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Abstract 

Fuzzy Cognitive Maps (FCMs) are a widely used, neuro-fuzzy based qualitative approach for the 

modeling of dynamic systems, which allow for both static and dynamic analyses. They are capable 

of modeling complex systems with nonlinearities and unknown physical behaviour. FCMs 

describe a given system by means of concepts connected by quantified cause-effect relationships. 

This dissertation contributes to the subject of computer-driven generation of FCMs that can be 

used to perform an accurate dynamic analysis of the modeled system. The dynamic analysis 

provides insights into the degree of presence, and dependencies between the concepts in 

successive iterations of the simulation of a given FCM model. Such simulation studies could be 

used to analyze “what-if” scenarios in the context of decision support and to perform time series 

predictions. Two research directions within the framework of FCM development, which concern 

the learning of FCMs from historical data and an aggregation of FCMs that were proposed by 

multiple experts, are investigated. Several new automated computational methods for data-driven 

learning and aggregation of FCMs are introduced and empirically evaluated. These methods utilize 

real-coded genetic algorithms (RCGA)-based optimization. This choice of the optimization vehicle 

was motivated by their well-documented efficiency in searching large and continuous search 

spaces, which are inherent to our problem. Experimental evaluation demonstrates that the 

proposed RCGA-based learning method outperforms modern existing approaches when the 

dynamic analysis is considered. A novel divide and conquer-based learning strategy to improve 

scalability of the RCGA approach, is also proposed. This strategy is shown to be competitive or 

even better than solutions based on the parallelization of the underlying genetic algorithm. The 

RCGA-based learning method is further extended to provide improved FCMs when the number of 

connections of the map is known a priori. Experimental evaluation shows that the density-based 

learning method outperforms the generic RCGA-based approach when using a relatively accurate 

density estimate, and that both methods are equivalent when the estimate is inaccurate. In addition, 

a novel method for the aggregation of multiple input FCMs, is proposed. When compared to 

existing aggregation approaches, this method provides solutions that are more accurate when 

dynamic analysis is the objective. 
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Chapter 1  

Introduction 

1.1 Motivation 

Fuzzy Cognitive Maps (Kosko, 1986) are a convenient tool for qualitative modeling and 

simulation of dynamic systems. They describe a given system as a collection of concepts 

connected by cause-effect relationships. FCMs are useful for performing both static and 

dynamic analyses of the modeled system. The former type of analysis includes 

identification of cycles to uncover nontrivial relationships between concepts, calculations 

of the model density to obtain an indication of its complexity, and an analysis of the 

importance of individual nodes. On the other hand, dynamic analysis is concerned with 

the simulation of the FCM model and provides insights into the degree of presence, 

interactions and dependencies between the concepts in successive iterations. 

Consequently, it allows exploring “what-if” scenarios and is used to support decision 

making (Stylios and Georgopoulos, 2008) and/or predict future states (Stach et al., 2008a) 

of the system. FCMs have been recognized as a useful and flexible technique in problem 

solving where many decision variables are causally interrelated. Their main advantages 

include easy model representation, simulation, and adaptability to a given domain 

(Aguilar, 2005). The wide-spread, cross-disciplinary and numerous applications of FCMs 

show that there is an appeal for this modeling technique (see Table 2.1). 

Designing an accurate FCM for a given system is a challenging task (Aguilar, 2005). For 

many years the only available solution was to utilize human expertise in the area of 

application. These expert-based methods have gained their popularity due to the 

relatively simple FCM representation, which makes it possible to manually draw its 

graph-based structure using only a pencil and a sheet of paper. FCMs allow for the 

aggregation of models in case a number of experts develop different models of the same 



 
2 

system; this in turn potentially increases the credibility of the combined FCM model. 

Existing methods for aggregation of FCMs are based on structural properties of 

individual FCMs. This may lead to inaccuracies when dynamic analysis is considered. To 

alleviate this problem, in this dissertation we introduce a novel method to aggregate 

FCMs. 

Although the area of expert-based methods for developing FCMs has been well-

established, these methods are inevitably associated with a number of drawbacks, such as 

experts’ bias and difficulties in handling large and complex systems. Recently, a few 

computational learning methods to support (semi-automated methods) or to replace 

experts’ (fully-automated methods) have been proposed (Stach et al., 2010). These 

methods use data available as time-series and a learning algorithm to develop an FCM 

model. However, the existing solutions, based mostly on Hebbian-learning, are not able 

to provide accurate solutions when considering dynamic simulations. To this end, we 

propose a new method for learning FCMs from data that generates maps more accurate in 

terms of simulations when compared to other existing approaches. 

The empirical evaluation of the methods for the FCMs development is challenging. A 

comprehensive evaluation should cover both static (concerning structure) and dynamic 

(concerning simulations) map properties. The only available gold standards for structural 

comparison are maps developed by human experts. These models, however, are 

vulnerable to bias, since they are usually not sufficiently validated using real data. 

Therefore, in our evaluation we addressed this issue by performing two types of 

experiments. The first group includes learning FCMs from data generated from 

(potentially biased) real or synthetic FCM models, whereas the second group utilizes real 

data to build FCMs in the areas where such maps were not yet developed. The first group 

of experiments allow a multidimensional evaluation that concerns both structures and 

simulations of the maps, while the second one validates the accuracy of the dynamic 

modeling performed on real data. Additionally, the latter experiment allows for a 

comparison between the accuracy of FCMs modeling and other existing modeling 

techniques. 
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1.2 Goals and thesis statements  

In this work several new computational intelligence-based methods for data-driven and 

automated learning and aggregation of FCMs are proposed and empirically evaluated. It 

can be noted that they provide improved quality of dynamic simulations, when compared 

with models derived with current automated methods. 

More specifically, we introduce (1) a new automated learning method, which is based on 

genetic optimization, to develop FCMs from data that aims to provide accurate FCM 

models for dynamic analysis; and (2) a new approach to aggregate FCMs that preserves 

dynamic properties of individual input FCM models. Moreover, we extend and improve 

the proposed method for data-driven learning of FCMs by (3) utilizing additional a priori 

knowledge of the structure of the desired map and (4) applying a divide and conquer 

paradigm to improve efficiency in handling large and complex systems that involve a few 

dozens of concepts. 

To summarize, this dissertation presents the following thesis statements: 

1. Learning Fuzzy Cognitive Maps from data using genetic optimization is an 

efficient approach to obtain high quality models in terms of their dynamic 

properties. 

a. Using additional a priori information of the map structure results in 

further improvements in the quality of the derived model  

b. Using the divide and conquer strategy is an effective method of improve 

scalability of the proposed learning method 

2. The aggregation of Fuzzy Cognitive Maps using genetic optimization is an 

efficient method to obtain a model that preserves dynamic properties of the input 

FCM models. 
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1.3 Outline 

The dissertation is organized as follows: Chapter 2 includes all required background 

information. In particular, it introduces the theoretical foundations of Fuzzy Cognitive 

Maps, their development practices, and highlights selected areas of applications. Chapters 

3 and 4 present the main contributions and introduce and empirically validate the new 

learning method and its extensions, as well as the new aggregation method. The 

dissertation is summarized in Chapter 5 by presenting results for a case study, 

enumerating contributions and findings as well as outlining future directions. 
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Chapter 2  

Background and Related Work 

The subject of dynamic system modeling has been investigated using various techniques 

(Campello and Amaral, 2003). Considering the method of knowledge representation, two 

main groups of modeling approaches can be distinguished. The first group concerns 

quantitative techniques, which can be applied to both well-understood systems, such as 

mathematical programming techniques of operations research, and to less well-defined 

ones, such as statistical regression based methods. However, significant effort and 

specialized knowledge from outside of the domain of interest, which involves linear or 

nonlinear differential or difference equations, is required to develop these models. 

Furthermore, they may not provide satisfactory performance in their application to 

complex systems, such as those with strong nonlinearities, significant feedback, and 

unknown physical behaviour (Pedrycz, 1995; Aguilar, 2005).  

The techniques from the second group, which use a qualitative approach, provide an 

alternative solution to system modeling and are free from the limitations of the first 

group. Numerous qualitative methods have been introduced in the framework of the 

Artificial Intelligence area (De Kleer and Brown, 1984). Modeling techniques from this 

group are focused on providing a qualitative description of a given system (Pedrycz, 

1995), in which the set of the system’s variables is described with a set of modeling 

landmarks and expressed by a limited set of descriptors, such as positive, zero, negative, 

etc. This approach has been extended by applying fuzzy sets to represent these landmarks 

(D’Ambrosio, 1989). Two classes of models have gained significant importance within 

this group of modeling: fuzzy models (Yager and Filev, 1994; Pedrycz, 1996; 

Hellendoorn and Driankov, 1997), and neural networks (Kosko, 1992; Haykin, 1999). 

Fuzzy Cognitive Maps (Kosko, 1986) fall into the second group of modeling techniques 
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and exhibit many appealing properties, such as easy of use, flexibility, and adaptability to 

a given domain (Aguilar, 2005).  

2.1 Overview of Fuzzy Cognitive Maps 

2.1.1 Historical perspective 

Cognitive Maps, which are precursors of Fuzzy Cognitive Maps, were first introduced in 

1976 by a political scientist named Robert Axelrod (Axelrod, 1976). They were presented 

as a tool to help analyze systems that include concepts interrelated by complex 

relationships. In particular, Cognitive Maps were applied to represent social scientific 

knowledge. A Cognitive Map may be expressed in a simple digraph form consisting of 

nodes and edges whereby each node corresponds to a concept or variable relevant to a 

domain of application. This set of nodes is connected by directed edges that represent 

mutual relationships among concepts. Each edge is associated with a positive or negative 

sign that expresses a specific type of relationship. A positive sign for an edge from a node 

A to a node B indicates promoting influence on B exerted by A. It means that an increase 

in the value of node A will lead to an increase in the value of node B, and vice-versa. A 

negative sign for an edge from node A to node B reflects an inhibitory type of 

relationship. It describes the situation where increasing the value of A leads to decreasing 

the value of B. If there is no edge between the given two concepts, it indicates that there 

is no direct cause-effect correlation linking these concepts. However, the results of this 

modeling technique turned out to be insufficient to describe more complex systems due to 

the limited representation of relations. Typically, causality is not Boolean (two-valued, 

yes-no) in real-life systems, i.e., the relationships are too complex to be described with 

only a sign. This was the motivation to extend the theory of Cognitive Maps. 

Ten years later, in 1986, Kosko (Kosko, 1986) introduced Fuzzy Cognitive Maps 

(FCMs). The fundamentals of this method, in terms of model representation as a set of 

concepts connected by relationships, are the same as in the Axelrod’s approach. In 

comparison to Cognitive Maps, the most significant generalization of FCMs lies in the 

way causal relationships between concepts are represented. Instead of using only a sign, 

each edge is associated with a number (weight) that defines the strength of a given causal 

relationship. FCMs describe relationships in fuzzy terms, such as weak, medium, strong, 

or very strong. In other words, a weight associated with directed edge from a node A to 



 
7 

node B quantifies “how much” concept A causes B. The strength of a relationship 

between two nodes (i.e., weight value) is usually normalized on the [–1, 1] interval. The 

value of –1 represents maximum negative, whereas value of the +1, maximum positive 

influence. Zero denotes no causal effect. Other values correspond to intermediate levels 

of influence. As a result, a FCM is fully described by a set of nodes (concepts) and edges 

(cause-effect relationships), which are represented by weights. Apart from the graph 

representation, for computational purposes, FCMs can be equivalently defined by a 

square matrix, called a connection matrix, which stores all weight values of edges 

between corresponding concepts that are represented by rows and columns. Therefore, a 

system with N nodes can be represented by an N x N connection matrix.  

2.1.2 Mathematical foundations 

Mathematically, a Fuzzy Cognitive Map F is a 4-tuple (C, E, C, f) (Kosko, 1986), where 

1. is the set of N concepts forming the nodes of a graph. 

2.  is a function associating eij with a pair of concepts , 

with eij equal to the weight of edge directed from Ci to Cj where . 

Thus,  is the connection matrix. 

3.  is a function that associates each concept Ci with the sequence of 

its activation degrees such as for  given its activation degree at 

the moment t. indicates the initial vector and specifies initial values of 

all concept nodes and  is a state vector at certain iteration t. 

4. f is a transformation function, which includes recurring relationship on  

between  and  

 
 (2.1) 

where  is a transformation function of R to the set of activation 

degrees L normalizing the activation.  
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Formula 2.1 describes a functional model of FCMs, which is used to perform simulation 

of the system dynamics. Simulation consists of computing the state of the system, which 

is described by a state vector, over a number of successive iterations. The state vector 

specifies current values of all concepts (nodes) in a particular iteration. The value of a 

given node is calculated from the preceding iteration of values of nodes, which exert 

influence on the given node through a cause-effect relationship (nodes that are connected 

to the given node).  

The transformation function is used to reduce an unbounded weighted sum to a certain 

range, which is usually set to [0, 1]. The normalization hinders quantitative analysis, but 

allows for comparisons between nodes, which can be defined as active (value of 1), 

inactive (value of 0), or active to a certain degree (value between 0 and 1). The three most 

commonly used transformation functions include: 

• Bivalent 

  (2.2) 

• Trivalent 

  (2.3) 

• Logistic 

  (2.4) 

where M is a parameter used to determine the degree of fuzzification of the function. 

A comparison of different transformation functions for FCMs was recently carried out by 

Tsadiras (Tsadiras, 2008). It includes performance evaluations of different functions, with 
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respect to the nature of the problem, the required representation capabilities of the 

problem and the level of inference required by the case. Overall, the logistic function has 

been found to be the most flexible and effective in providing an accurate description of 

the dynamics of the modeled system. Therefore, in this dissertation all experiments are 

carried out with the logistic transformation function. 

2.1.3 Development strategies 

There are two mainstream techniques for developing FCMs. The first group denoted as 

expert-based methods includes techniques that exploit only human knowledge. For a long 

time this was practically the only way to establish FCMs, mainly because of the lack of 

automated or semi-automated approaches that would support this process. Recently, 

several attempts were made to develop computational methods. They aim to substitute or 

help the expert and learn the model’s structure in either an automated or semi-automated 

fashion using historical data (Stach et al., 2005a; Stach et al., 2010). 

Expert-based methods for Fuzzy Cognitive Maps development rely entirely on human 

expertise and domain knowledge, and therefore are classified as deductive modeling. The 

relatively simple model representation makes it possible to simply manually draw the 

graph that corresponds to an FCM using only a pencil and a sheet of paper. The experts 

are also required to have a rudimentary knowledge of the FCM theory to understand the 

meaning of the weights and the direction of the causal effects. In order to increase the 

credibility of the model, a group of experts as opposed to a single person may be involved 

in the development process. Experts can work together or design maps individually to 

represent their understanding of a given system. In the latter case, the individual maps can 

be combined into a single model.  

The expert-based development of FCMs usually consists of the following three steps 

(Kosko, 1986; Khan and Quaddus, 2004): 

1. Identification of important concepts.  

2. Identification of causal relationships among these concepts. 

3. Estimation of the strength of the causal relationships. 
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In the first step, the decision of which available concepts should be included in the model 

must be made. The most intuitive strategy is to create a list of all relevant concepts and 

remove the insignificant ones. In the second step, all cause-effect direct relationships 

amongst the remaining concepts have to be identified, including their directions. Usually 

this is accomplished by focusing on one pair of concepts at a time, and hence the expert is 

relieved of the task of coming up with hidden or indirect cause–effect relationships. 

These relationships become apparent later through analyses carried out using the 

completed FCM. These first two steps result in a structural design which consists of a 

graph with nodes and directed edges. 

The main challenge in expert-based development of FCMs is to accurately estimate the 

strength of the relationships. We note that the number of weights exhibits quadratic 

growth with the number of concepts, which may lead to difficulties in developing maps 

with several dozens of concepts. Following the original paper (Kosko, 1986), each 

relationship strength value (weight) is expressed by a real number from the [-1,1] 

interval. The value of 0 denotes no relationship and is implicitly assigned at the end of the 

second step. Higher absolute values represent stronger relationships, whereas the sign 

defines the type: promoting (positive numbers) or inhibiting (negative numbers). 

Theoretically, each weight can take on an infinite numbers of values. Consequently, this 

step is potentially susceptible to subjective interpretation of a given expert. A common 

practice to facilitate the estimation of the weight values is to first describe each 

relationship by a linguistic term and then to transform these terms into numerical values. 

The corresponding work can be divided into the following three steps (Kosko, 1986; 

Khan and Quaddus, 2004): 

1. Determining the sign of each relationship.  

2. Describing each relationship by means of linguistic terms, e.g. weak, medium, strong 

and very strong. 

3. Mapping the linguistic terms to numerical values, e.g. weak to 0.25, medium to 0.5, 

strong to 0.75, and very strong to 1.0.  

The use of the linguistic expressions to describe the degrees of causality in relationships 

allows the experts to avoid the difficult task of specifying the precise numerical values 

before a draft model is established. Additionally, analytical procedures, such as 
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Analytical Hierarchy Process (Saaty, 1980), may be helpful in finding the numerical 

values used in the last step of the weight estimation procedure. 

Computational methods for Fuzzy Cognitive Maps development utilize available data and 

a learning algorithm to develop or to support the development of the corresponding 

model. Since they use available data to learn the model, they are classified as inductive 

modeling. A number of methods have been proposed within this research framework. The 

detailed description of these approaches is included in Section 2.2.1, where the related 

background work is presented.  

2.1.4 Areas of applications 

Fuzzy Cognitive Maps have been utilized in numerous research and industrial areas. They 

can be roughly divided into applications in medicine, earth and environmental sciences, 

engineering, and economics, business and management. The breadth and number of 

applications provide motivation for the proposed research and thus a brief summary of 

selected applications, which are organized in chronological order for each application 

domain, is presented in the next few subsections. 

Medicine 

Georgopoulos et al. (Georgopoulos et al., 2001; Georgopoulos et al., 2003; Georgopoulos 

et al., 2005; Georgopoulos and Stylios, 2008; Stylios and Georgopoulos, 2008) applied 

FCMs to help with the diagnosis of Specific Language Impairment (SLI) and to support 

the speech therapist in the diagnosis process. Stylios et al. (Stylios et al., 2001) proposed 

a model based on FCMs that utilized the evaluation of cardiotocographic signals with 

other physiological data to create an advanced decision-making support system. 

Papageorgiou et al. (Papageorgiou et al., 2002) used FCMs in radiotherapy treatment 

planning to estimate the radiation dose. The follow-up of this work (Papageorgiou et al., 

2003a) was published in 2003 and included a more advanced hierarchical approach to the 

same problem that, in addition to the previous model, supervised and evaluated the 

radiotherapy process prior to treatment execution. Castelfranchi et al. (Castelfranchi et 

al., 2003) performed a case study of trust evaluation between a doctor and medical 

automatic system. Innocent and John (Innocent and John, 2004) proposed a framework 

based on FCMs to consider computer aided medical diagnoses in a clinical context that 

supports the estimation of the stage of a disease. The follow-up of this work (John and 
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Innocent, 2005) included a description of a fuzzy process that is applied to the diagnosis 

of two similar diseases. Papageorgiou et al. (Papageorgiou et al., 2006) used FCMs to 

develop an advanced diagnostic method for urinary bladder tumor grading. In 2007, Giles 

et al. (Giles et al., 2007; Giles et al., 2008) proposed an FCM-based approach to address 

the issue of diabetes among Aboriginal communities in Canada, whereby current 

conventional methods of treatment are ineffective. Papageorgiou et al. (Papageorgiou et 

al., 2007) introduced a method using FCM to support medical decision-making incase 

different types of medical and/or clinical data are available. The same research group 

proposed a new method of brain tumor characterization including an accurate 

identification of its grade (Papageorgiou et al., 2008a) as well as an FCM based decision-

making support system for thyroid disease (Papageorgiou et al., 2008b). One of 

Papageorgiou and colleagues’ recent works includes FCM’s application to model the 

problem of pulmonary infections during a patient’s admission into the hospital or 

Intensive Care Unit (Papageorgiou et al., 2009).  

Earth and Environmental Sciences 

Banini and Bearman (Banini and Bearman, 1998) presented an FCM approach to study 

the interaction between various factors that affect slurry rheology. Satur and Liu (Satur 

and Liu, 1999a; Satur and Liu, 1999b; Liu and Satur, 1999) used FCMs to develop a 

supportive tool to analyze data from the Geographic Information System (GIS). Hobbs et 

al. (Hobbs et al., 2002) applied the FCM as a method to study the objectives of ecological 

rehabilitation focusing on the analysis of responses from the ecosystem to management. 

