damping) of all gears are treated equivalent to the mesh
point, which is actually a mesh line considering the thickness of gear teeth. Taking
rotation into account only, this is torque balance for the mesh point according to
Newton’s second law. Namely, a gear system in rotational equilibrium has no
net external torque. Just as force makes object accelerate linearly, torque makes
gears accelerate rotationally. The basic law is: torque = (moment of inertia) ×
(angular acceleration). Ordinary differential equation (ODE) is used to represent
the dynamics of a gear system. We next illustrate a gear dynamic model described
by LPM.

The corresponding mathematical model by LPM (considering rotation only) in
Fig. 1.9 is shown as Eq. (1.1) [5]. Relative angular displacement is defined in Eq.
(1.2).

J1θ̈1 = T1 − k · g(X) + c(r1θ̇1 − r2θ̇2) r1

J2θ̈2 = −T2 + k · g(X) + c(r1θ̇1 − r2θ̇2) r2

(1.1)

Ẋ = r1θ̇1 − r2θ̇2 (1.2)

where Ji, Ti, θ̈i, and ri are the moment of inertia, external torque, angular
acceleration, and base circle radius of gear i (i = 1, 2), respectively, k is time
varying mesh stiffness, and g(X) is a function of backlash b, which is defined as
following:

g(X) =


X − b,

0,

X + b,

X > b

−b ≤ X ≤ b

X < −b

(1.3)
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According to Eq. (1.1) and Eq. (1.2), we can obtain:

Ẍ + c̄Ẋ + k̄ · g(X) = T (1.4)

where

c̄ = c
r2

1

J1

+
r2

2

J2

(1.5)

k̄ = k
r2

1

J1

+
r2

2

J2

(1.6)

T =
T1r1

J1

+
T2r2

J2

(1.7)

where X , Ẋ , and Ẍ are relative angular displacement, relative angular velocity,
and relative angular acceleration, respectively, c̄, k̄, and T are equivalent damping
coefficient, equivalent TVMS, and equivalent torque. In solving process, TVMS
is treated as a series of time-varying certain values. In the rest of thesis, “gear
dynamic model” usually refers to a second order ODE, such as Eq. (1.4).

After solving the dynamic model, we can obtain dynamic responses. “Dynamic
responses” or “responses” refer toX , Ẋ , and Ẍ in Eq. (1.4). In other words, we can
obtain the solution to the dynamic equation. Here, “model” and “response” are a
pair while “equation” and “solution” are a pair.

Both LPM and FEM can deal with the dynamics of gear systems. Usually,
FEM has an equal or higher accuracy than LPM. However, LPM is faster in
simulation than FEM. LPM has some advantages when dealing with randomness
in the model. In next section, we will explain that it is difficult for us to solve a
dynamic model considering stochastic parameters. Thus, this study focuses on the
dynamic modelling using LPM. Compared with existing studies, more aspects of
nonlinearity of gear parameters will be considered in our study to explore gear
dynamics. Later in our thesis, we will present more advanced studies to improve
gear dynamic model.

1.1.3 Characterization of dynamic response

This section focuses on the dynamic characteristics of gear systems. “Dynamic
characteristics” refer to the properties of system responses when a time-varying
input is applied. It is different from “static characteristics” which refer to the
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results when a constant input is applied.

In the study of dynamic modelling, the dynamic characteristics of gear system
are quite complex and directly affect its performance. The performance usually
means the health condition of a gear system. The evaluation of dynamic character-
istics is an important part of gear dynamic analysis. They reflect the gear system’s
performance and indicate gear faults and failure. A better understanding of the
dynamic characteristics will be a perspective to implement appropriate models
for reliability design. Reliability design is a process that encompasses tools and
procedures to ensure that a gear system meets its reliability requirements within
its lifetime. Reliability design is implemented in the design stage of a product to
proactively improve gear system reliability. An example of gear system reliability
design can be referred to [20]. Obtaining dynamic characteristics of gear systems is
the precondition of conducting a reliability design. Thus, it is necessary to analyze
dynamic characteristics of gear systems.

Dynamic characteristics are analyzed by obtaining dynamic responses first.
The dynamic characteristics discussed in this thesis are mainly statistical prop-
erties, duration, periodicity, chaos, and stability of the responses. Duration refers
to the time system spent in transient state. As an important aspect of this thesis,
the dynamic characteristics studied in this thesis are listed as following:

1. Statistical properties
Due to errors of manufacturing and assembling, gear systems contain
inherent randomness. Meanwhile, environment factors (e.g. temperature)
include randomness. Since the responses of the gear pair under stochastic
load are random variables, it is necessary to give statistical information
of responses. In dealing with random variables, the probabilistic method
is a classical approach for uncertainty representation based on the well-
developed probability theory [21].

In statistics, dispersion (also called variability, scatter, or spread) is the
extent to which a distribution is stretched or squeezed [22]. Common
examples of measures of statistical dispersion are the variance, standard
deviation, and interquartile range. Dispersion is contrasted with location
or central tendency, and together they are the most common used statistical
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characteristics of distributions [21]. The descriptions of responses in the gear
system under stochastic load are analyzed with probability density function
(PDF) [23]. Let f(X) denote the PDF of random variable X. Then, f(X) is
defined in Eq. (1.8) and (1.9), which could be clearly seen from Fig. 1.13. In
the applications such as fatigue prediction and reliability, an actual PDF is
needed.

Pr[a ≤ X ≤ b] =

Z b

a

f(X) dx. (1.8)Z +∞

−∞
f(X)dX = 1 (1.9)

Fig. 1.13: Definition of PDF

2. Duration [24]
Duration refers to the time a system spends in the transient state. If the
responses vary beyond a given range (e.g., less than 5% variation), it is
called the transient response and the state of the gear system is named as
the transient state. In contrast, stationary responses mean the responses vary
in a very small range or remain constant. The corresponding state of the gear
system is called the steady state.

3. Periodicity
Periodic behavior is defined as recurring at regular intervals, such as “every
24 hours”. Quasi-periodicity is the property of a system that displays
irregular periodicity. Quasi-periodic behavior is a pattern of recurrence
with a component of unpredictability that does not lead itself to precise
measurement.
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4. Chaos [25]
A dynamic system with chaotic behaviour must have three properties: 1) it
must be sensitive to initial conditions; 2) it must be topologically mixing; 3)
it must have dense periodic orbits. Fig. 1.14 shows the chaotic behaviour of
three samples of responses.

Fig. 1.14: Example of chaotic behaviour: (a-c) Time history ofX ; (d-f) phase plane;
(g-i) Poincare’ map [7]

Phase diagram and Poincare map are useful tools showing the periodicity
and chaos of gear systems’ dynamic responses. Here, Fig. 1.14 (d-f) depict
three examples of phase diagram according to the responses in Fig. 1.14
(a-c). The overlapped loops in phase diagram indicating the responses are
periodic. Fig. 1.14 (g-i) describe three examples of Poincare map according to
responses in Fig. 1.14 (a-c). According to the graphical features of the visible
points in Poincare maps, the periodic, quasi-periodic, and chaotic oscillations
can be learned.
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5. Solution stability [26]
Solution stability addresses the stability of solutions of differential equations
(and of trajectories of dynamic systems) under small perturbations of initial
conditions. “Trajectories” refer to the time-history of X from Xt=0 to
Xt=τ . Stability has many different definitions. Lyapunov stability and
asymptotically stability are adopted in this thesis. Their definitions are given
in the next paragraph.

Fig. 1.15: Solution trajectory

Use an orbit diagram as an example (see Fig. 1.15). The response of the
dynamic model starting from xo converges to a certain orbit x∗. We can say
that Xt=0 = x0 and Xt→∞ = x∗. This equilibrium is said to be Lyapunov
stable, if, for each > 0, there exists a δ > 0 such that, if kx0 − x∗k < δ, then
for each t ≥ 0 we have kxt − x∗k < . The equilibrium of the above system is
said to be asymptotically stable if it is Lyapunov stable and there exists δ > 0

such that if kx0 − xtk < δ, then limt→∞ kxt − x∗k = 0.

1.1.4 Factors affecting dynamic response

It is well-known that the characteristics of a gear system are affected by inter-
nal and external excitations [27]. Internal excitations include backlash, TVMS,
transmission error, friction, and so on. Definitions of damping, backlash, and
TVMS are introduced in Section 1.1.2. Transmission error is caused by assembling
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or manufacturing and it is the difference between the theoretical and practical
rotation angle of the driven gear. Friction is induced by the teeth sliding at the
mesh point of two gears. It is along the tangent direction of the contact force.
External excitations contain external load, driving speed, and so on. External load
here is limited to torque applied on gears in this study. Driving speed in this thesis
refers to the rotational driving speed of the pinion.

We first look into a general ODE defined in Eq. (1.10). An ODE is defined
to be unique and specific according to the initial condition and parameters of the
equation. The parameters which affect the solution of an ODE are the internal
and external excitations. Note that these excitations affect the dynamic responses.
Internal excitations reflect in q1(X, Ẋ), q2(X, Ẋ), and q3(X, Ẋ) while external load
is T . Researchers have been working on a better expressions of each parameter
for decades. This work will continue to search for an improved model to approach
the real systems.

Ẍ + q1(X, Ẋ)Ẋ + q2(X, Ẋ)X + q3(X, Ẋ) = T (1.10)

Many reported studies have dealt with gear systems under deterministic
internal or external excitations [7] [24]. Deterministic excitation means, at an
arbitrary time point, the value of the excitation is known and unique though they
may be different at different time points. By contrast, stochastic excitation has an
unknown value at each time point. These existing models reveal the mechanism
of gear systems in these aspects and contribute to the understanding of gear
dynamics. The restriction of the gear dynamics problems within the deterministic
domain reduces the difficulties in obtaining dynamic responses of a gear system.

Due to errors of manufacturing, processing, assembling, wear, lubrication,
operating environment, and other factors, the internal and external excitations
may not be deterministic [2]. For example, considering the operating environment,
wind force applied to each wind turbine in a wind farm at a certain time point
is stochastic. Individual modelling of each gear system is not realistic. Thus,
stochastic internal and external excitations have been considered and the gear
models with stochastic internal and external excitations have been investigated.

Let’s establish a dynamic model considering stochastic excitations to describe
the general dynamic characteristics of a spur gear pair. There are three aspects in
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dealing with stochastic excitations [2]:

1. Modelling of the internal and external stochastic excitations.

2. Solutions to dynamic equations with stochastic excitations involved.

3. Analysis of the internal and external stochastic excitations’ effects on dynam-
ic characteristics.

1.1.5 Modelling deterministic and stochastic excitations

To model deterministic excitations, a certain deterministic expression is required
for each factor. For example, damping coefficient can be considered as a constant.
TVMS can be defined as a square wave function with certain period and amplitude
[5]. More generally, deterministic load Td can be given as Eq. (1.11), where T0 is a
constant (T0 can be zero), Tn(t) is a function of time, and n is a positive integer. In
addition, Tn(t) has a certain value for each time point t. Modelling deterministic
excitations depends on a simplified physical model which can present majority
properties of a gear system. Many researchers have worked on deterministic
excitations and a detailed review can be referred to [7].

Td = T0 + T1(t) + ...+ Tn(t) (1.11)

On the other hand, stochastic excitation has another form. Taking stochastic
load Ts as an example, a general expression of Ts can be shown as:

Ts = Td + rnd(t) (1.12)

where rnd(t) is the random part in the load.

To describe the randomness in gear systems, statistic model, interval model,
and fuzzy model have been used [2]. If internal or external excitations contain
randomness and its probability distribution can be estimated using data, a statistic
model can be applied. For example, Fig. 1.16 shows the seasonal wind speed
distribution in region La Ventosa in Mexico. Alonzo et al. [8] used the statistical
model to study the entire seasonal distribution of the wind speed. If only the
ranges of internal or external excitations are available, interval model can be
utilized. For example, Ref. [28] studied a wind turbine gear system where the
stiffness and damping are all uncertain but bounded. In addition, fuzzy model
can describe the randomness in internal or external excitations when limited
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information is available [29].

Fig. 1.16: Seasonal wind speed distribution [8]

Based on the amount and the type of available information, we can choose
a proper model and the corresponding analysis method. Among these models,
the statistical model is the most commonly used method and it has advantages in
simulation and mathematical description than the other two methods. Our work
focuses on using statistic models to describe the randomness in both internal and
external excitations. In next paragraphs, we introduce some fundamentals to the
statistical approach.

Among the studies investigating randomness of external load in gear systems’
analysis model [30] [31], Gaussian white noise was widely accepted in describing
randomness in external load [32]. The other model, Gaussian diffusion process,
will be applied to model the external load in this study. We will define it next.
Gaussian white noise is suitable for modeling the randomness in lab experiment
condition (with small fluctuations in operating environment). Gaussian diffusion
process is applicable in the occasion considering natural forces (with larger
fluctuating than lab experiment condition), e.g., wind power.
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Fig. 1.17: A plot of Gaussian white noise signal

A sample of Gaussian white noise is depicted in Fig. 1.17. Gaussian white
noise ξ(t) is defined as:

E(ξ(t)) = 0 (1.13)

E[ξ(t)ξ(t+ τ)] = σ2Θ(τ) (1.14)

where t is time, ξ is a Gaussian white noise with variance σ2, and Θ is the Dirac
Delta function (see Fig. 1.18) which is also known as unit impulse symbol.

Fig. 1.18: Dirac Delta function
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Fig. 1.19: An example Wiener process

A Gaussian diffusion process is used to simulate the equivalent external
excitation Φ. It is the integration of Gaussian white noise. It is assumed that Φ

can be approximated in the following form [33]:

dΦ(t) = λdt+ σdW (t) (1.15)

where λ is the drift scalar, σ is the diffusion scalar, and W (t) is a standard
Wiener process. Wiener process is a continuous-time stochastic process and it is
often called Brownian motion. An example of Wiener process is shown in Fig.
1.19, which contains 10 different paths. The standard Wiener process W (t) is
characterised by the following properties:

1. W (t) has independent increments: for each t > 0, the future incrementsW (t+

τ) −W (t), τ ≥ 0 , are independent of the past values W (s), s < t.

2. W (t) has Gaussian increments: W (0) = 0, W (t) −W (0) is normally
distributed with mean 0 and variance t, W (t) ∼ N (0, t) .

3. W (t) has continuous paths: W (t) is continuous in t with probability 1.
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Comparing Fig. 1.17 and Fig.1.19, the properties of the two types of stochastic
model can be obtained. The main differences between the two types of stochastic
model are shown as: 1) the mean of ξ(t) equals to zero while the mean of W (t)

does not; 2) the variance of Gaussian white noise ξ(t) is σ2 while the variance of
Gaussian diffusion process Φ(t) is σ2t.

1.1.6 Runge-Kutta and Monte Carlo (MC) approach

Current methods can solve a gear model’s differential equations under stochastic
load and with other deterministic factors that may include TVMS, backlash,
damping ratio, and so on. Solving a gear model’s differential equations under
stochastic load and with at least one of the internal factors being stochastic is more
difficult than when all factors are deterministic.

Runge-Kutta method is a family of iterative methods to obtain approximate
solutions of an ODE [34]. Accordingly, an initial value problem is specified as
follows,

ẏ = f(t, y) (1.16)

y(t0) = y0 (1.17)

where y is an unknown function of time t which needs to be approximated. By
Runge-Kutta method, we can approximate the value of y(tn) at any time point tn.
The fourth-order Runge-Kutta method, also namely RK4, is the most widely used
member of the Runge-Kutta family. The procedure of RK4 can be summarized as
follows [35].

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4) (1.18)

tn+1 = tn + h (1.19)

where h > 0 is the step-size, n = 0, 1, 2, · · · , k1 = hf(tn, yn), k2 = hf(tn + h
2
, yn + k1

2
),

k3 = hf(tn + h
2
, yn + k2

2
), and k4 = hf(tn + h, yn + k3). Accordingly, yn+1 is the RK4

approximation of y(tn+1). Note that the total accumulated error of RK4 is on the
order of O(h4). Similarly, the accumulated error of the mth-order Runge-Kutta
method is on the order of O(hm) [35].

Applying MC method combined with Runge-Kutta method [34] can also obtain
the numerical solution to such model but with high calculation cost. Runge-Kutta
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Fig. 1.20: Flowchart of the Runge-Kutta and MC approach

method is a numerical approximation approach for an ODE. Conducting Runge-
Kutta method can obtain one sample of results for each time. The flowchart of
Runge-Kutta and MC approach is given in Fig. 1.20. A large number of samples are
needed for MC to obtain reasonable statistical properties of gear system responses
at each time point. The corresponding study on numerical solution will be shown
in Chapter 2 and Chapter 3.

1.1.7 Path integration (PI) method

Analytical solution has advantages in calculation efficiency compared with nu-
merical solution. Analytical solution or closed form expression is a mathematical
expression that can be evaluated in a finite number of mathematical operations. It
may contain constants, variables, certain well-known operations (e.g., +, −), and
functions (e.g., nth root, exponent, logarithm), but usually not the limit operator.
Some researchers have explored the analytical solution to a gear dynamic model
under stochastic load with all internal excitations being deterministic. However,
there is no reported work giving analytical solution to a gear model under
stochastic load and with at least one of the internal factors being stochastic. A
general analytical solution is needed for such model to be solved fast.

PI method is a method providing analytical solution to an ODE with the
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zero-order term being stochastic and the first and the second order terms being
deterministic. PI method’s key idea is assuming that the transition process follows
the Gaussian distribution. Then, the PDF of the response can be calculated by
doing integration in a finite phase plane space [36]. The corresponding study on
PI method will be shown in Chapter 4.

In summary, we have given the background information of the thesis in this
section. We first introduced the basic concepts of gear systems, gear dynamics, and
generation of dynamic responses. Then, the effects of different kinds of dynamic
characteristics and the modelling of deterministic and stochastic excitations were
explained. The basic ideas of numerical and analytical approaches were given at
the end of this section. In Section 1.2, the related literature is surveyed.

1.2 Literature review

In this thesis, we focus on a single degree of freedom (SDOF) gear model shown in
Eq. (1.10) considering different internal and external excitations. There is no doubt
that the dynamic model is closer to reality by considering more stochastic internal
and external excitations. However, it was pointed out that gear transmissions
are complicated and it is hard to model all details of a transmission [12]. Our
work is to explore those internal and external excitations which have not been
considered in the gear dynamic modelling and their effects on gear dynamic
characteristics. Meanwhile, considering more excitations in a gear dynamic model
increases the complexity (or nonlinearity) in solving the dynamic equation in
Eq. (1.10). Providing a better strategy of solving gear dynamic equations is another
important aspect in this thesis.

This section reviews existing works on modelling stochastic internal and
external excitations in a gear pair, analyzing each internal or external excitation’s
effects on gear dynamic characteristics, and obtaining analytical solution to a gear
dynamic model. Section 1.2.1 recalls the reported gear model under stochastic
load and Section 1.2.2 reviews internal excitations in a gear pair. The studies
related to another external excitation, driving speed, are reviewed in Section 1.2.3.
Section 1.2.4 reviews the developments of solving techniques for gear models
under stochastic load.
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1.2.1 Deterministic and stochastic load considered in a gear pair

Dynamic modelling is the foundation of studying the gear dynamics. Recalling
Eq. (1.10), T is considered as load in a gear dynamic model. A general expression
of deterministic load is shown in Eq. (1.11). For a stochastic load, it is considered as
a summation of deterministic load and a random part (see Eq. (1.12)). This section
reviews existing works on deterministic and stochastic load considered in a gear
pair.

Gear dynamics under deterministic load has been explored for decades. Wang
et al. [7] reviewed the reported models and approaches used in gear dynamics.
Khabou et al. [24] investigated the dynamic behavior of a spur gear system under
deterministic load and concluded that adequate external load should be chosen to
reduce vibration.

However, the assumption of deterministic external load faces its shortcomings
in many practical occasions, e.g., uneven road, ocean flows, and wind power. For
example, the wind power is unpredictable and its effects on the wind turbine gear
system are unknown. The assumption of deterministic load in wind turbine gear
system is not suitable for the case with fluctuating wind.

A few studies investigated randomness of external load in gear system analysis.
Utagawa and Harada [30] investigated the influence of randomness of dynamic
loads for high speed gears. Tobe et al. [31] investigated stochastic load, which
was treated as Gaussian white noise. Their results were validated by comparing
with the experimental results reported in [37]. Ref. [37] reported studies in
gear stochastic dynamics and examined the randomness of external load via
lab experiments. Wang et al. [38] studied a wind turbine generator working in
stochastic wind with varying directions and loads.

Gaussian white noise (refer to Eq. (1.13) and Eq. (1.14)) is suitable for the
circumstances with small environment influence. However, the suitable applica-
tion environment of Gaussian white noise is limited. Considering the complexity
of working condition, other stochastic load models are required for different
environments. Compared with Gaussian white noise, Gaussian diffusion process
(refer to Eq. (1.15)) has fluctuating mean values, which is more appropriate in large
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varying noise of load situations to study the transient characteristics caused by the
randomness of load.

Existing works modelled Gaussian white noise as the random part in external
load. Nevertheless, they did not utilize Gaussian diffusion process to model the
randomness in load. The assumption of Gaussian diffusion process may be better
on the occasions, for example, wind turbines suffering from time varying load and
frequent start-up [21]. It is necessary to point out that we are not saying Gaussian
diffusion process is suitable for all circumstances. For instance, Gaussian white
noise may be a realistic representation of real gear systems with small varying
noise of load. It is still worth to consider stochastic load as Gaussian diffusion
process in gear modeling for some cases (i.e., a large varying noise of load).

Both Gaussian white noise and Gaussian diffusion process will be utilized in
this thesis to model the stochastic excitations including external load and driving
speed. Gaussian white noise is adopted to model external load and driving speed
in Section 2.4 and Section 3.2.2, respectively. In Section 2.5, Eq. (1.15) is adopted
to model external load. For stochastic external excitation, it is the first time to
model external load using Gaussian diffusion process and model driving speed
using Gaussian white noise. Corresponding work can be referred to Chapter 2 and
Chapter 3.

