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Abstract

In the context of human-robot interaction (HRI), robot autonomy addresses how en-

vironmental input influences a robot’s actions, spanning a spectrum from full human

control to independent robot motion. The quality of HRI relies on information ex-

change, evaluated through factors like interaction duration, mental workload, and

spatial awareness. Sensory feedback is crucial, with a growing interest in combining

communication methods for more natural interactions. Challenges arise in distant

proximity interactions with communication delays, where predictive sensory feedback

emerges as a solution to enhance interaction efficiency by providing predictive infor-

mation from the robot’s environment.

In this thesis, our focus is on providing predictive haptic feedback and immersive

visuals from the virtual replica of the remote scene in a physics simulator. Our system

acts as a bridge between the operator and the follower robot, considering real-world

constraints. We create a cyber-physical system using a real-time 3D surface mesh

reconstruction algorithm and a digital twin of the Barrett WAM arm robot. The

Gazebo physics simulator integrates the digital twin and an incremental surface mesh

to create a real-time virtual replica of the remote scene. This virtual replica is used

to provide haptic surface interaction feedback through collision detection from the

physics simulator. Additionally, we address the operator’s spatial awareness by using

an immersive display for predictive visualization.
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Preface

I begin this thesis by creating a Docker file for the CARV with the ORB-SLAM2

method implemented by Jun Jin. I became interested in SLAM and 3D mapping with

the CARV algorithm through the 3D computer vision course, during which I devel-

oped a 3D tracking algorithm using MTF-based registration tracking. While review-

ing previous literature on 3D mapping and robotics, I realized that researchers often

underestimate the importance of real-world challenges and limitations for robotics. I

believed that I could develop a system that addressed those challenges and facilitated

the use of robotic systems in everyday life.

I began by exploring the available code and systems that I could use to integrate

and improve upon previous work related to predictive visualization and haptic feed-

back systems. My supervisors, Prof. Martin Jagersand and Prof. Li Cheng guided

me in identifying the system requirements and designed the system with CARV, in-

corporating the replication of the remote environment by integrating the digital twin

of the Barrett WAM arm robot to provide predictive visualization and haptic feed-

back. We discussed how to incorporate haptic feedback through the interaction of

the surface mesh reconstruction and the digital twin within the physics simulator. I

gained knowledge about configuring the Gazebo physics simulator, its extendability,

and compatibility with other programs such as libbarrett for the digital twin and

synchronization with the follower robot. We also implemented real-time semi-dense

CARV algorithm to generate a 3D mesh representation, with the assistance of creator

Junaid Ahmad [1]. Point-based techniques were initially created by David Lovi and

Neil Birkbeck [2]. These techniques were later extended to 3D line detection by He
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and Qin [3]. Additionally, Ahmad extended the technique to planes, where I helped

ensure that the system ran in an online manner and also set up the experiments.

Additionally, we integrated a head-mounted display for video streaming obtained

through a Gazebo sensor to provide predictive visualization with the operator’s pose.

Further details about the system can be found in Chapter 3, while challenges

and how we overcame them using different system choices are discussed in Chapter

4. We tested our system on EuRoC MAV data sequences as well as in real-world

settings. These experiments culminated in the submission to the IEEE International

Conference on Robotics and Automation (ICRA 2024), titled Immersive Human-

in-the-Loop Control: Real-Time 3D Surface Meshing and Physics Simulation, co-

authored by Justin Valentine, Junaid Ahmad, and Martin Jagersand. Junaid Ahmad

contributed to implementing the online semi-dense CARV algorithm and handling 3D

representation and pose-related aspects, while Justin Valentine helped improve the

paper and the submission of the paper.
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Chapter 1

Introduction

Robot autonomy in HRI encompasses the mapping of input from the environment to

robot actions. The degree of autonomy in robotics can be defined as a robot’s ability

to function independently without human intervention. In human-robot operations,

the level of autonomy falls along a spectrum, ranging from humans providing inputs

for all robot actions to the robot moving independently. In Figure 1.1, the degrees

of autonomy on this spectrum can be found, providing a visual representation of the

varying levels of autonomy in human-robot operations. Human-in-the-loop operation

is a vital approach in robotics and automation, as full autonomy is often unattain-

able in complex domains. This collaborative approach leverages human expertise

alongside robotic systems, enhancing performance and safety. It finds applications

in various areas, including high-risk environments [4–6], medical surgery, telenursing

[7–9], disaster relief scenarios [10, 11], and space exploration [12, 13]. In the context

of HRI, robot autonomy is just one facet of the broader picture. Another crucial

aspect that affects interaction quality is how information is shared between humans

and robots. Information exchange plays a pivotal role in determining the success rate

and efficiency of the interaction. Several metrics can be used to assess interaction

quality, including interaction time, mental workload, situation awareness, and the

shared platform between humans and robots [14–17].

The information exchange process in HRI is influenced by the communication
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Figure 1.1: The degrees of autonomy with a focus on HRI [18]

medium and format. The communication medium encompasses human sensory per-

ception, including sight and touch. In HRI, these sensory inputs take various forms,

including visual displays, physical interactions, and haptics. Recently, there has been

a growing interest in developing multimodal interfaces that combine multiple commu-

nication modalities to reduce cognitive workload and enhance natural interactions.

Visual information formats range from traditional 2D displays to immersive virtual

reality displays [18]. Haptic information formats include warnings through vibrations

and enhancing spatial awareness through haptic hardware.

Proximity plays a fundamental role in HRI, where the simplicity of information

exchange is often determined by the physical distance between the human and the

robot. Close proximity interactions occur when the robot and human share the same

physical space. This is in contrast with remote interaction settings, where the hu-

man and the robot are not physically co-located. In robot teleoperation, where a

human operator interacts with a remote robot, communication between the operator

and the robot is critical. The human operator’s ability to understand the remote-

robot interaction is directly tied to the proximity of the interaction; as the distance

between them increases, communication delays become more pronounced, limiting

the effectiveness of transparent sensory feedback in practical applications. Standard

streaming of visual and haptic sensory feedback is insufficient for effective interaction

due to these delays. Consequently, communication delays can lead to performance

issues and a sense of disconnection between the human operator and the robot. These
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delays can have serious consequences, ranging from potential damage to the robot or

its surroundings to the failure of critical tasks, which could be life-threatening in fields

like medicine. Thus, addressing and mitigating these delays is essential to ensuring

safe, efficient, and effective human-robot interactions.

One approach to address this issue is by providing predictive sensory feedback.

Predictive sensory feedback involves rendering the feedback of the robot’s environment

interactions in response to the operator’s control without waiting for actual sensor

feedback [19, 20].

Figure 1.2: The proposed system for predictive immersive visualization and haptic
feedback, using the surface mesh of the remote environment with the digital twin of
the Barrett WAM arm robot.

This thesis delves into the challenges of robot teleoperation and proposes a predic-

tive haptic and immersive visualization system. The primary focus of this thesis is

to address the delay problem in visual and control feedback from the follower robot.

In the bilateral robot teleoperation setting, the leader robot is controlled by the hu-

man operator to move the follower robot in the remote environment synchronously.
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In conventional robot teleoperation settings, creating immediate visual and control

feedback for the operator depends on low-latency and high-bandwidth networks. We

propose a virtual intermediate system that updates incrementally based on remote

environment states and provides predictive visual and haptic feedback. System details

can be found in Figure 1.2, which illustrates the proposed system using the surface

mesh of the remote environment and the digital twin of the Barrett WAM arm robot.

The central focus of this thesis is to address the question: ’How can we establish an

optimal representation for human operators in human-in-the-loop operations?’ This

investigation delves into the development of a cyber-physical system that ensures

immersive visualization and haptic feedback for human operators, incorporating the

integration of an incremental surface mesh and the digital twin of the WAM arm

robot within a shared virtual scene created in the Gazebo physical simulator.

We aim to explore the intricacies surrounding human-in-the-loop operations, par-

ticularly focusing on robot teleoperation. We carefully examine the essential require-

ments, challenges, and inherent limitations associated with this domain. Notably,

cyber-physical systems have been at the forefront of robot teleoperation since the

1960s and continue to be a viable solution to this day. The development of an ideal

representation in human-in-the-loop operations confronts inherent challenges stem-

ming from the need to synchronize information between the operator and follower

robots in low-latency and high-frequency settings. Ensuring this synchronization is

crucial because it allows for smooth robot control while also delivering real-time visual

and haptic feedback to the remote operator. The role of visual and haptic feedback as-

sumes particular significance as it empowers the human operator with crucial insights

and aids in the effective execution of tasks involving manipulation.