Fons et al. (Fons et al., 2003; Fons et al., 2004) performed an FCM-based analysis of the 

impact of establishing an eco-industrial park. Ozesmi and Ozesmi (Ozesmi and Ozesmi, 

2003) used FCMs to support the management plan for establishing a lake. The same 

authors (Ozesmi and Ozesmi, 2004) proposed a multi-step FCM approach to create 

ecological models with both expert and the residential people’s expertise. Giordano et al. 

(Giordano et al., 2005) applied FCMs to describe conflicts of interests in the area of water 

management. FCMs were used to analyze the decrease in pollution created by products’ 

recycling. Pan et al. (Pan et al., 2005) developed this disassembly model and generated 

recycle sequences for a product. A shallow lake ecosystem model was presented and 

analyzed by Tan and Ozesmi (Tan and Ozesmi, 2006) in order to help understand its 

complex structure and dynamics. In 2007, an FCM model to study the impact of 

deteriorating pipes on water quality so that decision making process for pipe renewal 
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could be supported (Sadiq et al., 2007) was developed. An emergency management plan 

for a nuclear power plant using an FCM modeling was presented by Espinosa-Paredes 

and colleagues in 2008 (Espinosa-Paredes et al., 2008) to support the decision making 

process during abnormal situations in a nuclear power plant. In 2009, the same research 

group used an FCM to model a risk scenario for a nuclear power plant (Espinosa-Paredes 

et al., 2009). Recent work in this area, introduced by Kok (Kok, 2009), discusses 

modeling and predicts the dynamics of deforestation in the Brazilian Amazon with the 

use of FCMs. Gras and colleagues (Gras et al., 2009) used an FCM to simulate an 

evolving predator-prey ecosystem. 

Engineering 

In one of the first applications of FCMs in engineering, Styblinski and Meyer (Styblinski 

and Meyer, 1988) explored their usefulness to the qualitative electrical circuit analysis. 

Pelaez and Bowles (Pelaez and Bowles, 1995; Pelaez and Bowles, 1996) applied FCMs 

to describe the failure modes of a system. Lee et al. (Lee et al., 1996) proposed a system 

that performed on-line fault diagnoses with the use of FCMs. Another example using 

FCM technique, fault management and diagnosis, was authored by Ndousse and Okuda 

(Ndousse and Okuda, 1996). Subsequent applications are related to the robotics field. 

Hashimoto and Yamaguchi, followed by Ando et al. (Hashimoto and Yamaguchi, 1997; 

Hashimoto, 2000; Ando et al., 2001), proposed an application of FCMs to describe a 

system with an agent. As an example they used a mobile robot and modeled its emotions. 

Modeling of emotions in autonomous agents and robotics with the use of FCMs was also 

studied by Ayesh (Ayesh, 2004) and Golmohammadi and colleagues (Golmohammadi et 

al., 2007). Pipe et al. (Pipe et al., 1995) used FCMs as a supportive tool in discovering a 

near-optimal path between start and goal positions of a particular maze for a mobile 

robot. Another application of FCMs to robot systems was presented by Subramanian and 

Dagli (Subramanian and Dagli, 2003). They used this technique to simulate the 

positioning of the robots and perform simple robots movements. Returning back to the 

mid 1990s, in 1997 Stylios et al. (Stylios et al., 1997) presented an application of FCMs 

to distributed control systems. The base modeled system included a tank and three valves 

that controlled the amount of liquid in the tank. Based on this initial work, several follow-

ups were presented by the same authors (Stylios and Groumpos, 1999; Groumpos and 

Stylios, 2000; Stylios and Groumpos, 2004), which demonstrated the usefulness of FCM 

modeling in more complex control process problems. In particular, their work included 



 
14 

the modeling of the supervisor of a control system and examples of its application in real-

life systems, such as a heater exchanger. Macedo (Macedo, 1999) introduced a new 

computer-aided design system, using FCMs, that supports organizational re-engineering. 

Satish Jamadagni (Satish Jamadagni, 2000) employed FCMs to describe mobility 

management issues in telecommunication networks. Lee and Han (Lee and Han, 2000) 

applied FCMs to help with the design of Electronic Data Interchange (EDI) controls, 

whereas in follow-ups to this work (Lee et al., 2004; Lee and Lee, 2007), the evaluation 

of the performance of EDI with the use of FCMs was carried out. An example of an 

intelligent intrusion detection system in a computer network that exploits FCMs as a 

supportive tool for decision making was proposed by Siraj et al. (Siraj et al., 2001). Xin 

et al. (Xin et al., 2003) used FCMs in the same area to detect complex network attack 

scenarios, whereas Mu et al. (Mu et al., 2004) presented an FCM-based decision support 

mechanism that set up the intrusion response plan. Lee et al. (Lee et al., 2002) applied 

FCMs in the field of web-mining as part of a novel web-mining inference amplification 

mechanism. Christova et al. (Christova et al., 2003) proposed an integrated hierarchical 

method based on FCMs, to model industrial plants. Stach and Kurgan (Stach and Kurgan, 

2004; Stach et al., 2004a) applied FCMs in the software project management domain. 

This modeling technique was used to describe and analyze factors that affect the pace of 

work progress during software project development. In 2006, Xirogiannis and colleagues 

(Xirogiannis et al., 2006) presented a decision support framework for assisting the 

process of urban design. Several examples of FCM application as well as guidelines on 

how to use this technique in Engineering and Technology Management are discussed by 

Jetter (Jetter, 2006). Rodriguez-Repiso and co-workers (Rodriguez-Repiso et al., 2007) 

developed an FCM model to classify and evaluate the indicators of success in IT projects. 

An analysis of electronic circuits troubleshooting using FCMs was presented by Perusich 

(Perusich, 2007; Perusich, 2008) whereas mobile robot troubleshooting was discussed by 

Yeap et al. (Yeap et al., 2008). Risk management in a distributed system using an 

example of distributed databases was modeled and analysed by de Korvin et al. (De 

Korvin et al., 2007). Distributed wireless peer to peer networks were modeled with an 

FCM by Li et al. (Li et al., 2009) to help develop a novel peer selection scheme. 

Economics, Business and Management 

Kardaras and Karakostas (Kardaras and Karakostas, 1999) studied the application of 

FCMs as an alternative method to existing Strategic Planning of Information Systems. 
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Koulouriotis et al. (Koulouriotis et al., 2001a) performed a stock market analysis and 

prediction with the use of FCMs, which were used to construct a stock market model. 

Jetter (Jetter, 2003) applied FCMs to model the early phases of a new product 

development, which was used to support decision making. Borrie and Ozveren (Borrie 

and Ozveren, 2004) utilized FCMs to describe a dynamic market environment using an 

example of the electricity market in the United Kingdom. Another illustration of using 

FCM-based methodology in economics was presented by Carvalho and Tome (Carvalho 

and Tome, 2004) who developed a model of tax rate evolution in Europe. Xirogiannis 

and Glykas (Xirogiannis and Glykas, 2004) developed an FCM that supplemented the 

strategic planning and business analysis phases of typical redesign projects. The same 

authors (Glykas and Xirogiannis, 2005) applied FCMs as a tool for modeling factors 

related to geographically dispersed financial enterprises that influence overall business 

performance. Grant and Osei-Bryson (Grant and Osei-Bryson, 2005) investigated how 

changes in one area of a company affect other areas by using FCM to model impacts and 

interactions. Modeling a system to support e-business strategy formulation with the use of 

FCMs was presented by Xirogiannis and Glykas (Xirogiannis and Glykas, 2007). An 

application of FCMs to business planning modeling and analysis was discussed by 

Niskanen (Niskanen, 2007). FCMs were applied to model a supply chain risk analysis in 

order to achieve continuous customer satisfaction by Feyzioglu et al. (Feyzioglu et al., 

2007). Enterprise resource planning tools using FCMs was proposed by Bueno and 

Salmeron (Bueno and Salmeron, 2008) to support decision making in a company. FCMs 

were also utilized to model and forecast stock markets by Froelich and Wakulicz-Deja 

(Froelich and Wakulicz-Deja, 2008). Schlager and Pernul (Schlager and Pernul, 2008) 

studied trust and its role in e-commerce by developing and analysis of a corresponding 

FCM model. In 2009, an application of FCMs to credit risk evaluation was proposed by 

Buyukozkan and Vardaloglu (Buyukozkan and Vardaloglu, 2009), whereas Noori et al. 

(Noori et al., 2009) applied FCMs as a tool for modeling factors related to organizational 

conflict management. 

Other Application Areas 

Applications of FCMs are not limited to the areas listed in the last four subsections. They 

have also been used in other fields. Chen and Huang (Chen and Huang, 1995a; Chen and 

Huang, 1995b) studied guard heuristic in Chinese chess using FCMs. Perusich (Perusich, 

1996; Perusich and McNeese, 2005) investigated the application of FCMs as an 
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intelligent analyst incase of a terrorist attack. Several publications presented applications 

of FCM in domain of education (Cole and Persichitte, 2000; Georgiou and Makry, 2004; 

Hossain and Brooks, 2008; Salmeron, 2009). FCMs were also applied in political 

sciences (Tsadiras et al., 2001; Andreou et al., 2005), pattern recognition (Hu et al., 2004; 

Pajares and De la Cruz, 2006; Papakostas et al., 2008), document classification (Peng et 

al., 2008; Zhou and Zhang, 2008), protein structure prediction (Kurgan et al., 2007; 

Nguyen et al., 2008), time series prediction (Stach et al., 2008a) which is described in 

details in Section 3.4, and military planning (Yaman and Polat, 2009). Most recent 

applications include modeling of agro-ecosystems (Rajaram and Das, 2010), cryovolcanic 

activity on Titan (Furfaro et al., 2010), and defense planning in combating terrorism 

(Akgun et al., 2010). 

Table 2.1 presents reported applications of Fuzzy Cognitive Maps. The table includes 

information about the area of application, the number of corresponding journal and 

conference papers, and the years of publications.  

Table 2.1: Summary of FCM applications 

Area Journal 
papers 

Conference 
papers Years (number of publications) 

Medicine 11 8 2001, 2002 (x2), 2003 (x3), 2004, 2005 
(x3), 2006, 2007 (x2), 2008 (x4), 2009 

Earth and 
Environmental 

Sciences 
13 4 

1998, 1999 (x3), 2002, 2003 (x2), 2004 
(x2), 2005 (x2), 2006, 2007, 2008, 2009 

(x3) 

Engineering 16 21 

1998, 1995 (x2), 1996 (x3), 1997 (x2), 
1999 (x2), 2000 (x5), 2001 (x2), 2002, 
2003 (x3), 2004 (x6), 2006 (x2), 2007 

(x5), 2008 (x2), 2009 

Economics, Business, 
and Management 6 9 1999, 2001, 2003, 2004 (x3), 2005 (x2), 

2007 (x2), 2008 (x3), 2009 (x2) 

Others 13 9 
1995 (x2), 1996, 2000, 2001, 2004 (x2), 
2005 (x2), 2006, 2007, 2008 (x6), 2009 

(x2) , 2010 (x3) 
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The above summary of FCM applications indicates that researchers use this modeling 

technique in various disciplines demonstrating its adaptability and flexibility. The number 

of recent publications shows that there is a continuous interest in Fuzzy Cognitive Maps, 

which motivates and rationalizes further research in this area. 

2.1.5 Example of FCM – case study  

A real-life FCM application of this particular modeling technique in Mineral Engineering 

was selected as a case study. More specifically, FCMs were used to model factors that 

affect slurry rheology (Banini and Bearman, 1998). This choice was made due to the fact 

that the original reference presents an interesting application of FCM to a relatively large 

system that includes thirteen concepts and is the only contribution that provides all 

necessary information to define a case study that can be utilized consistently throughout 

the entire dissertation. In particular, this map was developed by an aggregation of input 

maps developed by three experts, whereby the authors provide all the relevant connection 

matrices. Moreover, the design of the map follows typical practices used for FCM 

developments (Aguilar, 2005). Following the original paper, there is a step-by-step 

description of the design procedure used in the original reference.  

Defining concepts 

Based on their knowledge from the area of application and previous works, three experts 

agreed on the following 13 concepts that define the modeled system: gravity (C1), 

mechanical properties of particles (C2), physicochemical interaction (C3), hydrodynamic 

interaction (C4), effective particle concentration (C5), particle-particle contact (C6), 

liquid viscosity (C7), effective particle shape (C8), effective particle size (C9), 

temperature (C10), inter-particle attraction (C11), floc/structure formation (C12), and 

shear rate (C13). This set represents important factors that affect the slurry rheology 

process and that interact with each other through cause-effect relationships. 

Defining relationships 

Each expert was asked to draw an FCM model that consists of these 13 concepts and to 

establish the relationships between the concepts based on his or her beliefs. 

Consequently, three models have been proposed (Banini and Bearman, 1998). The 

experts chose one of the twenty one values (-1,-0.9,…,0,…0.9,1) to define each 
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relationship. Since the model consists of 13 concepts, each expert had to define 169 

relationships. The exact procedure is not explained, though the paper includes a statement 

that they consulted their opinions at the local Mineral Research Center. The experts’ 

maps were sparsely connected and they included 18, 20, and 44 non-zero relationships, 

respectively. 

FCMs aggregation 

A commonly used method for aggregating FCMs that averages relationship strengths 

across all individual models (see Section 2.2.2 for details) was used to obtain the 

combined model. The models from the three experts were aggregated to obtain a single, 

final model of the slurry rheology system, see Figure 2.1. 
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 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 

C1    0.03       -0.13   

C2    0.23  0.17  0.33 0.37  0.1   

C3     0.17 0.17  0.13 0.13  0.23 0.27  

C4   0.17  0.17 0.03      -0.1  

C5    0.5  0.6 0.23    0.33 0.13 -0.13 

C6   0.17 0.17 0.33    0.13     

C7    0.23  -0.33     -0.13 -0.23 -0.10 

C8    0.3   -0.13    -0.23 0.37  

C9    0.17  0.13 0.1    0.13 0.23  

C10   0.27 0.1 0.1 0.27 -0.63 0.1   0.1 0.1 0.1 

C11   0.23  0.07 0.1 0.03     0.53  

C12     0.1  0.13 0.33 0.1     

C13     0.03 0.13 -0.33 -0.13  0.1  -0.33  

Figure 2.1: Fuzzy Cognitive Map model for the slurry rheology system along with its 

connection matrix. Empty cells indicate values of zero. 
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FCM analysis 

The static analysis of the final model included discovering concepts that play an 

important role in the modeled system (Tsadiras et al., 2001). This was performed by 

taking the sum of absolute values of all non-zero relationships that enter (incoming 

edges) as well as leave (outgoing edges) a given concept. The following concepts were 

determined as the most important in the system: C4, C5, C6, C7, C8, C11, and C12, since 

the values of the corresponding sums were greater than those of the other concepts.  

The dynamic analysis was aimed at performing what-if scenarios by simulating the 

system from different initial conditions. For instance, by simulating the model from the 

initial state where C1=1 and all other concepts are reset to the value zero, the authors 

investigated the system behaviour in case of gravity change (C1). Since the system 

headed to a stable state with most active concepts C1, C4, C5, C8, C9, C12, the 

conclusion was that these concepts will be mostly affected by the change.  

The results obtained for both types of analyses agreed with previous works and 

experiments in this area (Banini and Bearman, 1998). 

2.2 Related work 

2.2.1 Computational methods for FCMs development  

In one of the first attempts, Dickerson and Kosko proposed a simple Differential Hebbian 

Learning (DHL) (Dickerson and Kosko, 1993; Dickerson and Kosko, 1994) method, 

which is based on Hebbian’s theory (Hebb, 1949). During DHL learning, the values of 

weights are iteratively updated until the desired structure is found. In general, the weights 

of outgoing edges for each concept in the connection matrix are modified only when the 

corresponding concept value changes,  

 
 (2.5) 
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where eij denotes the weight for relation from concept Ci to Cj,  represents the 

change in the Ci concept’s activation value, t is the iteration number, and ct is a learning 

coefficient.  

The learning coefficient is a small constant whereby values generally decrease as the 

learning progresses. The main drawback of this learning method is that the formula 

updates the weights between each pair of concepts taking into account only these two 

concepts and ignoring the influence from others. 

An improved version of DHL learning was introduced by Huerga (Huerga, 2002). The 

new algorithm, called Balanced Differential Algorithm (BDA) eliminates one of the 

limitations of the DHL method by taking into account all concept values that change 

simultaneously when the weights are updated. More specifically, the modified formula 

for eij(t+1) takes into consideration the changes in all concepts if they occur at the same 

iteration and have the same direction. An empirical comparison between DHL and BDA 

demonstrates that the latter method improves the quality of the learned maps (Huerga, 

2002). On the other hand, the BDA algorithm was applied only to binary FCMs, i.e., 

maps with binary transformation functions, which limits its application areas. 

One year later, Papageorgiou and colleagues introduced a Nonlinear Hebbian Learning 

(NHL) algorithm (Papageorgiou et al., 2003b). While this algorithm originates from the 

same learning principles, it uses a nonlinear extension to the basic Hebbian rule (Oja et 

al., 1991) by introducing a modified weight update formula. The formula updates each 

weight proportionally to the product of the corresponding concepts’ activation values. 

The learning algorithm takes an initial FCM and iteratively modifies the model until the 

desired map is found. Learning terminates when the activation values of a selected subset 

of concepts achieve corresponding predefined levels.   

The same research group proposed Active Hebbian Learning algorithm (AHL) in 2004 

(Papageorgiou et al., 2004). This approach introduces and exploits the task of 

determining the sequence of activation concepts. Expert(s) determine(s) the desired set of 

concepts, initial structure and the interconnections of the FCM structure as well as the 

sequence of activation concepts. A seven-step AHL procedure, which is based on 

Hebbian learning, is iteratively used to adjust the weights to satisfy the predefined 

stopping criteria.  
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In recent work, Stach and coworkers proposed an improved version of the NHL method 

(Stach et al., 2008b). The algorithm, called Data-Driven Nonlinear Hebbian Learning 

(DD-NHL), is based on the same learning principle as the NHL, but it takes advantage of 

all historical data (a simulation of the actual system) and uses output concepts to improve 

the learning quality. An empirical comparative study has shown that if historical data are 

available, then the DD-NHL method produces better FCM models when compared with 

those developed using the generic NHL method (Stach et al., 2008b). 

In 2001, Koulouriotis and colleagues applied the Genetic Strategy (GS) to learn FCM’s 

model structure, i.e., weights of relationships, from data (Koulouriotis et al., 2001b). In 

their method, the learning process is based on a collection of input/output pairs, which are 

referred to as examples. The learning requires historical data consisting of multiple 

sequences of state vectors (multiple simulations of the system). The algorithm computes 

the structure of an FCM that is able to generate state vector sequences that transform the 

input vectors into the output vectors. The main drawback to this approach is that it 

requires multiple state vector sequences, which might be difficult to obtain in some of the 

application domains. 

Particle Swarm Optimization (PSO) method, proposed by Parsopoulos and coworkers, 

belongs to the class of Swarm Intelligence algorithms (Parsopoulos et al., 2003). This 

method aims at learning FCM based on historical data that converge to a desired final 

state. PSO is a population based algorithm, which performs a search for the solution by 

maintaining and transforming a population of individuals. The learning requires human 

knowledge that is used to specify adequate constraints, which would guarantee that the 

relationships within the FCM model retain the physical meaning defined by the expert(s).  

Another method based on swarm optimization, was proposed by Petalas and colleagues in 

2009 (Petalas et al., 2009). This method, called memetic particle swarm optimization 

(MPSO), combines swarm intelligence memetic algorithm with both deterministic and 

stochastic local search schemes, for fuzzy cognitive maps learning tasks. The method 

needs an initial set of weights, which are usually imposed by an expert or group of 

experts, to perform optimization. 

The next algorithm proposed by Khan and Chong aims to accomplish a different learning 

objective (Khan and Chong, 2003). Instead of learning the structure of the FCM model, 
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their goal was to find an initial state vector (initial condition) that leads a given model to 

the specified end state. Their method employed genetic algorithms to find the initial state. 

Table 2.2 summarizes the above-mentioned learning approaches. The comparison is made 

based on several factors, such as the learning goal, involvement of a domain expert, input 

data, and learning type.  