1.2.2 Internal excitations considered in a gear pair

Researchers have considered that many internal excitations affect gear dynamics.
Theodossiades and Natsiavas [39] introduced the gear systems with periodic
stiffness and backlash under the action of external excitation, caused by torsional
moments and gear transmission errors. They considered the transmission errors
as static errors, which means that the error is time invariant. The meshing
stiffness was expressed in a Fourier series form and backlash was adopted as
Eq. (1.3). Wang et al. [7] reviewed internal excitations, including backlash, tooth
mesh stiffness, transmission error, friction, etc., used in gear dynamics under
deterministic load. Many different types of mathematical models for internal
excitations have been proposed. Generally, the models of internal excitations can
be classified into four main groups. The following paragraph gives an introduction
to the category of internal excitations.
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The first group consists of linear time-invariant (LTI) models, and an extensive
review was given by Ozguven and Houser [13]. In the second group, linear time-
varying (LTV) mesh stiffness is included [40] [41]. Accordingly, a geared system
is excited parametrically by static transmission induced by kinematical errors
and tooth deflections. The third group takes nonlinear gear backlash and time-
invariant average mesh stiffness (NTI) [42] [43] into account. It should be noted
that backlash is bounded due to design or manufacturing error. In the last group,
both gear backlash and mesh stiffness variation are considered simultaneously as
nonlinear time-varying (NTV). This group of models is mainly used in the study
of multi-parameters nonlinear vibration.

Compared to the many studies on the gear deterministic internal excitations
under deterministic load, the investigations on the gear deterministic internal
excitations under stochastic load are limited. Yang [44] investigated a gear
dynamic model under Gaussian white noise and assumed constant mesh stiffness
and constant damping coefficient. Recently, Wen and Yang [5] developed a gear
pair’s dynamic model considering constant damping coefficient, time-varying
mesh stiffness, and backlash. They considered time-varying mesh stiffness as a
square wave function and backlash as in Eq. (1.3).

Many internal factors for a gear system have random variations and greatly
affect the system’s dynamic characteristics. Lu et al. [45] studied the influence
of stochastic perturbations of damping ratio and backlash on dynamic behavior
of gear systems. Stochastic perturbations in [45] referred to a combination of a
constant and a Gaussian white noise. Handschuh [46] and Inalpolat et at. [47]
investigated the impact of random spacing errors on transmission error and root
stresses of a spur gear pair. This transmission error function assumes an infinite
number of harmonics with normally distributed indexing errors. However, some
internal factors (e.g., friction), which affects gear systems significantly under
stochastic load, have not been studied.

Friction has been identified as a cause of vibration, noise, and failure of a gear
system under deterministic load [48]. Many researchers have reported the effects
of friction on gear dynamics under deterministic excitation. A detailed review of
friction prediction in gear teeth was conducted by Martin [49], which stated that
the values of coefficients of friction could be predicted reasonably according to
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various lubrication theories. Yang et al. [50] proposed a model of a spur gear pair
considering friction, Hertzian damping, and bending under deterministic load.
Iida et al. [51] investigated vibrational characteristics of a gear system affected by
friction under deterministic load. Krupka et al. [52] studied the effects of surface
lubrication film on vibrational characteristics of a gear system. He et al. [53]
reported several sliding friction models in spur gear dynamics to analyze friction
forces. Guilbault et al. [54] studied the effects of nonlinear damping in cylindrical
gear dynamic modeling, which integrated the friction contribution. Ericson [55]
applied FEM to study the stiffness of a gear pair under various deterministic loads.

However, friction has not been considered in a gear pair’s dynamic model
under stochastic load. Friction’s effects on gear dynamic model under stochastic
load have not been investigated. Though the coupling of friction and stochastic
load adds difficulty to the solving process, the dynamic characteristics (such
as periodicity, stability, and dispersion) are useful indicators in analyzing gear
systems’ health condition. For two factors which have independent effects labeled
as 1, their effects on the system satisfy 1 + 1 = 2. In classical mechanics, coupling
is a connection between two nonlinear factors which leads to a result as 1 + 1 6= 2.

Friction is considered in Chapter 2 to study its effects on gear dynamic
characteristics with stochastic load. The stochastic load is assumed to be Gaussian
white noise or Gaussian diffusion process. The two kinds of load profiles have
their own applicable situations. Two load profiles together with the consideration
of friction will be studied and compared in Chapter 2.

1.2.3 Stochastic driving speed in gear model

Except load, the fluctuation of driving speed is another external excitation. The
causes of the fluctuation of driving speed could be engine [56] or natural force
(e.g., wind [57]) as shown in Fig. 1.21. Driving speed fluctuation is found as a
common source of noises in some engines, such as, four stroke four cylinder inline
diesel engine [24]. For a combustion engine, many forces arise due to gas pressure,
bore, stroke of engine, and inertia of moving parts during the power stroke. The
engine does generate driving speed fluctuations and torque fluctuation.

A few studies investigated the influence of driving speed caused by engine
in gear systems. Qiu et al. [58] considered the influence of input velocity on
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Fig. 1.21: Drivers of a gear system (a) engine (b) wind

the time-varying mesh stiffness and introduced a velocity modulated stiffness
model. Liu et al. [26] investigated the driving speed in a spur gear system under
deterministic load. They concluded that the driving speed was a non-negligible
source of instability in gear systems.

Most previous work usually modelled the driving speed to be deterministic.
However, deterministic assumption of driving speed may not be proper at some
conditions. Some researchers modelled the randomness of the driving speed.
Tutak and Jamrozik [59] studied the flow field turbulence in the combustion
chamber and modelled the crankshaft velocity (performed a conversion between
reciprocating motion and rotational motion) randomness of internal combustion
engine. Pruvost et al. [60] proposed an improved filter to separate the noise (e.g.,
random part of rotation speed signal) and validated their designed filter in the
diesel combustion engine experiment. Randall [61] summarized kinds of methods
to deal with the random speed fluctuation in combustion engine. Except the
deterministic fluctuation in the driving speed, the randomness raises our attention
and the coupled effects of stochastic driving speed and stochastic load are worth
to be investigated.

However, the gear model under stochastic load considering both friction and
driving speed has not been evaluated. The effects of driving speed, friction, and
load on the dynamic characteristics have not been studied. Neither deterministic
nor stochastic driving speed has been considered for modeling a gear system with
stochastic load. In Chapter 3, the driving speed is taken into consideration for a
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pair of spur gears under stochastic load. Two cases of driving speed (deterministic
and stochastic) are studied and their effects on the dynamic characteristics are
compared. The influences of driving speed on dynamic characteristics of gear
systems are investigated, which can be referred to Chapter 3.

1.2.4 Approaches for solving gear dynamic model

Given a gear pair model, how to solve the model is another significant research
topic. For an ODE like Eq. (1.1), it is usually solved by analytical or numerical
methods. Runge-Kutta method [5] [44] [62] is a numerical method and is
commonly used for solving ODEs without stochastic terms. The toolbox in Matlab
for this approach is known as “ode”.

Solving a gear dynamic model with stochastic excitations (internal or external
or both of them) is more complicated than that under deterministic excitations. The
gear model becomes a stochastic differential equation (SDE). There are different
approaches to solve gear dynamic models with stochastic excitations involved.
Computation efficiency and accuracy are two major reasons for choosing a proper
approach. Taking the results by MC method as a standard, computation efficiency
refers to the time saved compared to MC method and the accuracy refers to the
relative errors compared to MC method.

As introduced in Section 1.1.5, statistic model, interval model, and fuzzy
model have been used to describe the randomness in gear systems [2]. Based
on available data, the internal or external excitations’ probability distribution can
be estimated and a statistic model can be applied. Thanks to the well developed
probabilistic theory, statistical method is the most commonly used method and it
has advantages in simulation and mathematical description than interval method
and fuzzy method. Our work focuses on using statistic method to model the
randomness in both internal and external excitations.

In Section 1.2.4.1, statistical methods related to solving an SDE will be re-
viewed. The solution types of an SDE can be divided into analytical solution and
numerical solution. Since the analytical solution has computation advantage, we
will focus on analytical solution of gear dynamic models. Analytical solution for a
gear model with one additional stochastic internal excitation will be introduced in
Section 1.2.4.2.
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1.2.4.1 Summary of solving approaches

Statistical methods are usually used to obtain the responses of a gear system under
stochastic load. Statistical methods include statistical linearization method [63],
stochastic averaging approach [64], MC method [65], Path integration method (or
cell mapping) [66] [67], statistical Newmark method [68], and so on. In order to get
the responses of a gear model by statistical methods, researchers usually focus on
getting the statistical characteristics of the responses, such as, mean, variance, and
PDF [69]. PI method and stochastic averaging method give analytical solutions
while statistical linearization method, MC method, statistical Newmark method
are numerical methods. Wei et al. [2] reviewed the main ideas and statistical
characteristics of each statistical method as shown in Table 1.1. In the table, number
“1” means the worst performance while number “5” refers to the best performance
in accuracy and efficiency.

Table 1.1: Typical statistical methods and their performance [2]

Name Accuracy Efficiency

Statistical linearization method 1 4

Stochastic averaging method 3 2

Statistical Newmark method 2 3

Runge-Kutta & MC 5 1

Path integration method 4 5

Statistical linearization method [63] approximates the original nonlinear system
to a similar linear system with the minimum error, which provides the variance of
responses. It has the lowest accuracy and second fastest calculation speed among
the mentioned five methods.

Stochastic averaging method [64] transforms the time varying parameters to
time invariant parameters with averaging method and derives an approximate
analytical solution, which gives PDF to a small damping nonlinear system.

Statistical Newmark method [68] utilizes the recursive equation of each discrete
time point to derive mean and variance of responses. Both of the stochastic aver-
aging method and statistical Newmark method have the medium performance in
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both accuracy and efficiency.

Runge-Kutta method obtains single numerical solution of a gear dynamic
model for each time. Then, MC method uses numerical simulation to generate
a number of response samples and then provides a high accuracy PDF. Let MC
method denote the Runge-Kutta and MC method. MC method has the highest
accuracy and slowest calculation speed.

PI method assumes transition PDF within a short time interval as Gaussian
distribution and gives the analytical expression of the response PDF. PI method
[66] [67] has the fastest calculation speed and its accuracy is relatively high if the
load follows Gaussian distribution. If the time step length or the space discretion
does not satisfy some relationship determined by drift factor and diffusion factor,
PI method has a low accuracy.

It is known that analytical solutions have advantages in calculation efficiency
compared with numerical solutions. In the following section, we will focus on how
to obtain the analytical solution of a gear system considering stochastic internal
and external excitations as reported by other researchers. In addition, the problems
that have not been addressed or solved will be illustrated briefly.

1.2.4.2 Analytical approach for single stochastic internal factors

Researchers have explored the analytical solution to a gear dynamic model under
stochastic load. Sato [70] studied the analytical solution of a gear system under
random load with consideration of transmission error and TVMS. Naess et al. [67]
derived the analytical solution to a gear system considering constant stiffness,
constant damping coefficient, and backlash under the excitation of Gaussian white
noise. Wen et al. [5] obtained the analytical solution of the gear system considering
constant damping coefficient, TVMS, and backlash under the combination of
deterministic load and stochastic load including Gaussian white noise.

Current methods have provided analytical solutions to a gear model under
stochastic load and with other factors being deterministic that may include TVMS,
backlash, damping ratio, and so on. However, they have not given analytical
solutions to a gear model under stochastic load and with at least one of the internal
factors being stochastic [71]. Thus, it is necessary to develop a method to derive
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the analytical solution to such a model.

Among the approaches reviewed in Section 1.2.4.1, PI method gives an analyti-
cal solution to the gear dynamic model. The analytical solution is in the analytical
form of PDF. In the applications such as fatigue prediction and reliability analysis,
and accurate PDF is needed [36]. PI method is a practical approach for capturing
the PDF evolution in time. PI method is accurate when Gaussian white noise or
Poisson white noise is used as noise terms [72].

Sun and Hsu [73] proposed PI method by assuming that the transition PDF
within a short time was a Gaussian diffusion process. Köylüolu et al. [72] applied
PI method to study a single degree of freedom oscillators subject to Gaussian and
Poisson random excitations. By assuming that the conditional PDF is Gaussian,
the PDF of the response can be obtained by integration in a finite phase plane
space [36].

When at least one of the internal factors is stochastic, PI method cannot deal
with the dynamic model under stochastic load directly [74]. On the other hand,
modifying PI method to solve such a model will lose some accuracy. A method
based on PI method and supervised learning will be proposed. Thus, obtaining
such analytical solution with consideration of both accuracy and efficiency is to be
addressed in Chapter 4. The results can be used to provide approximate analytical
solution of the model in topic 1 (Chapter 2) with one of the internal excitations,
friction, to be stochastic. Note that the proposed method in topic 3 (Chapter 4) is
not limited to the model in topic 1 (Chapter 2). It can be used to solve the gear
model with any one stochastic internal excitation under stochastic load. However,
the proposed method in topic 3 (Chapter 4) cannot solve the model in topic 2
(Chapter 3) with two external stochastic excitations. Future research is needed
to develop efficient approaches to solve multiple external stochastic excitations
involved problem.

1.3 Objective and outline

Based on the reviews summarized in Section 1.2, three main issues have been
identified that will be addressed in this thesis. The overall objectives are to
investigate the dynamics of a spur gear pair considering different stochastic
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internal and external excitations via LPM and provide corresponding solutions
either numerically or analytically. Fig. 1.22 summarizes the internal and external
excitations with the challenges when considering them.

Our basic assumptions in this thesis are listed as follows:

• Both of the gears are involute spur gears.

• The transmission error, influence from the shaft, and bearing effects are not
considered or they are assumed perfect or constant.

• The whole system is simplified as a single degree of freedom (SDOF) lumped
mass model.

• The gear tooth is treated as a cantilever beam.

• The gear mesh interface is modeled as a spring-damper system.

Fig. 1.22: Excitations and the challenges involved

According to the state of the art in dealing with gear systems’ stochastic
excitations, the three proposed research topics are:
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• Build an improved dynamic model considering both friction and stochastic
load

• Develop an improved dynamic model considering driving speed and s-
tochastic load

• Provide a method for solving the gear model with one stochastic internal
excitation and stochastic load

The structure of the thesis and the relationship among the three topics are given
in Fig. 1.23. Topic 1 proposes an improved gear model under stochastic load and
takes one more internal excitation, friction, into consideration. Then, developing
from topic 1, one more external excitation (driving speed) has been considered in
topic 2. There are three stochastic excitation (friction, load, and driving speed) in
topic 2 while other excitations are deterministic. Topic 3 provides an approximate
analytical solution to the model with one of the internal factors treated to be
stochastic under stochastic load, e.g., the model in topic 1. This stochastic internal
factor could be TVMS, backlash, damping ratio, or friction, etc. But only one of
them can be stochastic.

Fig. 1.23: Structure of the thesis
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In topic 1, a gear stochastic dynamic model for a spur gear pair considering
TVMS, gear mesh damping, backlash, friction, and stochastic load is established.
The dynamic responses of this model are investigated using numerical simulation
and compared with previous work. Two cases with different load profiles are
studied and compared. For case 1, load is modeled as Gaussian white noise with a
certain friction coefficient ( µ = 0.04). For case 2, load is modeled as Gaussian diffu-
sion process with five friction coefficient values (µ = {0.01, 0.02, 0.03, 0.04, 0.05}).

In topic 2, a gear stochastic dynamic model for a spur gear pair considering
TVMS, gear mesh damping, backlash, friction, stochastic driving speed, and
stochastic load is established. Driving speed is the first time to be taken into
consideration under stochastic external excitations. Two profiles of driving speed
(deterministic and stochastic) are studied and compared. The dynamic responses
of this model are investigated using numerical simulation and compared with
previous works.

Topic 3 proposes an approximate analytical solution to a spur gear dynamic
model with stochastic load and one stochastic internal factor. The analytical
solution is derived using PI method and then updated using a supervised learning
algorithm. A case study taking friction as an example of the single stochastic
internal element is used to validate our proposed method. The dynamic responses
of this model are investigated using our proposed method and then compared
with MC results.

The remaining parts of this thesis are structured as follows. Chapter 2, Chapter
3, and Chapter 4 give details of the three research topics, respectively. The
summary and future work are presented in Chapter 5.

This thesis is written using the paper based template which meets the format-
ting requirements of University of Alberta.



2
Effects of Friction and Stochastic Load

on Transient Characteristics

The dynamic modeling of gear systems under deterministic excitations has been
widely investigated in existing studies. However, the existence of randomness
in external load of geared systems is widely known. Stochastic load induces
more vibration and noise than deterministic load. To better demonstrate gear
systems, a nonlinear dynamic model is developed considering time-varying mesh
stiffness (TVMS), backlash, sliding friction, and stochastic external load in this
chapter1. Friction is the first time introduced in a spur gear pair nonlinear dynamic
model under stochastic load. Monte Carlo (MC) simulation is applied to analyze
the transient characteristics focusing on the effects caused by stochastic load and
friction. The results show that stochastic load makes the system have a longer
duration in the transient state and lower transient stability compared with the
results under deterministic load. Friction causes higher dispersion of the gear
pair’s relative angular displacement in the transient state while lower dispersion in
the steady state compared with the case without considering friction. In addition,
the system’s transient stability and the response’s dispersion vary with the increase

1The following two papers based on the work of this chapter have been published.
Y. Fang, X. Liang, and M. J. Zuo, “Effect of sliding friction on transient characteristics of a gear
transmission under random loading,” in Proceedings of 2017 IEEE International Conference on Systems,
Man, and Cybernetics (SMC). IEEE, Banff, Canada, Oct. 5-8, 2017, pp. 2551–2555.
Y. Fang, X. Liang, and M. J. Zuo, “Effects of friction and stochastic load on transient characteristics
of a spur gear pair,” Nonlinear Dynamics, vol. 93, no. 2, pp. 599–609, Jul. 2018.
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of friction coefficient. The friction coefficients that cause the lowest transient
stability and highest dispersion of relative angular displacement are identified.

2.1 Introduction

Gear systems are widely used in modern power transmission systems. Many
studies have been performed on dynamic modelling of spur gear transmission
systems [12]. The dynamic characteristics of a gear system are affected by internal
and external excitations [27]. Internal excitations include backlash [75], TVMS [76],
transmission error [77] [78], and so on. Many studies focused on the investigation
of internal excitations while only a few did investigation on external excitations
(e.g., varying load [79]).

Gear dynamics under deterministic load has been explored for decades. The
models and approaches used in gear dynamics are reviewed by Wang et al. [7].
Khabou et al. [24] investigated the dynamic behavior of a single stage spur gear
system under deterministic load and concluded that adequate external load should
be chosen to reduce vibration. Shao and Chen [27] proposed an analytical model
of a spur gear pair with tooth root crack under deterministic load. These existing
models reveal the mechanism of gear systems and contribute to the understanding
of gear dynamics. However, they restricted the gear dynamics problems in the
deterministic domain, and thus, it reduces the difficulties in obtaining dynamic
responses of a gear system.

A few studies investigated randomness of external load in gear system analysis.
Utagawa and Harada [30] investigated the influence of randomness on dynamic
loads for high speed gears. Tobe et al. [31] investigated stochastic load, which
was treated as Gaussian white noise. Their results were validated by comparing
with the experiment results reported in [37]. Ref. [37] was one of the earliest
reported studies in gear stochastic dynamics and the randomness of external load
was examined via lab experiments. Wang et al. [38] studied a wind turbine
generator suffering from stochastic wind with varying directions and loads. The
extensions of the models from deterministic domain to stochastic domain lead to
more realistic representation of real gear systems.

Patil et al. [21] analyzed the effects of wind stochastic energy variation on gear
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system’s steady and transient states. Drago [22] studied the influence of stochastic
start-up load to the potential failure of gears. Gear vibrations and noises are mainly
induced by load variation at gear transient state [24]. It is necessary to consider the
stochastic external load in gear system modelling especially at transient state.

Researchers have made some improvements in modelling gear dynamics under
stochastic load. Wang and Zhang [32] considered the speed-dependent stochastic
errors in the modelled one-dimensional spur gear pair. Theodossiades and
Natsiavas [39] introduced the gear systems with periodic stiffness and backlash
and they considered the transmission errors as static errors. Yang [44] investigated
a gear multi-mesh dynamic model under Gaussian white noise while with constant
mesh stiffness and damping coefficient. Recently, Wen and Yang [5] developed
a gear pair’s dynamic model considering constant damping coefficient, backlash
and TVMS. It was solved by numerical and analytical methods.

Friction has been identified as a cause of vibration, noise and failure of gear
systems [48]. Many researchers have reported the effects of friction on gear
dynamics under deterministic excitation. Martin [49] conducted a detailed review
of friction prediction in gear teeth and concluded that the values of coefficients of
friction could be predicted reasonably according to various lubrication theories.
Yang et al. [50] proposed a model of a spur gear pair considering friction, Hertzian
damping and bending under deterministic load. He et al. [80] investigated
vibrational characteristics of a gear system affected by friction under deterministic
load. Krupka et al. [52] studied the effects of surface lubrication film on vibrational
characteristics under transient conditions. He et al. [53] reported several sliding
friction models in spur gear dynamics to analyze friction forces. Guilbault et
al. [81] studied the modeling and monitoring of tooth fillet crack growth under
a spur gear set, which integrated the friction contribution.

Friction has not been considered for modelling a gear system with stochastic
load. In this chapter, friction is taken into consideration for a pair of spur gears
under stochastic load. Transient characteristics of this gear system are studied. The
influences of stochastic load and surface sliding friction on gear system stability are
investigated.

The remaining parts of this chapter are organized as follows. In Section 2.2,
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the proposed stochastic dynamic model for a spur gear pair is described. Section
2.3 validates the proposed model by comparing it to reported work. Section
2.4 illustrates the effects of friction coefficient and stochastic load (modelled as
Gaussian white noise) on gear transient characteristics. Section 2.5 investigates the
effects on gear transient characteristics by friction and stochastic load (modelled as
Gaussian diffusion process). Section 2.6 draws the conclusion.