In the context of human-in-the-loop operations, providing visual feedback from

the remote scene through a simple video feed has its limitations, as it lacks depth

information, making robotic operations challenging and extending task completion

time [21]. We seek a 3D representation that allows the operator to move the scene

4



independently from the robot camera. We consider various 3D representations, and

among them, surface meshes stand out for their advantages in real-time updates,

transmission, and memory requirements. The surface mesh representation is found

to be an effective representation for human-in-the-loop systems to provide predictive

visualization [20, 22]. In this thesis, we leverage ORBSLAM-2 [23] for localization and

extracting sparse point clouds using key points. These sparse point clouds serve as the

foundation for creating tetrahedrons via Delaunay triangulation and employing space

carving techniques to incrementally update the surface mesh by identifying filled or

empty tetrahedrons [2]. Additionally, we utilize the semi-dense module to acquire

line and plane segments, thereby enhancing precision and reducing mesh complexity,

leading to more efficient human-robot collaboration [1]. Through these techniques, we

aim to enhance the predictive visual representation in human-in-the-loop operations,

enabling smoother and more effective robotic tasks in diverse scenarios.

To provide predictive visual and haptic feedback, we used the Gazebo physics

simulator to integrate the incremental surface mesh and the digital twin of the Barrett

WAM arm robot. We aim to provide full predictive immersion and haptic feedback

to the operator with minimal latency. The digital twin of the WAM arm robot’s

state is updated based on joint data obtained from the follower WAM arm robot.

The Open Dynamics Engine (ODE) is used to detect collisions by analyzing the

interaction between the incremental surface mesh and the digital twin WAM arm

robot. The collision detection information is then used to provide haptic feedback to

the operator.

Lastly, we integrated a head-mounted display with a controller to achieve a fully im-

mersive experience with predictive visualization. The advantage of having a replica of

the remote scene in full context lies in the ability to update the camera pose as desired

by the operators. This helps to eliminate the requirement of increasing the bandwidth

or motion of the follower robot. To provide immersion for the head-mounted display,

we utilized the Gazebo wide-angle camera sensor. Predictive visualization is achieved
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through the integration of head motions and the hand controller joystick. Our im-

mersive system is intentionally designed to be independent and straightforward using

web-based implementation, making it adaptable for use as an alternative type of head-

mounted display in the future. By exploring and implementing these components, we

aim to enhance the HRI experience, paving the way for more effective and seamless

human-in-the-loop operations in various scenarios.

In summary, our proposed system provides a feasible solution for the delay problem

of human-in-the-loop operations using predictive haptic and visual feedback by the

virtual intermediate representation. Our developed system has practical applications

in real-world scenarios, as we have taken careful considerations of trade-offs to ensure

a realistic and effective implementation.

In the upcoming Chapter 2, we delve into the background research pertaining to 3D

reconstruction, physics simulators, and immersive displays, which form the foundation

of our work. Following that, Chapter 3 presents a detailed account of our system’s

architecture and design. Later, in Chapter 4, we discuss the experimental setups and

results, evaluating the performance of various components and the overall system

for robot teleoperation in diverse settings. Finally, we conclude by addressing the

limitations of the current setup and outlining potential areas for future improvements

and advancements in Chapter 5.
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Chapter 2

Related Work

In this chapter, we reviewed the related work with regards to real-time 3D reconstruc-

tion in section 2.1, the physics simulator integration in section 2.2, and immersive

display in section 2.3 for human-in-the-loop operations. For this chapter, we begin

with 3D representations and reconstruction algorithms used for human-in-the-loop

operations. The 3D reconstruction algorithms are evaluated based on memory and

computing requirements, as well as the trade-off between the precision and speed.

The currently used reconstruction algorithms in robot teleoperation are included in

the background review as well. In the following subsection, we analyzed the physics

simulator for robotics, including the integration with the robot arms, 3D models and

rendering, and also interaction between the modalities. Lastly, we investigated im-

mersive display on teleoperation and the effect on the operator and therefore the task

completion rates and time.

2.1 3D Scene Reconstruction

In the context of our work, 3D scene reconstruction plays a pivotal role in enabling

robotic systems to perceive and interact with their environments. This process in-

volves the conversion of 2D images or sensor data into a comprehensive 3D represen-

tation of the scene. Various computer vision algorithms have been extensively studied

and applied in the field of robotics, particularly in 3D robotic mapping, to achieve
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Figure 2.1: The Stanford Bunny [24] 3D model representation as a point cloud, surfel,
voxel, and polygonal mesh representation.

accurate and efficient scene reconstruction. This reconstructed scene serves as the

foundation for robot manipulation and navigation, allowing HRI to make informed

decisions based on spatial awareness. The choice of representation for this 3D data

is equally crucial, as it influences how effectively robots can understand and inter-

act with their surroundings. Therefore, a well-designed representation system is an

integral part of our approach to 3D scene reconstruction in the context of robotics.

Early attempts at 3D scene reconstruction for robot teleoperation and telepresence

encountered challenges related to hardware limitations for real-time processing and

transmission, as well as inadequate representation of high-fidelity details. Multi-view
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reconstruction methods were also hindered by hardware limitations and insufficient 3D

data representation [25–29]. Shape-from-silhouette methods, when employed, faced

difficulties in achieving high-fidelity reconstruction results, particularly in surfaces

containing concave regions [30, 31].

The reconstructed scene could be represented using point clouds, surfels, voxels,

signed distance functions, and meshes. In Figure 2.1, examples of each representa-

tion are shown on the Stanford Bunny [24]. Each scene representation has its own

unique challenges in terms of memory size, acquisition, transmission, and geometric

representation capability.

2.1.1 3D Representations

2.1.1.1 Point Cloud Representation

The point cloud representation comprises a collection of individual data points situ-

ated in a three-dimensional space, with each point denoting a specific spatial position.

This representation can be acquired in two ways: densely, through the utilization of

depth and multi-camera systems, or sparsely, through feature-based RGB computer

vision methods. The point cloud representation offers the advantage of not requiring

preprocessing and being parallelizable for the representation of a 3D scene. However,

it presents challenges in terms of memory requirements and the absence of geometric

information. Overall, it makes processing, storage, transmission, and scalability more

complex.

In the area of robotic teleoperation, transmitting point cloud data from a single

depth camera poses additional hurdles due to the demand for network bandwidth. To

put it into perspective, the transmission of data from a consumer-grade 3D camera

typically necessitates an average bandwidth ranging from 600 to 800 Mbit/s, depend-

ing on the chosen resolution [32], while RGB video stream requires 1 to 50 Mbit/s.

Despite these challenges, researchers have explored the application of point cloud rep-

resentation in conjunction with RGB images to determine features like distance from
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Figure 2.2: Example of visualization through a colored point cloud[32].

the target and robot state [33]. Moreover, as can be seen in Figure 2.2, the point

cloud representation finds utility in identifying unknown objects within a given scene

[32]. This is possible since the point cloud representation is directly obtained from

depth cameras.

2.1.1.2 Surfel Representation

Figure 2.3: The point cloud from the egocentric multiresolution surfel map, as ob-
served through the robot operator’s perspective.[34].
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The surfel representation consists of flat point patches with orientation, size, and

color [35]. Compared to the point cloud representation, the surfel representation

requires less memory and contains more information about the surface. The surfel

representation can efficiently handle changes in the topology. Consequently, the surfel

representation maintains a description of the scene that includes objects undergoing

nonrigid deformation, potentially facilitating interactions with the dynamic working

environments [36], as demonstrated by the mobile robot environment example shown

in Figure 2.3. Despite these benefits, the surfel representation lacks connectivity and

requires millions of surfels to represent a small area [37].

2.1.1.3 Volumetric Representation

The incorporation of a volumetric representation into a given framework involves the

explicit modeling of volumetric attributes within the scene. This method enables a

comprehensive depiction of the scene’s intricate geometric properties, facilitating a

deeper analysis.

Volumetric representation can be constructed using various techniques. One such

technique involves using a voxel grid to discretize the scene into a three-dimensional

grid of voxels, as shown in Figure 2.4. However, for improved efficiency and memory

utilization, an alternative approach utilizes an octree structure [38]. This hierarchical

subdivision of the scene into smaller octants allows for the adaptive allocation of

computational resources. The intermediate scene representation obtained from the

octree or voxel grids enables the creation of a signed distance function(SDF) [39],

which quantifies the distance between each point in space and the scene’s surface.