Table 2.2:Summary of learning methods for FCMs 

Algorithm Learning goal Human 
intervention 

Type of data 
used 1) 

Transformation 
function 

Learning type 

AHL 
Connection 

matrix 
Yes&No2) Single Continuous Modified Hebbian 

BDA 
Connection 

matrix 
No Single Binary Modified Hebbian 

DD-NHL 
Connection 

matrix 
No Single Continuous Modified Hebbian 

DHL 
Connection 

matrix 
No Single N/A Hebbian 

GA Initial vector N/A N/A Continuous Genetic 

GS 
Connection 

matrix 
No Multiple Continuous Genetic 

MPSO 
Connection 

matrix 
Yes&No2) Single Continuous Swarm 

NHL 
Connection 

matrix 
Yes&No2) Single Continuous Modified Hebbian 

PSO 
Connection 

matrix 
No Multiple Continuous Swarm 

1)  Single – historical data consisting of one sequence of state vectors; Multiple – 

historical data consisting of several sequences of state vectors, for different 

initial conditions 

2) Initial human intervention is necessary but later when applying the algorithm 

there is no human intervention needed 
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In summary, research on learning FCM models from data has resulted in a number of 

interesting approaches. One group of methods, which includes NHL, AHL, and MPSO, is 

aimed at providing tools that would support the expert(s) in the development of accurate 

models based on his or her knowledge about the modeled system. The remaining 

algorithms from the other groups are oriented toward eliminating human intervention 

from the entire development process, i.e., they only need historical data to establish FCM 

models for a given system. Early works applied mostly Hebbian learning, whereas 

recently genetic-based optimization techniques gain the momentum. 

2.2.2 Aggregation methods for FCMs  

Fuzzy Cognitive Maps allow for a relatively simple aggregation of knowledge obtained 

from several experts. The aggregation of FCMs aims at improving the reliability of the 

final model which is less susceptible to potentially erroneous beliefs of a single expert. 

There are a couple of procedures for combining multiple FCMs into a single, final model. 

They involve simple matrix operations, such as summations and multiplications by a 

number (Kosko, 1988), which are computed using individual connection matrices 

developed by different experts. It is not uncommon that experts decide on a different 

number of concepts. Consequently, the sizes of the corresponding matrices may not be 

the same and/or the corresponding rows/columns may refer to different concepts. In such 

a case, the first step towards the aggregation of maps is to equalize their sizes. Each 

connection matrix is augmented, if necessary, by including any missing concept(s), when 

compared to any other map, through the addition of extra rows and columns in the 

connection matrix filled with zeros. In other words, “dummy” concepts are added to the 

model. If the total number of distinct concepts for all input FCMs equals N, then each 

individual connection matrix is augmented to the matrix of N×N size (Khan and Quaddus 

2004). Consequently, all individual maps have the same dimensions. 

Chronologically, the first approach to aggregate FCMs was introduced by Kosko (Kosko, 

1988). It simply takes an average of each relationship across individual maps. Therefore, 

the connection matrix of the final FCM is established through simple matrix operations: 

  (2.6) 
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where E is the connection matrix of the aggregated model, Ek is the connection matrix of 

the model developed by kth expert, and K is the number of experts. 

In other words, in this approach, each expert contributes equally to the final model. This 

method does not require any additional information except the knowledge of the input 

connection matrices. On the other hand, it gives each expert the same credibility, i.e., uses 

a simple, non-weighted average of the input matrices, which may be undesirable. The 

assumption for the formula above is that the individual matrices have the same number of 

dimensions and the same concepts. If this is not the case, a pre-processing of matrix 

augmentation as described in the previous paragraph, is necessary. 

The basic method has been extended in order to accommodate for the credibility factors 

of individual maps (Kosko, 1988), by replacing the ordinary average with a weighted 

average. The weights wi are assigned to experts proportionally to their reliability and take 

values from range [0,1]. Formula 2.7 is used to calculate the aggregated map using this 

method:  

 
 

(2.7) 

where E is the connection matrix of the aggregated model, Ek is the connection matrix of 

the model developed by kth expert, wk is the credibility of kth expert, and K is the number 

of experts. 

Hence, experts with higher credibility have a higher influence on the structure of the 

aggregated map than those with lower credibility. The applicability of this method is 

limited by difficulties in estimating the credibility coefficients (Stach et al., 2005a). 

Similar to the previous method, a pre-processing step of unifying individual matrices may 

be required.  

The most recent method (Lin, 2007; Lin, 2008), for aggregating Fuzzy Cognitive Maps 

utilizes Dempster-Shafer (Dempster, 1967; Shafer, 1976) evidence theory, which is a tool 

for multi-expert opinions combination. It requires defining a frame of discernment that is 

used to convert the weights defined by experts to basic probability assignments. The 
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frame of discernment is a set of fuzzy sets that correspond to linguistic descriptors, which 

are later mapped to a numerical value. Each weight defined by an expert is changed to 

basic probability assignments based on the membership functions of the linguistic 

variables. Next, these probability assignment functions are combined according to the 

combination rule of evidence theory, and the target type is determined by the rule of 

belief evaluation. Finally, a weighted average of all the elements of the frame, according 

to the integrative basic probability assignment, is applied. The main difficulty in applying 

this method is its requirement for predefined frames of discernment, which includes both 

the number of the fuzzy sets and their membership functions. Although this choice affects 

all subsequent steps of the algorithm, the original paper does not give any guidelines on 

how they should be defined. 

Table 2.3 summarizes methods for aggregating Fuzzy Cognitive Maps.  

Table 2.3: Summary of aggregating methods for FCMs 

Method Type Additional information needed 

Average Structural No 

Weighted average Structural Yes, credibility weights 

Dempster-Shafer Structural Yes, frame of discernment 

All of them operate on a structural level, i.e., they solely use the connection matrices of 

individual FCM models and aggregate them using certain formulas. The only method that 

does not require any additional information is average. Both other approaches require 

supplementary knowledge, which may be difficult or impossible to obtain.  
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Chapter 3  

Learning Fuzzy Cognitive Maps 

from Data 

3.1 Introduction 

Designing a reliable and accurate Fuzzy Cognitive Map model for a given system is a 

challenging task (Aguilar, 2005; Stach et al., 2005a). Disadvantages related to expert-

based development methods, such as bias and limited complexity of the model, 

encouraged researchers to work towards a systematic approach for FCM development 

(Stach et al., 2005a). In this realm, a number of computational methods that utilize 

available data to develop an accurate model for a given system have been recently 

proposed. 

Computational methods for FCM development can be divided into two groups: semi-

automated and fully-automated (Stach et al., 2005a; Stach et al., 2010). Methods from the 

former group require limited human expertise in the area of application, which typically 

involves sketching an initial map or defining a subset of relationships. Therefore, these 

methods are used to support the development process rather than to replace human 

experts. On the other hand, fully-automated methods learn the model from available data 

using a learning algorithm. Hence, they are intended to replace human experts.  

Since FCMs include feedback loops and nontrivial transformation functions, forming the 

models from data is a complex task (Aguilar, 2005; Stach et al., 2005a). A differential 

Hebbian learning algorithm was the first one used to tackle this problem, see Table 2.2. It 

served as a cornerstone for a number of algorithms based on a modification of the 

Hebbian learning rule. Siminar research, within this framework, includes approaches that 
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use evolutionary algorithms, such as genetic algorithms or particle swarm optimization. 

Recently, these methods have gained momentum. 

3.2 Detailed goals 

In this chapter, a new fully-automated method for learning FCM from data is introduced. 

The method is a natural continuation of research conducted in the domain of FCM 

learning (refer to Table 2.2). It draws conclusions from the methods proposed in the past, 

and provides substantial advancements. The research goals are stated below: 

• to introduce a new, fully-automated, learning method for Fuzzy Cognitive Maps 

with a continuous transformation function that is capable of learning high quality 

models using a single input state vector sequence (input data); 

• to compare several designs of the proposed learning method and select the most 

effective solution; 

• to carry out well-organized, thorough tests, considering the large number of 

diverse types of FCMs, and come up with firm design guidelines; 

• to examine the influence of the input data length on the learning quality; 

• to evaluate the method against other automated approaches to learn FCMs; 

• to validate the proposed method on real data in application to time series 

prediction and to compare its performance to other fuzzy-based predictors; 

• to investigate and propose improvements to the scalability of the method with the 

aim of applying it to a large system consisting of a few dozen of concepts; 

• to propose a modification to the proposed learning method, which utilizes a priori 

knowledge of the model structure, that leads to improved quality of the learned 

FCMs. 
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3.3 Proposed approach 

3.3.1 Problem statement 

The objective of the FCM learning is to establish an FCM connection matrix E, see FCM 

definition in Section 2.1.2, given its set of concepts and a sequence of 

their activation degrees . The sequence forms a TxN input data 

matrix where T is the input data length and N is the number of concepts. We also assume 

that the transformation function is given and we carry out the learning task with the most 

commonly used in practice transformation function (Stach et al., 2005a; Tsadiras, 2008), 

which is the logistic function, see Formula 2.4, using parameter M=5. 

3.3.2 Methods used 

Learning of FCMs is equivalent to the task of optimization of the underlying connection 

matrix. The optimization’s objective is to determine NxN parameters that define an FCM, 

such that a certain performance index, which is defined based on difference between 

input data and the simulation of the FCM, is minimized. An extension to the genetic 

algorithms has been chosen to perform the optimization task. Genetic algorithms (GAs) 

(Holland, 1975; Goldberg, 1989) are robust, global optimization methods, which 

originate from the biological realm, i.e., they maintain a population of candidate 

solutions (chromosomes) to a problem that evolves over a sequence of generations. They 

are based on the principle of “survival of the fittest”, and therefore the better solutions 

have a higher probability to be selected for reproduction than poorer solutions. Compared 

to gradient descent techniques, GAs are superior because the search is not biased towards 

locally optimal solutions (Patnaik and Mandavilli, 1996). GAs usually start with a 

randomly generated population of candidate solutions. The fitness function, which is 

problem specific, is used to evaluate each chromosome. Chromosomes with higher fitness 

values have greater probabilities of being selected for further reproduction. Genetically 

inspired operators such as crossover, mutation, and selection are applied in each 

generation to produce “better” chromosomes and prevent the premature convergence of 

the GAs to suboptimal solutions. 
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Generic genetic algorithms are better suited to tackle optimization problems with discrete 

variables due to the chromosomes’ binary representation. One of the extensions proposed 

to GAs, called real-coded genetic algorithms, eliminates this inconvenience. Real-coded 

genetic algorithms (RCGA) (Herrera et al., 1998) are a floating-point extension to GAs, 

which makes them convenient in their applications to optimization problems with 

continuous variables. The key difference between these two approaches lays in 

chromosome representation. Contrary to GAs that use binary strings, floating-point 

vectors are used in RCGA. When compared to GAs, the genetic operators were revised to 

handle floating-point values. Nevertheless, the principles of these two optimization 

techniques are the same. Since our optimization problem involves floating-point 

parameters, the RCGA method was selected and used in the proposed learning method.  

3.3.3 RCGA learning algorithm 

Chromosome structure 

Chromosome structure needs to be defined in a way that each chromosome represents a 

solution to a given problem. As a result, for the FCM learning task, the structure must 

include N*N floating-point values where N is the number of concepts in the modeled 

system. 

  (3.1) 

where eij corresponds to the relationship strength from the concept Ci to the concept Cj 

and is normalized on the [-1,1] interval. 

The chromosome’s structure can be easily converted from a 1xN2 vector to a NxN matrix, 

which represents a connection matrix of a solution to the learning task. The solution is 

called candidate FCM.  

Fitness function 

Fitness function definition is considered as one of the most important factors in the 

successful application of genetic algorithms (Goldberg, 1989; Herrera et al., 1998). The 

design of the fitness function in the proposed learning method takes advantage of a 
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specific feature of the FCMs theory. Specifically, we note that at each iteration of model 

simulation, the state vector C(t+1) depends only on the state vector at the preceding 

iteration and does not depend on any other state vectors, see Formula 2.1. We use this 

property to group each two adjacent state vectors in the input data matrix to form T-1 

input data pairs 

 
 

(3.2) 

where  is the tth state vector in the input data matrix. 

Within each pair we call the antecedent  a system stimulus, whereas the decedent

 is called a system response. These input data pairs store information about the 

system’s dynamics and, consequently, they are used in the fitness function definition.  

Generally speaking, the fitness function for each chromosome is calculated by performing 

one step simulations of the candidate FCM starting from each system stimulus. The state 

vectors obtained from simulations, candidate FCM responses, are compared against the 

corresponding system responses. The candidate’s FCM error function used to calculate 

fitness value is shown below: 

 
 (3.3) 

where  is the candidate FCM response for  system 

stimulus,  is the system response for  system 

stimulus, p is the error norm type, and α is the normalization parameter. 

We performed an experimental comparison (see Section 3.3.4) of the performance of our 

learning method for three different p-norms to calculate the error function, i.e., p=1 

(taxicab norm), p=2 (Euclidean norm), and p=∞ (maximum norm). The parameter α is 
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used to normalize the error rate and it is equal to   for the taxicab and Euclidean 

norm, and  for the maximum norm. 

The fitness function in the proposed learning approach is defined as follows: 

  (3.4) 

where h is an auxiliary function, and , a is a parameter established 

experimentally. 

The auxiliary function h was introduced for the following reasons: 

• to ensure that better individuals have a higher fitness value and to normalize the 

fitness value onto the (0,1] interval; 

• to embed non-linearity that rewards chromosomes that are close to the optimal 

solution.  

Genetic operators  

The following genetic operators need to be defined for the RCGA method: crossover, 

mutation, and selection (Herrera et al., 1998). We performed an experimental evaluation, 

described in the following subsection, of different configurations, which is based on the 

results we chose the recommended setup. 

Stopping conditions 

The following stopping condition has been implemented: 

• fitness function value of the best chromosome is greater than or equal to its 

certain maximum value 

OR 

• maximum number of generations is reached 
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These maximum values have been established during experiments described in the 

following subsection. 

Detailed procedure for the proposed RCGA learning method  

The above-mentioned discussion is summarized below where all steps of the proposed 

RCGA learning algorithm for Fuzzy Cognitive Maps (Stach et. al., 2005c) are presented. 

Given  

A set of concepts  and a sequence of their activation degrees 

 

Step 1:  Divide data into T-1 pairs:  

Step 2: Randomly initialize a population of p chromosomes, such that each chromosome 

is represented as  where eij
 is a random number on 

the [-1, 1] interval  

Step 3: Calculate the fitness function for entire population, which is carried out by 

decoding the candidate FCM from each chromosome, and applying Formula 3.4 

Step 4: Check the stopping condition. If it is satisfied, return the chromosome with the 

highest fitness function value 

Step 5: Apply crossover operation on the population 

Step 6: Apply mutation operation on the population 

Step 7: Calculate the fitness function values for the entire population  

Step 8: Check stopping condition 

Step 9: Generate a new population using selection operations 

Step 10: Go to Step 5 
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3.3.4 RCGA parameterization experiments 

Experimental setup 

We used both synthetic and real-life data to perform experiments with parameterization 

of the proposed method. The former group of experiments uses synthetic input data, 

which are generated from random input FCM models and random initial state vectors, 

whereas the latter uses real-life, i.e., previously reported in a scientific literature, FCM 

models to generate input data. The synthetic setup allows for performing large number of 

experiments with fully customizable parameters, such as: number of concepts or maps 

structure. The real-life setup allows for the verification of the quality of the solutions 

against the applications of FCMs in a real world. 

Evaluation criteria 

The RCGA learning method performs optimization based on input data. The quality of 

learning with respect to the input (training) data is measured as an average difference 

between the input data and the data from the simulation of the learned FCM starting from 

the same initial state vector: 

 
 (3.5) 

where is the activation value of concept Cn at iteration t obtained from simulating 

the candidate FCM,  is the activation value of concept Cn at iteration t obtained 

from the input data, and T is the input data length 

To avoid overfitting ,we complete simulations that start from different initial state vectors 

when compared with the training simulations. These experiments were repeated ten times 

using different initial vectors. Hence, the evaluation is carried out on previously unseen 

data, and thus it measures generalization capabilities of the candidate FCM. The formula 

to calculate this measure, out-of-sample error, is shown below: 



 
35 

 
 (3.6) 

where  is the activation value of concept Cn at iteration t obtained from simulating 

the candidate FCM started from pth initial condition,  is the activation value of 

concept Cn at iteration t obtained from simulating the input model started from pth initial 

condition, T is the input data length, P is the number of different initial state vectors, and 

N is the number of concepts. 

Results 

The first group of experiments involved tuning the RCGA parameters. Randomly 

generated input FCMs with a different number of concepts (5, 10, 15) and densities (20% 

and 40%) were used to generate the input data. The goal was to find RCGA parameters 

that most consistently led to the best solutions using different setups and in a reasonable 

running time. In total, fifty experimental learning results were visually inspected to 

establish the learning parameters that are reported below: 

• recombination method: single-point crossover;  

• mutation method: randomly chosen from random mutation, non-uniform 

mutation, and Mühlenbein’s mutation;  

• selection method: randomly chosen from roulette wheel and tournament;  

• probability of recombination: 0.5;  

• probability of mutation: 0.5;  

• population size: 100 chromosomes;  

• maximum number of generations: 30,000;  

• maximum value of fitness function: 0.999;  

A relatively high value of mutation probability is motivated by a large number of sub-

optimal solutions. A low mutation value leads to slow exploration of the search space, 
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and, consequently, the algorithm often gets stuck in sub-optimal solutions. We noted that 

in such cases the FCM performance on unseen data deteriorates significantly when 

compared to its performance on data used for learning. 

The second group of experiments focused on comparing different fitness functions, see 

Section 3.3.3. Twenty experiments using each fitness function type were carried out to 

tune up the parameter a. Next, experiments given the same setup, i.e., number of concepts 

and densities as in the first group, were carried out. Each experiment was repeated 10 

times and average out-of-sample error values are reported in Table 3.1. 

Table 3.1: Fitness function parameterization results for RCGA learning method 

Setup Out-of-sample error 
Number 

of 
concepts 

Input map 
density 

Fitness 
function L1 

Fitness 
function L2 

Fitness 
function L∞ 

20% 0.019 0.014 0.015 
5 

40% 0.018 0.012 0.011 

20% 0.143 0.130 0.140 
10 

40% 0.141 0.132 0.139 

20% 0.147 0.141 0.153 
15 

40% 0.148 0.140 0.151 

The results show that the fitness function based on L2 norm outperforms others. 

Additional comparisons between fitness functions are reported in our previous work 

(Stach et al., 2005c). We note that when the L1 norm is used, the convergence to the final 

solution is slower, whereas L∞ norm provides reasonably good results for smaller maps 

but is ineffective when the search space increases. 

3.3.5  Evaluation 

We used both synthetic and real-world data. In the first scenario, the data for each 

experiment were obtained by simulating randomly generated input FCM models starting 

from a random initial vector. We grouped our experiments based on FCM’s size that 

includes 4, 5, 10, 15, and 20 concepts. For each group we used input maps with density 

20% and 40%. In addition, an e-business company FCM model (Tsadiras, 2003) was 

used to evaluate the proposed method. Table 3.2 shows experimental results. 
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Table 3.2: Experimental results with RCGA method. Last three columns report out-of-

sample error value for the corresponding learning approach followed by the standard 

deviations 

Setup Learning Method 

Number 

of 

concepts 

Input map density RCGA NHL DD-NHL 

20% 0.001 (±0.001) 0.212 (±0.200) 0.211 (±0.201) 
4 

40% 0.000 (±0.001) 0.213 (±0.201) 0.206 (±0.203) 

20% 0.011 (±0.007) 0.201 (±0.188) 0.202 (±0.192) 
5 

40% 0.012 (±0.009) 0.205 (±0.198) 0.204 (±0.197) 

7 40% 0.092 (±0.063) 0.221 (±0.195) 0.215 (±0.199) 

20% 0.130 (±0.125) 0.218 (±0.211) 0.211 (±0.205) 
10 

40% 0.132 (±0.128) 0.212 (±0.201) 0.212 (±0.197) 

20% 0.141 (±0.119) 0.211 (±0.198) 0.207 (±0.187) 
15 

40% 0.140 (±0.132) 0.215 (±0.197) 0.202 (±0.187) 

20% 0.152 (±0.135) 0.219 (±0.204) 0.211 (±0.199) 
20 

40% 0.155 (±0.144) 0.214 (±0.211) 0.209 (±0.205) 

In order to put the out-of-sample error values into perspective, a baseline which 

corresponds to the out-of-sample error value of a random map was calculated, and it 

equals 0.37. We observe that the learning quality measured by the out-of-sample error 

decreases as the number of the concepts increases. The errors produced by maps 

developed using the RCGA-based approach are significantly smaller than the errors of the 

baseline and the two existing learning approaches used for comparisons, i.e., NHL and 

DD-NHL. We verified the statistical significance of the differences using paired t-test and 

it revealed that the RCGA learning outperformed both NHL and DD-NHL with 

confidence level at 98%. Results included in Table 3.2 also demonstrates that the learning 

quality does not depend on the density of the input model. 

