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One of the more « - heating underground oil sand formations is to
pass a low frequen 'nt * ough the formation and heat it resistively
Access to the 0il ~as=: i1 uttae s gained through a vertical wellbore A low
frequency alternatn. rent 1. cic trom the power source on the surface, down the
wellbore and intc -~ :.:de mheded in the formation. Generally, the current is passed
down the wellber: throuwk -~ more power cables which run along the entire length of
the well.

The wellbore is = - <1+ 3 carbon steel pipe for structural integrity This pipe is called
a wellbore casing I ddv currents are induced in the metal casing by the magnetic lields
associated with nearby power cabies which carry an alternating current down the well
Note that this is similar to the situation where eddy currents are induced in pipe-type
cables used in underground power transmission and distribution.

the ﬁdy current den;:ty lnduced in the wellbcre casing. The eddy current pmhk:m s
truted as a two dimemiﬁﬂil boundiry value pmblcm A piﬂinl diﬁ‘ﬁeﬂlial Lquﬂiﬂn

ﬁom ijwell s equations. The boundaiy vnlue problem is Ihgﬂ ,snlved nime: u;nlly using
the finite element method. The resulting finite element solutions describe the electric field
and current density in the metal casing.

In addition to the current density, numerical solutions are also obtained for the resistive
losses in the casing due to the flow of eddy currents. These eddy current losses are
calculated by numerically evaluating the integral from Poynting’s theorem.

Mmforng,f; emer mgdeddymmlsmhlanmvbecbmned Byusinglheﬁri!e
dﬁnen!msthod mwddﬂm:hmﬁﬂdnthemtawdlcflhemthiﬁ
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CHAPTER |

INTRODUCTION

1.1 A Description of the Problem: Eddy Current Losses in Steel Weltbore Casings
LL1 The General Problem of In-situ Heavy Oil Recovery

Approximately 88% of oil sand deposits in Alberta are located at depths between 75 m
and 750 m [1]. At these depths, recovery by conventional strip mining techniques is not
feasible. Instead, in-situ recovery methods utilizing vertical and horizontal drilling
techniques are used. Unfortunately, the bitumen in the oil sand deposits is extremely
viscous and cannot be pumped to the surface using conventional methods.

This problem can be overcome by heating the oil sand reservoir [1]. An increase in
temperature will lower the viscosity of the bitumen in the deposit. This enables the
bitumen to be more easily extracted using conventional techniques

One method for heating oil sand formations is with electromagnetic energy. Several
methods of applying electromagnetic energy have been investigated [1,2). One of the
more common techniques is to pass a low frequency electrical current through the
formation and heat it resistively. A simple example of this is shown in Figure 1-1.

Referring to the diagram in Figure 1-1, a well is drilled from the surface into an oil sand
formation below. An electrode is then embedded in the formation. A power source on
the surface is connected to the electrode via power cables which run along the entire
length of the well. An alternating current travels from the power source on the surface,
down the wellbore and into the electrode embedded in the formation. From there the
current passes through the formation and returns to the surface, completing the circuit.



R —_— — electrode(s)

Figure ure 1-1. Anmp—lamm shematic of low froquency 7; éeancil;nm of an underg:

Three-phase or multi-phase power may also be used at the well. Often this achieves a
more uniform hesting of the formation. For example, in Figure 1-2(a) there are three
electrodes embedded in the formation. The electrodes are connected to a three phase
phase. This results in 8 more uniform current distribution (compered to that of a single
phase system) and consequently a more uniform heating of the formation.
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Flnre 1-2. Representations of various schemes for low ffequency electrical heating of
underground oil sand formations.

- olactrode(s)

Another variation of this method utilizes two or more wells. As shown in Figure 1-2(b),
each well has a single electrode operating at a different phase. Current flows between the
electrodes, heating the intervening oil sand formation.

1.1.2 An Intreduction te Wellbere Electrical Losses

While the aforementioned methods of electromagnetic heating have proven effective |2},
there are certain engineering aspects that need refinement. Onemamhrpmhlgnullm
MMMMWMMM[II specifically in the proximity of

ltuwumﬂmthmdmde&wmthoﬂmd

ormation below ground. mm&mﬂmdh“ﬂﬁm
!tdmmﬁcda&ydmdﬁmﬁmmmfi:f ion. Hence there is
a need to evaluate the electrical power lost in transmitting the current from the source on
the surface to the formation underground [3).
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The remaining two types of wellbore losses are somewhat less conspicuous, though just
as significant. These losses are the result of a magnetic field, created by an alternating
current flowing in the power cable, interacting with the surrounding wellbore casing. A
wellbore casing is essentially a carbon steel pipe that lines the wall of the hole. It is vital
to the structural integrity of the well.

The magnetic field from the power cable produces two types of losses in the steel
casing [3]). First, because the casing is ferromagnetic, hysteresis loss occurs. Second, the
magnetic field from the power cable induces eddy currents in the steel casing, resulting in
a resistive power loss. This is also referred to as eddy current loss.

Together, these three losses determine what fraction of input power from the surface is
lost before reaching the underground oil sand formation. Each type of loss is evaluated
differently.

Data concerning the resistive losses in power cables is generally available from the cable
manufacturer. Cable losses will not be discussed here in any great detail.

For hysteresis and eddy current losses, it is possible to measure these quantitie
experimentally. Fbmuﬂm;ﬂnrm:ﬂmhmwﬂhpﬁiﬂefﬁfnpﬂ
snalysis of many different configurations. The most straightforwan
anwwubemnpplym:mindwlﬂmﬂymmnym&
the electromagnetic fields in the casing.

There is one major drawback to the analytical or semi-analytical approach; it is
extremely difficult to obtain a solution when the relationship between the magnetic flux
density, A and the magnetic field intensity, /7 is not kinear. lnmnﬂmauh.ﬂndﬂ
mldudbylcamnmm;t Hamin'
auchuneel the relationshig

ﬂedlommﬂymd

Mm‘mﬁhsmmwmh:hm
between B and A appears 10 be a good approximation Th-.fu-mﬁnﬂy
current losses may still be solved using any sumber of analytical or sumerical techniqu
NMMﬁﬂmMﬁa&mﬂhvﬂﬁm
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the ddy current louﬂ in the wellbore cuing Thii luenian is Imed ona mmp:rim'ﬂ of

One of the goals of this work is to find a means of obtaining numerical values for the
eddy current losses in steel wellbore casings. This presupposes finding a means of
obtaining numerical values for the current density or electric field induced in steel wellbore

As mentioned earlier, it is possible to obtain values for the electric field in a wellbore
casing by applying Maxwell’s equations and then solving them analytically or numerically
A constant permeability greatly simplifies the application of Maxwell's equations to the
of the problem from three to two.

Consider the problem viewed in three dimensions as illustrated in Figure 1-3(a). Tiwee
power cables, each carrying a different current, are arranged in arbitrary positions inside a
wellbore casing. Because the currents in the power cables are oscillating at a frequency of
magnitudes and phases of the currents in the cables will not change significantly along the
length of the wellbore (i.c. along the + z direction). Consequently there will be litle
varistion in the electrom ’i"’;ﬂddniloutlnlcgchofﬂiewelmuthendsaf
thn:nng Emm“hmmwm:n;




(a) (b)

Figure 1-3. Awﬁmeﬂmaﬂem(ﬂﬂiﬁ imension
dimensional view.

As a result of the sbove simplifications, the problem to be solved in this thesis may be
stated as follows. lﬁblﬁwﬂﬁanﬁummmi power cables,
cach carrying a low frequency current at a diffwent phase. ’l‘haﬂum@n
arbitrary positions inside the casing. The stesl casing has a constant relative permesk
MM@“hhm-hHlﬁmﬁrhﬂHﬁﬁﬂﬁ
fleld or current density need oaly be a function of coordinates 7 and §. After obtaining &
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Variations of the above problem have been considered in the published literature for
many years. In fact, an almost identical problem exists in the field of power engineering,
specifically in the area of underground power delivery systems. These systems often rely
on what is known as pipe-type cable for transmission and distribution lines. A standard
pipe-type cable consists of three power cables placed inside a metal pipe [$]. Three cables
are uied for thrar. phue pﬂwer The pipe is generally mlde ofhigh grnde urbon neel

lnd cable rrangement. Coﬁ;equently much nfihe remrch on eddy current Imm in
plp:-type cablc iynem: is directly applicable to the analysis of similar losses in the

1.2 Selutions Published in the Literature
Over the years, various solutions to the eddy current loss problem have been published.
Nearly all the solutions use the following basic procedure:
1. Using techniques for solving boundary value problems, obtain an analytic or numerical
solution for the eddy currents induced in a metal, annular cylinder as a result of nearby

2. Apply Poynting’s theorem to determine the losses in the metal cylinder which result
Solving the boundary value problem is the main obstacle in this procedure. Methods of

1. Construct a partial differential equation from Maxwell’s equations and solve it

1.2.1 Review of Boundary Value Problem Selutions Derived From the Partial
Differential Equation

1.2.1.1 Dwight's Selution

Owe of the early sudies of the eddy curremt problem was sccomplished by

H. B. Dwight. Dwight obtained an anelytic expression [6,7) for the eddy curremt demsity
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in a very thin tube produced by a filamentary current inside the tube. For a current /
oscillating at a frequency /, Dwight’s expression for the current density J(¢) in the tube

IOE —[H}:a—-(%;*min)]. (1.1

where

a = average of the inner and outer radii of the tube

s = radial distance of the filament from the center of the tube

1 = thickness of the tube

/= 28/ u,-a-t

2p i

Note that because the tube is very thin, there is assumed to be no radial variation in
current density. The tube is assumed to have a permesbility 1, and a resistivity p [(2-m)].

center of the tube, a solution is available from the works of Tegopoulos and Kriezis. The
mmnhiydadd. M ug ﬂﬁm unateh mﬂ m’ braic errors occur in its

Tmmﬁmsmimmkm' tensive study of the eddy currents produced in a
cylindrical metal shell by an axial current located inside the shell [8,9). As illustrated in
F’ml-ﬂ tligpmblmuiﬂyudmm,', sions; both the shell and the conductor




current filament

-0

7 }\\\ ‘region 3 (air)
\ region 2 (conducting shell)

regmn 1 (air)

Figure 1-4. Radial cross section of conducting shell and current filament.

The excitation current is represented by a filament carrying a current ‘I' located inside
the shell. Tegopoulos and Kriezis assume that a// the current in this filament returns to its
source via the conducting shell, however, this assumption is incorrect. In appendix | of
this thesis it is demonstrated that only a portion of the filamentary curremt returns (o its

The shell (region 2) is assumed to have a magnetic permeability 1, and a resistivity p

[ﬂm] Regions | and 3 are assumed to have the electrical characteristics of free space.
acement currents are neglected because of the low frequencies involved.

ial equations constructed by Tegopoulos and Kreezis for this

The partial

Vid=0 (in regions | and 3)

uod

¥ (in region 2),

and Vid=
where 4 is the magnetic vector potential at any point in space and ;1 and p are the
pormeability and resistivity of the shell. In regions | and 3, the voctor potential and
appropriste boundary conditions will lead to a solution for the eddy current distribution in
the shell, since J = - |/p-ad/ix (8). mmhthﬂmunmbymlﬁ)m
refarence [9). Equation (29) is a rather complicated expression invoh

afmﬂdmhmgafmh-nmm Amnma.mdm
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occur in its derivation. These errors are discussed in appendix 1. Also in appendix 1,
equation (29) is rederived after correcting for the mistakes in the derivation in the original
papers (references [8] and [9]). This corrected version of equation (29) will be used as a
comparison with numerical solutions for eddy current density computed in chapter S of

this thesis.

1.2.1.3 The Solution of Kawasaki, Inami and Ishikawa

Kawasaki, Inami and Ishikawa expanded on the work of Tegopoulos and Kriezis by
adapting the solution derived by Tegopoulos and Kriezis to problems where mwitiple
current filaments are present inside the shell [10]. They further eliminated the restriction
that the shell have a relative permeability of unity. Note that the errors in the original
Tegopoulos and Kriezis papers were nof carried over into the work of Kawasaki et al.

The net eddy current distribution was found by superimposing the effects of each
individual current filament. The resultant solution for the current density in the shell was,
again, an expression involving an infinite series of modified Bessel Functions of the first
and second kind [10].

After obtaining the solution for current density, Kawasaki et al. then used Poynting’s
theorem to derive an expression for the resistive power loss in the shell due to the flow of
eddy currents. Experiments conducted by Kawasski et al. seem to indicate their
expression for eddy current loss gives results within 10% of measured values [10). Note
that their experiments focused only on situations where the filaments (i.c., power cables)
in the shell carried & balanced, three phase current.

Akhough Kawasaki et al. maintain that their solution is valid for any configuration of
current filaments inside the shell, a closer examination of their solution reveals it is only
correct for a bdalwiced, multi-phase system of current filaments. This assertion is
discussed in appendix 2 of this thesis.

1.2.1.4 Other Selutions Utilicing the Partial Difforential Equation

Emanuel and Dospken [11) and later Sikora, Purczyneki, Palkka and Gratkowski [12)
both published solutions to the eddy current problem based on a two dimensional model
which was slightly different from thet of Kawasski et al. Instead of representing the



power cables by current filaments, the current sources in the interior region of the shell
were written in terms of a Fourier series expansion with respect to the ¢ coordinate
Otherwise, the method of solution used by Emanuel et al. and Sikora et al. was the same
as that used by Tegopoulos and Kriezis.

1.2.2 Review of Boundary Value Problem Solutions Derived From the Integral
Equation

1.2.2.1 The Kriezis and Cangellaris Solution

Using the same two dimensional model as Tegopoulos and Kriezis (see Figure 1-4),
Kriezis and Cangellaris constructed an integral equation [13) to describe the magnetic
vector potential A, at any point P in Figure 1-4. The integral equation solved by Kriezis
and Cangellaris is of the form

A(P)=4(P) ""!W‘ (1.3)

where j1 and © are the permeability and conductivity of the shell and o is the angular
frequency of the source. P is any point in space and Q is any point inside the volume of
the metal shell. A numerical solution for the integral equation was obtained using the
method of momens [13, 14),

mmmmwnﬂmmtyPﬂ:udKuﬂdem
dﬂud@mpﬁmnmaﬂalﬂilﬁl Ulﬂl“‘ﬁ

m“pﬁﬂbmwwmhmﬁlﬂm Tlle
method of images forced Poltz and Kuffel mmmmmnm
properties of the pipe extend to infinity in the radial direction
m&mmﬁmmmm“mmm
using the solution of Kawasaki et al. [4).




1.3 Method of Solution Used In This Thesis
1.3.1 Censtructing The Boundary Value Problem

The approach to the boundary value problem in this work will be to construct a partial
differential equation from Maxwell's equations which describes the electric field intensity
at any point in the problem domain. The most general case of the boundary value problem
to be solved is illustrated in Figure 1-5.

o | \\ region 2 (steel wellbore casing)
power cables " region 1 (air)

Figure 1-8. mammmmm

Thjssﬂmﬂnwnhiﬁpﬁléﬂyhmhuinﬁﬁmlkmﬁ
HﬂmmWﬁmmmmﬁynﬁfﬂﬂm In
region | is an arbitrary number of power cables, cach carrying a 60 Hz current at a
mmmﬂhﬁunMan-—ﬁﬂgm The steel

(Fﬂ)ﬂhnﬂhahﬁh-&ympmﬂ- Thﬁldﬁﬂm:ﬂ
provide a mumerical solution for the ele pnetic flelds and consequently the eddy
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currents in the steel casing. By solving the boundary value problem numerically with the
finite element method, complex configurations may be analyzed with relative ease. For the
general problem illustrated in Figure 1-5, the procedure for finding a solution for the eddy
current loss in the wellbore casing is outlined below.

1. Consider the current in each power cable as an individual source. Superposition is
invoked to help solve this problem numerically in the same manner it was used by
Dwight [7] and Kawasaki et al. [10] to solve the problem analytically The original
problem is divided into series of smaller boundary value problems where only one
current source is present in each problem. This is illustrated schematically in
Figure 1-6.

Note that the boundary conditions at the outer wall of the casing in the original
2. Obtain a finite element method solution for the electric field /£ produced by each
individual current source in the casing.

3. Superimpose the electric field solutions from all of the smaller problems to get the
total electric field, £, in the original problem.

4. Recognize that the oddy curront density in the casing is of,,. Use Poynting's theorem
and numerical integration to obtain the power dissipated in the casing by the flow of
eddy currents, ok, .

initially, it migit scem more efficient to simply obtain a single finite clement method
solution which includes all the current sources in the original problem. However, this
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will be explained in detail in chapter 6. Overall, the method outlined above is the less
troublesome approach.

1.3.3 Selution For a Problem With a Single Curreat Source

In the procedure outlined in the previous section, completion of step 2 is the main
obstacle. To solve the single current source problem with the finite element method, both
the partial differential equation and boundary conditions describing the problem must be
known. A diagram of the boundary value problem consisting of a single power cable
inside a steel casing is shown in Figure 1-7.

powgrc.lble

tllnnnfmul-:ls u-m&mmmﬁmzﬂh
slightly different from the equation for regions | and 3.

The boundary conditions for the eddy current problem shown in Figure 1-7 are as
follows. First, at the interface between regions | and 2 and regions 2 and 3, the condition
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typical boundary conditions for tangential electromagnetic fields at the interface of
differing media. The remaining boundary conditions are summarized below:

1. Inregion 1, at the surface of the power cable, the electric and magnetic fields will be
dependent on the current flowing in the power cable. This will be discussed in more
detail in the next chapter.

2. Inregion 3, all fields must go to zero as r goes to infinity.

The second boundary condition poses a problem for the finite clement method. Any
finite element solution requires that the domain of the problem be defined by a grid or a
mﬁh Elch m:tmn or “elemem“ cfthe mesh pmducei 8 iynem of llgebrnic equition:

dlrealan Since an mﬂmtg number of elemem; is obvmully out of thc queﬂm oth:r
options must be considered, if possible. In fact there are three basic approaches to dealing

Thaﬂmmilmmmiqﬁﬁﬁekﬁem Tii:iiiﬂéanauﬂichm:i

mhh&dﬂlﬂmﬁhﬂm@gﬂmwﬂh:tﬁm&kmntbm
element method. The finite element method would provide a solution for an arbitrarily
provide a solution for the remaining portion of the domain. Note that for the boundary
element method, only the boundary of the problem domain needs to be mapped onto a

In theory there is no reason why either of these two spproaches could not be used. In
mm ﬂum“mﬁmmmthimmum:o

A third option for dealing with the infinite domain exists if it is known that the solution
to the problem exhibits some sort of exponential decay for large arguments (ie. ¢’ -0
for large 7). In this case, the domain need only be modeled out to a point where the
Mtnhmm&mmdhmm
gnificant. At this point a zero boundary condition is substituted for the actual
hu-hym Exactly how far out the domain is modeled is completely arbitrary.
The error introduced can be made arbitrasily small by extending the domain Awther
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towards infinity. The accuracy of the approximation may be judged by examining the
convergence of the solution as the size of the domain is increased.

To use this technique it is highly recommended to have some idea of how the solution
behaves before it is formally solved. This allows for an intelligent guess as to how much
of the inﬁﬁite domain need be modeled. /1 is one af the central abjécliﬁs a_f this thesis 1o

fm’ ay Iln- owuter mll af the wllbzre casing, and Jurther thﬂl at the owuler wll ihe
magnetic field can be taken as approximately zero. The validity of these assumptions is
critically important to the accuracy of the resulting finite element solution. The full
justification for these assumptions will be presented in the next chapter, but essentially the
zero boundary condition is a good approximation if either of the following two criteria are
satisfied:

1. The casing is at least three skin depths thick.
2. The wave impedance at the outer wall of the casing is much greater than the intrinsic
impedance of the steel casing.

Consequently, for situations where either of the above two criteria are satisfied, the finite
element method may be employed to obtain reasonably accurate solutions for eddy current
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CHAPTER 2

The Conditions Under Which The Magnetic Field At the Outer Wall of the
Wellbore Casing Is Approximately Zero

The main objective of this chapter is to determine the conditions under which it is
appropriate to apply the boundary condition H = 0 to the boundary representing the outer
surface of the casing. As mentioned in the introduction, H = 0 is only an approximate
boundary condition for the magnetic field at the outer wall of the casing  When using the
finite element method to solve the boundary value problem, the approximate boundary
condition is necessary to accommodate the infinite domain of the problem.

mlutm wlll bg ahumed for the ﬂectmmggnenc ﬁekl: mduced in !he wcllmre casing by
a single power cable. One solution will be obtained using the exact boundary conditions
for the magnetic (and electric) fields at the outer wall of the casing. The other solution
will be derived using the approximate boundary condition for the magnetic field at the
outer wall: H =0. It will be shown that the two solutions are very similar under one or
1. The steel casing is at least three skin depths thick.

2. The wave impedance at the outer wall of the steel casing is much greater than the

intrinsic impedance of the casing.

If either of these criteria are met, then H =0 is a good approximation for the magnetic
field boundary condition at the outer wall of the casing. As an aside, note that the second
criterion in no way guarantees that E = 0 at the outer wall of the casing.

Figure 2-1 is a cross sectional view of a wellbore casing centered about a power cable
This casing and cable assembly constitutes the boundary value problem to be analyzed in
this chapter. Note that the analysis of the boundary value problem is greatly simplified by
ﬂﬁgﬂnwcﬁhnﬂ:mﬁmm:;q mwmmn




namely r Thus the boundary value problem is essentially reduced to a one dimensional
problem

power cable
(i.e., current source)

\/\
Y ‘=oo
F
( PR 4

'u.uc ) (
\ S ,/.
T '";Z,/ region 3 (air)
region 2 (steel wellbore casing)
region | (air)
]

Figure 2-1. A diagram of the one dimensional boundary value problem.

Referring to Figure 2-1, ‘I’ is the total current that flows through the power cable.
Region | is an air filled gap between the cable and the casing. Region 2 is the steel
wellbore casing itself. Note that the terms region 2 and wellbore casing are synonymous
in further discussions. Region 3 is free space, extending to infinity in the radial direction.

2.2 The Differential Equation For the Electric Field
From Maxwell's Equations, the differential equation describing the electric field in an
arbitrary region N of Figure 2-1 may be constructed as shown below.
VxE, =—jopu, A, 2.1)
VxH, =(o, +jue,)E, 22)
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Substituting (2.1) into (2.2) yields
VxVxE, =-jon, (o, + joe,)E, (PR))
Equation (2.3) is simply the wave equation.
As previously mentioned, there are several approximations which are applied to this
problem. The effects of these are summarized below.

= 0 since it is assumed the casing and cable are infinitely long.

= 0 since there is no dependence on the ¢ coordinate in the Figure 2-1.

&> Rl

dlity, u, is constant in region 2 (the steel casing).

3. The magnetic permes

Furthermore, while the z-directed current in the power cable is a source of the /., and
H,, field components, there is no current source present which can sustain the £, and
H,, field components. Comequenlly the £, and H, ﬁﬂdmimdﬁlmﬂy
zero. While this may not seem intuitivel abvm;nmybemﬁadbynm:ml- and
H,, are not zero and then solving the boundary value problem. Thrmﬂuuhem
namely £, =Oand H, =0.

Using the above app

24)

field.