Following the widespread adoption of commodity depth cameras, a distinct class

of 3D reconstruction algorithms emerged, drawing inspiration from the KinectFusion

framework [40]. These algorithms leverage the concept of truncated signed distance

function (TSDF) to achieve robust and precise reconstructions of 3D scenes. Although

KinectFusion can handle high sensor noise to create small scenes in real-time, the voxel
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grids are bound to a predefined volume and resolution and are highly inefficient in

terms of memory usage. In real-time scene reconstruction, the voxel grid size and

resolution are typically restricted by the available GPU memory. The voxel hashing

algorithm is a memory-efficient implementation that enables larger scenes. [41]. To

improve the accuracy of the 3D volumetric map, the bundle adjustment is used for

loop-closure to enhance camera poses for larger scenes [42]. In robotics, SDFs can

efficiently calculate the distance to obstacles, which makes the representation suitable

for collision avoidance [43, 44]. Although the high fidelity of the reconstructed results

makes it suitable for precise telemanipulation, due to the bandwidth requirements

of around 175 Mbit/s [45] the volumetric representation is not suitable for the low-

latency robot teleoperation.

Figure 2.4: From Dividing the scene into separate mesh blocks, with each block having
its own individual mesh.[45].

2.1.1.4 Mesh Representation

The mesh representation is a collection of vertices, edges, and faces that define the

shape of a polyhedral object. The faces usually consist of triangles, quadrilaterals, or

other simple convex polygons since this simplifies rendering. The meshes save impor-

tant information related to texture, illumination for rendering, and geometric con-

nectivity. In comparison to the aforementioned scene representations, surface mesh
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reconstruction stands out as a highly efficient representation that balances memory

usage and adjustable precision while preserving high fidelity. Additionally, an im-

portant advantage of this representation lies in the surface normals derived from the

triangle faces, which offer valuable information for contact interaction and manipu-

lation tasks. Obtaining an accurate mesh representation from a real-time 3D point

cloud remains a persistent challenge.

Figure 2.5: An interface for task specification that utilizes visual telepresence with
mesh representation.

Existing algorithms, such as marching cubes [46] and Delaunay triangulation, ex-

hibit time complexities that are quadratic or cubic in nature, posing difficulties in

reconstructing surface meshes for larger scenes. To mitigate this issue, one approach

involves utilizing incremental updates instead of updating the entire mesh surface

for each scene [47]. The level of detail in the resulting mesh reconstruction varies

depending on the density of the sparse point cloud [2, 48, 49]. Figure 2.5 illustrates
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the incremental surface mesh reconstruction for task specification in the context of

visual telepresence [50], which uses a sparse point cloud. Notably, the surface mesh

representation proves to be more user-friendly and imposes a lesser cognitive load

compared to the point cloud representation [51].

2.1.2 Sparse Feature Based Reconstruction

2.1.2.1 Simultaneous Localization and Mapping(SLAM)

Simultaneous localization and mapping (SLAM) algorithms enable real-time local-

ization of a moving camera and the creation of the scene map. These algorithms

can be categorized into two main groups based on the usage of feature detection.

Direct SLAM algorithms, exemplified by LSD-SLAM [52], utilize pixel information

and multi-frame photometric error for pixel depth calculation and camera pose es-

timation. Figure 2.6 shows the example output for outdoor scene reconstruction

with LSD-SLAM. On the other hand, indirect SLAM algorithms such as PTAM [53]

and ORB-SLAM [54] rely on feature detection algorithms to identify key points and

corresponding descriptors for tracking across multiple images.

Figure 2.6: An example output generated by LSD-SLAM.[52].
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Sparse feature-based reconstruction models leverage indirect SLAM algorithms to

estimate the camera’s pose and identify sparse features. Through the utilization of a

moving camera and multiple images, features detected in these images are matched

via tracking. Subsequently, triangulation is employed to determine the camera’s pose

based on the tracked features. Nonlinear optimization techniques, such as the bun-

dle adjustment algorithm [55], are then used to refine the camera pose and matched

features, either locally or globally. Indirect SLAM algorithms excel in scenes char-

acterized by rich textures and distinctive corners, as these elements facilitate feature

detection for reliable tracking.

2.1.2.2 Indirect Monocular Slam

Indirect SLAM algorithms are compatible with single, stereo, and depth cameras.

Specifically, the monocular SLAM system operates with a single moving camera. The

pioneering real-time monocular system, MonoSLAM, employs an extended Kalman

filter and over a hundred probabilistic features to achieve reliable performance [56],

as demonstrated in the example results shown in Figure 2.7.

Figure 2.7: (a)An image capturing the probabilistic three-dimensional map. (b)
Visually salient feature patches identified as visual landmarks, along with the corre-
sponding 3D planar regions.[56].

PTAM employs a multi-threaded approach to enhance accuracy and speed by run-

ning SLAM and bundle adjustment locally and globally on separate threads. Lever-

aging this parallelization, PTAM achieves the capability to track numerous distinct

FAST features across multiple images. Keyframes, comprising images with promi-
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nent features based on spatial and temporal criteria, are created by PTAM. Through

bundle adjustment optimization and loop closure using keyframes, PTAM globally

optimizes the camera pose and features[57]. Figure 2.8 showcases the point cloud

generated using the PTAM algorithm with the provided images.

Figure 2.8: Example map and keyframes generated from the desktop video by PTAM
algorithm.[57].

ORB-SLAM [54] exhibits substantial advancements in the domain of localization

and mapping, offering notable improvements in scale and speed. Inspired by the

multi-threaded approach of PTAM, ORB-SLAM efficiently allocates separate threads

for distinct tasks such as loop closure, tracking, and local mapping, thereby optimiz-

ing performance for larger-scale environments. Diverging from PTAM, ORB-SLAM

adopts the ORB feature descriptors [58]. Notably, to mitigate inaccuracies during ini-
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tialization, ORB-SLAM leverages pose graph optimization techniques to refine camera

pose estimation. Additionally, the loop closure algorithm is facilitated through the

bag-of-words algorithm [59]. The integration of a covisibility graph based on the local

area enhances ORB-SLAM’s scalability and overall efficacy. Figure 2.9 illustrates the

architecture and components of the ORB-SLAM system.

Figure 2.9: The Pipeline of ORB-SLAM System[54].

2.1.2.3 Semi-Dense Monocular Slam

Semi-dense monocular SLAM techniques estimate depth in high-gradient regions to

acquire additional points within monocular SLAM keyframes. Unlike depth-based

methods, semi-dense approaches operate in real-time on a single CPU without re-

quiring extra hardware and involve a reduced number of points. Both LSD-SLAM

and ORB-SLAM can be utilized to extract semi-dense points. In LSD-SLAM, high-

gradient regions are used to generate a probability distribution based on estimated

depth values for each pixel. During execution, the probability distribution is updated
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using multiple images, leading to the elimination of pixels with lower probability and

the acquisition of more accurate semi-dense points. Similarly, ORB-SLAM adopts

a comparable strategy by obtaining inverse depth values from high gradient regions

along epipolar lines in nearby keyframes. Multiple depth estimates are projected

onto a probability distribution, which is refined across multiple images to remove

low-probability pixel values and enhance the accuracy of semi-dense points. Com-

pared to LSD-SLAM, ORB-SLAM achieves superior accuracy in semi-dense point

estimation by leveraging points along epipolar lines in nearby keyframes, instead

of relying solely on high-gradient regions. Additionally, the estimation of points is

guided by examining the estimated depth values of neighboring pixels. Figure 2.10

showcases the output of LSD-SLAM and ORB-SLAM, highlighting the difference in

semi-dense accuracy between the two methods.

Figure 2.10: Compared to LSD-SLAM, ORB-SLAM semi-dense module is more ac-
curate due to getting points along epipolar lines.

2.1.2.4 3D Line Detection

The point cloud obtained from SLAM algorithms does not contain high-level struc-

tural information important for surface reconstruction. One way to mitigate this issue

is to extract high-level geometrical cues from the scene such as 3D lines, which can

be obtained using either line matching or 3D points aided by 2D cues. Line matching

algorithms use multi-view stereo matching over every frame [60] with lines detected

by LBD algorithm [61]. However, such methods often fail nonplanar surfaces due

to depth inconsistencies. One way to improve the performance of line detection and

matching is by using epipolar lines in neighboring frames[62]. Another approach to
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detecting 3D line point clouds is through intersecting planes. The normal vector of

the intersecting planes is used to optimize the direction of lines. However, the num-

ber of detected lines is not adequate for the surface reconstruction due to constraints

based on planar regions [63].

Figure 2.11: Qualitative Analysis of He et al. [3].

He et al. [3] follow a similar path to extract 3D lines from SLAM data. They use

semi-dense SLAM points to determine 3D positions from 2D points forming lines in

images. By selecting pixel chains with depth values, they fit two 2D lines—one in the

image plane and another in the projective plane. Outliers are identified using distance

measurements, and excess lines in edges are removed through clustering based on

angle and distance thresholds between neighboring lines. However, the lines they

obtain might be inaccurate because they could encompass points in different planes.