Figures 3.1 and 3.2 show sample plots obtained from experiments performed for a map 

with 10 concepts and 40% density. These figures correspond to the best and worst case of 

experiments with the RCGA method, i.e., experiments with the lowest (Figure 3.1) and 

highest (Figure 3.2) out-of-sample error value, respectively. 
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Figure 3.1: Experimental results with the RCGA method: the “best” experiment. The upper 

plot shows simulation result of both learned (black) and input (grey) FCMs. The bottom plot 

shows differences between activation degrees of corresponding concepts over successive 

iterations.  
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Figure 3.2: Experimental results with the RCGA method: the “worst” experiment. The 

upper plot shows simulation result of both learned (black) and input (grey) FCMs. The 

bottom plot shows differences between activation degrees of corresponding concepts over 

successive iterations. 
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The results from Figure 3.1 show that the proposed method can generate almost perfect 

solutions for some systems. Although the true plot and the simulation of the learned FCM 

which are shown in Figure 3.2 differ, we note that for more than half of concepts the 

differences between the activation levels of the corresponding concepts are negligible. 

Additional experimental results are presented in Section 3.5.5. They include a more 

complete comparison of the performance of the RCGA method against other FCM 

learning methods, as well as against other approaches proposed in the following 

subsections of this dissertation. 

An analysis of the influence of input data length on the RCGA learning quality was 

presented in our previous work (Stach et al., 2004b). The conclusion drawn from this 

study is that increasing the size of input data length improves the accuracy of learning, 

whereas if the input data length is insufficient, the quality of learning deteriorates 

significantly. This is due to the existence of multiple different models that can be 

generated from input data of small size. Experiments performed with real-life models 

show that for small maps that consist of five concepts the input data length should be 

more than 10 iterations, whereas for the maps consisting of ten concepts more than 20 

data points are required to allow for quality RCGA learning.  

3.4 Application of RCGA learning to time series prediction 

3.4.1 Outline 

An evaluation of FCMs learned with the proposed RCGA method against real data is 

performed based on an application to time series predictions (Stach et al., 2008a). In our 

setup, Fuzzy Cognitive Maps along with the learning method are used to provide: 1) a 

description of a given time series at a certain abstraction level, and 2) numerical and 

linguistic predictions. Experimental results are compared with other state-of-the-art 

prediction methods based on fuzzy sets.  
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Figure 3.3: Overview of the proposed FCM and RCGA-based prediction system. 

Figure 3.3 illustrates the design of the proposed system. The proposed architecture 

consists of three well-delineated and functionally distinct modules that include (a) an 

input interface, (b) a processing core formed by an FCM, and (c) the output interface. The 

modeling and prediction activities supported by the FCM are realized at the linguistic 

level as opposed to the numeric one at which the experimental data become available. 

Therefore, in contrast to classical time series prediction systems, that predict only 

numerical values, the proposed system can also perform predictions at the linguistic level. 

The dynamics of a given numeric time series is captured through its amplitude and 

change in amplitude, say (x(k), Δx(k)). These values are transformed through a collection 

of predefined linguistic descriptors, see Figure 3.3 step 1, and become available in the 

form of their activation levels. The encoding (fuzzification) process entails the 

determination of the membership values of the respective fuzzy sets. The computations at 

this stage are straightforward as the values of the membership functions for the current 

numeric value of the time series, x(k) and its difference, Δx(k) are taken. Next, the result 

of the encoding is processed by the FCM, see Figure 3.3 step 2. Each Cartesian product 
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of the linguistic terms in the space of amplitude, and its changes, corresponds to a certain 

node of the map. Here we can consider two alternatives. The results obtained by the FCM 

can be presented at two levels: 

• linguistic level, see Figure 3.3 step 4.  Here the node of the FCM with the highest 

degree of activation is selected. The result of the prediction comes in the format 

(Amplitude is A  change of Amplitude is B) is µ where A, B are the labels (fuzzy 

sets) forming the node of the FCM while µ is the level of activation of this node.  

• numeric level, see Figure 3.3 step 5. Here we consider all nodes of the FCM 

along with their activation levels and return a single numeric value by carrying 

out decoding (defuzzification). 

3.4.2 Proposed prediction system 

The heart of the prediction system is an FCM along with the RCGA learning algorithm. 

The RCGA method is used to establish a model of the given time series signal, which is 

then used to predict its future values. Figure 3.4 shows a high-level architecture of the 

proposed prediction system. 

 

Figure 3.4: High-level diagram of the proposed prediction method. 

The FCM prediction system realizes a series of well-delineated steps as shown in Figure 

3.4. The input signal is pre-processed in a pre-processing module, which has a dual 

purpose. Firstly, it extracts feature(s) of interest for the linguistic prediction. They include 
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signal change, which is defined as the difference between two consecutive values of a 

given input signal, and the signal’s amplitude. The change constitutes an additional time 

series. Secondly, both signals are normalized linearly to the unit interval. In order to 

avoid artificial enlargements of small signal changes, the normalization of the change 

signal is carried out based on the range of the original time series signal. More 

specifically, the maximum possible change value is determined and the normalization is 

performed with respect to this value. As a result of the pre-processing module, two 

normalized signals, i.e., amplitude and change, are obtained. The first value of the 

amplitude signal is dismissed to have an equal length of both signals. 

After pre-processing, information granules of the signal determining its current status are 

extracted and aggregated in the fuzzification module. This process involves linguistic 

descriptors (labels), which are given as a set of fuzzy sets. Based on their definitions, 

membership values are calculated for each value of both signals. The linguistic 

descriptors can be defined uniformly or independently for each signal. Let us consider K 

time series as an input to this module and a number of corresponding linguistic 

descriptors denoted by the N1, N2, …, NK. In the first phase, these signals are represented 

in terms of membership values of given fuzzy sets, which results in having a N1+N2+…+ 

NK fuzzy time series. Next, the granularization process takes place, which links the fuzzy 

time series with the use of fuzzy operators. As a result, representation of each data point 

(observation), which is a unit hypercube at the entry to this module, extends to

. Therefore, the total number of granular time series that form the output 

from this module is N1*N2*…* NK. Each of these time series expresses the level at which 

the given signal can be characterized by corresponding linguistic descriptors. We provide 

unique linguistic labels over the entire time series by choosing the descriptors with the 

highest values at each time point.  

The next, data divider, module is motivated by the organization of our experimental setup 

and thus it does not belong to the proposed prediction method per se. In particular, it 

serves to provide an experimental evaluation of the prediction method dividing the input 

dataset into training and test subsets. The former subset is used to develop appropriate 

FCMs, whereas the latter is separate and is used to test prediction accuracy on unseen 

data.   
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The actual learning of FCM is performed in the RCGA module, which establishes FCMs 

based on training data, see Section 3.3.3. The number of concepts of the candidate FCM 

corresponds to number of granular time-series from the output of the fuzzification 

module. The concepts depict a complete signal description within the assumed fuzzy 

domain, i.e., each node corresponds to a single combination of linguistic descriptors of 

the granular time series. 

The candidate FCM is used by the linguistic prediction module to carry out the signal 

prediction in a fuzzy domain (linguistic prediction) on the test data. This process involves 

a model simulation according to the scenario defined in the data divider module. 

Linguistic prediction uses fuzzy operations on a granular time series obtained from the 

simulation. 

Numerical predictions require fuzzy values to be defuzzified. The defuzzification module 

performs this process according to a predefined defuzzification method on a granular 

time-series obtained from simulation and is carried out on the test data. The numerical 

prediction is performed based on the defuzzified values. In addition to the defuzzified 

signal value, other signal features defined in the pre-processing module may be also used 

as a supplement, or correction coefficient, during prediction. 

3.4.3 Experimental results 

This section summarizes the evaluation of the proposed prediction system against other 

existing predictors based on fuzzy sets, i.e., Song-Chissom (Song and Chissom, 1994), 

Chen (Chen, 1996), Markov (Sullivan and Woodall, 1994), and Hwang (Hwang et al., 

1998) methods. In order to keep this section concise, we present only comparative results 

obtained from experiments on a single, most commonly used dataset. For other results, 

please refer to our recent paper (Stach et al., 2008a).  

To achieve consistency with the original experimental setup (Song and Chissom, 1994) 

we used a data set that concerned enrolment at the University of Alabama during 1972-

1992 and performed two types of experiments: one that used a single model for 

prediction (time-invariant), and another that used a moving window for prediction (time-

variant). A numerical prediction error was measured to evaluate the quality of each 

method. Table 3.3 summarizes the experimental results. 
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Table 3.3: Comparative evaluation of the proposed prediction method on enrolment dataset 

Method Numerical prediction error [%] 

Time-invariant experiments 
Song-Chissom  3.20 
Chen’s  3.22 
Markov  2.60 
FCM with RCGA (3 labels) 2.13 
FCM with RCGA (4 labels) 2.58 

Time-variant experiments (window = 4) 
Song-Chissom  4.37 
Hwang  3.12 
FCM with RCGA (3 labels) 3.23 
FCM with RCGA (4 labels) 2.66 

The results show that the proposed method gives better results for an enrolment dataset 

when compared to other methods. The proposed system using 3 linguistic labels (9 nodes 

FCM) achieved 2.13 of error value for the time-invariant test, while the second best 

Song-Chissom method scored 3.20. Similarly for the time-variant test, the proposed 

method was best and scored 2.66.  

3.4.4 Conclusions 

The proposed prediction system based on FCMs and RCGA learning outperforms other 

existing fuzzy sets-based predictors. Importantly, the FCM models that are used to 

perform time-series predictions are generated and validatated against real-life data, in 

contrast to the evaluation performed in Section 3.3.5 that uses expert-generated or 

synthetic FCM models as the reference point.  

In addition, the method offers linguistic predictions. Comprehensive tests reported in our 

recent paper (Stach et al., 2008a) show that the linguistic accuracy of the proposed 

method decreases as the number of considered linguistic labels becomes higher, while at 

the same time, the numerical prediction accuracy increases. This shows that a trade-off 

between the quality of the numerical and linguistic prediction exists. By selecting a 

proper number of labels, users can control the quality and scope of the prediction in terms 

of granularity of the linguistic description. Both linguistic and numerical prediction 

accuracy are shown to improve with the increasing number of input data points that are 

used to develop the prediction model. The proposed method provides numerical 



 
46 

predictions with accuracy higher or comparable to other state-of-the-art prediction 

methods, which are based on fuzzy sets.  

3.5 Scalable RCGA learning approaches to Fuzzy Cognitive 

Maps 

3.5.1 Motivation 

Although the RCGA learning method introduced in the previous paragraph is capable of 

learning high quality FCMs, the experiments showed that it struggles when applied to 

large systems (Stach et al., 2007). As a result, the method could be applied to learn 

models of up to two dozen or so concepts in about over an hour using a desktop PC, but 

the computational time grows exponentially with the number of concepts. Modeling 

larger systems, such as these from systems biology that include several dozens of 

concepts, can not be completed within a few hours. This is due to the poor scalability of 

genetic algorithms. The number of variables that need to be established during FCMs 

learning grows quadratically with the number of concepts. These issues call for a scalable 

approach that is capable of learning large maps of high quality within a reasonable time 

frame. 

In this section we propose two improvements to the RCGA learning method that aim to 

improve its scalability. One of them includes the parallelization of genetic algorithms, 

whereas the other one uses a divide and conquer strategy.  

3.5.2 Methods used 

Parallel computing is one of the more popular techniques that speeds up the process of 

solving complex computational problems (Grama et al., 2003). It assumes simultaneous 

execution of the same task on multiple processors to obtain results more quickly. The 

underlying assumption is that a problem being solved can be divided into smaller tasks, 

which can be executed simultaneously with a certain level of coordination. In parallel 

computing, it is crucial to use parallel algorithms to take advantage of hardware systems. 

Parallel algorithms, in contrary to sequential algorithms, can be divided into parts 

performed in parallel (Xavier and Iyengar, 1998). Subsequently, the partial results are put 

back together to obtain the final result. The task of finding an efficient parallel algorithm 
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to solve a given problem can be very challenging as we often deal with sequential 

constrains. For instance, recursive solutions that require results from a previous iteration 

to calculate result in next iteration are very difficult to parallelize.  

Divide and conquer (D&C) is an important algorithm design paradigm based on multi-

branched recursion (Cormen et al., 2000). A divide and conquer algorithm works by 

recursively breaking down a problem into two or more sub-problems of the same (or 

related) type, until these become simple enough to be solved directly. The solutions to the 

sub-problems are then combined to give a solution to the original problem. The divide 

and conquer design is a powerful tool for solving conceptually difficult problems, such as 

the classic Tower of Hanoi puzzle. Divide and conquer algorithms are relatively easy to 

implement on multi-processor machines.  

3.5.3 Parallel RCGA method for learning FCMs 

As genetic algorithms (GAs) become increasingly popular, they are applied to difficult 

problems that require considerable computations. In such cases, parallel implementations 

of GAs become necessary to reach high-quality solutions in reasonable time frames. 

Generally speaking, these parallel approaches can be divided into methods that use a 

single population or a number of subpopulations. The following four main paradigms are 

utilized to parallelize GAs (Konfrst, 2004; Cantu-Paz, 2007): 

• global single-population master slave: a single population is maintained but the 

evaluation of fitness is performed by multiple processors; 

• single-population fine-grained: a single population is maintained, but the 

selection and crossover are restricted to a small neighbourhood. Nevertheless, 

some interaction among all the individuals is allowed; 

• multiple-population coarse-grained: several subpopulations exist and they 

occasionally exchange individuals; 

• hybrid models: some elements from the above three paradigms are combined. 

Among the above four choices, the two most popular are the (a) global single-population 

master slave and (b) multiple-population coarse-grained (Konfrst, 2004). The former 

despite being very simple, has been shown to be very efficient (Cantu-Paz, 2007). The 
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implementation usually follows the master-slave framework, where the master stores the 

population and the slaves evaluate the fitness of chromosomes. This is performed by 

assigning a fraction of the population to each of the available processors, see Figure 3.5. 

The master stores the population, executes the GA operations, and distributes individuals 

to the slaves. The slaves then evaluate the fitness of the individuals. Communication 

between processes occurs only when slaves receive a subset of individuals to evaluate 

and when they return the fitness values to the master process. In this approach, the 

underlying computer architecture is not constrained by any special requirements. In 

addition, it does not affect the behaviour of the genetic algorithm since no additional 

restrictions are imposed on the genetic operators, such as crossover or selection. The 

second approach, which is based on multiple populations, uses a few relatively large 

subpopulations that exchange chromosomes, which is called migration, see Figure 3.6. 

Each subpopulation, denoted here by a circle, is executed as a standard GA and there is 

(infrequent) communication between populations. In this example, the populations are 

arranged in a ring, but a few other communication topologies have been introduced. 

(Konfrst, 2004; Cantu-Paz, 2007) 

 

Figure 3.5: Master-slave parallel GA architecture. Arrows describe assignment of 

chromosomes to slave processes for fitness function calculation  

 



 
49 

 

Figure 3.6: Multiple-population parallel GA topology. Nodes correspond to subpopulations, 

whereas arrows show how the subpopulations exchange chromosomes  

3.5.4 Divide and conquer RCGA method for learning FCMs 

In this section, we introduce a new scalable learning method for FCMs that divides the 

input data into subsets and performs simultaneous learning on each subset. The 

motivation for implementing this method is derived from the linear relation between the 

number of calculations required to evaluate the fitness function, which is the most time-

consuming piece of the RCGA optimization, and the length of the input data. Therefore, a 

reduction in the length of the input data could provide a linear decrease in the execution 

time when using a multiprocessor architecture (assuming each sub-problem is solved on a 

different processor). This may potentially provide a better speed-up than the improvement 

observed when parallelizing the RCGA algorithm. Figure 3.7 presents a high level 

diagram of the proposed method. The two core modules are the Data Divider and FCM 

Fusion. 
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Figure 3.7: High level diagram of the proposed divide and conquer method to learn FCMs 

A Data Divider takes the input data, given as input data matrix (equivalent to a discrete 

time-series), and splits it into subsets that are used to learn the submodels. Various 

strategies could be implemented by taking advantage of the inherent properties of FCMs. 

Firstly, the data may be divided into K non-overlapping contiguous subsets (intervals) 

where S is the number of available processors. Secondly, the split may be done as above 

except that the subsets would overlap to assure better similarity (and potentially better 

quality) between the submodels. Thirdly, as the RCGA method can use any two 

subsequent input data vectors to learn FCMs, the subsets can be obtained by random 

sampling of the input data pairs. Finally, random sampling with replacement could be 

used. The motivation for the latter case is the same as that of the second strategy. While 

these strategies are computationally equivalent (strategies 1 and 3, and, 2 and 4 would use 

the same number of input data pairs), the first two strategies may result in generating 

submodels that overfit to their corresponding input intervals. On the contrary, the latter 

two random sampling-based strategies include input data pairs that cover the entire input 

time-series. Their submodels are better generalized to describe the entire input data. This 

is the reason that focus on these two strategies. We empirically investigate the impact of 

the amount of overlap between the subsets (when allowing for the replacement) of the 

trade-off between the amount of computations and the quality of the learned FCM model. 

Each of the data subsets is used to generate a separate submodel. This process involves 

running, in parallel, K independent experiments using the RCGA learning method.  
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The Fusion Module aggregates the submodels. The subject of aggregating multiple FCMs 

into a single model is outlined in Section 2.2.2. The simplest, average, method aggregates 

FCMs averaging the corresponding relationship values (weights) across all the 

submodels. A modification of this method, weighted average, adds credibility 

(confidence) weights to each submodel. Consequently, weighted average across all 

submodels is calculated instead of simple average, see Formula 2.7. We decided to use an 

in-sample error of each submodel, see Formula 3.5, to quantify its quality. Next, we 

calculated the credibility weight of each model as (1 – in-sample error), and used 

Formula 2.7 to aggregate the submodels. The motivation to use an using in-sample error 

instead of splitting the input data for each submodel into the training and validation parts, 

was driven by the deteriorating learning quality of RCGA for insufficient input data 

length reported in our previous work (Stach et al., 2004b). 

3.5.5 Evaluation criteria 

The proposed methods have been evaluated based on the time needed to complete the 

learning and the learned FCMs quality. In particular, the following evaluation measures 

were applied: 

• Execution time – measures the time needed to complete learning, which is 

expressed in seconds. This measure does not include the time to load the input 

data and to perform model evaluation. 

• Out-of-sample error – measures the average difference between each concept 

value in the corresponding simulations generated by the candidate FCM and the 

input map. The value is calculated as an average over P experiments with 

different initial state vector, see Formula 3.6 

3.5.6 Experimental setup 

We used both synthetic and real-world data. In the first scenario, the data for each 

experiment were obtained by simulating randomly generated FCM models starting from a 

random initial vector. We grouped our experiments based on the FCM’s size that includes 

10, 20, and 40 concepts. Each test was executed in a sequential fashion, as well as in 

parallel using 2, 4, and 8 processors. The experiments were performed on an IBM p5 

server. Additionally, we generated 5 independent input data for every setup where each 
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input data length was 40. The in-sample results were averaged over the 5 inputs and for 

each of the 4 FCM sizes, 4 parallelization architectures, and each learning method under 

consideration. For each setup, the out-of-sample data have been generated by simulating 

the models from 10 random initial vectors. 

In the second scenario, two real-world maps reported in literature were used. We 

concentrated on relatively large maps selecting a model of factors affecting slurry 

rheology (13 concepts) (Banini and Bearman, 1998), and factors in the adoption of 

educational software in schools (24 concepts) (Hossain and Brooks, 2008). Similar to 

experiments using synthetic data, the out-of-sample error was computed by simulating 

the original and the learned models from 10 randomly chosen initial vectors. 

The following methods have been used for comparisons: 

• Single population – parallelized version of the RCGA learning method, in which 

the learning module has been implemented using global single-population master 

slave GAs. Each slave process executes on a separate processor and evaluates the 

fitness function of a given subset of individuals, see Section 3.4.3.  

• Divide and conquer – divide and conquer FCM learning using RCGA, see 

Section 3.4.4. In this approach, the Data Divider module divides the input data 

without a replacement. Therefore, if the input data length is T and the number of 

available processors (the same as the number of submodels) is K, then each 

experiment uses T/K input data pairs to learn a given submodel. 

• Divide and conquer with oversampling – divide and conquer method for RCGA 

FCMs learning, see Section 3.4.4. In this case, the Data Divider module selects 

the input data pairs with a replacement. We allow O% (oversampling coefficient) 

data points to be used twice to learn different submodels. Therefore, if the input 

data length is T, the number of submodels is K, and the oversampling coefficient 

is O, then each experiment uses (T+O%*T)/K input data pairs to learn a 

corresponding submodel. In our experiments we used different values of O, 

which include 25, 50, and 75, to analyze its influence on the evaluation measures.  

• Multiple population - another parallelized version of the RCGA learning method, 

in which the learning module has been implemented using multiple-population 
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coarse-grained GAs. The number of populations is equal to the number of 

available processors, and each population is maintained on a designated 

processor. We used the design from Figure 3.2 to perform a migration among 

subpopulations: top 10% of chromosomes after each 1000 iterations. These 

values were selected experimentally taking into account the convergence to a 

final solution and learning time. 