(2.%)

I'I'.I
M

m
IM
=

(2.5b)

&E, 10E, ) ) ,
;7—1!L !%L&z ) ,—_o. .77
& ra B0 33)
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where &, is the wave number, &, = J;j;)uN(BH + joe,).
2.3 The Differential Equation For the Magnetic Field
From (2.1), a differential equation for the magnetic field in an arbitrary region N of
Figure 2-1 may be obtained.
VxE, = ~Jou, EN (2.60)

([ OE. , (2.6b)
i;(‘—'L)= - jop, A,

- = Jou, Hh‘ (26&')

Once the general solution for E, is known, it may be substituted into (2.6c) to obtain the

The differential squation. The general
mmmﬂud‘l ' ;ﬁhﬁﬂym&mlm
ammﬁmummofmmm“mm

E, (kyr)= Al (kyr)+BY,(k,r). 27

in(2.5)is

Jo(hyr) is a zeroth order Bessel function of the first kind. Similerly, Y,(£,7) h;m
ibﬁ-ym Hyﬂy J.(t,r) ﬂ Y(t,r) m **** iﬁeyﬁﬁtﬂ
waves [18]. This is similar to the representation of standing plans waves by the sine and
cosine functions in a rectanguler geometry.
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Another form of she solution for (2.5¢) is
E, (kyr) = E, HP (kyr) + E, HY (kyr). 28
H{"(k,r) and H(k,r) are zeroth order Hankel functions of the first and second kind.
E,, and E _are nrbnmy constants. Phyucnlly H“‘(t r) nnd H"‘(k r) repfe:em
waves by the e"‘ ind e e ﬁ.mctm

There is yet another form of the solution for (2.5¢c), which is somewhat useful when the
region of interest is a good conductor. For good conductors, o, >> we, . When this is
true, the wave number &, may be approximated by the expression &, = /- jop 0, .

The general solution for (2.5c) may then be written as
Jou,0,7)+ BK,(j! Jou,0,7) (2.9)

E,(kysr)=4 lo(j!

E[tef( ,w..;i'.,r)ﬂ ka(JT r)] (2.9%)

A and B are arbitrary constants. The advantage of (2.9b) over (2.7) and (2.8) is that the

the above general solutions for E, into (2.6c). Substituting (2.7) into (2.6¢) yields

. -A B .. i
H;_ (i’;f) = F!Jl(tmr) = T;“Yn(tur)i (2.10)

N J5Ww

where 1, = [—22BE__ e quantity 1, is the imrinsic impedance of the materiel in

oy +jus,
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Substituting (2 8) into (2 6¢) yields

H,, (kyr) = =5 HO (kyr) + 2 HO (k). @.11)

N ‘N

Finally, substituting (2.9b) into (2.6¢) yields

Hy, (kyr) = —oe [ ber, (o3, 7) + - bei (Vo r0 )

While all of the above general solutions are valid, further analysis relies heavily on the
:pphcitm of transmission lme m: to the propqnm of unlfwrn cyhndmal waves.
For ¢ rical
uﬂmtwardmvﬂ:qmm Comquenlly thebmfomofthemﬂmhtmtoug
in this analysis would be the Hankel function solutions, (2.8) and (2.11).

A summary of the electromagnetic properties for each region of the boundary value
fields in each region of the problem are presented in Table 2-2.
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Table 2-1 A summary of the electromagnetic properties in each region of the boundary
value problem illustrated in Figure 2-1.

Region | Media Material Intrinsic Impedance | Wave Number
Properties
] air e, =¢, NEI |k ogme.
B =M,
6,0
2 “”l 81 = en J Iﬂ’“i ‘;; J:"’“‘u}(ﬁi TIII“;‘
TRETTI a, + e, ks J-popga, fao, s>,
0, =06, n3 ”%’:l ifo, =>m,
3 .it 8, = 30 n = 377 B - ‘l _7";‘JZI;E"
Hy =K,
6,z0

Table 2-2. A summary of the general solutions for the electromagnetic fields in each
region of the boundary value problem illustrated in Figure 2-1.

Region | E,(kr)=E, HO(kr)+E, HO(kr) (2. 13a)
2.13b
” (k’)- : lo H(”(*') ‘I H‘"(k ) ( )

L !
Region 2 E,(kr)=E, HO(kr)+E, HO(ky) 2.14)
-E,, E (2.14b)

H, (k;r)= ™y —HP (kyr) - /»: H" (k,r)

Region3 [ E,(ky)=E, HP(ky)+E, HO(ky)  (2.1%)
(2.15b)
” (‘ __LH(Z)(* ) ) "(U(‘;) !

* )= m, 4 m




2.4.1 Simplification of the General Solutions in Region 2: Introduction of Large
Argument Approximations for Hankel Functions.

Before continuing, an approximation for the general solutions in region 2 is introduced
into the analysis. Recall from Table 2-2 that the general solutions for the electric and
magnetic fields of this problem are composed of Hankel functions. If any of these Hankel
functions possess arguments which are sufficiently “large”, then the actual Hankel function
may be approximated by one of the following asymptotic formulae.

HO(z)z |2 . JT) e, (2.168)

H"(z) = 3— S en. (2.16b)
| X2

H?(z) = I Jie® (2.16¢)

H(z) =, j\G e (2.16d)

Beuug lhe wms formulac are based on exponential functions, complicate
m(z |4I)lﬁd(2 Hb).thegawﬂmhumﬁnhedsmundmmﬁdd;mmz
of the problem (the steel wellbore casing).

The Hankel functions in (2.14a) and (2.14b) all have the term 4,7 as their argument.
Due to the electrical properties and physical dimensions of the casing, the argument 4.7 is
typically >>1. Recall from Table 2-1 that &, = J=juy, (0, + jue,). The permeability of the
steel casing, 1, is rarely less than 40p,. The conductivity of the steel casing, ©,, is rarely
less than 10° [S/m]. Therefore at 60 Hz, the magnitude of £, is typically 13S or greater.
The inner radius of the wellbore casing, a, may vary from 0.05 to 0.50 meters or more.
oap, sndo,.
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Thus for general solutions (2.14a) and (2.14b), where the arguments of the Hankel

functions are “large”, the Hankel functions may be replaced by the appropriate asymptotic
faﬁnulu The iubstituiian of the uympmtic formulae from (2.16) into (2.14a) and

E, (kr)= 1-,;, - Jj-e " 4k,

N —j .g!jj'r (2 I7l)

(2.17b)
H (kzr) = (2.18a)

(2.18b)

Expressions (2.17) and (2.18) are accurate approximations of the general solutions for
the electric and magnetic fields in the steel wellbore casing. Subsequent analysis will
utilize these approximate general solutions. Continued use of the original expressions
containing the actus! Hankel functions would result in unwicldy and unnecessarily

The term £, /E,, in (2.17b) and (2.18b) has physical significance. It is directly relsted
to the reflection coefficiemt st the outer wall of the wellbore casing. This is the ratio of
the reflected portion of the electric field to incident portion of the field at the boundary
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In general, the reflection coefficient in region N is defined as the ratio of the inward
traveling wave to the outward traveling wave. Recall equation (2.8), the Hankel function
general solution for the electric field in an arbitrary region N of Figure 2-1. In (2.8), the
H(r) function takes on the properties of an outward traveling wave while the H'"()
function acts as an inward traveling wave. Therefore, the reflection coefficient at any
point in region N may be expressed as

H

E H(I)i‘. ;

For region 2, where the arguments of the Hankel functions are “large”, the expression
for the reflection coefficient may be simplified by introducing the asymptotic
approximations for the Hankel functions. Substituting (2.16) into (2.19) yields

rky) = 2 ;e*'“” (2.20)

,iz‘

At r = b, the outer wall of the casing, the reflection coefficient is given by

r(k)= L. L gms (2.21)
E:lr y
Rearranging (2.21) to specify £, /E,, in terms of the reflection coefficient at 7 = b yields:

%ﬂ-&(t@-e“““- 22
i;‘,
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The general solutions for the electromagnetic fields in the wellbore casing may be
expressed in terms of the reflection coefficient at 7 = 5. Substituting (2.22) into (2.17b)
and (2.18b) yields

22

and H,, (k) = —=ie. | (2.24)

2.5 Complete Selutions For the Electric and Magnetic Fields In Region 2

Equations (2.23) and (2.24) are still only general solutions for the electromagnetic ficlds
in region 2. To obtain complete solutions for the electromagnetic ficlds in the weltbore
casing, it is necessary to express the unknown constants £, and I',(k,5) in terms of the
and 2.5.2.

2.5.1 The Boundary Condition at 7 = g in Region 2
The boundary condition at the inner wall of the wellbore casing, at r=a, is

H, (k,a)=—. 3C. ()
o (ka) - BC. (1)

This boundary condition is somewhat of an approximation. A more rigorous boundary

1 »

H, (k) = - —* Jose, j j E, (kr)rdrdy. (2.25)

However, the second term in (2.25) is many orders of magnitude smaller than the first
because the frequencies dealt with here are < 60 Hz and the distance botween 7, and a is
electrically very small. m-mmmmuyhm_ﬂy
exact. Note that the approximation in boundary condition (1) allows for explicit solutions
of E, -ur,(t,b)wmmm-ﬂwﬁﬂ,uas This greatly reduces the
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amount of computation involved in the solution. Furthermore, the electromagnetic fields
in region | are of little importance for this problem.

By applying boundary condition (1) to equation (2.24), the unknown constant E,, can
be expressed in terms of the current in the power cable and I, (4,6). Equation (2.24) is
the general solution for the magnetic field in region 2. According to boundary
condition (1), the magnetic field in region 2 at 7=a is //2xa. Setting » =a in (2.24) and
substituting this expression into boundary condition (1) yields

/ '—E;'i 2 Ay LAY o2k (e-2)] - g
== = Jje 2|1 -T.(k.D).e'*" _ 26
2ra n, \’K"za J;g [ rz(r; )-e ] (2.26)
Rearranging (2.26) yields the following expression for E,, :
] [wka | 1 .
b"g!ﬂ,,i’w o= - - . — . 2'27
™) IR/ PRE TR @27

Substituting the expression for £,, from (2.27) into the general solution for the electric

E, (ks)=-n / | g’ﬁf[]-o-r;(fzb)_ezzii{(psg,
T 2xda e‘!”[l;f;(igb)-gzu,(-:i)

L1 e e e 4]

(2.28)

=-N; ?;7;7 [g!ﬂb—:ﬂ; rz(izb)aei‘l"h’i'].

11 e*i-rkp)-e™ V)

o b= 22da Jr 21T, (E;l')}m.tﬂ’]
1l I 7 [‘,ﬁi(kﬂ - rz(kzb)‘f-ja(lgr)]

"B T ]

(2.29)
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2.5.2 The Boundary Conditions at 7 = b in Region 2

As was done for the boundary condition at »=a. the boundary conditions at » - 5
could be defined in terms of the clectromagnetic fields at 7 = b, namely E, (k) and

H, (k). However, it is also possible, and in fact preferable, to define the boundary
condition at 7 = b in terms of the wave impedance at r = b.

Impedance is a parameter commonly used in the analysis of transmission lines.
However, impedance concepts may also be used to analyze the behavior of uniform,
transverse electromagnetic waves at the boundary between two electrically dissimilar
regions, provided that the direction of propagation is normal to the boundary [19].

In general, the wave impedance in an arbitrary region N of Figure 2-1 is defined as

Ez,, ("N’)

2, (k,r)=- H, (hr)

(2.30)

This is the ratio of the total electric field to the total magnetic field at any point in
region N. The negative sign ensures that if the real part of Z,, is positive, power flow is in
the outward radial direction.

The wave impedance in region 2 at r = b is

E,, (k:5)

Z,(kb)=- R )

(2.31)

Obviously, the explicit value for Z,(4,b) is dependent on the boundary conditions for the
electromagnetic fields at 7 = 5. As mentioned at the beginning of this chapter, two sets of
boundary conditions (exact and approximate) are imposed on the electromagnetic fields at
r=5b. This results in two distinct solutions for the electric and magnetic fields in the
casing. The exact and approximate boundary conditions and their effects on Z,(k,5) are
discussed in sections 2.5.2.1 and 2.5.2.2.
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2.5.2.1 The Exact Boundary Conditionsatr=b

At thg interface between region 2 and region 3, the following boundary conditions must

E, (k5)=E, (k). B.C. (2a)
H, (k) = H, (k). B.C. (2b)

clectrically dissimilar media, in this case steel and air.

Using the definition of wave impedance from (2.30) and boundary conditions (2a) and
(2b), the following statement can be made about the continuity of the wave impedance
atr=bh:

Z,(k,) = Z,(kp). B.C. (%)

Now recall (2.15a) and (2.15b), ﬂtegmaﬂmhﬁmfartheéeﬁmmmﬁdd:m
region 3. The following two boundary conditions are imposed on the electromagnetic
fields at the outer boundary of region 3. Since region 3 extends radially out to infinity

E;(ks)>0asr »

3)
(4

w W
o] g

and H, (ky) 50287 - .

In other words, the electromagnetic fields in region 3 must approach zero as 7 approaches

infinity. The functions H"’(t;)udﬂ"’(t;)mﬁnyu r approaches infinity.

Cm-nlydgmﬂ tions for the electric and magnetic flelds in region 3
edistely reduce from (2.15a) and (2.15b) to

E, (ky)=E, HY(ks) (2.322)

Hy (kr) = 2 by ). (2.320)

Th m E, associsted with H"’(t,r) and H“’(t,r) in (2.15a) and (2.15b) is
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The new general solutions for the electromagnetic fields in region 3 may be used to
obtain an explicit expression for Z,(k,4). Substituting the general solutions for £, (&)
and H, (k) from (2.32a) and (2.32b) into (2.30) yields

H(I) ‘, b o
Z,(kb) = jn ‘Eﬂmgt b; 2.3
Note that according to (2.33), the only information required to specify Z,(k ) is the
intrinsic impedance in region 3 and the outer radius of the wellbore casing, . Since both
n, and b are known quantities, Z,(k,») can be explicitly defined at the start of this

Finally, since Z,(k,b)=Z,(k) from boundary condition (2c), the exact boundary
condition for Z;,(4,5) can be stated explicitly as

H (k,b) .
Hﬂ,: ‘::) (2.34)

Z,(k;5) = jm,

An siternate boundary condition for the magnetic field at 7 =5 is H (k,b) 0. This
boundary condition is not physically realizable and hence only an apprc although
depending on the circumstances it may be a very good one. Lnamlhldnpulm
ﬁﬂb“mﬁﬂﬂhmdhmwm“

approximation is based on two phenomens which affect the magnetic field in the
mdm menﬂdnlhﬁymﬂ,th-mImnhmﬂ
decays exponentially as it propagates outward through the casing. If the casing is at least
hhﬂuﬁﬁhmﬁﬂhﬂﬂhm#nh

Mjﬂshhmmﬂ‘h“hmaﬂhwmn
hmﬂhﬂﬂﬁhh“ﬂm“ﬂmhﬂj
This is analogous 10 the behavior of current at the end of an open circuited tranemis
line, i.e., the interface between regions 2 and 3 is the equivalent of an open circuit.
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It is possible to interpret the approximate boundary condition for the magnetic field in
terms of the wave impedance at the outer wall of the steel casing. According to (2.31),
the impedance at 7 = b should approach infinity as the magnetic field goes to zero, i.e.,

E, (kb)
H,, (k,5)
Z,(k,p) > - as H, (k,b) =0,

Z,(kp)= -

with the understanding that ., (k,h) 2 0. Thus, if H, (k,5) =0, the boundary condition
for Z,(k b) is

Z,(kp)=-x. (2.35)

2.5.3 Explicit Selution for I',(k,5) in Terms of Z,(k,5)

Having explicitly defined exact and approximate boundary conditions for Z,(£.,5), the
next step is to express the unknown constamt I,(k,8) in terms of Z,(k,5). The term

expression for Z,(k,5) may be substituted into the analysis st any time.

An expression for the wave impedance at any point in region 2 may be obtained by
substituting the general solutions for the electric and magnetic fields from (2.28) and
(2.29) imo (2.30). This yields

[l + r,(",b)?;:g,(,:”]

[| - rz(ﬁ,b)ie’n’h_’“]i (2.36)

zz(‘z’)='\z
By rearranging (2.36) and setting 7 = b, it is possible to express I',(£,5), the reflection
coefficiont at 7 = A, in terms of Z,(k,5). The resukting expression is shown below:

_ zz("zb)‘ﬂi -
A2, @
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2.5.4 The Final Solutions for the Electric and Magnetic Fields in the Wellbore
Casing

The solutions for the electric and magnetic fields in the wellbore casing are essentially
given by equations (2.28) and (2.29). The I',(k,5) term in these solutions is given by the
formula from (2.37):

Recall from the beginning of this chapter it was stated that /o analytic solutions for the
electromagnetic fields in the wellbore casing are to be derived. One solution, the exact
solution, is derived using the exact value Z,(k,5). Similarly, an approximate solution is
derived using the approximate value for Z,(,5).

Z,(k,b) in the exact solution is given by (2.34):

YA (‘. b) H‘f)j‘:!h)

H"’(M)’
Z,(k,5) in the approximate solution is given by (2.35):
Z,(kp)= .
Substituting Z(t,b)*-m into the expression for I,(4,A) from (2.37) yields

Iy (£,8)=1. In tun, substituting I',(£,5) = | into (2.28) and (2.29) yields the followin
approximate solutions for the electric and magnetic ficlds in the wellbore casing:

p,(n Ve M lJ

u” )=-n; 57- T [ b 0, Al -n] (238)

I [tﬁih ] —e Ayl f’]

and .,(‘z")‘ = J_ ' [ Ml o _ g A -D]

(2.39)

isted with E, () and A, (k) merely denotes that these solutions
proximate boundary condition.
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2.6 Conditions Under Which H, (£,5) =0 Is an Acceptable Approximation For
Exact Boundary Conditions
As stated carlier, the main objective of this chapter is to determine the conditions under
which it is acceptable to use the approximation H, (#,4) = 0 as a boundary condition. It
is important to know when this approximate boundary condition is valid because it will be
used exclusively in finite element solutions of boundary value problems in upcoming
chlpteri vaioudy the lc:uncy ﬁf the ﬂnite elemem solutions is dependent on the

To determine when it is acceptable to use the approximation H, (£,8) = 0, consider the
exact and approximate solutions for the electromagnetic fields in the steel wellbore casing.
Both sets of solutions are derived from the same differential equations. When the exact
and approximate solutions are in close agreement with each other, then the approximation
H,, (4,8) = 0 is valid. H, (k,5) =0 should then be an acceptable substitute for the exact
boundary conditions at 7 = 5.

2.6.1 Conditions Under Which The Exact and Approximate Selutions Are In Clese
electromagnetic fields may be considered to be reasonsbly close. These are discussed in

If the thickness of the wellbor a-j.(b-a)unhntlﬁa:kmdqdl.dmlh
mmmmmmmm-ﬂ;f; mmtm
llum;;;:” ?m hpui&n.lh“ﬁheﬁﬁ.hhﬂih

The physical ex

*ﬁnhm be ﬂ‘thtnﬂ nﬂm m tions is as
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thick, incident electromagnetic waves originating at the inner wall of the casing will have
decayed significantly by the time they reach the outer wall of the casing.

At the outer wall, some of the electromagnetic field is reflected back into the casing. As
the reflected waves travel back towards the inner wall, they continue to attenuate.
Compared to the magnitudes of the incident waves, the reflected waves are extremely
small. Thus the effects of the reflected waves can be neglected everywhere except near
the auter wall where they are still rehtively urmlenul;ted and comparnble in m:gnitude to

appmmnme mhnm near !he outer w;ll are neghgsbly :mll comy :fed to lheu' rezpecuve
maximums, the discrepancy between the solutions near the outer wall is not important.

Mathematically, the explanation for the equivalence of the two sets of solutions is as
follows. From (2.28), the expression for the electric field based on the exact boundary
conditions at 7 = b is

[ e DT (‘, b) Ay HU ﬂ]

("{)“ﬂ: ﬁ' T [ A e r (‘ h) e Py gl]

opagation constant jk, in (2.28) may be written in terms of an attenuation constant,
a,mdiphumb In other words, 4, =a+ /f, where a and P are real
tuting ik, = a + /B into (2.28) yields

ald- t’ b r) alb r} e »)
o I [ +T,(kD)-e ]
E;’(hr)=i'h-?i,é T rdl a) ‘5 4) l‘(tzb) edb i) j& -)]

(240)
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If (5-a), the casing thickness, is at lcast three times greater than I/ (the skin depth)
then the second term in the denominator may be neglected since its magnitude is ¢ times
smaller than the first. Thus, (2.40) becomes

/ l alr o r-a - -a-r) - -a-r
E,,(k,r)s—n,-m-j;-le‘ e M0l LT (k,b)-e ¥ @ e P ’]. (2.41)

The above substitutions and approximations may also be applied to (2.38), the
approximate solution for the electric field. Thus, £, (&,7) from (2.38) reduces to

E, (kr)=-n, ;é;j:(e alr-a) - pir-a) +¢—¢(Ib-a-r)¢-)ﬂ”1-r')' (2.42)

Notice the similarity between (2.41) and (2.42). The only difference is the coefficient
I,(k,b) in the second term inside the parentheses in (2.41). However, the second term in
(2.41) and the second term (2.42) both become negligible as 7 approaches a, consequently
the closer  is 10 a, the closer the agreement between E, (&,7) and E, (k,7). This is also
true for H, (&,r) and H, (k).

In other words, as the second terms in (2.41) and (2.42) become negligible (with respect
to the first terms), Aoth the exact and approximate solutions for the electric field reduce to

E, (k,r

2;'(“3 ) — ] . 1 .c-dr‘n)“lﬂ"‘).
. 2 2xJa Jr
E, (k)

Likewise, Aok the exact and approximate solutions for the magnetic field in the wellbore
casing reduce to

H, (k) .
-~ . .c-dr—o)e-]ﬂr-o).

ﬁo,(*:’) 2xJa VJr

However, as 7 approaches 5, the second terms inside the parentheses in both (2.41) and
(2.42) cammot be meglected. As a result, E, (k,8)z £, (£,5) is no longer valid uniess
I,(£8)=1. On the other hend, at 7 = both the exact and approximate solutions are
only sbout 5% (¢’) of their maximum value. Thus near the outer wall, where the



»

solutions begin to significantly diverge, both the exact and approximate fields are
negligibly small compared to their respective maximums. In this region, the discrepancy
between the two solutions can be considered irrelevant.

2.6.1.2 Condition 2: |Z,(k,b) >>|n,|

If the wave impedance at the outer wall of the casing is much greater than the intrinsic
impedance of the casing then the exact and approximate solutions for the electromagnetic
fields in the casing will be in close agreement. This is demonstrated as follows.

From (2.28), the solution for the electric field based on the exact boundary conditions is

I [g_t,(b f)+r (k b) ¢ Aylh s |]
Ez,(‘;r)—"l: T T [ Y r(f ’f) e M ..I]

If |Z,(k,5)>>|n,| then, from (2.37), I,(4,8) in the above solution is approximately

| p,(n :) p,(ﬁ f)

Ez‘“‘{)-‘ﬂz “?; 7:' eﬁ,(& 9 _g Mbar

The expression on the right hand side of the above equation is identical to the approximate
solution for the electric field from (2.38). Thus, if |Z,(k,5)] >>|n,| then I',(k,4) = | and
as aresut E,(kt)= E,‘(t,r) It may also be shown that H, (k)= H, (&) by
applying the same condition, T',(%,8) = 1, to (2.29) and comparing it with (2.39).

With regard to the magnetic field at 7 = 5, the reflected portion of the field is essentially
180° out of phase with the incident field. Thus from (2.29), it can be seen that when
I,(%,5) = | the magnetic field at the outer wall of the casing is approximately zero. This is
true regardiess of the amount of attesation experienced by the electromagnetic field in
the casing. The casing might be only a fraction of a skin depth thick, yot the magnetic
field ot 7 = b will still be negligible if I, (£,0) = 1.