Depending solely on clustering is not enough, as cluster centers do not consistently

align with object edges. To tackle these challenges, Ahmad et al. [1] introduce

a coplanarity threshold during line fitting to correct inaccuracies. Additionally, the

traditional clustering algorithm is substituted with a line-based plane tracking system,

focusing solely on lines observed in more than two keyframes. Figure 2.11 shows an

example scene with detected 3D lines using the method proposed by He et al.

2.1.2.5 3D Plane Detection

In the context of surface reconstruction, plane detection plays an important role in

scene understanding and reconstruction accuracy. Although the points and lines con-

tain useful geometric primitives, they fail to address an accurate representation of

the flat surfaces, which are the main structures of man-made structures. Most sur-

face reconstruction algorithms often fail the textured flat surfaces. Using coplanarity
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Figure 2.12: Outlier point removal process using best-fit plane point to fit 3D line
segment of Ahmad et al.[1].

information, the surface reconstruction algorithms yield a more accurate and simpler

representation in terms of mesh complexity. However, the plane detection algorithms

that use methods such as random sampling and segmentation require intensive com-

puting power due to the association between points and lines lying in the same plane.

The previously mentioned incremental models have been used to reduce computa-

tional requirements using clustering superpixel segmentation and planes and lines

obtained by semi-dense points.

Plane detection with segmentation is based on the idea of detecting planar areas

based on a clustering algorithm. The detected planar areas in the frames are extended

using plane normal information [64–67]. Using randomly selected points, the plane

detection could be simplified to detect planes based on creating the number of plane

hypotheses and checking inliner points to remove outlier planes and extend previously

founded planar surfaces [68, 69].

To reduce computational complexity and make plane detection feasible for online

updates, intersecting lines with predetermined angles and distances are used for plane

detection. However, the 3D lines detected do not guarantee real structures and this

leads to inaccuracies in plane detection. Additionally, the method utilizes stereo
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Figure 2.13: Plane growing strategy by Ahmad et al.[1].

detection is not suitable for an online setting.

Ahmad et al [1] extend the plane detection using line matching to a monocular

setup using a semi-dense point cloud. The plane hypothesis is created based on

the assumption that the nonparallel lines with larger than predetermined angles and

minimum length belong to three maximum planes and must be unskewed. The initial

plane hypothesis was pruned by the consensus of lines with similar plane normals

and distances. If a plane has a sufficient number of associated lines, it’s considered

valid for interkeyframe matching. After plane matching, the process involves merging

and expanding planes into major planar structures as new areas or parts of existing

planar regions are discovered in new keyframes. However, there are constraints on the

length of planar structures to prevent seamless merging of planes into larger planar

regions. Figure 2.13 illustrates the plane merging strategy proposed by Ahmad et al.
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Figure 2.14: The process of obtaining surface mesh from sparse SLAM features with
CARV algorithm [2].

2.1.2.6 Surface Reconstruction

Real-time surface mesh reconstruction algorithms play a crucial role in robotic ap-

plications due to their advantages in memory efficiency, ease of rendering, and the

ability to create interactive surfaces. However, achieving real-time surface recon-

struction from point clouds remains a challenging task for both classical and deep

learning-based approaches [70]. Nevertheless, in the context of teleoperation tasks, it

is not necessary to have highly realistic or finely detailed surface reconstruction for

visualization, the additional texture details can complicate the determination of the

relevant data [71]. Real-time incremental surface mesh reconstruction methods offer

a viable solution, which can be achieved through explicit processing directly from

point clouds or implicitly by utilizing intermediate representations. While Figure

2.14 illustrates one explicit example of this process, Figure 2.15 provides an example

of implicit surface mesh reconstruction.

Explicit methods for real-time surface reconstruction leverage sparse point clouds

obtained through techniques such as SLAM (Simultaneous Localization and Mapping)
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Figure 2.15: The process of obtaining surface mesh implicitly using volumetric rep-
resentation.

or SFM (Structure from Motion) [2, 72]. These methods employ Delaunay triangula-

tion to represent the continuous space as tetrahedrons, with the point clouds serving

as the vertices. Incrementally, the tetrahedrons are labeled as empty or filled based

on adjustments to point poses across keyframes. The resulting filled tetrahedrons are

used to construct surface meshes. Different strategies, including the forgetting heuris-

tic, [2] and graph-cut on the dual graph [47], are employed to optimize surface mesh

quality while satisfying real-time constraints. To enhance the accuracy of the surface

meshes, semi-dense point clouds enriched with geometric information from lines [3] or

a combination of lines and points [1] are utilized, depending on the specific algorithm

employed.

Implicit methods use volumetric representation to create a TSDF. The TSDF is

utilized to extract surface meshes using the marching cubes algorithm. Although

implicit surface reconstruction methods operate in real-time, they are constrained

by GPU memory and rely on depth cameras, which suffer from inherent noise and

limited resolution and range, leading to compromised reconstruction quality. Another

approach for constructing volumetric intermediate representations involves employing

neural networks to model small-scale scenes and objects [74]. While these models
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Figure 2.16: An example output generated by DeepSDF [73].

excel in rendering and reconstructing complex environments, their generalizability

to diverse scenes and objects is limited, and their training and rendering times are

unsuitable for real-time applications in surface mesh reconstruction [73], as seen in

Figure 2.16, which provides an example object utilizing the DeepSDF approach.

2.2 Physics Simulator

Physics simulators have been used to test the various robotic tasks in different envi-

ronment settings. Physics simulators enable cheaper, safer, and faster testing of the

robotic task. However, choosing the right physics simulator for different tasks might

be challenging for researchers. Although the physics simulator is widely used in the

industry for testing purposes, the key challenges inhibit wide usage [75]. Mainly, the

developers and researchers indicate that physics simulators have problems related to

reality gap, complexity, lack of capabilities, reproducibility, and environment recon-

struction [75]. Another inhibitor factor for using a physics simulator for robotics is
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choosing the correct physics simulator for a particular task. Physics simulators’ per-

formance and reliabilities vary depending on the test scenarios [76]. Another critical

factor in choosing physics simulators is support for various toolsets and the integrabil-

ity of different programs. Gazebo is a well-known open-source physics simulator that

supports multiple sensors, and SDF mesh models including robot types and objects

to create and extend the testing environments.

2.2.1 Gazebo

Gazebo, an open-source physics simulator, supports four physics engines: Bullet [77],

Simbody [78], DART [79], and Open Dynamics Engine (ODE) [80]. It utilizes the

Object-Oriented Graphics Rendering Engine (OGRE) for rendering 3D environments.

Gazebo consists of two main architectures: gzclient and gzserver. Gzserver is respon-

sible for simulating physics, rendering, and sensors, while gzclient provides a graphical

interface for user interaction. Communication between these architectures is facili-

tated through Google Protobuf serialization and boost::asio for message transporta-

tion. Figure 2.17 illustrates the system architecture details and the graph depicting

dependencies between its components. Gazebo’s functionality is encompassed by

model, actor, world, and launch files. Models represent 3D static or dynamic rigid

objects, while actors are models with animation capabilities. The world file defines

the simulation environment, including entities such as models, actors, and simulation

environment values [81]. Gazebo offers extensibility through plugins, which enable

access to and extension of its functionalities and entity states. It can be integrated

with both ROS1 and ROS2 using plugins.

When compared to other robot simulators such as CoppeliaSim [83], MORSE [84],

and Webots [85], Gazebo demonstrates superior performance in terms of CPU re-

source consumption, achieving a higher real-time factor. The real-time factor repre-

sents the ratio between the sum of the simulated time step and the sum of the desired

real-time step. Gazebo also exhibits greater accuracy in real-world mobile robot tests
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Figure 2.17: The Gazebo Architecture [82].

[86]. Additionally, Gazebo outperforms other simulators (V-REP/CoppeliaSim, AR-

GoS [87]) in terms of simulator performance in large scenes with multiple robots and

in headless mode, while offering comparable features to V-REP/CoppeliaSim [88].

2.2.2 Physics Engine

Although numerous physics engines are available for simulating complex manipula-

tion tasks, the simulation results are often unstable and cannot be trusted. There

is no physics engine for every scenario, making it difficult to select the appropriate

engine for manipulation tasks requiring multi-contact interactions [76]. The inherent

complexity and variability of real-world manipulation tasks, coupled with the approx-

imations and limitations of existing engines, contribute to the challenge of achieving

reliable and accurate simulation outcomes. Researchers and practitioners face the ar-

duous task of carefully considering the task characteristics and desired accuracy levels
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when selecting a physics engine, balancing computational efficiency with fidelity. Ef-

forts to enhance physics engines and develop robust simulation frameworks continue,

aiming to overcome these challenges and provide more trustworthy simulation results

for complex manipulation tasks.