2.2 Nonlinear stochastic gear dynamic model consid-
ering friction

In this section, a single degree of freedom (SDOF) nonlinear dynamic model of a
spur gear pair is developed based on the model reported in [50]. TVMS, backlash,
sliding friction and stochastic load are considered in our model. The model of the
geared system is shown in Fig. 1.9. Only rotation of the gear is considered in this
model. Fig. 2.1 gives the TVMS used in this study, which is simpler comparing
to the TVMS model shown in Fig. 1.10. In order to investigate the influence of
friction in this chapter, we keep everything else the same as [5]. Thus, we adopt
the same TVMS profile with that of [5]. The whole derivation process for Eq. (2.1)
and Eq. (2.2) is based on [50] and no new contributions are claimed in this part.

Fig. 2.1: Time varying mesh stiffness [5]

The equations of the motion for the system given in Fig. 1.9 can be expressed
as

J1θ̈1 = T1−(F +G)Rb1 − FfX1 (2.1)

J2θ̈2 = T2 + (F +G)Rb2 + Ff (lp −X1) (2.2)
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where Ji, Ti, θ̈i, and Rbi are the moment of inertia, external torque, angular
acceleration, and the radius of the base circle of gear i (i = 1, 2), respectively, F is
the total elastic force between the contact teeth shown in Fig. 2.2, G is the damping
force, Ff is the sliding friction, X1 denotes the distance between the tangent point
C1 on the action line and the force contact pointB1, and lp is the length of the action
line from point of C1 for gear 1 to the corresponsing point C2 for gear 2. Since the
contact point and the direction of the normal force would change, the direction
of the friction force also changes. Note that the direction of the friction force is
perpendicular to the normal force and opposite to the tooth sliding direction. For
more details, please refer to [50].

Fig. 2.2: Elastic force on the tooth of gear 1

Multiply Eq. (2.1) by Rb1/J1 and Eq. (2.2) by Rb2/J2, and then subtract the
second from the first one. We can get the expression shown in Eq. (2.3).

Rb1θ̈1−Rb2θ̈2 =
T1Rb1

J1

− T2Rb2

J2

−(F +G) (
R2
b1

J1

+
R2
b2

J2

)−Ff
X1Rb1

J1

+
(lp −X1)Rb2

J2

(2.3)
Let δ = Rb1θ1−Rb2θ2. The gear pair’s equation is reduced to an SDOF nonlinear

system with TVMS (i.e., Eq. (2.18)), backlash (i.e., Eq. (2.17)), and friction (i.e., Eq.
(2.5)). Thus, we have

δ̈ = Φ − Kδ + αδδ̇ q3 − µ Kδ + αδδ̇ (q1 + θ1q2) (2.4)

where
Ff = µ(F +G) (2.5)
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lp = (Rb1 +Rb2) sinα0 (2.6)

X1 = (a0 + θ1 + θb1)Rb1 (2.7)

θb1 =
π

2Z1

+ tanα− α (2.8)

F = Kg(δ) (2.9)

G = αδδ̇ (2.10)

Φ =
T1Rb1

J1

− T2Rb2

J2

(2.11)

q1 = α0
R2
b1

J1

+
R2
b2

J2

+ θb1
R2
b1

J1

− Rb1Rb2

J2

(2.12)

q2 =
R2
b1

J1

− Rb1Rb2

J2

(2.13)

q3 =
R2
b1

J1

+
R2
b2

J2

(2.14)

In Eqs. 2.5–2.14, θb1 is half of the tooth angle (see Fig. 2.2), α0 denotes the
pressure angle, K is the effective mesh stiffness, δ gives the relative angular
displacement of the gear pair, α is the damping coefficient, Φ represents the
equivalent external excitation, µ is the friction coefficient, and q1, q2, and q3 denote
polynomials as shown in Eqs. 2.12–2.14, respectively.

Rewriting Eq. (2.4), a second order ordinary differential equation (ODE) is
obtained as

δ̈ +Q(θ1)g(δ)αδ̇ +Q(θ1)K(θ1)g(δ)=Φ (2.15)

The expressions of Q (θ1), g(δ), and K(θ) are given as following.

Q(θ1) = q3 + µ(q1 + θ1q2) (2.16)

g(δ) =


δ − b,

0,

δ + b,

δ > b

−b ≤ δ ≤ b

δ < −b

(2.17)

K(θ) =

 k1

k2

for
(n− 1)φn ≤ θ < (n− 1)φn + φm

(n− 1)φn + φm ≤ θ < nφn
(2.18)

where Q(θ1) is a function of θ1, g (δ) denotes the function of backlash (shown in
Fig. 2.3), φn and φm represent gear rotation angles during a mesh circle and the
single tooth pair mesh duration in a mesh circle, respectively. We assume that the
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gear system is in a closed box with adequate lubrication oil. Also, the lubrication
condition affects the friction coefficient µ. Though there is this influencing effect,
in this thesis, it has been actually assumed that the lubrication condition is perfect
and no lubrication effects on µ are considered in this thesis.

Fig. 2.3: Function of backlash [5]

The classic way to model the external load is using Gaussian white noise. In
Section 2.3, the excitation Φ is modeled as a combination of a constant deterministic
part Φ0 , a deterministic periodical part Φ1, and a random part ξ(t) .

Φ(t) = Φ0 + Φ1 cos(ωt) + ξ(t) (2.19)

A Gaussian diffusion process is used to simulate the equivalent external
excitation Φ. It is the integration of Gaussian white noise. It is assumed that Φ

can be approximated by an Itô stochastic differential equation (SDE) [82], which is
given as the following form [33]:

dΦ(t) = λdt+ σdW (t) (2.20)

where λ is the drift scalar, σ is the diffusion scalar, and W (t) is a standard Wiener
process. In Section 2.5, Eq. (2.20) is adopted to model external load.

Recently, a stochastic dynamic model was investigated in [5]. They considered
the excitation as a combination of constant deterministic part f0, a deterministic
periodically changing part f1 cos(Ωmt), and Gaussian white noise ξ(t). Their
nonlinear system equation is given as follows:

δ̈ + αδ̇ +K(θ1)g(δ)=f0 + f1 cos(Ωmt) + ξ(t) (2.21)
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In the above equation, f0, f1, and Ωm are constant. Comparing Eq. (2.15) with
Eq. (2.21), the damping coefficient in [44] is a constant α, while the Q(θ1)g(δ)α in
our model is dependent on δ. Expand Q(θ1)g(δ)α and all relevant parameters are
shown:

Q(θ1)g(δ)α = [q3 + µ(q1 + θ1q2)] g(δ)α (2.22)

where q1, q2, q3, g(δ) and α are deterministic. Due to stochastic external load, θ1 is a
stochastic variable. Since g(δ) is nonlinear andQ(θ1) is stochastic, there is no doubt
that our proposed model in Eq. (2.4) reflects more nonlinearity than the existing
model and is more difficult to solve.

2.3 Validation of the proposed model

The validation is done by comparing with the result reported in [75], which
proposed a model of a spur gear pair under deterministic load considering TVMS
and backlash. TVMS was modeled the same way as shown in Fig. 2.1.

The gear pair parameters used in [75] will be also used in our proposed model
(see Table 2.1).

Table 2.1: Gear pair parameters

Density ρ = 7.8 × 10−6Kg/mm3

Young’s modulus E1 = E2 = 2.068 × 105N/mm2

Poisson ratio ν1 = ν2 = 0.03

Radius of gears r1 = 20mm, r2 = 80mm

Pressure angle α0 = 20◦

Number of teeth Z1 = 20, Z2 = 80

Thickness of gear L = 10mm

Backlash b = 0.05mm

If we assume that the friction coefficient equals to 0.04, Eq. (2.15) is the same
as the model in [50]. Angular displacements of the two gears during free vibration
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Fig. 2.4: Angular displacement comparison

are solved here. Ref. [50]’s results and our results are given in Fig. 2.4. Compared
to [50], our results (angular displacements) are almost the same in both magnitude
and tendency.

Although this validation is conducted under deterministic load, it still supports
the correctness of our model to some degree. And the model can be extended
to stochastic external excitation to explore the characteristics in stochastic gear
dynamics.



Chapter 2. Effects of Friction and Stochastic Load on Transient Characteristics 46

2.4 Dynamic characteristics analysis while load is mod-
elled as Gaussian white noise

To analyze the dynamic characteristics of the proposed model while load is
modeled as Gaussian white noise, this section gives the numerical simulation
results. The main objective of this section is to investigate the friction and
stochastic load effects on system’s transient characteristics.

Numerical solutions to the equations of the motion are obtained with Matlab
using ”ode15s”. All the stochastic load in this section are using a certain Gaussian
white noise model as given in Table 2.2. The stochastic load is modeled in Eq.
(2.19) and a sample of the load is shown in Fig. 2.5.

Table 2.2: The scenario of the load in Eq. (2.19)

Φ0 2 × 104

Φ1 5 × 103

Type of ξ(t = t1) Normal distribution

Mean of ξ(t = t1) 0

Standard deviation of ξ(t = t1) 5 × 103

Section 2.4.1 will study the stochastic load effects on transient characteristics,
such as vibration. Section 2.4.2 will study the friction coefficient effects on transient
characteristic, namely, dispersion.

2.4.1 Load effects on dynamic characteristics

This section shows the effects of stochastic and deterministic load on a gear
system’s dynamic characteristics, respectively. According to [49], the friction
coefficient in a gear system varies from 0.02 to 0.08. In this section, we fix
the friction coefficient at 0.04 to illustrate the load effects on gear dynamic
characteristics.

Fig. 2.6 and Fig. 2.7 present the relative angular displacement δ and the contact



Chapter 2. Effects of Friction and Stochastic Load on Transient Characteristics 47

Fig. 2.5: A sample of the load

force of the gear pair under stochastic and deterministic load.

As time goes, when the relative angular displacement becomes stable, the
system is considered to be in the steady state. Fig. 2.6 shows that the system used
about 0.6 seconds (s) to reach the steady state under the stochastic load. Under the
deterministic load, the system only costed 0.3 s to reach the steady state. Therefore,
the system with stochastic load uses much longer time to reach steady state than
that with deterministic load.

Fig. 2.7 shows the contact force fluctuation under deterministic and stochastic
load. In the transient state ( t < 0.3 s), the contact force has similar fluctuation
level under the two load conditions. However, in the steady state (t > 0.6 s), the
fluctuation level under stochastic load is higher than that under deterministic load.

In the steady state, system’s vibration under stochastic load is higher than that
under deterministic load. The possible reason for this phenomenon is that the
higher variation of magnitude in load (caused by the stochastic term in the external
load) leads to a longer adjustment time for a gear system to approach to the steady
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Fig. 2.6: Relative angular displacement under two types of load

state. Hence, we should pay more attention to the health monitoring of gearboxes
when the external load is stochastic.

2.4.2 Friction effects on dynamic characteristics

This section evaluates the influence of friction on the dynamic characteristics of the
gear system under stochastic load. Two cases ( µ = 0 and µ = 0.04) are illustrated
and compared, where µ is friction coefficient.

From Fig. 2.8, we can see that the system without friction took about 0.2 s to
reach the steady state while the system with friction used about 0.6 s to reach the
steady state. Therefore, the transient state will be longer if the system has friction.
In addition, the system with friction has a larger fluctuation of relative angular
displacement in the transient state ( t < 0.2s ). The friction affects the time duration
of the transient state and also the strength of the vibration in transient state.

Probabilistic distributions have been used to characterize stochastic responses
[83] [84]. We adopt the MC method to obtain a number of responses. In the
following part of this chapter, the PDFs of the relative angular displacement of
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Fig. 2.7: The contact force under two types of load

the system are given in Fig. 2.9 and Fig. 2.10. The PDFs of the relative angular
velocity of the system are given in Fig. 2.11 and Fig. 2.12.

Fig. 2.9 depicts the PDF of the relative angular displacement at 0.1s (transient
state). The values of system response here mean the magnitude of the relative
displacement between two meshing gear tooth surfaces. Due to the randomness in
load, the relative displacement obtained under generated stochastic load profiles is
also stochastic. The average value of the response is equal to −0.0296 with µ = 0

while it is −0.0293 with µ = 0.04. The average values are very close to each
other under these two friction conditions. The standard deviation of the response
is 0.0322 with µ = 0 while it is 0.0414 with µ = 0.04. The standard deviation for
the case with friction is much higher than that for the case without friction.

Fig. 2.10 describes the PDF of the relative angular displacement at 0.7s (steady
state). The average value of the relative angular displacement is 0.0450 with µ = 0

while it is 0.0412 with µ = 0.04. These two average values are quite close to
each other, indicating that the influence of friction is not that big in this case. The
standard deviation of the response is 0.0265 with µ = 0 while it is 0.0194 with
µ = 0.04. The standard derivation of the responses without friction in the steady
state is higher than the case with friction. The dispersion of the response is higher
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Fig. 2.8: Relative angular displacement under stochastic load with or without
friction

Fig. 2.9: PDF of the relative angular displacement at t=0.1s
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Fig. 2.10: PDF of the relative angular displacement at t=0.7s

in the system without friction. This phenomenon may be caused by the coupling
of load randomness.

When we examine the difference in the average values of relative angular
displacement at 0.7s (a steady state case in Fig. 2.10) and at 0.1s (a transient
state case in Fig. 2.9), the difference of the average values between the friction case
and the friction-less case becomes a little bigger at 0.7s than that at 0.1s.

Similarly, Fig. 2.11 depicts the PDF of the relative angular velocity at 0.1s

(transient state). The values of system responses here mean the magnitude of
the relative velocity between two meshing gear tooth surfaces. There is no doubt
that the relative velocity obtained under generated stochastic load profiles is also
stochastic. The average value of the response is equal to −0.196 with µ = 0 while
it is −0.283 with µ = 0.04. The average values are very close to each other under
these two friction conditions. The standard deviation of the response is 0.322 with
µ = 0 while it is 0.814 with µ = 0.04. The standard deviation for the case with
friction is much higher than that for the case without friction.
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Fig. 2.11: PDF of the relative angular velocity at t=0.1s

Fig. 2.12 describes the PDF of the relative angular displacement at 0.7 s (steady
state). The average value of the relative angular displacement is 0.231 with µ = 0

while it is 0.376 with µ = 0.04. These two average values are quite close to each
other, indicating that the influence of friction is not that big in this case. The
standard deviation of the response is 0.185 with µ = 0 while it is 0.294 with
µ = 0.04. The standard derivation of the responses without friction in the steady
state is higher than the case with friction. The dispersion of the response is higher
in the system without friction. This phenomenon may be caused by the coupling
of load randomness.

When we examine the difference in the average values of responses at 0.7s (a
steady state case in Fig. 2.12) and at 0.1s (a transient state case in Fig. 2.11), the
difference of the average values between the friction case and the friction-less case
becomes a little bigger at 0.7s than that at 0.1s. From Fig. 2.11, the standard
deviation of the relative velocity becomes closer for the two cases than that of the
relative displacement at 0.7s.

In a conclusion, friction causes more dispersion to the transient state than
that to the steady state. The friction effects on dispersion reflected in relative
displacement is bigger than that in relative velocity.
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Fig. 2.12: PDF of the relative angular velocity at t=0.7s

2.5 Dynamic characteristics analysis while load is mod-
elled as Gaussian diffusion process

To analyze the dynamic characteristics of the proposed model while load is
modeled as Gaussian diffusion process, this section gives the numerical simulation
results. The main objective of this section is to investigate the friction and
stochastic load effects on system’s transient characteristics.

Numerical solutions to the equations of the motion are also obtained by Matlab.
All the simulations in this section are under a constant load or a certain Gaussian
diffusion process modeled as given in Eq. (2.20). This load scenario is shown as
Table 2.3, which is used for all stochastic loads simulated in this section. The gear
pair’s parameters are given in Table 2.1.

Recall [49], the friction coefficient in a gear system may vary from 0.01 to 0.08.
In this section, we fix the friction coefficient at 0.04 to illustrate the load effects on
gear dynamic characteristics.

Section 2.5.1 will study the stochastic load effects on transient characteristics,
such as periodicity, chaos and stability. Section 2.5.2 will study the friction
coefficient effects on transient characteristics, namely, stability and dispersion.
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Table 2.3: The scenario of Gaussian diffusion process

λ 0

σ 5 × 103

Type of Φ (t = 0) Normal distribution

Mean of Φ (t = 0) 2 × 104

Standard deviation of Φ (t = 0) 5 × 103

2.5.1 Load effects on dynamic characteristics

This section shows the effects of stochastic and deterministic loads on a gear
system’s dynamic characteristics. In this section, we fix the friction coefficient at
0.04 to illustrate the load effects on gear dynamic characteristics.

Fig. 2.13 shows three loading processes: S1 is a constant loading process. S2

and S3 are two realizations of the Gaussian diffusion process.

Fig. 2.13: External load processes
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The external load is assumed to be a summation of a deterministic load
component and Gaussian white noise [31], [37], [5]. Compared with Gaussian
white noise, Gaussian diffusion process has fluctuating mean values, which may
be appropriate in some cases to study the transient characteristics caused by
the randomness of load. The assumption of Gaussian diffusion process may be
suitable on some occasions, for example, wind turbine suffering from time varying
load [22].

The friction coefficient usually varies with load and speed in real applications.
Under stochastic load, it is not easy to precisely analyze the friction mechanism
as many factors are involved (e.g., lubrication, surface roughness, load, sliding
velocity, and temperature) [80], [85]. According to the research results from [80]
[85], the friction coefficient has a small variation when the load and relative
velocity vary in a small range.

Ref. [53] compared the influence of five different friction coefficient models on
gear dynamic responses under constant load. One model used constant friction
coefficient while others adopted time varying friction coefficients. According to
their results, gearbox systems behave similarly in many aspects even though the
friction models are different. They concluded that the simplified assumption of
constant friction coefficient is still adoptable to some extent compared to those
time-varying friction coefficient models.

The purpose of this chapter is not to analyze the friction mechanism but to
investigate the transient characteristics affected by friction under stochastic load.
Even though a constant friction model is used in this study, the proposed model
can still generate reasonable results especially when the variation of load and
relative velocity is small. If the variations of load and velocity are large, further
research is needed.

2.5.1.1 Duration in transient states

Numerical solutions to the equations of the motion are obtained by Matlab. Fig.
2.14 presents the relative angular displacement δ of the gear pair under stochastic
and deterministic loads.

As time goes, when the relative angular displacement keeps stable, the system
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Fig. 2.14: Relative angular displacement under three load processes

is considered to be in the steady state. Fig. 2.14 shows that the system used about
0.35 s to reach the steady state under the deterministic load ( S1 ). Under the
stochastic load ( S2 and S3 ), the system has not reached the steady state before
0.4 s.

Therefore, the system with stochastic load uses much longer time to reach
steady state than that with deterministic load.

2.5.1.2 Periodicity and chaos

In this section, the dynamic characteristics including periodicity and chaos are
studied.

The chaotic oscillation cannot be intuitively observed in S2 or S3 compared to
that in S1. There are two possible reasons:

(a) The chaos of responses under this scenario of Gaussian diffusion process is
not strong enough to appear in this scale.
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Fig. 2.15: Phase diagrams of relative angular displacement and relative angular
velocity in the time interval [0.35, 0.4]s under three loading scenarios, S1, S2, and
S3

(b) The coupling of the friction and the randomness weakens the chaotic oscilla-
tion.

The chaotic oscillation of the system could be addressed using the secondary
Poincaré map [86] in future work beyond this PhD thesis. The periodic and
quasiperiodic dynamical oscillations can exist simultaneously [86], [87]. Most
periodic behaviors are not perfect periodic and neither quasiperiodic nor chaotic
as well [86]. From Fig. 2.15, the phase diagram of S1 shows overlapped loops while
the phase diagrams of S2 and S3 give independent loops.

Thus, the gear system under deterministic load holds the properties of periodic
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and quasiperiodic oscillations simultaneously. Under stochastic load, gear system
shows quasiperiodic oscillation. This phenomenon needs further investigation
with more samples and varying conditions.

2.5.1.3 Transient asymptotic stability

To investigate the performance of a gear system in the transient state, one of
the most important aspects is the transient stability [21]. According to [21], the
responses of a gear system will converge to a certain orbit. In our case, the
convergency of responses under stochastic load can be visualized in Fig. 2.14 while
the convergence orbit is not clear to identify.

However, we can utilize the convergence orbit obtained under deterministic
load in [50] for reference, which δ has a small perturbation near 0.05 (value
of backlash) and δ̇ has a small perturbation near zero. The gear system is
approaching to a stable state with the relative motion decreasing and transmission
ratio approaching to a constant. This phenomenon is asymptotically stable [88].

We apply an indicator to quantify such transient asymptotic stability. Choose a
certain time interval and define center distance as Eq. (2.23). The center distance
indicates the range of vibration response in a certain time interval. The transient
state is more stable with a lower center distance.

d =

r
{[max(δ) − 0.05] − [min(δ) − 0.05]} ·

nh
max(δ̇) − 0

i
−
h
min(δ̇) − 0

io
=

r
[max(δ) − min(δ)] ·

h
max(δ̇) − min(δ̇)

i
(2.23)

When t ∈ [0.35, 0.4] and µ = 0.04, we found d = 0.34mm/s
1
2 for S1, d =

0.44mm/s
1
2 for S2, and d = 0.59mm/s

1
2 for S3. Even if S2 and S3 follow the same

scenario, they show quite some differences in center distance from each other.

Since the responses (δ and δ̇) of the gear pair under Gaussian diffusion process
are random variables, it is necessary to give statistical information of transient
stability under stochastic load. In dealing with random variables, the probabilistic
method is a classical approach for uncertainty modelling based on the well-
developed probability theory [83] [89].
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To obtain statistical results, we adopt direct MC method instead of path
integration method [66], [67], [73], [74] or the stochastic perturbation method [90],
[91]. Although MC method takes more calculation time, we can achieve the desired
accuracy by increasing simulation time. In this simulation, each realization follows
the same scenario in Table 2.3.

When t ∈ [0.35, 0.4] and µ = 0.04, we simulated 100 realizations and obtained
corresponding center distances. There are 93 center distances greater than that
obtained under deterministic load. We conclude that the center distance under
stochastic load had 93% possibility greater than that under deterministic load.
Therefore, it can be concluded that there is lower transient stability under the
stochastic load.