The physical intorpretation of T,(£3)=1 is that neardy all of the incidont
lectroms ,;,‘,thmﬂdﬁmnm&hdmh“ As
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mentioned earlier, this is highly analogous to the behavior of voltage and current along an
open circuited transmission line, i.e, the interface between regions 2 and 3 is the
equivalent of an open circuit.

2.6.2 Swmmary of Criteria Under Which H, (£,5) = 0 Is an Acceptable
Approximation
To reiterate, if
l. the wellbore casing is at least three skin depths thick or
2. the wave impedance at the outer wall of the steel casing is much greater than the
imtrinsic impedance of the casing,

then the exact and approximate solutions for the electromagnetic fields are in close
agreement with each other. Consequently, if either of the above criteria is satisfied then

H,, (k,5) = 0 is indeed a valid approximation and should then be an acceptable substitute
for the exact boundary conditions at 7 = 5.

The sbove two criteria are useful for judging whether or not H, (k,8)=0 is an
acceptable boundary condition for boundary value problems similar to the one studied in
this chapter. The fact that the casing thickness and the reflection coefficient can be
Mnlhmﬂnpﬂhngﬂumﬁrmm;;moﬁhvﬁ&Wuf
the Hh(k,b) 0 appra

There are two limitations to the sbove criteria. First, with regard to the condition
|Z;(#,8) >> |n,], the degree to which |Z,(k,5) needs to be greater then |n,| is somewhat
subjective. Secondly, there are many boundary value problems in which the exact and
approximate ficld solutions closely agree with each other despite the fisct that neither of
the above criteria are apparently satisfied. This is because the individual effects of
attenuation and reflection umulative and together they bring about the convergence of
u-mm anmifhﬁﬂufm:uﬁthﬁuufm
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The above limitations on the criteria for judging the convergence of the exact and
approximate solutions may be overcome by introducing a new quantity: the magmelic
shielding ratio. This ratio can give an assessment of the combined effects of attenuation
and reflection. The magnetic shielding ratio and it role in determining the validity of the
H, (k,5) =0 approximation will be discussed in detail in the next section.

2.6.3 The Magnetic Shielding Ratio

of gauging how wél the exact nnd approximate :olutm agree mth one mher is to
examine the magnetic shielding ratio. The magnetic shielding  as the rat
of the magnetic field at the inner wall of the wellbore casing to the field at the outer wall.
An expression for this ratio is obtained as follows. From (2.29), the exact solution for the
magnetic field in the casing is

| [:,u. v l“(th) Ayln pJ
:J' V[ (k) A )

H, (kyr)=-
Given that sk, =a+ /B and Iy(k8) =[Z,(k,0)- n,]/|Z,(k,5) + n,]. the magnetic
iding ratio is written as

Hy (ka) _ 1 Z(f,b) e —

1 =(b-a), the thickness of the casing

H (k)

z (tab) j"l Hf:l(‘.‘b)

Thminh(zﬂ)nhpi'uhré nbpatfthm.?(t,b)lniubﬁ
I sssed in section 2.6.2. The ratio in

(243)345976!:&&&-“@&@&
of ¢ and Z,(k.5)/v, is lerge.
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To demonstrate the relationship between large shielding ratios and the convergence of
the exact and approximate solutions, consider the following two cases:

2.63.1 Casel:1>>l/a
If a wellbore casing thickness / is many times greater than /o (the skin depth) then the
magnetic shielding ratio in (2.43) reduces to
H, (k,0) = —J: -e“’e"'{z’“‘b) + l}. (2.44)

Hr(trb)iz a n,

Note that even if |Z,(k,5) is not greater than |n,|, the magnitude of the shielding ratio
expression in (2.44) will still be large due to the effect of sttenuation.

Consider the following example. A power cable carrying a 100 A current at 60 Hz is
located at the center of a wellbore casing, as shown in Figure 2-1. The wellbore casing
has a relative permeability of 200 and conductivity of $x10° S/m. The inner radius of
the casing, a, is 10 mm while the outer radius, b, is 21 mm.

From Table 2-1, the propagation constant, jt,.néOquﬂﬁ?ﬂils? Therefore
a=m7wtheckmmgnhemui roximately 2.1 mm. Therefore the
thickness of the casing is approximately five skin depths. u-n;nn Jefinition of n, from
Table 2-1, the intrinsic impedance of the wellbore casing is found to be
9.73x10°+ 49.73x 10 Q. Using the expression for Z,(4,5) from (2.34) and the values
for &, and n, from Table 2-1, the magnitude of Z,(4,8) is found to be 1.7Sx10™ Q.
Thus, the magnitude of the quotient Z,(k,8)/n, is 1.27.

From (2.43), the magnitude of magnetic shiclding ratio in this example is 327.8. The
The relatively large shielding ratio mey be sttributed shmmet exclusively to the effect of
sttenustion. The fact thet |Z,(k8) is mor much gremter tham |n,| indicases that the
coefficient at 7 = b in this example is only 0.38.
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Since the magnetic shielding ratio is large, the exact and approximate electromagnetic
field solutions in this example should be in close agreement. To confirm this assumption,
the exact and approximate solutions for the electric and magnetic fields are plotted below
in Figure 2-2.
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Figure 2-2. Exact and approximate solutions for the electric and magnetic fields in the
example in case 1.

2.63.2 Case 2: |Z,(k,5)>>|n,|

With regards to the expression for magnetic shielding in (2.43), if the magnitude of
Z,(,8) is much greater then the magnitude of n, then (2.43) reduces to

Hy (ka) 1 [b Z,(k,0)
”.,(M) 2( (ee™ e “e ™). (2.49)

Note that even if the thickness of the casing is much less than one skin depth, the
magnitude of the shielding ratio will still be largs dus to the near total reflection of the

electromagnetic fleld at the outer wall of the casing.
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Consider the following example. Once again, a power cable carrying a 100 A current at
60 Hz is located at the center of a wellbore casing, as shown in Figure 2-1. The wellbore
casing has a relative permeability of unity and conductivity of $x10° S/m. The inner
radius of the casing, a, is 1.730 m while the outer radius, b, is 1.736 m.

From Table 2-1, the propagation constant, jk,, at 60 Hz is 34.4+ j34.4. Therefore
a =344 and the skin depth of the casing is approximately 29 mm. Therefore the
thickness of the casing is approximately 20% of the skin depth. From the definitions of
n,, N, and &, in Table 2-1 and the expression for Z,(k,5) from (2.34), the magnitude of
the quotient Z,(k,b)/n, is approximately 1120. The magnitude of the reflection
coefficient at 7 = b is more than 0.998.

From (2.43), the magnitude of magnetic shielding ratio is 327.5. The mme
expression for the shielding ratio from (2.45) yields a value of 327.3. The relativel
Mdlqmmulhnnnexchnvdyduemthemmdrﬂmmaﬂhe;;

As with the previous example in case |, the large magnetic shielding rati
solutions. To confirm this assumption, the exact and approximate solutions for the
clectric and magnetic fields in this example are plotted in Figure 2-3.
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Figure 2-3. Exact and approximate solutions for the electric and magnetic ficlds in the
example in case 2.

thhthhMWmuwrkmmmll
very different. Also, based on results from the above examples, it is clear that a
approximate field solutions are in close agreement. Consequently, a sufficiently ly large
mmum-mmmmmmﬂﬁ(u) 0 is valid.
Exactly how large is “sufficiently large” remains to be determined.

Smdﬂuaﬁgm-dmmthmwmmm

pﬂyﬂmﬁw:hhlm
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Dimensions and electromagnetic properties which are more representative of typical

conductivities and relative permeabilities for several samples of wellbore casings. These
measurements are presented here in Table 2-3.

Table 2-3. Dimensions and electromagnetic properties for various samples of wellbore
casings (adapted from Table 1 of Reference [3)).

“Sample# Pipetype Innerradius  Outer radius _ Region2 O,
a’ [mm] ‘b’ [mm] TH
(S/m]

TEES 3131 3683 94 483x10°
2 J-5$ 63.95 69.98 125 4.90x 10°
3 185 102.74 10.11 ) 4.29x 10°
4 K-55 52,20 57.34 87 4.59x 10°
s K-S$ 63.12 70.36 8 437x10°
6 K-$5 103.25 110.36 9 4.63x10°
7 L-80 61.60 70.23 6l 4.69x10°
8 L-80 80.77 89.41 48 3.85x10°

By using the itions of n,, n,, &, and &, from Table 2-1 and the expression for
Z,(k,b) from (2.34), the magnetic shiclding ratio can be calculated for each casing semple
in Table 2-3. The shiclding ratios are calculated using (2.43) and are presented in
Table 2-4, slong with the ratios of casing thickness to skin depth and the ratios of
|Z,(%.8) 10 |n,).
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Table 2-4. Magnetic shielding ratios for typical casing samples

Sumple# S e [2kA] [, (ha)
In,| H, (k.b)

1 18 31 210
2 23 5.0 30.1
3 2.2 8.4 44.2
4 1.6 48 14.6
s 22 5.7 296
6 2.2 8.7 46.0
7 2.2 7.0 39.3

8 1.8 89 118

2.6.5 The Minimum Magnetic Shielding Ratie For Which the Approximation
H,, (k,8) = 0 Is Justified

As mentioned earlier, a sufficiently large magnetic shielding ratio is a good indication
that the approximation H, (£,) = 0 is valid. However, there still remains the question as
to what is a “sufficiently large™ shielding ratio. The intent of this section is to demonatrate
that a magnetic shielding ratio of approximately 30 is the minimum shielding ratio for
which the approximation H, (£,8) =0 is justified. The decision to set the minimum
acceptable shielding ratio at 30 is based on empirical data presented in this section and
later chapters.

hthﬁMﬁdnhMWﬁﬁnﬂmiﬁil-ﬂzolz
Mam, f,’mmshpﬂslhm:mm H"(t,b) Oisa
wmﬁﬂﬁnh(@)go approximation i
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center of a wellbore casing, as shown in Figure 2-1. The wellbore casing has a relative
permeability of 40 and a conductivity of 10° S/m. The inner radius of the casing, a, is
0 085 m while the outer radius, b, is 0.090 m According to the formula from (2.43), the
wellbore casing in this example has a magnetic shielding ratio magnitude of 3.9. As a
result of such a low shielding ratio, relatively poor agreement between the exact and
approximate solutions is to be expected; furthermore, H, (k,8) = 0 is likely to be a poor
approximation for the magnetic field boundary condition at r =4. To confirm these
expectations, the exact and approximate solutions for the electric and magnetic fields are
plotted below in Figure 2-4.
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In & second example, a power cable carrying a 2§ A current at 60 Hz is again located at
the center of a wellbore casing. as shown in Figure 2-1. The parameters of the wellbore
casing are those of sample 2 in Table 2-3. The magnitude of the magnetic shiclding ratio
for this casing is 30.1. This example illustrates the degree of convergence between the
exact and approximate field solutions and the validity of the H, (k,5) = 0 approximation
when the magnitude of the shielding ratio is close to 30. The exact and approximate
solutions for the electric and magnetic fields are plotted below in Figure 2-$.
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Figure 2-S. Exact and approximate solutions for the electric and magnetic fields inside a
wellbore casing with a magnetic shielding ratio magnitude = 30.

On the basis of Figure 2-5, as well as cumparisons of exact and approximate solutions o
be presented later in chapter 4, the following statement is made: for Aowwdary valwe
problems described by Figure 2-1, a convenient guideline for deciding if H, (kB) = 0 is
a valid boundary condition is 1o check whether the magwitude of the magmetic shiclding
ratio is greater than 30. Admitiedly, this guideline is relatively crude; however, it will be
soom in later chapters thet s magnetic shiclding ratio > 30 does indood give adequate
MM&:MH,.(&,DFOkW.
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2.7 The Effects of Attenuation and Reflection in Magnetic and Non-Magnetic
Casings

Although a large magnetic shielding ratio usually arises due to a combination of
attenuation and reflection effects, there are certain circumstances where one effect is more
pronounced than the other. For example, in casings constructed of a magnetic material
such as steel, large shielding ratios are primarily due to the atrenwation of electromagnetic
waves within the casing. Conversely, in casings constructed of a non-magnetic material
such as copper or aluminum, large shielding ratios are primarily due to the reflection of
clectromagnetic waves at the outer wall of the casing.

The relative permeability of ferromagnetic wellbore casings generally range from 50 to
150 or higher. Thus the relative permeability of ferromagnetic casings is at least SO times
that of non-magnetic casings. Given that skin depth is proportional to I/ /i,
ferromagnetic casings will have skin depths at least 7 times smaller than those for non-
magnetic casings, which have a relative permeability of unity. Consequently,
clectromagnetic waves propagating through a magnetic casing will experience 8 much
higher degree of attenuation than waves propagating through a non-magnetic casing of
similar dimensions and electrical conductivity. Conversely, the degree of reflection
experienced by electromagnetic waves in magnetic casings is generally less than that
experienced by waves in non-magnetic casings. This is because the ratio of |Z,(£,5)/n,| is
VHiawe times smaller for magnetic casings than for non-magnetic casings, since 1), is
proportional 10 Ju .

2.8 Summary

Much of this chapter has been devoted to solving for the electromagnetic fields induced
inside the wellbore casing illustrated in Figure 2-1.  This problem is viewed from the
wellbore casing. The solutions for the electric and magnetic fields in the casing are
expressed in terms of the wave impedance st the outer wall of the casing, Z,(£,3), and the
reflection cosfficient at the outer wall, I',(4,5). Parameters such as wave impedence and
reflection coefficients are normally used in the anslysis of transmission line and waveguide
problems; for the problem in this chapter, however, they have been adapted for use in
analyzing the propagation of uniform, cylindrical waves in lincer, homogeneous media.
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The solution for the electric field in the wellbore casing is given by the expression from
(2.28):

| [t""“' i (kB) e ')]

Ez,(*z"):- —T T ["‘z“ 2 T “’ h) e TS .c)]

z»(kwb)_'n\

.\ k'[, = =

where I, (k.5) AT
H.” (kh)

kb) = jn, Lo S0

and Z,(k.b) = mw,(“)

Similarly, the solution for the magnetic field in the wellbore casing is given by the
expression from (2.29):

| [,ﬁ,(h,) r(kh)e'““"]

”0,(*‘.") W"" T [ As(d a) r(* h)-¢ PE ..i]

The analytical solutions derived in this chapter for the electric and magnetic ficlds in
the wellbore casing will be used to verify the accuracy of fimite element method solutions
in later chapters. Because the finite element method solutions in this thesis are based on
an approximate boundary condition for the magnetic field at the outer wall of the casing, it
is important to know when this approximate boundary condition is valid. In fact, the main
objective of this chapter has been to determine the conditions under which it is appropriate
to substitute the approximate boundary condition, H, (£,4) = 0, for the exact boundary
conditions at the outer wall of the wellbore casing.
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A convenient, though somewhat crude, guideline for deciding if H, (k.5) =0 is a valid
boundary condition is to check whether the magnitude of the magnetic shielding ratio for a
given casing is greater than 30. The formula for the magnetic shielding ratio is given in
(2.43). This ratio is dependent upon two physical processes which affect electromagnetic
waves within the wellbore casing: the attenuation of the waves as they propagate through
the casing and the reflection of the waves at the outer wall of the casing. In circumstances
where the casing thickness is much greater than one skin depth or the reflection coefficient
at the outer wall of the casing is close to unity, then the magnetic shielding ratio for the
casing will be very large; consequently H, (k.b) = 0 will be an excellent approximation for
the magnetic field at the outer wall of the éning.
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CHAPTER}

The Total Current and Power Dissipated in a Wellbore Casing Centered About a
Single Power Cable

Consider the boundary value problem illustrated in Figure 2-1 Having obtained an
expression for the electric field in the steel casing, it is a relatively simple matter 1o
determine the eddy current density and the total current induced in the casing In addition,
it is possible to derive an expression for the power dissipated in the casing due to the flow
following cuapter to verify the accuracy of finite element solutions for the total current
and resistive power dissipated in the wellbore casing illustrated in Figure 2-1

3.1 Eddy Current Density and the Total Current Induced in the Wellbore (asing
From Ohm's law, the eddy current density in the steel casing, §,(r), is simply the
electric field in the casing multiplied by the conductivity of the steel casing. Therefore,
J,(r)=0,E,(r). (RN}

Substituting (2.14a), the general solution for the electric field in region 2, into (3.1) yields

J.(r)=0, E, (k,r)i,
=0,[K, HP(kr)+ K, W ()], “2

To obtain the total current in the steel casing, it is simply a matter of integrating the
eddy current density over the cross sectional area of the casing;
Ind

Iﬂz”i!;(r):b

F 1]

= [[1()rdre b, 33)
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Referring to Figure 2-1, @ and A are the inner and outer radii of the wellbore casing.
Substituting the expression for J,(r) from (3.2) into (3.3) and integrating yields the total
current induced the steel casing.

Loun = B, ZT’“'Z([b H:"‘(I:;h)=aHI“(k;a)]+%L[b H{"(kzb)—aH{"(kza)]). (3.4)
®2 2

Next, the asymptotic formulae from (2.16), the expression for £, /E,, from (2.22) and
the expression for £, from (2.27) are all substituted into (3.4); this yields a final
expression for the total current induced in the casing:

[] - rz(&:b)]

Y O L : 3.8
e = "[ ! "/;[eﬁl“ Ly (kh)-e #© ﬂ] &9

3.2 The Total Displ ent Carvent Induced in Region 3

As an aside, the current induced in region 3 can also be calculated. Since region 3 is
virtually lossicss, the current in region 3 is almost completely in the form of dispiacement

na

1= [ [ Joe Bk rdri. (3.6)
[ ]
Substituting (2.32a), the general solution for the electric field in region 3, into (3.6) yields
F L
1= joe, B, [ [H (hyyrdray. a7
Evaluating the integral in (3.7) yields

1, = 2x- joe, - E,, ]‘L HO (k). }.9)



If region 3 is even slightly lossy, then (3.8) reduces to

l,=2n. joe, kK, [O - ki H‘,“(k.b)]
= -2nb -"f E, H (k)
boundary condition (2b)

The single unknown constant £, in (3.9) can be easily calculated as follows. From

(39)

Hi‘("ih);; Hgi(" ”)
From (2.32b), the magnetic field in region 3 at 7 = A is

(",b)* \ H( p(‘b)
Jn
and from (2.29). the magnetic field in region 2 at 7 = b is

(3 10)
H (kD) = [l r(‘h)] —————— 3.11)
77"[;,(;.» F(kb)e-‘”"‘"] :
Substituting (3.10) and (3.11) into boundary condition (2b) and solving for £, yickds
Y. [1- R(&:8) :
E, = 112
" HP(kp) 23Ja T b [e*® 9T, (k,p)-e 2] (12
Finally, substituting the above expression for £, into (3.9) yields a final expression for
the total displacement current in region 3:
I,=-1F n [r-ne) ‘ (3.13)
a[e** -, (kp)-e #* ]
3.3 The Path of the Return Cour

In the description of the boundary value problem illustrated in Figure 2-1, no mention
was made of the path by which the current ia the central cable returns (0 its souwrce. In
fact, there are no prior assumptions regarding the path of the retumn curremt in this

53
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problem, although the path can be influenced by phenomena which affect the propagation
of electromagnetic waves in the wellbore casing, such as attenuation and reflection.

For example, if I',(,5) = | then, according to equation (3.5), the total current induced
in the casing is equal in magnitude and 180° out of phase with the current in the center
power cable; also, the total displacement current outside the casing is zero, according to
equation (3.13). In other words, if I,(k,5) =1 then the path of the return current is
confined entirely inside the casing.

As an aside, the statement I',(k,5)=1 is equivalent to the boundary condition
H, (kh)=0. Thi:wndiicugedinmiﬁnISQZ Recall that H, (£,5) =0 results in
V4 (& b) = —. This, in turn, results in T, (4, b)—llccordlnimequnm(z 37).

In actual :itu:tianswhare]l‘z(kib)lfl.:displm current does exist in region 3
and constitutes a portion of the return current. The conduction current in the wellbore
casing and the displacement current in region 3 constitute the total return current in the
problem. This is apparent when the solution for /. from (3.5) is added to the soluticn
for /, from(3.13): I +1,=-1.
most of the return current is again confined to the wellbore casing. This conclusion is
apparent if one considers the effect of the exponential term ¢#:* “ in (3.5) and (3.13)
when the magnitude of ¢*'® * becomes very large.

3.4 Power Dissipated in Casing by Eddy Currents
The power dissipsted in the casing due to resistive heating by the flow of eddy cusrrents
found by evaluating

- I'”!l z,(jzf‘ drdrdy, 3.14)

where ©, is the conductivity ¢ steel, E, (£,7) is the electric fisld in the stesl casing,
‘a’ and b‘ﬁﬁhﬂmﬂﬂﬁﬁﬂlhhuﬁhaﬁ,




ss
Substituting (2.28), the solution for the electric field in region 2. into (3. 14) yields

[ecu)mu '+r“(4h) b b e), ]

“:ﬁT[nm-) b 2) F(Lh) uul T ]

77, ! | L:(A)Jm)*rub)‘,ml LT '] B 7
iﬁzﬂ{-“:.ﬁ: T [-u M o 'Vr(l‘h) TN T il rdr. 319

s r dr db

=211}

Evaluating the integral of (3.15) yields

"l“[li‘:(kzblll]* '["ﬂ-p;(w* e ]
""{' Ak} | food2p) {110} - s 250 Ref 4 )|
#ge‘! lx(trh)i’ € l

. (3.16)

/('
B. ﬁlhm

where a and B, the attenuation and phase constants, are obtained from the propagation
constant, jk, =a + /B. Dividing both sides of (3.16) by the length of the casing, /, yiclds
the power dissipated per unit length of casing,
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CHAPTER 4

A Finite Element Method Solution For the Electromagnetic Fields in a Steel Casing

As discussed in the introduction, the finite element method (FEM) is a numerical
method for solving boundary value problems. An in-depth discussion of the theory behind
the finite element method is somewhat beyond the scope of this work. It should suffice to
say that the finite element method is an accepted numerical method, capable of solving

many types of boundary value problems.

The emphasis of this chapter is on the solutions obtained from the finite element method
rather than the finite element method itself. Once the dimensions, physical properties and
boundary conditions of the problem are assigned numerical values, a FEM solution may be
computed which will yield the electric and magnetic field intensities in the wellbore casing.
This FEM solution can be compared with the analytic solution derived in chapter 2 for
simple problems where the power cable is at the center of the casing. For problems where
the cable is positioned off center or if multiple cables are present, the FEM solution may
be compared with solutions published in the literature.

4.1 Computing a Finite Element Methed Selution Using UNAFEM 11

For problems of even moderate complexity, a vast amount of numerical work is usually
required to obtain 8 FEM solution. Consequently, computers are a virtual necessity when
dealing with most problems. In fact, with only minor changes to the code, a single
computer program can be adapted to solve a variety of boundary value problems using the
equation and the domain specific to each problem would need to be changed.

The computer program to be used in this work for calculating FEM solutions is the
UNAFEM I program. UNAFEM 11 is besed on an carlier program known simply as
UNAFEM which was written by W. J. Denkmann and D.S. Bumett st AT&T
Laboratories. The code for UNAFEM was published as an instructional aid in the text
Finite Element Analysis by D. S. Burnott. Later, this code was modified by E. Sumber at
the University of Alberta for use in solving electromagastic boundary value problems and
renamed UNAFEM I1.