Contact dynamics pose significant challenges in computational physics due to their

inherent computational complexity. The problem of calculating contact dynamics is

classified as NP-Hard, primarily because of its non-convex and discontinuous nature

[89]. As a result, physics engines often resort to approximated solutions using relaxed

methods, which inevitably leads to a notable drop in accuracy. Even with approximate

solutions for contact detection, the algorithms employed can adversely affect the

real-time performance and stability of the physics engine. The compromises made

in achieving real-time simulation and stability further exacerbate the difficulties in

obtaining reliable and trustworthy results for contact-intensive scenarios [90, 91].

Figure 2.18: Main comparison between ODE, Bullet, Vortex, and Mujoco physics
engines [76].

The well-known physics engines in robotics employ different formulations to handle

contact and multibody dynamics. ODE, for example, is utilized in simulation plat-

forms like Gazebo and CoppeliaSim. It supports a wide range of shapes and meshes,

allowing for realistic simulations of robotic systems. One of the key features of ODE

is its built-in collision detection capability, which facilitates the accurate modeling of

interactions between objects. Additionally, ODE is equipped with solvers such as the

Dantzig solver [92] for solving the linear complementarity problem [93] to obtain an
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exact solution, and the projected Gauss-Seidel [94] solver for iterative solutions using

the maximal coordinate representation. Bullets, like ODE, possess similar capabil-

ities in terms of contact dynamics. However, Bullet strives to enhance its contact

area coverage, allowing for a more comprehensive modeling of contact interactions.

With the generalized coordinate representation, Bullet is particularly advantageous

for heavily constrained systems like robots with numerous joints. This alternative

representation offers improved computational efficiency and accuracy. Lastly, Mu-

joco [95] shares similarities with the aforementioned methods in terms of supporting

various shapes and meshes. However, it differs in its inability to handle nonconvex

shapes. When it comes to contact dynamics, Mujoco adopts a different approach by

converting the problem into a convex optimization problem. This conversion allows

for the utilization of second-order methods, in addition to the methods mentioned

earlier. Similar to Bullet, Mujoco employs a generalized coordinate system, com-

plemented by a 4th-order Runge-Kutta integrator. In terms of accuracy in contact

manipulation tasks, ODE and Bullet exhibit similar and satisfactory performance

when dealing with simple-shaped objects. However, Bullet demonstrates superior

performance in multi-contact scenarios. On the other hand, Mujoco performs poorly

in these tasks but compensates with faster speed due to its different approach. [76,

91, 96]. Figure 2.18 compares these physics engines and their respective features.

2.2.3 Digital Twin

The application of digital twin technology traces its origins to NASA’s utilization of

space robotics during the 1960s. A noteworthy milestone in its development can be

observed in the Apollo 13 space program, where digital twins played a pivotal role

in simulating essential technologies by replicating physical infrastructure instead of

generating real-time digital replicas [98]. In his 2002 presentation titled ”Conceptual

Ideal for PLM,” Michael Grieves introduced the term ”digital twin,” which he defined

as the integration of the physical and virtual environments, connected by a crucial
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Figure 2.19: Digital twin helps to create a virtual replica of the robot’s state and its
environment [97].

data link [99]. In the field of robotics, digital twins provide the ability to persistently

maintain a virtual replica of the physical robot system throughout its lifetime. This

virtual model proves invaluable for troubleshooting and predictive inference purposes.

Moreover, digital twins enable robots to provide valuable information about the con-

dition of their hardware and forecast potential hardware issues. With the provided

observability, digital twins enhance the process safety and design that contribute to

more accurate simulations for future applications in robotics [100]. The application of

digital twin technology in the field of robotics has been extensively researched across

various domains, including space robotics, medical robotics, soft robotics, human-

robot interaction, and industrial robotics [101].

Digital twins play a crucial role in teleoperation scenarios by providing real-time

information about remote robots and their surrounding environment to operators

through the device communication entity depicted in Figure 2.19. This transparency

and visualization enable precise control over the robot’s actions. For the application

side, digital twins integrated with human-in-the-loop systems have been extensively

studied in medical applications such as remote telemedical service robots [102], haz-

ardous and contagious environments [103], surgical procedures [104, 105], and reha-
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bilitation settings [106]. Additionally, in the industrial sector, digital twins are being

utilized in hazardous environments to enhance safety and optimize operations [107].

2.3 Immersive Display

Head-mounted displays (HMDs) have been extensively researched and applied in di-

verse fields, including computer-aided surgery [108], aviation [109], and robotics [110].

In the context of robot teleoperation, visualization plays a crucial role in perceiving

and manipulating remote robots. Initially, the limitations in depth cameras and net-

work communication speed confined early teleoperation systems to 2D displays [111].

However, advancements in depth camera technology and efficient 3D reconstruction

algorithms have facilitated the adoption of immersive displays for robot teleopera-

tion [21, 112]. In Figure 2.20, Toyota’s system demonstrates the control of a follower

humanoid robot using a controller suit and a head-mounted display, enabling a fully

immersive teleoperation experience [113].

Figure 2.20: Immersive display helps the operator to control the view of the remote
environment [113].

Extensive research has revealed that relying solely on a simplistic video feed from
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a remote environment presents considerable challenges in establishing a meaningful

relationship between the robot and its surroundings. This limitation leads to de-

creased spatial awareness and imposes a significant cognitive load on the operator

[21, 114]. Conventional 2D displays, which lack depth information, are inadequate

for accurately representing remote environments. However, accurate representation

is a crucial aspect for various robot teleoperation tasks [115, 116]. Furthermore, the

absence of retained information about previously explored areas during teleopera-

tion forces operators to heavily rely on their mental models, further increasing their

cognitive load [117].

By utilizing immersive head-mounted displays, operators can control their view-

point and gain a better understanding of the environment. The level of environmental

information available also impacts task performance and efficiency [118, 119]. Immer-

sive displays that provide comprehensive information, including task-related details

and the remote environment, lead to shorter task completion times compared to situ-

ations where only task-related information is provided [120, 121]. Empirical evidence

demonstrates the impact of situational awareness, mental load, and task performance

in multi-robot setups across various environmental settings, encompassing indoor and

outdoor environments, as well as different types of aerial and ground robots with im-

mersive displays [122]. The spatial awareness gained through 3D representation and

immersive display has proven effective for robot teleoperation in the presence of net-

work latency, compared to a simple video stream[123].

Depending on how the scene is represented and the task information involved, the

immersive display can induce motion sickness. It has been observed that there is a

direct correlation between latency and both task performance and motion sickness

[125]. To address this problem, one possible solution is to enhance the degree of

immersion and the careful design of the system [126]. By decoupling the view, the

operator gains more freedom and can adjust their perspective by moving their head,

which leads to improved success rates in teleoperation tasks compared to a fixed
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Figure 2.21: Immersive display can induce motion sickness, the decoupled view helps
to reduce motion sickness caused by the latency [124].

camera view [127]. Furthermore, the decoupled view can be used to not only update

the visual perspective based on the operator’s head movements but also incorporate

pose updates through additional controllers [51, 128]. Decoupling the view for robot

teleoperation has also been found to have a positive effect on reducing motion sickness

[50]. However, it is important to note that simply updating the video feed and

adjusting the camera to decouple the view introduces additional latency and can

exacerbate motion sickness for the operator [129, 130]. Therefore, achieving real-time

3D reconstruction of remote environments becomes crucial for ensuring successful

immersive displays with decoupled views. In Figure 2.21, researchers have explored

the use of incremental mesh representation based on point cloud data in various

scenarios [50, 124].
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Chapter 3

Method

In this section, our attention turns to the system and its parts. Our goal is to develop

an immersive predictive visualization and haptic feedback setup for controlling robots

remotely while considering practical considerations. To achieve a captivating predic-

tive experience with minimal delay, our setup integrates the subsequent components

to construct a simulated version of the remote environment and the follower robot in

real-time.

The proposed system parts are:

• Surface Mesh Reconstruction: We utilize the semi-dense monocular CARV

algorithm to continuously create a detailed surface mesh of the remote follower

robot environment.

• Physics Simulator: The Gazebo physics simulator is employed to provide

predictive visualization and haptic. It accomplishes this by simulating contact

forces between the incremental surface mesh and the digital twin of the Barrett

WAM robot arm.

• Immersive Display: This module employs a VR headset to control a pair

of wide-angle stereo cameras within the Gazebo simulation environment. This

setup immerses the operator in the virtual world, offering an immersive experi-

ence.
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For a visual representation of all the system components and their dependencies,

please refer to Figure 3.1.

Figure 3.1: The proposed system architecture.