2.5.2 Friction effects on dynamic characteristics

This section evaluates the effects of different friction coefficient values on the
dynamic characteristics of the gear system under a certain stochastic load with
the same scenario in Table 2.3. Six cases of the friction coefficient values (µ =

{0, 0.01, 0.02, 0.03, 0.04, 0.05}) are used and responses are compared with one
another. The effects of friction coefficient on the transient stability will be studied
in Section 2.5.2.1. Section 2.5.2.2 will investigate the friction coefficients’ influence
on the dispersion of responses.

2.5.2.1 Transient asymptotic stability

This section shows the effects of different friction coefficient values on the transient
stability. Firstly, the center distances under three loadings (S1, S2, S3) are shown in
Fig. 2.16. Then, the statistical analysis of the center distance under stochastic load
is shown in Fig. 2.17.

Fig. 2.16 shows the comparison of center distances as a function of friction
coefficient for the three loading scenarios. From Fig. 2.16, the trend of the center
distance of S2 shares similarity with that of S1. However, the trend of S3 is
different from S1 and S2. Even S2 and S3 follow the same scenario, they show great
differences from each other in amplitude. It should be noticed that the change of
center distance with the increasing of friction coefficient is not monotonous. A
small friction coefficient does not guarantee a better transient stability from the
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observation in Fig. 2.16.

Fig. 2.16: Comparison of center distances as a function of friction coefficient for the
three loading scenarios

Fig. 2.17 is a boxplot that denotes the statistical properties of center distances
under each friction coefficient value. The dot in a circle is the median, the block
with solid line is the interquartile range, and the dash line is the range of the
minimum and maximum. From Fig. 2.17, the range of center distance with the
friction coefficient being 0 is smaller than most of the cases with positive friction
coefficient.

Thus, friction causes more instability in transient state. But there is no obvious
trend between the center distance and friction coefficients. In those cases with
positive friction coefficient values, the minimum range of center distance is found
at µ = 0.02, and the maximum range of center distance is found at µ = 0.01 or
µ = 0.03.

In a word, gear system has worst transient stability with µ = {0.01, 0.03} and
best transient stability with µ = {0, 0.02}. According to this result, we should find
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Fig. 2.17: Boxplot of the center distance as a function of friction coefficient for
loading scenario S2

out and avoid the friction coefficient which will worsen transient stability in the
gear design phase. At the same time, the friction coefficient should be adjusted to
a suitable value in gear system to increase transient stability.

2.5.2.2 Dispersion of responses

The descriptions of responses in the gear system under stochastic load are
analyzed with PDFs [84]. Fig. 2.18 describes the PDF evolution during the time
range [0.3, 0.4]s with µ = 0.04. With increase of time, the joint PDFs between
the relative angular displacement and the relative angular velocity become more
concentrated. It indicates that the system approaches a stable state. Hence, in this
simulation, t = 0.4s is the most stable state for a gear system under stochastic load.
If a rule of this evolution can be found, the PDF prediction can be done with an
initial PDF.

Since t = 0.4s is considered as the most stable state, the following discussion
is limited to that time point. Fig. 2.19 and Fig. 2.20 show the instantaneous
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Table 2.4: Responses under deterministic load

µ 0 0.01 0.02 0.03 0.04 0.05

δ 0.0515 0.0431 0.0511 0.0515 0.0508 0.0453

δ̇ -2.167 -10.59 7.079 6.854 -9.459 -28.38

Fig. 2.18: PDF evolution plot depicting its changing within 0.1s at different time
points: (a) at 0.3s, (b) at 0.33s, (c) at 0.36s, and (d) at 0.4s

PDFs of relative displacement and relative velocity respectively at t = 0.4s. The
corresponding solutions of the deterministic case at the same time point are shown
in Table 2.4. Due to the calculation difficulty, deterministic responses are easier
to obtain than stochastic responses. If the responses under stochastic load fall in
the center region of the responses under deterministic load, we can predict the
stochastic responses corresponding to the deterministic responses. Compare Fig.
2.19-2.20 and Table 2.4, the results of relative angular displacement in Fig. 2.19
falls in the center regions around the results of deterministic load. But the mean
of relative angular velocity did not fall in the center regions around the result of
deterministic load.
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Fig. 2.19: PDFs of the relative angular displacement with different friction
coefficient values at t=0.4s

For a practical gear pair, the PDFs of relative displacement and relative velocity
are definitely different from the perfect gear case (without fault). According
to the dispersion property investigated in the previous paragraph, the relative
displacement is more appropriate to be an indicator of fault diagnoses for further
study. Thus, these PDFs of relative angular displacement obtained by our study
for perfect gear system may be used as references in gear health monitoring.

On the other hand, according to Fig. 2.19 and Fig. 2.20, the differences in the
PDFs of different coefficients are obvious. It also proves that the friction cannot
be ignored in dealing with gear stochastic dynamics. However, the relationship
between friction, stochastic load, and time is not given. This will be further
explored in our future work.

The probabilities of gear system responses (relative angular displacement and
relative angular velocity) in a safety interval are given in Table 2.5. Safety interval
means the gear system responses have a high possibility occur in a chosen interval.
If the responses exceed the safety interval, there is a higher possibility that the gear
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Fig. 2.20: PDFs of the relative angular velocity with different friction coefficient
values at t=0.4s

Table 2.5: The probabilities of a safety interval under each friction coefficient value
(%)

µ 0 0.01 0.02 0.03 0.04 0.05

δ ∈ [0.04, 0.055] 91 89 85 76 87 85

δ̇ ∈ [−16, 16] 80 79 90 90 89 87

system has failure [92]. We can select a proper safety interval based on accuracy
demand. In Table 2.5, the safety intervals are chosen based on the rule that there
are at least 75% data fall in the safety intervals. According to our model, we
choose δ ∈ [0.04, 0.055] and δ̇ ∈ [−16, 16] for analysis. When δ ∈ [0.04, 0.055],
it is noticed that the probability of δ is the lowest under the friction coefficient
µ = 0.03. When δ̇ ∈ [−16, 16], the probability of δ̇ is the lowest with µ = 0.01. The
lower interval probability indicates higher data dispersion. The higher dispersion
of the values always reflects higher uncertainty in the data [84]. It is concluded
that gear responses have a higher proportion exceeding a certain safety interval
and have a higher potential failure probability with µ = 0.01 or 0.03.
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2.6 Conclusion

In this study, a gear stochastic dynamic model for a spur gear pair considering
TVMS, gear mesh damping, backlash, friction, and stochastic load is established.
The dynamic responses of this model are investigated using numerical simulation
and compared with previous work. Two cases with different load profiles are
studied and compared. For case 1, the random part of load is modeled as Gaussian
white noise with a certain friction coefficient ( µ = 0.04). For case 2, the random
part of load is modeled as Gaussian diffusion process with five friction coefficient
values (µ = {0.01, 0.02, 0.03, 0.04, 0.05}).

• Case 1: The random part of load is modeled as Gaussian white noise:

The analysis results demonstrate that (a) under the same friction coefficient
(µ = 0.04), stochastic load generates longer duration in the transient state and
higher fluctuation in the steady state compared with those under deterministic
load; (b) under stochastic load, the case with friction produces larger difference in
the average value of the system’s relative angular displacement at the steady state
compared with that of the case without friction; (c) the case with friction generates
higher dispersion of relative angular displacement in the transient state and lower
dispersion in the steady state compared with those of the case without friction.

• Case 2: The random part of load is modeled as Gaussian diffusion process:

The analysis results demonstrate that (a) the established SDOF gear dynamic
model is more realistic than reported models which did not consider friction,
(b) under the same friction coefficient value (µ = 0.04), the stochastic load
generates longer duration and more quasi-periodicity in the transient state than
those of the deterministic load. Stochastic load causes lower transient stability
than deterministic load, (c) under stochastic load, the gear system has the worst
transient stability with µ = 0.01 or 0.03 and best transient stability with µ = 0 or
0.02. Friction generates high dispersion of the relative angular displacement with
µ = 0.01 or 0.03 in the transient state.

Overall, this analysis gives us better understanding on the effects of stochastic
load and friction on the gear dynamic characteristics. The proposed gear dynamic
model and numerical results can be used as a reliable tool to investigate the gear
random dynamics. Future work will design corresponding experiments to validate



Chapter 2. Effects of Friction and Stochastic Load on Transient Characteristics 66

our numerical findings. Moreover, our gear model can be further extended by
incorporating varying friction coefficients and analyzing the effects of different
friction models on gearbox dynamics under stochastic load in our future work.

In summary, this chapter addressed the problem of investigating a more
realistic gear dynamic model, and thus, a model considering one more internal
factor (i.e., friction) was proposed. The effects of the stochastic load and friction
on the gear dynamic characteristics were studied. This model will be used later in
Chapter 3 and Chapter 4. In Section 3.2, one more external factor is considered
based on this model. In addition, Section 4.4 takes this model to validate the
proposed approximate analytical method.



3
Effects of Driving Speed Variation on
Gear Dynamic Characteristics under

Stochastic Load

Although a more practical gear model with consideration of a stochastic internal
factor is proposed and analyzed in Chapter 2, only a kind of external excitation
(i.e., stochastic load) is considered in that model. In reality, there are some
other stochastic external excitations remaining to be explored. In this chapter,
one more external excitation (i.e., driving speed) is considered based on the
model in Chapter 2. As we known, engine drive gear systems are widely used
in vehicles, coal mining machines, and other mechanical equipment. Engine
is known as a source of external excitations to a gear system. Due to the
manufacturing error, energy loss, possible change of the engine status, and
variation of operating environment, the driving speed and external load are not
deterministic in the future. Thus, this chapter1 aims to investigate the effects of the
driving speed variation (including deterministic or stochastic driving speed) on

1The work of this chapter has been accepted or submitted for peer review as follows:
Y. Fang, M. J. Zuo, and Y. Li, “Investigation of gear dynamic characteristics under stochastic
external excitations,” in Proceeding of 2019 International Conference on Advances in Materials,
Mechanical and Manufacturing (AMMM), Beijing, China, Mar. 22-24, 2019. Accepted on Jan. 3,
2019.
Y. Fang, X. Liang, and M. J. Zuo, “Effects of driving speed variation on gear dynamic characteristics
under stochastic loading,” Mechanism and Machine Theory. Submitted on Oct. 8, 2018.
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gear dynamic characteristics under stochastic load for the first time. Monte Carlo
(MC) simulation is applied to analyze the characteristics. The results show that the
random element in the driving speed affects the gear response a lot which should
not be ignored. Under the stochastic load, a small ratio of randomness in driving
speed greatly increases the dispersion in responses. In addition, the dispersion in
responses is more sensitive to the uncertainty of the driving speed than that of the
load.

3.1 Introduction

Gear systems play an important role in modern power transmission systems [12].
Many researchers have studied the dynamic modelling of spur gear transmission
systems. Excitations are widely discussed in gear dynamic modelling and they
affect the dynamics of gear systems. There are two categories of excitations,
internal excitations and external excitations. Internal excitations include time-
varying mesh stiffness (TVMS) [17] [93], backlash [94], transmission error [77],
and so on. Many studies have studied the effects of internal excitations on gear
dynamics while less attention has been paid to the effects of external excitations
on gear dynamics.

In reality, the gear system can be driven by engine [56] or nature force (e.g.,
wind [57]). In this work, we restrict to the engine drive gear systems. Accordingly,
the external excitations contain the external load [79] [95] and driving speed of
the pinion [1]. Note that the driving speed is provided by the engine. Under
deterministic domain, external excitations have been investigated in some existing
works. Wang et al. [7] reviewed the mathematical models and the solving
approaches for the nonlinear dynamics of gear systems under deterministic load.
An analytical model of a spur gear pair with tooth root crack was proposed in [27]
under deterministic load. Qiu et al. [58] considered the influence of deterministic
input rotating speed on stiffness and introduced a velocity modulated stiffness
model. Liu et al. [26] investigated the effects of speed on gear dynamics and
concluded that the variation of the pinion’s speed was a non-negligible source of
instability in a gear system. The transient dynamic behavior of the gear system,
which is affected by the variation of the external excitations, was investigated
in [24]. Pruvost et al. [60] proposed an improved filter to separate the noise from
engine signals and validated it using diesel combustion engine experiments. In
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addition, they investigated the variation of rotation speed and load, and their
effects on engine transfer functions between the cylinder and the listening spot.

It is widely known that randomness of the external excitations exists in the
gear systems driven by nature force (i.e., wind turbine) [96]. Similarly, due
to manufacturing error, energy loss, possible change of the engine status, and
variation of operating environmental, the external excitations in engine drive
gear systems may also not be deterministic [2] [60]. Several works focused on
the studies of randomness in the engine. Tutak and Jamrozik [59] studied the
flow field turbulence in the combustion chamber and modelled the crankshaft
velocity (the crankshaft performs a conversion between reciprocating motion and
rotational motion) randomness of an internal combustion engine. Randall [61]
summarized the methods to deal with random speed fluctuations in combustion
engines. To obtain more realistic representation of gear systems, the stochastic
properties should be considered in the anticipated load profile and anticipated
speed profile.

In recent works about modeling gear systems, attention of researchers has
transferred from the deterministic domain to the stochastic domain. In [30], the
stochastic property of dynamic loads for high speed gears was observed. Tobe
et al. [31] modeled the randomness in the load as Gaussian white noise and
validated their model through experiment results reported in [37]. Chaari et al. [97]
investigated the dynamic behavior of a spur gear system under cyclic and random
load, respectively. Wen et al. [94] investigated the random dynamic response of
a gear pair. The dynamic model in Ref. [94] considered constant mesh stiffness,
constant damping coefficient, and stochastic external load by adding Gaussian
white noise. Later, they developed a model considering backlash, TVMS, and
constant damping coefficient [5]. Fang et al. [23] considered one more excitation,
friction, than the model proposed in [5]. Ref. [23] investigated the effects of friction
on the dynamic characteristics of a spur gear pair under stochastic load.

Although researchers have made some improvements in modelling gear dy-
namics under stochastic load, there are still short of investigations about the effects
of driving speed on gear dynamics with stochastic load.

In this chapter, we modeled the driving speed (deterministic or stochastic)
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and investigated its effects on gear dynamics under stochastic load. The major
contributions of this work are summarized as follows.

1. The existing works only considers the effects of the driving speed variation
on gear dynamic characteristic under deterministic load. In reality, however,
the stochastic load exists widely in gear systems [30]. The extension of
the models from deterministic domain to stochastic domain leads to more
realistic representation of real gear systems. In addition, investigating the
effects of the driving speed variation on gear dynamic characteristics under
stochastic load is a significant part of the gear random dynamics study.

2. The driving speed is generally modelled as deterministic in existing works.
However, the randomness in the driving speed is found by many researches,
e.g., [59] [61]. Therefore, the effects of stochastic driving speed variation
on gear dynamic characteristics under stochastic load is investigated in this
work. A mathematic model is developed.

3. By the Monto Carlo method, we analyzed the dynamic characteristics focus-
ing on the effects caused by the driving speed (deterministic or stochastic)
under stochastic load. Some insightful conclusions are summarized by the
simulation results.

The remaining parts of this chapter is organized as follows. In Section 3.2 the
proposed stochastic dynamic model for a spur gear pair is described. Section 3.3
illustrates the effects of the driving speed on gear dynamic characteristics. Section
3.4 draws the conclusion.

3.2 Nonlinear stochastic gear dynamic model

In this section, a single degree of freedom (SDOF) nonlinear dynamic model of a
spur gear pair is developed based on the model reported in [23]. Backlash, TVMS,
sliding friction, and stochastic load are considered in [23]. Keeping everything
the same as in [23], a time-varying modulated driving speed is considered in our
model and described in Section 3.2.1. The external load and driving speed of the
pinion are modelled in Section 3.2.2.
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3.2.1 Proposed model considering driving speed

In this section, the proposed model is based on Ref. [23] while considering a time-
varying modulated driving speed. Note that only an initial speed is given in the
model of Ref. [23]. The model reported in [23] is given in Eq. (3.1) and (3.2) while
it transforms to Eq. (3.11) with the consideration of our modelled driving speed.

Fig. 3.1: Dynamic model of a gear pair

The equations of the motion for the system given in Fig. 3.1 can be expressed
as [1]

Ipθ̈p = Tp−(F +G)Rp − µ(F +G)X1 (3.1)

Igθ̈g = Tg + (F +G)Rg + µ(F +G)(l −X1) (3.2)

where Ip, Tp, θ̈p, and Rp are the moment of inertia, external torque, angular
acceleration, and base circle of pinion (similarly subscript g is used to denote the
gear), respectively; F is the total elastic force between the contact teeth shown in
Fig. 2.2, G is the damping force, µ is the friction coefficient, X1 denotes the tangent
distance in the action line, l = (Rp + Rg) sinα0 means the length of the action line,
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and α0 denotes the pressure angle. For more details, please refer to Ref. [23] and
Ref. [50].

Subtract Eq. (3.2) from Eq. (3.1) and then divide both sides by Ig . The following
expression can be obtained.

θ̈g =
h
Ipθ̈p+Tg−Tp + (F +G)(Rg −Rp + µ(Rg +Rp) sinα0)

i
/Ig (3.3)

Let δ = Rpθp − Rgθg , where δ gives the relative angular displacement of the
gear pair. Then Eq. (3.3) transfers to Eq. (3.4).

θ̈g =
h
Ipθ̈p+T + (Kδ + αδ̇)L

i
/Ig (3.4)

where
F = Kg(δ) (3.5)

G = cδ̇ (3.6)

L = Rg −Rp + µ(Rg +Rp) sinα0 (3.7)

T = Tg − Tp (3.8)

In Eqs. (3.5)–(3.8), K is the effective mesh stiffness, g (δ) denotes the function
of backlash, L is the equivalent length of the force arm, and c is the damping
coefficient, and T is the equivalent torque (i.e., the external load in this study)
that reflects the combined fluctuation of Tg and Tp.

The expressions of g(δ), and K(θ) (see Fig. 2.1) are given below

g(δ) =


δ − b,

0,

δ + b,

δ > b

−b ≤ δ ≤ b

δ < −b

(3.9)

K(θ) =

 k1, (n− 1)φn ≤ θ < (n− 1)φn + φm

k2, (n− 1)φn + φm ≤ θ < nφn
(3.10)

where b denotes the backlash, φn and φm represent a mesh period of gear teeth and
the double pairs of teeth mesh duration in a mesh period, respectively.

Rewriting Eq. (3.4), a second-order ODE is finally obtained as

θ̈g =
n

Ipθ̈p+T + [Kg(θpRp − θgRg) + c(θ̇pRp − θ̇gRg)]L
o
/Ig. (3.11)
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Observe Eq. (3.11), the inputs (excitations) in this ODE are T, θp, θ̇p, and θ̈p while
the outputs are θg, θ̇g, and θ̈g (or called the responses of gear dynamic model).

The comparison between the model in Ref. [23] and the proposed model is
shown in Table 3.1. From Table 3.1, both models have the equivalent load T(t) and
the initial condition of the gear θg(t = 0), θ̇g(t = 0) as input. The main difference in
inputs between the two models is the motion of pinion (θp(t), θ̇p(t), θ̈p(t)). In the
proposed model, the motion of the pinion is fully specified while only the initial
condition of the pinion motion is given in model of Ref. [23].

Correspondingly, the outputs (or solution) to the model (or equation) in Ref.
[23] include the motions of both pinion and gear (θp, θ̇p , θg, θ̇g). Only the motion
of gear (θg, θ̇g) needs to be solved in the proposed model. The proposed model is
a kind of velocity modulated model.

Table 3.1: The comparison between two models

Model in Ref. [23] The proposed model

Equation Eq. (3.1) and Eq. (3.2) Eq. (3.11)

Input T(t), θg(t = 0), θ̇g(t = 0) T(t), θg(t = 0), θ̇g(t = 0)

θp(t = 0), θ̇p(t = 0) θp(t), θ̇p(t), θ̈p(t)

Output θp, θ̇p , θg, θ̇g θg, θ̇g

In the next section, the modelling of excitations in Eq. (3.11) including T(t),
θp(t), θ̇p(t), and θ̈p(t), will be investigated. The models of θp(t), θ̇p(t), and θ̈p(t) have
not been studied in Ref. [23].

3.2.2 External load and driving speed formulation

In this section, the purpose is to make Eq. (3.11) solvable by numerical method,
i.e., Runge-Kutta method.

To solve Eq. (3.11), the key point is to obtain θp(t) and θ̈p(t) under any given
θ̇p(t). Two cases of θ̇p(t) , deterministic and stochastic models, will be studied in
Section 3.2.2.1 and Section 3.2.2.2, respectively. The adopted deterministic model
of θ̇p(t) is reported in Ref. [24]. The stochastic model of θ̇p(t) is based on the model
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in Ref. [1] with additional consideration of the randomness studied in Ref. [61].

It should be noted that the effects of both deterministic and stochastic driving
speed on gear dynamics under stochastic load are still short of investigation. In
addition, the derivation of θp(t) and θ̈p(t) according to stochastic θ̇p(t) is considered
in gear dynamic modelling for the first time.

3.2.2.1 Deterministic model of θ̇p, θp, θ̈p as reported in Ref. [1]

For a combustion engine, due to many factors such as gas pressure, bore, stroke of
engine, and inertia of moving parts during the power stroke, the engine generates
stochastic velocity θ̇p(t) and torque T [1] [24]. In this study, the energy loss in the
connection of engine and pinion is ignored. The excitation speed of pinion θ̇p(t)

from an internal combustion engine, fluctuates significantly between low (around
the compression stage) and high (around the ignition stage) values [26]. Therefore,
the model of the total driving speed in pinion can be assumed to be a summation
of a constant angular velocity term and a small variation [26].

Therefore, a general expression of θ̇p can be formulated as reported in Ref. [1]:

θ̇p(t) = χ0 +
X
n

χn sin(ρnt+ ψn) (3.12)

where t is the time in second (s), χ0 is a constant which represents the mean of
the driving speed, n denotes the harmonic of the driving speed, and ρn, χn, and ψn
are the corresponding angular frequency, amplitude and initial phase, respectively.