4.1.1 Boundary Value Problems Solvabie by UNAFEM I

UNAFEM 11 can compute a FEM solution for any boundary value problem provided it

meets the following requirements:

,é{al(;‘y)au(:“y)}i%{u_,(r,y)r"‘(,: })}ﬂ}(r yU(x,v)=0. 4.1

This is the actual differential equation which is solved by UNAFEMIl. The
coefficients a,(x, ), a,(x,y) and P(x, ) must also be written in the following form:

xy)=c +ox+ex® teyrey’ ey e, ! . (4.1a)
X

where ¢, ,c,...c, are complex numerical constants. Note that {/(x, y) is mof restricted
to the form of equation (4.1a). Also note there is no I/y term in (4.1a). If the
coefficients &, (x, ), a,(x,y) and B(x, y) cannot be written in the form of (4. Ia) then
propriate boundary conditions of the boundary value problem must be known.
mmmmhmMmNﬂm lnmhymd:.vnhm
for either U/ or —a_ - Ol//ox and -a, - DU//dy must be known at the boundaric

4.12 UNAFEM [ Inpet

UNAFEM I requires the following input to compute a FEM solution:

1 LNAFEMI!mhm:,.e; .¢,, as defined in (4.1a), for each of the

: ,» &, and # in the partial differential equation (4.1). If the boundary
mmumdmmm lifferent material properties, each
region will have a different set of constants. To obiain all the necessary constants, the
partial differential equation for the problem is written in the same form as (4.1). Then
the comstants c,.c,...c, are extracted from the factors in ﬂumwh:h
correspond t0 a,, @, and S.
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2. UNAFEM Il requires the coordinates for each node in the mesh that models the
problem domain. For one dimensional problems, the domain is simply divided into a
series of line segments. For two dimensional problems, the domain is mapped out by a
grid or mesh composed of triangular or rectangular elements.

3. UNAFEM Il requires the boundary conditions of the problem. The value of a given
boundary condition is specified at discrete points (i.e., nodes) which coincide with the
location of the boundary condition. The boundary condition must be in terms of either
U(r.y) or the sum of -a, dl//dxé.-& and ~a,dlU//dyid,-&, where @ is a unit
vector normal to the boundary in question. These are the Dirichlet and Neumann
boundary conditions respectively.

4.2 A Finite Element Methed Solution for a One Dimensional Boundary Value
Preblem

In chapter 2, an analytical solution was obtained for the electromagnetic fields in the
simple, one dimensional boundary value problem illustrated in Figure 2-1. Hen
that simple, onedtmennonalboundnryvaheproblanllluumedmﬁmmz-lllnﬁhe
referred to as problem 1. In this chapter, a FEM solution for the ' :
problem | will be computed. mmanEMwhnmfwtbﬁddsmﬂum
mmmﬂbewnwedmhﬂwuﬂﬁwdnﬁnmohmndmchmaz.

ToobuinaFEMwhtionforproblanl.mmuicﬂvabczﬁpdmﬂu
Wdumﬂdmmwmofﬂnpmum Referring to
Figure 2-1, the radius of the power cable, 7., typically may vary from S mm to 30 mm.
NMa“bmwmwmmmeﬁdthMﬁg
Dimensions for several samples of wellbore casings are available from Table 2-3 in
chapter 2.

mmMdeIMJmeaﬂumm
€15 =8, W3 =M, 8nd 0,, =0. The properties of region 2 are dependent on the wellbore
Table 2-3 in chapter 2. In goneral, there is considerable variation in conductivity and
nwmm&&cumdw Even samples of the same type
ammmmmmm
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In addition to physical dimensions and electromagnetic properties, the magnitude, phase

calculated in this chapter, the current in the power cable is approximately 25 A rms at a
phase angle of 180° (i.e., the current flows in the -z direction, down the wellbore). The
frequency of the current is 60 Hz.

The dimensions and properties of each casing sample listed in Table 2-3 will be
substituted for the variables a, b, i, and o, in problem 1. Thus, for each sample, a new
FEM solution will be computed for the electromagnetic fields in problem 1. The decision
to analyze casing samples from Table 2-3 will enable portions of the FEM solutions to be
compared with experimental results published in reference [3] and with analytical solutions
derived in chapters 2 and 3.

4.2.1 The Partial Differential Equation for Problem |

The first step in obtaining a FEM solution for problem 1 is to write the governing partial
differential equation for the problem and extract the constant coefficients required by
UNAFEM I1. From (2.4), the differential equation describing the clectric field intensity in
an arbitrary region N is

[B‘E,_ 10K,
- . 4

7&3 : g )‘:2_MH(3H*MH)EH-

The above ¢ uation may be rewritten in same form as (4.1).

of -r OF, f : Ny
_—[F:.%)-r(—r[ﬂ" +joe, K, =0 (42)
Thus, the differential oquation for the boundary value problem is now in the form which



The terms in (4 2) which correspond to @,, a0, and # in (4 1) are

ry) > —L—, (4.20)
AT Son,
a,(ry)=0, (4.2b)
and Blx.y) = -r[o, + jue, ], (4.2¢c)

where x corresponds to 7 and y corresponds to ¢. Note that there is no actual ¢
dependence in equation (4.2) and therefore a,(x, y) and B(x,y) are technically functions
of x(ie,r)only The constants ¢, ,¢,...c,, as defined in (4. 1a), may be extracted from the
cocfficients in (4 2a-c). For a,(x,y), the only non-zero constant is ¢,, which corresponds
to j/op, For a (x.y) all the constants are zero (a,(x,y) does not exist in the one
dimensional equation). For B(x. y) the only non-zero constant is c,, which corresponds to
(‘@ - jue,). Since a, and p, vary from region to region, the constants for a,. and

will also vary from region to region.

4.2.2 Mapping the Domain of Problem | for UNAFEM 1]

Since problem | is a one dimensional azimuthally symmetric problem, the solution is a
function of the 7 coordinate only. Therefore the domain of the problem need only be
modeled in the radial direction st an arbitrary angle ¢. This is shown below in Figure 4-1.
A radial section of the domain is modeled from the surface of the power cable out to the
outer wall of the wellbore casing. It is along this radial section that UNAFEM Il will
compute a solution for the electric and magnetic fields.

; -
i (air) (steel casing)
| o o o o ‘-—‘—‘—0—‘—-‘—.—0—,0-'"4”-'&
o |
r=r r=a

Figure 4-1. A radial section of the domain of problem | .
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4.2.3 Boundary Conditions

To solve problem | using the finite element method, it was stated in the introduction
that an approximate boundary condition, namely H, (.5) = 0, needs to be imposed at the
outer wall of the casing. This avoids the problem of modeling the radially infinite region
beyond the outer wall of the casing. In chapter 2 it was demonstrated that. in
circumstances where the magnitude of the magnetic shiclding ratio is greater than 30, a
solution based on the approximate boundary condition will be nearly equal to a solution
based on the exact boundary conditions.

The magnetic shielding ratios for the casings listed in Table 2-3 have already been
calculated in chapter 2 and are available from Table 2-4  For samples | and 4, the
magnetic shielding ratio magnitude is less than 30, in these instances M, (k) 0isa
poor approximation for the exact boundary conditions at » = 5. The FEM solutions for
the electromagnetic fields in these casing samples may differ considerably from the exact,
analytical solutions.

A boundary condition is also required at the inner boundary of the domain of the
problem, i.c., at the surface of the power cable in region |. Here the boundary condition
is given by

/

Hq("l’uu.) = ‘——“2"““ : 43)

This is essentially the same boundary condition that was used to derive the analytic
solution in chapter 2, H, (k.a) = //2xa. The only difference between H, (k7. ) and
H, (k,a) is a small contribution to the magnetic field from the displacoment cusrent in
region |. The magnetic field created by the displacement current in region | is negligible
compared (o the field generated by the conduction current in the power cable.

Recall that UNAFEM II can only interpret boundary conditions in terms of U/ or the
component of -[a, oU/éoxd, +a,d0//dyh,] normal to the boundary in question
Therefore, to relate the magnetic field boundary conditions in problem | 1o UNAFEM I,
8 correspondence between H, (k) and U or {a, dt//ixa, +a,d/fiyi,]-& must be
established. In fact, it will now be shown that —[a, H/fixd, +a, 2li[dya,]) & >rH,,



Since «, /[y =0 in this problem, -[a,dl//oxd, +a, dl//dyh,] reduces to
«a,M/[ix&, By comparing the differential equation solved by UNAFEM Il in (4.1)
with the differential equation for problem | as written in (4.2), it is apparent that
r Ok, .
-a,0l/[0xd, = ———14,. (4.9)
Jon, or
Furthermore, according to (2.6), the term on the right hand side of (4.4) may be rewritten

as

-a, o/[oxd, >rH, (i, (4.5)

Finally, since &, is normal to both the boundary at the surface of the power cable in

region | and the boundary at outer wall of the casing,
-a, 0lU/oxd, -a=>rH, (r)i, &,

=rH, (r). (4.6)

Thus, the UNAFEM 11 boundary conditions at » = r.,, and 7 = b are
I

2! (4.6a)

-a,olfoxd, &,
and -a, Ol/[oxd, @], =0 (4.6b)

4.3 Comparisen of FEM Selutien with Analytic and Published Selutions

Having defined the inner and outer boundary conditions, as well as the material
pnpeﬁmmddum:nmnﬁhepmblammadﬂnnmeNAFEMﬂﬁdl

The FEM solutions for E;,(r) and H, (r) are plotted in Figures 4-2 10 4-9. Also
in the casing. as described by (2.28) and (2.29).
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Figure 4-7. FEM and analytical solutions for the electric and magnetic field intensities in

wellbore casing sample #6.
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As demonstrated in Figures 4-2 to 4-9, the FEM solutions do, in general, agree with the
analytical solutions. The main discrepancy is in the phase of the magnetic field in the
casing. This may be attributed to the use of the approximate boundary condition,
H,,(k;4) =0, in the FEM solutions. Although the magnetic shielding ratio was greater
than 30 for most of the casing samples, only an infinite shiclding ratio will guarantee
perfect agreement between the analytical and FEM solutions. In spite of this, the FEM
solutions for E, (r) and |H, (r) closely agree with the analytical solutions. Even for
samples | and 4, where the approximate boundary condition H,(k.) 0 could not be
entirely justified, the FEM and analytic solutions are satisfactorily close.

4.3.2 Eddy Current Density and Total Current Induced in the Casing
The eddy current density in the wellbore casing is easily calculated from Ohm's law,
I.(r)=0,E,(r)
=g, E,,(r)i,. @7

The total current induced in the casing may be found by integrating the eddy curremt
density over the cross sectional area of the casing.

umu

Ch;‘

j’z,(’)"*‘“

= zuj 1, (r)rar
. (48)

The integration in (4.8) is performed numerically because the FEM can only provide a
numerical solution for the eddy current density. Using Simpson's rule, (4.8) becomes

o 2203t 125 005) 45 00, )] (9
where f(r) =1, (r)-r, r,=a, r,=a+i-h, and h=(b-a)/2n. The portion of the mesh

used to model region 2, from r=a to r=b, conmsists of 30 element
Consequently » =(-a)/30 or w=15.



Applying (4.9) to the FEM solution for each casing sample yields values for /..
These are presented in Table 4-1. For comparison, the analytic solutions for /., from
(3.5) are also included in the table.

Table 4-1 FEM based numerical and analytical solutions for the total current induced in
various wellbore casing samples. /_,, is the current in the power cable in region | of

problem 1. All current phasor magnitudes are rms values.

Casing " FEM solution for _ Anahtic solwtion %oAl/ _ |* A 2/ »
samplc # (A ! 1A for /... IA l‘“"‘"l -

I 250218° 249 Z0033° 26.6 23.5° 4 38
2 28.1 L1M0° 2.0 £0.083° 26.0 £0.37° 38 ©0.62°
3 249 210 2.0 £0.089° 28.8 £0.39° 20 0.48
s 250 Z1%0° 248 £0021° 26.1 £3.8° 5.0 3.5
s 248 Z1%0° 25,0 £-0.063° 287 £0.79° 2.7 088°
6 25.4 Z190° 25.4 £:0084° 260 £0.39° 2.3 0.44°
7 249 Z1%0° 2.8 £0082° 2.6 £0.48° 3 0.53°

8 250 Zimr 25.0 £0.038° 25.721.% 2.7 -1.3°

* %Mlﬂl‘pﬁjliiﬂ]m
P Al = {a ) U

currents are generally in good agreement. The largest differences in magnitude between
that for these ssmples the approximate boundary condition used in the FEM solution was
Thm-ph*mﬂhm-iﬂﬂdvﬂiﬁrlﬁn
Table 4-1 can also be attributed to the approximate boundary condition. Ideally, the FEM
based sohution should yield a value for 7 equal 10 -/_,, because the FEM solution
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uses the approximate boundary condition which forces the return current to flow entirely
within the casing. This situation was discussed in more detail in section 3 3.

4.3.3 Resistive Power Loss In the Casing
The power dissipated in the casing due to resistive heating by eddy currents can be

calculated from Poynting's theorem. The resistive power loss in the casing may be found
as follows:

Es, ()| o v b i 4 10)

Again, the FEM can only provide a numerical solution for E, (r) and therefore, just as
with the integral in (4.8), the integral in (4.10) is evaluated numerically. As before,
Simpson’s rule is used.

P.= uJZ:%[f(ruh f(r,.)+ Zlf f(rz,)ﬂi f(r, .)]. (4.11)
where f(r)glE;_(t;rfr, r,=a,r,=a+i-h, and h=(h-a)/2n. Just as with (4.9),
n=30 ' '

Applying (4.11) to the FEM solution for each casing sample yields values for /2.
These are presented in Table 4-2. For comparison, the analytic solutions for /5, from
(3.16) and some measured values from Stroemich et. al. [3] are also included in the table
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various wgllbor: casing nmp,len! l‘,,,, is the current in the power c;ble in region | uf
problem |.

Casing 7.,,.‘. FEM solution for _ Analytical solution H sred Py s
sample # [A] 5;= Wim]  for 5;- [W/m) o

[(W/m]

1 25.0 Z180° 0.190 " 0205 0.24

2 25.1 £180° 0116 0.119 not available
3 249 Z180° 0.0650 0.0659 not available
4 25.0 £180° 0.112 0.120 0.12

] 248 /180° 0.0996 0.102 not available
6 254 Z180° 0.0645 0.0656 not available
7 249 £180° 0.0835 0.0865 not available
8 25.0 £180° 0.0603 0.0627 not available

2 From Stroemich et. ol 3],

In general, the numerical and analytical values for £_// in Table 4-2 do agree. The
mmmmmmmwmnmﬁm
Iandd hmm tht,f;i’:;_,bmndnrymmnmidnthFEM

4.3.4 Effective Casing Impedance

Consider the schematic in Figure 4-10. This is a simplified representation of the setup
used by Stroemich et al. [3] to measure the effective impedance of a casing sample. Note
that effective impedance is not identical to either wave or intrinsic impedance, though it is
related to these quantities.




n

casing )

Figure 4-10. A simplified diagram of the setup used by Stroemich et. al. to measure the
effective impedance of a wellbore casing (adapted from Figure S of reference [3)).

For the setup in Figure 4-10, effective impedance is defined as

Ziwe =7 [60m) 412)
where V is the phasor voltage drop per unit length along the inner wall of the casing and /
is the phasor current which flows through the power cable and returns to the source
through the casing. Measured values for the effective impedance of several samples of
wellbore casing are presented in Table 4-3.

A value for effective impedance may also be calculated from the FEM solution. The
voltage drop along one meter at the inner wall of the casing is
¥V =1[m)-E, (a){V/m]. (4.13)

the casing sample in question. These results are also presented in Table 4-3.
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Table 4-3 FEM based numerical solutions and measured values for the effective
impedance in various wellbore casing samples.

Casing [ FEM valucs for  FEM valucs for  * Experimental %A %A
sampic # E, (a) Z spoctve valucs for |Z Iu /7 ¢
1A} [V/m| [SVm] Z gocrve 16Ym] [ Tetiocme oocme
[ 25.0 Z180° 0.01138 £47.8° 4.54x104 £478° 4.49x10% £473° 1.0 1.1
2 25.1 Z180° 0.00678 £46.7° 2.70x104 £46.7° 2.97x104 £45.7° 9.1 2.1
3 249 2180° 0.00379 £46.7° 1.52x10% £46.7° 1.44x10* 2£454° S8 29
4 25.0 Z180° 0.00653 £46.0° 261x10% £46.0° 2.79x104 £450° 6.8 22
s 24.8 ZI80° 0.00386 £47.2° 2.36x104 £47.2° 2.28x10* £489° 3.8 28
6 25.4 Z180° 0.00371 £46.7° 1.46x10* £46.7° 1.51x104 £470° 3.3 0.64
7 249 Z180° 0.00498 £47.1° 1.99x104 £47.1° 1.93x104 £48.3° 3] 4.0
| 250 Z180° 0.00386 £47.3° 1.42x104 £47.3° 1.41x10* £47.0° 0.71 0.64

2 From Stroemich et. al [3]).

. %All.m|=lz*~"'|';:|.'2“|" 100

{42*- }m,___ ‘{420r~ },,,__ 100

S S . 7
Kuposimente)

Thewbuwmunexpedmdlymredvduesfoflmmdthuhm
calculated using the FEM solution is remarkably good. From Table 4-3, the largest
difference im magnitude is about 10% while the largest difference in phase angle is only
4%.

4.3.8 Cenclusion

For problem 1 (the boundary value problem illustrated in Figure 2-1 of chapter 2) it is
possible to obtain a reasonsbly accurate FEM solution for the electr- magnetic fields in the
wellbore casing using the approximation thet 4, (£.8) = 0.

Furthermore, a reasonsbly accurate value for the resistive loss due 10 eddy currents in
&cuﬁqm&oﬂ“ﬁuh?ﬂ%hh*ﬂﬁcﬂhhmd
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Poynting's theorem. Substituting discrete values for the electric field from the FEM
solution into Poynting’s theorem and then using Simpson's rule to numerically evaluate
the integral will yield the power loss in the wellbore casing.

The accuracy of the FEM solutions presented in this section are dependent on the
judicious use of the approximate boundary condition, H, () 0. This boundary

modeling the problem domain for the finite element method.



CHAPTER §

A Finite Element Method Solution For a Two Dimensional Boundary Value

Consider a new boundary value problem which, with one exception, is identical to that
of problem 1. Instead of having the power cable positioned at the center of the wellbore
casing, the new problem has the cable displaced a distance « from the center of the casing
A diagram of this new problem, problem 2, is illustrated below in Figure S-1a

. |
‘ r
- Yy 9 o |
8L oo Jine of symmetry
. ¥ K

power cable
(i e, currem source)

region 3 (air)
region 2 (wellbore casing)

region | (air)

Figure S-1a. A diagram of problem 2.
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Figure S-1b. The semicircular section of problem 2 for which the FEM solutions are
computed.

As with problem 1, to obtain a FEM solution for problem 2, numerical values must be
assigned to the physical dimensions and electromagnetic properties of the boundary value
problem. As mentioned in the introduction, several solutions to the problem illustrated in
Figure S-1a have been published in the literature. By choosing physical dimensions and
clectromagnetic properties for problem 2 from examples published in the literature, the
FEM solutions for problem 2 may be compared with the published solutions.

The first set of sample properties and dimensions for problem 2 is based on a numerical
example included in both the papers of Tegopoulos and Kriezis [9] and Kriezis and
Cangellaris [13]. The inner and outer radii of the wellbore casing, a and b, are 0.100 m
and 0.112 m, respectively. The radial displacement, d, of the power cable is 0.090 m. The
reiative permesbility of the casing is unity, implying that the casing is actually composed of
a non-magnetic material. The conductivity of the casing is approximately 35.7 x 10° S/m.
The magnitude and phase of the current in the power cable is 1002180° A rms (i.e., the
current flows in the -z direction, down the well bore). The frequency of the current in the
cable is SO Hz. At 50 Hz, the casing has a skin depth of 11.9 mm.

A second numerical example is also included in the paper by Kriezis and Cangellaris
[13). & is identical to the previous exampie, except that the radial displacement of the
power cable is 0.070 m. The values used in this example will serve as the second set of
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A third and final set of sample properties and dimensions will be applied to problem 2 in
order that a FEM solution may be compared to a solution based on Dwight's tormula
from references (6] and [7]. As mentioned in the introduction, Dwight's formula is only
valid when the casing thickness is much less than one skin depth and the casing material is
nonamlgnﬂic Rcﬂll thal the secand ;ample has a relative pc;rm:ahililv of unity and a
12 mm to 3 mm, it becames pns,sible to appiy l)mgh! s !mmula Thus a third set of
Simple pafimeters for problem 2 may be derived fmm the second sample by decreasing

The properties and dimensions for all threc samples are summarized in Table S-1 Note
that in all cases, the properties of regions 1 and 3 are those of free space, namely v, ,
Hs=H,ando,,=0.

Table $-1. Dimensions and electromagnetic propertics for various samples of wellbore

casings.
Snmple #  Inner radius Outer radius Displacement Region 2 0,
‘o’ [m] ‘b’ [m] ‘d’ (m] M, ($/m)
I 0100 otz 00% | IS TA007
2 0.100 0112 0.070 I 157 . 10"
3 0.100 0.103 0.070 | 167 10"

5.1 The Partial Differential Equation for Preblem 2

Notice there are two different systems of polar coordinates in Figure 5-1a, the diagram
which describes problem 2. The 7 and ¢ coordinate system will be used to model the
problem for UNAFEM II. Thzrudtmﬁnn;iyﬂanushmennvalhepmdﬁ
sysiem because the homogeneous boundary condition at the surface of the power
aHeumndydﬁﬁidmlmofrnﬂQ Solutions for curremt density in the

wellbore casings will be plotted using the p and 0 coordinate system

ficlds are a function
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no longer valid For problem 2, a new differential equation must be constructed. This
new equation will take into account the ¢ dependence in the E, and H, field

components

Just as was done for the one dimensional boundary value problem in chapter 2, the
following simplifications are made to the two dimensional problem illustrated in

Figure S-1a.

1) ,
1. 0 sinceit is assumed the casing and cable are infinitely long.

0z
2 The magnetic permeability 1 is constant in region 2 (the steel casing).

3. The £, and H, field components are identically zero because there is no current
source present which can sustain these components.

After applying the above simplifications to the basic wave equation in (2.3), the partial
differential equation describing the electric field in an arbitrary region N of Figure 5-1a
may be written as

O -r 0K, )\ o -1 10k o -
—— —_— —_ N ol P E. =0 51
"'(iww 6r) éo(jwu,, ro o +{-rlow + joey DE, (CR))

E,, is the only non-zero component of the electric field in problem 2.

The terms in (5.1) which correspond to the coefficients a,, a0, and Bin (4.1) are

a,(xy)=>—, (5.1a)
Jop
a,(rp)>—11, (5.1b)
Jopy 1
and B(x.y) = -r[o, + jue,], (5.1¢)

where x corresponds to 7 and y corresponds to ¢. The constants ¢,,c;...c,, as defined in
(4.12), may be extracted from the coeflicients in (S.1a-c). For a_(x,y) the only non-zero
constant is c,, which corresponds to j/oy, . For a,(x.y) the only non-zero constant is
¢,. which corresponds to j/ou, . For f(x,y) the only non-zero constant is c,, which
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corresponds to (-0, - jue,) Since o, and p, vary from region to region, the
constants will also vary from region to region

5.2 Mapping the Domain of Problem 2 for UNAFEM 11

As with the one dimensional problem in the previous chapter, it is necessary to map the
domain of problem 2 onto a mesh so that UNAFEM 11 may compute the FEM solution It
should be apparent from the diagram of problem 2 in Figure S-1a that the solution to
problem 2 will be symmetric about ¢ = 0 Consequently, a FEM solution need only be
computed for the semicircular region illustrated in Figure $-1b  The domain of the
problem is modeled by a semicircular mesh which extends azimuthally from 0 0" o
0 = 180° and radially from the surface of the power cable in region | 1o the outer wall of
the wellbore casing in region 2. It is in this section of the domain that UNAFEM 11 will
compute a FEM solution for the electric and magnetic fields. The meshes used to model
the domain of problem 2 are included in appendix 3.