• NHL – a Hebbian-based method for FCM learning (Papageorgiou et al., 2003b), 

see Section 2.2.1 

• DD-NHL – a modified Hebbian-based method for FCM learning (Stach et al., 

2007), see Section 2.2.1 

For the proposed “divide and conquer” and “divide and conquer with oversampling” 

methods we report results for experiments with random divisions of input data in the Data 

Divider module, as they gave better results than the results obtained when dividing the 

input data into contiguous intervals. Also, slightly better results were obtained when the 

model merging in the FCM Fusion module was carried out using a weighted average 

based on in-sample error for each submodel (when compared to using the average), see 

Section 3.4.4 for details. The remaining four approaches do not split the input data into 

subsets during the learning. 

3.5.7 Results 

Table 3.4 summarizes the experimental results and includes the three quality criteria for 

the six learning methods run with varying number of processors. Columns with 10, 20, 

and 40 nodes correspond to experiments with synthetic data, whereas columns with 13 

and 24 nodes, to experiments with the real-life model. The columns with execution time 

and in-sample error are averaged over 5 independent experiments performed for each 

setup, whereas the out-of-sample error was additionally averaged over 10 independent 

experiments performed with different initial vectors. Each cell includes two values, the 

average and the corresponding standard deviation. 
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Table 3.4: Summary of the experimental results with the proposed scalable improvements to 
the RCGA approach. Rows show different learning methods, whereas columns correspond 
to different evaluation criteria. #p column indicates the number of processors. Rows (AV) 
shows the average value with the corresponding standard deviations shown below (SD). 

 # p Execution time [s] Out-of-sample error 

  
 10 

nodes 
13 

nodes 
20 

nodes 
24 

nodes 
40 

nodes 
10 

nodes 
13 

nodes 
20 

nodes 
24 

nodes 
40 

nodes 

1 AV 1218 1904 3476 4901 11242 0.135 0.151 0.154 0.159 0.163 

 SD ±35 ±40 ±47 ±59 ±69 ±0.144 ±0.148 ±0.149 ±0.165 ±0.187 

2 AV 634 1042 1970 2719 5902 0.137 0.147 0.149 0.154 0.159 

 SD ±29 ±32 ±38 ±52 ±51 ±0.156 ±0.154 ±0.138 ±0.181 ±0.188 

4 AV 474 710 1316 1895 5008 0.143 0.154 0.152 0.161 0.163 

 SD ±28 ±28 ±38 ±53 ±49 ±0.133 ±0.128 ±0.172 ±0.167 ±0.156 

8 AV 386 476 916 1246 3784 0.145 0.152 0.155 0.161 0.166 

Si
ng

le
 p

op
ul

at
io

n 

 SD ±23 ±29 ±31 ±43 ±49 ±0.136 ±0.149 ±0.166 ±0.177 ±0.148 

2 AV 618 950 1770 2336 5634 0.141 0.154 0.160 0.179 0.185 

 SD ±27 ±32 ±40 ±54 ±51 ±0.139 ±0.121 ±0.145 ±0.189 ±0.180 

4 AV 324 482 902 1290 2836 0.144 0.160 0.167 0.173 0.176 

 SD ±24 ±26 ±29 ±40 ±42 ±0.162 ±0.133 ±0.185 ±0.165 ±0.188 

8 AV 170 250 454 667 1424 0.162 0.160 0.181 0.194 0.200 D
iv

id
e 

an
d 

co
nq

ue
r 

 SD ±8 ±13 ±23 ±33 ±34 ±0.158 ±0.144 ±0.179 ±0.185 ±0.202 

2 AV 680 1068 1986 2880 6591 0.140 0.153 0.158 0.165 0.174 

 SD ±28 ±29 ±34 ±50 ±52 0.111 ±0.150 ±0.163 ±0.152 ±0.163 

4 AV 354 550 1041 1478 3185 0.147 0.157 0.165 0.163 0.176 

 SD ±18 ±19 ±26 ±38 ±41 ±0.172 ±0.161 ±0.183 ±0.155 ±0.148 

8 AV 196 295 547 733 1605 0.155 0.158 0.181 0.183 0.184 

D
iv

id
e 

an
d 

co
nq

ue
r w

ith
 

ov
er

sa
m

pl
in

g 
25

%
 

 SD ±21 ±17 ±23 ±31 ±35 ±0.150 ±0.141 ±0.163 ±0.198 ±0.195 

2 AV 906 1424 2648 3654 8450 0.139 0.154 0.154 0.162 0.164 

 SD ±34 ±37 ±46 ±55 ±62 0.114 ±0.155 ±0.150 ±0.145 ±0.148 

4 AV 466 724 1352 2014 4246 0.149 0.154 0.161 0.165 0.167 

 SD ±23 ±25 ±33 ±47 ±49 ±0.156 ±0.160 ±0.149 ±0.142 0.158 

8 AV 258 374 684 964 2140 0.155 0.157 0.169 0.174 0.182 

D
iv

id
e 

an
d 

co
nq

ue
r w

ith
 

ov
er

sa
m

pl
in

g 
50

%
 

 SD ±27 ±22 ±29 ±33 ±43 0.148 0.144 0.157 0.184 0.198 
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2 AV 1151 1780 3522 4754 11239 0.138 0.153 0.155 0.159 0.164 

 SD ±44 ±48 ±60 ±73 ±81 ±0.112 ±0.161 ±0.156 ±0.148 ±0.155 

4 AV 624 934 1812 2391 5308 0.144 0.153 0.157 0.163 0.167 

 SD ±30 ±32 ±42 ±53 ±61 ±0.161 ±0.146 ±0.157 ±0.159 ±0.160 

8 AV 328 490 889 1289 2782 0.150 0.154 0.162 0.171 0.181 

D
iv

id
e 

an
d 

co
nq

ue
r w

ith
 

ov
er

sa
m

pl
in

g 
75

%
 

 SD ±35 ±29 ±36 ±52 ±58 ±0.154 ±0.152 ±0.148 ±0.169 ±0.172 

2 AV 618 1022 1888 2605 5830 0.138 0.148 0.143 0.150 0.159 

 SD ±29 ±35 ±40 ±54 ±57 ±0.134 ±0.129 ±0.163 ±0.159 ±0.168 

4 AV 480 682 1176 1752 4998 0.141 0.149 0.151 0.161 0.164 

 SD ±22 ±26 ±40 ±49 ±53 ±0.156 ±0.167 ±0.149 ±0.172 ±0.180 

8 AV 370 460 892 1276 3676 0.137 0.148 0.152 0.157 0.160 M
ul

tip
le

 p
op

ul
at

io
n 

 SD ±25 ±22 ±31 ±44 ±48 ±0.133 ±0.139 ±0.144 ±0.153 ±0.155 

1 AV 42 46 96 130 216 0.212 0.222 0.211 0.215 0.218 

D
D

-
N

H
L 

 SD ±2 ±3 ±3 ±5 ±4 ±0.180 ±0.211 ±0.225 ±0.210 ±0.203 

1 AV 41 45 94 128 214 0.220 0.226 0.216 0.219 0.221 

N
H

L 

 SD ±2 ±3 ±3 ±4 ±4 ±0.226 ±0.198 ±0.208 ±0.190 ±0.201 

The fastest methods are those based on the Hebbian learning, i.e., NHL and DD-NHL. 

They learn the connection matrix weights based on a simple formula that performs local 

adjustments, which quickly converge into the final solution. From among the four other 

methods that use genetic optimization the divide and conquer RCGA approach 

outperforms both single and multiple population GAs. When compared to the sequential 

learning with a single processor, the gain in computational time is, on average, 79% and 

85% for the divide and conquer RCGA with and without oversampling, respectively, 

when using 8 processors. In the case of the two other methods, i.e., the single and the 

multiple population, the gain between the sequential implementation and when 8 

processors are used is approximately 70%. We also observe that doubling the number of 

processors results in almost a 50% (between 46% and 50%) decrease of the execution 

time for the divide and conquer methods. On the other hand, we observe decreasing 

returns when we increase the number of processors for both the single and multiple 

population GAs. For instance, the decrease in execution time for the single population 

GA when doubling the number of processors for a 40-nodes FCM is 43% for 2 

processors, 33% for 4 processors, and 30% for 8 processors. This is due to the fact that 
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the execution time which corresponds to the sequential constraints of performing genetic 

operations on a population of chromosomes becomes a more significant part of the total 

execution time. The above overhead is caused because the fitness function evaluations 

performed in parallel are completed more quickly on a larger number of processors. For 

the multiple population GA, these numbers are 45%, 37%, and 24%, respectively. The 

decreasing return in this case stems from the fact that there is a nonlinear relationship 

between the population size and the execution time, as well as the migration among 

subpopulations.  

Overall, excluding the Hebbian-based methods, the two methods based on the divide and 

conquer approach to learn FCMs are better than the methods that parallelize genetic 

algorithms using either single or multiple population. A comparison of the execution time 

of the divide and conquer method without oversampling with the single population 

method on 8 processors reveals that we can almost double the size of FCMs that are 

learned using the former method within the same amount of time. For instance, using the 

former method, the learning of 40-nodes FCM takes 1424sec., whereas the time needed 

to learn 20-nodes FCM using the latter method is 1316sec. The execution time increases 

by O% on average for O% oversampling when compared to the divide and conquer 

approach; this observation is consistent over all considered setups. 

In order to facilitate an analysis of the out-of-sample error, the statistical paired t-test 

analysis for all tested methods has been reported in Table 3.5. The goal was to compare 

all other methods to the one that outperformed the rest, i.e., multiple population, and 

analyze whether the differences are statistically significant. 
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Table 3.5: Statistical comparison of the learning quality amongst the proposed methods. 

Results of the T-test at 95% confidence level are reported. The test compares the out-of-

sample errors of all methods with the errors of the best performing multiple population 

method. Equality (=) represents statistically insignificant differences, whereas plus (+) 

denotes that multiple population method has led to statistically significantly better results.  

FCM size 
Learning method # processors 

10 13 20 24 40 

2 = = = = = 

4 = = = = = Single population 

8 = = = = = 

2 = = = + + 

4 + + + + + Divide and conquer 

8 + + + + + 

2 = = = + = 

4 + + + + + Divide and conquer with oversampling 25% 

8 + + + + + 

2 = = = + = 

4 = = + + + Divide and conquer with oversampling 50% 

8 + + + + + 

2 = = = = = 

4 = = = + = Divide and conquer with oversampling 75% 

8 + + + + + 

DD-NHL 1 + + + + + 

NHL 1 + + + + + 

 

The differences between single and multiple population methods are shown to be 

insignificant across all experiments that include various numbers of processors and sizes 

of maps. The divide and conquer approach without oversampling performs similarly to 

the best method for small maps and only in the case when 2 submodels are used, i.e., 

when 2 processors are utilized. Increasing the amount of oversampling leads to improved 

results. When using the 50% oversampling, the quality improves and the results are 

similar to the best results for all map sizes when using 2 processors and for smaller maps 

when using 4 processors. By increasing the oversampling to 75%, the differences are 

statistically insignificant for all setups except when using up to 4 processors. We observe 
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that the RCGA method provides higher quality models when more data points are 

available, which results in similar performance to methods based on the parallelization of 

GA and the divide and conquer strategies. For instance, when comparing the divide and 

conquer strategy with 50% oversampling to the multiple population method for 4 

processors and 10 nodes, the quality is comparable and the execution times equal 466 and 

480 seconds, respectively. A comparison between the divide and conquer strategy 

without oversampling and the multiple population method for 2 processors and 20 nodes 

shows that the quality is comparable and the learning time is 1770 and 1888 seconds, 

respectively. Splitting the input data into more processors results in fewer input data pairs 

used to learn each submodel. This is particularly important in the context of learning 

maps with a larger size, where additional data pairs are needed for learning in order to 

obtain a high quality solution. At the same time, the lower quality of the learned model is 

traded for the faster learning time. For example, the execution times equal 3784, 3676, 

2140, and 1424 seconds when learning maps with 40 concepts on 8 processors using the 

single population, multiple population, divide and conquer with 50% oversampling, and 

divide and conquer without oversampling methods, are used respectively. Both Hebbian-

based methods perform statistically significantly worse than the multiple population 

method (see Table 3.4) for all setups. For the divide and conquer approach, the out-of-

sample error value decreases when the oversampling is used. On average across all 

setups, adding extra 25% oversampling leads to a 2-6% reduction in the out-of-sample 

error. The error reduction is within this range for all considered oversampling levels, i.e., 

25%, 50%, and 75%. Also, it does not depend on the number of processors and, on 

average, it varies by as little as 2% when comparing configurations with 2 and 8 

processors.  

We also investigated differences with respect to the convergence to a final solution as a 

function of time for each method. We analyzed how fast the fitness value increases before 

reaching a plateau. Figure 3.8 shows a sample plot that illustrates how the fitness value of 

the best chromosome changes over the time during learning. Four methods were 

compared: single population, multiple population, divide and conquer without 

oversampling, and divide and conquer with 50% oversampling. This plot shows the 

results for the experiments with 4 processors and a map consisting of 40 concepts. The 

simulations were stopped by reaching the maximum number of iterations, which was 

equal to 30,000. 
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Figure 3.8: Fitness value vs. time for the four learning methods that use genetic optimization. 

The experiments concern learning 40-nodes maps on 4 processors with the maximum 

number of iterations limited to 30000. 

When compared to the single population method, multi population method converges 

faster and provides a better final solution as well as better solutions during the simulation, 

i.e., at the corresponding time points. Since these two methods always forward the best 

solution to the next iteration in the genetic algorithm evolution, the fitness function does 

not decrease over time. Although the proposed methods based on the divide and conquer 

approach obtain lower value of the fitness function calculated for the entire input data set, 

they provide models of similar quality in terms of the out-of-sample error, see Tables 3.4 

and 3.5. This suggests that these models are capable of generalizing the solution.  

We observe that even though the fitness function value may fluctuate (decrease and 

increase) over the time when using the divide and conquer approaches, the overall 

convergence trend is clearly visible. The main reason for the fluctuations is the fact that 

the solution generated by the divide and conquer method is based on averaging several 

submodels. Figure 3.9 shows how the convergence of individual submodels and the 

solution FCM change over time. The fitness value of each submodel is higher than the 

fitness of the merged model because it is calculated only for a given subset of data that is 

used to learn this submodel. As the simulation proceeds and the fitness values of 
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individual submodels become higher, the fitness value of the merged solution increases. 

While the fitness value of the submodels does not decrease over time, its value for the 

aggregated model may decrease as can be observed after approximately 3100 seconds.  

 

Figure 3.9: Fitness value vs. time for the divide and conquer learning method. The plot 

includes the fitness values of the solution FCM model and the individual submodels for the 

experiment that was shown in Figure 3.8. 

3.5.8 Conclusions 

In this section we have proposed and tested two approaches to improve the scalability of 

the RCGA method. Our goal was to propose a method that would substantially speed up 

the learning process for large systems while maintaining a high quality of solutions.  

The first proposed improvement utilizes parallelization methods of genetic algorithms. 

We chose, implemented, and evaluated two popular parallelization strategies. One of 

them maintains a single population, whereas the other maintains multiple subpopulations 

that occasionally interact amongst each other. The results of FCM learning on 8 

processors show that this method is up to four times faster than sequential learning.  

The second proposed improvement is based on a divide and conquer strategy and 

involves dividing input data into subsets, performing independent, parallel learning of 
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submodels using the RCGA method, and aggregating the submodels into a final model. 

The two different scenarios based on this approach have been investigated. In the first 

one, the entire dataset is divided without oversampling, whereas in the second one, 

oversampling is used to increase the quality of the generated models as a trade-off of the 

increased execution time. The amount of the introduced oversampling could be used to 

control the trade-off between the learning time and quality of the generated model. 

Overall, the quality of the maps generated by the divide and conquer method decreases 

with the increasing size of the maps and number of processors used. The time to compute 

the maps increases with the increased size and it decreases when using more processors. 

Increasing the oversampling lowers the rate with which the error grows, but it also lowers 

the savings in computational time. When compared to the single and the multiple 

population-based approaches, the divide and conquer method provides larger speed ups 

when using more processors and when considering increasing map sizes as a trade-off for 

higher error rates. 

The quality of the FCM model, which is measured using out-of-sample error, learned 

using the proposed method decreases along with increasing the number of processors. 

Statistical significance tests that compare quality of the FCM models obtained with the 

divide and conquer methods and the single and multiple population parallelization 

methods reveal that the method without oversampling provides comparable solutions for 

maps of up to 20-nodes and using 2 processors when compared with the best performing 

multiple populations based method. The oversampling at 50% results in improving the 

quality of the generated maps, i.e., their quality is comparable to the quality of the models 

generated by the best performing method for maps including up to 40-nodes when using 

2 processors and up to 10-nodes for 4 processors. The oversampling at 75% results in 

comparable results across virtually all setups for up to 4 processors. The tests also 

demonstrate that the proposed method generates FCM models of quality that is 

significantly better that the quality of models computed using Hebbian-based methods. 

3.6 Improved RCGA learning method using density estimate 

3.6.1 Motivation 

The motivation for this method comes from a structural comparison of models generated 

by existing fully-automated learning approaches against real-life models developed by 
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human experts. Table 3.6 shows a few examples of models reported in scientific literature 

along with the number of concepts (#concepts column) and density of connections 

(density column).  

Table 3.6: Examples of FCMs reported in literature.  

Reference Application area # concepts Density 

(Stylios and Groumpos, 2000) process control 5 32% 

(Aguilar, 2003) model of a country 5 35% 

(Stach and Kurgan, 2004) software development 5 44% 

(Stylios and Groumpos, 2004) heat exchanger 5 50% 

(Stylios and Groumpos, 2004) heat exchanger performance 5 75% 

(Siraj et al., 2001) intrusion detection system 6 20% 

(Espinosa-Paredes et al., 2008) Nuclear power plant 6 50% 

(Tsadiras, 2003) e-business company 7 40% 

(Papageorgiou et al., 2008a) brain tumor characterization 9 25% 

(Kosko, 1997) virtual squad of soldiers 10 31% 

(Yaman and Polat, 2009) military planning 12 38% 

(Banini and Bearman, 1998) slurry rheology 13 39% 

(Hossain and Brooks, 2008) educational software adoption 24 8% 

The majority of real-life FCM models reported in Table 3.6 are characterized by a 

relatively low density, which is defined as the fraction of non-zero entries in the 

connection matrix, in the range of 30-40%. The average model density is approximately 

37% with a standard deviation of 16%. In order to examine average density of maps 

generated by different learning methods, we used our case study, i.e., the slurry rheology 

model (13 nodes, 39% density). We carried out experiments of FCM learning using 

different methods from data generated by simulating the model. Each experiment was 

repeated five times and the following values of density averages were obtained: 95% 

(using RCGA method) (Stach et al., 2005c), 93% (NHL) (Papageorgiou et al., 2003b), 

and 92% (DD-NHL) (Stach et al., 2008b).  

Therefore, the newly proposed modification of the RCGA method is aimed at learning 

models that are structurally more similar to real-life models when compared to the FCMs 

obtained from current fully-automated learning approaches. The method incorporates a 

parameter (density estimate), which is used to guide the learning process towards a 

solution of predefined density. As mentioned in the previous paragraph, based on a 

number of published real-life models, the average density is around 37%; hence this value 
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could be used as a density estimate if a user has no prior knowledge about the modeled 

system’s density. 

3.6.2 Sparse RCGA learning method  

Proposed method, Sparse RCGA, is based on modified RCGA approach, which, similar 

to generic RCGA method, has a number of parameters that need to be fixed before 

running the simulations. In our experiments they have been set up consistently with the 

parameters reported for parameterization of the RCGA method (see Section 3.3.4). In 

contrast, however, to the generic RCGA learning, the Sparse RCGA method takes an 

additional parameter – the density estimate. This parameter is used to guide the learning 

towards solutions with a predefined structure defined by their density.  

Detailed procedure for the proposed Sparse RCGA learning method  

The proposed algorithm works as follows: 

Given  

A set of concepts  and a sequence of their activation degrees 

 

Step 1:  Divide data into T-1  

Step 2: Initialize a population of p chromosomes, such that each chromosome is 

represented as  where eij
 is a random number on the 

[-1, 1] interval. Each gene is reset to the value of zero with probability (1 – density 

estimate). All remaining genes are initialized with the value chosen randomly from an 

uniform distribution on the [-1,1] interval, excluding the value of zero.  

Step 3: Calculate the fitness function for the entire population. This is carried out by 

decoding the candidate FCM from each chromosome, and applying Formula 3.4 

Step 4: Check the stopping condition. If it is satisfied, return the chromosome with the 

highest fitness function value  
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Step 5: Apply a crossover operation on the population 

Step 6: Apply a mutation operation on the population. Firstly, for a given gene, the 

density of the chromosome that includes the gene is calculated. It is defined as the 

number of non-zero genes over the total number of genes. If this value is lower than or 

equal to the density estimate, the mutation is carried out, otherwise the gene is reset to the 

value of zero. 