If the conditions of θp and θ̈p at t = t0 are known, the absolute angular
displacement θp and acceleration θ̈p can be analytically determined by integration
and differentiation to velocity θ̇p , respectively.

Assuming a time interval ∆t = t − t0, the angular displacement θp and the
angular acceleration θ̈p of the pinion at arbitrary time t can be expressed as follows

θp(t) = θp(t0) + χ0∆t+
X
n

χn
sin(ρnt) − sin(ρnt0)

ρn
(3.13)

θ̈p(t) = −
X
n

χnρn sin(ρnt) (3.14)
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3.2.2.2 Stochastic model of θ̇p, θp, θ̈p

The objective of this section is to derive the model of θp and θ̈p based on stochastic
θ̇p. Considering randomness, Eqs. (3.17), (3.22), and (3.23) reveal reality on some
occasions and make an improvement compare to the existing work.

The expression of the rotational motion in the pinion (θ̇p, θp, θ̈p) within
deterministic domain are given in Eqs. (3.12)–(3.14). Due to errors of manufactur-
ing, processing, assembling, wear, lubrication, operating environment, and other
factors, the combustion engine’s rotational speed and external load may not be
deterministic [2]. Accordingly, the random part in the anticipated external load
and anticipated driving speed needs to be considered. According to the studies
in [61] and [5], it is assumed the randomness in the driving speed and load are
Gaussian white noise ξi(t) , ( i = 1, 2 ).

E(ξi(t)) = 0 (3.15)

E[ξi(t)ξi(t+ τ)] = riΘ(τ) (3.16)

where ξi(t) is a Gaussian white noise with variance ri, subscript i = 1 represents
driving speed, i = 2 refers to the load, and Θ is the Dirac Delta function.

Thus, Eq. (3.12) can be rewritten as:

θ̇p(t) = χ0 +
X
n

χn sin(ρnt+ ψn) + ξ1(t) (3.17)

The physical meaning of this driving speed profile can be explained as [56]:

1. The pistons move up and down periodically in their cylinders,

2. The periodic behavior can be expressed as a combination of a series of
sinusoidal functions (i.e., Fourier series),

3. Considering kinds of factors (e.g., manufactory errors), the randomness is
expressed as Gaussian white noise [5] [61].

Similarly, the profile of the driving torque is also periodic. We consider the case
that Tg is periodic or constant. For example, centrifugal pump or wheels is the load
in output of a gear system. Accordingly, the external load T can also be expressed
via Fourier series combined with Gaussian white noise as following:

T(t) = f0 +
X
j

fj cos(νjt+ βj) + ξ2(t) (3.18)
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where f0 is a constant, j denotes the harmonic of the torque, νj , fj , and βj are
the corresponding angular frequency, amplitude, and initial phase, respectively.
Note that the adopted speed profile and load profile in this study are also widely
adopted in lots of existing works. For example, the similar speed profile (i.e., Eq.
(3.17)) is also adopted in [1], [2], and [24], and the similar load profile (i.e., Eq.
(3.18)) is also adopted in [94], [60], and [96].

Recall Ref. [1], the external load T is modelled as:

T(t) = f0 +
X
j

fj cos(νjt+ βj) (3.19)

As we known, Gaussian diffusion process Φ(t) is the integration of Gaussian
noise. Φ(t) can be approximated as follow by Itô [98] SDE [99].

dΦ(t) = λdt+ σdW (t) (3.20)

where λ is the drift scalar, σ is the diffusion scalar, and W (t) is a standard Wiener
process. In addition, dW (t) can be approximated as dW (t) ∼

√
∆t [82] [100]. For a

Gaussian white noise ξ1(t), λ = 0 and σ =
√
r1. The approximate integration of Eq.

(3.17) can be obtained as follows:

θp(t) = θp(t0) + χ0∆t+
X
n

χn
sin(ρnt) − sin(ρnt0)

ρn
+
p
r1∆t (3.21)

On the other hand, θ̈p can be defined in Eq. (3.22). Here, the slope of two points
has been used to approximate the derivate. Although there is accuracy loss, this
assumption has calculation benefit in numerical simulation.

θ̈p(t) = −
X
n

χnρn sin(ρnt) +
ξ1(t) − ξ1(t0)

∆t
(3.22)

For dynamic modelling of the gear system under stochastic load, the proposed
model (Eq. (3.11) combining with Eqs. (3.17), (3.21), and (3.22)) considers
randomness in the pinion rotational motion for the first time.

To avoid confusing, Table 3.2 shows the comparison of the models between
existing works and the proposed model. In these three models, TVMS, backlash,
damping, and friction are all taken into account. Although both of Ref. [23] and
Ref. [1] modelled the sliding friction, the friction model in Ref. [23] reflects reality
more than that in Ref. [1]. Thus, the proposed model adopts the friction model
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in Ref. [23]. The existing works [1] [24] [26] only considered deterministic driving
speed under deterministic load. However, the proposed model considers both
deterministic and stochastic θ̇p under stochastic load.

Table 3.2: Comparison of the model between existing works and our work

External load T Driving speed θ̇p

Ref. [23] Stochastic Eq. (3.18) with j = 1 None (i.e., free vibration)

Ref. [1] Deterministic Eq. (3.19) Deterministic Eq. (3.12)

Proposed model Stochastic Eq. (3.18) Deterministic Eq. (3.12)

Stochastic Eq. (3.17)

The challenge in this proposed model deals with one or two more stochastic
factors in the gear dynamic modelling which adds complexity in solving the model
and in the results analysis.

3.3 Results and discussion

To analyze the dynamic characteristics of the proposed model, this section gives
the numerical simulation results. The main objective of this section is to investigate
the driving speed effects on system’s dynamic characteristics under stochastic
load. The reported work is duplicated in Section 3.3.1 to validate the proposed
model. The investigations of the proposed model are shown from Section 3.3.2 to
Section 3.3.4.

In Section 3.3.1, the dynamic responses under deterministic driving speed and
deterministic load are obtained. Section 3.3.2 gives the dynamic characteristics
under deterministic driving speed and stochastic load. Section 3.3.3 studies the
dynamic characteristics under stochastic driving speed and stochastic load. The
results of Section 3.3.2 and Section 3.3.3 are compared with each other. Section
3.3.4 investigates the coupled effects and sensitivity.
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3.3.1 Validation of the proposed model

The driving speed has been studied in Ref. [1], which studied a model of a spur
gear pair under deterministic load considering TVMS, backlash, friction, and
deterministic driving speed. This model has been validated with a finite element
model. It was concluded that this model captured the salient behaviour of the
actual system.

To conduct validation, it is necessary to keep parameters in the proposed model
and the model in Ref. [1] the same. However, there are two differences in the two
models:

1. the friction model in Ref. [1] is simplified as sign function;

2. external load in Ref. [1] is deterministic while it is stochastic in the proposed
model. If Eq. (3.17) is replaced by Eq. (3.19), namely, removing the random
term in load, the proposed model is reduced to the model in Ref. [1].

The gear pair parameters in Table 3.3 are adopted for validation and they will
be used in the following sections’ simulations. The friction coefficient usually
varies with load [80] [53] but the variation in the friction coefficient can be ignored
with small variations in load [85]. In this study, the friction coefficient is fixed at
0.04 to illustrate the driving speed effect on gear dynamic characteristics.

Table 3.3: Gear pair parameters

Inertia moment of pinion Ip = 2.6 × 10−4 Kg ·m2

Inertia moment of gear Ig = 0.0045 Kg ·m2

Base circle rp = 0.034 m, rp = 0.052 m

Pressure angle α0 = 20◦

Stiffness k1 = 1.6 × 108N/m, k2 = 0.9 × 108N/m

Friction coefficient µ = 0.04

Backlash b = 0.05mm

The relative displacements by the proposed model and Ref. [1] (see Fig. 3.2) are
almost the same. It illustrates that the proposed model and the model in Ref. [1]
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Fig. 3.2: Relative angular displacement comparison between two methods

can be considered as the same in dynamic performance with a small error range.
Note that Liu’s Model in Fig. 3.2 means the model in Ref. [1]. Although the friction
models are slightly different, the validation still supports the correctness of our
model to some degree.

3.3.2 Dynamic responses under deterministic driving speed and
stochastic load

In this section, a numerical example is studied with two external excitations:
deterministic driving speed and stochastic load. This assumption might be
reasonable for certain occasions, e.g., the engine is in quite good condition and
assembled advanced speed control equipment. Here, the randomness in θ̇p(t) is
negligible. The dynamic responses are obtained by Matlab after solving single
degree of freedom ODE using the Runge-Kutta method [101].

The stochastic load is set in Eq. (3.23) with r2 = 2500:

T(t) = 500 + 50 cos(100t) + ξ2(t) (3.23)

In order to study the effects of θ̇p(t) on dynamic characteristics, a coefficient λ1
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is introduced in the speed equation to adjust its amplitude.

Five cases with λ1 = {0.5, 0.75, 1, 1.25, 1.5} will be compared and other
parameters will be the same. The driving speed is formulated as:

θ̇p(t) = λ1 [800 + 80 cos(100t+ π/2) + 20 cos(80t+ π/2)] (3.24)

With initial condition θp(t = 0) = 0, the examples of θp(ti) and θ̈p(ti) can be
obtained correspondingly.

θp(ti) = λ1 [θp(ti−1) + 800∆t+ 0.8 cos(100t) − 0.8 cos(100ti−1)

+0.2 cos(80t) − 0.2 cos(80ti−1)]
(3.25)

θ̈p(ti) = λ1 [−8000 sin(100ti + π/2) − 1600 sin(80ti + π/2)] (3.26)

Fig. 3.3: Time history for θ̇g with λ1 = 1

The responses described in Fig. 3.2 are deterministic, which means δ has a
unique value at arbitrary time point. We know that the responses of a gear model
become random due to the stochastic load. Fig. 3.3 and Fig. 3.4 show two
realizations of θ̇g and δ with λ1 = 1 , respectively. From Fig. 3.3, the rotation speed
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Fig. 3.4: Time history for δ with λ1 = 1

θ̇g has significant periodicity. The modulated sinusoidal waves are not smooth and
contain disturbance. But the difference between the two realizations is very small.

In Fig. 3.4, the relative displacement δ shows its quasi sinusoidal property.
However, the disturbances are much greater than that in θ̇g. The difference in the
amplitude of δ among the two curves is easy to find which is only caused by the
stochastic load.

Probability method is the most common approach to study the uncertainty.
Other approaches include interval method, fuzzy method and so on [2] [102].
To obtain the responses of a gear model under stochastic load by the probability
methods, researchers usually focus on getting the statistical characteristics of the
responses, such as, mean, variance, and PDF [103] [104]. In some applications,
such as fatigue prediction and reliability, actual PDF is needed [105].

Enough samples are obtained through MC method to obtain a reasonable
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Fig. 3.5: PDFs of δ̇ at 0.2 s in five cases of λ1

accuracy. According to the statistical analysis on responses of five cases of λ1

(λ1 ∈ {0.5, 0.75, 1, 1.15, 1.5}), five instantaneous PDFs under different relative
velocities are shown in Fig. 3.5. Note that the relative velocity, denoted δ̇, is the first
derivation of δ. The standard deviations of the five cases from λ1 = 0.5 to λ1 = 1.5

are 1.4458 × 10−5, 1.5137 × 10−5, 1.2578 × 10−5, 1.6283 × 10−5, and 1.5987 × 10−5,
respectively. It is found that, at t = 0.2 s, the driving speed with λ1 = 1 leads
to the lowest dispersion in responses among the five cases. Thus, the variation of
amplitude in θ̇p affects the dispersion of response.

3.3.3 Dynamic responses under stochastic driving speed and s-
tochastic load

In this section, the stochastic θ̇p is considered while θ̇p is considered as deterministic
in the previous section. This assumption might be suitable on some occasions, for
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example, the crankshaft of engine has deflection [106] or fouled spark plugs have
excessive carbon deposits [60].

The load is simulated using Eq. (3.23) and the driving speed is simulated using
Eq. (3.17). Thus, θ̇p(t) is set in the form of Eq. (3.27) with r1 = 25:

θ̇p(t) = 800 + 80 cos(100t+ π/2) + 20 cos(80t+ π/2) + ξ1(t) (3.27)

Compare Eq. (3.27) with Eq. (3.24) (λ1 = 1), the only difference is the random
term ξ1(t). Thus, the gear model is now excited by two stochastic excitations (T
and θ̇p(t)).

Fig. 3.6 presents the two instantaneous PDFs with two profiles of the driving
speed at 0.2s. Keep everything else the same, the two profiles of the driving speed
are only distinct in the stochastic term. From Fig. 3.6, the difference of PDFs
is only caused by the stochastic term in the driving speed. It is clearly shown
that the responses excited by stochastic driving speed has more dispersion than
those excited by deterministic driving speed. Although the ratio of the uncertainty
(5/800 = 0.625%) is quite small, the variance of responses under the stochastic
driving speed case is larger than that under the deterministic driving speed case.

The standard derivations of δ under two driving speed profiles are shown in
Fig. 3.7. Fig. 3.7 further illustrates that the large variance caused by the stochastic
driving speed is not by accident. During the period (0 to 0.4 s), the standard
deviation of δ obtained by stochastic driving speed is always greater (about twice
greater) than that obtained by deterministic driving speed.

3.3.4 Load and driving speed coupled effects

In this section, we will focus on the coupled effects of load and driving speed
on dynamic characteristics. The two excitations are coupled and some nonlinear
factors (e.g., friction) are involved in the gear dynamic modelling. The following
paragraphs aim to analyze their coupled effects on the dynamic characteristics
from two aspects: parametric sensitivity and chaotic analysis.

First, the parametric sensitivity of load and driving speed on dynamic charac-
teristics worth the effort to explore. Define two sensitivity parameters η1 and η2 for
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Fig. 3.6: PDF comparison of two cases

Fig. 3.7: Standard derivation of δ with time variation
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driving speed and load, respectively. The expressions of η1 and η2 are shown as
Eq. (3.28) and Eq. (3.29), respectively. Note that r1 and r2 are defined in Eq. (3.16).

η1 =

√
r1

E(θ̇p)
(3.28)

η2 =

√
r2

E(T)
(3.29)

Keep the mean values E(θ̇p) and E(T) invariant and adjust the values of r1 and
r2 to change the values of η1 and η2. Table 3.4 summarizes the standard deviation
of δ under different η1 and η2. According to Table 3.4, the standard deviation of
δ increases with the increase of η1 and η2. Fig. 3.8 and Fig. 3.9 demonstrate the
results of the standard derivation of δ with the varying of η1 and η2, respectively. It
can be seen that the slope in Fig. 3.8 is greater than that in Fig. 3.9. It is proven that
the standard derivation of δ increases more with the variation in η1. Alternatively,
the average increase rates, denoted κ1 and κ2, are different (see Eqs. (3.30) (3.31)
for definition).

κ1 =
1

6

3X
i=1

(
< i, 2 >

< i, 1 >
+
< i, 3 >

< i, 2 >
) (3.30)

κ2 =
1

6

3X
i=1

(
< 2, i >

< 1, i >
+
< 3, i >

< 2, i >
) (3.31)

where κ1 and κ2 are the average increase rates of the driving speed and load,
respectively. < i, j > represents the element in ith row and jth column in Table
3.4 without counting the header.

Table 3.4: Standard derivation of δ under different η1 and η2

η1

η2 0.5% 0.65% 0.8%

0.5% 1.0655 × 10−5 2.0038 × 10−5 3.7009 × 10−5

0.65% 1.0715 × 10−5 2.1316 × 10−5 4.3268 × 10−5

0.8% 1.1444 × 10−5 2.4168 × 10−5 4.5109 × 10−5



Chapter 3. Effects of Driving Speed Variation on Gear Dynamic Characteristics under
Stochastic Load 86

Fig. 3.8: Standard derivation of δ with varying η1 at the same η2

Under the same η1, the average increasing rate κ2 is 1.09. For the same η2, the
average increase rate κ1 is 1.97. Thus, the standard deviation of δ is more sensitive
to the increasing of η1. It is concluded that the same increment ratio in the variance
of the driving speed causes a larger increase in the variance of responses than that
of load. It means that the randomness in the θ̇p(t) has a more significant effects
on gear systems than that in T. To some degree, the randomness in the θ̇p(t) may
cause more vibration and failure. The control of its randomness is more important
in real applications.

Fig. 3.10 describes the phase diagram (δ − δ̇ relationship) with the driving
speed defined in Eq. (3.27). It should be noticed that δ and δ̇ are the mean value
of the total samples. Recalling the phase diagram in Ref. [23], the orbit δ − δ̇ in
the phase portrait is non-smooth and non-periodic with the consideration of the
driving speed as an excitation. This chaotic oscillation can be intuitively observed
in Fig. 3.10. This phenomenon could be affected by the coupling of the stochastic
driving speed and stochastic load.
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Fig. 3.9: Standard derivation of δ with varying η2 at the same η1

Fig. 3.10: Phase diagram
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It is known that dispersion and chaos in dynamic responses cause more noise
and failure. Therefore, controlling the randomness in the engine is quite important.
Especially, reducing the same ratio of randomness in the driving speed leads to a
greater decrease in potential failure than that of load. More attention needs to be
paid to the randomness in the driving speed. Furthermore, regular inspection of
the engine is expected to reduce the randomness in the load and driving speed.

3.4 Conclusion

In this study, a gear stochastic dynamic model for a spur gear pair considering
TVMS, gear mesh damping, backlash, friction, and stochastic load is established.
In addition, the driving speed (including deterministic or stochastic) is modeled
in the gear dynamic model. The dynamic responses of this model are investigated
using numerical simulation and compared with previous work.

Some insightful conclusions are demonstrated as follows:

(a) the established model is more realistic by considering the randomness in the
driving speed and load compared with the existing models,

(b) under the same stochastic load, the amplitude of the deterministic driving
speed affects the responses’ rotational motion, vibration, and dispersion,

(c) under the same stochastic load, a small ratio of randomness in the driving
speed will greatly increase the dispersion in responses,

(d) the dispersion in responses is more sensitive to the uncertainty in the driving
speed than that of load.

The proposed gear dynamic model and numerical results can be used as a
useful tool to investigate the gear random dynamics due to the following reasons.

(a) The proposed gear dynamic model considers TVMS, backlash, sliding fric-
tion, driving speed, and stochastic external load. It is more realistic than the
existing works (refer to Table 3.1) that did not consider the driving speed as
an external stochastic excitation. Thus, the proposed model can be used to
investigate the gear random dynamics and gear diagnosis [107] [108],
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(b) Our work investigates the effects of stochastic driving speed variation on
gear dynamic characteristics under stochastic load for the first time. Thus,
our work provides a method how to analyze a gear dynamic model with
multiple stochastic elements (e.g., stochastic driving speed and stochastic
load). It can be a reference for other researches about gear dynamic model
with multiple stochastic elements,

(c) In our work, some insightful conclusions are summarized by simulation
results using MC method. These conclusions are important for the gear
random dynamics study.

Future works include design lab experiments to validate our numerical find-
ings. The influence on the gear dynamic characteristics from other types of
engine (e.g., electric engine) will be modeled and investigated.

In summary, on top of the work reported in Chapter 2, this chapter addressed
the additional external factor of driving speed. Under stochastic load, the external
driving speed is modeled as a Fourier series combined with Gaussian white
noise. Therefore, the stochastic feature of the driving speed can be modeled well.
Then, the coupling effects on gear dynamic characteristics from multiple stochastic
excitations were studied. By MC simulation, some insightful conclusions can be
obtained. As an extension of the work of Chapter 2, the proposed model in this
chapter can demonstrate the real gear systems well. This study broadens the way
of thinking in gear stochastic dynamics and provides a reference for engineers to
choose proper engine together with its controller.



4
Approximate Analytical Solution

considering Stochastic Load and a
Stochastic Internal Factor

For the previous two chapters, the stochastic internal factor (friction) and external
factors (load and driving speed) have been studied in gear dynamic models.
To investigate the dynamic characteristics of gear systems, the proposed gear
dynamic models are solved by numerical method in Chapter 2 and Chapter 3.
However, the calculation cost of the numerical method is large, especially for the
models under stochastic excitations. The cost may not be acceptable in reality.
In addition, the stochastic behavior of the internal factors may depend on gear
velocity and/or displacement, which will cause the dynamic equations to be
difficult to solve. Thus, an efficient solving technique is needed to solve such
stochastic model. In this chapter1, we consider the gear dynamic model under
stochastic load with treating one of the internal factors as stochastic. Then, an
efficient method is proposed in this chapter, and thus, an approximate analytical

1The work of this chapter has been accepted or submitted for peer review as follows:
Y. Fang, M. J. Zuo, and Y. Li, “Efficient analytical method to obtain the responses of a gear model
with stochastic load and stochastic friction,” in Proceeding of the 6th International Conference on
Mechanical Engineering, Materials Science and Civil Engineering (ICMEMSCE), Xiamen, China, Dec.
21-22, 2018. 7 pages (USB).
Y. Fang, X. Liang, and M. J. Zuo, “Approximate analytical solution to a spur gear model with
stochastic excitations,” Journal of Mechanical Science and Technology. Submitted on Oct. 28, 2018.
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solution can be obtained under the considered gear model. In the proposed
method, a transformation of the original dynamic equation is introduced first
so that the reported Path integration (PI) method can be adopted to obtain a
tentative analytical solution. Then, a modification function obtained by supervised
learning method is applied to the tentative analytical solution to obtain the final
approximate analytical solution of the formulated dynamic equation. A case study
based on the model in Chapter 2 is used to validate the proposed method and
demonstrate its efficiency. Compared to Monte Carlo (MC) method, our proposed
method can achieve similar accuracy responses of the gear model but with much
smaller time complexity.