5.3 Magnetic Field Boundary Conditions for Problem 2

The dashed line in Figure 5-1b illustrates the boundary for that «ction of problem 2
where FEM solutions are to be computed. This boundary is es.  ntially constructed of
four segments. The first segment of the boundary coincides with 1ixe surface of the power
cable; this is the arc described by 7 =r. from ¢ = 0° to ¢ = 180° . The second segment is
part of the line of symmetry which divides problem 2 into two semicircular sections, the
second segment extends radially from r=r. to p =5 along an angle of ¢ - 180°. The

an arc described by p=5 from 0 = 180° to 0 =0°. The fourth and final segment of the
boundary is again part of the line of symmetry which Jisects problem 2, the fourth
segment extends radially from p = to 7 = 7, along an angle of ¢ = 0°.

Boundary conditions for the magnetic field will be used by UNAFEM [ to help compute
FEM solutions for the electromagnetic fields in problem 2. These boundary conditions are
discussed in sections 5.3.1t0 53.3.
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5.3.1 The Magnetic Field Boundary Condition at the Surface of the Power Cable

The magnetic field boundary condition at the surface of the power cable in problem 2 is

H, (r.6) = 2 "v . (5.2)

¢

Equation (5.2) is a close approximation for the ¢ component of the magnetic field at the

surface of the power cable.

5.3.2 The Magnetic Field Boundary Condition Along the Line of Symmetry of
Problem 2

Along the line of symmetry which divides problem 2 into tv.0 semicircular sections, the
radial component of the magnetic field is exactly zerc. This is apparent from the
symmetry of the problem; 9%, /3§ =0 along the line of symmetry in Figure S-la and
therefore H, =0 along the line of symmetry as well.

5.3.3 The Magnetic Field Boundary Condition Along the Outer Wall of the
Wellbore Casing

For problem 1, the one dimensional boundary value problem considered in the last
chapter, an approximate boundary condition for the magnetic field was used to compute a
FEM solution. The approximate boundary condition was used instead of the exact
boundary condition to avoid the problem of modeling region 3, the radially infinite region
beyond the outer wall of the casing. The approximate boundary condition used in
problem | was H, (£,)=0 (i.c., the magnetic field at the outer wall of the wellbore
casing is zero).

For problem 2, the magnetic field at the outer wall of the wellbore casing is also
assumed to be zero. MR,L:.=Ocomtitutumofthebomduycondiﬁomtobe
used for computing FEM solutions for problem 2. Again, imposing the boundary
omdkionﬁ,h=0wddadnwoblanofmde&uﬂnndidlyhﬁﬁtenﬁonwm
outer wall of the casing. The validity of this boundary condition will be discussed later in
this chapter.
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S.4 UNAszs Mo Ctan - onditions
In ord: “ 1 compute a FEM solution for problem 2, the boundary
conditio~ "1 mwis - be rewnitten in terms of the notation used in equation (4 1),

the partsar ¢ " rentrai o sianon solved by UNAFEM L1 Specifically, a boundary condition

convev- > 7 MU must correspond to one of the following quantities
1. U
2. (~a 3 w4+ (-a L Ol I/Py)'i’ , -0, where 0 is a unit vector normal to the

boun it in uestion.

The function U(x,y) corresponds to the electric field E,(r.¢) in (5 1) The values for
U(x,y) (i.c., the electric field) at the boundaries of problem 2 are unknown However.
boundary conditions are available for the magnetic fields Furthermore, these magnetic
field boundary conditions can be shown to correspond to the terms  « Ol//Ox and
~a, 8l//dy. This relationship is demonstrated as follows.

By comparing the partial differential equation solved by UNAFEM II from (4 1) with
the partial differential equation for problem 2 in (5.1), the following correspondences are
obtained:

. ok, . o
_(!‘(I,y Llsij 3 :7’! ";“,g‘"‘.r| ‘i ]ﬂ)

o ix Jop, or

ol . 11 0k, . o
a,(x y)ay-,,, PR TR (5 3b)

The terms on the right hand side of (5.3a) and (5.3b) may be expressed in terms of
H, (r.¢) and H, (r,4) respectively. According to Maxwell's equations,

VxE, =-jou, H, . (54)

Given that there exists only a z co

. (10E, ) . ([ OE,, . ,
',('; ai)"’(' ;)=-munﬂn- (5.5)
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From (5.5) a scalar differential equation may be extracted from each of the field

components:
, -1 0JE :
H, (r.¢) = - li o (3.60)
) JOuLr m
| OJE, (
H. (r.6)= 5.6b
’H( ¢) Jouy or o

Substituting (5.6b) into (5.3a) and (5.6a) into (5.3b) yields the following relationships
between the partial derivatives of U(x,y) and the magnetic fields in problem 2:

—a,(ny)%i, =>rH, (r.¢)a,, (5.7
o oU(xy) . -
"%(Is!)*fa —i,=-H, (r.0)a, (5.8)

At any point ‘P’ along the boundary of problem 2, the UNAFEM Il boundary
condition is the normal flux,

ool . Y. .
-ls,a,—| + a,a,—]| |'n, (5.9
( ' &i-f" S Q” F)

where & must be specified as a unit vector normal to the boundary. Substituting (5.7) and
(5.8) into (5.9) yields a general expression for the boundary flux in terms of the magnetic
field at any point ‘P’ on the boundary:

_[i.a. ‘;U R a!%P]-i =(a,[rH,, ],-du[H., ]‘_)- (5.10)



of problem 2 which lies along the surface of the power cable  Furthermore, in the r and ¢
coordinate system, the unit vector &, is normal to the surface of the power cable  Ulsing
this information, the general UNAFEM Il boundary condition from (5 10) can be rewritten
specifically for this section of the boundary:

{-a% ]-h(i.c Hy(r8) 4,10,0.9) 4,

+ A,
o RAY
—':;ii !it’: ll“(r_ i¢) i*i, 'Iq(’: ‘¢)

=y H"(r;g't) (511

Substituting the magnetic field boundary condition from (5 2) into the right hand side of
(5.11) yields a value for the boundary condition at the surface of the power cable which
can be relayed to UNAFEM II:

[. au
=|8a,—

)*i > lr (5.12)

Problem 2

The line of symmetry in Figure 5-1a serves as part of the boundary for the semicircular
section of problem 2 (illustrated in Figure 5-1b) where the FEM solutions are computed.
The unit vector normal to this segment of the boundary is 4,. Along this segment of the
boundary, the general UNAFEM II boundary condition of (5.10) reduces to

.  oU . oU . - [ ' .
..[a,a,a, ot l,a?ﬁ:@}-z(l,[ﬂlh]: .',;::-l‘[HEH]: :,;;“_).n,

=190°

>4, .i,[r H,, lt v i, ’5¢[H}~ ]: o

=>{H,, }oa (5.13)



83

As discussed in section 532, H, =0 along the line of symmetry in Figure 5-1a (i.e,
H, (r,0°)=0and H, (r,180°) = 0). Asa result, the right hand side of (5.13) reduces to
zero and the UNAFEM II boundary condition along the line of symmetry becomes

|i.a, ol
f!)i'

5.4.3 The UNAFEM II Boundary Condition at the Outer Wall of the Wellbore
Casing

i

+ A
" ¥ =‘ 2"
$ Hm' €

)-ﬁ 0. (5.19)

§ P
¢ 180

wellbore casing is d::cnbed by the :em:mrcullr arc p= lL The unit vector &, is a unit
vector normal to the outer wall of the wellbore casing. By equating & with &, the
general UNAFEM Il boundary condition of (5.10) can be rewritten as

.ol .o ). (.t Y T B
,[. —“)}— i, cz'r? )1 ;-(l,[r H%(r“)],.lg +n’[g H,!(r,db)]M)-np

b b

([coslw)r b, (r0)] , +

L[’in(“’)ﬂﬁ(r‘”lﬂ (5.15)

The angle v is equal to ¢ -0, as illustrated in Figure 5-1b.

Note that the 7 and ¢ components of the magnetic field along the outer wall of the
mmyhmmmmdmmﬁédmiwhchmmmﬂ
sangential 10 the casing. In other words, the r and ¢ com nts of the m c field
may be written in terms of p and 6 components. Thrﬂumbgmﬂﬂdm
at a given point along the boundary of problem 2 are

H, = H, col(w) + H, sin(v)
H,=-H, in(‘l’)*ﬂc GB‘V)

(5.16)
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Substituting these relations for H, and H, into (5 19) yields

\€ ) [casw)fﬁ-.("’-*)} 3
_ ln § I p A
i o b } \[SI“(W)H'J (P,ﬁ)]L &

'[=rH‘i sin(v)cns(v)*r'ii,.ms(q:)i;ns(v)]! \ .
g[H" cos(w)sin(y)+ H, sm(v)sm(\p)ﬂi )

e

(H,[reos’(w) ¢ sin’(w)] ] (S17)

L+ H, cos(y)sin(w)I-r] Ch

Accnrdmg to the boundary condition discussed in section $.3.3, H, | 0 Thus
Hy=0and H, =0 at p=A. The right hand side of (5.17) therefore I’L‘dULC‘i to zero and
the UNAFEM I boundary condition at the outer wall of the casing is simply

]-i 31) (5 18)
.1

5.5 Cemparison of the Finite Element Solutions with Published Solutions
Aﬂs deﬁning the hnund-ry condltlons. electmmgneﬁc pm'peﬂie-s and dimensi«m fur

e;ch set nl‘ umple pmmm in Tnhle ,,SfL For em:h snmplc. thc FEM mlutmn for lh-:
electric field in the casing is multiplied by the conductivity of the casing t0 obtain a
solution for the current density. The FEM based solution for the current density may then
be compared with published solutions. In addition, by numerically evaluating the integral
from Poynting’s theorem using data from the FEM solution, a value for the resistive

For sample 1, contour plots of the FEM solution for current density are shown in
Figures 5-2a and 5-2b. In Figures 5-3 and $-4, ﬂnmoﬂheFEMnﬂmfm
mﬁﬂyndﬂdbmnmmgm,,,”,f:,, ' C
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The analytical solution is based on the solution derived by Tegopoulos and Kriezis in
reference [9).  As mentioned in section 1.2.1.2, the original current density expression
derived by Tegopoulos and Kriezis is incorrect due to several errors which occur in the
derivation of the solution. In appendix 1 of this thesis, these errors are identified and
corrected. The “revised” Tegopoulos and Kriezis solution for current density is given by
equation (A1.24). This solution is comprised of a summation of an infinite series of Bessel
functions.  Numerical evaluation of the revised Tegopoulos and Kriezis solution
(equation A1.24) was performed using Mathematica 2.1 [20]. The sum of th: first 70
terms in equation (A1.24) yields values for current density which are accurate to at least

four significant digits.

The integral equation solution is the solution obtained by Kriezis and Cangellaris in
reference [13). As discussed in the introduction, this is a numerical solution to the integral
equation which describes the current density in problem 2. A plot of the solution for eddy
current density is given in Figure 7 of reference [13].

Figures 5-3a to S-3c are plots of |1, (0.100,8)|, |J,(0.106,8)] and |J, (0.112,0)
respectively. Figures S-4a to S-4c are phase angle plots of J 2, (0.100,0), J 2, (0.106,0) and
J,,(0.112,0) respectively. Note that there were no values for phase angle published in
reference [13].
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Figure 8-2a Contour plot of the magnitude of the current density [ A/cm?)

in the wellbore casing of sample 1.
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density agrees relmnlbly well wnth l.he rm:ed Tegopoulo; und Knezu mlutmn lﬂd the
Kriezis and Cangellaris solution. However, from Figure 5-4 there appears to be some
discrepancy between the solutions for the phase angle. While the general shape of both
curves is similar, the actual values differ by as much as 25°.

A comparison of solutions for the power loss in the wellbore casing is also possible. For
the resistive power loss due to the flow of eddy currents, references [9] and [13] provide
values for power loss per meter of casing.

In reference [9), Tegopoulos and Kriezis derive an expression for power loss based on
their analytical solution for current density. However, as mentioned earlier, the
Tegopoulos and Kriezis solution for current density is erroneous. Thus their expression
for power loss is also flawed; this is discussed in detail in section Al.4. The revised
Tegopoulos and Kriezis current density solution (equation A1.24) can be used to rederive
the analytic expression for power loss. This leads to equation (A1.49). By evaluating
(A1.49), the power loss in casing sample 1 is found to be 0.239 W/m.

and Cangellaris. According to Figure 9 of reference [13), the power dissipated in casing
sample | is 0.125 W/m. Mummmmnoznwmmm
obtained from equation (A1.49). This author is unable to explain the discrepe

Tommnvﬂgﬁt&mwm&nﬂmhmmu,lE,!(pGn is
integrated numerically over the cross sectional area of the casing (values for E, (p,0) are
MM&IFEMM) Since the integral is a function of p and 0, !iﬂjh
numerical integration must be performed. Using Simpeon'’s rule twice to evaluate the

2f fo,[E., (0.0 dpde .19)

yields a valus of 0.206 W/m for the power dissipated by the casing in sample 1. Thus, the
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Kriezis solution. However, the FF\ solution appears to be approximately 40% larger
than integral equation solution from Kriezis and Cangellaris

5.5.2 The Finite Element Method Solution for Sample 2 of Problem 2

For sample 2, contour plots of the FEM solution for current density are shown in
Figures 5-5a and 5-5b. Also, as with sample 1, the FEM solution for current density in
casing sample 2 may be plotted and compared with the revised Tegopoulos and Kriczis
solution given by equation (A1.24) and the integral equation solution from reference [13].

Figures 5-6a to $-6¢ are plots of |J, (0.100,8)], |, (0.106.8)] and ), (0.112,0)
respectively. Figures 5-7a to 5-7c are phase angle plots of J 53(0_ 100,0). J, (0 106,0) and
J,,(0.112,8) respectively.
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Accarding to Figure: 5-6 and "‘!-7 it appears that the FEM mluti(m I‘ur current dcmilv i:

Cmgellm; ;glunani

As was done for sample 1, a value for the power loss per meter of casing is derived from
the FEM solution. Using the discrete values for the electric field obtained from the FEM
sclutian the imegrll of (5 IQ) is evnhmed numeﬁc:lly The result yields a value of

As a comparison, the value for the power loss obtained from evaluating (A1.49), the
revised Tegopoulos and Kriezis solution, is 0.102 W/m. The power loss based on the
solution to integral equation from Figure 9 of reference [13] is 0.081 W/m. Thus, the
FEM solution for power loss is within 25% of the integral equation solution and within
1% of the revised Tegopoulos and Kriezis solution.

8.5.3 The Finite Element Methed Selution for Sample 3 of Preblem 2

For the third casing sample, contour plots of the FEM solution for current density are
shown in Figures 5-8a and 5-8b. Also, the FEM solution for current density is again
addition, because the thickness of the casing in sample 3 is only 25% of the skin depth,
Dmﬂi;mhﬁanﬁummf&um[ﬂudnnmhﬂdformmn Recall from the

duction that Dwight’s formula (1.1) is based on the assumption that current density is
mwhrapmmr which is essentially true when the casing is much thinner than

Figure 5-9 is a plot of the current density magnitude at the average radius of the casing
minnq:la! Similarly, Figure 5-10 is a plot of the phase angle of the current density at the
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between the FEM solution and the two comparison solunons is mmewhnt medm:re, The
greatest difference in magnitude between the FEM solution and the other two solutions
occurs at 0 = 0°; here the FEM solution is about 20% larger than either of the two
comparison solutions. There also is some discrepancy between the phase angle solutions
in Figure $-10; the FEM solution differs from the other two solutions by as much as 15° at

some points.

The power loss in casing sample 3 was calculated using discrete values for the electric
field from the FEM solution and the integral from Poynting’s theorem in (5.19).
Numerically evaluating (5.19) yields a value for the power loss of 0.36 W/m. In
comparison, the power loss obtained from evaluating (A 1.49), the revised Tegopoulos and
Kriezis solution, is 0.314 W/m.

A second comparison value for power loss can be obtained by substituting Dwight’s
formula for current density (1.1) into the integral derived from Poynting’s theorem,

%0103

= [ [ S0 rarc.
Evaluating the above integral yields
, moar N afsy 2 Y
P = (at)[21t+1tz:( ) [m) Z( ) [(n-o-l’)}]
P_=0312 W/m, 520

where a, /, s and / are as defined in equation (1.1) in chapter 1. Thus, the FEM solution
for power loss is within 15% of both Dwight's value and the value from the revised
Tegopoulos and Kriezis solution.

The discrepancies between the FEM and anslytical solutions in this chapter can be
sttributed to the use of the approximate boundary condition, F,| | =0, in the FEM
solutions. Consider the general, analytical solution for H,(p,0) which is derived in
sppendix 4. 1,(p.6) consists of two field components: H, (p,0) and H,,(p,0). The
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general solutions for H, (p.0) and H, (p.6). given by equations (A47) and (A4.8),
consist of an infinite number of spatial harmonics with respect to the 0 coordinate.  7he
approximate boundary condition, FLL , = 0. used for the FEM solution assumes that all
the individual harmonics of the magnetic field are zero at the outer wall of the casing.

For the three casing samples examined in problem 2, the criterion for judging whether
F‘ZL,;Q, =0 is a valid approximation for the exact magnetic field boundary condition is as
follows: if the magnetic shielding ratios for the first five spatial harmonics of H,, (p.0)
and H, (p.6) are greater than 30 then F]_iL‘ , =0 is a valid approximation. The decision
to test only the first five harmonics may seem somewhat arbitrary In general, the closer a
power cable is to the inner wall of the casing, the greater the importance of the higher
order harmonics. However, sample | of problem 2 can serve as an extreme test case. In
sample 1, the power cable was offset from the center of the casing by 0.9 of the inner
radius of the casing. In this instance over 80% of the power dissipated in the casing lies in
the first five harmonics, according to the analytical expression for power loss from
equation (A1.49). In instances where the cable is offset by more than 0.9 of the inner
radius, higher order harmonics of H, (p.8) and H, (p,0) should be tested.

The shielding ratio formulae for individual harmonics of H, (p.0) and H, (p.8) are
derived in appendix 4 and given by expressions (A4.9) and (A4.10), respectively. Note
that the expression for the magnetic shielding ratio given by (2.43) in chapter 2 is actually
the shielding ratio for the zeroth harmonic of H, . The H, and H, magnetic shielding
ratios for casing samples 1, 2 and 3 are presented in Tables -2 and S-3.

[Ho(@0), [ [H,(@.9), .| [H,(a0), ] [H,0),,
| [eGo), | [AaGe). | [Aake).,

1 3319 212 1o 76 6.0
1.0 76 6.0

2
3 1985 122 6.11 408 3.06




Tabie 8-3. Magnetic shielding ratios for the first four harmonics of H,, (p.0) in casing

samples | to 3.

1, (a,0), | [H, (0),.] [H,(a0), . [H, (6),
pj (b'e)i ] H ( e) Hp} ("'i‘e)i 3 sz (ble)ui*

1

Sample

1 165 177 1.89 2.00
2 1.65 177 1.89 2.00

3 1.08 111 1.14 1.17

On the basis of the data in Tables 5-2 and 5-3, the approximation ﬁglp?i =0 is difficult
to justify. For each of the three casing samples, only the zeroth harmonic of the
H,, shielding ratio is greater than 30. Thus, for the three casing samples, Hzlﬁ =0isa
poor substitute for the exact magnetic field boundary condition at p=5. This explains the
sometimes mediocre agreement between the FEM and analytical solutions of problem 2.
For casing sample 3, which has the lowest shielding ratios, E;I =0 is a very poor
approximation and as a result, the discrepancies between the FEM md analytic solutions
for current density and power dissipated are particularly large.

Note that although casing samples | and 2 have identical shielding ratios, the
lppmmanﬁ;Lb=0mmv1hdforumplezthmformnplelmme
FEM and analytic solutions for sample 2 are in much closer agreement. This anomaly can
be explained by comparing the power distribution in the spatial harmonics of the
clectromagnetic fields in samples 1 and 2. For both samples, the power in the n=0
armonic is 0.04 W/m, according to the # = 0 term from the analytic expression for power
loss (A1.49). For sample 2, in which the total power dissipated is 0.10 W/m, the #=0
mm%ﬂﬂnmﬂm However for sample 1, in which the total

ipated is 0.24 W/m, the » = 0 harmonic contains only 17% of the total power.

In general, sample 2 has a grester percentage of total power in the lower spatial
harmonics than does sample 1. This is because the power cable is locsted closer to the
center of the casing in sample 2 than it is in sample 1. Therefore, even though the
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magnetic shielding ratios in samples | and 2 are identical, the shielding ratios for the lower
order harmonics are “weighted” more heavily in sample 2 than in sample |  Since the
lower order harmonics generally have larger shielding ratios, I'I:|" , 0 is a better
approximation for sample 2 than for sample 1.

In a subsequent test, FEM and analytical solutions were obtained for a fourth casing
sample where the approximate boundary condition, nzl,. , ~ 0. was justified  The casing
sample was over four skin depths thick and as a result the shielding ratios for the first five
harmonics of the magnetic field were all greater than 30. The agrcement between the
FEM and analytic solutions was excellent. This is further evidence that the differences
between the FEM and analytical solutions for samples 1, 2 and 3 are due to the use of the
approximate boundary condition.

8.7 Conclusion

For problem 2, the boundary value problem illustrated in Figure S-la, the FEM method
can provide a reasonably accurate solution for the electric field in the wellbore casing,
provided the approximate boundary condition, H 2|, , =Y. is valid. For the three casing
samples examined in this chapter, the accuracy of the FEM soluti..ns is generally good,
although there are some instances where the analytic and FEM solutions for power loss
differ by as much as 50%. The discrepancies between the FEM and analytical solutions
may be attributed to the fact that the justification for the approximate boundary condition
was relatively weak.
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CHAPTER 6

A Finite Element Method Solution For a Complex Two Dimensional Boundary
Value Problem

Expanding upon the boundary value problem posed in problem 2, consider a wellbore
casing that encompasses multiple power cables. Each cable carries an alternating current
at an arbitrary phase. The cables may be arranged in an arbitrary configuration insi '~ the
casing. Two possible configurations are considered in the following boundary value
problems.

6.1 A Description of Problem 3a

Boundary value problem 3a is illustrated in Figure 6-1a. Three power cables are
arranged in a triangular configuration as shown in the diagram. Each cable carries a
300 A rms current at a frequency of SO Hz. The currents in the three power cables
constitute a balanced, three phase system. The casing has a relative permeability of unity
and a resistivity of 2x 10 * 2-m. The skin depth of the casing is approximately 10 mm.
Casings of various thicknesses will be examined. The properties and dimensions have
been chosen to match the values used in an example from reference [10). The solutions
calculated in reference [10) by Kawasaki, Inami and Ishikawa will serve as a check for the

FEM solutions of problem 3a.

lﬁ;&ln. vkmamu
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In Figure 6-1a, the outer radius of the wellbore casing is not specified  This is because
different thicknesses of casings are to be considered. The inner radius for the casing is
fixed at $7.3 mm. The outer radii and resultant thicknesses are listed in Table 6-1

Table 6-1. The outer radii and thicknesses for each casing analyzed in problem 3a

Casing # Outer radius ‘5’ Casing thickness casing thickness

[mm] [mm] ~ skin depth
1 593 2 02
2 61.3 4 04
3 63.3 6 06
4 6.3 8 08
s 67.3 10 10
6 69.3 12 1.2
7 71.3 14 1.4

6.2 A Description of Problems 3b and 3¢

Boundary value problem 3b is also based on an example from reference [10). Problem
3b is illustrated in Figure 6-1b. The three power cables inside the casing are arranged in
what is referred to as a “cradie” configuration. Each cable carries a curremt of 1000 A rms
at a frequency of SO Hz. Once agsin, the currents in the power cables constitute a
balanced, three phase system. The casing has a relative permeability of 200 and a
resistivity of 20 x10°* Q2-m.