Step 7: Calculate the fitness function for the entire population 

Step 8: Check the stopping condition. 

Step 9: Generate new population using selection operations 

Step 10: Go to Step 5 

Hence, the Sparse RCGA method, using the modified population initialization and 

mutation operators (Step 2 and Step 6), guides the learning towards the solutions of a 

given density. 

3.6.3 Evaluation criteria 

The proposed method has been evaluated based on both the structural and dynamic 

quality of the developed models. In particular, the following evaluation measures were 

applied: 

• Out-of-sample error – measures the quality of the solution based on its dynamic 

properties performed on unseen data, see Formula 3.6 

• Matrix error – evaluates the candidate FCM structure against the input model. It 

is defined as a normalized average of absolute errors between corresponding 

weights in the connection matrices:  

 
 (3.7) 
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where  is the relationship strength from concept Ci to concept Cj in the input 

model,  is the relationship strength from concept Ci to concept Cj in the 

candidate FCM, and N is the number of concepts.  

The structural evaluation was extended and transformed into a binary 

classification problem with two classes, zeros and non-zeros, which are defined 

for all map weights. Each weight from both the original FCM and the candidate 

FCM is assigned to one of two classes. Each comparison of the corresponding 

weights from the input FCM with these from the candidate FCM results in one of 

four outcomes, TP – correctly identified zero, TN – correctly identified non-zero, 

FP – non-zero (in the input model) incorrectly identified as zero (in the candidate 

FCM), and FN – zero (in the input model) incorrectly identified as non-zero (in 

the candidate FCM). Two measures, i.e., sensitivity and specificity, are used to 

evaluate the classification quality based on the cardinalities of the four outcomes 

over the entire connection matrix: 

 

 

(3.8) 

In addition, the harmonic mean of sensitivity and specificity, SS-mean, is 

calculated as follows: 

 

 
(3.9) 

This measure is a weighted average of the sensitivity and specificity which 

ranges between 0 and 1, where 1 corresponds to a perfect result.  

3.6.4 Experimental setup 

We used both synthetic and real-life data. In the first scenario, the data for each 

experiment (the input data matrix) were obtained by simulating randomly generated 
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FCMs (input models) by starting from a certain random initial vector. Next, 10 randomly 

chosen initial state vectors were generated to perform the out–of-sample tests. The 

experiments were realized for FCMs of size 5, 10, 20, and 40 concepts and densities 20% 

and 40%. For each setup, they were repeated 5 times with different input models and state 

vectors. We report on the average and the standard deviations from these 5 repeats. We 

also performed experiments with the real-life map, i.e., the case study defined in Section 

2.1.5. 

3.6.5 Results 

Table 3.7 summarizes the experimental results with the synthetic data. For these 

experiments, the density estimate parameter was set to be the same as the actual density 

of the input FCM. The columns reporting the matrix error, specificity, sensitivity, and SS 

mean are averaged over five independent experiments performed with each setup, 

whereas the out-of-sample error was additionally averaged over 10 experiments 

performed with different initial vectors. The results were compared to three other learning 

methods, i.e., RCGA, NHL, and DD-NHL. In order to perform an unbiased comparison, 

the same initial population was used for the RCGA and Sparse RCGA methods (in the 

latter case, the genes reset was carried out after the initialization, see Step 2 of the Sparse 

RCGA method). Since both NHL and DD-NHL methods use just a single initial 

connection matrix as their starting point (in contrary to the RCGA and Sparse RCGA that 

use the entire population of 100 chromosomes), 100 experiments were carried out with 

these methods – each experiment was performed with a different initial matrix that was 

taken from the initial population utilized by the RCGA and Sparse RCGA methods. The 

best (based on the in-sample error), among the 100 experiments, results were reported in 

Table 3.7 for both the NHL and the DD-NHL methods.  
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Table 3.7: Experimental results with the Sparse RCGA method on synthetic data. The 

#concepts and density columns define the input model. The subsequent columns correspond 

to the evaluation measures described in Section 3.5.3. Matrix error (Matrix), Specificity 

(Spec), Sensitivity (Sens), and SS mean (SS mean) values are averaged across 5 experiments 

for each setup (with corresponding standard deviations), while out-of-sample values are 

additionally averaged across 10 experiments performed from different initial vectors.  

 #concepts Density Out-of-sample Matrix Spec Sens SS mean 

   AV SD AV SD    

5 20% 0.010 ±0.012 0.002 ±0.002 0.85 0.93 0.89 

5 40% 0.008 ±0.011 0.003 ±0.003 0.87 0.91 0.89 

10 20% 0.123 ±0.141 0.105 ±0.198 0.58 0.90 0.71 

10 40% 0.124 ±0.151 0.168 ±0.200 0.69 0.85 0.76 

20 20% 0.142 ±0.143 0.122 ±0.219 0.49 0.86 0.62 

20 40% 0.146 ±0.148 0.203 ±0.295 0.59 0.79 0.68 

40 20% 0.166 ±0.183 0.135 ±0.235 0.36 0.84 0.50 

Sparse 

RCGA 

40 40% 0.164 ±0.196 0.245 ±0.288 0.48 0.72 0.58 

5 20% 0.017 ±0.017 0.321 ±0.381 0.93 0.12 0.20 

5 40% 0.012 ±0.018 0.361 ±0.372 0.96 0.09 0.16 

10 20% 0.135 ±0.137 0.398 ±0.322 0.96 0.11 0.19 

10 40% 0.136 ±0.140 0.385 ±0.316 0.94 0.11 0.20 

20 20% 0.151 ±0.149 0.426 ±0.346 0.94 0.09 0.16 

20 40% 0.152 ±0.149 0.413 ±0.376 0.94 0.08 0.14 

40 20% 0.171 ±0.187 0.453 ±0.385 0.94 0.08 0.15 

RCGA 

40 40% 0.167 ±0.189 0.436 ±0.368 0.96 0.08 0.15 

5 20% 0.199 ±0.209 0.317 ±0.345 0.96 0.06 0.11 

5 40% 0.197 ±0.203 0.381 ±0.333 0.96 0.07 0.12 

10 20% 0.201 ±0.181 0.412 ±0.356 0.96 0.07 0.13 

10 40% 0.192 ±0.189 0.423 ±0.348 0.93 0.05 0.10 

20 20% 0.201 ±0.222 0.464 ±0.316 0.93 0.08 0.14 

20 40% 0.203 ±0.224 0.436 ±0.348 0.94 0.07 0.13 

40 20% 0.198 ±0.199 0.468 ±0.388 0.96 0.07 0.12 

DD-NHL 

40 40% 0.199 ±0.209 0.465 ±0.384 0.93 0.06 0.12 

5 20% 0.201 ±0.195 0.345 ±0.349 0.94 0.07 0.13 

5 40% 0.209 ±0.197 0.346 ±0.306 0.93 0.05 0.10 

10 20% 0.200 ±0.215 0.420 ±0.348 0.93 0.07 0.12 

10 40% 0.206 ±0.217 0.435 ±0.301 0.93 0.06 0.11 

20 20% 0.199 ±0.222 0.461 ±0.348 0.93 0.07 0.13 

20 40% 0.201 ±0.222 0.468 ±0.322 0.93 0.05 0.10 

40 20% 0.203 ±0.190 0.489 ±0.388 0.95 0.08 0.15 

NHL 

40 40% 0.203 ±0.193 0.498 ±0.389 0.94 0.06 0.12 
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Results from Table 3.7 show that the Sparse RCGA method outperforms the others in 

terms of both the out-of-sample and the matrix errors. In order to facilitate a comparative 

analysis, we used paired t-test to investigate statistically significant differences between 

the proposed and other methods. The obtained results are summarized in Table 3.8. 

Table 3.8: Tests of statistically significant differences between the Sparse RCGA and other 

methods. The density estimate parameter was set to be the same as the actual density of the 

input FCM. The number of plus signs in cells reflect different confidence levels, i.e., 98% 

(+++), 95% (++), and 90% (+), for the significance tests. 

The analysis of the out-of-sample error shows that the Sparse RCGA is significantly 

better at a 98% confidence level than the three other methods under consideration for the 

small and medium size maps (containing 5 and 10 nodes). For larger maps (with 20 and 

40 nodes), the improvements at 98% are true when the map is compared against the DD-

NHL and NHL approaches, whereas the confidence level drops to 95% (20 nodes) and 

90% (40 nodes when the Sparse RCGA is compared with the RCGA).  

The matrix errors generated by the Sparse RCGA method, see Table 3.8, are statistically 

significantly better at a 98% confidence level than the errors produced by the three other 

methods considered for all setups. Results from Table 3.7 suggest that the matrix error is 

smaller for sparser maps, i.e., 20%, when compared with the denser maps. This trend is 

more evident for larger maps, i.e., 0.135 vs. 0.245 for maps consisting of 40 nodes, which 

is due to a larger number of zeros in the sparser maps and the fact that the proposed 

method enforces zeros in its solution. We further investigate this observation by 

calculating baselines using 10 randomly generated maps of a given density and size 40 

with their non-zero weights set at random. The average matrix error for these maps equals 

Out-of-sample Matrix 
# concepts Density 

RCGA DD-NHL NHL RCGA DD-NHL NHL 

5 20% +++ +++ +++ +++ +++ +++ 

5 40% +++ +++ +++ +++ +++ +++ 

10 20% +++ +++ +++ +++ +++ +++ 

10 40% +++ +++ +++ +++ +++ +++ 

20 20% ++ +++ +++ +++ +++ +++ 

20 40% ++ +++ +++ +++ +++ +++ 

40 20% + +++ +++ +++ +++ +++ 

40 40% + +++ +++ +++ +++ +++ 
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0.18 for density of 20% and 0.34 for a density of 40%. This means that the Sparse RCGA 

improves over the baseline by 25% for the sparser and by 28% for the denser maps, 

respectively. 

Additional insights concerning the structural quality of the candidate FCM can be 

obtained from an analysis of the three last columns in Table 3.6. Specificity determines 

the ratio of correctly assigned “non-zero” values whereas sensitivity – the ratio of 

correctly assigned “zero” values in the connection matrix of the candidate FCM 

comparing to the input model. Using an approach described in the previous paragraph, we 

calculated the baselines for these measures. The baseline specificities equal 0.18 (20%) 

and 0.37 (40%), the baseline sensitivities equal 0.82 (20%) and 0.63 (40%), and the 

baseline SS means are 0.30 (20%) and 0.47 (40%), respectively. In addition, 10 random 

maps without any density restrictions were generated for each setup and the following 

baselines were obtained: specificity 0.95 (20%) and 0.94 (40%), sensitivity 0.05 (20%) 

and 0.06 (40%), and SS mean 0.10 (20%) and 0.11 (40%). The analysis of SS mean 

values, which combine specificity and sensitivity, shows that the Sparse RCGA method 

outperforms the other considered approaches. Moreover, the proposed method is 

approximately 5 times better (for large 40-nodes maps) and about 9 times better (for 

small 5-nodes maps) than the baseline that does not consider density, and it improves 

over the baseline with the known density by 40% and 16% for the sparser and denser 

maps of size 40, respectively. When compared against the RCGA, NHL, and DD-NHL, 

the Sparse RCGA provides substantially higher sensitivity and lower levels of specificity. 

We note that both of these measures are relatively balanced in the case of the RCGA 

method, while the other approaches are characterized by high specificity (due to the fact 

that they predict virtually all weight with non-zero values), and very low specificity 

between 5% and 12%. Although the RCGA and Sparse RSGA methods obtain the out-of-

sample errors that differ “only” at 90% significance for the 40 nodes maps (see Table 

3.7), the SS mean values of the proposed method are over three times higher and they 

demonstrate that the corresponding maps are more useful for the static analysis. 

Table 3.9 shows experimental results for the real-life model. In addition to experiments 

that are analogous to the experiments performed with synthetic data, we also carried out 

an analysis of the sensitivity of the proposed method to the density estimate parameter. 

The parameter varied between 10% and 100% with 5% increments, and we investigated 

its influence on the quality of the candidate FCM.  
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Table 3.9: Experimental results with the case study. The density column reports the density 

estimate parameter used with the Sparse RCGA learning. 

 Density Out-of-sample Matrix Spec Sens SS mean 

  AV SD AV SD    

10% 0.141 ±0.138 0.190 ±0.317 0.10 0.96 0.17 

15% 0.139 ±0.139 0.187 ±0.322 0.20 0.93 0.32 

20% 0.137 ±0.141 0.169 ±0.316 0.39 0.92 0.55 

25% 0.136 ±0.132 0.150 ±0.307 0.47 0.89 0.61 

30% 0.134 ±0.133 0.138 ±0.269 0.55 0.86 0.67 

35% 0.132 ±0.131 0.120 ±0.245 0.63 0.84 0.72 

40% 0.132 ±0.130 0.117 ±0.247 0.65 0.84 0.73 

45% 0.136 ±0.134 0.123 ±0.265 0.70 0.72 0.71 

50% 0.138 ±0.135 0.129 ±0.265 0.72 0.62 0.67 

55% 0.139 ±0.132 0.135 ±0.311 0.76 0.56 0.65 

60% 0.139 ±0.134 0.166 ±0.319 0.80 0.46 0.58 

65% 0.140 ±0.131 0.179 ±0.318 0.82 0.41 0.55 

70% 0.143 ±0.138 0.219 ±0.349 0.84 0.33 0.47 

75% 0.144 ±0.139 0.239 ±0.329 0.87 0.30 0.44 

80% 0.149 ±0.141 0.265 ±0.346 0.92 0.19 0.31 

85% 0.149 ±0.144 0.305 ±0.359 0.94 0.15 0.26 

90% 0.149 ±0.149 0.329 ±0.376 0.95 0.10 0.18 

95% 0.151 ±0.137 0.346 ±0.388 0.95 0.09 0.17 

Sparse RCGA 

 

100% 0.151 ±0.141 0.392 ±0.386 0.95 0.08 0.15 

RCGA N/A 0.151 ±0.141 0.392 ±0.386 0.95 0.08 0.15 

DD-NHL N/A 0.197 ±0.165 0.426 ±0.382 0.94 0.07 0.13 

NHL N/A 0.199 ±0.184 0.436 ±0.379 0.94 0.06 0.11 

Both out-of-sample and matrix errors have the lowest values when the density estimate 

equals 40%, which is close to the actual density of 39%. These results are similar to the 

results for the synthetic maps with a size of 10, which is comparable to the size of the 

slurry rheology map. Figure 3.10 illustrates the influence of the density estimate on these 

two criteria for the learning of the slurry rheology map. 
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Figure 3.10: Sensitivity of the Sparse RCGA method to the setting of the density estimate 

parameter. Bars show a relative increase of the out-of-sample error (scale to the left) and the 

matrix error (scale to the right) with respect to the lowest error obtained for the density 

estimate that equals 40%. Labels on the horizontal axis correspond to the difference between 

a given value of the density estimate and the value for the density of 40%. 

Both errors are upper-bounded by the solution obtained from the RCGA method which 

does not utilize information about the density. This means that even if the estimate of the 

density is incorrect, the maps generated by the Sparse RCGA will be still better or at least 

equivalent, in terms of both the out-of-sample and matrix errors, when compared to the 

maps generated by the RCGA, NHL, and DD-NHL methods. We note that the RCGA is 

equivalent to the Sparse RCGA with a density estimate of 100%, which is confirmed by 

the results in Table 3.8. Relatively small increases in the out-of-sample error (up to 15%) 

across the entire range of the density estimate demonstrates that there are many 

structurally different maps (of different densities) that exhibit similar dynamic behaviour. 

Classification results reported in Table 3.8 show that the Sparse RCGA outperforms other 

methods in terms of the SS mean values. In order to put these numbers into perspective, 

we compute the baseline by averaging 10 randomly generated maps with a density of 

39%. The baseline specificity, sensitivity and SS mean equal 0.35, 0.63, and 0.45, 

respectively. Results from Table 3.8 demonstrates that when considering the SS mean 

values, the results obtained with the Sparse RCGA for the density estimates between 20% 

and 70% are better than the baseline. Therefore, the density estimate could be off by as 
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much as -20% or +30% with respect to the actual value, and the SS mean would still be 

better than this baseline that is calculated for the actual density. 

3.6.6 Conclusions 

The proposed improved version of the RCGA approach aims at learning FCM models 

that are structurally more similar to real-life models when compared to the FCMs 

obtained from current fully-automated learning approaches. Our examination of the 

published FCMs reveals that the maps are relatively sparsely connected. This information 

has been utilized to guide the learning process towards finding maps of a predefined 

density, determined by the density estimate parameter.  

Experimental analysis of the Sparse RCGA method on synthetic data shows that, given a 

correct density estimate, it is capable of producing models that are statistically 

significantly better at the 98% level of confidence than models generated by all other 

considered learners for all tested setups, except for the 20 and 40 nodes maps when 

compared to RCGA method, where the proposed method is statistically significantly 

better at the 95% and 90% level of confidence, respectively. An analysis of the structural 

quality expressed by the matrix error reveals that the Sparse RCGA approach performs 

statistically significantly better (at the 98% level of confidence) than all other considered 

methods for all setups. Experiments with a real-life model demonstrate that when the 

correct density estimate is unknown, the Sparse RCGA method is still able to develop 

models of quality, which is equivalent to or better than the quality offered by the other 

methods.  

3.7 Summary 

In Chapter 3, a number of new methods for learning Fuzzy Cognitive Maps from data 

based on genetic optimization has been introduced and thoroughly tested. Our research in 

this area was motivated by the shortcomings of the FCMs design practices. 

Disadvantages of expert-based methods and existing computational approaches call for a 

systematic solution for the automated development of FCMs.  

The first proposed method is based on real-coded genetic algorithms (RCGA). It is fully-

automated and generates FCMs from input data consisting of a single sequence of state 
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vectors. We investigated different setups and came up with a set of recommended 

guidelines for setting parameters of the employed genetic algorithm. Experiments 

performed with the RCGA-based method, involving both synthetic and real-life data, 

demonstrated that this method generates FCM models of high quality in terms of the 

dynamic properties (similarity of simulations between the generated and the true FCM).  

Two methods for the parallelization of genetic algorithms have been experimentally 

evaluated to improve the scalability of the RCGA-based learner, as well as the single and 

the multiple population approaches. The reported performance results of the parallel 

RCGA methods showed that the learning of FCMs on 8 processors was four times faster 

than the sequential learning, i.e., it demonstrated a 2:1 ratio between the speed up and the 

number of processors used. 

The second proposed method aims at introducing a scalable approach for FCM learning 

that uses the divide and conquer strategy to split the learning task into subtasks performed 

simultaneously. This method is tested against the two methods that parallelize the genetic 

algorithm. A number of configuration setups have been examined, including the usage of 

oversampling. The experimental results performed on 8 processors show that our divide 

and conquer-based solution without oversampling is up to seven times faster than the 

sequential learning. With 50% oversampling, the proposed method is up to five times 

faster than the sequential learning. We compare the proposed solution with the single and 

multiple population parallelizations of the RCGA method. The divide and conquer 

strategy without oversampling is shown to be up to three times faster than both 

parallelization methods. 

The third method discussed in this chapter entails a modification of the RCGA method, 

called Sparse RCGA, that accommodates additional a priori information on the model’s 

density. It was motivated by the fact that real-life FCM models are much sparser than the 

models generated using modern computational methods. Advantages of this improved 

approach are twofold: (1) it improves the model quality in terms of its dynamics (it 

generates simulations that are more similar to the simulations generated by the true FCM 

when compared to the other existing methods), and (2) it improves its structural 

properties. The Sparse RCGA method requires an estimate of the density as input, while 

the other methods do not need this input. At the same time, our empirical experiments 
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show that even if the correct density estimate is unknown, the Sparse RCGA method 

performs better or equal to the other methods. 
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Chapter 4  

Aggregation of Fuzzy Cognitive 

Maps  

4.1 Introduction 

Designing an FCM model for a given system often includes the aggregation of 

knowledge from a variety of sources (Aguilar, 2005). This operation, which is the final 

development stage, aims to improve the reliability of the FCM model. Typically, 

aggregated input models are developed by multiple experts from the application domain. 

Collaboratively, experts may select a set of related concepts or each expert may be given 

an opportunity to define an FCM with his or her own set. The former approach assures 

that the connection matrices of the aggregated models are of the same size. The latter 

approach may result in models with different sets of concepts. In order to aggregate the 

maps, a pre-processing step must be carried out, which includes augmentation of 

matrices, see Section 2.2.2.  

Table 4.1 summarizes an example of FCM models where models from different experts 

were aggregated to obtain the final model.  
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Table 4.1: Examples of aggregated FCMs reported in scientific literature. “Unavailable” 

values in the credibility weight columns means that the source paper does not provide this 

information. 