The visual feedback often requires a large network bandwidth for low-latency visual

updates needed for remote robot manipulation. Traditional teleoperation setups often

face challenges in replicating the intuitive control and perception of direct physical

interaction due to this delay. To address this, our research aims to dissect the sys-

tem’s underlying mechanisms and synthesize an integrated framework that seamlessly

combines human input and robotic execution. Additionally, we use advancements in

predictive visualization techniques, aiming to provide operators with a more immer-

sive and intuitive understanding of the remote environment. Through the exploration

of our system’s architecture and methodologies, we unlock new possibilities in the area

of robot teleoperation, improving the way humans interact with and control robotic

systems.

Furthermore, we delve into the area of immersive display, where we aim to enhance

the immersion of the operator in the remote environment by improving the system’s

visualization capabilities. By enabling viewpoint-free rendering for the Gazebo cam-

era sensors and utilizing directional light sensors, we provide operators with improved

camera projection and scene illumination based on camera pose. These advancements

contribute to a more immersive and detailed visual representation of the remote en-
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vironment.

Finally, we incorporate a physics simulator within our system, leveraging the power

of the Gazebo. This simulator serves multiple purposes, including collision detection

for predictive haptic feedback, real-time interaction between the digital twin and the

physical robot, and immersion through camera sensors. We discuss the challenges

associated with maintaining real-time performance while ensuring accurate and reli-

able collision detection and haptic feedback. Through optimization techniques and

the integration of plugins and services, we achieve a seamless and efficient interaction

between the digital twin and the physical robot.

By addressing these key areas and their respective challenges, our system aims to

improve the predictive visualization and haptic feedback of the field of robot teleoper-

ation by addressing these key areas and their respective challenges, offering operators

a more intuitive and immersive experience. Through combinations of 3D surface re-

construction, immersive display, and the utilization of a physics simulator in real-time,

we push the boundaries of human-robot interaction and open up new possibilities for

teleoperation applications.

3.1 3D Surface Renconstruction

We used the incremental surface mesh reconstruction algorithm not just to provide 3D

information but to address the delay issue of robot teleoperation. The visual feedback

often requires low latency and high bandwidth networks. Independent intermediate

representation that is incrementally updated using remote scenes eliminates the delay

problem using predictive immersive display. Additionally, we used the incremental

surface mesh for creating the collision mesh in the physics simulator. Thus, the

surface mesh reconstruction is not just important for providing predictive visual, but

also predictive haptic feedback through interaction in the virtual replica.

We chose to use a surface mesh because it is easier to update, transmit, and save

for use in real-time operations. Surface meshes serve the purpose of generating col-
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lision meshes within the physics simulator, making surface mesh representation the

most suitable solution for our system. This is due to the essential role it plays in

the current collision detection requirements. When collecting point cloud data, two

primary methods are available: using depth cameras to acquire dense point clouds

or utilizing RGB cameras with SLAM or SFM methods to obtain sparse point cloud

data. Depth cameras are designed to measure distances or depths in the scene, re-

lying on emitted signals and returning reflections, which can result in limitations in

their working range depending on signal strength and design. While RGB cameras

rely on visible light and capture 2D color images without directly measuring depth.

Additionally, depth cameras are more susceptible to noise arising from signal strength

fluctuations and multi-path reflections, which are not typically encountered in RGB

cameras, leading to potentially less noisy and more straightforward color images. A

sparse point cloud is well-suited for online processing and does not require special-

ized hardware because it’s more efficient, has reduced data size, lower computational

demands, and is ideal for real-time applications like tracking and navigation. To facil-

itate the incremental surface mesh reconstruction of remote environments, we employ

a semi-dense monocular CARV algorithm, which has real-time performance using

a single CPU processor. Our system’s capabilities were put to the test in an online

manner with a real-world environment, as depicted in Figure 3.2. This algorithm uses

the point cloud and camera tracking of ORB-SLAM2, a well-established method for

obtaining accurate camera pose estimates and generating sparse point clouds. These

sparse point clouds serve as the foundational data for reconstructing the surfaces of

the remote environment.

The integration of the semi-dense module into the reconstruction pipeline signif-

icantly enhances the precision and completeness of the resulting surface mesh. By

extracting line and plane information from the semi-dense module, the algorithm ef-

fectively refines the reconstructed surface mesh by identifying and eliminating outlier

points. To eliminate outlier points, a RANSAC-based approach randomly selects a
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Figure 3.2: The surface mesh reconstruction the remote environment.

subset of pixels from the pixel chain. These selected pixels are checked to see if their

perpendicular distance from the best-fit plane exceeds a predetermined threshold, and

if so, they are eliminated from consideration as outliers. This process plays a critical

role in improving the overall quality and accuracy of the reconstructed model.

The removal of outlier points is particularly beneficial in terms of optimizing the

complexity of the surface meshes. By eliminating these outliers, the reconstruction

process becomes more streamlined, resulting in a reduction in computational com-

plexity. This reduction not only enhances the efficiency of the algorithm but also

leads to a more visually pleasing representation of the remote scene.

The surface model is updated incrementally by the semi-dense CARV algorithm.

This occurs when new keyframes are registered or when existing keyframes are ad-

justed through bundle adjustment. Such updates ensure that the surface mesh model

37



remains up to date with a dynamically changing remote environment. Following each

update, the resulting surface mesh model is written in an OBJ file format which

facilitates easy sharing and compatibility with different programs and platforms.

The OBJ files, which contain the reconstructed surface mesh, can be seamlessly

integrated with the Gazebo physics simulator to create a virtual representation of the

collision mesh model. This integration enables improved control, interactions, and

immersion within the reconstructed environment. Additionally, in order to shorten

the process of updating the textured mesh, texture keyframes and their corresponding

coordinates, which represent the 3D rendered vertices, are saved in image files and

smaller-sized OBJ files. This approach streamlines the updating process by efficiently

storing the essential data in both image and OBJ formats, making it easier to ma-

nipulate and modify the texture and geometry of the 3D model without the need for

extensive data processing during updates. By storing these key data components, the

system ensures efficient and fast updates to the textured mesh representation.

The design framework aims to prioritize the timely update of the textured mesh

by selecting the appropriate texture model based on the specified camera pose. This

camera pose can be derived from the latest pose generated by the SLAM algorithm

or from a predictive texture generated using the Gazebo camera pose, camera pose,

which accounts for the operator’s head pose. By dynamically adapting to the camera

pose, the current texture model accurately aligns with the remote scene, enhancing

the visual realism and fidelity of the reconstructed environment. Figure 3.3 illustrates

how the camera sensor supplies the textured mesh with varying poses, showcasing this

dynamic alignment in action.

To enable real-time tracking of the remote robot’s pose within the remote scene,

the current camera pose is published as a ROS1 (Robot Operating System) topic.

This ROS topic ensures the continuous dissemination of the camera pose information,

enabling external systems or applications to track and synchronize their operations

with the follower robot. By providing an accurate and up-to-date representation of
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Figure 3.3: Texture mesh and surface mesh with different camera poses.

the robot’s position and orientation, the published camera pose assists in coordinating

actions and interactions with the follower robot within the reconstructed scene.

3.2 Physics Simulator

The usage of the physics simulator in our proposed system is multifaceted. We use a

physics simulator not only to integrate the incremental surface mesh and the digital

twin of the WAM arm robot for solving delay issues but also to improve the operator’s

agility and understanding of the remote scene and the follower robot state. While

the interaction of the modalities provides the predictive haptic feedback, the utiliza-

tion of the sensors provided by the physics simulator provides immersive predictive

visuals including interaction and the follower robot state. The intermediate virtual

representation gives full control of the remote environment and the follower robot by

not requiring direct feedback from the physical follower robot.

For the integration of the incremental surface mesh of the remote environment and

the digital twin of the WAM Robot, we selected the Gazebo physics simulator as

our platform of choice. Despite the impending end of support for Gazebo Classic in

2025, it remains fully compatible with both ROS1 and ROS2. Gazebo Classic offers

extensive sensor support and a wide range of ROS packages, making it seamless to
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integrate different systems. To enhance Gazebo’s functionality and compatibility with

various models, we implemented custom Gazebo plugins.

Figure 3.4: Top : The contact between the surface mesh and the WAM digital twin
robot was calculated for haptic feedback before 20 mm of the physical contact using
min depth parameter. Bottom : Haptic feedback to WAM arm robot arm by surface
collision mesh from physics simulator (Blue Sphere) visualizing contact between the
table and the robot arm end effector, (Red Arrow) representing the contact forces
calculated using surface mesh face normals.

To enable the interaction between the digital twin and the incremental surface

model, we implemented a Gazebo model plugin specifically for the digital twin and

the follower robot synchronization. This plugin allows us to obtain joint positions,

velocities, and efforts which are crucial for moving the digital twin within the sim-

ulation environment. Communication between the remote WAM arm robot and the

digital twin occurs through ROS1 topics published by the libbarrett library, which are

subscribed to by the Gazebo model plugin.