- region 1(air)

~

. - region 2 (steel wellbore casing)
W o Tegion 3 (air)

/
A 4
o Y0
L ,,Jo "
1000£-120° j 10002£120°)
() 3% &/
I3 ! |
\\\ . CD 2
1000£0°

Figure 6-1b. A diagram of problems 3b and 3¢

Boundary value problem 3¢ is basically identical to problem 3b. The only difference is
the magnetic permeability of the wellbore casing For problem 3c, the relative

permesbility of the casing is 700.

103

As with problem 3a, wellbore casings of various thicknesses are considered in problems

in Tables 6-2 and 6-3.
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Table 6-2. The outer radii and thicknesses for each
casing analyzed in problem 3b.
Casing  Outer radius '5° Casing thickness
sample # [m) Skin depth

1 0.17228 l
2 0.1745 2
3 0.17675 3
4 0.179 4

s 0.18125 5

casing analyzed in problem 3c.
Casing#  Outerradius ‘5 Casing thickness
(m] Skin depth

L ol
e ©
‘E\ §\
L] o= L)

6.3 The Methed of Selution for » Mukipie Cable Problom

peition is invoked 10 help solve this problem in the same manner it was used by
D—iﬁm-ﬂm:d (lo]nmﬁ-puu—nﬂynaly E—-ﬂy the
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cables are removed from the problem. A FEM solution is then obtained for the
electromagnetic fields created by the current in the single cable. The process is repeated
for all other cables until a FEM solution is obtained for each one. The individual solutions
are then superimposed to produce a solution for the original problem, in which all the
currents are present. Note the individual solutions are superimposed with due regard to
the azimuthal positions of the power cables in the original multi-cable problem.

For problems examined in this chapter, the three power cables are all the same radial
distance from the center of the casing. The magnitudes of the currents in all three cables
are also the same. Therefore it is not strictly necessary to obtain a FEM solution for all
tlvuuqiecahlepmblam ""'ﬁfthm‘tifeibhprahlern” oblen R:ther' nFEM:ohumn’ i nudonly

mmmmmmmwmmm;mmmmbyﬂ'”m
account for the differing phases in the cable currents. However, for more general
problems, where the individual power cables may be at different radial distances from the
center of the casing, a separate FEM solution must be obtained for each single cable

The method for solving a multi-cable problem is formally described as follows.

I. Subdivide the multiple cable problem into a series of single cable problems and map
the domain of each single cable problem onto a mesh to be conveyed UNAFEM II. In

2. Write the partial differential equation for the single cable problem in a form thet is
solvable by UNAFEM [1. Then, identify the numerical constants in the equation which
UNAFEM Il requires to compute a FEM solution.

3. Impose the approximate boundary condition A, L_.;Qmﬂnnnmm
value problem. Because this boundary condition is homog L_.=0ﬂdla
be imposed on each of the single cable problems. '

4 TﬂﬁvﬁyﬁfﬁMﬂ,LsOihiﬁmﬂrpﬁi i
A,|,, =0 is s valid approximation in dﬂﬁ-ﬁbaﬁhpﬁ—mﬂ,bso
should be a good approximation in the multi-cable problem.
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S. Define the boundary conditions for the magnetic field at the surface of the power
cable, accounting for the magnitude and phase of the current carried by the cable. If
the total current in a given power cable is essentially the same in both single and
multi-cable problems, then the magnetic field rangential 10 the surfoce of the cable
should be very similar in both the single and multi-cable problems.

6. Compute the FEM solution for the single cable problem using UNAFEM II.
7. Repeat steps 5 and 6 for each power cable present in the original problem.

8. Superimpose the single cable FEM solutions to obtain the total electric field in the
casing of the original multi-cable problem. The single cable solutions must be
superimposed with due regard to the azimuthal positiuns of the power cables in the
original multi-cable problem (this step is detailed in section 6.3.1).

Note that it is also possible to compute a single FEM solution for a multiple cable
prnhhn\vlmﬂlmnuitnﬂyukmnnnm This approach introduces two
omplications. First, the difficulty in designing a mesh to model the domain of

increased. This is particularly true when attempting to represent the curved

The second complication arises when it becomes necessary to define the non-
homogeneous boundary condition at the surface of the power cables. For a single cable
problem, a local system of polar coordinates (7,4) may be defined at the center of the
cable and the boundary condition written simply as H, (r..,.¢) = / /2., However, if
more than one cable is present, then there is no alternative but to define the boundary

In step 8 from section 6.3, it was stated that single cable FEM solutions are
superimposed to obtain the solution for the electric field in a multi-cable problem.
Moreover, the single cable solutions are superimposed with due regard to the azimuthal
positions of the power cables in the original multi-cable problem. This process is explained
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For each single cable problem, UNAFEM Il computes numerical values for the electric
field at discrete points in the domain of the single cable problem. These discrete points are
at the nodes of the mesh which models the problem domain. It is the “nodal” values of the
electric field from each of the single cable problems which are superimposed.

In this chapter, it is the electric field in region 2 (the wellbore casing) which is of primary
interest. Therefore, only nodal values of the electric field from region 2 of the single cable
problems will be superimposed. Consider the simple example illustrated schematically in
Figure 6-2. The total electric field at node 1 in the original multi-cable problem is equal to
the electric field at node 5 in single cable problem #1 plus the electric field at node / in
single cable problem #2 plus the electric field at node /5 in single cable problem #3.
Similarly, the total electric field at node 2 in the original multi-cable problem is equal to
the electric field at node 6 in single cable problem #1 plus the electric field at node 2 in
single cable problem #2 plus the electric field at node /6 in single cable problem #3. The

Orgisal Single Cable Single Cable Singlc Cabic
Muhi-cablc Problem Problcm #1 Problem #2 Problom #3

. /:xh**“s
o7 2 ) S ) e

lems 3a, 3b and 3¢ for UNAFEM 11

As montioned in section 6.3, a problem with multiple power cables is subdivided into a
present, the domein of the problem is symmetric about ¢ =0. Thus, as with problem 2,
which extends radially from the surface of the power cable to the outer wall of the casing,
and azimuthally from ¢ = 0" t0 ¢ = 180",
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Thus for each single cable problem, 8 FEM solution will provide numerical values for
the electric field (induced by a single cable) in the wellbore casing ar discrete points from
¢=0° 10 ¢=180°. However, prior to superimposing the single cable solutions, the
solutions must be expanded to provide numerical values for the electric field at points
around the entire circumference of the wellbore casing (not just from ¢=0° to
¢ =180°). This presents no real problem because the single cable problem has even
azimuthal symmetry and therefore E, ., ..., (7.9) = E oy i (7.~ 4).

Based on Figure 6-1a and the casing dimensions given in Table 6-1, semicircular meshes
are constructed to model each casing analyzed in problem 3a. Similarly, meshes are also
constructed for each casing analyzed in problems 3b and 3¢ using Figure 6-3 and the
casing dimensions given in Tables 6-2 and 6-3. These meshes are all included in
appendix §.

6.5 The Partial Differential Equation for the Siagie Cable Problem

The partial differential equation for the single cable problem is derived in section 5.1 and
is given by equation (5.1). SectionS.] also identifies the constants in the partial
differential equation that are required by UNAFEM Il to compute a FEM solution.
6.6 The Boundary Condition at the Outer Wall of the Wellbore Casing

For the single cable problem, the boundary condition on the magnetic field at the outer
wall of the casing is given by the approximation EELJ:fO, In terms of UNAFEM I
notation, this boundary condition corresponds to

[ s )

Expression (6.1) is the UNAFEM II boundary condition at the outer wall of the casing.
conditions in the single cable problem were discuseed in detail in sections S 4 and 54.3.

6.1)
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6.7 The Validity of the Approximation E*L , =0

For each casing in the single cable problems constructed from multi-cable problems 3a,
3b and 3c, the validity of the approximation H?la—:a =0 is tested by examining the

for the first five harmonics of H, (p,8) and H, (p,0) are greater than 30 then E;LM =0
is a good approximation. In some cases where the shielding ratio for the zeroth harmonic
is much greater than 30 but the shielding ratios for all other harmonics are less than 30,
FIIL , =0 may still be a satisfactory approximation.

Using the formulae from (A4.9) and (A4.10) and the data given in the sections 6.1 and

3c. The values for the shielding ratios and conclusions regarding the validity of the
approximation H;L , =0 are presented in Tables 6-4, 6-S and 6-6.



Table 6-4. A check of the approximation n=|.. , =0 for casing samples 1 to 7 from

problem 3a.
Casing Casing Casing Casing Casing Casing Casing

#1 #2 #3 #4 #S #6 #7
H.‘ (avo).=o
H, (6,0)_, 40.1 84.1 1325 1859 2458 3140 3959
H.l (a'e)rl
H,, (6.0)_, 26 52 82 1.6 15.§ 199 252
&l (a'o)n=2
H, (6.0)_, 16 28 43 6.l 82 105 134
H.‘ (aoo),,.3
H, (6.0)_, 1.3 2.1 31 43 57 74 95
HO. (aoo).,‘
H..(b,e)ﬂ 1.2 1.7 25 34 45 59 75
H, (a.0)
H, (6.0), 1.1 1.2 1.3 1.5 18 22 29
H'l (a’o)-sz
H, (6,0, , 1.1 1.3 1.4 1.7 20 24 31
H, (a,0), ,
H, (6.0, 1.2 1.3 1.5 1.8 22 2.7 33
i’l(a’o)lsd
H,, (.0)_, 1.2 1.4 16 19 23 29 39

CAED)

- stified ?

Inconclusive ---eeeceee--

1o



For the casing samples in Table 6-4, the decision as to whether Hilp:; =0 is a justifiable

approximation is inconclusive. Even though the shielding ratios for the zeroth harmonic
of the H, are the only shielding ratios greater than 30, it will be seen later that the FEM
based solutions for the eddy current losses in casings 4 through 7 agree relatively well
with corresponding analytical solutions.



Table 6-8. A check of the approximation FLL‘ , =0 for casing samples 1 to § from
problem 3b. '

Casing #1  Casing#2  Casing #3 Casing #4 _ Casing #5

Hy (@), — f o ]
H-; (b,o),j 13.2 356 97.1 2590 741 4

HC, (ﬂ,e)-j! o 7
H, (4.0), , 1.8 54 148 406 116

E!‘a (g‘g)i: 2 ) 7 7 .
VHC: (iﬂ)ﬂ 1.5 45 124 340 932

H‘i (ﬂ‘,B)GSI B B ) i
H, (5,0) 1.5 42 1.7 319 874

H, (a,0), ,
H, (6.0) , 1.4 4.1 1.3 309 845

Hl‘n (ﬁ‘e);=;
H, (.0)_, 3.9 10.1

76.1 209.0

[ %]
~
~J

Hﬁ (g—‘e),-;; - o b / 7
H. (5.0 6.6 17.0 46.4 127.3 348.9

Hl‘i (g‘o)!i?: _ _ N ) _ L
H.(5.0) . 93 24.0 65.3 179.2 490.7
L]

H (GB)
Ho(.0), 12,0 311 843 2313 6332

ﬂ[ﬁof

ified ? no inconclusive inconclusive yes yes
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Table 6-6. A check of the approximation ﬂ,L , = 0 for casing samples 1 to S from

problem 3c.
Casing #1 Casing #2 Casing #3 Casing #4 Casing #S
HO, (a'e). ]
H,,,(b,e)' ] 74 200 54.2 148.5 406.4
H(ﬁ(aﬁo). 1
6 . . . )
H,,'(b.e). | | 45 123 336 91.5
H,(.0), , 14 4.1 11.2 30.4 82.7
H(),(b,e). 2
HOI (a'e)n 3
4 9 . . ,
Ho,(b,O). ‘ | 3 10.8 294 799
Hy(a.0), , 14 39 10.6 289 78.5
HO,(hvo). 4 ) '
H“x (a'o)n ]
Hp,(h.O). ' 6.2 15.9 43.1 117.6 3204
H_(a.0)
(] " 2
) 9 ) ) )
H,,(b.O). 2 1.3 28 78.0 2128 5794
H_(a.0)
e DS )
6. i . .
H‘.,(b.O). ‘ 163 420 113.1 308.5 839.7
H_(a.0)
[)e) Vin o4
H,, (b.O). ) 214 $S.1 1482 4043 1100.4
A, =
L 1] no . l . o | . y“ y“
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6.8 The Boundary Conditions at the Surface of the Power Cable and Along the
Line of Azimuthal Symmetry
For the single cable problem, the boundary condition for the magnetic field at the
surface of the cable is closely approximated by
, / o
qul ('1.&&:‘) T (02)
2x cubly
This magnetic field boundary condition may be easily related to a UNAFEM 11 boundary
condition using the relations derived in section 5.4.1. According to (5 12), the
UNAFEM II boundary condition at the surface of the power cable is

[i % ]-i;- ! (6.3)

. ou
‘ = —|

2n
This is the same boundary condition applied to problem 2 in chapter $

1ner R ;b; F—
Mesumdary 7 D ndn

Along the line of azimuthal symmetry which bisects the single cable problem into two
semicircular sections, H, =0. Again, this is the same boundary condition which was
applied to problem 2 in chapter 5. The resultant UNAFEM I1 boundary conditions is

i P
o

6.9 Finite Element Methed Solutions for the Multi-Cable Problem Analyzed in

aa
$ 0 Y v
M s

For each casing analyzed in problem 3a, three FEM solutions are computed using
UNAFEM 1. Each FEM solution yields a solution for that portion of the total electric
field in problem 3a which can be attributed to the current in a simgle power cable. The
ﬂrﬁqleﬂﬂem“mpmmﬂdmmmemﬂelsm:ﬁﬁdmlm
casing. Note the single cable solutions are superimposed with due regard to the original,
azimuthal positions of the power cables in problem 3a. For casing | of problem 3a, this
process is illustrated below in Figure 6-3.




REAL

o

IMAGINARY

casing | of problem 3a.



o

Figures 6-3 (a), (c) and (e) are the single cable FEM solutions for the real components
of the electric field in the wellbore casing. Similarly, Figures 6-3 (b), (d) and () are the
single cable FEM solutions for the imaginary components of the electric field in the casing
Figures 6-3 (g) and (h) are, respectively, the sums of the individual real and imaginary
solutions. Thus, Figures 6-3 (g) and (h) represent the total electric field induced in
casing | by all three currents in problem 3a.

Contour plots of the FEM solutions for the current density (6 E, ) in casings | through
7 of problem 3a are shown in Figures 6-4 to 6-10.
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Figure 6-Sa  Contour plot of the magnitude of the current density [A/cm?)
in wellbore casing 2.
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Figure 6-7a Contour plot of the magnitude of the current density [A/cm?)
in wellbore casing 4.
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Once the solution for the foral electric field in a wellbore casing is obtained. the resistive
loss due to the resultant eddy current flow may be calculated. Once again, the integral
from Poynting’s theorem is evaluated numerically for each casing in problem 3a; the result
being the eddy current loss per meter of casing. Figure 6-11 is a plot of eddy current loss
as a function of casing thickness (refer to Table 6- 1 for casing thicknesses).

Figure 6-11 also includes a plot of the eddy current loss as calculated by Kawasaki, et al.
in reference [10]. In addition, a plot of eddy current loss calculated using Dwight's
expression (7) from reference 7] is also included in Figure 6-11.  Note that Dwight's
expression is only valid for thin casings (less than one skin depth) with a relative
permeability of unity. The plots of Kawasaki, et al. and Dwight provide a check for the
FEM solutions.

l 1
—O— FEM solution

—O— Kawasaki, et al.
solution

—O— Dwight solution

n o

S

Eddy current loss (W/m]
N w

1
0 i
0.2 0.4 0.6 0.8 1 1.2 14
Casing thickness in skin depths
(one skin depth = 10 mm)

Figure 6-11. Eddy current loss in wellbore casings of various thicknesses.

From Figure 6-11, the agroement between the FEM and analytical solutions appears to
be quite good. The discrepancy for casings less than 0.6 skin depths thick may be
attributed to the approximate boundary condition H,L.=0. Recall from section 6.7 that
no definitive conclusion was reached as to whether this boundary condition could be
justified for the casings in problem 3a. However, on the basis of Figure 6-11, the
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approximate boundary condition seems justified for those casings greater than 0.6 skin
depths thick.

As a final check of the FEM solution for current density, the solution is integrated
(numnc;!ly) over the cross sectional area of the casing. The result of this integration is
the FEM solution for the fotal current in the casing of problem 3a. Theoretically, the total
current induced in the casing of problem 3a should be exactly zero because the sum of the
currents I, I, and I, is also zero. In fact, for all casing samples, the FEM solution for
! cung 18 indeed less than 0.01% of the current in a single power cable (i.c., /., =0).

thn;kne;; increases. Th:; can be exphmed as follows. All lhe casings carry the same totnl
current (i.e., lg__, =0 as discussed in the previous paragraph). One should therefore

thgrefnre cross gmnmn! nm) increases. T'his supposition can be confirmed if one
examines the current density magnitudes plotted in Figures 6-4a to 6-10a. Since the eddy
current loss at a given point in a casing is proportional to |J|* at that point, as |J| decreases
throughout the casing, so to should the eddy current loss.

UNAFEM I1. Each FEM solution yields a solution for that fraction of the total electric
field in problem 3b which can be ascribed to the current in one of the three power cables.
Th:theenukcﬂhmhmmmtmﬁtoahmthm&sm:ﬁddml
given casing. Note the single cable solutions are superimpose with due regard to the
m@nlmnuthﬂpnﬂmoﬂhgmablampmﬂgn% Plots of the FEM
mmﬁlﬁmdsny(uEi)ma@lMSmﬂmwanm&lz
to 6-16.
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Figure 6-12a Contour plot of the magnitude of the current density [A/cm?)
in wellbore casing 1.
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Figure 6-13a  Contour plot of the magnitude of the current density [A/cm?]
in wellbore casing 2.
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Figure 6-13b Contour plot of the phase of the current density [°)
in wellbore casing 2.
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Figure é-14a Contour plot of the magnitude of the current density [ A/cm?)
in wellbore casing 3.
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Figure 6-150 Contour plot of the phase of the cusrent density [*)
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Figure 6-16a Contour plot of the magnitude of the current density [A/cm?)
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Once the solution for the total electric field in a wellbore casing is obtained, the resistive
loss due to the resultant eddy current flow may be calculated. The integral from
Poynting's theorem is evaluated numerically for each casing in problem 3b; the result
being the eddy current loss per meter of casing  Figure 6-17 is a plot of the eddy current
loss as a function of casing thickness (refer to Table 6-2 for casing thicknesses).

Figure 6-17 also includes a plot of the eddy current loss as calculated by Kawasaki, et al.
in reference [10]  The plot by Kawasaki, et al. provides a check for the FEM solutions.

50 !

—

i

8

8

|
f

—o— FEM Solution

=— Kawasaki ot al.
_solution

]

Eddy current loss [W/m)
S

-l
o

1 2 3 4
Casing thickness in skin depths
(one skin depth = 2.25 mm)
Figure 6-17 Eddy current loss in wellbore casings of various thicknesses.

o
o

From Figure 6-17, the agreement between the FEM and analytical solutions appears to
attributed to the approximate boundary condition H:LX.EO' Recall from section 6.7 that
thick.

Also note from Figure 6-17 that the eddy current loss is essentially independent of
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density near the inner surface of the casing does not change appreciably as the casing
thickness increases beyond two skin depths. The current density near the inner surface of
the casing tends to be the major contributor to the eddy current loss in the casing because
this is where the magnitude of the current density is greatest Since the current density
near the inner surface of the casing does not change appreciably beyond a thickness of two
skin depths, the eddy current loss remains essentially constant beyond a thickness of two
skin depths.

6.11 Finite Element Method Solutions for the Multi-Cable Problem Analyzed in
Problem 3¢

For each casing analyzed in problem 3c, three FEM solutions are computed using
UNAFEM Il. Each FEM solution yields a solution for that fraction of the total electric
field in problem 3c which can be attributed to the current in one of the three power cables
The three single cable solutions are superimposed to obtain the total electric field in a
given casing. Note the single cable solutions are superimposed with due regard to the
original, azimuthal positions of the power cables in problem 3c. Plots of the FEM
solutions for the current density (GE, ) in casings | through $ are shown in Figures 6-18
to 6-22.
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Figure 6-18a Contour plot of the magnitude of the current density [A/cm?]

in wellbore casing 1.
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Figure 6-180 Contour plot of the phase of the cusrent density [°)
in wellbore casing 1.
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Figure 6-19a Contour plot of the magnitude of the current density [A/cm?]

in wellbore casing 2.
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Figure 6-190 Contour plot of the phase of the current density [°]
in wellbore casing 2.
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Figure 6-26a Contour plot of the magnitude of the current density [A/cm?]

in wellbore casing 3.
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Figure 6-200 Contour plot of the phase of the current density [°)
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Figure 6-21a Contour plot of the magnitude of the current density [ A/cm?)
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Figure 6-21b Contour plot of the phase of the current density [°)
in wellbore casing 4.
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0.17

Figure 6-22a Contour plot of the magnitude of the current density [A/cm?]
in wellbore casing S.
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Figure 6-22b Contour plot of the phase of the current density [°)
in wellbore casing S.
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Once the solution for the total electric field in a wellbore casing is obtained, the resistive
loss due to the resultant eddy current flow may be calculated The integral from
Poynting’s theorem is evaluated numerically for each casing in problem 3¢, the result
being the eddy current loss per meter of casing. Figure 6-23 is a plot of the eddy current
loss as a function of casing thickness (refer to Table 6-3 for casing thicknesses)

Figure 6-23 also includes a plot of the eddy current loss as calculated by Kawasaki, et al
in reference [10]. The plot by Kawasaki, et al. provides a check for the FEM solutions.

8

—O— FEM solution

—{— Kawasaki et al.
solution

—

1 2 3 4 5
Casing thickness in skin depths
(one skin depth = 1.2mm)
Figure 6-23 Eddy current loss in wellbore casings of various thicknesses.

-
o

Eddy current loss [W/m)
S

o

From Figure 6-23, the agreement between the FEM and analytical solutions appears to
be quite good. The discrepancy for casings less than two skin depths thick can be
attributed to the approximate boundary condition H,L. =0. Recall from section 6.7 that
the approximate boundary condition was not valid for casings less than two skin depths
thick.
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CHAPTER 7

CONCLUSION

7.1 The Finite Element Method and the Magnetic Field Boundary Condition at the
Outer Wall of the Wellbore Casing

In generll terms, the gml of thii thesis hu been to ﬁbtlin numericli mlutiom ﬁ:r the

currents are lnduc;ed in !he wellbare casing by mngneuc ﬁe!ds whlch emanate ﬁ’om one or
more power cables situated inside the casing. The eddy current problem is modeled as a
two dimensional boundary value problem consisting of three regions: (1) the air filled
region inside the casing, (2) an annular region that is the casing itself, and (3) the air filled
region outside the casing which extends radially to infinity. This is best illustrated in
Figure 1-5.