Application area Reference 
Number of 

experts 

Map 

size 

Credibility 

weights 

Availability of individual 

experts’ maps 

Slurry rheology 
(Banini an d 

Bearman, 1998) 
3 13 No Yes 

Control process 
(Stylios and 

Groumpos, 2000) 
3 5 No No 

Supervisory control 

system 

(Stylios and 

Groumpos, 2000) 
3 9 Unavailable No 

Brain tumor 

characterization 

(Papageorgiou et al., 

2008a) 
3 9 Unavailable No 

Conflict management (Noori et al., 2009) 5 17 No No 

E-learning (Salmeron, 2009) 6 10 Unavailable No 

Military planning 
(Yaman and Polat, 

2009) 
6 12 Yes No 

The above table lists only those examples that were supported with information on the 

number of experts and map size in the original reference. Many other publications include 

only a brief statement that a corresponding final model was obtained by aggregating 

models developed by a number of experts, but no additional information was provided.  

4.2 Detailed goals 

In this chapter, a new method for aggregating FCMs is introduced. The method 

aggregates individual models into a single, final FCM. The goals of the proposed research 

are to: 

• introduce a new method to aggregate FCMs based on simulations of individual 

models;  

• carry out well-organized, thorough empirical tests, integrating large number of 

configurations in terms of map sizes and number of experts; 

• evaluate the new method against other approaches for the aggregation of FCMs; 
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• examine whether the FCM models generated by the new method preserve 

behavioural properties of the individual input model (whether they provide 

similar simulations); and  

• investigate whether the proposed method can find behaviourally good solutions 

when assuming constraints on their structures 

4.3 Motivation 

The existing approaches to aggregate FCMs rely solely on the static models, i.e., 

connection matrices, to derive the aggregated map, see Table 2.3 in Section 2.2.2. This is 

adequate when the derived map is used to perform a static analysis since the aggregated 

connection matrix is similar to the input matrices. On the other hand, structural similarity 

does not imply behavioural (dynamic) similarity as we show with the following example. 

Let us consider the case study, i.e., FCM model of slurry rheology (Banini and Bearman, 

1998). This is the only example that we found where the authors provide the individual 

maps developed by the experts and the aggregated map established using Formula 2.6. 

Although the aggregated map is structurally similar to the individual input maps and 

therefore the static analysis is consistent for the input maps and the derived map, the 

simulation results are not consistent, see Figure 4.1.  
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Figure 4.1: Simulation results for the four most important concepts in the case study FCM. 

Solid lines illustrate simulation results of maps from individual experts whereas the dotted 

lines show the simulation of the aggregated FCM. 

Due to the large map size we focus on the simulations for the most important four 

concepts. The importance was calculated using a static analysis based on guidelines from 

(Tsadiras et al., 2001), where it is quantified as the sum of absolute values of the weights 

for all incoming and outgoing connections for a given concept. The four concepts with 

the highest summed values are C5, C6, C7 and C12. We observe that the activation levels 

of these four concepts converge to a certain value (stable state of the system). Assuming 

the same credibility factors for the three experts, the aggregated map should generate 

simulations that correspond to a consensus of outcomes from the individual input maps. 

However, in Figure 4.1 only the simulations for concept C7 are acceptable; in this case, 

the plot of the aggregated FCM (in dashed line) falls roughly in-between the plots based 

on the maps from the three experts. The simulations of the aggregated map for the other 

three concepts are far from being a consensus of the simulations from the three expert’s 

maps. For instance, simulations for concept C6 show that the aggregated map follows just 

one of the experts and its final (stable state) value for this concept is close to 1, while the 
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simulations from the other two experts result in the stable state values at about 0.95 and 

0.8, respectively. In essence, the combined map picks one of the experts instead of 

aggregating the maps from all three experts who are assumed to be equally credible. 

Therefore, the conclusions drawn from the dynamic analysis of the aggregated FCM 

could be misleading, i.e., one would conclude that the stable state for concept C6 should 

equal 1 and this way would disregard opinions of 2 out of 3 equally knowledgeable 

experts.  

Methods for the aggregation of FCMs based on the dynamic properties of the individual 

maps have not been yet investigated, see Table 2.3. In order to fill this gap we introduce a 

new approach to combine FCMs which takes into account simulations of the input 

models. 

4.4 Proposed method 

The proposed approach performs a search using the real-coded genetic algorithms for an 

optimal aggregated connection matrix that generates simulations similar to the 

simulations from the input connection matrices (input FCMs). The fitness function is 

defined as the difference between the simulation from the aggregated matrix and the 

simulations from the input FCMs, and we search for the combined matrix that minimizes 

this difference. in fact, we search for the matrix that corresponds to the maximal values of 

the inverse of the difference. The RCGA is used because it is capable of finding a global 

maximum, which is critical since there are usually many suboptimal solutions, and 

because this method can search through a highly-dimensional space, which again is 

important since we need to find NxN values that make up the connection matrix. This 

approach is motivated by the successful prior application of the RCGA algorithm to learn 

connections matrices (FCMs) from a given simulation data, see Chapter 3. The main 

difference here is that we extend this prior work to accommodate for simulations from 

multiple input FCMs, instead of using a simulation from a single FCM. The following 

description explains the parameters used to configure real-coded genetic algorithms, 

which is used to perform the search. 
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Chromosome structure 

The chromosome structure stores values of all NxN variables, and therefore it is defined 

as follows: 

  (4.1) 

where eij corresponds to the relationship strength from the concept Ci to the concept Cj 

and is normalized on the [-1,1] interval. 

Fitness function 

The fitness function utilizes state sequences generated from input FCMs by simulating 

them from the initial state vector C(0) and is defined as follows:  

 
 (4.2) 

where  is the value of a node n at iteration t from simulation of the map encoded by 

a given chromosome,  is the value of a node n at iteration t from simulation of a 

model from expert k, T is the length of the simulation, N is the number of concepts, K is 

the number of experts, and h is an auxiliary function,  

The auxiliary function is defined as   and is explained in Section 3.3.3. 

In other words, the fitness function is defined as using the sum of the least squared errors 

between the state sequence (simulation) generated by the map encoded by a given 

chromosome and the individual input maps simulated from the same initial state. 

Genetic operators and stopping conditions 

They have been defined and described in Section 3.3.3. 

 



 
81 

Detailed procedure for the proposed aggregated learning method for FCMs 

The proposed method for aggregating FCMs is implemented using the three steps listed 

below. 

Given  

K input FCMs and an initial state vector C(0) 

The individual input maps describe the same system, i.e., they were developed by 

different experts or learning algorithms, and we assume that they consider the same sets 

of concepts . Otherwise, the pre-processing step that unifies the input 

maps, see Section 2.2.2, is necessary. The initial state vector is usually given for a 

particular “what-if” type of dynamic analysis that a user wants to carry out with the 

model. Otherwise, a random input state vector could be used. 

Step 1: Simulate each individual input FCM from the initial state vector C(0) 

Each simulation is represented by TxN matrix (T is the length of the simulation, i.e., the 

number of iterations), which stores the values of the concepts over successive iterations 

calculated using Formula 2.1. These data are used in the RCGA-based optimization, 

instead of the individual connection matrices which are used by the existing methods for 

the aggregation of FCMs.  

Step 2: Perform genetic optimization using RCGA 

Step 2.1: Randomly initialize a population of p chromosomes. We also tried 

different initial populations based on the individual input maps, but this did not 

improve the results. 

Step 2.2: Calculate the fitness function for the entire population. This is carried out 

by decoding a candidate FCM from each chromosome, and applying Formula 4.2 

Step 2.3: Check the stopping condition. If it is satisfied, return the population of 

chromosomes 

Step 2.4: Apply the crossover operation on the population 
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Step 2.5: Apply the mutation operation on the population 

Step 2.6: Calculate the fitness function for the entire population.  

Step 2.7:  Check the stopping condition. 

Step 2.8: Generate a new population using selection operation. 

Step 2.9: Go to Step 2.4 

Step 3: Select the solution FCM  

The outcome of Step 2 is the population of chromosomes. Given that there are no 

additional constraints, the aggregated map is decoded from the chromosome with the 

highest value of the fitness function among the entire population. However, if some 

constraints are imposed on the aggregated map then the chromosomes that do not fulfill 

these criteria are filtered out, and next the chromosome with the highest fitness value is 

selected from the remaining chromosomes. We use a constraint that requires the output 

map to be structurally similar to the maps from the input experts, i.e., to have a similar 

connection matrix, in our experimental analysis.  

4.5 Evaluation criteria 

We evaluate the proposed method on both structural (measured with matrix error) and 

behavioural (measured with out-of-sample error and stable state error) characteristics. A 

structural evaluation was performed by comparing matrices of the individual input maps 

and the aggregated map. A behavioural evaluation was performed using the simulation of 

all (input and aggregated) maps with ten different randomly chosen initial state vectors. 

These simulations are different than the simulations used to learn the FCMs using the 

RCGA-based methods to ensure that out-of-sample testing is performed. These 

simulation results were used to calculate the two corresponding measures, i.e., out-of-

sample error and stable state error. 

• Matrix error – measures the average difference between corresponding 

relationships in the aggregated map and the individual input maps  
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 (4.3) 

where eij is weight between nodes Ci and Cj in the aggregated map, ek
ij is weight 

between nodes Ci and Cj in the map from kth expert, N is the number of concepts, 

and K is the number of experts 

• Out-of-sample error – measures the average difference between each concept 

value in the corresponding simulations generated by the aggregated map and the 

by input individual maps. The value is calculated as an average over P 

experiments with different initial state vector 

 

 
(4.4) 

where Cn(t,p) is the concept Cn value at iteration t in pth experiment in the 

aggregated map, Cn
k(t,p) is the concept Cn value at iteration t in pth experiment in 

the map from kth expert, P is the number of simulations from different initial state 

vector, T is the maximum number of iterations, N is the number of concepts, and 

K is the number of experts 

• Stable state error – measures the average difference between the final concepts 

values (at iteration T) in simulations generated by the aggregated map, and the 

final values of corresponding concepts generated with the individual input maps. 

In cases where FCMs did not stabilize but kept cycling between several states, 

one full cycle was taken and average concept values were calculated and used 

instead of the stable state values. The stable state error value is calculated as an 

average over P experiments with different initial state vectors. 

 

 
(4.5) 
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where Cn(T,p) is the concept Cn value at iteration T (if the system stabilizes or 

otherwise, an average value of the concept Cn across one full cycle) in pth 

experiment in the aggregated map, Cn
k(T,p) is the concept Cn value at iteration T 

(if the system stabilizes or otherwise, an average value of the concept Cn across 

one full cycle) in pth experiment in the map from kth expert, P is the number of 

simulations from different initial state vectors, T is the maximum number of 

iterations, N is the number of concepts, and K is the number of experts  

4.6 Experimental setup 

We used both synthetic and real-life maps. The real life model concerns slurry rheology 

(Banini and Bearman, 1998) since this was the only aggregated real map with the 

individual input maps that were fully defined, see Table 4.1. We generated the input data 

(simulations from the input FCMs) from the initial vector suggested in the original 

reference.  

Due to the lack of additional real-life maps, we also prepared synthetic data. We 

performed experiments with twelve different setups defined by a different number of 

experts (2, 3, 4, and 5) and different map sizes (5, 10 and 15). These are typical numbers 

encountered in prior works involving the aggregation of FCMs, see Table 4.1. For each 

setup, the map from the first expert was generated randomly. However, the remaining 

maps should not be random as they should describe the same system as the map from the 

first expert. We used our real-life slurry rheology map to guide the generation of the other 

maps. We calculated the set of 169 (for each of the 13x13 = 169 concepts) standard 

deviations (across the three maps) and these values were used to define 169 

corresponding normal distributions with a mean equal to 0. Next, a given relationship (a 

given entry in the FCM) in the maps from the other experts are computed by taking the 

corresponding entry from the map from the first expert and adding to it a value δ drawn 

from one of the 169 distributions, which is chosen at random. The corresponding entry 

for each additional expert uses a different δ drawn from the same distribution. If the sum 

does not fall into the [-1, 1] range, then we draw another δ. This procedure enables 

similarity between a given set of the input synthetic maps and the maps from our real-life 

FCM. 
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4.7 Methods used for comparison 

We compare against the average aggregation method since the other two existing 

methods require additional information (see Table 4.1) which is usually not available, as 

in the case of our real-life slurry rheology map. However, we include two additional 

approaches which are derived from the average-based aggregation. The first one is based 

solely on structural properties of the individual maps whereas the second one uses both 

structural and behavioural properties.  

• Median - each value of the aggregated matrix is calculated as a median (instead 

of the average) across all individual maps, which is described by the following 

formula: 

 
 (4.6) 

where ek
ij is the weight (relationship strength) between nodes Ci and Cj in the map 

from kth expert 

A median is also a central point which minimizes the average of the absolute 

deviations among the weights. This method does not introduce new weight 

values, instead the weights in the aggregated map are drawn from among the 

weight in the input maps, which could be considered advantageous when 

compared to the average. 

• Weights optimization (weightOpt) – the aggregated matrix is calculated using 

Formula 2.7. The credibility weights wk are established using the RCGA with the 

fitness function (Formula 4.2), and normalized such that sum of all weights 

equals 1. Each chromosome consists of K floating point numbers, which are 

optimized through a real-coded genetic algorithm to maximize the fitness 

function. This method uses the RCGA to find “optimal” weights for a weighted 

average-based aggregation, and it takes into account both structural and 

behavioural aspects of aggregating individual FCMs into a single map. 
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4.8 Results 

Experimental results are summarized in Table 4.2. The first column, which includes the 

number of concepts and the number of experts, defines the experimental setup. The last 

setup (the last four rows) corresponds to the real-life model, whereas all other rows 

correspond to synthetic models. The second column lists methods used which are denoted 

as follows: genetic – the method proposed in this Chapter, average – the most commonly 

used map averaging-based aggregation method (see Table 2.3), median and weightOpt – 

two other methods based on the median weights and genetically optimized weighted 

average of weights, as described in Section 4.7. The next column shows the evaluation 

measures (see Section 4.5) values obtained from the empirical experiments. We also 

performed paired statistical tests for the behavioural measures (the out-of-sample and 

stable state errors) where we compare our method against the other three methods. For 

each setup, a paired t-test was carried out on the corresponding measures values 

calculated for each concept and for each expert. In other words, N*K*P values (the 

number of concepts multiplied by the number of experts and by the number of 

experiments with different initial conditions) were paired to perform the tests for each 

setup. The results are shown in the “Best solution” column. In addition, since the matrix 

error of the proposed method is substantially higher than that of the other methods, we 

investigated the quality of the entire population of solutions generated by our method, see 

Section 4.4. Instead of selecting the best chromosome (the one with the highest fitness 

value) from the entire population, we filtered out these chromosomes that are structurally 

different (measured by matrix error) by more than X% when compared to the median 

method; this is because the median-based method by definition minimizes the matrix 

error value for a given setup. Next, the chromosome with the highest fitness value was 

selected from the remaining subset of chromosomes. The same statistical tests were 

performed with three different thresholds of X=10%, 20%, and 30%. The results are 

reported in the last three sub-columns. The underlined values show cardinality of 

corresponding subsets of populations for each threshold that had a lower out-of-sample 

error than the solution obtained using the median method. For instance, the results for the 

setup with 5 concepts and 3 experts in the “Matrix error +20%” column are as outlined 

below. The final population returned by the proposed method includes 146 solutions that 

were structurally different by no more than 20% of the optimal solution measured by 

matrix error. From among these remaining solutions, the one with the highest fitness was 
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chosen to be compared with the other methods. This solution was found to be statistically 

significantly better in terms of both measures when compared to the average as well as to 

the median method (“+/+” signs), whereas the differences were not statistically 

significantly different when compared to the weights optimization method (“=/=” signs).  

Table 4.2: Experimental results with different aggregation methods. The first two columns 
define the experimental setup. The last four rows correspond to the results for the real-life 
model. The statistical significance results are shown as α/β where α is the result of the 
statistical test for the stable state error, and β is the result of the statistical test for the out-of-
sample error. “+” means that our Genetic method was statistically significantly better when 
compared to a method in a corresponding row, “=” means that the methods were not 
statistically significantly different.  

Setup Method Measures Statistical significance analysis 

Number 

of 

concepts 

Number 

of 

experts 

 
Matrix 

error 

Out-

of-

sample 

error 

Stable 

state 

error 

Best 

solutio

n 

Matrix 

error 

+10% 

Matrix 

error 

+20% 

Matrix 

error 

+30% 

5 2 Genetic 0.240 0.099 0.092  51 103 135 

  Average 0.084 0.134 0.139 +/+ =/+ +/+ +/+ 

  Median 0.084 0.134 0.139 +/+ =/+ +/+ +/+ 

  WeightOpt 0.115 0.104 0.103 +/+ =/= +/= +/+ 

10 2 Genetic 0.335 0.126 0.145  82 127 145 

  Average 0.091 0.174 0.182 +/+ +/+ +/+ +/+ 

  Median 0.091 0.174 0.182 +/+ +/+ +/+ +/+ 

  WeightOpt 0.118 0.148 0.157 +/+ +/= =/+ +/+ 

15 2 Genetic 0.272 0.148 0.152  62 153 189 

  Average 0.085 0.173 0.181 +/+ =/= +/+ +/+ 

  Median 0.085 0.173 0.181 +/+ =/= +/+ +/+ 

  WeightOpt 0.122 0.159 0.164 +/+ =/= +/= +/+ 

5 3 Genetic 0.379 0.165 0.177  83 146 192 

  Average 0.092 0.203 0.212 +/+ =/= +/+ +/+ 

  Median 0.082 0.217 0.226 +/+ =/= +/+ +/+ 

  WeightOpt 0.101 0.18 0.185 +/+ =/= =/= =/= 

10 3 Genetic 0.356 0.148 0.165  3 29 168 

  Average 0.089 0.181 0.199 +/+ =/= =/= +/+ 

  Median 0.073 0.206 0.216 +/+ =/= =/= +/+ 

  WeightOpt 0.094 0.162 0.186 +/+ =/= =/= +/+ 

15 3 Genetic 0.380 0.201 0.147  0 28 195 

  Average 0.091 0.22 0.164 +/+ N/A =/= =/= 

  Median 0.072 0.213 0.200 +/+ N/A =/= =/= 

  WeightOpt 0.098 0.209 0.154 +/+ N/A =/= =/= 
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5 4 Genetic 0.364 0.141 0.151  72 129 219 

  Average 0.082 0.158 0.164 +/+ =/= +/+ +/+ 

  Median 0.070 0.166 0.171 +/+ =/= +/+ +/+ 

  WeightOpt 0.103 0.151 0.156 +/+ =/= =/= =/= 

10 4 Genetic 0.266 0.182 0.178  21 49 138 

  Average 0.094 0.219 0.187 +/+ =/= =/= +/+ 

  Median 0.079 0.214 0.188 +/+ =/= =/= +/+ 

  WeightOpt 0.119 0.191 0.183 +/+ =/= =/= =/= 

15 4 Genetic 0.363 0.176 0.16  39 98 147 

  Average 0.088 0.188 0.17 =/+ =/= =/= =/= 

  Median 0.082 0.198 0.192 +/+ =/= =/= =/= 

  WeightOpt 0.102 0.182 0.166 =/= =/= =/= =/= 

5 5 Genetic 0.288 0.141 0.153  41 73 108 

  Average 0.091 0.169 0.174 =/+ =/= =/= +/+ 

  Median 0.089 0.174 0.168 +/+ =/= =/= +/+ 

  WeightOpt 0.099 0.161 0.153 =/+ =/= =/= =/+ 

10 5 Genetic 0.238 0.197 0.187  0 43 98 

  Average 0.095 0.209 0.192 =/+ N/A =/= =/= 

  Median 0.082 0.201 0.201 +/+ N/A =/= =/= 

  WeightOpt 0.105 0.198 0.186 =/= N/A =/= =/= 

15 5 Genetic 0.251 0.152 0.204  2 42 108 

  Average 0.097 0.188 0.201 =/= =/= =/= =/= 

  Median 0.089 0.203 0.211 +/+ =/= =/= =/= 

  WeightOpt 0.108 0.174 0.208 =/= =/= =/= =/= 

13 3 Genetic 0.28 0.148 0.142  29 72 183 

  Average 0.094 0.195 0.164 +/+ =/= +/+ +/+ 

  Median 0.073 0.198 0.214 +/+ =/= +/+ +/+ 

  WeightOpt 0.102 0.189 0.154 +/+ =/= =/+ +/+ 

The results show that for each setup with up to 4 experts and 10 concepts (this setup is 

the most similar to the average real-life model reported in Table 4.1), the proposed 

method performs statistically significantly better than the other three methods. For setups 

with more experts and/or concepts, the results are not statistically significantly better, 

although our method still scores better than or similarly well as the other approaches. 