To handle the physics simulation, Gazebo utilizes the ODE physics engine as its

default choice. ODE provides accurate physics calculations for simulating the inter-

action between the digital twin and the environment within the Gazebo platform.

To ensure accurate interaction between the digital twin and the calibrated surface
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collision mesh, we used contact detection provided by the ODE physics engine. By

capturing the contact normals and forces, the physics engine was able to calculate

force/torque magnitudes and friction values for the interaction. This information

enables us to simulate realistic and responsive interactions between the digital twin

and the surface mesh. In Figure 3.4, our predictive haptic feedback system undergoes

testing in a tabletop setting, showcasing the haptic force generation by the physics

engine as an integral part of the interaction process.

3.3 Immersive Display

To facilitate the transmission of the video stream rendered by the Gazebo stereo wide-

angle camera sensor, we employed an asynchronous ROS2 client to create a dedicated

topic for the video stream. By utilizing the open-source Python library called aiortc

[131], real-time video streaming with WebRTC (Web Real-Time Communication)

was established. The library enables seamless integration with ROS2, allowing us to

subscribe to the video stream topic and transmit it in real-time.

3.3.1 Immersive Display Through Web

We use the immersive display to provide predictive visuals based on the virtual replica

of the follower robot environments. We control the camera pose and view using the

operator’s head motions and the hand controller, which improve spatial awareness

and reduce delay-related cognitive load.

For compatibility and easy integration with virtual reality (VR) headsets, we

adopted the A-frame framework. A-frame utilizes the capabilities of Three.js, a

popular library for rendering virtual and augmented reality applications within web

browsers. This approach ensures that our system remains independent of specific VR

headsets and simplifies the implementation process, making it accessible for simple

rendering tasks.
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3.3.2 Operater Motion Integration

Figure 3.5: The configuration for the operator with the leader robot arm and head-
mounted display.

To enable the operator to control the Gazebo camera, the A-frame framework cap-

tures the head pose of the operator. This head pose data is then used to manipulate

the Gazebo camera using the Gazebo ROS1 plugin. By transmitting the pose data

through the data channel alongside the video channel created with WebRTC, the

operator’s head motion directly controls the Gazebo camera’s position and orienta-

tion. This integration allows for an immersive and interactive experience, where the

operator’s motions influence the rendering of the virtual scene.

To provide convenient control of the camera pose without physically moving the

operator, we integrated the joysticks of hand controllers. By combining the operator’s

pose data with the joystick inputs, the Gazebo camera can be adjusted to update the

rendering view accordingly. This functionality enables the operator to manipulate the

camera pose effortlessly and explore different perspectives within the virtual scene.

This functionality grants the operator the flexibility to manipulate the camera pose
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while simultaneously controlling the leader robot, all through the use of a head-

mounted display and controller, as demonstrated in Figure 3.5.

Figure 3.6: Predictive texture, surface mesh, and digital twin of the WAM robot
rendered to HMD immersive display streamed by ROS2 from Gazebo wide-angle
camera.

This setup offers a dynamic and interactive VR experience, allowing the operator

to navigate and interact with the virtual environment using the added feeling of the

digital surfaces through haptic interaction with the 3D model.

By combining ROS2, WebRTC, A-frame, and Gazebo plugins, our system enables

real-time video streaming, immersive VR rendering, and interactive camera control.

This integration opens up possibilities for various applications, such as teleoperation,

virtual training, and remote visualization, with the flexibility to adapt to different

VR setups and scenarios.
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Chapter 4

Experiments

In this chapter, we evaluated the surface reconstruction algorithm. We will discuss

the accuracy, precision, and the number of mesh faces resulting from the line and

plane based monocular surface reconstruction, using benchmarks from the EuRoC

MAV Datasets [132], including Vicon Room 101 (VR101). Additionally, we assessed

the predictive haptic feedback performance based on collision detection in the physics

engine and optimization results. Furthermore, we examined the synchronization be-

tween the digital twin and the follower robot, as well as the integration of the incre-

mental surface mesh model. Lastly, we delved into the communication between the

Gazebo physics simulator and the immersive display and hand controller.

4.1 3D Surface Reconstruction

During our experimental evaluation, we utilized an Intel RealSense D435 global shut-

ter camera to capture a monocular RGB video stream with a resolution of 1280x720.

Running on an Intel i9-12900K processor, the camera achieved a frame rate of 15.46

FPS, enabling real-time surface mesh reconstruction. The camera is seamlessly inte-

grated into ORB-SLAM2 to acquire point cloud data and localization information.

The produced sparse point cloud is then combined with the CARV algorithm to in-

crementally update the surface mesh. To enhance the accuracy of the reconstructed

meshes, we leveraged the geometric cues obtained from the semi-dense module to
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extract line and plane information, which facilitated the elimination of outlier mesh

faces. In order to make the system compatible with the online setup, we used 50

keyframes for semi-dense points rather than using all keyframes. You can observe the

resulting surface meshes depicted in the bottom section of Figure 4.1.

Figure 4.1: Incremental surface mesh reconstruction for room and table-top setup.

To assess the performance of our approach, we compared it with two existing

monocular surface mesh reconstruction methods: Lovi et al. [2] and He et al. [3].

These methods also employed sparse point clouds and Delaunay triangulation to

create surface meshes. To conduct a fair comparison, we employed the EuRoC MAV

Vicon Room 101 (VR101) benchmark [132].

The metrics evaluated in this comparison were completeness, where the estimated

3D points’ distances to the ground truth point are within 25 mm, and precision, where

the estimated mesh surface to the ground truth scan. Lastly, the number of mesh

faces, which are important for collision detection and physics simulator performance,

since collision detection algorithms are computationally expensive.

Method Vertices Faces Precision Completeness

Lovi et al.[2] 531142 148582 74.5% 70.98%

He et al.[3] 50666 32012 88.33% 77.21%

Ours(Lines + Planes) 31986 22998 96.8% 88.62%

Table 4.1: Comparison between the surface mesh of VR101 room setting created by
different CARV approaches on completeness and precision.
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Table 4.1 presents the results of the evaluation, including the number of vertices,

faces, and the precision and completeness values for each method. Our algorithm

demonstrated a superior performance achieving higher precision and completeness

compared to the other methods. Furthermore, our approach significantly reduced the

number of vertices and mesh faces, leading to a more optimized representation of the

scene.

By leveraging the geometric cues provided by the semi-dense module, we achieved

improved precision and completeness metrics. Simultaneously, we reduced the com-

plexity of the resulting surface meshes. This showcases the potential of our approach

in generating accurate and efficient surface models of remote environments.

4.2 Physics Simulator

Gazebo, an open-source physics simulator, plays a crucial role in testing robotic

applications across diverse scenarios. In our experiments, we utilized Gazebo to create

a real-time replica of the remote environment by configuring a Gazebo world. To

ensure real-time model updates, we incorporated Gazebo ROS plugins concurrently

using both ROS Noetic (ROS1) and ROS Foxy (ROS2) versions.

4.2.1 Follower Robot Integration

Initially, the communication between the digital twin of the WAM arm robot and the

follower WAM arm robot involved the Gazebo ROS plugin and libbarrett, running

at a rate of 30 frames per second. However, the Gazebo requires 1 KHz for simula-

tion updates, while the WAM arm robot needs 500 Hz for real-world motion. This

discrepancy led to issues, causing oscillations due to latency constraints.

To address this problem, we developed a Gazebo model plugin to internally inte-

grate libbarrett ROS topics and services with Gazebo. This plugin leveraged libbarrett

to obtain joint data from the follower robot and deliver predictive haptic feedback.

The communication between the digital twin and the follower WAM arm robot was
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executed through ROS1. Joint data from the physical robot was obtained by subscrib-

ing to the \wam\joint states ROS topic at a 500 Hz frequency. This data included

joint position, velocity, and effort, which updated the digital twin of the WAM arm

robot.

4.2.2 Predictive Haptic Feedback

Predictive haptic feedback was acquired from the Gazebo contact topic, while the

follower WAM arm robot received feedback from the plugin via the ROS \wam\joy -

force torque baseservice service. Although it was possible to detect contact for every

joint of the digital twin, we preferred feedback through the end effector due to lib-

barrett’s implementation limitations.

However, Gazebo’s default implementation lacks a joint effort calculation function

for contact detection, prompting us to rely on force/torque sensors to obtain values

applied to each link body. Given occasional inaccuracies in these values for the WAM

arm robot, we chose to use constant force/torque values defined in the plugin for

predictive haptic feedback. For enhanced safety, we enabled collision without contact

in the Gazebo physics simulator configuration, allowing us to detect contact before

collisions without obtaining contact force values.