In more specific terms, the goal of this thesis has been to prove that accurate numerical
solutions for the eddy current problem can be obtained by using the finite element method.
The main conclusion of this thesis is that accurate numerical solutions for the eddy current
problem can be obtained by using a finite element method that models only the power
cables and the casing, provided that the magnetic field at the outer wall of the casing can
be set 1o approximately zero. The provision concerning the magnetic field is important
because the accuracy of the FEM solution depends on the validity of this boundary
condition.

For the simple one dimensional problem examined in chapter 2, analytic lutions were
dmvedfwthehﬁmxﬁédzwﬂlmthm Aﬁgmm:gthﬁem;l
lohﬂmuwnohawdtmmemnﬁdduthemw:ﬂnfugmu
pproximately zero under the following circumstances:

1. Ifthe thickness of the wellbore casing is grester than three skin depths, or

2. If the wave impedance at the outer wall of the wellbore casing (see equation 2.33) is

much greater than the intrinsic impedance of the wellbore casing (n).
26]2 hm_thBﬁhm

eS are given in sections 2.6.1.1 and
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then incident electromagnetic waves originating at the inner wall of the casing will have
decayed by a factor of approximately ¢ ' by the time they reach the outer wall of the
casing. At the outer wall, portions of the waves are reflected back into the casing. As the
reflected waves travel back towards the inner wall, they continue to attenuate. Compared
to the magnitudes of the incident waves, the reflected waves are extremely small.  Thus
the effects of the reflected waves may be neglected everywhere except near the outer wall
Even at the outer wall, the field strength is only about 5% of its maximum.

For the second case, if the wave impedance at the outer wall of the wellbore casing .

magnetic field at the outer wall is reflected back into the casing. Furthermore, the
reflected field undergoes a 180° phase shift. Thus the incident and reflected magnetic
fields will be nearly equal in magnitude and opposite in phase; the two fields cancel each
other out and, as a result, the magnetic field at the outer wall of the casing is nearly zero

A quick though somewhat crude method for gauging whether the approximate boundary
condition is valid is to examine the magnetic shiclding ratio. The magnetic shielding ratio
for the simple one dimensional problem illustrated in Figure 2-1 is simply the ratio of the
magnetic field at the inner wall of the wellbore casing to the field at the outer wall. The
formula for the shielding ratio is given by expression (2.43). It was decided in chapter 2
that the minimum magnetic shielding ratio magnitude for which the approximation H - 0
can be justified is approximately 30. For a more complicated, two dimensional problem,
such as that illustrated in Figure S-1, the solutions for the clectromagnetic fields in the
casing are composed of an infinite series of spatial harmonics. In this situation, the
approximation H =0 is considered good if the magnetic shielding ratios for the first five

Chapters 4, 5 and 6 examine wellbore casing problems of increasing complexity. Each
chapter details a procedure for obtaining FEM solutions for the eddy current density and
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analytical solutions derived in chapters 2 and 3 and elsewhere in the published literature.
Evidence to support this statement is given throughout this work.

For problem |, the simple one dimensional problem analyzed in chapter 4, FEM solutions
for the electric and magnetic fields in various wellbore casings were compared with exact
analytical solutions derived in chapter 2. The comparisons between the FEM and

analytical solutions may be seen in Figures 4-2 to 4-9. Except for the phase of the
magnetic fields, the agreement between the FEM and analytical solutions is relatively

good.

Also for problem |, FEM based solutions for effective casing impedance are compared
with experimentally measured values from reference [3]. Effective casing impedance is
defined in (4.12) and the results of the comparison are available in Table 4-2. The results
indicate a remarkably close agreement between the FEM and experimental values for
effective casing impedance.

Finally, for problem |, FEM based solutions for the resistive power loss in wellbore
casings are compared with analytic solutions derived in chapter 2 and some experimentally
measured values from reference [3]. The results of the comparison, available in Table 4-4,
indicate good agreement between the FEM and analytic solutions.

FEM solutions were also calculated for more complex, two dimensional boundary value
problems such as problem 2 in chapter 5. For problem 2, FEM solutions for the current
density in various casing samples were compared with analytical solutions derived in
reference [6), [9] and [13]). For the magnitude of the current density, FEM and analytic
solutions were plotted together in Figures 5-3, 5-6 and 5-9. For the phase of the current
density, FEM and analytic solutions were plotted together in Figures 5-4, 5-7 and 5-10.
Overall, the FIM and analytical solutions were in relatively close agreement. There
were, however, certain instances where fairly substantial discrepancies arose. The

repancies between the FEM and analytical solutions can be attributed to the use of the
npproxmutehmmdnymﬂnm H =0, at the outer wall of the casing. The validity of
this approximation was not very strong for some of the casing samples in problem 2.

The resistive losses (i.c., eddy current losses) in the various casing samples of problem 2
analytical solutions derived in reference [9] and [13). In some cases the two solutions
gave very similar values, however, in one instance there was a 50% difference between the
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analytic and FEM solutions. Once again, the discrepancy between the two solutions may
be attributed to the inappropriate use of the approximate boundary condition 11 0 at the
outer wall of the casing.

Finally, in chapter 6, the general problem of multiple power cables arranged in an
arbitrary configuration inside a wellbore was considered. Three different boundary value
problems were solved: 3a, 3b and 3c. Each problem was distinguished by the arrangement
of the power cables inside the wellbore and the electromagnetic properties of the casings

the resistive ID“E! were cumpared \\nlh a,nalyin: salutmn; fmm rei'erznce l 10] T h;: n:sulls
of the comparisons, presented in Figures 6-11, 6-17 and 6-23, indicate good agreement
between the FEM and analytic solutions.

7.3 Potential Areas of Further Investigation

There are several avenues of research related to the eddy current problems discussed in
this thesis whlch ippﬂr worthy of further investigation. These potential arcas of further

Instead of applying the finite element method to numerically solve for the eddy currents
ina wellbam mng. as was done in this thesis, lhe mlhml ig[‘ MOMCIHN cnuld be used

mhnd Ad;pldbyﬂlmngmn [14] faf use in mlvmg elactrmugnﬁlc Imunduy u:lue
problems, the method of moments numerically solves for the integral equation associated
wnhlmhoundﬂ’yvahgprﬂlan The method of moments has a significant
advantage over the finite element method in that it can readily solve problems which have
be used instead of the approximate boundary condition (H = 0 at the outer wall of the
casing) which is required for the finite clement method.

In reference [13), Kriezis and Cangellaris used the method of moments to solve for the
oddy currents induced in a metal shell by a single current filament located inside the shell.
Their results were used as a comparison for some of the FEM solutions in chapter $
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Their solutions for the magnitude of the current density were consistently smaller than
cither the FEM solutions or the (purely analytical) revised Tegopoulos and Kriezis
solutions  In one instance, their solution for power loss in a wellbore casing (which was
based on their eddy current solution) differed from the FEM and analytical solutions by
S0%. This discrepancy deserves further investigation. In addition, reference [13] gave no
results for the phase of the eddy current density. For the sake of completeness, a method
of moments solution for the phase of the eddy current density would be desirable.

Another logical extension of the research done in this paper would be to extend the
analysis of the problem from two to three dimensions. The eddy current density could be
solved for analytically or numerically. In reference [13], Kriezis and Cangellaris use the
method of moments to obtain a numerical solution, in three dimensions, for the current
density in a metal shell of finite length and thickness. Some three dimensional, analytic
solutions have been derived by Tegopoulos and Kriezis [21, 22]). Their solution is for the
case of a single current filament situated inside (but not necessarily at the center of) an
infinitely thick cylindrical, metal shell. As of yet, no purely analytical solution exists for a
shell of finite length avad thickness.

Finally, it would be advisable to obtain experimental confirmation of come or all of the
above numerical and analytical solutions. From Stroemich et al. (3], some experimental
data is available for the case of a single power cable situated at the center of a wellbore
casing. It would be desirable to obtain measurements of eddy current loss for the situation
where the power cable is off centered.

Experimental data is also available from Kawasaki et al. [10] for the situation where a
steel pipe encompasses three power cables carrying a balanced, three phase current. For
situations where the current inside the pipe is wibakwced, it would be advisable to obtain
experimental results in order to verify the analytical and r.umerical solutions presented in
this thesis.
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APPENDIX 1

Errors and Inconsistencies In the Works of Tegopoulos and Kriezis Which Relate to
the Eddy Current Distribution in Cylindrical Shells of Infinite Length.

As mentioned in section 1.2.1.2, an analytical solution for the current density induced in
a cylindrical metal shell by a current filament is available from the works of Tegopoulos
and Kriezis. This solution for current density is derived in references [8) and [9] and is
given by equation (29) in reference [9). However, there are two minor errors in the
derivation of equation (29) which affect its validity. These errors are discussed in detail in
sections Al.| and Al.2 of this appendix. In section Al.3, equation (29) is rederived after
correcting for the aforementioned errors.
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Al.l1 The Magnetic Vector Potential of an Infinitely Long Current Filament

The first error in the derivation of equation (29) relates to the magnetic vector potential
of an infinitely long current filament in unbounded space Figure Al-la is a two
dimensional cross section of a filament of infinite length in the z direction. The filament
carries a low frequency, alternating current of magnitude |

o e e g

current filament
Figure Al-1 An infinitely long current filament in unbounded space.

According 1o equation (11) of reference [8], the vector potential of an infinitely long
current filament in an air filled, unbounded region is

Ald) = 2l ),
2x

where d is the distance between the filament and observation point as shown in
Figure Al-l1a. However, equation (11) is wrong. In fact, the correct expression for the
vector potential of a current filament in an air filled, unbounded region is

A(d)ze%hw), (AL 1)
2x
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Figure Al1-2 A partial cruss section of an infinitely long cylindrical shell and current
filament.

Consider now Figure Al-2; this a partial cross section of an infinitely long cylindrical
shell. An unknown current density flows along the length of the shell. The current
density, referred to as J(r.4). is some unknown function of 7 and ¢ . The current in the
infinitesimal element rdrd is given by the term J(r,¢)rdrd. According 1o Tegopowlos
and Kriezis, the vector potential (in air) due to the current element J(r, ¢)rdrdd is

d A-ZKII‘I(R.)J("J)H*‘Q,

where R, is the distance between the current clement and the observation point, as shown
in Figure A1-2. However the sbove expression, which occurs in references [8] and (9), is
incorrect; once again the expression lacks a negative sign. The correct expression for the
vector potential of the current element J(r, $)rdrd is

dPA= --;—;ln(R, )I(r.)rdrdb. (A12)
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The consequences of the error in sign are apparent when one examines the solution for
total current in the shell, as presented in references [8] and [9] In reference [8]. the outer
radius of the shell is assumed to be infinite and the solution for current density is given by
equation (34):

fl’l (J—P’) J_pl "( ) K (er)m;(w)

R O DT

(em,)K, () + 1, K, (Vima)
where p= ‘/u,,w /p and u, is the relative magnetic permeability of the metal shell in
equation (74) of reference [8], Tegopoulos and Kriezis attempt to verify that the integral
of J(,4) over the cross sectiona! area of the shell is -/ This would demonstrate that the
total current in the problem is conserved since /. + /.y - /-1 0 However, the
integration in equation (74) contains an error. The integral of J(r.¢) over the cross
sectional area of the shell is actually equal to +/. This is shown below:

)r.¢)=

e

Law = [ [1(r- bt

=2 prl (‘/—P’)
2 K [ipa)

gl b
_irl ’
a K(f pa),

T A

=1/

T_LK(J—F")

, according to the solution for current demsity given by equation (34) from
MI.],I -"’l“WhMM Homlf ﬂ!‘)il

potential, it can be shown that /,, does equal -/.
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A similar situation arises in reference [9] where the thickness of the shell is finite. The
solution for current density in a shell of finite thickness is given by equation (29) from
reference [9]:

)= -7 2 380 22 [k, o) 1Tor) o1, () Ko ST o).

! (/]
where

P=no/p
8,=1/2forn=0and8) =1for n21

= La(Vipa)k, (JTpe) -1, (Vipe)K..(Tpa).

The dimensions a, » and ¢ are defined in Figure Al1-2. Again, Tegopoulos and Kriezis
claim that by integrating their equation (29) over the cross sectional area of the shell, the
total current in the shell is found to be -/. Strangely, however, after their initial statement
that /,,, = -/, Tegopoulos and Kriezis go on to show in appendix 1 of reference [9) that
o=+l

It appears that the integral of equation (29) over the cross sectional area of the shell does
indeed equal +/. This is shown below:

e

Lo = [ [2r )rdry

After integrating J(r,4) from 0 to 2x, only the n = 0 term of J(7,4) remains. Therefore

I =2,j[_ ﬁ% ! K (Vipe)t(Jipr) + 1.{JTpe)K, (V] p)}

D,

Given that K ({7 pc) = K, (7 pe) and 1.,(JTpe) = 1,(JTpe),

![ G2 k(Jipe)t Vi F);;’ Vi), (i F)}




d-ug'\/g‘& : [ \/EP‘ I’ J_prrdr+l JK[’" I" ‘/‘l’r)"dr]

The modified Bessel functions in the above integral may be evaluated using the formulae
[0, (Mt = 271, (2)
f2"K, (e = =27 K, (2).
Evaluating the integral for /__, yields
- 7—| AP i
’“—‘[K rpt)[Fl (Vipc)-an, fm] I J_F-)[eli HK.(ﬁm)]]

'IE[K Vire)t(Jipa)-1,(Jim )k, (V7m)}

From equation (26) of reference [9),

D, =1,,(Jipa)K, (Jipc)-1, (Jipc)K...(ipa)

D, =1,({7pa)k (ipc)-1 (Jipc)K,(ipa)

= K,(Vipe)1,(Vipa) - 1,(VTpe) K (Vipa)
o [KTpI{Gpa) -1,(JTe) K (Viipal]
™ 77T W77 WYY 77 Y 779

’!ﬂ = li QED

/s = +] makes no physical sense because the total current in the problem is mot
conserved. The sotal current in the shell showld be -I, as initially stated by Tegaposias
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Tegopoulos's original expressions for magnetic vector potential. If equation (29) is
rederived after correcting for the negative sign in the expressions for vector potential, it
can be shown that /__, does equal -/.

A1.2 The Series Expansion of Ia|r’ +p’ — 2mpcos($ -0))

The second error in the derivation of equation (29) is directly traceable to equation (13)
in reference [9). Equation (13) is merely a series expansion of the term In(R,), where
R = Jr" - p* -2rpcodé-0) and p>r. According to equation (13),

In(R,) = In(r) - Z n[p) [co(mt)cnime) +sin(mé) lm(me)] withp>r.

In fact, the correct expansion with p > 7 is

In(R,) = In(p) - z

( ) [codme) codm) + sin(me)sin(mB)],  (A1.3)

¥ "’dinuldhap not . m&athnthemhmﬂs

mﬂgmmﬂeﬂgdﬂ, Mmmm.lmm
(29), the solution for current density in the

lmpan:vsmr f,if’;f'
which affect the zeroth order term in equation

AL3 Corrections to Equation (29) Afier Acconnting for Ervers in Its Original
Derivation by Tegopoules and Kriezis

The goal of this section is to rederive equation (29) in reference [9) afler correcting for
the wo ervors which appeared in the original derivavion. The two errors are those
discussed above, in sections Al.1 and Al.2.

Unless otherwise stated, the equations of Tegopoulos and Kriezis referred to in this
section are from reference [9). Wherever possible, the notation in this section is consistent
with that used in the original papers by Tegopoulos and Kriezis (references [8) and [9));
the only notable difference is the use of * J(r,4) " for current density instead of ‘Ar.$)".
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Equations (1) and (2) are correct as shown in reference [9]. Equation (3), the magnetic
vector potential due to the current filament, should be rewritten as

A (p.0) = —%ln(p: +b° = 2phcos0). (Al 4)

Similarly, equation (4) should be rewritten as

d*A,, = —;—‘;—J(r,¢)ln(R)rdrd¢. (AL S)

Equation (5) is correct as written. Equation (6) is altered by the correction to
equation (4); equation (6) should be rewritten as

Au(p.8) = (LT, +V )+ S L, %'.s',, co) + T, ‘:7 s,.codn0). (A16)
"l L]

Equations (7), (8), (9) and (10) are correct as shown in reference [9). Equation (11) is
also correct, but note that A (p,8) and A,,(p.0) should refer to the expressions in (Al .4)
and (A1.6) respectively.

Equation (12) should be rewritten as

d*A, (p.0) = -g‘il(r.o)ln(k. Wdrdd. (ALT)

The mistake in equation (13) from reference [9] was discussed in the previous section,
equation (13) should be rewritten as

() = 5)- 3-1{ 2 [codm)codm) « sinlmp)sin(me)]. (A1
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After correcting equations (12) and (13), equation (14) needs to be reevaluated.

Equation (14) is the integral of equation (12) over the cross sectional area of the shell.
Equation (14) is reevaluated as follows:

A..(p.0)= I j— 2 J(r.8)In(R,rdrd$,

where J(r,¢) is the general solution for current density given by equation (1) and In(R, ) is
given by (Al 3). Thus,

2

An.l0.0) = 42 (S ko0 Wior) o ., (e eosow))
[ In(p) - ;;( ;) [cos(mé)cos(mB) + sin(m¢) :in(me)])ﬂ#dt. (A1.8)

A.(p.0 =-E£Tj[h(p)i[f‘| (Vipr)+ €, K, (JFpr)]cos(m) -

ii;' —) [coc(m‘)coo(nﬂhsm(mt)m(nﬂ)[l"‘l (Jipr)+C.K, (J7pr ]éﬂl(ﬂ) drdg
(AL9)

Integrating (A1.9) with respect to ¢ from O to 2x reduces the above expression to

A.._.(P.O)--—— j[zzln(p)[l- 1(Vipr) + C, Ko (JTpr)] -
"” ;(;) [E1.(JTpr)+ €., (Jr) ]m-(ﬁa)}'&. (A1.10)

Equation (A|.10) may be simplified somewhat:
A, (p.8)=-p, h(P{ﬁj'o(ﬁF’)’**Cojxo(ﬁl")'*]*
—;—z';i )'[ajr”-.(ﬁn)nc.jr"'x.(ﬁp)t]w-(-a). (ALI1)



156

Integrating (A1.11) with respect to » from a to ¢ yields

A,.(p.0)=-pn, ln(p)[ il f/‘i;’w)- ii‘([%i-'f J+
71'1 et o) leost
MTZ';(E) [ ' _‘lﬁpl\_,,(\/lpr)]ms(rl)

*

]F[LII(J:P‘-) al (JFP" ]_Tp[‘ K, (\/IIAL) iiRAJ]]u)]]o
%Z,% é [f,, " L J_P*) a'l, (\[”m)]
[ KaJm)-am K (Vi m)]]ms(ue)

= -M,ln p)[

fp
(A1.12)
Ao.(p.8)=- unh(p)[%“—ﬂ. Jipc)-ay, J_m] J' - [ek,(Vim) uk(Jlrm)]]
%i% = [ 1. (ipa)]-
ﬁp[ Kunl Vi) -0 ""K.u(ﬁm)]]@f(fﬂ)
* (A1.13)

lnmﬁ’nm(Al 12) to (A1.13), the unknown constants /, and (', arc renamed V, and
L, re ively. According to Tegopoulos and Kriezis [8), thmm:mm
hm:etherﬂnmtmmd,(pﬁ)mnﬁpmdmlhemmnbutmofeddym:m
the air and not in the material.
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Rearranging (A 13) yields
A, (po) ln(p)l V., ;,"p[cl,(\/”u-) - al,(ﬁm)]+ L, %’;[a K, (\ﬁpa)‘ cl(,(ﬁp:)]]*
> '--[V.if}'l—',’[c"'l...(ﬁm)-u"'l...(ﬁlﬂ)]*

o np” )
M[ 'K, (Vi) r"'n...(ﬁm)]]m(rm
(Al.149)

The above expression for A, ,(p,0) can be written in a more manageable form which also
corresponds to the original equation (14) in reference [9)

A (p.8) Inlp).Yy + 1Y, ]+ z=L[l; +1,7,]Jcos(n®) (A1.15)
where
Y, = —‘/‘%’[ﬂxn(ﬁp") “K|(J;P‘)]- (Al.16a)
y’"nz,/‘]'p[ a*'K,,(Jjpa)-c*'K,, J"p;] form21,  (Al.16b)
- Mo [ -al, fm)] (A1.178)
and r.. 2’fp[" L. (Vipe)-a'1, (JGpa)) form=1. (ALITD)

Equation (Al.1S) is, therefore, the corrected version of equation (14) from
reference [9)  Equations (A1.16a) and (A1.16b) are essentially the corrections to
equation (15).  Similarly, equations (Al.17a) and (A1.17b) are the corrections to

equation (16).

Equations (17), (18), (19) and (20) are correct as written in reference [9]. These are the
boundary conditions on the normal and tangential components of the magnetic fields at the
Kriezis construct a system of 4 equations with 4 unknowns. Tegopoulos and Kriezis
substitute the mh terms of B,(0.0) and H,(p,0) im0 equations (17), (18), (19) snd (20)
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and then proceed to solve for /-, and (', There is one minor problem with this procedure
it cannot be used to solve for /, and (', because there is no zeroth terms of h‘.,(p.())
Thus one is left with 4 unknowns (7, (', 1, and ")) but only 2 equations, (18) and (20)

To solve for /, and C,. the continuity boundary condition for the tangential components
of A must he introduced. There are general solutions available for the 2 component of the
vector potential in all three regions of this problem The general solution for 4, (p.0), the
vector potential in the air filled region inside the shell, is given by equation (11) trom
reference [9). A, (r.4). the solution for the vector potential in the shell itself, is given by
equation (2). 4,.(p.0). the vector potential outside the shell is given by
equation (A1 15).

At the inner surface of the shell,
A(a.0): A (a.9). (Al I8)

where A (p.0) and A,(7,4) are given by equations (11) and (2), respectively  Likewise,
at the outer surface of the shell,

A(c.¢)=4,,(c.0) (A1 19)

where A4,(r.4) is given by equation (2) and A4, (p.0) is given by equation (Al 15)
Equations (18), (20), (Al1.18) and (Al.19) constitute a system of 4 equations
in 4 unknowns which can be used to solve for /, and (",

Solving the systems of equations yields the following solutions for the unknown

constants /, and ',
e i)

ol Vipch(e) "
f,,:,/jz”’w[ , o

l.(ﬁm{“' K"('['pc)«x.(‘//'m‘)]*'(.(a// {“’ i) l.(v/m)”

J!-P"h(‘) J]pcln(c)
(Al 20a)

F,= L jd[z(ﬁ).lﬂ%’%;ﬁ) + K,'(,//pc)J. form=-1 (Al 20b)
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H, !n(fm) NN IR
[,/_pcln(r) '(J:; )J

€= 2’:,’__ K. ({7 (V) |
[' (Vipa )["f mn(p-; J W )[uf ﬂe'“";’ .,(ijc)ﬂ

(A1.21)

rl E(.’i) )[M - ([’p‘)*l -( _]p(.‘)]. vepz) (A1.21b)

where

["‘;‘ M (fipa) -1,.,(Jipa) )("“‘ g, ((Tme)-K ..(f,x)

("[“' k. (yTpa)+ K. .((Tpa I——ll (Vipe)+1, (J_'Ff)) (A1.22)

Equations (A1.20) and (A1.21) represent corrections to the equations (24) and (25) from
reference [9]. Equation (A1.22) is the correction to equation (26).

Having obtained solutions for /, and C,, it is now possible to construct the final
given by equation (1):

Hr-9)= [t (JGor) + €K, () Joorlm).