When compared to the most commonly used average method, the proposed method is 

statistically significantly better in 12 out of 13 setups (including the real-life model). On 

average, the out-of-sample error is smaller by 16% and this improvement decreases when 

the number of experts increases (23% for two experts and 13% for five experts across all 

experiments with different map sizes). This might be caused by the increased complexity 
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of the optimization task. On average, the absolute value of this error increases from 0.12 

(two experts) to 0.16 (five experts). The out-of-sample error increases slightly when 

comparing the average values across different map sizes for a given number of experts 

from 0.13 (for 5 concepts) through 0.16 (for 10 concepts) to 0.17 (for 15 concepts). These 

results are better by 0.3 to 0.4 when compared to the weight optimization method, which 

scored second best.  

Similar to the out-of-sample error, the stable state error for the proposed method is 

statistically significantly lower when compared to the error for all other methods; this is 

consistent for each setup of up to 4 experts and 10 concepts. For setups with more 

experts, our method outperforms or is similar to the other solutions, but these 

improvements are not statistically significant. 

When compared to the average method, our solution is statistically significantly better for 

19 out of 23 setups. The differences are not statistically significantly different for the 

setups with five experts and for one setup with four experts, and the largest considered 

map with 15 concepts. On average the stable state error is smaller by 12%. Due to the 

same reason as for the out-of-sample error, the average improvement offered by the 

proposed method decreases when the number of experts increases: from 23% for two 

experts to 4% for five experts. On average, the absolute value of this error increases from 

0.13 for two experts to 0.17 for five experts. The average stable state error across all 

number of experts increases by 16% (from 0.14 to 0.17) when the number of concepts 

increases from 5 to 15. 

The proposed aggregation method does not use structural information, i.e., the connection 

matrices from the input maps. Consequently, the matrix error that measures structural 

similarity is considerably higher for our method when compared to the other three 

methods. Since the median value by definition minimizes the average of the absolute 

deviations among a set of given numbers, the connection matrices computed using the 

median method correspond to the optimal solution in terms of the matrix error criterion. 

Any other method can only perform equally well or worse than the median approach. 

However, since the proposed method returns a population of results (each chromosome in 

the final population is a solution) instead of selecting the chromosome with the lowest 

quality index value from the entire population, we filtered out the chromosomes with the 

matrix error value higher by X% when compared to the median method. From among the 
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remaining chromosomes, we selected only those with a lower out-of-sample error value 

than the result of the median method. Cardinality of this set is reported in Table 4.2 

(using the underlined numbers) and it shows how many solutions of good structural 

quality are still better in terms of simulation error than the median-based solutions. For 

X=20%, the proposed method finds more than 25 of such solutions for each setup. 

Therefore, our method is capable of finding high quality maps in terms of structural 

properties, which are still better than the solutions generated by the other methods in 

terms of dynamic properties. 

We use simulation results for the slurry rheology model to put the measures reported in 

Table 4.2 into perspective. Figure 4.2 gives simulations for the four most important 

concepts from this model (the same concepts as in Figure 4.1). Each figure includes plots 

obtained using simulations of three individual models proposed by experts as well as 

plots obtained using simulations of aggregated maps generated by the four considered 

methods. 

Figure 4.2: Case study: simulation outcomes of the four most important concepts for 

different aggregation approaches. Solid lines illustrate simulation results of maps from 

individual experts whereas dotted lines illustrate simulations of the four aggregated FCMs. 



 
91 

When compared to the other three methods, the proposed approach generates simulations 

that better reflect a consensus of the dynamic properties of the simulations from maps 

produced by the individual models. Given that the experts are equally knowledgeable, 

which has been usually assumed in real-life examples including our case study (see Table 

4.1), the simulation for a given concept should be based on a consensus of the individual 

plots for the same concept generated from maps proposed by different experts. This is 

shown in Figure 4.2 where our method generates simulations that average the simulations 

from all three experts. This is particularly transparent for concepts C5, C6, and C12, 

where our solution generates a “consensus” simulation, while the other methods 

essentially try to closely mimic simulations from one (or two) of the experts while 

ignoring the other expert(s). While the above simulations offer just one snapshot for one 

real-life model, and thus could not be categorized as “typical”, they offer an explanation 

why the proposed approach is characterized by a favourable quality with respect to its 

simulations. 

4.9 Conclusions 

Developing a reliable FCM model for a given system is a challenging task. Models 

established by a single expert are vulnerable to bias and inaccuracy. Credibility of 

modeling with FCMs can be improved by aggregating maps from multiple experts. 

However, surprisingly only a few simple methods have been proposed to aggregate 

FCMs and all of them operate at the structural level, which may not be suitable when 

dynamic analysis is performed using an aggregated model. 

We propose a new approach for the aggregation of FCMs, which operates on the 

behavioural (simulation) level and utilizes data from the simulation of individual input 

models instead of their structures. Experimental results demonstrate that aggregated 

models obtained using the new method better preserves the dynamic properties of the 

input models, as defined by the out-of-sample error and the stable state error, when 

compared to existing aggregation methods. These two measures have been selected since 

they are often used in practical applications of FCMs; they play a crucial role when 

dynamic modeling with Fuzzy Cognitive Maps is considered (Aguilar, 2005; Tsadiras et 

al., 2008; Papageorgiou et al., 2009).  
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Experimental studies show that the new method is statistically significantly better than 

other considered methods with respect to the abovementioned criteria when up to four 

experts and ten concepts are involved. Importantly, these setups cover many of the typical 

FCM models that involve aggregation, as shown in Table 4.1. When applied to larger 

systems and problems that involve more experts, our method still outperforms, or at worst 

works similarly well, when compared to the modern approaches. An evaluation of the 

proposed method, in terms of the structural quality of its solutions, was performed using 

the matrix error, which measures how much the aggregated map is different from the 

individual input maps. Despite the fact that our method provides a map that may be 

structurally significantly different from the input maps proposed by the experts, the final 

population of solutions generated by our genetic algorithm-based algorithm virtually 

always includes solutions that are worse only by a maximum of 20% from the structurally 

optimal solution (the median map) but better with respect to dynamic simulations. 

Therefore, our method could be used when the aggregated maps need to have high 

structural and dynamic quality. 
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Chapter 5  

Conclusions 

5.1 Empirical results for the case study 

Chapters 3 and 4 discuss methods for the development and aggregation of FCMs and 

include empirical evaluations that were performed on somewhat inconsistent setups 

defined by the map sizes and their densities. This resulted from the fact that some 

methods needed to be evaluated using specific setups, that these results were generated 

over a long period of times, and that they were influenced by the peer-review review 

process. This section aims to provide a consistent set of empirical results across all 

proposed and existing methods on the same real-world FCM. It summarizes the 

experimental results for the case study, i.e., the slurry rheology model (Banini and 

Bearman, 1998), and is divided into two subsections: results for learning FCMs from 

data, and a summary of experiments for FCMs aggregation. 

5.1.1 Learning FCMs from data 

Table 5.1 presents a summary of the results of the FCM learning task. The two reported 

criteria include the execution time and the out-of-sample error. The former quality index 

is used to perform a side-by-side comparison between the proposed generic RCGA-based 

learning methods and the divide and conquer / genetic parallelization – based methods 

that aim to improve the scalability of the genetic-based FCM learning. The latter criterion 

evaluates a given method based on out-of-sample (never used in the training of the 

model) simulations of the corresponding model. For the Parallel RCGA and Divide and 

conquer (D&C) RCGA methods, the experiments utilizing 8 processors were selected.  
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Table 5.1: Case study: summary of the experimental results for the learning of FCMs. 

Parallel RCGAs include results for both parallelization types: (S) single poplulation, and (M) 

multiple-population. The Divide and conquer method results without oversampling (0%) as 

well as with 75% oversampling (75%) are also reported. The Sparse RCGA method was 

executed with a default density estimate parameter of 37%. In addition, Hebbian-based 

methods were executed from a random initial condition, or from a 100 random initial 

conditions, rows NHL(100) and DD-NHL(100), and the best solution was reported. The bold 

font shows the lowest value across all the genetic-based methods for a given measure. 

Method Time [s] Out-of-sample error 

RCGA 1904 0.151 ±0.148 

Parallel RCGA (S) 386 0.152 ±0.149 

Parallel RCGA (M) 370 0.148 ±0.139 

D&C RCGA (0%) 250 0.160 ±0.144 

D&C RCGA (75%) 490 0.154 ±0.150 

Sparse RCGA 2102 0.132 ±0.130 

NHL 45 0.226 ±0.198 

NHL (100) 4458 0.199 ±0.178 

DD-NHL 46 0.222 ±0.211 

DD-NHL (100) 4623 0.195 ±0.178 

The Sparse RCGA is the method that provides the best solution in terms of the out-of-

sample error. The results were obtained assuming the default value of the density estimate 

parameter, which was coincidently, relatively close to the real density of the case study 

(37% vs. 39%). However, as shown in Table 3.8 in Section 3.5.5, the Sparse RCGA 

performs better or equally well when compared to the RCGA for any density estimate 

value. The divide and conquer method was the fastest of all genetic optimization-based 

approaches. When compared to the sequential RCGA, this method was approximately 7 

times faster. The quality of its solution is worse by approximately 6% (based on the out-

of-sample error) when compared to the best performing Sparse RCGA. The time-quality 

ratio could however, be controlled by using oversampling. Parallelization approaches 

provide substantial speedups (about 5 times) over the sequential RCGA for a relatively 

small decrease in the out-of-sample error.  
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The learning quality of Hebbian-based methods can be improved by starting the learning 

from multiple initial conditions, but even when executing the Hebbian-based methods 

from the same number of initial conditions as the population size in genetic-based 

algorithms (see the NHL(100) and DD-NHL(100) in Table 5.1) , the quality is still lower 

while the total execution time is longer. 

5.1.2 Aggregation of FCMs 

Table 5.2 summarizes the results obtained for the case study when considering the 

aggregation of the FCMs. The three criteria reported measure both structural (matrix 

error), and behavioural (out-of-sample error and stable state error) quality.  

Table 5.2: Case study: summary of experimental results for the aggregation of FCMs. 

“Genetic” refers to the proposed method. The other three methods are described in Section 

4.7. The last column includes statistical significance results, which are shown as α/β, where α 

is the result of the statistical test for the stable state error, and β is the result of the statistical 

test for the out-of-sample error. “+” means that our Genetic method was statistically 

significantly better when compared to a method in a corresponding row, and “=” means that 

the methods were not statistically significantly different.  

Method Matrix error Out-of-sample error Stable state error 
Matrix error 

+20% 

Genetic 0.280 0.148 0.142 72 

Average 0.094 0.195 0.164 +/+ 

Median 0.073 0.198 0.214 +/+ 

WeightOpt 0.102 0.189 0.154 =/+ 

The new aggregation method provides the best solution based on both the out-of-sample 

and the stable-state errors that measure similarity between the simulations of the 

aggregated map and the simulations of the individual models proposed by the experts. A 

structural analysis of the entire population of the solutions returned by the proposed 

method shows that it includes solutions that are worse by no more than 20% of the 

structurally optimal solution (the map generated by the median method) and better with 

respect to the dynamic simulations, when compared to methods based on the structural 

aggregation, and the weightOpt method based on the out-of-sample error. 

Although both the average and median methods perform the aggregation based solely on 

the structures of the input maps and they provide the solution with lower matrix error 
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values, their behavioural quality is statistically significantly worse when compared to the 

proposed approach (based on the t-test performed at a 98% confidence level with both 

out-of-sample and stable state measures). The method that optimizes the experts’ 

credibility weights (weightOpt) offers a trade-off solution between the structural- and the 

dynamic-oriented properties when compared to median- and average-based aggregations.  

5.2 Summary 

This dissertation tackles two challenging tasks that concern the design of Fuzzy 

Cognitive Maps, namely learning FCMs from data and the aggregation of multiple FCM 

models. The two investigations resulted in a fully-automated genetic algorithm-based 

method for learning FCMs and a new method to aggregate FCMs that utilizes simulations 

of individual input models. 

The proposed fully-automated learning method delivers high quality models when 

dynamic properties are considered. This method can potentially replace a domain expert 

when input data are available. It optimizes internal connections among concepts in the 

FCM using real-coded genetic algorithms (RCGAs). Our solution was empirically shown 

to outperform existing methods that are based on Hebbian learning. The RCGA-based 

learner has already been successfully applied in real-life applications to predict secondary 

structure of proteins (Kurgan et al., 2007) and to perform time-series predictions (Stach et 

al., 2008a). 

Two avenues of improvements for the RCGA method were also explored. The first one 

addresses scalability, since genetic optimization is complex and time consuming. The 

poor scalability of the generic RCGA approach makes it ineffective in its applications to 

large systems that consist of a few dozen concepts. We considered two strategies for the 

parallelization of the genetic algorithm as the most natural and problem-independent way 

to solve this problem. We also utilized a divide and conquer strategy, which involves 

dividing input data, learning submodels, and aggregating them into a final model. The 

latter approach is problem-specific as it draws from the fact that the FCM submodels can 

be relatively easily combined into a final solution. We analyzed and discussed trade-offs 

between the above approaches and empirically compared them to the generic FCM 

learner. The motivation behind exploring the second avenue of the RCGA improvement 

was due to the following observation: learned FCMs are much denser than the real-life 
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models. This a priori knowledge was used in the proposed Sparse RCGA method to 

improve the learning quality by guiding the learning process towards models of a given 

density. 

Another major topic addressed in this dissertation concerns the aggregation of Fuzzy 

Cognitive Maps. A new method that aims at preserving dynamic properties of the 

individual models and which uses the real-coded algorithms-based optimization, was 

proposed.  

The main findings from the research reported in this dissertation are summarized in 

Section 5.3.  

5.3 Major contributions 

The major contributions of this dissertation include: 

• the development of a novel, genetic optimization-based method (RCGA) for 

learning Fuzzy Cognitive Maps from data 

• a thorough, empirical evaluation of the method, which includes its 

parameterization, tests with different map sizes and densities, and a comparison 

against other existing approaches for the automated learning of FCMs 

• an empirical analysis of the relationship between the quality of the learned FCM 

model and the size of the input data 

• an evaluation of the proposed learning method on real data, with application to 

time series prediction, and comparative analysis with other state-of-the-art 

predictors based on fuzzy sets 

• the development and assessment of two types of solutions: genetic algorithm 

parallelization and divide and conquer approach, to improve the scalability of the 

RCGA method 

• a first-of-its kind evaluation of learning of large size FCM model, as existing 

methods were evaluated on map sizes below 10 nodes, while our analysis is 

comprised of maps with up to 40 nodes 
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• a first-of-its kind assessment of the running time necessary for automated 

learning of FCMs from data 

• an analysis demonstrating that current automated methods for learning FCMs 

generate maps that are too dense when compared to the underlying true maps 

• the development and evaluation of the Sparse RCGA method that uses a priori 

knowledge on the map density to improve the quality of the learned FCM models 

• an analysis showing that current structure-based methods for the aggregation of 

FCMs do not preserve the dynamic (simulation-based) properties in some cases 

• the development of a new method for the aggregation of FCMs based on 

simulations of individual input FCM models 

• a thorough empirical evaluation of the new aggregation method, which includes a 

comparison against other existing structure-based aggregation methods 

Below we outline the most important findings for the aforementioned studies. 

Learning FCMs from data 

Real-coded genetic algorithms proved to be an efficient approach to build a fully-

automated approach for the learning of FCMs. The proposed RCGA method outperforms 

existing Hebbian learning-based approaches when considering behavioural properties, 

i.e., simulation results. The parameterization of the method provides firm design 

guidelines that include RCGA parameters and fitness function selections. A comparison 

of three fitness functions was performed and suggested the function is based on Euclidean 

distance. In addition, experimental results demonstrate that the optimization of the map to 

the input data is a challenging task with many sub-optimal solutions. Learning quality 

and the convergence of the RCGA method to the optimal solution improves as the size of 

input data increase. For small maps that consist of five concepts the input data length 

should be more than 10, whereas for maps consisting of ten concepts, more than 20 

should be used to allow for quality RCGA learning. Comprehensive experiments 

performed with different setups, including maps with up to 40 concepts show that the 

genetic-based method is capable of providing solutions of statistically significantly better 

quality (based on t-tests with a 98% confidence level) when compared to Hebbian-based 
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methods, even for large models. When applied to time series prediction on real data, 

FCMs with the RCGA, learning outperforms or performs similarly to other state-of-the-

art predictors based on fuzzy sets, and provides the unique feature of linguistic prediction. 

A running time analysis reveals an exponential relationship between the RCGA learning 

time and model size for the genetic-based methods. Two approaches to study the 

scalability enhancements of the proposed method were investigated. The former, which 

concerns the parallelization of the genetic optimization, resulted in a 2:1 ratio between the 

learning speed up and the number of processors (for 8 processors), without a significant 

deterioration of the quality of the resulting solution. The latter method, which utilizes a 

divide and conquer strategy, resulted in a 8:7 ratio (for 8 processors), though our study 

shows that the increase in the number of processors negatively affects the quality of the 

model. Data oversampling was used to compensate and control the loss of the quality. 

The oversampling rate defines the trade-off between learning speed up and the quality of 

results. A map with 40 concepts can be learned in about 20 minutes on a desktop 

computer using the divide and conquer approach, while RCGA learning takes more than 

3 hours. Another proposed modification of the RCGA is aimed at improving the quality 

of the learned model by including a priori knowledge of structural properties (density of 

the map) of the generated map. The following observation was made: models obtained 

from existing learning methods are much sparser than real-life FCMs (over 90% vs. less 

than 40%). The results demonstrate that a statistically significant improvement of 

learning quality can be achieved when the correct density estimate is used. A study on the 

effects of the over- or under-estimation of the density estimate on the learning quality 

shows that in the worst case scenario, this method performs equally well as the generic 

RCGA method. Literature research suggests that the density estimate of around 37% 

should be used in the case where no other knowledge is available. 

Aggregation of FCMs 

A new method for FCM aggregation based on real-coded genetic algorithms was 

introduced. Experimental results show that the current methods which are based solely on 

the structures of individual input maps are not always reliable when dynamic analysis is 

the objective. For most of the setups considered in our empirical analysis, including the 

typical FCM setups reported in literature, the proposed method outperformed other 

approaches when evaluation based on preserving behavioural properties, such as the 

ability to reach a desired stable state of the individual models, was performed. For setups 
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using larger numbers of experts and/or concepts, the new method either outperforms or 

performs equally well as the other approaches. A structural analysis of the solutions 

returned by the proposed method reveals that they virtually always include solutions that 

are worse by no more than 20% from the structurally optimal solution and which are 

better with respect to dynamic simulations. Hence, the proposed method is applicable for 

aggregation tasks where both structural and dynamic quality of aggregated models are 

required. 

5.4 Limitations and further directions 

The studies undertaken contribute to the area of FCM design. The limitations and future 

directions that are listed below relate specifically to the two types of investigations 

performed in this dissertation. 

Learning FCMs from data 

Although the scalability of the RCGA method was improved, it still may be not sufficient 

for maps that consist of over a hundred concepts. In addition, when using the divide and 

conquer approach, the most time-efficient method, the quality of learning decreases when 

the number of processors used increases. 

Further research direction may include the application and evaluation of other paradigms 

to FCM learning, such as gradient descent. This approach should be faster and could 

scale better than the genetic algorithms-based optimization, though a large number of 

suboptimal solutions may result in a generation of FCM models that are inferior to those 

generated by the proposed RCGA method. 

Aggregation of FCMs 

An experimental analysis shows that the proposed method, though effective for smaller 

problems, does not scale well for larger setups in terms of preserving dynamic properties 

of the individual models. 

Future research direction may include experiments with the parameterization of the 

RCGA method and/or the fitness function used to tackle this optimization task for 
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different setups towards improving the method’s quality in its application to larger 

problems. 

Another interesting approach would be to develop a hybrid method which combines 

optimization based on (a) the structure (the input connection matrices) and (b) the 

behaviour (the simulations of the input connection metrics). Such a design could lead to a 

more balanced trade-off between the structural and behavioural quality of the aggregated 

maps. 
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Appendix A  

Abbreviations 

AHL – Active Hebbian Learning 

BDA – Balanced Differential Hebbian Algorithm 

D&C – Divide and Conquer 

DD-NHL – Data-driven Nonlinear Hebbian Learning 

DHL – Differential Hebbian Learning  

FCM – Fuzzy Cognitive Map 

GA – Genetic Algorithm 

GS – Genetic Strategy 

MPSO – Memetic Particle Swarm Optimization 

NHL – Nonlinear Hebbian Learning 

PSO – Particle Swarm Optimization 

RCGA – Real-Coded Genetic Algorithm 
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