4.1 Introduction

Due to the unique technique advantages, gears are one of the most widely adopted
mechanical parts. The research about dynamics and vibrations of gear systems
is significant important to the development of mechanical theory [27]. Models
adopted in gear dynamics under deterministic domain have been investigated in
decades. However, stochastic load is one of the main sources of gear vibration and
noise in reality [24]. Several researchers considered stochastic load in gear system
dynamic modeling. The speed-dependent stochastic errors in spur gear pair model
was considered in [32]. Theodossiades and Natsiavas [39] introduced a gear model
under stochastic load with transmission error, backlash, and periodic gear mesh
stiffness. Yang et al. [44] investigated a gear dynamic model with Gaussian white
noise under constant mesh stiffness and constant damping coefficient. Wen et
al. [5] studied a gear pair under stochastic load with the consideration of backlash,
TVMS, and constant damping coefficient. Imaouchen et al. [109] proposed a
new way for gear diagnosis when considering the varying of load. In [77], the
characteristics of transmission error and vibration of broken tooth contact were
investigated with the varying of load.

Based on the well-developed probabilistic theory, statistical methods are main-
ly used in obtaining the responses of a gear system under stochastic load (i.e. solv-
ing the corresponding dynamic equations). They include statistical linearization
method [63], stochastic averaging method [64], Runge Kutta-Monte Carlo method,
PI method also called cell mapping [66], [67], and statistical Newmark method [68].
For simplicity, we abbreviate Runge Kutta-Monte Carlo method as MC method. To
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obtain the responses of a gear model under stochastic load by statistical methods,
researchers usually focus on getting the statistical characteristics of the responses,
such as, mean, variance, and probability density function (PDF) [110]. Wei et al. [2]
reviewed the main ideas and statistical characteristics of each statistical method as
shown in Table 4.1.

Table 4.1: Statistical methods and their characteristics [2]

Name Characteristics

Statistical
linearization
method

It provides the variance of responses by approximat-
ing the original nonlinear system to a linear system
with the minimum error.

Stochastic aver-
aging method

It derives an approximate analytical solution (i.e.,
PDF) to small damping nonlinear system by trans-
forming the time varying parameters in a system to
time invariant parameters.

MC method It provides PDF with high accuracy by using nu-
merical simulation to generate a number of response
samples.

Path integration
method

It gives analytical expression of the PDF by assuming
transition PDF within a short time interval as
Gaussian distribution.

Statistical New-
mark method

It derives mean and variance of responses by utilizing
the recursive equation of each discrete time point.

To demonstrate the responses of a gear system, there are two kinds of forms,
namely, analytical expression or numerical solutions (i.e., statistical analysis of
responses samples) [2]. About the methods in Table 4.1, some methods, such
as stochastic averaging method and PI method, are to obtain the analytical
expression. However, the methods including MC method and Statistical Newmark
method are to obtain the numerical solutions. Obtaining numerical solutions is
costly since a great number of samples are required for reasonable accuracy [91].
By contrast, it would save much time if we could get the approximate analytical
solution [12]. We focus on obtaining the approximate analytical solution in this
work.

Several researchers have explored the analytical solution to a gear dynamic
model under stochastic load. Sato [70] studied the analytical solution of a gear
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system under stochastic load with consideration of transmission error and TVMS.
Naess et al. [67] derived the analytical solution to a gear system considering
constant stiffness, constant damping coefficient, and backlash under the excitation
of white noise. Wen et al. [5] obtained the analytical solution to a gear system con-
sidering constant damping coefficient, TVMS, and backlash under the combination
of deterministic load and white noise. All these models considered the internal
factors of a gear system (e.g., backlash, TVMS, and damping) as deterministic
while the external load is stochastic.

In reality, many internal factors of a gear system have random variations and
they affect the system’s dynamic behavior greatly [111]. Lu et al. [45] studied the
influence of stochastic perturbations of damping ratio and backlash on dynamic
behaviors of gear systems. Handschuh [46] and Inalpolat et at. [47] investigated
the impact of random spacing errors on transmission error and root stresses of a
spur gear pair. Friction, as a main cause of vibration on gear system’s transient
state, was first introduced to a gear pair model under stochastic load in [23] [112].
Therefore, stochastic internal factor should be considered when modeling gear
systems.

Current methods can solve a gear model with deterministic internal factors
(e.g., TVMS, backlash, damping ratio, etc.) under stochastic load. However, a
gear model with one of the internal factors dependent on gear velocity and/or
displacement under stochastic load cannot be solved by these methods [74]. Since
the load is stochastic, the gear velocity and/or displacement is stochastic and so
does this internal factor. The commonly used numerical algorithms, such as the
MC method, require a large amount of calculation time to solve such a gear model.
Thus, it is desirable to develop a method to derive analytical solutions to such a
model if possible.

In this work, we propose a method to derive an approximate analytical solution
for a gear dynamic model under stochastic load with treating one of the internal
factors as stochastic. The major contributions of this work are summarized as
follows.

1. The gear dynamic model under stochastic load with treating one of the
internal factors as stochastic is considered. In addition, the stochastic internal
factor may dependent on gear velocity and/or displacement. Under this
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model, the corresponding dynamic equations are derived.

2. A method is proposed to derive an approximate analytical solution of the
dynamic equations. In the proposed method, a transformation of the original
dynamic equations is introduced first so that PI method can be adopted to
obtain a tentative analytical solution. Then, a modification function which is
obtained by supervised learning method is applied to the tentative analytical
solution to obtain the final approximate analytical solution of the formulated
dynamic equation.

3. A case study is presented to validate the proposed method. The simula-
tion results show that our proposed method can achieve similar accuracy
responses of the gear model compared with MC method. In addition, the
efficiency analysis is conducted. It shows that our proposed method cost
much less time compared with MC method.

The remaining parts of this chapter are organized as follows. The general gear
model considering an internal stochastic factor and stochastic load is introduced in
Section 4.2. Section 4.3 gives the procedure of obtaining the approximate analytical
solution by the proposed method. The proposed approximate analytical solution
is validated by MC simulation and the evaluation of accuracy and efficiency for the
proposed method are investigated in Section 4.4. Section 4.5 draws conclusions.

4.2 Problem description

The objectives of this section are to present a gear model and describe the
challenges of solving such a model. An existing gear model which could be
solved by the current PI method is introduced in Section 4.2.1. All the internal
factors including TVMS, backlash, and damping coefficient in this model are
deterministic. In Section 4.2.2, we give a more general gear model under stochastic
load with one of the internal factors being stochastic. This kind of model
considering a stochastic internal factor is more realistic than the existing model
in Section 4.2.1.

4.2.1 An existing gear model

A classic gear model for a spur gear pair is reported in [5] and shown in Fig. 1.9.
Note that only the torsional motion of gears is considered. Its dynamic model is
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formulated in Eq. (4.1).
ẍ+ cẋ+ kg(x) = f(t) (4.1)

where x, ẋ, and ẍ represent the relative angular displacement, the relative
angular velocity, and the relative angular acceleration, respectively, k denotes the
equivalent TVMS as shown in Fig. 2.1, c denotes the damping coefficient which
is considered as a constant, and g(x) is the function of backlash (see Fig. 2.3). In
addition, we have

x = θ1Rb1 − θ2Rb2 (4.2)

where θi and Rbi are the angular displacement and the base circle radius of gear
i ∈ {1, 2}, respectively.

The external load f(t) is modeled as a combination of a constant deterministic
part f0, a periodical deterministic part f1 cos(ϕt), and a random part ξ(t) [5]. About
the random part, it is generally set to a Gaussian white noise. Therefore, the
expressions of the external load are given as follows.

f(t) = f0 + f1 cos(ϕt) + ξ(t) (4.3)

E(ξ(t)) = 0 (4.4)

E[ξ(t)ξ(t+ τ)] = rΘ(τ) (4.5)

where ϕ is a constant frequency, t denotes time, r is the variance of the random
part ξ(t), and Θ(τ) is the Dirac Delta function.

4.2.2 A more general gear model

Except for stochastic load, we consider an internal stochastic factor in our gear
system model. This work focuses on the case that this stochastic internal factor is
dependent on gear velocity and/or displacement. The general model is defined
as:

ẍ+G1(x, ẋ, t)ẋ+G2(x, ẋ, t)x = f(t) (4.6)

where G1(x, ẋ, t) and G2(x, ẋ, t) are the coefficients of the velocity term and the
displacement term, respectively, and f(t) is defined in Eq. (4.3). One thing worthy
to mention is thatG1(x, ẋ, t) andG1(x, ẋ, t) depend on x and/or ẋ. The dependency
of the coefficients on the velocity term and/or displacement term makes Eq. (4.6)
hard to solve. In this study, we will propose an approach to deal with the following
three scenarios:
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1. Stochastic G1(x, ẋ, t) and deterministic G2(t), e.g., damping coefficient is
stochastic in Eq. (4.1).

2. Stochastic G2(x, ẋ, t) and deterministic G1(t), e.g., gear mesh stiffness or
backlash is stochastic in Eq. (4.1).

3. StochasticG1(x, ẋ, t) and stochasticG1(x, ẋ, t), whereG1(x, ẋ, t) = CG2(x, ẋ, t)

and C is deterministic, e.g., the model considers stochastic friction. This case
will be explained as an example in Section 4.4.

There is no doubt that our proposed method can solve models with stochastic
parametric excitations, namely, G1 and G2 are independent of x and ẋ. The
proposed method does not restrict the type of randomness involved in the gear
systems. For example, this stochastic internal factor can follow the Normal
distribution or another distribution.

4.3 The proposed method

For lots of applications (e.g., fatigue prediction, reliability analysis, etc.) an
accurate PDF (i.e., tentative analytical solution) of the dynamic model is needed
[36] [105]. In this work, we focus on the solving methods to obtain the approximate
analytical solution of the stochastic differential equation (SDE) Eq. (4.6). PI
method, which can obtain the analytical solution of the differential equation Eq.
(4.1), is the foundation of our proposed method. Other techniques including
probability density evolution method (PDEM) [113] and Wiener path integral
technique [114] can also be adopted to obtain the analytical solution of Eq.
(4.1). However, these methods would not be considered in this work due to the
following reasons. First, from Eq. (4.6), the coefficients G1 and G2 depend on
x and ẋ in our model, and thus, these methods are not feasible to solve Eq. (4.6)
directly. Second, compared to the PI method, these methods are more complicated.

The objective of this section is to give the details of the proposed method. The
basic idea of the proposed method contains the following two steps:

1. Obtain tentative analytical solution.

We first introduce a method to transform the SDE Eq. (4.6) into a form that
can be solved by PI method. Then, we derive a tentative analytical solution
using PI method.



Chapter 4. Approximate Analytical Solution considering Stochastic Load and a
Stochastic Internal Factor 97

2. Adjust results by adding a modification function.

Due to the previous transformation, errors may be brought into the tentative
analytical solution, and thus, a modification function is applied to adjust
the tentative analytical solution. Supervised learning is used to obtain the
modification function.

Section 4.3.1 introduces the processes of deriving the tentative analytical
solution by PI method. The modification function which is used to adjust the
tentative analytical solution is given in Section 4.3.2. In Sections 3.3, we summarize
the whole procedure of the proposed method.

4.3.1 Tentative analytical solution

The objective of this section is to derive the tentative analytical solution of the SDE
Eq. (4.6) by PI method. The main idea of PI method is introduced in Section 4.3.1.1.
In Section 4.3.1.2, we propose the method to transform Eq. (4.6) to a form which
can be solve by PI method. Section 4.3.1.3 gives the general tentative analytical
solution obtained by PI method.

4.3.1.1 Main idea of PI method

PI method is a practical method to capture the PDF evolution in time. PI method
can give an analytical solution to the differential equation Eq. (4.1). Several
researchers have explored the PI method. Sun and Hsu [73] assumed that the
transition process within a short time interval was a Gaussian diffusion process.
Naess et al. [66] studied response statistics of nonlinear oscillators excited by white
noise using PI method. Kylolu et al. [72] applied PI method to study a single degree
of freedom (SDOF) oscillator subject to Gaussian and Poisson random excitations.
Kougioumtzoglou et al. [115] developed an improved PI method to obtain the
failure probability of nonlinear SDOF dynamic systems.

Assuming that the transition process follows the Gaussian distribution, the
PDF of the differential equation’s response can be calculated by doing integration
in a finite phase plane space [36]. The equation of x and ẋ can be expressed as Itô0s

form in a matrix format, which is given as

dX(t) = A[X, t]dt+B[X, t]dW(t) (4.7)
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where X represents the 2-element vector [x, ẋ] at each time point t, A[X, t] denotes
the 2-element drift vector at each time point t, B[X, t] is the diffusion matrix with
dimension 2 × 2, and W(t) is the 2-element vector of standard Wiener vector
process [5].

Based on the basic idea of PI method, the corresponding PDF (i.e., analytical
solution) of Xi = [xti , ẋti ] is derived [116]:

p(Xi, ti) =
R
R
q(Xi, ti|Xi−1, ti−1) × p(Xi−1, ti−1)dXi−1 (4.8)

where p(Xi, ti) denotes the PDF of Xi at time ti, i represents the ith discrete time
point, R is the integration region, and q(Xi, ti|Xi−1, ti−1) denotes the transit PDF
from Xi−1 to Xi. The expression of q(Xi, ti|Xi−1, ti−1) is given in Eq. (4.9).

q(Xi, ti|Xi−1, ti−1) =
1

2πσ1,tiσ2,ti

p
1 − ρi2

e
−zi

2(1−ρi2) (4.9)

where
zi =

(x−µ1,ti )
2

σ2
1,ti

− (xti−µ1,ti )(ẋti−µ2,ti )
σ1,tiσ2,ti

+
(ẋti−µ2,ti )

2

σ2
2,ti

(4.10)

ρi =
σ12,ti

σ1,tiσ2,ti

(4.11)

where ρi represents the correlation between xti and ẋti , µ1,ti and σ1,ti are the mean
and the standard deviation (st.d) of xti , respectively, µ2,ti and σ2,ti are the mean and
the standard deviation (st.d) of ẋti , respectively, and σ12,ti denotes the covariance
of xti and ẋti . In addition, we have

p(X0, t0) = 1
2πσ1,t0σ2,t0

exp
n
− (xt0−µ1,t0 )2

2σ1,t0
− (ẋt0−µ2,t0 )2

2σ2,t0

o
(4.12)

where p(X0, t0) represents the PDF of X0 at initial time t0.

Starting from this point, we omit the subscript ti in xti , ẋti , µj,ti , and σj,ti for
simplicity. We need to keep in mind that x, ẋ, µ1, µ2, σ1, σ2, and σ12 have the
implicit information with regard to time.

4.3.1.2 Transformation of the gear dynamic equation

Since the SDE Eq. (4.6) cannot be solved by PI method directly, a transformation
method is proposed in this section. In PI method, it requires all the coefficients in
the left hand of the differential equation to be deterministic. Thus, the key problem
is to transform the stochastic coefficients of Eq. (4.6) to be deterministic. The details
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of the transformation are given as follows.

According to the superposition principle, it is assumed that the deterministic
part of load, denoted f̂(t) = f0 + f1 cos(ϕt), excites the deterministic part of x(t)

and ẋ(t), while the stochastic part of the load, denoted ξ(t), excites the stochastic
part of x(t) and ẋ(t). To solve Eq. (4.6), we first consider:

x(t) = µ1(t) + µ̃1(t) (4.13)

ẋ(t) = µ2(t) + µ̃2(t) (4.14)

G1(x, ẋ, t) = λG1(t) + G̃1(t) (4.15)

G2(x, ẋ, t) = λG2(t) + G̃2(t) (4.16)

where µ1(t) and µ2(t) are the deterministic part of x(t) and ẋ(t), respectively, µ̃1(t)

and µ̃2(t) are the stochastic part of x(t) and ẋ(t), respectively, λG1(t) and λG2(t) are
the deterministic part of G1(x, ẋ, t) and G2(x, ẋ, t), respectively, G̃1(t) and G̃2(t) are
the stochastic part of G1(x, ẋ, t) and G2(x, ẋ, t), respectively.

If we do not consider the stochastic part of the load, we can get Eq. (4.17).

ẍ+G1(x, ẋ, t)ẋ+G2(x, ẋ, t)x = f̂(t) (4.17)

Then, we can obtain x(t) and ẋ(t) (denotes as µ1(t) and µ2(t)) by solving Eq.
(4.17), which are deterministic. Therefore, G1(µ1(t), µ2(t)) and G2(µ1(t), µ2(t))

can be obtained. In this case, λG1(t) and λG2(t) can be obtained as λG1(t) =

G1(µ1(t), µ2(t)) and λG2(t) = G2(µ1(t), µ2(t)).

Utilizing G1(µ1, µ2) and G2(µ1, µ2) to replace G1(x, ẋ, t) and G2(x, ẋ, t), respec-
tively, an approximated equation of Eq. (4.6) is given as,

ẍ+ λG1(t)ẋ+ λG2(t)x = f(t) (4.18)

In Eq. (4.18), the coefficients are deterministic except for the load, and thus, it
can be solved by the PI method according to the description and the limitations of
the PI method (refer to Section 4.3.1.1). The solution of Eq. (4.18) is our tentative
analytical solution. We call it tentative analytical solution because we ignored
G̃1(t) and G̃2(t) in Eq. (4.6). The tentative analytical solution will be further
adjusted to be more accurate later.
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In the next section, the method to derive the tentative analytical solution will
be given. In addition, a case study to obtain the tentative analytical solution will
be given in Section 4.4.1

4.3.1.3 Derivation of the tentative analytical solution

The objective of this section is to show the procedure of obtaining the tentative
analytical solution by PI method.

In order to obtain p(Xi, ti), we need to solve Eqs. (4.9-4.11) first. Correspond-
ingly, we need to obtain the expressions for µ1, µ2, σ1, σ2, and σ12. Since the mean
of the stochastic term of f(t) is zero, the solution of Eq. (4.17) could be obtained as
µ1 and µ2. Then, the remaining problem is to obtain σ1, σ2, and σ12.

Due to the existence of backlash, the obtained σ1, σ2, and σ12 can be classified
into two categories, namely, with tooth contact or not. If the backlash value (i.e.,
g(x)) equals to zero in Fig. 2.3, there is no tooth contact. Otherwise, there is a tooth
contact. Therefore, we will talk about the derivation process of σ1, σ2, and σ12

according to the two categories. Here, σ1, σ2, and σ12 describe the uncertainties in
the gear dynamic responses. Recalling Eq. (4.17), we know that these uncertainties
are caused by the random term ξ(t) in f(t).

(1) with tooth contact (G2 6= 0)

In this part, the approximate analytical solution is for the case g(x) 6= 0.

We suppose that f(t) in Eq. (4.18) is equal to Θ(t), where Θ(t) is the Dirac Delta
function. Under the excitation of Θ(t), there is an impulse function hx(t) which
satisfies Eq. (4.19).

d2hx(t)

dt2
+ λG1

dhx(t)

dt
+ λG2 = 0 (4.19)

For t > 0, we suppose that the initial condition is h0x(0+) = v and hx(0
+) = 0,

where v = Rb1v
(1)
0 − Rb2v

(2)
0 is the relative initial velocity and v

(i)
0 , i ∈ {1, 2} is the

initial mean velocity of gear i. Note that Rb1 and Rb2 are defined in Eq. (4.2).
The mean of the gear initial relative angular displacement is 0. Then, the general
solution of the homogeneous equation Eq. (4.19) can be obtained as

hx(t) =
v

β
eαt sin(βt) (4.20)
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where
α = −λG1

2
(4.21)

β =

q
4λG2 − λ2

G2

2
(4.22)

Then, the autocorrelation function of f(t), denoted φff (t, s), is derived as

φff (t, s)

= E[f(t)f(s)]

= f 2
0 + f0f1(cos(ϕs) + cos(ϕt)) + f 2

1 cos2(ϕt) +G0Θ(t− s)

(4.23)

whereG0 = 2πr. The auto covariance function of f(t), denotedKff (t, s), is derived
as

Kff (t, s) = φff (t, s) − E[f(t)]E[f(s)] = G0Θ(t− s) (4.24)

The auto covariance function of the relative displacement x, denotedKxx(t1, t2),
is derived as

Kxx(t1, t2) =
R∞
−∞

R∞
−∞Kff (s1, s2)hx(t1 − s1)hx(t2 − s2)ds1ds2 (4.25)

According to the expression of Kff (t, s) and hx(s), The following equation is
obtained.

Kxx(t1, t2) = G0v2

4β2(α2+β2)
{eα|t1−t2|{−β2

α
cos [β (t1 − t2)] + β sin [β|t1 − t2|]}

−eα(t1+t2){−α2+β2

α
cos [β (t1 − t2)] + α cos [β (t1 + t2)] + β sin [β (t1 + t2)]}

(4.26)

Let Kxẋ(t1, t2) denote the auto covariance function of the relative angular
displacement x and the relative angular velocity ẋ. Due to Kxẋ(t1, t2) = ∂Kxx(t1,t2)

∂t2
,

Kxẋ(t1, t2) can be derived as

Kxẋ(t1, t2)

= G0v2

4β2 {−eα|t1−t2| β
α

sin [β|t1 − t2|]

−eα(t1+t2){−β
α

sin [β (t1 − t2)] − cos [β (t1 − t2)] + cos [β (t1 + t2)]}}

(4.27)

Let Kẋẋ(t1, t2) denote the auto covariance function of the relative angular
velocity ẋ. Due to Kẋẋ(t1, t2) = ∂2Kxx(t1,t2)

∂t1∂t2
, Kẋẋ(t1, t2) can be derived as

Kẋẋ(t1, t2)

= G0v2

4αβ2 {−eα|t1−t2|αβ sin [β|t1 − t2|]

−eα|t1−t2|β2 cos [β|t1 − t2|]

−eα(t1+t2){−(α2 + β2) cos [β (t1 − t2)]

−αβ sin [β (t1 + t2)] + α2 cos [β (t1 + t2)]}}

(4.28)
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Let t1 = t2 = ∆t, and then, we can obtain the corresponding variances:

σ2
1 = G0v2

4β2(α2+β2)
(−β2

α
− e2α∆t(−α2+β2

α
+ α cos(2β∆t) + β sin(2β∆t))) (4.29)

σ12 =
G0v

2

4β2
e2α∆t [1 − cos(2β∆t)] (4.30)

σ2
2 = −G0v2

4αβ2 {β2 − e2α∆t × [α2 + β2 + αβ sin(2β∆t) − α2 cos(2β∆t)]} (4.31)

Note that σ2
1 and σ2

2 are the variances of x and ẋ, respectively, and σ12 is the
covariance of x and ẋ.