Substituting equations (A1.20) and (A1.21) into (1) yields

w 1,(J7p¢)

" L‘(d’F)*x(J;p)]l (vspe)- [ pinlc) "(v/-""ﬂf”“")

'1pcic)
.I‘Fi‘)i '/1 7"’ [ N

i [l (4,,._{"‘/"::’:) +K, (\JF)]*E-(JP’{“JI ﬁ:j) (JJF)]]

T 5 e R e R N
(A1.23)

where 1), is given by (A1.22)
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(C % N L) TN
Joa)e J— pl J_-]-pcln(C) + kl(ﬁf") In(ﬁ,”)_ tJ’i"'“(‘) ||(J-’I"')-I k‘.('lll")
’ ' 2%a Ko(ﬁm)*x (Wire) (47 ').' L7 pe) " _)‘K (i)
\bﬁ”d"(") ' I"J W\ J;/nln(d W\ | W\ }
VES (2] [k (TP (o) 1 (WK (et
) (Al 29)
and D, from (A1 22) reduces to
D, =1,,(Jira)K, (Vire)- K, (Jipa), (Vi) forn~1 (A1 25)

In summary, afier correcting for the two errors in the orginal derivation of]
eguation (29) (the errors discussed in sections Al.|1 and Al 2), the result is equation
(A1.24). Equation (A1.24) represents the correct solution for the current density in a
metal shell of finite thickness with u, = 1. Note the two main differences between
(A1.24) and equation (29): first, the # = 0 term in (A1.24) comains several extra terms in
*he numerator and denominator which include the factor In(c). The second difference
between (A1.24) and (29) inhesﬁncluminfrontoﬂhenzl terms.

Al.4 Tle Return Curvent

In reference (9], Tegopoulos and Kriezis assumed that the return path of the filament
current '/’ was confined inside the metal shell, and therefore ' ., - /. In section Al ),
it was also stated that the total current in the shell should be cqual to -/ However, this is
true only if one uses the incorrect series expansion for In(r) given by equation (13) in
reference [9). The error in the expansion of In(r) inadvertently leads 1o the boundary
condition H, (£,4) =0. This, in turn, leads to the return current being confined within the
shell. The relationship between the H, (4,5) = 0 boundary condition and return current
was discussed in more detail in section 3 3.
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Afier the correcting for the error in the expansion of In(r), the total current in the shell
may be found by re-evaluating the integral

’-ﬁ,:u = TI“"*)"dﬂb

Substituting the correct expression for ./(7,4) from equation (A1.24) into the integral for
/.o yields

,([ i el ]J 1 rpeleie - ‘,—‘[,j’, o) [ K. (e
il prive
law V17, K, (Juﬂ) (I \! ( . (,/’,,.;) ( _
Jircinte) ' VIR 1{J1pa)+  Jinile)” m) K,(y7pa)
L [J::x{?i K (fpr)]j 1.(Jipr )rdrj}g;f))-l(fpc) [ K. (JTpr)rar
,Jl}; (IF) (J« ) ( . I(J_p;) -
 [Vipemle) TV Vipa)+ | Jipeinte) a(ﬁFF) K,(V7pa) |
([J;Lﬁz{m.w)}ﬁw Wi (il e )
s K.({jr) ra N X )
Jirchle) i) |1(J7pa)+ firemte)” 1(v7 ,.:-) (V7 Fa)
(A1.26)
’ 5:2::_)'*E.(Jiﬁ)}rl,(‘/IF)—ﬂI,('/jR)] ["/J( 1:), L Jj,,)}rx (Vipe)-aK,(ima)]
la = [* o .
[j;‘pj:j () s)] (i )[ LI )] (ire)

(A1.27)
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Rearranging (A1.27) yields
(

JIIK l J \
K, (Vi) - K. Jun " Jimn(e) .

<
[.

D = -1 1~ ‘(J’
- f,
Ko(Jime

(i), () - Ko (il ()

.fp., J]peln )

/
i) | ]
J

(Al 28)

By examining (A1.28), it is obvious that /,, # -/ and therefore the original
niumpiion that lhe return current flows emirely wilhiii the shell is erroneous  As
lnﬂgd some of the return current llm ﬂnw: uu,m:,k Ihc xll ll in lhs form ul' dmpluemem
current. The relationship between the conduction current in the shell, the displacement
current outside the shell and the total return current is discussed in chapter 3 Omly m the
extreme case where H, (k,b)=0is 1, = 1.

ALS The Expression for Eddy Current Less In Reference |9]

Ré‘erenee [9] llm containg an exprenm’ ssion for the resiﬂive pnwer loss in the mclnl shell

fnr current My). it should be Hﬂhﬂled using thg correct sniulmn ﬁnr current dens!lv
given by (A1.24).

Fortunately, only the » = 0 term of the power loss formula given by equation (40) needs
to be corrected. The » > | terms in equation (40) are unaffected by the correction to the
n 2z terms in equation (29). This is because the only correction to the # -~ | terms in
equation (29) was a change in sign.

The correction to the » = 0 term in equation (40) and the proof that the » - | terms in
equation (40) are still valid is given as follows.
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First, rewrite (A1 24) in the following form:

” Vg [Bfr) AL plg s g [Bir) - jALn) (b 1 29
/ir8 [fz D,y b, ﬁazﬁ D, + i, (a) coslmg). (A1.29)

where

K. (Vi)
Alr) lm”‘[l-;‘mc— K\Jir

0) n‘[ i) )] Wi )[ L) w)] (fp.—)]

-1(yi pe)] K.(Ji pr)]

(A1.30)

Jipcin

(A1.31)

DR e IR e R
C (A132)

A I N | A

(A133)

Ar) = -imfK, (VTP (Tpe) + 1, (VTp)K(JTpr)} formzn, (L34
B(r) = Re{K, (VTP (JTpr) +1, (SiPIK ()} form=1,  (A13S)
- kel (Vipa)K. ({Tpc)-K..(Vpall. ((Tpe)} fornz1,  (AL36)

wd D, = i1, {Tpa)K, (JT)- K. (VipaL, (Vi) fornzt  (AL37)
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A, B,. D, and 1), arc given explicitly in reference (9] by equations (34), (39). (36)
and (37), respectively. Equation (A1.29) may be further rewritten as

S d)- hJ;zm[Liﬁl) y’:[[*"- *x'"~1](;)"m,.(,.,>. A1

D, 2SI
where
A, =(D,[4,()+ BA) DA BN, (Al 1)
B, =(-D,[4.r) B(A] DA BN, (Al 40)
D =0, D, (A) 41)
A, =(D,[4() e 8] DA B(N)). (A1 42)
B, =(-D,[A4,(r)- B(1] D[4, (r)+ B,(r). (Al 43)
and D =D, +D,} (Al 44)

Equation (A1.38) allows for J(r,4) to be casily separated into real and imaginary parts

since A, B,. 4, and B, we all real.
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The derivation of the formula for eddy current loss, /., begins wilh the imegrll ﬂ‘cm
Poynting's theorem, given by equation (73) in reference [9]. Substitutin
equation (73) yields

I - T];|J(r.¢)|’rdnu

11

| (S) [s' (r)+ B, (r)]:m(lﬁ{rdnl&

ﬂ ‘r_,,f,’,ﬁ (r)J ol Z
o,

Al )

A, (r)s\ ]ﬁ (r_) - 1 (h
[ '“ ]¢ ZI“ ; (=) [.=I (r)+ jB, (F)]um(n‘)

]

2328

I,
,N[[' 1.(r) Z—#[ ) :_l.(r)i;m(u#)]l*

2'[‘ il

!gi’* 3 l F jJoiwi
[+ g meo ("'”]]

AT S e Bt ) oS (2 2] |

ilﬂ (r)]z*ﬁi(r) 1 (b " !
[ DY ERATY; Z|n.|( ) )“("*)*Lm ( ) E“”“""] H"*‘*
(A1.49)

rdrdé

Jzn

I

Integrating (A].45) with respect to ¢ from O to 2x yields

I[z l*l',:’l , f[izuninl(ﬁ)( i)'z ()7, (r)m(n)om(-t)]ﬂ+

LG ;[););' T () (3] Bm. (r)u(n)u-(-u]a}
ny “F:gﬂ*.i{(g "o 2L g 10y nr}

2 |n,)’

A B[R] O] (b
ar s e a) ]""

jz
’ MHI

(Al.46)
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From (A1.39), (A1.40) and (A1 41) it may be shown that

AV LB = (0200240 2k

=2n,’ +n‘;)[.4; 8] (Al 47a)
Similarly, from (A1.42), (A1.43) and (A1 44) it may be shown that
A +B Y = (D700 247 v 28]
=2An,’ + I.D_f)[d_; + Hf]. forn | (A1 47b)
Therefore, substituting (A1.47a) and (A1 47b) into (A1 46) yields
Lo [il=2 2An,? +D, XA‘,(r)* r)] fzn KU PRETY R (r)]( )
a|y2ra 2 '[}I ;7 ll)I i
1 p idqr)+B r)] [_-Sr)*ll(r)] »
" a|J2ra 2![2 ; |, (a) ar
' (Al 48)
Rearranging (A 1.48) somewhat yields:
el . LA
La( ) ZIDI A(r) + B,(r) ]ﬂlr* ( ) ;( ) |l | ”A (r) ¢ B (r) lnlr
(Al 49)
The second term of (A 1.49),

nb-

A
u(m) t;( ) |I)|
is eomly mlvad by Tegnpmlm and Kriezis in rgfme [9| with ud from references

aqulmn (40) ﬁ'um rel'am [9],
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To obtain a complete solution for the eddy current loss in the metal shell, one must also
cvaluate the integral ”A.,( r) o4, r)']rdr in the first term of (A1.49). Substituting Kelvin
functions for the modified Bessel functions in A,(r) and B,(r) (from equations (A1.30)
from (Al .31), respectively) yields

( bory(pe) ket (pe) prr)_(m,(pc)ma,(pc) _kci,(,,c,]w,(,,,p

Alr)- V2pein(c) J2pcin(c)
e ( bora(pe) - bei(pe) | ))m m( ber,pe)  beio(pe) - ,]w( I
J2pcinlc) pe o\ P ﬁpcln(c) \pe o\p
(A1.50)
*aﬂ'!‘p‘)"kc'“_(_p_c_)_ i r)+ keto(pc)-kd“(p“)_ i.(pr)+
. [ p) el uc.(mjw.,(p) [ o u«.(pc)]bc-.(p) |
] (ber(pe) + beig(pe) ber, (pe) - beiy (pc) .
( Jz—pcln(c) bcl,(P(‘)]kcfo(P’)'[ ﬁpcln(c) 'bal(p‘)ch'o(P’)

(A1.51)
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Substituting (A1.50) and (A1.51) into the integral in the first term of (A1 49) viclds

j[-"u:(r) + B (r)]rdr = x, Hbﬂ..:([”’) +bei,"(pr)|rur +

K, j[ker,,: (pr) + keif(pr)]rdr '

K ‘j[ber(,(l”)ker,,(pr) + bei"(pr)kei"(pr)]rdr '

E;I[bei..(pr)ker..(lv) - ber, (pr)kei, (pr)]rdr, (A1 52)

: f?f(l;)*bel,,([u_) bﬁ(lu')]:-

’ "ker (p;)* kei, (/x)

\ J-]n ln(;)

L V2pein(c)
Iber.. pe) - bei, (pe)
f]nln

Ibﬁ m) + bei, (pe)
f[xh(i

~ kei, ( pe )Ibﬁ l"-’) be‘(lx)

_!rkeru( ) - kei, (pe)
K, = { 2pein(c) ker,(p(.))
- _[(vera(pe) - beiu(pe) ) |
G \ \/_pl;‘ln(c) ber, ()
N [ker o (pe) - kei, o(pe)

! . J_]x-h(c
[kﬁu(m‘)*ka o(pe) |
V2pein(c)

, ker, (pe) + kei, (pc)
K =2[( J_;x:h
kefu(f") ke‘ o( pc)
[ Vipnle) (P

f]xlﬂ

kei, ( pc))

i)

m.(,;-))]

be’l(l‘i'))

- bei (p:))} (A1 53)
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Evaluating the integral in (Al 52) with the aid of references (23] and [24] yields
Jladtere m2 )i £ 1) - 7;(.(pa)]+

sfgz;..mc)-%r;.(m)}

“_57“(’1)157“([")]-’:

(¢
. Ezp

are a .. ) _
1, (pe) - 2 l;.(im)]- (A1.54)

where

5u(pr) = [ber(pr)bei’(pr) - bei(pr)ber’(pr)]

Tu(pr) = [ker(pr)kei'(pr) - kei( pr) ker'(pr)]

Lo (pr) = ker(pr)bei’(pr) - ker'(pr)bei( pr) + ber(pr)kei’( pr) - ber'(pr) kei(pr)

Tu(pr) = ker"(pr)ber(pr) - ker(pr)ber’(pr) + kei*( pr) bei( pr) - kei( pr)bei‘(pr).
(A1.55)
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Therefore, the final solution for the eddy current loss in the metal shell (i ¢ , the explicit

solution to equation (A1.49) ) is

Lo M(PLY R U Ny
=48] f el o

x:[;‘?;,.(]k') (i/é‘,([kl)] '
K_‘—‘ [1’7;,.([!(') -u’l;.([xn)] ]
—'i[("l;,([k') ul;,(pu')] )4

w0 ()],
() iﬁ.|:(N- (P [t () at,(pa)]

M, (pe) [el,(pe) al,,(pu)]
Ao (pe)et(pe) - at,,(pa)]

N, (pe)el(pe) ali,(p)]). (A1 S6)

where
|D,| is given by (A1.32), (A1.33) and (A1 41),
K, K,, x, and x, are given by (A1.53),
Ta(pr). To(pr), T (pr) and 7,,(pr) are given by (A1.55),
D, is given by (A1.25);
ID‘_I2 is given by equations (31), (36) and (37) from reference |Y),
N,(pr) and M, (pr)are given by equations (40) and (64) from reference 8],
A.(pr) and T, (pr)are given by equations (45) and (46) from reference [9);

and T.(pr), T..(pr). T..(pr) and 7, pr) are given by equations (41)
through (44) from reference [9).
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APPENDIN 2

A Limitation of the Eddy Current Loss Formula of Kawasaki, Inami and Ishikawa

The formula given by equation (7) in reference [10] is Kawasahi's, Inami’s and
Ishikawa’'s precise formula for eddy current loss in a metal pipe  This formula s
supposedly valid for any multi-phase system of current filaments inside the pipe
However, upon closer examination of the derivation of equation (7), it appears the
formula is only correct if the currents in the interior of the pipe sum to zero

Kawasaki et al. begin the derivation of their loss formula with an expression for the

current density induced in a metal pipe by a single current filament
I )= T[H 1)+ D) 1) codm)

this is equation (1) of reference [10].

The problem in the derivation of the loss formula is best illustrated by considering an
azimuthally symmetric problem (i.e., a problem where only a single current filament at the
center of the pipe is present). In this case » - 0 and consequently the Kawasaki et al
expression for current density, equation (1), reduces to

J(r.¢)=0 (A2 1)

Thus the current density is identically zero everywhere in the metal pipe  If equation (1) is
compared to the revised iegopoulos and Kriezis solution for curremt density
(equation (A1.24) in appendix 1), it is apparent that equation (1) lacks an # 0 term
This is the reason that, for an azimuthally symmetric problem, J(r.¢) 0 in equation (1)
and J(r.4) = 0 in equation (A1.24).

No definite explanation is given by Kawasaki et al. for the exclusion of the » - 0 term
from equation (1). However, it can be inferred that the » = 0 term was excluded because
Kawasaki et al. presumed the path of the return current to be entirely separat.: from the
pipe. In sections 3.3 and Al 4, it was demonstrated that the » = 0 term in a curremt
density solution represents a porfion of the retum curremt, but not the total return curremt
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of the return current cannot be arbitrarily specified if the tangential boundary conditions
are to be sansfied.  Thus Kawasaki et al. cannot arhitrarily specify the return current (o
he separate from the pipe, nor can they simply omit the n = 0 term from their curremt
density expression.  In general, an n = O term representing the return current should be

included in equation (1).

There is, however, one situation where the » = 0 term in the current density solution can
be legitimately omitted.  This situation arises when a halanced, multi-phased system of
current filaments is present inside the pipe. For problems where multiple current filaments
are present, the eddy current density in the pipe is found by superimposing the effects of
each individual current filament. [f the filaments inside the pipe carry a balanced current
(i.e., the currents sum to zero), then the n = 0 terms from all the single filament solutions
sum to zero when they are superimposed. Thus, the # = 0 term in the net current density
solution is identically zero everywhere in the pipe material.

Equation (4) in reference [10] is the solution for net current density when an arbitrary
the current density solutions of individual filaments in the pipe. The current density
solution for an individual filament is given by equation (1). Since equation (1) does not
contain an n = O term, neither does equation (4). However, equation (1) should include
an n = 0 term and consequently 50 should equation (4).

Once again, the one instance where an 7 = 0 term need not be present in equation (4) is
if the filaments inside the pipe carry a balanced current. In this case equation (4) is correct
as written because the # = 0 term (if it was present) would be identically zero, the absence
of the #=0 terms in the individual filament solutions makes no difference since they
would sum to zero when superimposed.

Equation (7) in reference [10) is a formula for eddy cument loss in a metal pipe.

when the filaments inside the pipe carry a balanced current, it follows that equation (7) is
also correct only when the current inside the pipe is balanced.
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APPENDIX 3

The meshes used to model the domain of problem 2 for various casing samples are
presented in this section.

Figure A3-1 The mesh used to model the domain of problem 2 with casing sample 1
Note that the diagram is not to scale.
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The mesh shown in Figure A3-1 is constructed differently from all others in this thesis.
Fﬂflhlhpiﬂh&ﬂﬁﬂiﬂhdmgﬁpfﬁ&ﬂmﬂlwﬁﬂexp&ﬂmﬂﬂﬂqe
Eﬂmumlnxnﬂe,; nrmagllnndequdnh!gr:lelmm A

pmhhini m&mmmnmdm four node
quadrilateral elements. An example of these meshes are those depicted in Figures A3-2
and A3-3.

In spite of the large aspect ratios of some of the elements in Figures A3-2 and A3-3, this
type of mesh design doss not appesr 10 adversely affect the accuracy of the FEM solutions
ﬁrﬂ“mm FEM solutions obtained using these meshes compare favorsbly
with ¢ nding anelytic solutions (refer to sections 5.5.2 and 3.5.3 for details)
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Figure A3-2 The mesh used to model the domain of problem 2 with casing sample 2.
Note that the diagram is not to scale
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Figure A3-3 The mesh used to model the domain of problem 2 with casing sample 3.
Note that the diagram is not to scale.
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APPENDIX 4

The General Solutions for E, (p.0) « H (p.0) and H,(p.0) in Region 2 of Problem 2

For problem 2, the general solutions for E!,(r.cb)i ll.‘(p.m and 1,(p.0) in region 2
consist Bf an inﬁnitg seﬁes of spmiai harmonics with respect to the O coordinate  The

The general solution for the electric field partial differential equation in (S 1) is

E, (p 0) = Z(A H (kp)+ B H (& p)X( codr)) v D). sin(0)). (A1 D)

where A,, B,, (', and 1), are unknown constants. Note that the azimuthal cigentunctions
in (A4.1) satisfy the obvious boundary condition E ,(p.0) E.(p.0 1+ 2x)

The expression in (A4.1) may be further simplified by invoking the fact that problem 2
has even symmetry with respect to 8. Therefore E,(p.0) E.(p, 0) The general
solution for the electric field in region 2 may then be written as

E, (p.0)= Z( HEkp) + B, 0 (kyp)) codm0) (A42)

follow:.

From Maxwell’s equations,
VxE,=-jou, H, (A43)
Given that there exists only a z component of the electric field, (A4.3) may be reduced to
. (10E,\ . (0E, o ‘a4 4
| =—=2+a,| =2 |= - jou, 1, Ad4
.P(p 20 )*-u( o JOu, 1, ( )
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From (A4 4) a scalar differential equation may be extracted from each of the field

components
) -1 ¢F, A
: —1 (A4.5)

H,,(p.08) = . (A4.6)

J ,uz “p
Equations (A4 5) and (A4 6) relate the components of the magnetic field to the electric
] (A4 ™ ato (A4.5) and (A4.6)

field Substituting the general solution for E ,.gz(p 0) from (A4 °
yields the general solutions for H, (p,6) and H, (p.8):
H,, (p.0) = l v (,ai H'(k,p) + B, Hf,”(lt:p)) nsin(19). (A4.7)
JOH P
—H(kp) + B, — H‘”(k p))mlne)
( *p " op

(A4.8)

’ ]

H,,(p.0) = %EZ

The Magnetic Shielding Ratios for Individual Spatial Harmonics of H, and H
For problem 2, a magnetic shielding ratio may be defined for individual spatial
harmonics of the magnetic field in region 2. The magnetic shielding ratio for the mh
harmonic of H,, (p.8) in (A4.7) is defined as follows:
( y ALY !:(5 i)) ( Ay lb ﬂ)*eﬁ:“"i))} (A.‘g)

H,(a0), 18/6] n,
H, (5.9),  2ava |Z/(kp)
![de (k,p)]p&

Similarly, the magnetic shielding ratio for the #th harmonic of H, (p.8) in (A4.8) is

defined as
Hg (ﬂ e) = lﬁ{z;(tlb)(f!!u a) -e é;l&a))*(‘,ﬁdl—g) +e Al i))} (A4.10)
n, ' | ]

Ho60) " 2Va
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N TYARES
The meshes used to mod: rore s 3a, 3b and 3¢ for various casing
samples are presented in tt
Figure AS-1 Themesh . - o dJomain of problem 3a with casing sample |
Note that the diagram is -+ +- < -
o
A
|
A \ \. .
\ A / i

il \»\‘\

i -

s
1
Tt
3
» TS
——

f“m | mm




Figure AS-2 The mesh used to model the domain of problem 3a with casing sample 2.
Note that the diagram is not to scale.
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Figure AS-3 The mesh used to model the domain of problem 3a with casing sample 3.
Note that the diagram is not to scale.
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Figure AS-4 The mesh used to model the domain of problem 3a with casing sample 4
Note that the diagram is not to scale
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Figure AS-S The mesh used to model the domain of problem 3a with casing sample S
Note that the diagram is not to scale.
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Figure A%-6 The mesh used to model the domain of problem 3a with casing sample 6.
Note that the diagram is not to scale
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Figure AS-7 The mesh used to model the domain of problem 3a with casing sample 7.
Note that the diagram is not to scale.
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Figure AS-8 The mesh used to model the domain of problem 3b with casing sample |

Note that the diagram is not to scale
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Figure AS5-9 The mesh used to model the domain of problem 3b with casing sample 2

Note that the diagram is not to scale.
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Figure AS-10 The mesh used to model the domain of problem 3b with casing sample 3
Note that the diagram is not to scale

—
e
\\\‘:\\\

/,
//’

S
I ///////I/( f/ /( / / /'7/'*"“

- e

T
_§’1
3
£
i

! n%%gﬁ Mum]_m&m”“ 6. 67"

Figure AS-11 The mesh used to model the domain of problem 3b with casing sample 4
Note that the diagram is not to scale.
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Figure AS-12 The mesh used to model the domain of problem 3b with casing sample §
Note that the diagram is not to scale
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Figure AS-13 The mesh used to model the domain of problem 3¢ with casing sample |
Note that the diagram is not to scale.
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Figure AS-14 The mesh used to model the domain of problem 3¢ with casing sample 2.
Note that the diagram is not to scale.

Figure AS-18 The mesh used to model the domain of problem 3¢ with casing sample 3.
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Figure AS-16 The mesh used to model the domain of problem 3¢ with casing sample 4
Note that the diagram is not to scale.
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Figure AS-17 The mesh used to model the domain of problem 3c with casing sampie .
Note that the diagram is not to scale.