Method Memory(MB) RTF w/o opt RTF w opt

Lovi et al.[2] 18.7 0.11 0.29

He et al.[3] 2.1 0.225 0.471

Ours 1.4 0.255 0.52

Table 4.2: Comparison between the surface mesh of the from Euroc Vicon Room 101
benchmarks (VR101) [132] setting physics simulator real-time factor (RTF) with
w/wo optimization, (RTF being 1.00 to be the optimal RTF.)

Collision detection in a physics simulator is computationally intensive. It slows

down the real-time factor (RTF), especially with numerous mesh faces and joints in

the digital twin. However, many optimizations were implemented to improve the
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Gazebo world configuration: disabling wind, atmosphere, and shows from renderings;

improving RTF by setting the real-time update rate to 0; and increasing max step

size to fully utilize CPU resources. Results of these optimizations for different surface

reconstruction algorithms are presented in Table 4.2.

4.2.3 Gazebo Wide Angle Camera Sensor

Figure 4.2: Predictive texture and surface mesh on immersive display streamed by
ROS2 from Gazebo wide-angle camera(Cube).

By default, Gazebo’s implementation disables projection rendering for the Gazebo

camera sensor, limiting rendering to the graphical user interface. We modified the

source code to enable rendering for Gazebo camera sensors, benefiting from Gazebo’s

open-source nature. This allows the digital twin to provide visualizations of contact,

inertia, and efforts through the Gazebo camera sensor.

Our experiments revealed that the Gazebo camera sensor achieves up to 23 FPS

with a 4K resolution using the Gazebo ROS2 camera plugin, while the Gazebo ROS1

camera plugin only manages 30 FPS with a 640x480 resolution. We configured the

Gazebo camera sensor as a wide-angle camera with a 1.57-radian horizontal field of
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view to capture sufficient information from the reconstructed scene.

Notably, we observed that camera projection improves with scene illumination.

Consequently, we integrated a directional light sensor with the camera sensor to

illuminate the scene based on the camera’s pose. The camera sensor’s pose was

obtained from the human operator and updated through the Gazebo ROS1 plugin

service at 30 FPS.

4.2.4 Surface Mesh Integration

The reconstructed surface mesh model in the Gazebo scene was continually updated

using Gazebo ROS1 plugins. To optimize real-time model updates, we employed two

different mesh models: the surface mesh of all scanned scenes and the textured mesh

composed of a single frame. Disk size requirements vary, with room-scale surface mesh

OBJ files needing 1.4 MB, while textured mesh OBJ files requiring approximately 300-

600 KB, accompanied by a 300 KB JPEG image frame with a 1280x720 resolution.

In tabletop settings, both surface mesh and textured mesh OBJ files occupied around

900 KB.

Model updates were facilitated using the spawn model ROS1 service, completing

the process in 60 ms for a 1.4 MB OBJ file. To remove models from the Gazebo

simulation environment, the delete model Gazebo ROS1 plugin service required 250

ms with rospy.

4.3 Immersive Display

The video stream from the Gazebo camera sensor via the ROS2 camera plugin was

sent to the Oculus Quest 2 VR headset. We chose ROS2 over ROS1 for our system

due to its significantly improved performance and capabilities, which are essential for

providing a seamless and immersive VR experience. ROS2 offers several advantages

over its predecessor, ROS1 (Noetic), making it the preferred choice for our project.

This choice aligns with our goal to achieve a high-quality VR experience with the
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ROS
Versions

Resolution
640x480 1280x720 1920x1080 2304x1536 3840x2160

ROS1 (Noetic) 29.996 10.019 5.031 1.720 -

ROS2 (Foxy) 173.134 123.409 77.130 50.220 23.440

Table 4.3: Comparison of media streaming frame rates (FPS) at different resolutions
for ROS1 and ROS2.

Oculus Quest 2 headset, as demonstrated in Table 4.3, where ROS2 (Foxy) consis-

tently outperforms ROS1 (Noetic) in terms of media streaming frame rates at various

resolutions, ensuring smoother and more responsive video streaming.

Figure 4.3: Immersive display with different operator pose.

The Oculus Quest 2 provides a per-eye resolution of 1832x1920 pixels and includes

hand controllers, offering a standalone VR display without extra hardware. To ensure

compatibility with various head-mounted displays, we employed the A-frame frame-

work, allowing the video stream to be shown in a web browser. Our system supports

video streaming at 1696x1600 pixel resolution over the local network, achieving a 30

FPS playback rate with approximately 10ms of latency. We used the same WebRTC

stream to update the Gazebo camera pose based on the operator’s pose using the VR

headset and controllers, providing an immersive VR experience where the operator’s

movements directly control the Gazebo camera’s position and orientation within the

virtual environment. Figure 4.3 shows the integration of the immersive display with

the simulator, with the operator’s pose driving the interaction.
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Chapter 5

Conclusions & Future Work

5.1 Conclusions

We begin by acknowledging the limitations of traditional teleoperation setups in repli-

cating intuitive control and perception of direct physical interaction. To address these

challenges, we utilized SLAM techniques and CARV to reconstruct the remote scene

in real-time. The CARV algorithm, incorporating ORBSLAM-2 for localization and

mapping, Delaunay triangulation for surface mesh reconstruction, and space carving

for refinement, proved to be a suitable approach for achieving the desired reconstruc-

tion goals.

The experimental evaluation of the algorithm demonstrated promising results across

various setups, including indoor rooms, and table-top scenarios. By utilizing a monoc-

ular RGB camera and a single CPU processor, the system was able to reconstruct

the scene in real-time, providing operators with an up-to-date and accurate represen-

tation of the remote environment. The use of a semi-dense module further improved

precision with lines and planes by removing outlier points, reducing face mesh com-

plexity.

The integration of the 3D surface mesh reconstruction with the overall teleopera-

tion system, including the digital twin of the WAM arm robot and the Gazebo physics

simulator, resulted in a comprehensive and immersive teleoperation experience. The

delay problem is fixed by using the predictive immersive display with a virtual replica
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of the follower robot environment. The reconstructed surface mesh provided opera-

tors with a visual understanding of the remote environment, enabling them to make

informed decisions and perform manipulation tasks effectively.

The integration of the immersive display with the teleoperation system resulted

in improved immersion and easier control of the remote robot arm. By wearing the

head-mounted display, operators were able to perceive the remote environment as if

they were physically present, enhancing their situational awareness and enabling more

intuitive manipulation of the robot. The controller provided precise and responsive

input, further enhancing the operator’s sense of control and dexterity.

By choosing the Gazebo physics simulator, our research leveraged a highly flex-

ible and extensible platform that supports multiple physics engines and integrates

seamlessly with ROS1 and ROS2. This choice provided us with the ability to select

specific physics engines tailored to their tasks, ensuring compatibility and efficient

simulation.

The integration of the physics simulator with the teleoperation system facilitated

the creation of a virtual replica of the remote environment using surface meshes and

the digital twin of the WAM arm robot. By controlling the digital twin robot using

joint data obtained from the remote robot, the operator gets the predictive haptic

feedback from the virtual replica to avoid delay-related issues.

In conclusion, this thesis contributes to the advancement of robot teleoperation

in unstructured environments by addressing critical delay challenges using 3D sur-

face reconstruction, immersive display, and physics simulation. The integration of

these components paves the way for more intuitive, realistic, and predictive remote

robot control, opening up new possibilities for applications in areas such as high-

risk environments, medical surgeries, disaster relief, and space exploration. Through

continued research and innovation, the vision of seamless and immersive human-in-

the-loop teleoperation will become a reality, revolutionizing the way humans interact

with and control robotic systems.
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5.2 Future Work

There are several potential directions for future research and development to enhance

the capabilities and performance of our integrated system.

Firstly, integrating a depth camera into our system can provide additional depth

information and improve the local representation of the environment. By combining

depth data with RGB imagery, more accurate 3D reconstruction can be achieved. The

depth information can further enhance the precision and fidelity of the reconstructed

surface meshes locally, enabling more precise manipulation and interaction with the

environment.

Furthermore, the research on interactable surface meshes for robot teleoperation

presented in this thesis represents an important contribution. However, certain as-

pects, such as contact detection and friction value calculations, currently hinder the

real-time performance of the physics simulator.

Additionally, reducing the requirement for video streaming from a remote environ-

ment is a crucial aspect to consider. By utilizing keyframes and the covisibility graph

obtained from the CARV algorithm, the number of frames needed for reconstruct-

ing the environment can be significantly reduced. For instance, in our experiments,

the VR101 room required only around 200 keyframes, compared to the total of 2913

frames in the benchmark video. This reduction implies that the video streaming re-

quirement can be reduced by almost 10 times. Exploring methods to leverage the ob-

tained data, such as recreating the surface mesh and predictive textures using CARV

on the operator’s site, can drastically reduce the bandwidth requirement for video

streaming while maintaining the necessary information for effective teleoperation.
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