(2) without tooth contact (G2 = 0)

In this part, the approximate analytical solution is for the case g(x) = 0.
Therefore, the differential equation is given as:

ẍ+G1ẋ = f(t) (4.32)

By eliminating the stochastic term of f(t), we can obtain the following equation.

ẍ+G1ẋ = f̂(t) (4.33)

Then, λ̃G1 is obtained by solving Eq. (4.33).

The following equation is obtained by replacing G1 with λ̃G1 in Eq. (4.32)

ẍ+ λ̃G1ẋ = f(t) (4.34)

Similar to solving Eq. (4.19), the general solution of the homogeneous equation
Eq. (4.34), denoted h

(2)
x (t), can be derived as

h(2)
x (t) =

v

a2

1 − ea2t (4.35)

where a2 = cλ̃L and v is the mean of initial velocity.

Similar to the procedures of the case with tooth contact, we can obtain the
corresponding variances:

σ2
1 =

G0v
2

a2
2

∆t− 1

a2

3

2
− 2e−a2∆t +

1

2
e−a2∆t) (4.36)

σ12 =
G0v

2

a2
2

1

2
− e−a2∆t +

1

2
e−2a2∆t (4.37)

σ2
2 =

G0v
2

2a2

1 − e−2a2∆t (4.38)
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4.3.2 Updated approximate analytical solution

Due to the transformation in Section 4.3.1.2, the obtained tentative analytical
solution is not the accurate solution of Eq. (4.6). Therefore, the objective of this
section is to derive the modification function and then apply it to the tentative
analytical solution to obtain the approximate solution of Eq. (4.6). A case study to
obtain the modification function will be given in Section 4.4.1.

Generally, the exact analytical solution of Eq. (4.6) is hard to derive. However,
numerical responses (i.e., samples) can be obtained by MC method. Then, we can
also generate samples by the obtained tentative analytical solution. Therefore,
we can find a modification function to demonstrate the rule of errors according
to the samples obtained by MC method and the tentative analytical solution.
A supervised learning algorithm is applied to obtain the modification function.
Finally, we adjust the tentative analytical solution by the modification function
and then obtain the final PDF. The obtained final PDF is called the approximate
analytical solution (i.e., PDF) of the SDE Eq. (4.6).

To obtain the responses of x and ẋ, the procedure of conducting MC method
can be summarized as:

1. Generate NMC (number of samples) load profiles using Eq. (4.3). Note that
the value of NMC is obtained based on the following rule. With the increase
of the number of samples, the PDF will become steady. Thus, the number of
samples NMC is selected such that the PDF becomes stable.

2. Substitute each load to Eq. (4.6) and solve it using differential equation solver
(ode15s) in Matlab (Runge-Kutta).

3. Obtain NMC samples of responses corresponding to the NMC load profiles.

Supervised learning is used to find a mapping between a set of input samples
and the corresponding output and this mapping is then applied to predict the
outputs under other input data [117]. The samples obtained by the tentative
analytical solution would be the input samples (also called PI results) and the
samples obtained by MC method would be the corresponding output (also called
MC results). We define the input samples and the corresponding output as χ (t)

and ζ (t), respectively. Then, we try to seek a function η(t) : χ (t) → ζ (t). Note
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that η(t) is a t-correlation function. To evaluate η(t), the risk function ε is defined
as [118]:

ε =

Z t2

t1

ζ (t) − η (t)χ (t)

ζ (t)
dt (4.39)

To get a proper η(t), the value of ε should be minimized. There are two
basic methods for getting the expression of η(t), empirical risk minimization [119]
and structural risk minimization [120]. Empirical risk minimization method has
the disadvantage of overfitting when the training data set is not sufficiently
large. For structural risk minimization, the algorithm tries to avoid overfitting
by introducing a regularization penalty. It prefers to find a simpler η(t) over
a complex one to prevent overfitting [121]. In this work, the structural risk
minimization method is adopted as the number of training data is limited.

Hence, the learning algorithm is to find η(t) that minimizes ε + κQ (η), where
κ could control the bias-variance tradeoff and Q (η) is the regularization penalty
which is used to avoid overfitting. The appropriate κ can be obtained by cross
validation. The detailed information about the learning algorithm can be found
in [122].

There are many supervised learning algorithms, including support vector
machines [123]- [125], linear regression [126], nonlinear regression [127], neural
networks [128] and so on. In this study, we choose nonlinear regression.

Therefore, the procedure of obtaining η(t) is summarized as follows [129]

1. Define the average error function

2. Find the type of η(t) by analyzing the properties between the input samples
and corresponding output

3. Define η(t) and the regularization penalty Q(η)

4. Choose the bias-variance tradeoff κ

5. Minimize ε+ κQ (η) using the steepest descent method [130]

According to the obtained modification function η(t), the modified PI results
can be obtained:

σ̃1(t) = σ1(t)η1(t) (4.40)



Chapter 4. Approximate Analytical Solution considering Stochastic Load and a
Stochastic Internal Factor 105

σ̃2(t) = σ2(t)η2(t) (4.41)

σ̃12(t) = σ12(t)η12(t) (4.42)

where σ̃1(t), σ̃2(t), and σ̃12(t) are the modified values of σ1(t), σ2(t), and σ12(t),
respectively, and η1(t), η2(t), and η12(t) are the corresponding modification func-
tions. Updating σ1(t), σ2(t), and σ12(t) in Eqs. (4.29-4.31) by σ̃1(t), σ̃2(t), and
σ̃12(t) respectively, the improved PDF expressions of x and ẋ with a high accuracy
are obtained. Therefore, the improved PDF expressions of x and ẋ is called the
approximate analytical solution to Eq. (4.6). The validation of this modification
will be demonstrated in Section 4.4.

4.3.3 Summary of procedure

We summary the proposed method in Fig. 4.1, which contain the following five
steps.

1. Replace the stochastic load in the dynamic equation by deterministic load
and then solve the dynamic equations (see Eq. (4.17))

2. Replace G1(x, ẋ, t) and G2(x, ẋ, t) by λG1(t) and λG2(t), respectively

3. Derive σ1(t), σ2(t), σ12(t) by PI method

4. Use MC results as training data and find out a proper η(t) by nonlinear
regression

5. Update tentative analytical solution by η(t) according to Eqs. (4.40)-(4.42)

4.4 Validation and evaluation

In this section, a gear model considering damping, TVMS, backlash, and friction is
introduced. In this model, both the load and the friction (i.e., the single stochastic
internal factor) are stochastic. In this section, we use this case (i.e. obtaining the
approximate analytical solution of the introduced model) as an example to explain
our proposed method. This case is the most complex case among the three cases
mentioned in Section 4.2.2. Other cases can also follow the same procedure to
obtain the approximate analytical solution.
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Fig. 4.1: The overview of our proposed method

In order to validate the proposed method, the comparison will be made
between the results from the proposed method and the MC method. This
validation is performed in Section 4.4.2. Section 4.4.3 evaluates the accuracy and
efficiency of the proposed method.

The parameters of the gear system used in this validation are from [75] and
friction coefficient µ is set to be a constant 0.04. For the stochastic load in Eq. (4.3),
the parameters are set as f0 = 2 × 104, f1 = 2 × 103, ϕ = 100, and r = 2 × 103.

4.4.1 A gear model used to validate the proposed method

This section contains three parts. First, a gear model used in validation is
introduced and the tentative analytical solution of this model is derived. Then,
gear parameters are substituted to the gear model, and thus, the modification
function is obtained. Finally, the approximate analytical solution is obtained by
updating the tentative analytical solution using the modification function.
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The considered model in this section is formulated as [23]:

J1θ̈1 = T1 − FRb1 − FfX1 (4.43)

J2θ̈2 = T2 + FRb2 + FfX2 (4.44)

where Ji, Ti, Xi, and Rbi are the moment of inertia, external torque, arm length of
friction, and base circle of gear i ∈ {1, 2}, respectively, F represents the total force
between the contact teeth, Ff is the sliding friction.

Simplify Eq. (4.43, 4.44), and then, a normalized equation is obtained and
shown as

ẍ+ cL(θ1, µ, t)ẋ+ kL(θ1, µ, t)g(x) = f(t) (4.45)

where c and k are defined in Eq. (4.1), θ1 is defined in Eq. (4.2), µ represents the
friction coefficient, and L(θ1, µ, t) is a function which is caused by friction. The
expression of L(θ1, µ, t) can be obtained as Eq. (4.46) [23].

L(θ1, µ, t) = χ1 + µ (χ2θ1 + χ3) (4.46)

where χj(j = 1, 2, 3) relates to gear design parameters. Note that χj(j = 1, 2, 3)

and µ can be considered as constant.

From Eq. (4.46), we can see that L(θ1, µ, t) depends on θ1. Since θ1 is stochastic
because of f(t) given in Eq. (4.3), L(θ1, µ, t) is also stochastic.

By considering the deterministic part of the load, Eq. (4.47) is obtained.

ẍ+ cLẋ+ kLg(x) = f̂(t) (4.47)

Then, x (considered as µ1) and ẋ (considered as µ2) can be obtained by solving
Eq. (4.47). Note that, according to Eq. (4.2), θ̂1 and θ̂2 can be obtained according to
the obtained x.

After that, we get λL(t) as expressed in Eq. (4.48) by substituting θ̂1 to Eq. (4.46).

λL(t) = χ1 + µ χ2θ̂1 + χ3 (4.48)

Eq. (4.49) is obtained by replacing L(θ1, µ, t) by λL(t) in Eq. (4.45).

ẍ+ cλL(t)ẋ+ kλL(t)g(x) = f(t) (4.49)
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Based on this transformation, all parameters in Eq. (4.49) become deterministic
except for load, which could be solved by PI method now.

Backlash is adopted the same as Fig. 2.3, where

g(x) =


x− b,

0,

x+ b,

x > b

−b ≤ x ≤ b

x < −b

(4.50)

For the case that g(x) 6= 0, the system equation is shown in Eq. (4.49). Under
the excitation of Θ(t), there is an impulse function hx(t) which satisfies Eq. (4.51).

d2hx(t)

dt2
+ cλL(x)

dhx(t)

dt
+ kλL(x)hx(t) = 0 (4.51)

The general solution to the homogeneous equation Eq. (4.51) is same as Eq.
(4.20), where

α = −cλL(x)

2
(4.52)

β =

q
4kλL(x) − (cλL)2

2
(4.53)

Then, σ1, σ2, and σ12 under g(x) 6= 0 can be obtained by Eqs. (4.29-4.31).

For the system with g(x) = 0, the differential equation is:

ẍ+ cL(θ1, µ, t)ẋ = f(t) (4.54)

By eliminating the random term of f(t) in Eq. (4.54), we have

ẍ+ cL(θ1, µ, t)ẋ = f̂(t) (4.55)

Then, we can obtain the results by solving Eq. (4.55). By substituting the
obtained results to Eq. (4.48), we can obtain λ̃L(x). The following equation is
obtained by replacing L(θ1, µ, t) to λ̃L(x) in Eq. (4.54).

ẍ+ cλ̃L(x)ẋ = f(t) (4.56)

The general solution to the homogeneous equation Eq. (4.56) is the same as Eq.
(4.35), where a2 = cλ̃L(x) and v represents the mean of initial velocity.
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In the case of g(x) = 0, σ1, σ2, and σ12 can be obtained by Eq. (4.36-4.38).

Based on Section 4.3.2, a modification to µ1, µ2, σ1, σ2, and σ12 should be taken.
The modification function η(t) is based on the results of MC method and the
tentative analytical solution. For different cases, η(t) may have different forms,
such as polynomial function, exponential function, and so on. Therefore, it is
important to analyze the properties of the responses so that an appropriate form
for η(t) can be obtained. The gear parameters given at the beginning of Section 4.4
are used for simulation. Fig. 4.2 gives a sample of responses x under stochastic
load. From this figure, we can see x fluctuates greatly at the beginning, but the
fluctuation amplitude decreases until a stable state. The system is considered as
stable when the amplitude of x has a small variation. In this simulation, the system
is considered as stable under the applied stochastic load after 2.5s based on Fig. 4.2.
The data under the stable state are used in the following calculation.

Fig. 4.2: An example of responses x

In Fig. 4.3 (a) and (b), µ1 and µ2 between [0.35, 0.4] s are compared, respectively.
It is concluded that the mean of responses by PI method is almost the same as the
result by MC method. Thus, for the gear parameters used in this work, there is
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Fig. 4.3: Comparison between PI and MC in mean value of (a) x and (b) ẋ

no need to adjust the mean values (µ1 and µ2) and only σ1, σ2, and σ12 need to be
adjusted.

In the following, σ2 is used as an example to obtain its modification function
using nonlinear regression algorithm (the procedure is similar for σ1 and σ12). The
data obtained between [0.25, 0.3] s is used as the training data as the system is
considered as stable in this period. The data of σ2 obtained by PI method and MC
method between [0.25, 0.3] s is given in Fig. 4.4. It is easy to find that the PI results
and the MC results of σ2 have the property of periodicity. Both of them have the
same period and the period is T as shown in Fig. 4.5.

Therefore, η(t) is also a periodic function and it is defined as

η (t) = φ
t

N
, t ∈ [(N − 1)T,NT ] (4.57)

where N is a positive integer which represents the number of periods and φ (t) is
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Fig. 4.4: The training data

defined as Eq. (4.58).

φ (t) =

 γ1(1 + sin($t)) t ∈ [0, Tm]

γ2(1 + sin($t)) t ∈ [Tm, T ]
(4.58)

where γ1, γ2, and $ are target coefficients, and Tm = 0.0015s is obtained according
to Fig. 4.5.

Then, the regularization penalty needs to be obtained. The regularization
penalty usually has one of the following forms, L0 norm which is the number of
non-zero γi (the weights of η(t)), L1 norm which is the absolute-value norm of γi,
and L2 norm which is the squared Euclidean norm of γi. In this part, L1 norm is
used to define the regularization penalty as did in [120]. It is given as:

Q (η) =
γ1Tm + γ2 (T − Tm)

T
(4.59)

By applying the steepest descent method [131], coefficients γ1, γ2, and $ of
η(t) are obtained to minimize the error ε + κQ (η) based on the training data. Up
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Fig. 4.5: The periodicity of σ2

to now, the function η(t) is obtained. Then, the expression of σ2 obtained by PI
method during [0.35, 0.4] s is adjusted using Eq. (4.41). It means the value of σ2

using our proposed method can be obtained.

Similarly, the expression of σ1 and σ12 are obtained by obtaining the corre-
sponding η(t). After getting the values of σ1, σ2, and σ12, solutions in Eqs. (4.8-4.11)
are updated.

4.4.2 Validation of the solution

The objective of this section is to validate the solution generated by the proposed
method. The gear model described in Section 4.4.1 is used for the validation.

To preliminarily evaluate the performance of our updated solution, σ2 obtained
by MC method and our proposed method during the period [0.35, 0.4] s are
compared. The result is shown in Fig. 4.6. Fig. 4.6 shows that the values of σ2

calculated by the proposed method are very close to the values obtained by MC
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Fig. 4.6: The testing data

method.

The instantaneous marginal PDF of x and ẋ at 0.39s are shown in Fig. 4.7.
Despite there’s a slight distinct in st. d by MC method and the proposed method
(shown in Fig. 4.6), the PDFs of the two methods are very close in Fig. 4.7. This
agreement validates the approximate analytical solution which is obtained by the
proposed method is accurate.

The joint PDFs of x and ẋ under different methods are shown in Fig. 4.8. It
illustrates the joint PDFs of x and ẋ at t = 0.76s. It is observed that the joint PDF
from the proposed method agrees well with that from the MC method.

4.4.3 Evaluation of the proposed method

In the previous section, we have qualitatively compared our proposed method
with MC method. This section will quantitatively assess the performance of
the proposed method. Accuracy evaluation will be done in Section 4.4.3.1 and
efficiency evaluation will be conducted in Section 4.4.3.2.
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Fig. 4.7: Marginal distribution of (a) x (b) ẋ at t = 0.39s
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Fig. 4.8: Joint distribution at 0.76 s: (a) proposed method, (b) MC method

4.4.3.1 Accuracy evaluation

Accuracy evaluation aims to quantify the errors generated by the proposed
method comparing with MC method. Risk function defined in Eq. (4.39) can be
used to quantify the errors, but it is not easy to obtain. In practical, it is common
to use the following definition to represent the average error between σ̃2 (st. d of ẋ
by the proposed method) and σMC

2 (st. d of ẋ obtained by MC method).
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ε =
1

M

NX
i=1

σ̃2(j) − σMC
2 (j)

σMC
2 (j)

× 100% (4.60)

where M is the number of time points and j represents a time point. Eq. (4.60) can
be also used to calculate the average error of µ1, µ2, and σ̃1.

Using responses in [0.35, 0.4] s as an example, the average errors of µ1, µ2,
σ̃1, and σ̃2 between two methods are 9.2%, 2.25%, 7.19%, and 5.28%, respectively.
These errors are all less than 10%, which is acceptable in some degree.

4.4.3.2 Efficiency evaluation

In this section, the objective is to explain the efficiency gain using the proposed
method.

To solve the formulated problem, we propose an improved PI method. It is
based on MC simulation. But, only a limited number of samples are needed to
be generated by the MC method for our learning procedure, which can greatly
save computation time compared with the traditional MC method. The detailed
analysis about the efficiency is given as follows.

SupposeH is the total computational cost for single simulation under stochastic
load (e.g. generate one sample of x(t) in Fig. 4.2), H1 is the time cost by solving
the equation under deterministic load (obtaining µ1 and µ2), H2 is the time cost by
obtaining a learning sample by MC method (H2 H), andNm denotes the sample
number. Table 4.2 gives the total computational cost comparison between MC
method and the proposed method. The numbers in Table 4.2 give the time cost for
obtaining approximate analytical solution from [0, 1.6] s by the proposed method
and MC method (one sample by MC method is shown in Fig. 4.2), respectively. In
our simulation, we have H = 671.368s, H1 = 11.3s, H2 = 125.284s, and Nm = 100.

Table 4.2: The total computational cost comparison

The computational cost

MC method H ×Nm 67136.8s

Proposed
method

H1 +H2 ×Nm 12539.7s
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From Table 4.2, the proposed method saves 81.3% (i.e., (1 − 12539.7/67136.8) ×
100%) computational cost. We can see the proposed method greatly increases the
calculation efficiency compared to MC method. In addition, once the modification
function is obtained, it can be applied to the following responses. Therefore, with
the increasing of simulation length of gear system, our proposed method could
save more time in calculation.

4.5 Conclusion

This work proposes an approximate analytical solution to a spur gear dynamic
model with stochastic load and one additional stochastic internal factor. A
tentative analytical solution is derived using PI method and then updated using
a supervised learning algorithm. A case study taking friction as an example of
the additional stochastic element is used to validate our proposed method. The
dynamic responses of this model are investigated using our proposed method
and then compared with MC results. The analysis results demonstrate that (a)
the proposed method can deal with the gear model with stochastic load and a
stochastic internal factor. Especially, the proposed method can handle the internal
factor that is dependent on gear velocity and/or displacement. (b) although the
proposed method loses a bit accuracy comparing with MC method, it greatly
increases the calculation efficiency. Future works may consider the method to
obtain a more accuracy modification function. Therefore, the proposed method
in this chapter can obtain a more accuracy solution.

In summary, to investigate the dynamic characteristics of gear systems, the
time cost is large when obtaining the simulation results in Chapter 2 and Chapter
3. It is because the large time complexity of numerical methods, which are
adopted to solve gear dynamic models under stochastic excitations. To address
this problem, this chapter proposed an efficient method to obtain approximate
analytical solution to a gear model under stochastic load with one stochastic
internal factor. The model in Chapter 2 was also taken as an example to
demonstrate the efficiency and accuracy of the proposed method. Focusing on the
two main aspects of this thesis (i.e., modeling and solving), this chapter proposed
an efficient method to solve gear dynamic models under stochastic excitations
which made this thesis more complete in the study of gear dynamics.



5
Summary and Future work

This chapter summarizes the contributions of this thesis and describes some
problems that remain to be addressed.

5.1 Contributions of Thesis

Lumped parameter modeling (LPM) has been widely used in the dynamic model-
ing of gear systems. The understanding of dynamic characteristics of a gear system
considering stochastic internal and external excitations helps the development in
the design and effective tools of condition monitoring of a gear system. This
study aims to simulate and investigate the dynamic characteristics of a gear
system, which are affected by stochastic internal and external excitations. The
contributions of this thesis are summarized in three categories, which are given
in the next three sections.

5.1.1 Effects of friction on gear dynamic characteristics

The main objective of this topic as documented in Chapter 2 is to investigate the
effects of friction and stochastic load on gear systems’ transient characteristics.

In this thesis, a single degree of freedom (SDOF) nonlinear dynamic model of a
spur gear pair is developed based on the model reported in [5]. TVMS, backlash,
sliding friction, and stochastic load are considered in our model. Friction is the first
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time introduced to a gear dynamic model under stochastic load. The validation is
done by comparing with the result reported in [50], which considered the model
of a spur gear pair under deterministic load considering TVMS and backlash.

To analyze the dynamic characteristics of the proposed model, this topic gives
the numerical simulation results. Six cases of the friction coefficient values are
used and responses are compared with one another. The dynamic model of gear
systems is solved by Runge-Kutta method. The statistical characteristics of gear
response are obtained by MC method.

The analysis results demonstrate that (a) the established SDOF gear dynamic
model is more realistic than reported models which did not consider friction,
(b) under the same friction coefficient value, the stochastic load generates longer
duration in the transient state and higher fluctuation in the steady state compared
with those under deterministic load, (c) under stochastic load, the gear system
has different transient stability under different friction coefficients. The case
with friction generates higher dispersion of relative angular displacement in the
transient state and lower dispersion in the steady state compared with those of the
case without friction.

This analysis gives us better understanding on the effects of stochastic load and
friction on the gear dynamic characteristics. The proposed gear dynamic model
and numerical results can be used as a reliable tool to investigate the gear random
dynamics.

In summary, a gear stochastic dynamic model for a spur gear pair is established
in this topic. Friction is introduced in the model under stochastic load for the
first time. Therefore, the proposed model is more realistic than reported models.
The model proposed in this topic is then improved by the work in Chapter
3. In addition, considering the model in this chapter, an efficient method is
proposed in Chapter 4 to solve this model. This topic, as the pioneer of the whole
thesis, explores the history of the development of gear dynamics and laid a firm
foundation of the following studies.



Chapter 5. Summary and Future work 120

5.1.2 Effects of driving speed on gear dynamic characteristics

In this topic, as documented in chapter 3, a stochastic nonlinear gear dynamic
model is presented. Due to manufacturing error, energy loss, possible change
of the engine status, and variation of operating environment, the driving speed
and external load are not deterministic in the future. Thus, under the presented
model, the effects of the driving speed variation (including deterministic or
stochastic driving speed) on gear dynamic characteristics under stochastic load
are investigated for the first time. MC method is applied to analyze the dynamic
characteristics focusing on the effects caused by driving speed coupled with
stochastic load.

Some insightful conclusions are obtained based on the simulation results. It
shows that the random element of the driving speed affects the gear response
a lot which should not be ignored. Under the stochastic load, a small ratio of
randomness in driving speed greatly increases the dispersion in responses. In
addition, the dispersion in responses is more sensitive to the uncertainty of the
driving speed than that of the load.

In summary, an improved gear model based on the model in Chapter 2 is
proposed in this topic. It explores one more external excitation (i.e., driving speed),
which is an improvement in gear dynamic modeling. Therefore, the stochastic
features of real gear systems can be well modelled by our proposed gear model.
Considering the two main aspects of this thesis (i.e., modeling and solving of gear
systems), the works in Chapter 2 and Chapter 3 make the dynamic modeling of
gear systems more realistic.

5.1.3 Approximate analytical solution to a gear model with treat-
ing one internal factor as stochastic

Researchers have considered stochastic load and deterministic internal factors
such as damping and TVMS in gear system dynamic models. In this topic, as
documented in Chapter 4, we treat one of the internal factors as stochastic which
is more realistic. The stochastic behavior of this internal factor may depend on
gear velocity and/or displacement, which will cause the dynamic equations to be
difficult to solve. The main objective of this topic is to propose a method to obtain
the approximate analytical solution for a gear pair model under stochastic load
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considering one stochastic internal factor.

A transformation of the original dynamic equation is introduced so that the
reported PI method can be used to obtain a tentative analytical solution. Then,
we propose a method to improve the accuracy of the tentative analytical solution
as follows. It is based on MC simulation. However, only a limited number
of samples are needed to be generated by the MC simulation. A supervised
learning algorithm is then used to establish the relationship between the tentative
analytical solution obtained by PI method and the responses obtained by MC
method in order to obtain a modification function. The modification function
is applied to the tentative analytical solution to obtain more accurate solution
of the system dynamic equations considering the load and an internal factor as
stochastic. A case study is presented to validate the proposed approach and
demonstrate its efficiency. Compared to the numerical methods, our proposed
method can achieve similar accuracy responses of the gear model but with much
smaller time complexity.

In summary, different from the works in Chapter 2 and Chapter 3, this
topic focuses on the other aspect of this thesis (i.e., the solving techniques of
gear models). When dealing with the proposed dynamic models in Chapter
2 and Chapter 3, the simulation takes a lot of time due to the large time
complexity of numerical methods, which are adopted to solve gear models under
stochastic excitations. Thus, this work proposes an efficient method to solve gear
dynamic models with stochastic excitations involved. By the proposed method,
an approximate analytical solution of the considered dynamic gear model can be
derived. This method can be used but not limited to solve the gear dynamic model
in Chapter 2. It can be widely adopted for gear dynamic models under stochastic
load with one additional stochastic internal excitation.

5.2 Directions for Future Work

Although this thesis improves the modeling and solving techniques of gear
models, there are still some problems that need to be further addressed. Based
on the scope of this dissertation, the following three perspectives are suggested for
future consideration.
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These three perspectives are corresponding to the contents in Section 1.2 which
are modeling, solution, and dynamic characteristics, respectively. The following
three sections are listed as potential topics regarding to the three perspectives. The
exploring of the gear stochastic and nonlinear dynamics are not only limited to
these three listed examples.

5.2.1 Modeling and influence analysis of a chaotic load on gear
dynamics

The assumption of external load to be Gaussian white noise maybe not proper in
some machines, e.g. ships, mining machines, wind turbines, etc.. Under these
machines, the load profile is quite complicated and the load varies greatly [132]-
[135]. For wind turbines, their driven chain loads are generated by wind speed.
The relationship between the load and wind speed is positive correlation, but
has no fixed pattern [136]. The generated load cannot be expressed as analytical
expression using probabilistic method. Thus, it is necessary to develop a reliable
non-probabilistic load model to represent the load profiles of wind turbines.

A chaotic load model will be first introduced to a gear dynamic model. A
SDOF nonlinear dynamic model of a spur gear pair is developed based on the
model reported in [49]. TVMS, backlash, sliding friction, and chaotic load are
considered in our model. This model is the same as Chapter 2 except load. The
main objective of this topic is to investigate a chaotic load model and its effects on
system’s dynamic characteristics.

A generator of variable load of wind turbines will be proposed according to
Ref. [136]. The procedures of this topic are stated as:

1. The model for generation of wind speed is designed by the Weierstrass
function.

2. The rotational speed of the main shaft is proposed as a function of the wind
speed value. The function depends on a few parameters that are fitted by
using a genetic algorithm.

3. The model of the torque of the main shaft is introduced. Chaotic load will be
generated by a multi-layer artificial neural network [63] and an open source
wind speed and energy data will be adopted for validation.
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4. The dynamic model of gear systems is solved by Runge-Kutta method. The
chaotic characteristics of gear response are analyzed by Poincaré map.

This way of generating load can be extended other realistic cases by using
different study samples. The proposed chaotic load model and numerical results
can improve the gear condition monitoring and fault diagnosis [137].

5.2.2 Gear dynamic modelling considering variable mass

Several studies have shown the great effects of the stochastic internal excitations on
the dynamic characteristics of gear systems [138]. Guerine et al. [135] considered
mass and moment of inertia as random variables with Gaussian white noise on
a one stage gear system. Abo et al. [139] investigated the variability in gear
design parameters and operational conditions. Therefore, it is necessary to take the
uncertainties of internal excitations into account. Variable moment of the inertia
(or variable mass) will be considered with friction and stochastic load.

Stochastic averaging method, which is an efficient tool for obtaining stationary
responses of ODEs, is used in some literature. When the PDF of the dynamic
system’s responses varies within a certain small range of time, the response is
called stationary response and the system is in steady state. The response before
reaching the steady state is called transient response. Qiao et al. [140] studied
a variable-mass duffing oscillator with mass disturbance, which is modeled as
Gaussian white noise.

Although stochastic averaging method can deal with stochastic variable-mass
systems, the coupling of stochastic mass and friction is still a big problem. Proper
treatment on the friction is the key to solve this problem.

5.2.3 Stability analysis using Lyapunov exponent

There are several versions of stability definitions [141], among which the asymp-
totic stability with probability one is widely adopted. In recent years, based on
the Oseledec multiplicative ergodic theorem [142], there is a trend to analyze the
asymptotic Lyapunov stability with probability one through evaluating the largest
Lyapunov exponent of the system. Therefore, it is possible for us to study the
effects of stochastic internal and external excitations on the asymptotic stability.
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It has been known that the stability shows a great effects on actual situations,
and the consequence will be disastrous once the stability of a system is destroyed.
Hence, stochastic stability, as one of the most fundamental characteristics of
nonlinear stochastic dynamics, has been extensively studied.

Here, the stability refers to the stability of the solutions, where the solutions
denote the mean and standard deviation of displacement or velocity in my work.
If the solutions under a certain initial condition stay near the equilibrium point
forever, then it is called stable (or Lyapunov stable). If the solutions under a certain
initial condition converge to equilibrium point, then it is called asymptotically
stable. Fig. 5.1 shows the solutions of a dynamic system under different initial
conditions [143]. Fig. 5.1(a) approaches to an equilibrium point while Fig. 5.1(b)
does not.

Fig. 5.1: Sample of solutions with different initial condition a) stable b) unstable

Thus, it is necessary to investigate the stability of a spur gear model considering
variable moment of inertia and friction under stochastic load. Stochastic averaging
method will be applied to a such model and an adjustment will be done. Stochastic
stability will be studied by Lyapunov exponent [143].

With the future extension, we envision that these advanced models can be used
to the gear health diagnosis area. With the better understanding of the mechanism
in gear dynamics, engineers can have better strategies in gear design phase. This
will bring more benefits in the extension of gear systems’ potential useful life.
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[13] H. N. Özgüven and D. R. Houser, “Mathematical models used in gear
dynamics: a review,” Journal of sound and vibration, vol. 121, no. 3, pp. 383–
411, 1988.

[14] C. W. De Silva, Modeling and control of engineering systems. Crc Press, 2009.

[15] Hibbitt, Karlsson, and Sorensen, ABAQUS/Standard user’s manual. Hibbitt,
Karlsson & Sorensen, vol. 1, 2001.

[16] T. Stolarski, Y. Nakasone, and S. Yoshimoto, Engineering analysis with ANSYS
software. Butterworth-Heinemann, 2018.

[17] X. Liang, M. J. Zuo, and T. H. Patel, “Evaluating the time-varying mesh
stiffness of a planetary gear set using the potential energy method,”
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of
Mechanical Engineering Science, vol. 228, no. 3, pp. 535–547, 2014.

[18] S. Li and A. Kahraman, “A spur gear mesh interface damping model
based on elastohydrodynamic contact behaviour,” International Journal of
Powertrains, vol. 1, no. 1, pp. 4–21, 2011.

[19] F. Li, Y. Qin, L. Ge, Z. Pang, S. Liu, and D. Lin, “Influences of
planetary gear parameters on the dynamic characteristics-a review,” Journal
of Vibroengineering, vol. 17, no. 2, pp. 574–586, 2015.

[20] Y. Zhang, Q. Liu, and B. Wen, “Practical reliability-based design of gear
pairs,” Mechanism and Machine Theory, vol. 38, no. 12, pp. 1363–1370, 2003.



Bibliography 127

[21] A. Patil and A. Thosar, “Steady state and transient stability analysis of wind
energy system,” in Control, Instrumentation, Energy & Communication (CIEC),
2016 2nd International Conference. IEEE, pp. 250–254, 2016.

[22] R. Drago, “The effect of start-up load conditions on gearbox performance
and life failure analysis, with supporting case study,” in American Gear
Manufacturers Association Fall Technical Meeting, 2009.

[23] Y. Fang, X. Liang, and M. J. Zuo, “Effects of friction and stochastic load on
transient characteristics of a spur gear pair,” Nonliear Dynamics, vol. 93, no.
2, pp. 599–609, 2018.

[24] M. Khabou, N. Bouchaala, F. Chaari, T. Fakhfakh, and M. Haddar, “Study of
a spur gear dynamic behavior in transient regime,” Mechanical Systems and
Signal Processing, vol. 25, no. 8, pp. 3089–3101, 2011.

[25] J. Wang, T. C. Lim, and M. Li, “Dynamics of a hypoid gear pair considering
the effects of time-varying mesh parameters and backlash nonlinearity,”
Journal of Sound and Vibration, vol. 308, no. 1-2, pp. 302–329, 2007.

[26] F. Liu, L. Zhang, and X. Yu, “Stability investigation of velocity-modulated
gear system using a new computational algorithm,” Nonlinear Dynamics,
vol. 89, no. 2, pp. 1111–1128, 2017.

[27] Y. Shao and Z. Chen, “Dynamic features of planetary gear set with tooth
plastic inclination deformation due to tooth root crack,” Nonlinear dynamics,
vol. 74, no. 4, pp. 1253–1266, 2013.

[28] A. Guerine, A. El Hami, L. Walha, T. Fakhfakh, and M. Haddar,
“Dynamic response of wind turbine gear system with uncertain-but-
bounded parameters using interval analysis method,” Renewable Energy, vol.
113, pp. 679–687, 2017.

[29] M. Hashemi and M. Saeed Safizadeh, “Design of a fuzzy model based on
vibration signal analysis to auto-detect the gear faults,” Industrial Lubrication
and Tribology, vol. 65, no. 3, pp. 194–201, 2013.

[30] M. Utagawa and T. Harada, “Dynamic loads on spur gear teeth having pitch
errors at high speed,” Bulletin of JSME, vol. 5, no. 18, pp. 374–381, 1962.



Bibliography 128

[31] T. Tobe and K. Sato, “Statistical analysis of dynamic loads on spur gear
teeth,” Bulletin of JSME, vol. 20, no. 145, pp. 882–889, 1977.

[32] Y. Wang and W. Zhang, “Stochastic vibration model of gear transmission
systems considering speed-dependent random errors,” Nonlinear dynamics,
vol. 17, no. 2, pp. 187–203, 1998.

[33] B. Liu, J. Xu, and X. Zhao, “Parameter estimation for load-sharing systems
with degrading components,” in 2016 IEEE International Conference on
Industrial Engineering and Engineering Management. IEEE, pp. 1310–1314,
2016.

[34] J. C. Butcher, The numerical analysis of ordinary differential equations: Runge-
Kutta and general linear methods. John Wiley & Sons Inc, 1987.

[35] E. Hairer, C. Lubich, and M. Roche, The numerical solution of differential-
algebraic systems by Runge-Kutta methods. Springer, vol. 1409, 2006.

[36] J. Yang and P. Yang, “Random gear dynamics based on path integration
method,” in ASME 2012 International Mechanical Engineering Congress and
Exposition. American Society of Mechanical Engineers, pp. 879–887, 2012.

[37] T. Tobe, K. Sato, and N. Takatsu, “Statistical analysis of dynamic loads on
spur gear teeth: experimental study,” Bulletin of JSME, vol. 20, no. 148, pp.
1315–1320, 1977.

[38] L. Wang, T. Shen, C. Chen, and H. Chen, “Dynamic reliability analysis of
gear transmission system of wind turbine in consideration of randomness
of loadings and parameters,” Mathematical Problems in Engineering, vol. 2014,
2014.

[39] S. Theodossiades and S. Natsiavas, “Non-linear dynamics of gear-pair
systems with periodic stiffness and backlash,” Journal of Sound and Vibration,
vol. 229, no. 2, pp. 287–310, 2000.

[40] M. Benton and A. Seireg, “Simulation of resonances and instability
conditions in pinion-gear systems,” Journal of Mechanical Design, vol. 100,
no. 1, pp. 26–32, 1978.

[41] H. Vinayak, R. Singh, and C. Padmanabhan, “Linear dynamic analysis of
multi-mesh transmissions containing external, rigid gears,” Journal of Sound
and Vibration, vol. 185, no. 1, pp. 1–32, 1995.



Bibliography 129

[42] A. Kahraman and R. Singh, “Non-linear dynamics of a geared rotor-bearing
system with multiple clearances,” Journal of sound and vibration, vol. 144,
no. 3, pp. 469–506, 1991.

[43] A. Kahraman and R. Singh, “Non-linear dynamics of a spur gear pair,”
Journal of sound and vibration, vol. 142, no. 1, pp. 49–75, 1990.

[44] J. Yang, “Vibration analysis on multi-mesh gear-trains under combined
deterministic and random excitations,” Mechanism and Machine Theory,
vol. 59, pp. 20–33, 2013.

[45] J. Lu, F. Zeng, J. Xin, E. Miao, and M. Liu, “Influences of stochastic
perturbation of parameters on dynamic behavior of gear system,” Journal
of mechanical science and technology, vol. 25, no. 7, p. 1667, 2011.

[46] M. J. Handschuh, “An investigation into the impact of random spacing
errors on static transmission error and root stresses of spur gear pairs,” Ph.D.
dissertation, The Ohio State University, 2013.

[47] M. Inalpolat, M. Handschuh, and A. Kahraman, “Influence of indexing
errors on dynamic response of spur gear pairs,” Mechanical Systems and
Signal Processing, vol. 60, pp. 391–405, 2015.

[48] Z. Li and K. Mao, “Frictional effects on gear tooth contact analysis,” Advances
in Tribology, vol. 2013, 2013.

[49] K. Martin, “A review of friction predictions in gear teeth,” Wear, vol. 49,
no. 2, pp. 201–238, 1978.

[50] D. Yang and J. Lin, “Hertzian damping, tooth friction and bending
elasticity in gear impact dynamics,” Journal of mechanisms, transmissions, and
automation in design, vol. 109, no. 2, pp. 189–196, 1987.

[51] H. Iida, A. Tamaura, and Y. Yamada, “Vibrational characteristics of friction
between gear teeth,” Bulletin of JSME, vol. 28, no. 241, pp. 1512–1519, 1985.

[52] I. Krupka, M. Hartl, and P. Svoboda, “Effect of surface topography on
mixed lubrication film under transient conditions,” in ASME/STLE 2009
International Joint Tribology Conference. American Society of Mechanical
Engineers, pp. 481–482, 2009.



Bibliography 130

[53] S. He, S. Cho, and R. Singh, “Prediction of dynamic friction forces in spur
gears using alternate sliding friction formulations,” Journal of Sound and
Vibration, vol. 309, no. 3-5, pp. 843–851, 2008.

[54] R. Guilbault, S. Lalonde, and M. Thomas, “Nonlinear damping calculation
in cylindrical gear dynamic modeling,” Journal of Sound and Vibration, vol.
331, no. 9, pp. 2110–2128, 2012.

[55] T. M. Ericson and R. G. Parker, “Experimental measurement of the effects of
torque on the dynamic behavior and system parameters of planetary gears,”
Mechanism and Machine Theory, vol. 74, pp. 370–389, 2014.

[56] G. Sika and P. Velex, “Instability analysis in oscillators with velocity-
modulated time-varying stiffnessapplications to gears submitted to engine
speed fluctuations,” Journal of Sound and Vibration, vol. 318, no. 1-2, pp. 166–
175, 2008.

[57] I. S. Al-Tubi and H. Long, “Prediction of wind turbine gear micropitting
under variable load and speed conditions using iso/tr 15144-1: 2010,”
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of
Mechanical Engineering Science, vol. 227, no. 9, pp. 1898–1914, 2013.

[58] X. Qiu, Q. Han, and F. Chu, “Analytical investigation on unstable
vibrations of single-mesh gear systems with velocity-modulated time-
varying stiffness,” Journal of Sound and Vibration, vol. 333, no. 20, pp. 5130–
5140, 2014.

[59] W. Tutak and A. Jamrozik, “Characteristics of the flow field in the
combustion chamber of the internal combustion test engine,” Chemical and
Process Engineering, vol. 32, no. 3, pp. 203–214, 2011.

[60] L. Pruvost, Q. Leclere, and E. Parizet, “Diesel engine combustion and
mechanical noise separation using an improved spectrofilter,” Mechanical
systems and signal processing, vol. 23, no. 7, pp. 2072–2087, 2009.

[61] R. B. Randall, “Basic signal processing techniques,” Vibration-based Condition
Monitoring, pp. 63–141, 2011.

[62] W. Yang, X. Tang, and X. Chen, “Nonlinear modelling and transient
dynamics analysis of a hoist equipped with a two-stage planetary gear



Bibliography 131

transmission system.” Journal of Vibroengineering, vol. 17, no. 6, pp. 2858–
2868, 2015.

[63] A. Kumar, M. Osman, and T. Sankar, “On statistical analysis of gear dynamic
loads,” Journal of vibration, acoustics, stress, and reliability in design, vol. 108,
no. 3, pp. 362–368, 1986.

[64] J. Roberts and P. Spanos, “Stochastic averaging: an approximate method
of solving random vibration problems,” International Journal of Non-Linear
Mechanics, vol. 21, no. 2, pp. 111–134, 1986.

[65] W. R. Gilks, S. Richardson, and D. Spiegelhalter, Markov chain Monte Carlo in
practice. CRC press, 1995.

[66] A. Naess and V. Moe, “Efficient path integration methods for nonlinear
dynamic systems,” Probabilistic engineering mechanics, vol. 15, no. 2, pp. 221–
231, 2000.

[67] A. Naess, F. Kolnes, and E. Mo, “Stochastic spur gear dynamics by numerical
path integration,” Journal of sound and vibration, vol. 302, no. 4-5, pp. 936–950,
2007.

[68] Y. Park and H. Park, “Dynamic characteristic analysis of mold oscillator
including improved gear mesh model and cam profile for eccentric shaft,”
Journal of Mechanical Science and Technology, vol. 28, no. 11, pp. 4465–4473,
2014.

[69] J. Rice, Mathematical statistics and data analysis. Nelson Education, 2006.

[70] K. Sato, S. Yamamoto, O. Kamada, and N. Takatsu, “Approximate solution
of a gear system subjected to random excitation,” Bulletin of JSME, vol. 29,
no. 251, pp. 1586–1589, 1986.

[71] M. Belhadj and T. Aldemir, “The cell to cell mapping technique and
chapman-kolmogorov representation of system dynamics,” Journal of sound
and vibration, vol. 181, no. 4, pp. 687–707, 1995.
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[82] K. Itô, P. Henry Jr et al., Diffusion processes and their sample paths. Springer
Science & Business Media, 2012.

[83] R. Durrett, Probability: theory and examples. Cambridge university press,
2010.



Bibliography 133

[84] E. Simoen, G. De Roeck, and G. Lombaert, “Dealing with uncertainty in
model updating for damage assessment: A review,” Mechanical Systems and
Signal Processing, vol. 56, pp. 123–149, 2015.

[85] G. Benedict and B. Kelley, “Instantaneous coefficients of gear tooth friction,”
ASLE transactions, vol. 4, no. 1, pp. 59–70, 1961.

[86] T. Huang, L. Dai, and H. Zhang, “An approach combining periodicity
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